WorldWideScience

Sample records for streptomyces bacteriophage phic31

  1. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness

  2. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    International Nuclear Information System (INIS)

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J.

    2011-01-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3ζ/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of FcγRII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  3. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Iri-Sofla, Farnoush Jafari [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [Center of Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O (Denmark); Rasaee, Mohammad J. [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  4. Impact of hydrodynamic injection and phiC31 integrase on tumor latency in a mouse model of MYC-induced hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lauren E Woodard

    2010-06-01

    Full Text Available Hydrodynamic injection is an effective method for DNA delivery in mouse liver and is being translated to larger animals for possible clinical use. Similarly, phiC31 integrase has proven effective in mediating long-term gene therapy in mice when delivered by hydrodynamic injection and is being considered for clinical gene therapy applications. However, chromosomal aberrations have been associated with phiC31 integrase expression in tissue culture, leading to questions about safety.To study whether hydrodynamic delivery alone, or in conjunction with delivery of phiC31 integrase for long-term transgene expression, could facilitate tumor formation, we used a transgenic mouse model in which sustained induction of the human C-MYC oncogene in the liver was followed by hydrodynamic injection. Without injection, mice had a median tumor latency of 154 days. With hydrodynamic injection of saline alone, the median tumor latency was significantly reduced, to 105 days. The median tumor latency was similar, 106 days, when a luciferase donor plasmid and backbone plasmid without integrase were administered. In contrast, when active or inactive phiC31 integrase and donor plasmid were supplied to the mouse liver, the median tumor latency was 153 days, similar to mice receiving no injection.Our data suggest that phiC31 integrase does not facilitate tumor formation in this C-MYC transgenic mouse model. However, in groups lacking phiC31 integrase, hydrodynamic injection appeared to contribute to C-MYC-induced hepatocellular carcinoma in adult mice. Although it remains to be seen to what extent these findings may be extrapolated to catheter-mediated hydrodynamic delivery in larger species, they suggest that caution should be used during translation of hydrodynamic injection to clinical applications.

  5. piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse.

    Directory of Open Access Journals (Sweden)

    Geneviève M C Labbé

    Full Text Available BACKGROUND: The Asian tiger mosquito, Aedes albopictus (Skuse, is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. METHODOLOGY/PRINCIPAL FINDINGS: Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2-3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2-6%. CONCLUSIONS/SIGNIFICANCE: Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies.

  6. Bacteriophages

    International Nuclear Information System (INIS)

    Klieve, A.V.

    2005-01-01

    Bacteriophages or phages are bacterial viruses and are present in the rumen in large numbers. They are obligate pathogens of bacteria and are ubiquitous to the rumen ecosystem. Bacteriophages are capable of lysing their bacterial hosts within the rumen and are therefore regarded as contributing to protein recycling within the rumen, a process identified as reducing the efficiency of feed utilization. However, their presence may not be entirely detrimental to the ecosystem, and it has been argued that phages may also be involved in the maintenance of a balanced ecosystem and may play a role in recycling limiting nutrients within the rumen. Furthermore, phage therapy is enjoying a renaissance and the use of phages to control or eliminate detrimental or unwanted microbes from the gastro-intestinal tract, such as Shiga-toxin producing E. coli (food-borne disease), Streptococcus bovis (acidosis in grain-fed cattle) and methanogens (produce the greenhouse gas methane), is the focus of current investigation. In order to be able to study the interaction between individual bacteriophages and their bacterial hosts, it is necessary to: (a) isolate the phage of interest from other viruses in the source material; (b) to derive stock cultures of known phage concentration; (c) store the isolated phages; and (d) determine basic physical characteristics, such as morphology. These procedures are achieved using classical microbiological procedures and this will be the methodology described in this chapter. It is also necessary to determine nucleic acid characteristics of the phage genome and to fingerprint the phage population in the rumen using molecular biological techniques. These will be described and discussed in Chapter 4.2

  7. Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp.

    OpenAIRE

    McHenney, M A; Baltz, R H

    1991-01-01

    Transposon Tn5096 was inserted into a derivative of the temperature-sensitive plasmid pMT660 containing the bacteriophage FP43 pac site. The resulting plasmid, pRHB126, was transduced by FP43 into several Streptomyces species. Tn5096 transposed from pRHB126 into different sites in the genomes of Streptomyces ambofaciens, Streptomyces cinnamonensis, Streptomyces coelicolor A3(2), Streptomyces fradiae, Streptomyces griseofuscus, and Streptomyces thermotolerans.

  8. Bacteriophage Assembly

    Directory of Open Access Journals (Sweden)

    Anastasia A. Aksyuk

    2011-02-01

    Full Text Available Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  9. Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system

    NARCIS (Netherlands)

    Hsiao, Nai-hua; Kirby, Ralph

    DNA/DNA microarray hybridization was used to compare the genome content of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens with that of Streptomyces coelicolor A3(2). The array data showed an about 93% agreement with the genome sequence data

  10. Bacteriophage populations

    International Nuclear Information System (INIS)

    Klieve, A.V.; Gilbert, R.A.

    2005-01-01

    Bacteriophages are ubiquitous to the rumen ecosystem; they have a role in nitrogen metabolism through bacterial lysis in the rumen, they may help to regulate bacterial population densities, be an agent for genetic exchange and be of use in biocontrol of bacterial populations through phage therapy. In Chapter 2.1, classical methodologies to enable the isolation, enumeration, storage and morphological characterization of phages were presented. In addition to these classic procedures, molecular biological techniques have resulted in a range of methodologies to investigate the type, topology and size of phage nucleic acids, to fingerprint individual phage strains and to create a profile of ruminal phage populations. Different phage families possess all the currently identified combinations of double-stranded or single-stranded RNA or DNA and may also possess unusual bases such as 5-hydroxymethylcytosine (found in T-even phage) or 5- hydroxymethyluracil and uracil in place of thymidine. In all morphological groups of phage except the filamentous phages, the nucleic acid is contained within a head or polyhedral structure, predominantly composed of protein. Filamentous phages have their nucleic acid contained inside the helical filament, occupying much of its length. Many of the procedures used with phage nucleic acids and double-stranded (ds) DNA, in particular, are not specific to ruminal phages but are the same as in other areas where nucleic acids are investigated and are covered elsewhere in the literature and this chapter. Most applications with rumen phages are similar to those reported for phages of non-ruminal bacteria and are covered in general texts such as Maniatis et al. In this chapter, we will concentrate on aspects of methodology as they relate to ruminal phages

  11. (melanin) production in Streptomyces

    African Journals Online (AJOL)

    GRACE

    Nine strains among 180 Streptomyces isolates produce a diffusible dark brown pigment on both peptone-yeast extract agar and synthetic tyrosine-agar. They also show the positive reaction to L- tyrosine or L-dopa substrates. The pigment has been referred to be as merely as dark brown water- soluble pigment, as melanoid ...

  12. Antibiotics produced by Streptomyces.

    Science.gov (United States)

    Procópio, Rudi Emerson de Lima; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de

    2012-01-01

    Streptomyces is a genus of Gram-positive bacteria that grows in various environments, and its shape resembles filamentous fungi. The morphological differentiation of Streptomyces involves the formation of a layer of hyphae that can differentiate into a chain of spores. The most interesting property of Streptomyces is the ability to produce bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, immunosuppressants, and especially antibiotics. The production of most antibiotics is species specific, and these secondary metabolites are important for Streptomyces species in order to compete with other microorganisms that come in contact, even within the same genre. Despite the success of the discovery of antibiotics, and advances in the techniques of their production, infectious diseases still remain the second leading cause of death worldwide, and bacterial infections cause approximately 17 million deaths annually, affecting mainly children and the elderly. Self-medication and overuse of antibiotics is another important factor that contributes to resistance, reducing the lifetime of the antibiotic, thus causing the constant need for research and development of new antibiotics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  13. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  14. Chlamydial plasmids and bacteriophages.

    Science.gov (United States)

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  15. Bacteriophages of Yersinia pestis.

    Science.gov (United States)

    Zhao, Xiangna; Skurnik, Mikael

    2016-01-01

    Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

  16. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying; He, Hongping; Schulz, Stefan; Liu, Xin; Fusetani, Nobushino; Xiong, Hairong; Xiao, Xiang; Qian, Peiyuan

    2010-01-01

    of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared

  17. Bioremediation of acid fast red dye by Streptomyces globosus under ...

    African Journals Online (AJOL)

    Two different azo dyes known as acid fast red (AFR) and Congo red (CR) were examined for their decolorization by five strains of actinomycetes (Streptomyces globosus, Streptomyces alanosinicus, Streptomyces ruber, Streptomyces gancidicus, and Nocardiopsis aegyptia) under shake and static conditions. Streptomyces ...

  18. Nano/Micro Formulations for Bacteriophage Delivery.

    Science.gov (United States)

    Cortés, Pilar; Cano-Sarabia, Mary; Colom, Joan; Otero, Jennifer; Maspoch, Daniel; Llagostera, Montserrat

    2018-01-01

    Encapsulation methodologies allow the protection of bacteriophages for overcoming critical environmental conditions. Moreover, they improve the stability and the controlled delivery of bacteriophages which is of great innovative value in bacteriophage therapy. Here, two different encapsulation methodologies of bacteriophages are described using two biocompatible materials: a lipid cationic mixture and a combination of alginate with the antacid CaCO 3 . To perform bacteriophage encapsulation, a purified lysate highly concentrated (around 10 10 -10 11  pfu/mL) is necessary, and to dispose of a specific equipment. Both methodologies have been successfully applied for encapsulating Salmonella bacteriophages with different morphologies. Also, the material employed does not modify the antibacterial action of bacteriophages. Moreover, both technologies can also be adapted to any bacteriophage and possibly to any delivery route for bacteriophage therapy.

  19. Laboratory Course on "Streptomyces" Genetics and Secondary Metabolism

    Science.gov (United States)

    Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko

    2016-01-01

    The "'Streptomyces' genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria "Streptomyces" and their secondary metabolism. The course combines genetic modification of "Streptomyces"; growing of the strain and protoplast preparation, plasmid…

  20. 75 - 78 Samira - BACTERIOPHAGES FINAL

    African Journals Online (AJOL)

    DR. AMIN

    Bayero Journal of Pure and Applied Sciences, 4(1): 75 - 78. Received: ... It involves the use of bacteriophages (small viruses that predate bacteria) to ..... Since the 1940s, research with ... phages is recognized by the appearance of plaques or.

  1. Synthetic Biology in Streptomyces Bacteria

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that

  2. New carbasugars from Streptomyces lincolnensis

    Czech Academy of Sciences Publication Activity Database

    Sedmera, Petr; Halada, Petr; Pospíšil, Stanislav

    2009-01-01

    Roč. 47, č. 5 (2009), s. 519-522 ISSN 0749-1581 Institutional research plan: CEZ:AV0Z50200510 Keywords : H-1 NMR * C-13 NMR * Streptomyces lincolnensis Subject RIV: EE - Microbiology, Virology Impact factor: 1.612, year: 2009

  3. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  4. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  5. Recent advances in understanding Streptomyces

    Science.gov (United States)

    Chater, Keith F.

    2016-01-01

    About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for Streptomyces developmental biology, Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome

  6. Streptomyces rhizosphaerihabitans sp. nov. and Streptomyces adustus sp. nov., isolated from bamboo forest soil.

    Science.gov (United States)

    Lee, Hyo-Jin; Whang, Kyung-Sook

    2016-09-01

    Three novel isolates belonging to the genus Streptomyces, designated JR-35T, JR-46 and WH-9T, were isolated from bamboo forest soil in Damyang, Korea. The 16S rRNA gene sequences of strains JR-35T and JR-46 showed highest similarities with Streptomyces olivochromogenes NBRC 3178T (99.1 %), Streptomyces siamensis KC-038T (98.9 %), Streptomyces chartreusis NBRC 12753T (98.9 %), Streptomyces resistomycificus NRRL ISP-5133T (98.9 %) and Streptomyces bobili JCM 4627T (98.8 %), and strain WH-9Tshowed highest sequence similarities with Streptomyces. bobili JCM 4627T (99.2 %), Streptomyces phaeoluteigriseus NRRL ISP-5182T (99.2 %), Streptomyces alboniger NBRC 12738T (99.2 %), Streptomyces galilaeus JCM 4757T (99.1 %) and Streptomyces pseudovenezuelae NBRC 12904T (99.1 %). The predominant menaquinones were MK-9 (H6) and MK-9 (H8). The major fatty acids were anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0 and iso-C15 : 0 for strains JR-35T and JR-46 and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 for strain WH-9T. The G+C content of the genomic DNA of strains JR-35T, JR-46 and WH-9T were 69.4, 74.4 and 74.1 mol%, respectively. Based on the phenotypic and genotypic data, the three strains are assigned to two novel species of the genus Streptomyces, for which the names Streptomyces rhizosphaerihabitans sp. nov. (type stain JR-35T=KACC 17181T=NBRC 109807T) and Streptomyces adustus sp. nov. (type strain WH-9T=KACC 17197T=NBRC 109810T) are proposed.

  7. Taxonomic analyses of members of the Streptomyces cinnabarinus cluster, description of Streptomyces cinnabarigriseus sp. nov. and Streptomyces davaonensis sp. nov.

    Science.gov (United States)

    Landwehr, Wiebke; Kämpfer, Peter; Glaeser, Stefanie P; Rückert, Christian; Kalinowski, Jörn; Blom, Jochen; Goesmann, Alexander; Mack, Matthias; Schumann, Peter; Atasayar, Ewelina; Hahnke, Richard L; Rohde, Manfred; Martin, Karin; Stadler, Marc; Wink, Joachim

    2018-01-01

    Roseoflavin is the only known riboflavin (vitamin B2) analog with antibiotic properties. It is actively taken up by many micro-organisms and targets flavinmononucleotide riboswitches and flavoproteins. It is described as the product of the tentatively named 'Streptomyces davawensis' JCM 4913. Taxonomic analysis of this strain with a polyphasic approach showed that it is very closely related to Streptomyces cinnabarinus (DSM 40467). The two Streptomyces isolates were obtained from different geographical locations (the Philippines and the Kamchatka Peninsula, respectively), their genomes have been sequenced and the question was whether or not the two isolates were representatives of the same species. As we also worked with another isolate of Streptomyces cinnabarinus JS 360, the producer of the cinnabaramides, we wanted to clarify the taxonomic position of the three isolates by using a polyphasic approach. After analysis of the 16S rRNA gene sequence, we found in total 23 species of the genus Streptomyces that showed a similarity higher than 98.5 % to the three strains. We showed that 'S. davawensis' JCM 4913 and S. cinnabarinus DSM 40467 were very closely related but belong to two different species. Hence, we validate 'S. davawensis' as Streptomyces davaonensis sp. nov. with the type strain JCM 4913 T (=DSM 101723 T ). In addition, the cinnabaramide producer can be clearly differentiated from S. davaonensis and this isolate is described as Streptomyces cinnabarigriseus sp. nov. with strain JS360 T (=NCCB 100590 T =DSM 101724 T ) as the type strain.

  8. Replication of bacteriophage lambda DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Matsubara, K.

    1983-01-01

    In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures

  9. Metagenomic Analysis of Dairy Bacteriophages

    DEFF Research Database (Denmark)

    Muhammed, Musemma K.; Kot, Witold; Neve, Horst

    2017-01-01

    Despite their huge potential for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows to remove the bulk protein from...

  10. Isolation, characterization and antimicrobial activity of Streptomyces ...

    African Journals Online (AJOL)

    DR TONUKARI

    2013-12-18

    Dec 18, 2013 ... Available online at http://www.academicjournals.org/AJB ... Key words: Characterization, streptomyces, antimicrobial activity, hot ... MATERIALS AND METHODS ..... chain reaction (PCR) which is currently used as a sen-.

  11. Streptomyces xylanilyticus sp. nov., isolated from soil.

    Science.gov (United States)

    Moonmangmee, Duangtip; Kanchanasin, Pawina; Phongsopitanun, Wongsakorn; Tanasupawat, Somboon; Moonmangmee, Somporn

    2017-10-01

    A novel actinomycete, strain SR2-123 T , belonging to the genus Streptomyces, was isolated from a soil sample collected from the Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima Province, Thailand. The taxonomic position of the strain was characterized using a polyphasic study. Strain SR2-123 T contained ll-diaminopimelic acid, glucose, mannose and ribose in whole-cell hydrolysates. The N-acyl type of muramic acid was acetyl. Menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C17 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, an unknown phospholipid, unknown glycolipids, an unknown aminophospholipid, unknown lipids and an unknown aminolipid. The DNA G+C content was 74.8 mol%. The strain was closely related to Streptomyces coeruleorubidus JCM 4359 T (98.5 %), Streptomyces flavofungini JCM 4753 T (98.5 %), Streptomyces coerulescens NBRC 12758 T (98. 5 %) and Streptomyces alboflavus JCM 4615 T (98.4 %), based on 16S rRNA gene sequence similarities. The novel strain exhibited low DNA-DNA relatedness values with the type strains (11.4-25.0 %) of closely related species. On the basis of phenotypic and genotypic characteristics, strain SR2-123 T could be distinguished from closely related species of the genus Streptomyces and represents a novel species of the genus Streptomyces for which the name Streptomyces xylanilyticus sp. nov. is proposed. The type strain is SR2-123 T (=TISTR 2493 T =KCTC 39909 T ).

  12. Streptomyces development in colonies and soils

    DEFF Research Database (Denmark)

    Manteca, Angel; Sanchez, Jesus

    2009-01-01

    Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased.......Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased....

  13. Streptomyces bacteria as potential probiotics in aquaculture

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2016-02-01

    Full Text Available In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  14. Streptomyces exploration is triggered by fungal interactions and volatile signals.

    Science.gov (United States)

    Jones, Stephanie E; Ho, Louis; Rees, Christiaan A; Hill, Jane E; Nodwell, Justin R; Elliot, Marie A

    2017-01-03

    It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells 'explorers', for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches.

  15. Guidelines for Bacteriophage Product Certification.

    Science.gov (United States)

    Fauconnier, Alan

    2018-01-01

    Following decades in the wilderness, bacteriophage therapy is now appearing as a credible antimicrobial strategy. However, this reemerging therapy does not rekindle without raising sensitive regulatory concerns. Indeed, whereas the European regulatory framework has been basically implemented to tackle ready-to-use pharmaceuticals produced on a large scale, bacteriophage therapy relies on a dynamic approach requiring a regulation on personalized medicine, nonexistent at present. Because of this, no guideline are currently available for addressing the scientific and regulatory issues specifically related to phage therapy medicinal products (PTMP).Pending to the implementation of an appropriate regulatory framework and to the development of ensuing guidelines, several avenues which might lead to PTMP regulatory compliance are explored here. Insights might come from the multi-strain dossier approach set up for particular animal vaccines, from the homologous group concept developed for the allergen products or from the licensing process for veterinary autogenous vaccines. Depending on national legislations, customized preparations prescribed as magistral formulas or to be used on a named-patient basis are possible regulatory approaches to be considered. However, these schemes are not optimal and should thus be regarded as transitional.

  16. Propagating the missing bacteriophages: a large bacteriophage in a new class

    Directory of Open Access Journals (Sweden)

    Hardies Stephen C

    2007-02-01

    Full Text Available Abstract The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly. As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter, tail (486 × 26 nm, corkscrew-like tail fibers (187 × 10 nm and genome (221 Kb that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage, has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.

  17. Streptomyces krungchingensis sp. nov., isolated from soil.

    Science.gov (United States)

    Sripreechasak, Paranee; Phongsopitanun, Wongsakorn; Tamura, Tomohiko; Tanasupawat, Somboon

    2017-01-01

    A novel actinomycete, designated strain KC-035T, was isolated from soil collected from Krung Ching Waterfall National Park, Nakhon Si Thammarat Province, Thailand. Its taxonomic position was determined using a polyphasic approach. The strain had morphological and chemotaxonomic properties typical of members of the genus Streptomyces: flexuous spore chain; ll-diaminopimelic acid in the cell-wall peptidoglycan; MK-9(H8), MK-9(H6) and MK-9(H4) as menaquinones; diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside as phospholipids; anteiso-C15 : 0, C16 : 0, iso-C16 : 0, iso-C15 : 0 and iso-C14 : 0 as major cellular fatty acids; and DNA G+C content of 72 mol%. 16S rRNA gene sequence analysis revealed that strain KC-035T showed high similarity to Streptomyces albiflavescens n20T (99.16 %) and Streptomyces siamensis KC-038T (98.43 %) as well as formed a monophyletic clade with them in the phylogenetic tree. On the basis of comparison of phenotypic properties and the low level of DNA-DNA relatedness, strain KC-035T could be distinguished from its closely related Streptomyces species and is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces krungchingensis sp. nov. is proposed. The type strain is KC-035T (=NBRC 110087T=KCTC 29503T=TISTR 2402T).

  18. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    OpenAIRE

    Jayapal, Karthik P; Lian, Wei; Glod, Frank; Sherman, David H; Hu, Wei-Shou

    2007-01-01

    Abstract Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Res...

  19. Central Carbon Metabolic Pathways in Streptomyces

    NARCIS (Netherlands)

    van Keulen, Geertje; Siebring, Jeroen; Dijkhuizen, Lubbert; Dyson, Paul

    Streptomyces and other actinomycetes are fascinating soil bacteria of major economic importance. They produce 70% of antibiotics known to man and numerous other pharmaceuticals for treatment of, e.g. cancer, a range of infections, high cholesterol, or have immunosuppressive activity. It is not

  20. Streptopyrrole: An antimicrobial metabolite from Streptomyces armeniacus

    DEFF Research Database (Denmark)

    Breinholt, J.; Gürtler, Hanne; Kjær, Anders

    1998-01-01

    A colourless, crystalline metabolite, C14H12ClNO4, named streptopyrrole, has been isolated from submerged fermentation cultures of Streptomyces armeniacus by extraction, followed by chromatographic purification. Its tricyclic molecular framework, seemingly without natural product precedents. as w...

  1. The small laccase from Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Skálová, Tereza; Ostergaard, L. H.; Ostergaard, P. R.; Hašek, Jindřich

    2009-01-01

    Roč. 16, 1a (2009), b4-b5 ISSN 1211-5894. [Discussions in Structural Molecular Biology /7./. 12.03.2009-14.03.2009, Nové Hrady] R&D Projects: GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : laccase * Streptomyces coelicolor * enzymer Subject RIV: CD - Macromolecular Chemistry

  2. Streptomyces Somalinesiscausing Mycetomas in South India

    Directory of Open Access Journals (Sweden)

    V V Taralakshmi

    1982-01-01

    Full Text Available Biopsy specimens from 102 patients with mycetoma were examined histologically; Streptomyces somaliensis was found in 5 cases. The clinical features, radiology and histology of actinomycotic mycetoma due to S. somaliensis ar ′ e described. The geographic distribution of the organism, its incidence and prevalence in India and the importance of histological examination in the diagnosis of the infection are discussed.

  3. Butenolides from Streptomyces albus J1074 Act as External Signals To Stimulate Avermectin Production in Streptomyces avermitilis.

    Science.gov (United States)

    Nguyen, Thao Bich; Kitani, Shigeru; Shimma, Shuichi; Nihira, Takuya

    2018-05-01

    In streptomycetes, autoregulators are important signaling compounds that trigger secondary metabolism, and they are regarded as Streptomyces hormones based on their extremely low effective concentrations (nM) and the involvement of specific receptor proteins. Our previous distribution study revealed that butenolide-type Streptomyces hormones, including avenolide, are a general class of signaling molecules in streptomycetes and that Streptomyces albus strain J1074 may produce butenolide-type Streptomyces hormones. Here, we describe metabolite profiling of a disruptant of the S. albus aco gene, which encodes a key biosynthetic enzyme for butenolide-type Streptomyces hormones, and identify four butenolide compounds from S. albus J1074 that show avenolide activity. The compounds structurally resemble avenolide and show different levels of avenolide activity. A dual-culture assay with imaging mass spectrometry (IMS) analysis for in vivo metabolic profiling demonstrated that the butenolide compounds of S. albus J1074 stimulate avermectin production in another Streptomyces species, Streptomyces avermitilis , illustrating the complex chemical interactions through interspecies signals in streptomycetes. IMPORTANCE Microorganisms produce external and internal signaling molecules to control their complex physiological traits. In actinomycetes, Streptomyces hormones are low-molecular-weight signals that are key to our understanding of the regulatory mechanisms of Streptomyces secondary metabolism. This study reveals that acyl coenzyme A (acyl-CoA) oxidase is a common and essential biosynthetic enzyme for butenolide-type Streptomyces hormones. Moreover, the diffusible butenolide compounds from a donor Streptomyces strain were recognized by the recipient Streptomyces strain of a different species, resulting in the initiation of secondary metabolism in the recipient. This is an interesting report on the chemical interaction between two different streptomycetes via Streptomyces

  4. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov

    Science.gov (United States)

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...

  5. Incorporation of T4 bacteriophage in electrospun fibres.

    Science.gov (United States)

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  6. Ammonia Released by Streptomyces aburaviensis Induces Droplet Formation in Streptomyces violaceoruber.

    Science.gov (United States)

    Schmidt, Kathrin; Spiteller, Dieter

    2017-08-01

    Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1 H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.

  7. Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2009-01-01

    Full Text Available Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002, as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.

  8. Neutron irradiation of bacteriophage λ

    International Nuclear Information System (INIS)

    Bozin, D.; Milosevic, M. . E-mail address of corresponding author: bozinde@vin.bg.ac.yu

    2005-01-01

    Double strand breaks (DSB) are the most dangerous lesions in DNA caused by irradiation, but many other lesions, usually called mutations, have not been clearly identified. These lesions, like DSB, can be the source of serious chromosomal damages and finally - cell death. Growing interest in heavy particles for radiotherapy and radioprotection encourages the search of the molecular basis of their action. In this respect, we chose bacteriophage λ1390 as the model system for the study of consequences of neutron irradiation. This derivative of λ phage possesses an unique ability to reversibly reorganize their genome in response to various selective pressures. The phages were irradiated with 13 Gy of mixed neutrons (7.5 Gy from fast and 5.6 Gy from thermal neutrons) and phages genomes were tested to DSB and mutations. Additionally, the stability of λ capsid proteins were tested. After all tests, we can conclude that, under our conditions, low flux of neutrons does not induce neither DNA strand break or DNA mutation nor the stability of λ capsid proteins. (author)

  9. Streptomyces plicatus as a model biocontrol agent.

    Science.gov (United States)

    Abd-Allah, E F

    2001-01-01

    Three hundred and seventy two isolates belonging to the genus Streptomyces were isolated and screened for chitinase production. Streptomyces plicatus was found to be the best producer. The highest chitinase production were incubated for 3 d at 30 degrees C on buffered culture medium (pH 8.0) containing chitin plus sucrose and calcium nitrate as carbon and nitrogen sources. S. plicatus chitinase had a highly significant inhibitory effect on spore germination, germ tube elongation and radial growth of Fusarium oxysporum f.sp. lycopersici, Altrernaria alternata and Verticillium albo-atrum, the causal organisms of Fusarium wilt, stem canker and Verticillium wilt diseases of tomato. Application of S. plicatus to the root system of tomato plants before transplantation markedly protected tomato plants against the tested phytopathogenic fungi in vivo.

  10. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  11. Isolation of lytic bacteriophage against Vibrio harveyi.

    Science.gov (United States)

    Crothers-Stomps, C; Høj, L; Bourne, D G; Hall, M R; Owens, L

    2010-05-01

    The isolation of lytic bacteriophage of Vibrio harveyi with potential for phage therapy of bacterial pathogens of phyllosoma larvae from the tropical rock lobster Panulirus ornatus. Water samples from discharge channels and grow-out ponds of a prawn farm in northeastern Australia were enriched for 24 h in a broth containing four V. harveyi strains. The bacteriophage-enriched filtrates were spotted onto bacterial lawns demonstrating that the bacteriophage host range for the samples included strains of V. harveyi, Vibrio campbellii, Vibrio rotiferianus, Vibrio parahaemolyticus and Vibrio proteolyticus. Bacteriophage were isolated from eight enriched samples through triple plaque purification. The host range of purified phage included V. harveyi, V. campbellii, V. rotiferianus and V. parahaemolyticus. Transmission electron microscope examination revealed that six purified phage belonged to the family Siphoviridae, whilst two belonged to the family Myoviridae. The Myoviridae appeared to induce bacteriocin production in a limited number of host bacterial strains, suggesting that they were lysogenic rather than lytic. A purified Siphoviridae phage could delay the entry of a broth culture of V. harveyi strain 12 into exponential growth, but could not prevent the overall growth of the bacterial strain. Bacteriophage with lytic activity against V. harveyi were isolated from prawn farm samples. Purified phage of the family Siphoviridae had a clear lytic ability and no apparent transducing properties, indicating they are appropriate for phage therapy. Phage resistance is potentially a major constraint to the use of phage therapy in aquaculture as bacteria are not completely eliminated. Phage therapy is emerging as a potential antibacterial agent that can be used to control pathogenic bacteria in aquaculture systems. The development of phage therapy for aquaculture requires initial isolation and determination of the bacteriophage host range, with subsequent creation of

  12. Bacteriophages in the control of pathogenic vibrios

    DEFF Research Database (Denmark)

    Plaza, Nicolás; Castillo Bermúdez, Daniel Elías; Perez-Reytor, Diliana

    2018-01-01

    constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however......, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control....

  13. Taxonomic evaluation of Streptomyces hirsutus and related species using multi-locus sequence analysis

    Science.gov (United States)

    Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...

  14. Molecular studies on some soil-Streptomyces strains of western ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-05-08

    May 8, 2013 ... Random amplified polymorphic of DNA-polymerase chain reaction (RAPD-PCR) analysis of the DNA extracted from seven Streptomyces strains of western region, KSA was the aim of this study. Partial sequence of 16S rRNA gene of Streptomyces polychromogenes was also attempted. Results show that.

  15. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    Purpose: To enhance clavulanic acid production using UV-mutagenesis on Streptomyces sp. NRC77. Methods: UV-mutagenesis was used to study the effect of Streptomyces sp. NRC77 on CA production. Phenotypic and genotypic identification methods of the promising mutant strain were characterized. Optimization of the ...

  16. Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces

    Science.gov (United States)

    The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...

  17. Taxonomy of Streptomyces strains isolated from rhizospheres of ...

    African Journals Online (AJOL)

    Taxonomy of Streptomyces strains isolated from rhizospheres of various plant species grown in Taif region, KSA, having antagonistic activities against some microbial tissue ... African Journal of Biotechnology ... Keywords: Taxonomy, Streptomyces, microbial tissue culture contaminants, antagonistic activities, 16S rRNA

  18. Genome-based phylogenetic analysis of Streptomyces and its relatives

    NARCIS (Netherlands)

    Alam, Mohammad Tauqeer; Merlo, Maria Elena; Takano, Eriko; Breitling, Rainer

    Motivation: Streptomyces is one of the best-studied genera of the order Actinomycetales due to its great importance in medical science, ecology and the biotechnology industry. A comprehensive, detailed and robust phylogeny of Streptomyces and its relatives is needed for understanding how this group

  19. Molecular studies on some soil- Streptomyces strains of western ...

    African Journals Online (AJOL)

    Random amplified polymorphic of DNA-polymerase chain reaction (RAPD-PCR) analysis of the DNA extracted from seven Streptomyces strains of western region, KSA was the aim of this study. Partial sequence of 16S rRNA gene of Streptomyces polychromogenes was also attempted. Results show that a total number of ...

  20. Proteins of bacteriophage phi6

    International Nuclear Information System (INIS)

    Sinclair, J.F.; Tzagoloff, A.; Levine, D.; Mindich, L.

    1975-01-01

    We investigated the protein composition of the lipid-containing bacteriophage phi 6. We also studied the synthesis of phage-specific proteins in the host bacterium Pseudomonas phaseolicola HB10Y. The virion was found to contain 10 proteins of the following molecular weights: P1, 93,000; P2, 88,000; P3, 84,000; P4, 36,800; P5, 24,000; P6, 21,000; P7, 19,900; P8, 10,500; P9, 8,700; and P10, less than 6,000. Proteins P3, P9, and P10 were completely extracted from the virion with 1 percent Triton X-100. Protein P6 was partially extracted. Proteins P8 and P9 were purified by column chromatography. The amino acid composition of P9 was determined and was found to lack methionine. Labeling of viral proteins with [ 35 S]methionine in infected cells indicated that proteins P5, P9, P10, and P11 lacked methionine. Treatment of host cells with uv light before infection allowed the synthesis of P1, P2, P4, and P7; however, the extent of viral protein synthesis fell off exponentially with increasing delay time between irradiation and infection. Treatment of host cells with rifampin during infection allowed preferential synthesis of viral proteins, but the extent of synthesis also fell off exponentially with increasing delay time between the addition of rifampin and the addition of radioactive amino acids. All of the virion proteins were seen in gels prepared from rifampin-treated infected cells. In addition, two proteins, P11 and P12, were observed; their molecular weights were 25,200 and 20,100, respectively. Proteins P1, P2, P4, and P7 were synthesized early, whereas the rest began to increase at 45 min post-infection

  1. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    Science.gov (United States)

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  2. Development of Streptomyces sp. FR-008 as an emerging chassis

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2016-09-01

    Full Text Available Microbial-derived natural products are important in both the pharmaceutical industry and academic research. As the metabolic potential of original producer especially Streptomyces is often limited by slow growth rate, complicated cultivation profile, and unfeasible genetic manipulation, so exploring a Streptomyces as a super industrial chassis is valuable and urgent. Streptomyces sp. FR-008 is a fast-growing microorganism and can also produce a considerable amount of macrolide candicidin via modular polyketide synthase. In this study, we evaluated Streptomyces sp. FR-008 as a potential industrial-production chassis. First, PacBio sequencing and transcriptome analyses indicated that the Streptomyces sp. FR-008 genome size is 7.26 Mb, which represents one of the smallest of currently sequenced Streptomyces genomes. In addition, we simplified the conjugation procedure without heat-shock and pre-germination treatments but with high conjugation efficiency, suggesting it is inherently capable of accepting heterologous DNA. In addition, a series of promoters selected from literatures was assessed based on GusA activity in Streptomyces sp. FR-008. Compared with the common used promoter ermE*-p, the strength of these promoters comprise a library with a constitutive range of 60–860%, thus providing the useful regulatory elements for future genetic engineering purpose. In order to minimum the genome, we also target deleted three endogenous polyketide synthase (PKS gene clusters to generate a mutant LQ3. LQ3 is thus an “updated” version of Streptomyces sp. FR-008, producing fewer secondary metabolites profiles than Streptomyces sp. FR-008. We believe this work could facilitate further development of Streptomyces sp. FR-008 for use in biotechnological applications.

  3. What history tells us XLIII Bacteriophage

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 3. What history tells us XLIII Bacteriophage: The contexts in which it was discovered. MICHEL MORANGE. Series Volume 42 Issue 3 September 2017 pp 359-362. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Aligning the unalignable: bacteriophage whole genome alignments.

    Science.gov (United States)

    Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M

    2016-01-13

    In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).

  5. Genome plasticity and systems evolution in Streptomyces

    Science.gov (United States)

    2012-01-01

    Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A

  6. Craniocervical mycetoma caused bu Streptomyces somaliensis

    International Nuclear Information System (INIS)

    Ramboer, J.H.; De Graaf, A.S.; Hewlett, R.H.; Kirby, P.A.; Robson, R.A.

    1989-01-01

    Magnetic resonance (MR) imaging, computerized tomography (CT) and clinical-pathological findings are described in a case of craniocervical mycetoma caused by the actinomycete Streptomyces somaliensis. Clinical features includes epilepsy, visual and hearing disturbance, quadriplegia and incontinence. CT revealed a hyperdense, diffusely enhancing intra-extracranial mass, further defined by MR to involve the oropharyngeal region, skull base, cranial-cervical peridural spaces and brain. On treatment with Dapsone, the lesion decreased in size, with recovery of spinal cord function. The combined plain film, CT and MR images are considered to be diagnostic of this form of mycetoma. (author). 10 refs.; 4 figs

  7. Craniocervical mycetoma caused bu Streptomyces somaliensis

    Energy Technology Data Exchange (ETDEWEB)

    Ramboer, J.H.; De Graaf, A.S. (Tygerberg Hospital, Bellville (South Africa). Dept. of Internal Medicine); Hewlett, R.H. (Tygerberg Hospital, Bellville (South Africa). Dept. of Radiology); Kirby, P.A. (Tygerberg Hospital, Cape Town (South Africa). Department of Anatomical Pathology); Robson, R.A. (Tygerberg Hospital, Capetown (South Africa). Department of Microbiology)

    Magnetic resonance (MR) imaging, computerized tomography (CT) and clinical-pathological findings are described in a case of craniocervical mycetoma caused by the actinomycete Streptomyces somaliensis. Clinical features includes epilepsy, visual and hearing disturbance, quadriplegia and incontinence. CT revealed a hyperdense, diffusely enhancing intra-extracranial mass, further defined by MR to involve the oropharyngeal region, skull base, cranial-cervical peridural spaces and brain. On treatment with Dapsone, the lesion decreased in size, with recovery of spinal cord function. The combined plain film, CT and MR images are considered to be diagnostic of this form of mycetoma. (author). 10 refs.; 4 figs.

  8. Pathogenic Streptomyces spp. abundance affected by potato cultivars.

    Science.gov (United States)

    Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean

    2018-04-16

    Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest.  .

  9. Streptomyces solisilvae sp. nov., isolated from tropical forest soil.

    Science.gov (United States)

    Zhou, Shuangqing; Yang, Xiaobo; Huang, Dongyi; Huang, Xiaolong

    2017-09-01

    A novel streptomycete (strain HNM0141T) was isolated from tropical forest soil collected from Bawangling mountain of Hainan island, PR China and its taxonomic position was established in a polyphasic study. The organism had chemical and morphological properties consistent with its classification as a member of the Streptomyces violaceusnigerclade. On the basis of the results of 16S rRNA gene sequence analysis, HNM0141T showed highest similarity to Streptomyces malaysiensisCGMCC4.1900T (99.4 %), Streptomyces samsunensis DSM 42010T (98.9 %), Streptomyces yatensis NBRC 101000T (98.3 %), Streptomyces rhizosphaericus NBRC 100778T (98.0 %) and Streptomyces sporoclivatus NBRC 100767T (97.9 %). The strain formed a well-delineated subclade with S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T. The levels of DNA-DNA relatedness between HNM0141T and S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T were 62 and 44 %, respectively. On the basis of phenotypic and genotypic characteristics, HNM0141T represents a novel species in the S. violaceusnigerclade for which the name Streptomyces solisilvae sp. nov. is proposed. The type strain is HNM0141 T (=CCTCC AA 2016045T=KCTC 39905T).

  10. K. OXYTOCA BACTERIOPHAGES ISOLATION METHODS IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    G. R. Sadrtdinova

    2017-01-01

    Full Text Available The article presents the results of a study related to increasing the efficiency of phage isolation of bacteria of the species K. oxytoca, by developing the optimal composition of the medium used in the work. In scientific research, in almost all methods associated with the isolation of bacteriophages, meat-peptone broth and meat-peptone agar are used as the nutrient basis. The peculiarities of growth and cultivation of microorganisms create certain difficulties for the isolation of phages active against bacteria of the species K. oxytoca. The selection of components and the creation of an environment that would ensure the optimal growth of both the bacterial culture and the reproduction of the virus makes it possible to facilitate the isolation of bacteriophages. The number of bacterial strains used in the work was 7. All strains of cultures were obtained from the Museum of the Department of Microbiology, Virology, Epizootology and Veterinary and Sanitary Expertise of the Federal State Budget Educational Institution of Higher Education “Ulyanovsk State Agrarian University named after P.A. Stolypin”. The studies included 2 main stages. The first stage consisted in isolation of bacteriophages by the method of isolation from the external environment by the method of Adelson L.I., Lyashenko E.A. The material for the studies were samples: soil, sewage sample, fecal samples (2. Only 4 samples. According to the chosen method, the sowing of the putative phagolysate was carried out on meat-peptone agar (1.5% and the agar for isolating bacteriophages (Aph (1.5%. A positive result was the presence on the environment of negative colonies, clearly visible on the matt background of deep growth of bacteria. A negative result is a continuous growth (“lawn” of bacterial culture. As a control, the culture of the microorganism studied was used for the media. In the course of the conducted studies for the first stage, 2 bacteriophages were isolated, active

  11. Streptomyces communities in soils polluted with heavy metals

    Science.gov (United States)

    Grishko, V. N.; Syshchikova, O. V.

    2009-02-01

    The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.

  12. Occurrence of Streptomyces aurantiacus in Mangroves of Bhitarkanika

    Directory of Open Access Journals (Sweden)

    Gupta, N.

    2007-01-01

    Full Text Available Thirteen strains of Streptomyces were isolated from phyllosphere of nine mangrove tree species found in Bhitarkanika mangrove ecosystem of Orissa. According to physiological, biochemical data, all 13 of the isolates were taxonomically identified to the genus Streptomyces as aurantiacus species. All strains are grayish, spirals and forming amorphous colony. Almost all utilized araginose, produced H2S, resistant towards rifampicin and penicillin, urea except few strains. However, they exhibited different extracellular activity like phosphate solubilization, lipase and L asparaginase production. This is a unique report from this mangrove ecosystem as far as Streptomyces occurrence is concerned.

  13. Evolution and the complexity of bacteriophages.

    Science.gov (United States)

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine

  14. Evolution and the complexity of bacteriophages

    Directory of Open Access Journals (Sweden)

    Serwer Philip

    2007-03-01

    Full Text Available Abstract Background The genomes of both long-genome (> 200 Kb bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Hypothesis Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1 Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2 Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection. (3 The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection. (4 The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. Testing the hypothesis I propose testing this hypothesis by controlled evolution in microbial communities to (1 determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2 find the environmental conditions that

  15. Characterization of Ethanolic Extract of Streptomyces sp. as a Pancreatic Lipase Inhibitors Produced by Endophytic Streptomyces sp. AEBg12

    Directory of Open Access Journals (Sweden)

    Lenni Fitri

    2017-07-01

    Full Text Available Endophytic Streptomyces sp. AEBg12 isolated from Zingiber cassumunar (Bangle is known to produce pancreatic lipase inhibitory compound. However, the characteristics of this active compound has not been reported yet. This study aimed to determine the characteristics of pancreatics inhibitory compound produced by Streptomyces sp. AEBg12 and to assess the role of endophytic actinobacteria in producing pancreatic lipase inhibitor using endophytic-free bangle tissue culture, wild bangle and compared with the activity of Streptomyces sp. AEBg12 endophytes. Supernatant of Streptomyces sp. AEBg12 was extracted using ethanol, ethyl acetate, and n-hexane solvents. Toxicity test was performed using larvae of shrimp Artemia salina. The results showed that the best solvent to obtain pancreatic lipase inhibitor compounds was ethanol. Phytochemical analysis showed that ethanolic extract of endophytic Streptomyces sp. AEBg12 contained flavonoids. IC50 value of ethanol extract was 180.83 µg/ml. The result of TLC showed that ethanolic extract of Streptomyces AEBg12 had a blue luminescence band indicated that there were either flavone, flavanones, flavonols or isoflavones. Inhibitory activity of Streptomyces sp. AEBg12 was higher than wild bangle and bangle tissue culture. The information from this study can be be used as a basic data for further characterization of the active compound, which might be developed as an antiobesity agent through its pancreatic lipase inhibitory activity.

  16. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  17. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  18. Enzymology of lignocellulose bioconversion by Streptomyces viridosporus

    International Nuclear Information System (INIS)

    Ramachandra, M.

    1989-01-01

    Significant progress has been made in lignin biodegradation research since 1983, when lignin peroxidases were discovered in fungi. A similar breakthrough in bacterial lignin biodegradation research is anticipated. Several laboratories have successfully demonstrated the ability of bacteria to mineralize [ 14 C]-lignin lignocelluloses as well as 14 C-labelled synthetic lignins. Attempts are being made to identify the key enzymes involved. In this dissertation, two studies are presented which address the enzymology of lignin biodegradation by Streptomyces viridosporus. The first study compares selected extracellular enzyme of wild-type and genetically manipulated strains with enhanced abilities to produced a water soluble lignin degradation intermediate, designated acid-precipitable polymeric lignin (APPL). UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10 had higher and longer persisting peroxidase, esterase, and endoglucanase activity than did the wild type strain T7A. An extracellular lignocellulose-induced peroxidase with some similarities to fungal ligninases was described for the first time in Streptomyces. The second study describes purification and characterization of an extracellular lignin peroxidase produced by S. viridosporus T7A. This is the first report of a lignin peroxidase in any bacterium

  19. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces

    Science.gov (United States)

    Liu, Gang; Chandra, Govind; Niu, Guoqing

    2013-01-01

    SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619

  20. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    Science.gov (United States)

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  1. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  2. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    development and spreading of antibiotic resistant bacteria in the environment. Bacteriophage therapy, constitutes a potent alternative not only for treatment but also for prevention of vibriosis in aquaculture and the current thesis addresses the potential and challenges of using phages to control Vibrio...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... therapy applications. Lytic phage vB_VspP_pVa5 that has been isolated against the rapidly emerging pathogen V. splendidus is also a promising candidate for phage therapy application according to its gene content and in vitro performance against its host. The genetic features of vB_VspP_pVa5 provide also...

  3. Bacteriophage ecology in environmental biotechnology processes.

    Science.gov (United States)

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  5. Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.

    Science.gov (United States)

    El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A

    2008-07-01

    In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time.

  6. Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.

    Science.gov (United States)

    Jones, Stephanie E; Elliot, Marie A

    2017-07-01

    Streptomyces bacteria are prolific producers of specialized metabolites, and have a well studied, complex life cycle. Recent work has revealed a new type of Streptomyces growth termed 'exploration' - so named for the ability of explorer cells to rapidly traverse solid surfaces. Streptomyces exploration is stimulated by fungal interactions, and is associated with the production of an alkaline volatile organic compound (VOC) capable of inducing exploration by other streptomycetes. Here, we examine Streptomyces exploration from the perspectives of interkingdom interactions, pH-induced morphological switches, and VOC-mediated communication. The phenotypic diversity that can be revealed through microbial interactions and VOC exposure is providing us with insight into novel modes of microbial development, and an opportunity to exploit VOCs to stimulate desired microbial behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr.

    Science.gov (United States)

    Piao, Chenyu; Zheng, Weiwei; Li, Yao; Liu, Chongxi; Jin, Liying; Song, Wei; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng

    2017-09-01

    Two novel actinomycetes, designated strains 2C-SSA16(2) T and 1C-GS8 T , were isolated from the cuticle of Camponotus japonicus Mayr, collected from Northeast Agricultural University, Heilongjiang Province, north China. Both of them contained genes (involved in antibiotics biosynthesis) of the ketosynthase (KS) and methyl malonyl transferase domains (PKS-I) and the adenylation domain (NRPS). A polyphasic study was carried out to establish the taxonomic positions of these strains. The 16S rRNA gene sequence analysis showed that the two novel isolates 2C-SSA16(2) T and 1C-GS8 T exhibited 98.8% similarity with each other and that they are most closely related to Streptomyces umbrinus JCM 4521 T (99.0, 98.6%), Streptomyces ederensis JCM 4958 T (98.9, 98.7%), Streptomyces aurantiacus JCM 4453 T (98.6, 98.2%), Streptomyces glomeroaurantiacus JCM 4677 T (98.6, 98.1%), Streptomyces tauricus JCM4837 T (98.2, 98.0%) and Streptomyces phaeochromogenes JCM 4070 T (98.2, 99.2%). The corresponding phylogenetic analysis based on partial gyrB gene sequences showed that strains 2C-SSA16(2) T and 1C-GS8 T formed a cluster with the above-mentioned strains. The DNA-DNA hybridization data and phenotypic characteristics indicated that strains 2C-SSA16(2) T and 1C-GS8 T could be readily distinguished from each other and their closest phylogenetic relatives. Therefore, these two strains are suggested to represent two novel species of the genus Streptomyces, for which the names Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. are proposed. The type strains are 2C-SSA16(2) T (=CGMCC 4.7276 T  = DSM 100522 T ) and 1C-GS8 T (=CGMCC 4.7348 = DSM 103127 T ), respectively.

  8. Streptomyces fuscichromogenes sp. nov., an actinomycete from soil.

    Science.gov (United States)

    Zhang, Hao; Zheng, Jimei; Zhuang, Junli; Xin, Yuhua; Zheng, Xiaowei; Zhang, Jianli

    2017-01-01

    A novel actinomycete, designated strain m16T, was isolated from a soil sample collected from the tropical rain forest of Xishuangbanna, a prefecture in Yunnan Province, south-west China, and characterized by using polyphasic taxomomy. Cells were aerobic and Gram-reaction-positive, and spore chains were observed to be of the helical type, with elliptical spores and smooth spore surfaces. The novel strain grew over a temperature range of 15-35 °C, at pH 5.0-11.0 and in the presence of 0-3 % (w/v) NaCl. The DNA G+C content of strain m16T was 70.0 mol%. The main fatty acids were iso-C16 : 0 (29.3 %), iso-C15: 0 (15.4 %) and anteiso-C15:0 (14.6 %), and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Comparative 16S rRNA gene sequence analysis showed that strain m16T was most closely related to Streptomyces jiujiangensis KCTC 29262T (98.7 %), Streptomyces panaciradicis KACC 17632T (98.7 %), Streptomyces rhizophilus NBRC 108885T (98.5 %), Streptomyces shenzhenensis DSM 42034T (98.4 %), Streptomyces graminisoli JR-19T (98.4 %) and Streptomyces gramineus JR-43T (98.3 %). Phylogenetic, chemotaxonomic and phenotypic analyses indicated that strain m16T represents a novel species within the genus Streptomyces, for which the name Streptomyces fuscichromogenes is proposed. The type strain is m16T (=CGMCC 4.7110T=KCTC 29195T).

  9. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    OpenAIRE

    Maria eBonaldi; Xiaoyulong eChen; Andrea eKunova; Cristina ePizzatti; Marco eSaracchi; Paolo eCortesi

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plas...

  10. Antimicrobial activity of Streptomyces spp. Isolates from vegetable plantation soil

    Directory of Open Access Journals (Sweden)

    Isnaeni

    2016-05-01

    Full Text Available Fifteen Streptomyces isolates were isolated from soil in some different location on vegetable plantation at agriculture standard condition. The isolates were assessed for their antibacterial activity against Mycobacterium tuberculosis (MTB ATCC H37RV and mycobacterial which isolated from Dr. Soetomo Hospital patients in Surabaya. The International Streptomyces Project 4 (ISP4 and Middlebrook 7H9 (MB7H9 wwere used as growth or fermentation medium. The screening of inhibition activity was performed using turbidimetry and spot-test on agar medium. Results shown that 33.3% of the isolates (5 isolates have anti-mycobacterial activities. The first line anti tuberculosis drug rifampicin, (RIF, ethambutol (EMB, isoniazid (INH, and pyrazinamide (PZA were used as standards or positive controls with concentration 20 ppm. Optical density of crude fermentation broth concentrated from five isolates relatively lower than five anti-tuberculosis drug activity standard, although their activities against some microbial were similar to the standard at spot-test. The most efficient isolate shown anti-mycobacterial activity was Streptomyces B10 which identified as Streptomyces violaceousniger. In addition, fatty acid methyl ester (FAME profile of gas chromatography-mass spectrometry chromatogram of each isolates were studied and compared to Streptomyces spp. Keywords: Anti-mycobacterial, Mycobacterium tuberculosis, Streptomyces spp.

  11. 'Streptomyces caelicus', an antibiotic-producing species of the genus Streptomyces, and Streptomyces canchipurensis Li et al. 2015 are later heterotypic synonyms of Streptomyces muensis Ningthoujam et al. 2014.

    Science.gov (United States)

    Wink, Joachim; Schumann, Peter; Atasayar, Ewelina; Klenk, Hans-Peter; Zaburannyi, Nestor; Westermann, Martin; Martin, Karin; Glaeser, Stefanie P; Kämpfer, Peter

    2017-04-01

    'Streptomyces caelicus' DSM 40835 was first reported as the producer of the antibiotic griselimycin by some coworkers of Rhone Poulenc in 1971. The project on isolation of the antibiotic compound was stopped because of the bad solubility and selectivity of the compound towards Mycobacteria. At Sanofi-Aventis, Germany, the project was re-evaluated in 2007 and the gene cluster of griselimycin could be identified, characterized and was patented in 2013. At this time, 'S. caelicus' was an invalid name. During the strain characterization work, it was found that 'S. caelicus' belongs to the group of species of the genus Streptomyces which show an unusual heterogeneity of the 16S rRNA gene sequences. However, high 16S rRNA gene sequence similarities to Streptomyces muensis JCM 17576T and Streptomyces canchipurensis JCM 17575T were obvious. Here, we present a comparative description of 'Streptomyces caelicus' DS 9461 (=DSM 40835=NCCB 100592) with S. muensis and S. canchipurensis by use of a polyphasic taxonomy approach and additional comparison of some housekeeping genes by multilocus sequence analysis (MLSA). An emended description of Streptomyces muensis is provided as a result of this work.

  12. Strain-Level Diversity of Secondary Metabolism in Streptomyces albus

    Science.gov (United States)

    Seipke, Ryan F.

    2015-01-01

    Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820

  13. Streptomyces ciscaucasicus Sveshnikova et al. 1983 is a later subjective synonym of Streptomyces canus Heinemann et al. 1953.

    Science.gov (United States)

    Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P

    2018-01-01

    Streptomyces canuswas described in 1953 and the name was listed in the Approved List of Bacterial Names in 1980. Three years later, Streptomyces ciscaucasicus was published and the name was subsequently validated in Validation List no. 22 in 1986. On the basis of genome comparison and multilocus sequence analysis of the type strains of Streptomyces canus and Streptomyces ciscaucasicus it can now be shown that these two species despite some phenotypic differences are subjective synonyms. In such a case Rule 24 of the Bacteriological Code applies, in which priority of names is determined by the date of the original publication. Hence, we propose that S. ciscaucasicus is a later subjective synonym of S. canus.

  14. Bacteriophages: The viruses for all seasons of molecular biology

    Directory of Open Access Journals (Sweden)

    Karam Jim D

    2005-03-01

    Full Text Available Abstract Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."

  15. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    Science.gov (United States)

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  16. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages.

    Science.gov (United States)

    Esplin, Ian N D; Berg, Jordan A; Sharma, Ruchira; Allen, Robert C; Arens, Daniel K; Ashcroft, Cody R; Bairett, Shannon R; Beatty, Nolan J; Bickmore, Madeline; Bloomfield, Travis J; Brady, T Scott; Bybee, Rachel N; Carter, John L; Choi, Minsey C; Duncan, Steven; Fajardo, Christopher P; Foy, Brayden B; Fuhriman, David A; Gibby, Paul D; Grossarth, Savannah E; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A; Hurst, Emily; Hyde, Jonathan R; Ingersoll, Kayleigh; Jacobson, Caitlin M; James, Brady D; Jarvis, Todd M; Jaen-Anieves, Daniella; Jensen, Garrett L; Knabe, Bradley K; Kruger, Jared L; Merrill, Bryan D; Pape, Jenny A; Payne Anderson, Ashley M; Payne, David E; Peck, Malia D; Pollock, Samuel V; Putnam, Micah J; Ransom, Ethan K; Ririe, Devin B; Robinson, David M; Rogers, Spencer L; Russell, Kerri A; Schoenhals, Jonathan E; Shurtleff, Christopher A; Simister, Austin R; Smith, Hunter G; Stephenson, Michael B; Staley, Lyndsay A; Stettler, Jason M; Stratton, Mallorie L; Tateoka, Olivia B; Tatlow, P J; Taylor, Alexander S; Thompson, Suzanne E; Townsend, Michelle H; Thurgood, Trever L; Usher, Brittian K; Whitley, Kiara V; Ward, Andrew T; Ward, Megan E H; Webb, Charles J; Wienclaw, Trevor M; Williamson, Taryn L; Wells, Michael J; Wright, Cole K; Breakwell, Donald P; Hope, Sandra; Grose, Julianne H

    2017-11-16

    Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. Copyright © 2017 Esplin et al.

  17. Sequence and comparative analysis of Leuconostoc dairy bacteriophages

    DEFF Research Database (Denmark)

    Kot, Witold; Hansen, Lars Henrik; Neve, Horst

    2014-01-01

    Bacteriophages attacking Leuconostoc species may significantly influence the quality of the final product. There is however limited knowledge of this group of phages in the literature. We have determined the complete genome sequences of nine Leuconostoc bacteriophages virulent to either Leuconostoc...

  18. Production of Antimicrobial Agent by Streptomyces violachromogenes

    International Nuclear Information System (INIS)

    Ahmed, Arwa A.

    2007-01-01

    The isolation of antibiotics from microorganisms improved the discovery of novel antibiotics, which is relatively easy as compared to chemical synthesis of antimicrobial agents. This study starts from isolation and purification of the antimicrobial producing Sterptomycetes obtained from soil habitat of Yemen. The good antimicrobial producing Sterptomycetes isolate was selected from a batch of Sterptomycetes isolates then identified. This isolate has bioactivity against some G+ve and G-ve bacteria. The antimicrobial agent isolated from Streptomyces violachromogenes (isolate no.YA118) was extracted with ethyl acetate at pH 3. The residue was applied to a silica gel column chromatography and eluted stepwise with many solvent systems. The active fractions were tested with B. subtilis NCTC10400. The purification of the antibiotic has been carried out by thin layer chromatography then the physical and chemical properties were studied to identify the antimicrobial agent. The isolated antimicrobial agent is an antibiotic belonging to the neomycin group. (author)

  19. Highly potent fibrinolytic serine protease from Streptomyces.

    Science.gov (United States)

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-05

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. 40 CFR 180.1253 - Streptomyces lydicus WYEC 108; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Streptomyces lydicus WYEC 108... RESIDUES IN FOOD Exemptions From Tolerances § 180.1253 Streptomyces lydicus WYEC 108; exemption from the... the microbial pesticide Streptomyces lydicus WYEC 108 when used in or on all agricultural commodities...

  1. Streptomyces verrucosisporus sp. nov., isolated from marine sediments.

    Science.gov (United States)

    Phongsopitanun, Wongsakorn; Kudo, Takuji; Ohkuma, Moriya; Pittayakhajonwut, Pattama; Suwanborirux, Khanit; Tanasupawat, Somboon

    2016-09-01

    Five actinomycete isolates, CPB1-1T, CPB2-10, BM1-4, CPB3-1 and CPB1-18, belonging to the genus Streptomyces were isolated from marine sediments collected from Chumphon Province, Thailand. They produced open loops of warty spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in their whole-cell hydrolysates. Polar lipids found were diphosphatidylglycerol, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Menaquinones were MK-9(H6), MK-9(H8), MK-10(H6) and MK-10(H8). Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The taxonomic position of the strains was described using a polyphasic approach. blastn analysis of the 16S rRNA gene sequence revealed that these five strains exhibited the highest similarities with 'Streptomyces mangrovicola' GY1 (99.0 %), Streptomyces fenghuangensisGIMN4.003T (98.6 %), Streptomyces barkulensisRC 1831T (98.5 %) and Streptomyces radiopugnans R97T (98.3 %). However, their phenotypic characteristics and 16S rRNA gene sequences as well as DNA-DNA relatedness differentiated these five strains from the other species of the genus Streptomyces. Here, we propose the novel actinomycetes all being representatives of the same novel species, Streptomyces verrucosisporus, with type strain CPB1-1T (=JCM 18519T=PCU 343T=TISTR 2344T).

  2. M13 Bacteriophage Based Protein Sensors

    Science.gov (United States)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  3. [Progress in developing and applying Streptomyces chassis - A review].

    Science.gov (United States)

    Xiao, Liping; Deng, Zixin; Liu, Tiangang

    2016-03-04

    Natural products and their derivatives play an important role in modern healthcare. Their diversity in bioactivity and chemical structure inspires scientists to discover new drug entities for clinical use. However, chemical synthesis of natural compounds has insurmountable difficulties in technology and cost. Also, many original-producing bacteria have disadvantages of needing harsh cultivation conditions, having low productivity and other shortcomings. In addition, some gene clusters responsible for secondary metabolite biosynthesis are silence in the original strains. Therefore, it is of great significance to exploit strategy for the heterologous expression of natural products guided by synthetic biology. Recently, researchers pay more attention on using actinomycetes that are the main source of many secondary metabolites, such as antibiotics, anticancer agents, and immunosuppressive drugs. Especially, with huge development of genome sequencing, abundant resources of natural product biosynthesis in Streptomyces have been discovered, which highlight the special advantages on developing Streptomyces as the heterologous expression chassis cells. This review begins with the significance of the development of Streptomyces chassis, focusing on the strategies and the status in developing Streptomyces chassis cells, followed by examples to illustrate the practical applications of a variety of Streptomyces chassis.

  4. Antagonistic Activities of Streptomyces against Root Knot Nematode of Kiwifruit

    Directory of Open Access Journals (Sweden)

    S. Bashiri

    2016-02-01

    Full Text Available Introduction: Iran is among the world leading kiwifruit producers with 2.816 ha cultivated and 31.567 tones production. Plant parasitic nematodes cause damages to a variety of agricultural crops throughout the world. Interest in biological control of nematodes has increased because of the need for alternative methods to fumigant and non-fumigant nematicides and overall improvement of IPM programs. Bacterial species with nematicidal activity have also been used with some success for controlling root-knot diseases, including Streptomyces spp., Serratia spp., Bacillus spp. and Pseudomonas spp. The goal of the current study was to isolate, identify and investigate the potential of local Streptomyces bacteria for controlling and reducing root-knot nematode population in the north of Iran. Materials and Methods: In order to evaluate the effect of antagonistic bacteria on control of root-knot nematode of Kiwifruit, 100 isolates of bacteria were collected from Kiwifruit rhizosphere in the north of Iran and screened for pigmented microorganisms especially Streptomyces by applying standard serial dilution plate technique, using starch casein nitrate agar and glycerol asparagine agar. Morphological characterizations were achieved by the microscopic method. The microscopic characterization was done by cover slip culture method. The mycelium structure, color and arrangement of conidiospore and arthrospore on the mycelium were observed through the oil immersion (100X. The observed structure was compared with Bergey’s Manual of Determinative Bacteriology and the organism was identified. Various biochemical tests performed for the identification of the potent isolates are as follows: casein hydrolysis, starch hydrolysis, urea hydrolysis, esculin hydrolysis, acid production from sugar, NaCl resistance, temperature tolerance. Soil samples (100g were collected, and then processed for nematode egg and larvae extraction Hussey method. The suspension was pipetted

  5. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.

    Science.gov (United States)

    Salla, Tamiris Daros; da Silva, Ramos; Astarita, Leandro Vieira; Santarém, Eliane Romanato

    2014-12-01

    The genus Eucalyptus comprises economically important species, such as Eucalyptus grandis and Eucalyptus globulus, used especially as a raw material in many industrial sectors. Species of Eucalyptus are very susceptible to pathogens, mainly fungi, which leads to mortality of plant cuttings in rooting phase. One alternative to promote plant health and development is the potential use of microorganisms that act as agents for biological control, such as plant growth-promoting rhizobacteria (PGPR). Rhizobacteria Streptomyces spp have been considered as PGPR. This study aimed at selecting strains of Streptomyces with ability to promote plant growth and modulate secondary metabolism of E. grandis and E. globulus in vitro plants. The experiments assessed the development of plants (root number and length), changes in key enzymes in plant defense (polyphenol oxidase and peroxidase) and induction of secondary compounds(total phenolic and quercetinic flavonoid fraction). The isolate Streptomyces PM9 showed highest production of indol-3-acetic acid and the best potential for root induction. Treatment of Eucalyptus roots with Streptomyces PM9 caused alterations in enzymes activities during the period of co-cultivation (1-15 days), as well as in the levels of phenolic compounds and flavonoids. Shoots also showed alteration in the secondary metabolism, suggesting induced systemic response. The ability of Streptomyces sp. PM9 on promoting root growth, through production of IAA, and possible role on modulation of secondary metabolism of Eucalyptus plants characterizes this isolate as PGPR and indicates its potential use as a biological control in forestry.

  6. Immuno compatibility of Bacteriophages as Nano medicines

    International Nuclear Information System (INIS)

    Kaur, T.; Nafissi, N.; Wasfi, O.; Sheldon, K.; Wettig, Sh.; Slavcev, R.

    2012-01-01

    Bacteriophage-based medical research provides the opportunity to develop targeted nano medicines with heightened efficiency and safety profiles. Filamentous phages also can and have been formulated as targeted drug-delivery nano medicines, and phage may also serve as promising alternatives/complements to antibiotics. Over the past decade the use of phage for both the prophylaxis and the treatment of bacterial infection, has gained special significance in view of a dramatic rise in the prevalence of antibiotic resistance bacterial strains. Two potential medical applications of phages are the treatment of bacterial infections and their use as immunizing agents in diagnosis and monitoring patients with immunodeficiencies. Recently, phages have been employed as gene-delivery vectors (phage nano medicine), for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. As phage applications to human therapeutic development grow at an exponential rate, it will become essential to evaluate host immune responses to initial and repetitive challenges by therapeutic phage in order to develop phage therapies that offer suitable utility. This paper examines and discusses phage nano medicine applications and the immunomodulatory effects of bacteriophage exposure and treatment modalities.

  7. A bacteriophages journey through the human body.

    Science.gov (United States)

    Barr, Jeremy J

    2017-09-01

    The human body is colonized by a diverse collective of microorganisms, including bacteria, fungi, protozoa and viruses. The smallest entity of this microbial conglomerate are the bacterial viruses. Bacteriophages, or phages for short, exert significant selective pressure on their bacterial hosts, undoubtedly influencing the human microbiome and its impact on our health and well-being. Phages colonize all niches of the body, including the skin, oral cavity, lungs, gut, and urinary tract. As such our bodies are frequently and continuously exposed to diverse collections of phages. Despite the prevalence of phages throughout our bodies, the extent of their interactions with human cells, organs, and immune system is still largely unknown. Phages physically interact with our mucosal surfaces, are capable of bypassing epithelial cell layers, disseminate throughout the body and may manipulate our immune system. Here, I establish the novel concept of an "intra-body phageome," which encompasses the collection of phages residing within the classically "sterile" regions of the body. This review will take a phage-centric view of the microbiota, human body, and immune system with the ultimate goal of inspiring a greater appreciation for both the indirect and direct interactions between bacteriophages and their mammalian hosts. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Bacteriophages and Their Role in Food Safety

    Directory of Open Access Journals (Sweden)

    Sanna M. Sillankorva

    2012-01-01

    Full Text Available The interest for natural antimicrobial compounds has increased due to alterations in consumer positions towards the use of chemical preservatives in foodstuff and food processing surfaces. Bacteriophages fit in the class of natural antimicrobial and their effectiveness in controlling bacterial pathogens in agro-food industry has led to the development of different phage products already approved by USFDA and USDA. The majority of these products are to be used in farm animals or animal products such as carcasses, meats and also in agricultural and horticultural products. Treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases and ultimately promote safe environments in animal and plant food production, processing, and handling. This is an overview of recent work carried out with phages as tools to promote food safety, starting with a general introduction describing the prevalence of foodborne pathogens and bacteriophages and a more detailed discussion on the use of phage therapy to prevent and treat experimentally induced infections of animals against the most common foodborne pathogens, the use of phages as biocontrol agents in foods, and also their use as biosanitizers of food contact surfaces.

  9. Study of the reactivation of X-ray inactivated lambda bacteriophages by irradiated Escherichia coli bacteria

    International Nuclear Information System (INIS)

    Kiessling, W.

    1980-01-01

    Bacteriophages lambda and E.coli cells were exposed to X-rays in LB medium. Host cells exposed to a dose of 85 to 765 Gy had a reactivation factor 1.3 to 3.0 for bacteriophages inactivated by X-rays. The capacity of the bacteria for bacteriophage mutliplication remained apparently unchanged in this dose range. After UV-irradiation of the host cells, only a reactivation factor of 1.3 was found for bacteriophages exposed to X-radiation. The comparatively low Weigle reactivation of bacteriophages exposed to X-radiation - as compared with bacteriophages exposed to UV radiation was analyzed by counting free, non-adsorbed bacteriophages determined by filtration of radioactively labelled bacteriophage-host complexes, it was found to be due to a reduced adsorptivity. Reactivation experiments with bacteriophages exposed to X-rays and host bacterias with different degrees of radiosensitivity proved this assumption to be correct. (orig.) [de

  10. Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains.

    Science.gov (United States)

    Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya

    2017-10-01

    Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.

  11. Streptomyces ovatisporus sp. nov., isolated from deep marine sediment.

    Science.gov (United States)

    Veyisoglu, Aysel; Cetin, Demet; Inan Bektas, Kadriye; Guven, Kiymet; Sahin, Nevzat

    2016-11-01

    The taxonomic position of a Gram-staining-positive strain, designated strain S4702T was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree. S4702T was found to be most closely related to the type strains of Streptomyces marinus(DSM 41968T; 97.8 % sequence similarity) and Streptomyces abyssalis (YIM M 10400T; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus Streptomyces were lower than 97.5 %. DNA-DNA relatedness of S4702T and the most closely related strain S. marinus DSM 41968T was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained l,l-diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant menaquinone was MK-9(H8). The polar lipid profile of S4702T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702T could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702T represents a novel species of the genus Streptomyces, for which the name Streptomyces ovatisporus sp. nov. is proposed. The type strain is S4702T (DSM 42103T=KCTC 29206T=CGMCC 4.7357T).

  12. Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957.

    Science.gov (United States)

    Idris, Hamidah; Labeda, David P; Nouioui, Imen; Castro, Jean Franco; Del Carmen Montero-Calasanz, Maria; Bull, Alan T; Asenjo, Juan A; Goodfellow, Michael

    2017-05-01

    A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9 T , was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9 T is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448 T . The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9 T (=NCIMB 14965 T =NRRL B65268 T ). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given.

  13. ISOLATION AND PURIFICATION OF STREPTOMYCES SPP. PRODUCING VANCOMYCIN

    International Nuclear Information System (INIS)

    EL-KABBANY, H.M.I.

    2008-01-01

    Soil samples obtained from different governments in Egypt were analyzed to determine the presence of types of antibiotic producing actinomycetes using starch-nitrite agar, starch-casein nitrate agar and Czapek's Dox agar as culture media. Different Streptomyces spp. were isolated. The Streptomyces (S.) isolates encountered were S. violochromogens, S. violaceus-nigar and S. orientalis and known as standard Vancomycin producers. The optimum conditions of S. orientalis; incubation period, initial pH and incubation temperature, were determined. In addition, physical properties; appearance, melting point, solubility, mass spectrophotometer of ultra violet (UV) and the effect of gamma rays, were also determined

  14. STUDIES ON THE BACTERIOPHAGE OF D'HÉRELLE

    Science.gov (United States)

    Hetler, D. M.; Bronfenbrenner, J.

    1928-01-01

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein. PMID:19869482

  15. Bacteria vs. bacteriophages: parallel evolution of immune arsenals

    Directory of Open Access Journals (Sweden)

    Muhammad Abu Bakr Shabbir

    2016-08-01

    Full Text Available Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction-modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR. In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies.

  16. Reduction of Salmonella in ground chicken using a bacteriophage.

    Science.gov (United States)

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  17. Bacteriophages: update on application as models for viruses in water

    African Journals Online (AJOL)

    Bacteriophages: update on application as models for viruses in water. ... the resistance of human viruses to water treatment and disinfection processes. ... highly sensitive molecular techniques viruses have been detected in drinking water ...

  18. Bacteriophage-antibiotic synergism to control planktonic and biofilm ...

    African Journals Online (AJOL)

    Amina Amal Mahmoud Nouraldin

    2015-07-11

    Jul 11, 2015 ... mote resistance to antimicrobial agents, and its occurrence during the infectious ... Biofilm is a structured community of bacterial cells adher- ent to an inert or ..... biofilms with bacteriophages and chlorine. Biotechnol Bioeng.

  19. Bacteriophage-antibiotic synergism to control planktonic and biofilm ...

    African Journals Online (AJOL)

    Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Amina Amal Mahmoud Nouraldin, Manal Mohammad Baddour, Reem Abdel Hameed Harfoush, Sara AbdelAziz Mohamed Essa ...

  20. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    OpenAIRE

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to d...

  1. Bacteriophage-based Probiotic Preparation for Managing Shigella Infections

    Science.gov (United States)

    2015-04-16

    The preparation (designated “ShigActive”) is a bacteriophage cocktail that specifically targets Shigella spp. (significant diarrhea-causing pathogens...phages lytic for Shigella , and we have developed a murine model in which the in vivo efficacy of our 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...10-Apr-2013 Approved for Public Release; Distribution Unlimited Final Report: Bacteriophage-based Probiotic Preparation for Managing Shigella

  2. Methods for initial characterization of Campylobacter jejuni bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity.......Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity....

  3. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    Science.gov (United States)

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.

  4. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso

    2018-05-02

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications.

  5. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    Science.gov (United States)

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  6. Framing the Future with Bacteriophages in Agriculture.

    Science.gov (United States)

    Svircev, Antonet; Roach, Dwayne; Castle, Alan

    2018-04-25

    The ability of agriculture to continually provide food to a growing world population is of crucial importance. Bacterial diseases of plants and animals have continually reduced production since the advent of crop cultivation and animal husbandry practices. Antibiotics have been used extensively to mitigate these losses. The rise of antimicrobial resistant (AMR) bacteria, however, together with consumers’ calls for antibiotic-free products, presents problems that threaten sustainable agriculture. Bacteriophages (phages) are proposed as bacterial population control alternatives to antibiotics. Their unique properties make them highly promising but challenging antimicrobials. The use of phages in agriculture also presents a number of unique challenges. This mini-review summarizes recent development and perspectives of phages used as antimicrobial agents in plant and animal agriculture at the farm level. The main pathogens and their adjoining phage therapies are discussed.

  7. Bacteriophage lambda: early pioneer and still relevant

    Science.gov (United States)

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  8. Montmorillonite-induced Bacteriophage φ6 Disassembly

    Science.gov (United States)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  9. Bacteriophages show promise as antimicrobial agents.

    Science.gov (United States)

    Alisky, J; Iczkowski, K; Rapoport, A; Troitsky, N

    1998-01-01

    The emergence of antibiotic-resistant bacteria has prompted interest in alternatives to conventional drugs. One possible option is to use bacteriophages (phage) as antimicrobial agents. We have conducted a literature review of all Medline citations from 1966-1996 that dealt with the therapeutic use of phage. There were 27 papers from Poland, the Soviet Union, Britain and the U.S.A. The Polish and Soviets administered phage orally, topically or systemically to treat a wide variety of antibiotic-resistant pathogens in both adults and children. Infections included suppurative wound infections, gastroenteritis, sepsis, osteomyelitis, dermatitis, empyemas and pneumonia; pathogens included Staphylococcus, Streptococcus, Klebsiella, Escherichia, Proteus, Pseudomonas, Shigella and Salmonella spp. Overall, the Polish and Soviets reported success rates of 80-95% for phage therapy, with rare, reversible gastrointestinal or allergic side effects. However, efficacy of phage was determined almost exclusively by qualitative clinical assessment of patients, and details of dosages and clinical criteria were very sketchy. There were also six British reports describing controlled trials of phage in animal models (mice, guinea pigs and livestock), measuring survival rates and other objective criteria. All of the British studies raised phage against specific pathogens then used to create experimental infections. Demonstrable efficacy against Escherichia, Acinetobacter, Pseudomonas and Staphylococcus spp. was noted in these model systems. Two U.S. papers dealt with improving the bioavailability of phage. Phage is sequestered in the spleen and removed from circulation. This can be overcome by serial passage of phage through mice to isolate mutants that resist sequestration. In conclusion, bacteriophages may show promise for treating antibiotic resistant pathogens. To facilitate further progress, directions for future research are discussed and a directory of authors from the reviewed

  10. Bacteriophages of Leuconostoc, Oenococcus and Weissella

    Directory of Open Access Journals (Sweden)

    Witold P. Kot

    2014-04-01

    Full Text Available Leuconostoc (Ln., Weissella and Oenococcus form a group of related genera of lactic acid bacteria, which once all shared the name Leuconostoc. They are associated with plants, fermented vegetable products, raw milk, dairy products, meat and fish. Most of industrially relevant Leuconostoc strains can be classified as either Ln. mesenteroides or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations and they initiate nearly all vegetable fermentations. Therefore bacteriophages attacking Leuconostoc strains may negatively influence the production process. Bacteriophages attacking Leuconostoc strains were first reported in 1946. Since then, the majority of described Leuconostoc phages was isolated from either dairy products or fermented vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most of Leuconostoc phages examined using electron microscopy belong to the Siphoviridae family and differ in morphological details. Hybridization and comparative genomic studies of Leuconostoc phages suggest that they can be divided into several groups, however overall diversity of Leuconostoc phages is much lower as compared to e.g. lactococcal phages. Several fully sequenced genomes of Leuconostoc phages have been deposited in public databases. Lytic phages of Leuconostoc can be divided into two host species-specific groups with similarly organized genomes that shared very low nucleotide similarity. Phages of dairy Leuconostoc have rather limited host-ranges. The receptor binding proteins of two lytic Ln. pseudomesenteroides phages have been identified. Molecular tools for detection of dairy Leuconostoc phages have been developed. The rather limited data on phages of Oenococcus and Weissella show that i lysogeny seems to be abundant in Oenococcus strains, and ii several phages infecting Weissella cibaria are also able to productively infect strains of other Weissella species and even strains of the genus

  11. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    Science.gov (United States)

    2011-01-01

    Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628

  12. Optimization of culture conditions of Streptomyces rochei (MTCC ...

    African Journals Online (AJOL)

    Fermentation and culture conditions were studied in shaken-flask culture to induce the production of greater amounts of antimicrobial metabolites by Streptomyces rochei (10109). Antimicrobial metabolite production started after 48 h incubation and reached its optimum level at 20% inoculum size at 120 h, at which point the ...

  13. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    1Chemistry of Natural and Microbial Products Dept., Pharmaceutical Industries Div., National Research Centre, 33 EL ... enzymes produced by many pathogenic bacteria, ... produced by the actinomycete Streptomyces ... enzymes, hence avoiding loss of the beta-lactam ...... strain will explore the economic outcome of.

  14. A non-polyene antifungal antibiotic from Streptomyces albidoflavus ...

    Indian Academy of Sciences (India)

    Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by ...

  15. Isolation and characterization of stable mutants of Streptomyces

    Indian Academy of Sciences (India)

    Daunorubicin and its derivative doxorubicin are antitumour anthracycline antibiotics produced by Streptomyces peucetius. In this study we report isolation of stable mutants of S. peucetius blocked in different steps of the daunorubicin biosynthesis pathway. Mutants were screened on the basis of colony colour since producer ...

  16. Characterization of Streptomyces strain SLO-105 isolated from Lake ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... produce a vivid yellow pigment on most media except on the ISP5. The morphological and cultural characteristics of the isolate were compared with known Actinomycetes species described in Bergey's manual of systematic bacteriology and they suggested that SLO-105 strain belong to Streptomyces ...

  17. Manumycin from a new Streptomyces strain shows antagonistic ...

    African Journals Online (AJOL)

    Manumycin from a new Streptomyces strain shows antagonistic effect against methicillin-resistant Staphylococcus aureus (MRSA)/vancomycin-resistant enterococci (VRE) strains from Korean Hospitals. Yun Hee Choi, Seung Sik Cho, Jaya Ram Simkhada, Chi Nam Seong, Hyo Jeong Lee, Hong Seop Moon, Jin Cheol Yoo ...

  18. Utilization of carbon and nitrogen sources by Streptomyces ...

    African Journals Online (AJOL)

    We tested a number of carbon and nitrogen compounds for their effect on the production of an antibacterial antibiotic by Streptomyces kananmyceticus M27. Dextrose was found to be the most suitable carbon source, though maltose, sucrose, and soluble starch gave moderate yields. (NH4)H2PO4 and yeast extract were ...

  19. Field efficacy of nonpathogenic Streptomyces species against potato common scab

    Science.gov (United States)

    Reports of potato fields suppressive to common scab (CS) and of association of non-pathogenic streptomycetes with CS resistance suggest that non-pathogenic strains have potential to control or modulate CS disease. Biocontrol potential of non-pathogenic Streptomyces was examined in field experiments ...

  20. Extracellular carbohydrate metabolites from Streptomyces coelicolor A3(2)

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Stanislav; Sedmera, Petr; Halada, Petr; Petříček, Miroslav

    2007-01-01

    Roč. 70, - (2007), s. 768-771 ISSN 0163-3864 R&D Projects: GA ČR GA310/03/0285 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces coelicolor * cultivation * spectroscopic Subject RIV: EE - Microbiology, Virology Impact factor: 2.551, year: 2007

  1. Colonization of wild potato plants by Streptomyces scabies

    Science.gov (United States)

    The bacterial pathogen Streptomyces scabies produces lesions on potato tubers, reducing their marketability and profitability. M6 and 524-8 are two closely related inbred diploid lines of the wild potato species Solanum chacoense. After testing in both field and greenhouse assays, it was found that ...

  2. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.

    Science.gov (United States)

    Romero-Rodríguez, Alba; Rocha, Diana; Ruiz-Villafán, Beatriz; Guzmán-Trampe, Silvia; Maldonado-Carmona, Nidia; Vázquez-Hernández, Melissa; Zelarayán, Augusto; Rodríguez-Sanoja, Romina; Sánchez, Sergio

    2017-09-01

    One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.

  3. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Čihák, M.; Kameník, Zdeněk; Šmídová, Klára; Bergman, N.; Benada, Oldřich; Kofroňová, Olga; Petříčková, Kateřina; Bobek, Jan

    2017-01-01

    Roč. 8, DEC 13 (2017), č. článku 2495. ISSN 1664-302X R&D Projects: GA MŠk(CZ) LO1509; GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : spore germination * Streptomyces * cell signaling Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  4. Production of high fructose corn syrup Streptomyces sp

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M; Prabhu, K A

    1978-01-01

    A Streptomyces strain exhibiting considerable glucose isomerase activity was isolated from soil. The cell free extract of the culture was able to convert glucose to fructose in a period of 48 ha and gave 40% conversion. With acid hydrolyzates of corn and bagasse as substrates, the cell-free extract gave glucose to fructose conversions of 39.8 and 29%, respectively.

  5. A non-polyene antifungal antibiotic from Streptomyces albidoflavus ...

    Indian Academy of Sciences (India)

    Unknown

    One promising strain, Streptomyces albidoflavus PU 23 with strong anti- fungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different ...

  6. Waste to wealth: Production of oxytetracycline using streptomyces ...

    African Journals Online (AJOL)

    The production of oxytetracycline by Streptomyces speibonae OXS1 in solid-state fermentation from cocoyam peels (household kitchen wastes of agricultural produce) was investigated. The proximate analyses of peels of the two cocoyam species showed that Colocasia esculenta had higher protein (1.39%) and fibre ...

  7. Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface

    NARCIS (Netherlands)

    Claessen, Dennis; Wösten, Han A.B.; Keulen, Geertje van; Faber, Onno G.; Alves, Alexandra M.C.R.; Meijer, Wim G.; Dijkhuizen, Lubbert

    The filamentous bacteria Streptomyces coelicolor and Streptomyces lividans exhibit a complex life cycle. After a branched submerged mycelium has been established, aerial hyphae are formed that may septate to form chains of spores. The aerial structures possess several surface layers of unknown

  8. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces.

    Science.gov (United States)

    McDonald, Bradon R; Currie, Cameron R

    2017-06-06

    Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution. IMPORTANCE Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genus Streptomyces , with merely one gene acquired in Streptomyces lineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new

  9. In vitro immunobiological activity of an Antarctic streptomyces polysaccharide

    International Nuclear Information System (INIS)

    Toshkova, R.; Yossifova, L.; Gardeva, E.; Zvetkova, E.; Ivanova, V.

    2010-01-01

    Antarctic Streptomyces sp. 1010, were obtained from sea water samples (Livingston Island, Antarctica), during the Third Bulgarian Antarctic Scientific Expedition (1994-1995). The ecophysiological methods for isolation and characterization of these active, cold-adapted, Gram-positive microorganisms (psychrophiles) in morphological, phenotypic, genetic and taxonomic aspects, have been earlier reported. In this study, a new extracellular polysaccharide (heteropolysaccharide) has been isolated and purified from cultured broth of the Antarctic Streptomyces sp. 1010. The monosaccharide content of the Antarctic streptomyces heteropolysaccharide has been examined by TLC and GC/MS. The mitogenic and immuno potential properties of the purified Antarctic Streptomyces polysaccharide (ASMP) have been studied in vitro - in the short-term cultures of human peripheral blood mononuclear cells (hPBMCs - lymphocytes and monocytes) and mouse spleen lymphocytes (mouse splenocytes - mSps). The results obtained show that ASMP has a double lectin-like effect on the proliferative activity of hPBMCs: similar to this of Con A on the lymphoid cells (preliminary T-lymphocytes) and to the effect of LPS on the mononuclear from monocyte-macrophage lineage. Expressed as proliferative index (PI), the mitogenic response of mSps to the in vitro influence of ASMP was also higher than PI in the negative, as well as in the positive controls (mSps, cultured in the presence of PHA, Con A and LPS). The new Antarctic Streptomyces' heteropolysaccharide examined could be useful in the future as an immunomodulative biologically active substance and its extracellular production may contribute to the development of thermobiochemistry, immunomodulative drug therapy and immunopharmaceutical industry. (authors)

  10. Streptomyces cerasinus sp. nov., isolated from soil in Thailand.

    Science.gov (United States)

    Kanchanasin, Pawina; Moonmangmee, Duangtip; Phongsopitanun, Wongsakorn; Tanasupawat, Somboon; Moonmangmee, Somporn

    2017-10-01

    A novel actinomycete, strain SR3-134 T , belonging to the genus Streptomyces, was isolated from soil collected from the Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima Province, Thailand. The taxonomic position of the strain was characterized by using a polyphasic approach. ll-Diaminopimelic acid, glucose, mannose and ribose were detected in its whole-cell hydrolysates. The N-acyl type of muramic acid was acetyl. The menaquinones were MK-9(H8), MK-9(H6), MK-9(H4) and MK-9(H2). The predominant cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0, C16 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C14 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. blast analysis of the almost-complete 16S rRNA gene showed 98.7 % sequence similarities to Streptomyces lanatus JCM 4588 T and Streptomyces psammoticus JCM 4434 T . The DNA G+C content was 71.4 mol%. Strain SR3-134 T showed low DNA-DNA relatedness (12.9±4.0-44.1±1.0 %) to S. lanatus JCM 4588 T and S. psammoticus JCM 4434 T . The new strain could also be distinguished from its closely related strains by differences in their phenotypic characteristics. The results of taxonomic analysis suggested that strain SR3-134 T represented a novel species of the genus Streptomyces for which the name Streptomyces cerasinus sp. nov. is proposed. The type strain is SR3-134 T (=TISTR 2494 T =KCTC 39910 T ).

  11. Streptomyces asenjonii sp. nov., isolated from arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958

    Science.gov (United States)

    A polyphasic study was undertaken to establish the taxonomic status of Streptomyces strains isolated from arid Atacama Desert soils. Analysis of the 16S rRNA gene sequences of the isolates showed that they formed a well-defined lineage that was loosely associated with the type strains of several Str...

  12. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees

    Science.gov (United States)

    A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34T, which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural, and morphological properties consistent with it...

  13. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  14. Whole-genome sequence of the bacteriophage-sensitive strain Campylobacter jejuni NCTC12662

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Sørensen, Martine C.H.; Brøndsted, Lone

    2017-01-01

    Campylobacter jejuni NCTC12662 has been the choice bacteriophage isolation strain due to its susceptibility to C. jejuni bacteriophages. This trait makes it a good candidate for studying bacteriophage-host interactions. We report here the whole-genome sequence of NCTC12662, allowing future...

  15. Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives

    Science.gov (United States)

    Yagüe, Paula; López-García, Maria T.; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Ángel

    2013-01-01

    Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation. PMID:23496097

  16. Bacteriophage therapy for safeguarding animal and human health: a review.

    Science.gov (United States)

    Tiwari, Ruchi; Dhama, Kuldeep; Kumar, Amit; Rahal, Anu; Kapoor, Sanjay

    2014-02-01

    Since the discovery of bacteriophages at the beginning of the 19th century their contribution to bacterial evolution and ecology and use in a variety of applications in biotechnology and medicine has been recognized and understood. Bacteriophages are natural bacterial killers, proven as best biocontrol agents due to their ability to lyse host bacterial cells specifically thereby helping in disease prevention and control. The requirement of such therapeutic approach is straight away required in view of the global emergence of Multidrug Resistant (MDR) strains of bacteria and rapidly developing resistance to antibiotics in both animals and humans along with increasing food safety concerns including of residual antibiotic toxicities. Phage typing is a popular tool to differentiate bacterial isolates and to identify and characterize outbreak-associated strains of Salmonella, Campylobacter, Escherichia and Listeria. Numerous methods viz. plaque morphology, ultracentrifugation in the density gradient of CsCl2, and random amplified polymorphic DNA (RAPD) have been found to be effective in detection of various phages. Bacteriophages have been isolated and recovered from samples of animal waste products of different livestock farms. High titer cocktails of broad spectrum lytic bacteriophages are usually used for clinical trial for assessing their therapeutic efficacy against antibiotic unresponsive infections in different animals. Bacteriophage therapy also helps to fight various bacterial infections of poultry viz. colibacillosis, salmonellosis and listeriosis. Moreover, the utility of phages concerning biosafety has raised the importance to explore and popularize the therapeutic dimension of this promising novel therapy which forms the topic of discussion of the present review.

  17. New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae.

    Science.gov (United States)

    Pullen, Christian; Schmitz, Petra; Meurer, Kristina; Bamberg, Daniel D v; Lohmann, Stephanie; De Castro França, Suzelei; Groth, Ingrid; Schlegel, Brigitte; Möllmann, Ute; Gollmick, Friedrich; Gräfe, Udo; Leistner, Eckhard

    2002-11-01

    Wood from three different plants of the Celastraceae growing in their natural habitats in Brazil (Maytenus aquifolia Mart.) and South Africa [Putterlickia retrospinosa van Wyk and Mostert, P. verrucosa (E. Meyer ex Sonder) Szyszyl.] was established as a source of endophytic bacteria using a medium selective for actinomycetes. Two isolates were identified as Streptomyces setonii and S. sampsonii whereas two others were not assignable to any of the known Streptomyces species. They were preliminarily named Streptomyces Q21 and Streptomyces MaB-QuH-8. The latter strain produces a new chloropyrrol and chlorinated anthracyclinone. The chloropyrrol showed high activity against a series of multiresistent bacteria and mycobacteria.

  18. Recent advances in understanding Streptomyces [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Keith F. Chater

    2016-11-01

    Full Text Available About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for Streptomyces developmental biology, Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of

  19. A bacteriophage endolysin that eliminates intracellular streptococci

    Science.gov (United States)

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  20. Enhanced production and application of acidothermophilic Streptomyces cellulase.

    Science.gov (United States)

    Budihal, Saikumar R; Agsar, Dayanand; Patil, Sarvamangala R

    2016-01-01

    An efficient cellulolytic and acidothermophilic actinobacterium was isolated from soil, adhered to decomposing tree bark and was identified as Streptomyces DSK59. Screening of synthetic media and the media components identified that, a medium based on starch casein minerals containing carboxy methyl cellulose (CMC) and beef extract (BE) could support enhanced cellulase production by the organism. CMC, BE, NaCl, temperature and pH were accounted as significant for cellulase production and these were optimized using a response surface central composite design (CCD). Optimization of cellulase production resulted in an enhancement of endoglucanase activity to 27IUml(-1). Acidothermophillic Streptomyces cellulase was found to be efficient for hydrolysis of pretreated sorghum stover and liberated 0.413gg(-1) of total reducing sugars which was higher than previously reported sugar yields obtained using fungal enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [Antibacterial activity of rare Streptomyces species against clinical resistant bacteria].

    Science.gov (United States)

    Boughachiche, Faiza; Reghioua, Sihem; Zerizer, Habiba; Boulahrouf, Abderrahmane

    2012-01-01

    In the search for new antibiotics from Steptomyces, investigating extremes habitats enhances the probability of isolating novel producers. In this context, the antibacterial activity of four Streptomyces strains isolated from Ezzmoul saltpans was studied. Two of them showed antibacterial activity against antibiotic's resistant bacteria (Bacillus cereus: β-lactamines and sulfamides resistant, Streptococcus faecalis: penicillin, tetracycline and cotrimoxazole resistant, and Staphylococcus aureus Mu 50: vancomycine resistant). The most active Streptomyces strain produces one type of polar bioactive molecules that resists to temperature variation and light exposition. Its activity appears in the first culture day and reaches its maximal value in the fourth day. The second strain presents themoresistant activity that reaches its maximal value in the first culture day. It produces two types of bioactive molecules, one is polar and the second is non polar (according to thin layer chromatography technique results).

  2. Determination of optimal conditions of oxytetracyclin production from streptomyces rimosus

    International Nuclear Information System (INIS)

    Zouaghi, Atef

    2007-01-01

    Streptomyces rimosus is an oxytetracycline (OTC) antibiotic producing bacteria that exhibited activities against gram positive and negative bacteria. OTC is used widely not only in medicine but also in production industry. The antibiotic production of streptomyces covers a very wide range of condition. However, antibiotic producers are particularly fastidious cultivated by proper selection of media such as carbon source. In present study we have optimised conditions of OTC production (Composition of production media, p H, shaking and temperature). The results have been shown that bran barley is the optimal media for OTC production at 28C pH5.8 at 150rpm for 5 days. For antibiotic determination, OTC was extracted with different organic solvent. Thin-layer chromatography system was used for separation and identification of OTC antibiotic. High performance liquid chromatographic (HPLC) method with ultraviolet detection for the analysis of OTC is applied to the determination of OTC purification. (Author). 24 refs

  3. Bacteriophages of Soft Rot Enterobacteriaceae-a minireview.

    Science.gov (United States)

    Czajkowski, Robert

    2016-01-01

    Soft rot Enterobacteriaceae (Pectobacterium spp. and Dickeya spp., formerly pectinolytic Erwinia spp.) are ubiquitous necrotrophic bacterial pathogens that infect a large number of different plant species worldwide, including economically important crops. Despite the fact that these bacteria have been studied for more than 50 years, little is known of their corresponding predators: bacteriophages, both lytic and lysogenic. The aim of this minireview is to critically summarize recent ecological, biological and molecular research on bacteriophages infecting Pectobacterium spp. and Dickeya spp. with the main focus on current and future perspectives in that field. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Molecular and chemical engineering of bacteriophages for potential medical applications.

    Science.gov (United States)

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  5. Comparative Genomics of Bacteriophage of the Genus Seuratvirus

    DEFF Research Database (Denmark)

    Sazinas, Pavelas; Redgwell, Tamsin; Rihtman, Branko

    2017-01-01

    polB and terL showed these bacteriophages to be closely related to members of the genus Seuratvirus. We performed a core-gene analysis using the 14 new and four closely related genomes. A total of 58 core genes were identified, the majority of which has no known function. These genes were used...... to construct a core-gene phylogeny, the results of which confirmed the new isolates to be part of the genus Seuratvirus and expanded the number of species within this genus to four. All bacteriophages within the genus contained the genes queCDE encoding enzymes involved in queuosine biosynthesis. We suggest...

  6. Engineered enzymatically active bacteriophages and methods of uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James J [Newton, MA; Kobayashi, Hideki [Yokohama, JP; Kearn, Mads [Ottawa, CA; Araki, Michihiro [Minatoku, JP; Friedland, Ari [Boston, MA; Lu, Timothy Kuan-Ta [Palo Alto, CA

    2012-05-22

    The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.

  7. Native and engineered clifednamide biosynthesis in multiple Streptomyces spp.

    OpenAIRE

    Blodgett, Joshua; Ding, Edward; Qi, Yunci

    2017-01-01

    Polycyclic tetramate macrolactam (PTM) natural products are produced by actinomycetes and other bacteria. PTMs are often bioactive, and the simplicity of their biosynthetic clusters make them attractive for bioengineering. Clifednamide-type PTMs from Streptomyces sp. JV178 contain a distinctive ketone group, suggesting the existence of a novel PTM oxidizing enzyme. Here, we report the new cytochrome P450 enzyme (CftA) is required for clifednamide production. Genome mining was used to identify...

  8. Uptake of nourseothricin by the producing microorganism, Streptomyces noursei

    International Nuclear Information System (INIS)

    Roeder, B.; Graefe, U.

    1985-01-01

    The uptake of 14 C-(U)-nourseothricin by stationary phase mycelium of Streptomyces noursei JA 3890b-NG 13/14 was demonstrated. An energy-dependent transport system appears to be involved in the transport of the antibiotic. Relatively large quantities of the antibiotic were adsorbed to the surface of mycelium. Degradation of nourseothricin by the producing microorganism was not detectable. (author)

  9. CobB1 deacetylase activity in Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Mikulík, Karel; Felsberg, Jürgen; Kudrnáčová, E.; Bezoušková, Silvia; Šetinová, Dita; Stodůlková, Eva; Zídková, J.; Zídek, Václav

    2012-01-01

    Roč. 90, č. 2 (2012), s. 179-187 ISSN 0829-8211 R&D Projects: GA AV ČR(CZ) IAA500110805; GA ČR GA303/09/0475 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : sirtuin * NAD(+)dependent deacetylation activity CobB1 * Streptomyces coeliocolor Subject RIV: EE - Microbiology, Virology Impact factor: 2.915, year: 2012

  10. The Cellular Mechanisms that Ensure an Efficient Secretion in Streptomyces

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    2018-04-01

    Full Text Available Gram-positive soil bacteria included in the genus Streptomyces produce a large variety of secondary metabolites in addition to extracellular hydrolytic enzymes. From the industrial and commercial viewpoints, the S. lividans strain has generated greater interest as a host bacterium for the overproduction of homologous and heterologous hydrolytic enzymes as an industrial application, which has considerably increased scientific interest in the characterization of secretion routes in this bacterium. This review will focus on the secretion machinery in S. lividans.

  11. 40 CFR 180.1120 - Streptomyces sp. strain K61; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Streptomyces sp. strain K61; exemption... FOOD Exemptions From Tolerances § 180.1120 Streptomyces sp. strain K61; exemption from the requirement of a tolerance. The biological pesticide Streptomyces sp. strain K61 is exempted from the requirement...

  12. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces

    Directory of Open Access Journals (Sweden)

    Bradon R. McDonald

    2017-06-01

    Full Text Available Lateral gene transfer (LGT profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces. Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution.

  13. Analysis of the Pho regulon in Streptomyces tsukubaensis.

    Science.gov (United States)

    Ordóñez-Robles, María; Santos-Beneit, Fernando; Rodríguez-García, Antonio; Martín, Juan F

    2017-12-01

    Phosphate regulation of antibiotic biosynthesis in Streptomyces has been studied due to the importance of this genus as a source of secondary metabolites with biological activity. Streptomyces tsukubaensis is the main producer of tacrolimus (or FK506), an immunosuppressant macrolide that generates important benefits for the pharmaceutical market. However, the production of tacrolimus is under a negative control by phosphate and, therefore, is important to know the molecular mechanism of this regulation. Despite its important role, there are no reports about the Pho regulon in S. tsukubaensis. In this work we combined transcriptional studies on the response to phosphate starvation with the search for PHO boxes in the whole genome sequence of S. tsukubaensis. As a result, we identified a set of genes responding to phosphate starvation and containing PHO boxes that include common Pho regulon members but also new species-specific candidates. In addition, we demonstrate for the first time the functional activity of PhoP from S. tsukubaensis through complementation studies in a Streptomyces coelicolor ΔphoP strain. For this purpose, we developed an anhydrotetracycline inducible system that can be applied to the controlled expression of target genes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities

    Science.gov (United States)

    Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...

  15. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis

    Science.gov (United States)

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...

  16. Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in Streptomyces spp.

    Science.gov (United States)

    Hendrix, Roger W.; Dedrick, Rebekah; Mitchell, Kaitlin; Ko, Ching-Chung; Russell, Daniel; Bell, Emma; Gregory, Matthew; Bibb, Maureen J.; Pethick, Florence; Jacobs-Sera, Deborah; Herron, Paul; Buttner, Mark J.; Hatfull, Graham F.

    2013-01-01

    The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. PMID:23995638

  17. Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-05-10

    Antibiotic resistance is one of the most serious public health problems. Among bacterial resistance, β-lactam antibiotic resistance is the most prevailing and threatening area. Antibiotic resistance is thought to originate in antibiotic-producing bacteria such as Streptomyces. In this review, β-lactamases and penicillin-binding proteins (PBPs) in Streptomyces are explored mainly by phylogenetic analyses from the viewpoint of self-resistance. Although PBPs are more important than β-lactamases in self-resistance, phylogenetically diverse β-lactamases exist in Streptomyces. While class A β-lactamases are mostly detected in their enzyme activity, over two to five times more classes B and C β-lactamase genes are identified at the whole genomic level. These genes can subsequently be transferred to pathogenic bacteria. As for PBPs, two pairs of low affinity PBPs protect Streptomyces from the attack of self-producing and other environmental β-lactam antibiotics. PBPs with PASTA domains are detectable only in class A PBPs in Actinobacteria with the exception of Streptomyces. None of the Streptomyces has PBPs with PASTA domains. However, one of class B PBPs without PASTA domain and a serine/threonine protein kinase with four PASTA domains are located in adjacent positions in most Streptomyces. These class B type PBPs are involved in the spore wall synthesizing complex and probably in self-resistance. Lastly, this paper emphasizes that the resistance mechanisms in Streptomyces are very hard to deal with, despite great efforts in finding new antibiotics.

  18. Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster.

    Science.gov (United States)

    García Bernal, M; Trabal Fernández, N; Saucedo Lastra, P E; Medina Marrero, R; Mazón-Suástegui, J M

    2017-03-01

    To determine the composition and diversity of the microbiota associated to Crassostrea sikamea treated during 30 days with Streptomyces strains N7 and RL8. DNA was extracted from oysters followed by 16S rRNA gene amplification and pyrosequencing. The highest and lowest species diversity richness was observed in the initial and final control group, whereas Streptomyces-treated oysters exhibited intermediate values. Proteobacteria was the most abundant phylum (81·4-95·1%), followed by Bacteroidetes, Actinobacteria and Firmicutes. The genera Anderseniella, Oceanicola, Roseovarius, Ruegeria, Sulfitobacter, Granulosicoccus and Marinicella encompassed the core microbiota of all experimental groups. The genus Bacteriovorax was detected in all groups except in the final control and the depurated N7, whereas Vibrio remained undetected in all Streptomyces-treated groups. RL8 was the only group that harboured the genus Streptomyces in its microbiota. Principal component analysis showed that Streptomyces strains significantly changed oyster microbiota with respect to the initial and final control. Crassostrea sikamea treated with Streptomyces showed high species diversity and a microbiota composition shift, characterized by keeping the predator genus Bacteriovorax and decreasing the pathogenic Vibrio. This is the first culture-independent study showing the effect of Streptomyces over the oyster microbiota. It also sheds light about the potential use of Streptomyces to improve mollusc health and safety for consumers after the depuration process. © 2016 The Society for Applied Microbiology.

  19. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.

    Science.gov (United States)

    Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L

    2017-07-01

    Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be

  20. Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials.

    Science.gov (United States)

    Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia

    2016-01-01

    Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and

  1. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.

    Science.gov (United States)

    Wang, Y; Cobb, R E; Zhao, H

    2016-01-01

    Next-generation sequencing technologies have rapidly expanded the genomic information of numerous organisms and revealed a rich reservoir of natural product gene clusters from microbial genomes, especially from Streptomyces, the largest genus of known actinobacteria at present. However, genetic engineering of these bacteria is often time consuming and labor intensive, if even possible. In this chapter, we describe the design and construction of pCRISPomyces, an engineered Type II CRISPR/Cas system, for targeted multiplex gene deletions in Streptomyces lividans, Streptomyces albus, and Streptomyces viridochromogenes with editing efficiency ranging from 70% to 100%. We demonstrate pCRISPomyces as a powerful tool for genome editing in Streptomyces. © 2016 Elsevier Inc. All rights reserved.

  2. Multiple roles of genome-attached bacteriophage terminal proteins

    International Nuclear Information System (INIS)

    Redrejo-Rodríguez, Modesto; Salas, Margarita

    2014-01-01

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer

  3. Contractile injection systems of bacteriophages and related systems

    DEFF Research Database (Denmark)

    Taylor, Nicholas M I; van Raaij, Mark J; Leiman, Petr G

    2018-01-01

    Contractile tail bacteriophages, or myobacteriophages, use a sophisticated biomolecular structure to inject their genome into the bacterial host cell. This structure consists of a contractile sheath enveloping a rigid tube that is sharpened by a spike-shaped protein complex at its tip. The spike ...

  4. 21 CFR 172.785 - Listeria-specific bacteriophage preparation.

    Science.gov (United States)

    2010-04-01

    ... application to meat and poultry products that comply with the ready-to-eat definition in 9 CFR 430.1. Current... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Listeria-specific bacteriophage preparation. 172.785 Section 172.785 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  5. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P

  6. [Bacteriophages in the battle against multidrug resistant bacteria

    NARCIS (Netherlands)

    Meer, J.W.M. van der; Vandenbroucke-Grauls, C.

    2018-01-01

    Bacteriophages are viruses that infect bacteria. They are highly specific for a bacterial species. The so-called 'lytic phages' can lyse bacteria when they infect them; these phages can be used to treat bacterial infections. Despite a century of experience with phage therapy, the evidence for

  7. Multiple roles of genome-attached bacteriophage terminal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  8. Endophytic Streptomyces spp. as Biocontrol Agents of Rice Bacterial Leaf Blight Pathogen (Xanthomonas oryzae pv. oryzae

    Directory of Open Access Journals (Sweden)

    RATIH DEWI HASTUTI

    2012-12-01

    Full Text Available Xanthomonas oryzae pv. oryzae (Xoo, a causal agent of bacterial leaf blight (BLB, is one of the most important pathogens of rice. The effectiveness of ten Streptomyces spp. isolates in suppressing Xoo disease was assessed in planta and in vitro. In planta experiments were carried out in a greenhouse and arranged in a randomized completely block design (RCBD with three replications. Twenty treatments were tested which included plants inoculated with both Streptomyces spp. and Xoo, and plants inoculated with only Streptomyces spp. Plants inoculated with Xoo and sprayed with a chemical bactericide, and plants inoculated with only Xoo served as positive controls, whereas plants not inoculated with either Streptomyces spp. or Xoo were used as negative controls. The results showed that the effect of endophytic Streptomyces spp. on BLB disease expressed as area under disease progress curve (AUDPC was not significantly different to that on control plants (P > 0.05. However, plants inoculated with endophytic Streptomyces spp. were significantly taller and produced higher tiller number than control plants (P < 0.05. Streptomyces spp. isolate AB131-1 gave the highest plant height. In vitro studies on biocontrol mechanisms of selected Streptomyces spp. isolates showed that isolate LBR02 gave the highest inhibition activity on Xoo growth, followed by AB131-1 and AB131-2. Two isolates (AB131-1 and LBR02 were able to produce chitinase, phosphatase, and siderophore which included biocontrol characteristics. Morphological and colonization studies under SEM and light microscopy confirmed that the three isolates were endophytic Streptomyces spp. from different species. These studies found that the paddy plant which was inoculated with endophytic Streptomyces spp. AB131-1 and infected by Xoo could increase the height of plant and number of tillers.

  9. Streptomyces palmae sp. nov., isolated from oil palm (Elaeis guineensis) rhizosphere soil.

    Science.gov (United States)

    Sujarit, Kanaporn; Kudo, Takuji; Ohkuma, Moriya; Pathom-Aree, Wasu; Lumyong, Saisamorn

    2016-10-01

    Actinomycete strain CMU-AB204T was isolated from oil palm rhizosphere soil collected in Chiang Mai University (Chiang Mai, Thailand). Based on morphological and chemotaxonomic characteristics, the organism was considered to belong to the genus Streptomyces. Whole cell-wall hydrolysates consisted of ll-diaminopimelic acid, glucose, ribose and galactose. The predominant menaquinones were MK-9(H4), MK-9(H6), MK-9(H2) and MK-8(H4). The fatty acid profile contained iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0 as major components. The principal phospholipids detected were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C content of strain CMU-AB204T was 70.9 mol%. Based on 16S rRNA gene sequence similarity, strain CMU-AB204T was closely related to Streptomyces orinoci JCM 4546T (98.7 %), Streptomyces lilacinus NBRC 12884T (98.5 %), Streptomyces abikoensis CGMCC 4.1662T (98.5 %), Streptomyces griseocarneus JCM 4905T (98.4 %) and Streptomyces xinghaiensis JCM 16958T (98.3 %). Phylogenetic trees revealed that the new strain had a distinct taxonomic position from closely related type strains of the genus Streptomyces. Spiny to hairy spores clearly differentiated strain CMU-AB204T from the five most closely related Streptomyces species, which produced smooth spores. On the basis of evidence from this polyphasic study, it is proposed that strain CMU-AB204T represents a novel species of the genus Streptomyces, namely Streptomyces palmae sp. nov. The type strain is CMU-AB204T (=JCM 31289T=TBRC 1999T).

  10. Streptomyces phaeopurpureus Shinobu 1957 (Approved Lists 1980) and Streptomyces griseorubiginosus (Ryabova and Preobrazhenskaya 1957) Pridham et al. 1958 (Approved Lists 1980) are heterotypic subjective synonyms.

    Science.gov (United States)

    Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P

    2017-08-01

    On the basis of whole genome comparisons of Streptomyces griseorubiginosus and Streptomyces phaeopurpureus it could by shown that these two species are subjective synonyms. The names of both species have been published in the Approved Lists of Bacterial Names and, in such a case, normally Rule 24b (1) of the Prokaryotic Code applies, which reads: 'If two names compete for priority and if both names date from 1 January 1980 on an Approved List, the priority shall be determined by the date of the original publication of the name before 1 January 1980'. Streptomyces griseorubiginosus and Streptomyces phaeopurpureus were both effectively published in 1957, and for both publications, the exact date cannot be obtained. In this case a further statement of Rule 24 applies, which reads: 'If the names or epithets are of the same date, the author who first unites the taxa has the right to choose one of them, and his choice must be followed.' Hence we propose that Streptomyces phaeopurpureus is a later heterotypic subjective synonym of Streptomyces griseorubiginosus.

  11. Penggunaan Streptomyces sp. Sebagai Biokontrol Penyakit Layu Pada Tanaman Cabai Merah (Capsicum annuum L. yang Disebabkan Oleh Fusarium oxysporum f.sp. capsici

    Directory of Open Access Journals (Sweden)

    ANINDA OKTAVIA RAHARINI

    2014-01-01

    Full Text Available A research has been conducted to find out Streptomyces bacteria at Bukit Jimbaran, to inhibitionpotency of Streptomyces sp. to pathogenic fungi Fusarium oxysporum f.sp. capsici, and to find outantifungal activity of Streptomyces filtrate to F.oxysporum f.sp. capsici in chili (Capsicum annuumL. plants. Streptomyces sp. isolation was done by platting method with selective media YMA (ISP4.Identification of Streptomyces sp. used Bergey’s book entitled Manual Determinative Bacteriology.Test inhibition against F.oxysporum f.sp. capsici and in vivo test used by dying the roots of the chili(C.annuum L. plant with F.oxysporum f.sp. capsici and after 30 seconds the roots were dying withStreptomyces sp. culture, furthermore sterile soil on polybag watered by F.oxysporum f.sp. capsicispore and Streptomyces sp. culture at the same time. The result found five isolates Streptomyces sp.with different morphological. The antagonis test showed Streptomyces sp. 4 had ability (82% againstFusarium, Streptomyces sp.1 (72%, Streptomyces sp.2 (64%, Streptomyces sp.3 (76%, andStreptomyces sp. 5 (32%. All Streptomyces suppressed the growth of Fusarium on chili plants inglass house (p<0,05. Streptomyces sp.4 suppressed Fusarium wilt disease in chili from 80% in controlto 8%.

  12. T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone.

    Science.gov (United States)

    Liana, Ayu Ekajayanthi; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2017-03-01

    This work demonstrates the use of bacteriophage conjugated magnetic particles (Fe 3 O 4 ) for the rapid capturing and isolation of Escherichia coli. The investigation of T4 bacteriophage adsorption to silane functionalised Fe 3 O 4 with amine (NH 2 ), carboxylic (COOH) and methyl (CH 3 ) surface functional groups reveals the domination of net electrostatic and hydrophobic interactions in governing bacteriophage adsorption. The bare Fe 3 O 4 and Fe 3 O 4 -NH 2 with high T4 loading captured 3-fold more E. coli (∼70% capturing efficiency) compared to the low loading T4 on Fe 3 O 4 -COOH, suggesting the significance of T4 loading in E. coli capturing efficiency. Importantly, it is further revealed that E. coli capture is highly dependent on the incubation temperature and the presence of tryptone in the media. Effective E. coli capturing only occurs at 37°C in tryptone-containing media with the absence of either conditions resulted in poor bacteria capture. The incubation temperature dictates the capturing ability of Fe 3 O 4 /T4, whereby T4 and E. coli need to establish an irreversible binding that occurred at 37°C. The presence of tryptophan-rich tryptone in the suspending media was also critical, as shown by a 3-fold increase in E. coli capture efficiency of Fe 3 O 4 /T4 in tryptone-containing media compared to that in tryptone-free media. This highlights for the first time that successful bacteria capturing requires not only an optimum tailoring of the particle's surface physicochemical properties for favourable bacteriophage loading, but also an in-depth understanding of how factors, such as temperature and solution chemistry influence the subsequent bacteriophage-bacteria interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Production of gold nanoparticles by Streptomyces djakartensis isolate B-5

    Directory of Open Access Journals (Sweden)

    Sara Biglari

    2014-09-01

    Full Text Available  Objective(s: Biosynthesis of gold nanoparticles (NGPs is environmentally safer than chemical and physical procedures. This method requires no use of toxic solvents and synthesis of dangerous products and is environmentally safe. In this study, we report the biosynthesis of NGPs using Streptomyces djakartensis isolate B-5. Materials and Methods: NGPs were biosynthesized by reducing aqueous gold chloride solution via a Streptomyces isolate without the need for any additive for protecting nanoparticles from aggregation. We characterized the responsible Streptomycete; its genome DNA was isolated, purified and 16S rRNA was amplified by PCR. The amplified isolate was sequenced; using the BLAST search tool from NCBI, the microorganism was identified to species level. Results: Treating chloroauric acid solutions with this bacterium resulted in reduction of gold ions and formation of stable NGPs. TEM and SEM electro micrographs of NGPs indicated size range from 2- 25 nm with average of 9.09 nm produced intracellular by the bacterium. SEM electro micrographs revealed morphology of spores and mycelia. The amplified PCR fragment of 16S rRNA gene was cloned and sequenced from both sides; it consisted of 741 nucleotides. According to NCBI GenBank, the bacterium had 97.1% homology with Streptomyces djakartensis strain RT-49. The GenBank accession number for partial 16S rRNA gene was recorded as JX162550. Conclusion: Optimized application of such findings may create applications of Streptomycetes for use as bio-factories in eco-friendly production of NGPs to serve in demanding industries and related biomedical areas. Research in this area should also focus on the unlocking the full mechanism of NGPs biosynthesis by Streptomycetes.

  14. Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus.

    Science.gov (United States)

    Soltani Nejad, Meysam; Khatami, Mehrdad; Shahidi Bonjar, Gholam Hosein

    2016-02-01

    Applications of nanotechnology and nano-science have ever-expanding breakthroughs in medicine, agriculture and industries in recent years; therefore, synthesis of metals nanoparticle (NP) has special significance. Synthesis of NPs by chemical methods are long, costly and hazardous for environment so biosynthesis has been developing interest for researchers. In this regard, the extracellular biosynthesis of gold nanotriangles (AuNTs) performed by use of the soil Streptomycetes. Streptomycetes isolated from rice fields of Guilan Province, Iran, showed biosynthetic activity for producing AuNTs via in vitro experiments. Among all 15 Streptomyces spp. isolates, isolate No. 5 showed high biosynthesis activity. To determine the bacterium taxonomical identity at genus level, its colonies characterised morphologically by use of scanning electron microscope. The polymerase chain reaction (PCR) molecular analysis of active isolate represented its identity partially. In this regard, 16S rRNA gene of the isolate was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using National Center for Biotechnology Information Basic Local Alignment Search Tool method. The AuNTs obtained were characterised by ultraviolet-visible spectroscopy, atomic force microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction spectroscopy analyses. The authors results indicated that Streptomyces microflavus isolate 5 bio-synthesises extracellular AuNTs in the range of 10-100 nm. Synthesised SNPs size ranged from 10 to 100 nm. In comparison with chemical methods for synthesis of metal NPs, the biosynthesis of AuNTs by Streptomyces source is a fast, simple and eco-friendly method. The isolate is a good candidate for further investigations to optimise its production efficacy for further industrial goals in

  15. Morphological differentiation of Streptomyces viridochromogenes E-219 on solid culture

    International Nuclear Information System (INIS)

    Liang Xinle; Zhu Jing; Jin Yingyan

    2012-01-01

    The Streptomyces viridochromogenes E-219 was derived from Streptomyces viridochromogenes CGMCC4.1119 treated with 60 Co γ-rays irradiation and protoplast fusion. With the help of fluorescent probes, fluorescence microscope and electron microscopy, the morphology and development of E-219 on solid surface culture were investigated in this study. The effect of agarslant culture time on the production of Avilamycin was also studied to provide theoretical basis for industrial fermentation of selecting the appropriate seed to culture on the agarslant culture medium. The results implied that the development of colonies of Streptomyces viridochromogenes accompanied the intermittent hyhae apoptosis, and the production of spores was from the active mycelium. The colonial morphology of strain E-219 was significantly different from the original strain CGMCC4h1119. There were variegated hyphae formation in the stage of spore germination and initial hyphae development (10 h) with the live and dead segments alternated in a highly regular fashion within the same hypha. After the early single colony formation, the third phase was followed by profuse growth of the live segments derived from the variegated hypha, then the second apoptosis of the mycelia (48 h) was occurred with another quick growth, and sporulation was occurred at 96 h. Strain CGMCC4.1119 had spiral sporotrichial and round conidiophores with spike, whereas strain E-219 had linear sporotrichial, smooth and dylindrical conidiophore. The results of shake flask experiments indicated that the spores of E-219 had that highest activity when cultured on agarslant culture medium and incubated for 106 h with the production of avilamycin up to 1200 mg/L. (authors)

  16. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    Science.gov (United States)

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry.

    Science.gov (United States)

    Owens, Jane; Barton, Mary D; Heuzenroeder, Michael W

    2013-02-22

    Six hundred and sixty one samples - primarily fresh chicken faeces - were processed to isolate wild type Campylobacter jejuni bacteriophages, via overlay agar methods using C. jejuni NCTC 12662. The aims of this study were to isolate and purify bacteriophages and then test for their ability to lyse field strains of C. jejuni in vitro. Of all samples processed, 130 were positive for bacteriophages. A distinct difference was observed between samples from different poultry enterprises. No bacteriophages could be isolated from indoor broilers. The majority of bacteriophages were isolated from free range poultry - both broilers and egg layers. Bacteriophages were purified and then selected for characterization based on their ability to produce clear lysis on plaque assay, as opposed to turbid plaques. Two hundred and forty one C. jejuni field isolates were tested for sensitivity to the bacteriophages. Lysis was graded subjectively and any minimal lysis was excluded. Using this system, 59.0% of the C. jejuni isolates showed significant sensitivity to at least one bacteriophage. The sensitivity to individual bacteriophages ranged from 10.0% to 32.5% of the C. jejuni isolates. Five bacteriophages were examined by electron microscopy and determined to belong to the Myoviridae family. The physical size, predicted genetic composition and genome size of the bacteriophages correlated well with other reported Campylobacter bacteriophages. The reasons for the observed difference between indoor broilers and free range poultry is unknown, but are postulated to be due to differences in the Campylobacter population in birds under different rearing conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Gamma-butyrolactone and furan signaling systems in Streptomyces.

    Science.gov (United States)

    Sidda, John D; Corre, Christophe

    2012-01-01

    Streptomyces bacteria produce different classes of diffusible signaling molecules that trigger secondary metabolite production and/or morphological development within the cell population. The biosynthesis of gamma-butyrolactones (GBLs) and 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (AHFCAs) signaling molecules is related and involves an essential AfsA-like butenolide synthase. This chapter first describes the catalytic role of AfsA-like enzyme then provides details about methods for the discovery and characterization of potentially novel signaling molecules. In section 4, one approach for establishing the biological role of these signaling molecules is presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Protoplast fusion in Streptomyces: fusions involving ultraviolet-irradiated protoplasts

    International Nuclear Information System (INIS)

    Hopwood, D.A.; Wright, H.M.

    1981-01-01

    Protoplasts of Streptomyces coelicolor showed the same ultraviolet killing kinetics as spores. Irradiated protoplasts gave rise to recombinants when they were fused with unirradiated protoplasts of a strain carrying complementary genetic markers. The decline with u.v. fluence in the capacity of irradiated protoplasts to yield recombinants inheriting individual markers was some six times less steep than the survival of unfused protoplasts; thus, for example, protoplasts reduced to only 0.01% survival still yielded 10% as many recombinants as unirradiated protoplasts. Each of six widely separated markers of the irradiated parent was inherited independently of the others, with a frequency falling exponentially with u.v. fluence. (author)

  20. Biocomputational prediction of small non-coding RNAs in Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Pánek, Josef; Bobek, Jan; Mikulík, Karel; Basler, Marek; Vohradský, Jiří

    2008-01-01

    Roč. 9, č. 217 (2008), s. 1-14 ISSN 1471-2164 R&D Projects: GA ČR GP204/07/P361; GA ČR GA203/05/0106; GA ČR GA310/07/1009 Grant - others:XE(XE) EC Integrated Project ActinoGEN, LSHM-CT-2004-005224. Institutional research plan: CEZ:AV0Z50200510 Keywords : non-coding RNA * streptomyces * biocomputational prediction Subject RIV: IN - Informatics, Computer Science Impact factor: 3.926, year: 2008

  1. Plant growth-promoting activities of Streptomyces spp. in sorghum and rice.

    Science.gov (United States)

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Sree Vidya, Meesala; Rathore, Abhishek

    2013-01-01

    Five strains of Streptomyces (CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90) were earlier reported by us as biological control agents against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri (FOC). In the present study, the Streptomyces were characterized for enzymatic activities, physiological traits and further evaluated in greenhouse and field for their plant growth promotion (PGP) of sorghum and rice. All the Streptomyces produced lipase, β-1-3-glucanase and chitinase (except CAI-121 and CAI-127), grew in NaCl concentrations of up to 6%, at pH values between 5 and 13 and temperatures between 20 and 40°C and were highly sensitive to Thiram, Benlate, Captan, Benomyl and Radonil at field application level. When the Streptomyces were evaluated in the greenhouse on sorghum all the isolates significantly enhanced all the agronomic traits over the control. In the field, on rice, the Streptomyces significantly enhanced stover yield (up to 25%; except CAI-24), grain yield (up to 10%), total dry matter (up to 18%; except CAI-24) and root length, volume and dry weight (up to 15%, 36% and 55%, respectively, except CAI-24) over the control. In the rhizosphere soil, the Streptomyces significantly enhanced microbial biomass carbon (except CAI-24), nitrogen, dehydrogenase (except CAI-24), total N, available P and organic carbon (up to 41%, 52%, 75%, 122%, 53% and 13%, respectively) over the control. This study demonstrates that the selected Streptomyces which were antagonistic to FOC also have PGP properties.

  2. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr.

    Science.gov (United States)

    Bai, Lu; Liu, Chongxi; Guo, Lifeng; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng

    2016-02-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)).

  3. Streptomyces tremellae sp. nov., isolated from a culture of the mushroom Tremella fuciformis.

    Science.gov (United States)

    Wen, Zhi-Qiang; Chen, Bingzhi; Li, Xiao; Li, Bing-Bing; Li, Cheng-Huan; Huang, Qing-Hua; Zhang, Qi-Hui; Dai, Wei-Hao; Jiang, Yu-Ji

    2016-12-01

    A novel actinomycete strain, designated Js-1T, was isolated from Tremella fuciformis collected from Gutian, Fujian Province, in southeastern China. The taxonomic status of this strain was determined by a polyphasic approach, which demonstrated that the novel strain was a member of the genus Streptomyces. The cell walls of this strain were found to contain ll-diaminopimelic acid, muramic acid and glycine. An analysis of whole-cell hydrolysates revealed that no characteristic sugar was present. The key identified menaquinones were MK-9 (H6) and MK-9 (H8), while the diagnostic polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmethylethanolamine and phosphatidylglycerol. The main cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. An analysis of an almost complete 16S rRNA gene sequence showed that the strain shared the highest levels of sequence similarity with Streptomyces sannanensisKC-7038T (97.87 %), Streptomyces hebeiensis YIM 001T (97.84 %), Streptomyces pathocidini NBRC 13812T (97.80 %), Streptomyces cocklensis BK168T (97.25 %), Streptomyces coerulescens NBRC 12758T (97.12 %), Streptomyces aurantiogriseus NBRC 12842T (97.06 %) and Streptomyces rimosussubsp. rimosus ATCC 10970T (97.04 %). The DNA G+C content of the genomic DNA of strain Js-1T was 70.1 mol%. Furthermore, DNA-DNA hybridization tests revealed that the relatedness values between strain Js-1T and the most closely related species ranged from 15.10 to 47.20 %. Based on its phenotypic and genotypic characteristics, strain Js-1T (=CCTCC M 2011365T=JCM 30846T) is considered to represent a novel species within the genus Streptomyces, which we classified as Streptomycestremellae sp. nov.

  4. Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region.

    Science.gov (United States)

    Cheng, Cong; Li, Yu-Qian; Asem, Mipeshwaree Devi; Lu, Chun-Yan; Shi, Xiao-Han; Chu, Xiao; Zhang, Wan-Qin; Di An, Deng-; Li, Wen-Jun

    2016-10-01

    A novel actinobacterial strain, designated LPA192(T), was isolated from a soil sample collected from Lop Nur, Xinjiang Uygur Autonomous Region, Northwest China. A polyphasic approach was used to investigate the taxonomic position of strain LPA192(T). The isolate showed morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Peptidoglycan was found to contain LL-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-10(H4). Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. Major cellular fatty acids consist of C16:0, anteiso-C15:0 and C18:1 ω9c. The sugar in whole-cell hydrolysates was mannose. Phylogenetic analysis indicated that strain LPA192(T) is closely related to Streptomyces tanashiensis LMG 20274(T) (99.3 %), Streptomyces gulbargensis DAS131(T) (99.3 %), Streptomyces nashvillensis NBRC 13064(T) (99.3 %), Streptomyces roseolus NBRC 12816(T) (99.2 %) and Streptomyces filamentosus NBRC 12767(T) (99.1 %) while showing below 98.5 % sequencing similarities with other validly published Streptomyces species. However, DNA-DNA relatedness values between LPA192(T) and the closely related type strains were below 40 %, which are much lower than 70 % threshold value for species delineation. The genomic DNA G + C content of strain LPA192(T) was 69.3 mol %. Based on the differences in genotypic and phenotypic characteristics from the closely related strains, strain LPA192(T) is considered to represent a novel species of the genus Streptomyces for which the name Streptomyces xinjiangensis sp. nov. is proposed. The type strain is LPA192(T) (=KCTC 39601(T) = CGMCC 4.7288(T)).

  5. Bacteriophage-based synthetic biology for the study of infectious diseases

    Science.gov (United States)

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  6. Isolating E.Coli Bacteriophage from Raw Sewage and Determining its Selectivity to the Host Cell

    Directory of Open Access Journals (Sweden)

    SM Imeni

    2016-05-01

    Full Text Available Introduction: Bacteriophages are viruses that infect and destroy prokaryote cells, specifically the bacteria. They act too selective, so as each bacteriophage affects only on specific type of bacteria. Due to their specific features, bacteriophages can be used as an appropriate substitute for antibiotics in infectious diseases treatment. Therefore, this study aimed to isolate E. coli-specific bacteriophage from raw sewage. Methods: Eight samples of raw sewage, each containing approximately 50 ml of raw sewage with 10 minute gap, were prepared from Zargandeh wastewater treatment plant, Tehran, Iran. The sewages were mixed with Brain-heart infusion medium (BHI as a liquid culture medium in order to let the microorganisms grow. Incubation, purification and determination of bacteria were followed repeatedly to isolate the bacteriophage. Then it was tested on E.coli (ATCC 25922, Enterococcus faecalis (ATCC 19433, Staphylococcus aureus (ATCC 2392, and Yersinia enterocolitica (ATCC 9610 in order to determine the bacteriophage selectivity. Results: The E.coli bacteriophages were successfully isolated from all the eight samples, that were completely able to lyse and destroy E.coli bacterial cells, though no effect was observed on other types of bacteria. Conclusion: The study findings revealed that bacteriophages act selectively. Considering the raise of antibiotic resistance in the world, bacteriophages can serve as a good substitute for antibiotics in treating infectious diseases.

  7. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    Science.gov (United States)

    Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor); Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  8. Recombinant Antibodies for the Detection of Bacteriophage MS2 and Ovalbumin

    National Research Council Canada - National Science Library

    O'Connell, Kevin

    2002-01-01

    ...) genes are expressed on the surface of bacteriophage (bacterial virus) particles. We describe here the isolation of additional recombinant antibodies that bind two simulants of biothreat agents...

  9. Discoloration of Ancient Egyptian Mural Paintings by Streptomyces Strains and Methods of Its Removal

    Directory of Open Access Journals (Sweden)

    Akmal Ali SAKR

    2012-12-01

    Full Text Available Streptomyces isolated from mural paintings at Tell Basta and Tanis tombs were identified using 16S rDNA sequencing method. These Streptomyces strains caused discoloration of mural paintings with irreversible red stains of carotenoid pigment. A mixture of n-hexan and acetone (92:8 v/v was the best solvent for extracting and purification of red pigment from biomass of Streptomyces. Dimethyl sulfoxide (DMSO and N,N-dimethylformamide (DMF were the most effective in treatment of these red stains without changing the paintings or stone surfaces.

  10. Lethal and mutagenic effects of fast neutrons of different energy on Streptomyces griseus spores

    International Nuclear Information System (INIS)

    Podgorskaya, M.E.; Tulina, G.G.; Serdechnaya, A.I.; Matselyukh, B.P.

    1986-01-01

    A study was made of lethal and mutagenic effects of fast neutrons of different energy on spores of prototrophic and auxotrophic strains of Streptomyces griseus. Relative biological effectiveness of fast neutrons is higher than that of γ-rays and depends on beam energy. Neutrons of 22-50 MeV induce Streptomyces griseus mutations more frequently (by one order of magnitude) than neutrons of 1.4-1.6 MeV do. The obtained mutants can be used in studying Streptomyces griseus genetics

  11. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols.

    Science.gov (United States)

    Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji

    2013-07-01

    To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.

  12. Streptomyces sp. Sebagai Biofungisida Patogen Fusarium oxysporum (Schlecht. f.sp. lycopersici (Sacc. Snyd. et Hans. Penyebab Penyakit Layu Pada Tanaman Tomat (Solanum lycopersicum L.

    Directory of Open Access Journals (Sweden)

    NURI MANDAN SARI

    2014-01-01

    Full Text Available A research was conducted to isolate Streptomyces sp. of soil Udayana University campus in theBukit-Jimbaran, to obtain the most effective Streptomyces sp. which is effective in inhibit the growth ofFusarium oxysporum f.sp. lycopersici, and to test response of tomato plants with Streptomyces sp.culture against Fusarium wilt desease. Implementation phases of the research consisted of isolation andidentification of Streptomyces sp, test the inhibition against F. oxysporum f.sp. lycopersici, and in vivotest used by dyeing the roots of the tomato plant (Solanum lycopersicum with Fusarium spores andafter 30 seconds the roots were dyeing Streptomyces culture. Furthermore, sterile soil in polybagwatered by Fusarium spores and Streptomyces culture at the same time. Based on morphologicalcharacteristic it found five isolates of Streptomyces sp.. The antagonist test showed Streptomyces sp.1 had ability (75% against Fusarium, Streptomyces sp 2 (68,3%, Streptomyces sp. 3 (71,6%,Streptomyces sp. 4 (63,3%, and Streptomyces sp. 5 (21,6%. All Streptomyces suppressed thegrowth of Fusarium on tomato plants in glass house (p<0,05. Streptomyces sp.3 suppressed Fusariumwilt disease in tomato from 88% in control to 20%.

  13. ISOLASI STREPTOMYCES SPP. PADA KAWASAN HUTAN PROVINSI BALI SERTA UJI DAYA HAMBATNYA TERHADAP LIMA STRAIN DIARRHEAGENIC ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    I WAYAN EKA DHARMAWAN

    2014-04-01

    Full Text Available An exploration study of natural resources soil bacteria antibiotic-producer, Streptomyces spp. was done in two steps. The first step was isolation of Streptomyces and the second involved testing their inhibition activities against five strains diarrheagenic Escherichia coli. Soil samples were collected from ten forest areas in Bali. As many as 55 isolates were collected with various macroscopic dan microscopic characters. Most isolates (eight Streptomyces isolates were collected from forest area in Penulisan, Kintamani (RTK. 20. The diversities of isolates are influenced by environment condition. All Streptomyces isolated were tested against five strains diarrheagenic Escherichia coli to check antibiotic activity for inhibit growth of E. coli. Streptomycine was used as a control. The result showed that the largest inhibition zones of Streptomyces against E. coli strains EHEC, ETEC, EIEC, EPEC and DAEC were produced by Streptomyces PK5 (48,67 ± 0,58 mm, Streptomyces GAA4 (29,00 ± 2,00 mm, Streptomyces GBK3 (42,67 ± 2,08 mm, Streptomyces SkBB5 (29,00 ± 2,65 mm and Streptomyces GM3 (33,67 ± 3,21 mm respectively.

  14. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1.

    Science.gov (United States)

    Lim, Jeong-A; Jee, Samnyu; Lee, Dong Hwan; Roh, Eunjung; Jung, Kyusuk; Oh, Changsik; Heu, Sunggi

    2013-08-01

    Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

  15. Bacteriophages encode factors required for protection in a symbiotic mutualism.

    Science.gov (United States)

    Oliver, Kerry M; Degnan, Patrick H; Hunter, Martha S; Moran, Nancy A

    2009-08-21

    Bacteriophages are known to carry key virulence factors for pathogenic bacteria, but their roles in symbiotic bacteria are less well understood. The heritable symbiont Hamiltonella defensa protects the aphid Acyrthosiphon pisum from attack by the parasitoid Aphidius ervi by killing developing wasp larvae. In a controlled genetic background, we show that a toxin-encoding bacteriophage is required to produce the protective phenotype. Phage loss occurs repeatedly in laboratory-held H. defensa-infected aphid clonal lines, resulting in increased susceptibility to parasitism in each instance. Our results show that these mobile genetic elements can endow a bacterial symbiont with benefits that extend to the animal host. Thus, phages vector ecologically important traits, such as defense against parasitoids, within and among symbiont and animal host lineages.

  16. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole

    2016-01-01

    genome structure of many bacteriophages. The method is demonstrated to outperform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source...... and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e. contigs) of phage origin in metage-nomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic...... code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder....

  17. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.

  18. Insights into bacteriophage application in controlling Vibrio species

    Directory of Open Access Journals (Sweden)

    Vengadesh Letchumanan

    2016-07-01

    Full Text Available Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.

  19. Effect of HZE particles and space hadrons on bacteriophages

    International Nuclear Information System (INIS)

    Iurov, S.S.; Akoev, I.G.; Leonteva, G.A.

    1983-01-01

    The effects of particle radiation of the type encountered in space flight on bacteriophages are investigated. Survival and mutagenesis were followed in dry film cultures or liquid suspensions of T4Br(+) bacteriophage exposed to high-energy (HZE) particles during orbital flight, to alpha particles and accelerator-generated hardrons in the laboratory, and to high-energy cosmic rays at mountain altitudes. The HZE particles and high-energy hadrons are found to have a greater relative biological efficiency than standard gamma radiation, while exhibiting a highly inhomogeneous spatial structure in the observed biological and genetic effects. In addition, the genetic lesions observed are specific to the type of radiation exposure, consisting primarily of deletions and multiple lesions of low revertability, with mode of action depending on the linear energy transfer. 18 references

  20. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Maia Merabishvili

    Full Text Available Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively, high burst size (125 and 145, respectively, stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  1. Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Latifa A. Al_husnan

    2016-12-01

    Full Text Available Five strains of Streptomyces, namely S, N, W, E and C (designations should be mentioned in detail here isolated from the rhizosphere soil cultivated with palm Alajua (date, pressed dates, AlMedina city, Saudi Arabia, were induced to produce antibiotics. Antimicrobial activities were determined on solid medium supplemented with starch. The detection was based on the formation of transparent zones around colonies. The results indicated that isolates had antibacterial activities against Staphylococcus aureus, Bacillus cereus, B. subtilis, Pseudomonas aeruginosa and also showed antifungal activity against Candida albicans and Aspergillus niger. DNA extracted from five isolates was used as template for 16s rDNA gene amplification. The expected PCR size was 1.5 kbp;1.6 kbp; 1.25 kbp; 1.25kbp and 1.0 k bp for S, N, W, E and C isolates respectively using universal 16s rDNA gene primers using direct PCR. The isolates varied morphologically on the basis of spore color, aerial and substrate mycelium formation, and production of diffusible pigment. Isolates were tested under a microscope by using slide culture technique. The results indicate that the soil of this region is source of Streptomyces having antibacterial and antifungal activity and thus better utilization of these microorganisms as biological control agents.

  2. StreptomycesInforSys: A web-enabled information repository.

    Science.gov (United States)

    Jain, Chakresh Kumar; Gupta, Vidhi; Gupta, Ashvarya; Gupta, Sanjay; Wadhwa, Gulshan; Sharma, Sanjeev Kumar; Sarethy, Indira P

    2012-01-01

    Members of Streptomyces produce 70% of natural bioactive products. There is considerable amount of information available based on polyphasic approach for classification of Streptomyces. However, this information based on phenotypic, genotypic and bioactive component production profiles is crucial for pharmacological screening programmes. This is scattered across various journals, books and other resources, many of which are not freely accessible. The designed database incorporates polyphasic typing information using combinations of search options to aid in efficient screening of new isolates. This will help in the preliminary categorization of appropriate groups. It is a free relational database compatible with existing operating systems. A cross platform technology with XAMPP Web server has been used to develop, manage, and facilitate the user query effectively with database support. Employment of PHP, a platform-independent scripting language, embedded in HTML and the database management software MySQL will facilitate dynamic information storage and retrieval. The user-friendly, open and flexible freeware (PHP, MySQL and Apache) is foreseen to reduce running and maintenance cost. www.sis.biowaves.org.

  3. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    Directory of Open Access Journals (Sweden)

    Maria eBonaldi

    2015-02-01

    Full Text Available Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic.

  4. Colonization of lettuce rhizosphere and roots by tagged Streptomyces.

    Science.gov (United States)

    Bonaldi, Maria; Chen, Xiaoyulong; Kunova, Andrea; Pizzatti, Cristina; Saracchi, Marco; Cortesi, Paolo

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots, and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic.

  5. RNA secondary structures of the bacteriophage phi6 packaging regions.

    OpenAIRE

    Pirttimaa, M J; Bamford, D H

    2000-01-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models ...

  6. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Science.gov (United States)

    Chen, Yi-Ju; Wu, David; Gelbart, William; Knobler, Charles M.; Phillips, Rob; Kegel, Willem K.

    2018-04-01

    Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an "ejection" process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  7. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    2018-05-01

    Full Text Available Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014], the tailed bacteriophages deliver their DNA into host cells via an “ejection” process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  8. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    Science.gov (United States)

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776

  9. A bacteriophage-related chimeric marine virus infecting abalone.

    Directory of Open Access Journals (Sweden)

    Jun Zhuang

    Full Text Available Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin. The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs, eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria.

  10. Genomics of Sponge-Associated Streptomyces spp. Closely Related to Streptomyces albus J1074: Insights into Marine Adaptation and Secondary Metabolite Biosynthesis Potential

    Science.gov (United States)

    Ian, Elena; Malko, Dmitry B.; Sekurova, Olga N.; Bredholt, Harald; Rückert, Christian; Borisova, Marina E.; Albersmeier, Andreas; Kalinowski, Jörn; Gelfand, Mikhail S.; Zotchev, Sergey B.

    2014-01-01

    A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts. PMID:24819608

  11. Photometric Characterization of the Reductive Amination Scope of the Imine Reductases from Streptomyces tsukubaensis and Streptomyces ipomoeae.

    Science.gov (United States)

    Matzel, Philipp; Krautschick, Lukas; Höhne, Matthias

    2017-10-18

    Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C 4 -C 8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structured morphological modeling as a framework for rational strain design of Streptomyces species

    NARCIS (Netherlands)

    Celler, K.; Picioreanu, C.; Van Loosdrecht, M.C.M.; Van Wezel, G.P.

    2012-01-01

    Successful application of a computational model for rational design of industrial Streptomyces exploitation requires a better understanding of the relationship between morphology—dictated by microbial growth, branching, fragmentation and adhesion—and product formation. Here we review the

  13. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces

    Directory of Open Access Journals (Sweden)

    Hooi-Leng Ser

    2017-11-01

    Full Text Available Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256 isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal.

  14. Biological effects of N+ ion implantation and UV radiation on streptomyces albus

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu

    2005-01-01

    The results of both 30 keV N + ion implantation and UV irradiation of Streptomyces albus showed complicate biological effects. The 'saddle shape' pattern of the dose-dependent curve formed by N + ion implantation with low energy was studied, and it proved that vacuum was not the reason, and the fact, the 'saddle shape' curve may be regarded as a HRS/IRR (hyper-radiosensitivity/increased radiaoresistance) effect caused by low dose irradiation. But Streptomyces albus UV irradiated after vacuum treatment only showed IRR effect or hormesis (survival rate >100%). The streptomycin resistance mutation of Streptomyces albus caused by low energy N + ion implantation and UV irradiation was also studied. the results showed that UV radiation is one effective means for streptomyces albus breeding. (authors)

  15. Streptocollin, a type IV lanthipeptide produced by Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Jasyk, Martin; Kulik, Andreas

    2015-01-01

    Lanthipeptides are ribosomally synthesized and posttranslationally modified microbial secondary metabolites. Here, we report the identification and isolation of streptocollin from Streptomyces collinus Tü 365, a new member of the class IV lanthipeptides. Insertion of the constitutive ermE* promoter...

  16. Reducing the variability of antibiotic production in Streptomyces by cultivation in 24-square deepwell plates

    DEFF Research Database (Denmark)

    Siebenberg, S.; Bapat, Prashant Madhusudhan; Eliasson Lantz, Anna

    2010-01-01

    Highly reproducible production values of the aminocoumarin antibiotic novobiocin were achieved by cultivation of a heterologous Streptomyces producer strain in commercially available square deepwell plates consisting of 24 wells of 3 ml culture volume each. Between parallel cultivation batches...

  17. Evaluation of the toxicity of Streptomyces aburaviensis (R9) towards various agricultural pests

    Science.gov (United States)

    The culture filtrate fraction extracted with dichloromethane from Streptomyces aburaviensis -R9 strain grown on glucose-peptone-molasses (GPM) broth was bioassayed for its effect on phytopathogenic fungi (Colletotrichum acutatum, C. fragariae, C. gloeosoprioids, Botrytis cinerea, Fusarium oxysporum,...

  18. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

    DEFF Research Database (Denmark)

    Seghezzi, Nicolas; Amar, Patrick; Købmann, Brian

    2011-01-01

    Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so...... cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different...... projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the −10 box, the −10 extended motif as well as the spacer of the strong Streptomyces promoters...

  19. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces

    Science.gov (United States)

    Ser, Hooi-Leng; Tan, Loh Teng-Hern; Law, Jodi Woan-Fei; Chan, Kok-Gan; Duangjai, Acharaporn; Saokaew, Surasak; Pusparajah, Priyia; Ab Mutalib, Nurul-Syakima; Khan, Tahir Mehmood; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256) isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal. PMID:29163380

  20. Pasteurella haemolytica bacteriophage: identification, partial characterization, and relationship of temperate bacteriophages from isolates of Pasteurella haemolytica (biotype A, serotype 1)

    International Nuclear Information System (INIS)

    Richards, A.B.; Renshaw, H.W.; Sneed, L.W.

    1985-01-01

    Pasteurella haemolytica (biotype A, serotype 1) isolates (n = 15) from the upper respiratory tract of clinically normal cattle, as well as from lung lesions from cases of fatal bovine pasteurellosis, were examined for the presence of bacteriophage after irradiation with UV light. Treatment of all P haemolytica isolates with UV irradiation resulted in lysis of bacteria due to the induction of vegetative development of bacteriophages. The extent of growth inhibition and bacterial lysis in irradiated cultures was UV dose-dependent. Bacterial cultures exposed to UV light for 20 s reached peak culture density between 60 and 70 minutes after irradiation; thereafter, culture density declined rapidly, so that by 120 minutes, it was approximately 60% of the original value. When examined ultrastructurally, lytic cultures from each isolate revealed bacteriophages with an overall length of approximately 200 nm and that appeared to have a head with icosahedral symmetry and a contractile tail. Cell-free filtrate from each noninduced bacterial isolate was inoculated onto the other bacterial isolates in a cross-culture sensitivity assay for the presence of phages lytic for the host bacterial isolates. Zones of lysis (plaques) did not develop when bacterial lawns grown from the different isolates were inoculated with filtrates from the heterologous isolates

  1. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage.

    Directory of Open Access Journals (Sweden)

    Nicolas Grandchamp

    Full Text Available Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.

  2. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    OpenAIRE

    Houssam M. Atta

    2015-01-01

    Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9...

  3. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil.

    Science.gov (United States)

    Cordovez, Viviane; Carrion, Victor J; Etalo, Desalegn W; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P; Raaijmakers, Jos M

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  4. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    Directory of Open Access Journals (Sweden)

    Viviane eCordovez

    2015-10-01

    Full Text Available In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs. VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogues of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  5. Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Atasayar, Ewelina; Meier-Kolthoff, Jan Philipp; Spröer, Cathrin; Schumann, Peter; Schauer, Jennifer; Steinbüchel, Alexander

    2017-06-01

    A novel strain, G25T, was isolated from desert soil collected near Jeddah in Saudi Arabia. The strain could accumulate nearly 65 % of its cell dry weight as fatty acids, grow on a broad range of carbon sources and tolerate temperatures of up to 50 °C. With respect to to its 16S rRNA gene sequence, G25T is most closely related to Streptomyces massasporeus DSM 40035T, Streptomyces hawaiiensis DSM 40042T, Streptomyces indiaensis DSM 43803T, Streptomyces luteogriseus DSM 40483T and Streptomyces purpurascens DSM 40310T. Conventional DNA-DNA hybridization (DDH) values ranged from 18.7 to 46.9 % when G25T was compared with these reference strains. Furthermore, digital DDH values between the draft genome sequence of G25T and the genome sequences of other species of the genus Streptomyces were also significantly below the threshold of 70 %. The DNA G+C content of the draft genome sequence, consisting of 8.46 Mbp, was 70.3 %. The prevalent cellular fatty acids of G25T comprised anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The polar lipids profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannosides as well as unidentified phospholipids and phosphoaminolipids. The cell wall contained ll-diaminopimelic acid. Whole-cell sugars were predominantly glucose with small traces of ribose and mannose. The results of the polyphasic approach confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces jeddahensis sp. nov. is proposed. The type strain of this species is G25T (=DSM 101878T =LMG 29545T =NCCB 100603T).

  6. Streptomyces lacrimifluminis sp. nov., a novel actinobacterium that produces antibacterial compounds, isolated from soil.

    Science.gov (United States)

    Zhang, Binglin; Tang, Shukun; Chen, Ximing; Zhang, Ling; Zhang, Gaoseng; Zhang, Wei; Liu, Guangxiu; Chen, Tuo; Li, Shiweng; Dyson, Paul

    2016-12-01

    A novel actinobacterial strain, designated Z1027T, was isolated from a soil sample collected near the Tuotuo River, Qinghai-Tibet Plateau (China). The strain exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. The taxonomic position of strain Z1027T was determined using a polyphasic approach. The organism had chemotaxonomic and morphological properties consistent with its classification in the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree, together with Streptomyces turgidiscabies ATCC 700248T (99.19 % similarity), Streptomyces graminilatus JL-6T (98.84 %) and Streptomyces reticuliscabiei CFBP 4531T (98.36 %). The genomic DNA G+C content of strain Z1027T was 74±1 mol%. The DNA-DNA relatedness values between strain Z1027T and Streptomyces turgidiscabies ATCC 700248T and Streptomyces reticuliscabiei CFBP 4531T were 38.5±0.4 and 26.2±1.2 %, respectively, both of them significantly lower than 70 %. Chemotaxonomic data revealed that strain Z1027T possessed MK-9(H6) and MK-9(H8) as the major menaquinones, ll-diaminopimelic acid as the diagnostic diamino acid and galactose as a whole-cell sugar. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatydilinositol and seven other unknown polar lipids were detected; iso-C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0 were the major fatty acids. On the basis of these genotypic and phenotypic data, it is proposed that isolate Z1027T (=CGMCC 4.7272T=JCM 31054T) should be classified as the type strain of a novel species of the genus Streptomyces,Streptomyces lacrimifluminis sp. nov.

  7. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Kim, Ki Hyun; Ramadhar, Timothy R.; Beemelmanns, Christine

    2014-01-01

    We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based on antifun......We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based...

  8. Streptomyces bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).

    Science.gov (United States)

    Li, Chuang; Jin, Pinjiao; Liu, Chongxi; Ma, Zhaoxu; Zhao, Junwei; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng

    2016-09-01

    A novel endophytic actinomycete, designated strain NEAU-HZ10(T) was isolated from moss and characterised using a polyphasic approach. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. Strain NEAU-HZ10(T) formed grayish aerial mycelia, which differentiated into straight to flexuous chains of cylindrical spores. The cell wall peptidoglycan was found to contain LL-diaminopimelic acid. Predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The polar lipid profile was found to consist of phosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-HZ10(T) belongs to the genus Streptomyces and exhibits high sequence similarity to Streptomyces cocklensis DSM 42063(T) (98.9 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-HZ10(T) clustered with S. cocklensis DSM 42063(T), Streptomyces yeochonensis CGMCC 4.1882(T) (98.7 %), Streptomyces paucisporeus CGMCC 4.2025(T) (98.4 %) and Streptomyces yanglinensis CGMCC 4.2023(T) (98.1 %). However, a combination of DNA-DNA hybridisation results and some phenotypic characteristics indicated that strain NEAU-HZ10(T) can be distinguished from its phylogenetically closely related strains. Therefore, it is proposed that strain NEAU-HZ10(T) represents a novel species of the genus Streptomyces for which the name Streptomyces bryophytorum sp. nov. is proposed. The type strain is NEAU-HZ10(T) (= CGMCC 4.7151(T) = DSM 42138(T)).

  9. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites

    DEFF Research Database (Denmark)

    Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep

    2014-01-01

    Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters...... collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species....

  10. Polymer-based delivery systems for support and delivery of bacteriophages

    Science.gov (United States)

    Brown, Alyssa Marie

    One of the most urgent problems in the fields of medicine and agriculture is the decreasing effectiveness of antibiotics. Once a miracle drug, antibiotics have recently become associated with the creation of antibiotic-resistant bacteria. The main limitations of these treatments include lack of both adaptability and specificity. To overcome these shortcomings of current antibiotic treatments, there has been a renewed interest in bacteriophage research. Bacteriophages are naturally-occurring viruses that lyse bacteria. They are highly specific, with each bacteriophage type lysing a narrow range of bacteria strains. Bacteriophages are also ubiquitous biological entities, populating environments where bacterial growth is supported. Just as humans are exposed to bacteria in their daily lives, we are exposed to bacteriophages as well. To use bacteriophages in practical applications, they must be delivered to the site of an infection in a controlled-release system. Two systems were studied to observe their support of bacteriophage lytic activity, as well as investigate the possibility of controlling bacteriophage release rates. First, hydrogels were studied, using crosslinking and blending techniques to achieve a range of release profiles. Second, polyanhydride microparticles were studied, evaluating release rates as a function of monomer chemistries.

  11. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    Directory of Open Access Journals (Sweden)

    Cheryl P. Andam

    2016-04-01

    Full Text Available We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.

  12. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766).

    Science.gov (United States)

    Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Zucchi, Tiago Domingues; Pansa, Camila Cristiane; de Figueiredo Vasconcellos, Rafael Leandro; Crevelin, Eduardo José; de Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares

    2016-11-01

    The taxonomic position of a novel marine actinomycete isolated from a marine sponge, Aplysina fulva, which had been collected in the Archipelago of Saint Peter and Saint Paul (Equatorial Atlantic Ocean), was determined by using a polyphasic approach. The organism showed a combination of morphological and chemotaxonomic characteristics consistent with its classification in the genus Streptomyces and forms a distinct branch within the Streptomyces somaliensis 16S rRNA gene tree subclade. It is closely related to Streptomyces violascens ISP 5183 T (97.27 % 16S rRNA gene sequence similarity) and Streptomyces hydrogenans NBRC 13475 T (97.15 % 16S rRNA gene sequence similarity). The 16S rRNA gene similarities between the isolate and the remaining members of the subclade are lower than 96.77 %. The organism can be distinguished readily from other members of the S. violacens subclade using a combination of phenotypic properties. On the basis of these results, it is proposed that isolate 103 T (=NRRL B-65309 T  = CMAA 1378 T ) merits recognition as the type strain of a new Streptomyces species, namely Streptomyces atlanticus sp. nov.

  13. Streptomyces gamaensis sp. nov., a novel actinomycete with antifungal activity isolated from soil in Gama, Chad.

    Science.gov (United States)

    Zhao, Shanshan; Ye, Lan; Liu, Chongxi; Abagana, Adam Yacoub; Zheng, Weiwei; Sun, Pengyu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2017-04-01

    During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11 T , was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11 T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098 T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA-DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098 T . Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11 T (=CGMCC 4.7304 T =DSM 101531 T ).

  14. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    Science.gov (United States)

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.

    2016-01-01

    ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097

  15. Streptomyces castaneus sp. nov., a novel actinomycete isolated from the rhizosphere of Peucedanum praeruptorum Dunn.

    Science.gov (United States)

    Zhou, Shuyu; Li, Zhilei; Bai, Lu; Yan, Kai; Zhao, Junwei; Lu, Chang; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng

    2017-01-01

    During an investigation of microbial diversity in medicinal herbs, a novel actinomycete, strain NEAU-QHHV11 T was isolated from the rhizosphere of Peucedanum praeruptorum Dunn collected from Xianglu Mountain in Heilongjiang Province, northeast China and characterized using a polyphasic approach. The organism was found to have typical characteristics of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequence also indicated that strain NEAU-QHHV11 T belongs to the genus Streptomyces and was most closely related to Streptomyces graminilatus NBRC 108882 T (98.7 % sequence similarity) and Streptomyces turgidiscabies NBRC 16080 T (98.7 % sequence similarity). The results of DNA-DNA hybridization and some phenotypic characteristics indicated that strain NEAU-QHHV11 T could be distinguished from its close phylogenetic relatives. Thus, strain NEAU-QHHV11 T represents a novel species of the genus Streptomyces, for which the name Streptomyces castaneus sp. nov. is proposed. The type strain is NEAU-QHHV11 T (=CGMCC 4.7235 T  = DSM 100520 T ).

  16. Karakterisasi Parsial Streptomyces spp., Agens Pengendali Hayati Peyakit Lincat Tembakau

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2007-12-01

    Full Text Available Local isolates of Streptomyces spp. were proven could suppress "lincat disease" of tobacco in the field. Six isolates were chosen for partial characterization of their bacteriological properties as based for the next experiments purposes. The results indicated that the isolates produce miselium with spore chains, gram positive, aerob, catalase and oxidase positive. The isolates also hydrolize starch, gelatine and esculine; produce lecithinase enzyme, reduce nitrate to nitrite, do not produce melanine pigment, did not produce hydrogen sulfide. The isolates were sensitive against streptomycine and rifampicin; able to use several carbon and nitrogen sources tested. Capable to grow on several medium pH, from 4,3 to 8,0. The isolates were able to grow from 5° C to 45° C; able to grow on medium containing 4% to 7% NaCl and ion the medium containing 0,1% of phenol. Plant pathogenicity test result showed negative responses which indicated that the used isolates were non plant pathogenic. The ability in suppressing lincat pathogen (Ralstonia solanacearum and Meloidogyne incognita in vitro was vary between isolates.   Streptomyces spp, isolat lokal terbukti dapat menekan penyakit lunvat tembakau di lapangan. Sebanyak enam isolat dipilih untuk dicirikan sebagai sifat-sifat bakteriologinya sehingga dapat digunakan sebagai dasar dalam penelitian berikutnya. Penelitian dilakukan terhadap sifat morfologi, fisiologi dan sifat biokimia. Hasil penelitian menunjukkan bahwa isolat yang diteliti menghasilkan miselium yang memproduksi rangkaian spora, Gram positif, aerob, katalase dan oksidase positif. Isolat-isolat tersebut menghidrolisis pati, gelatin, eskulin; membentuk ensim lechitinase, mereduksi nitrat menjadi nitrit, tidak menghasilkan pigmen melanin, tidak membentuk hidrogen sulfida. Isolat yang diteliti peka terhadap antibiotik streptomisin dan nifampisin; mampu menggunakan beberapa sumber karbon dan sumber nitrogen yang diujikan, Kisaran pH untuk

  17. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species.

    Science.gov (United States)

    Lee, B; Pometto, A L; Fratzke, A; Bailey, T B

    1991-03-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70 degrees C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37 degrees C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30 degrees C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70 degrees C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in

  18. A whole genome analysis reveals the presence of a plant PR1 sequence in the potato pathogen Streptomyces scabies and other Streptomyces species.

    Science.gov (United States)

    Armijos-Jaramillo, Vinicio; Santander-Gordón, Daniela; Soria, Rosa; Pazmiño-Betancourth, Mauro; Echeverría, María Cristina

    2017-09-01

    Streptomyces scabies is a common soil bacterium that causes scab symptoms in potatoes. Strong evidence indicates horizontal gene transfer (HGT) among bacteria has influenced the evolution of this plant pathogen and other Streptomyces spp. To extend the study of the HGT to the Streptomyces genus, we explored the effects of the inter-domain HGT in the S. scabies genome. We employed a semi-automatic pipeline based on BLASTp searches and phylogenetic reconstruction. The data show low impact of inter-domain HGT in the S. scabies genome; however, we found a putative plant pathogenesis related 1 (PR1) sequence in the genome of S. scabies and other species of the genus. It is possible that this gene could be used by S. scabies to out-compete other soil organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro.

    Science.gov (United States)

    Liu, Yannan; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Wang, Yong; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Li, Puyuan; Tong, Yigang; Bai, Changqing

    2016-10-01

    The ability of Acinetobacter baumannii to form biofilms and develop antibiotic resistance makes it difficult to control infections caused by this bacterium. In this study, we explored the potential of a lytic bacteriophage to disrupt A. baumannii biofilms. The potential of the lytic bacteriophage to disrupt A. baumannii biofilms was assessed by performing electron microscopy, live/dead bacterial staining, crystal violet staining and by determining adenosine triphosphate release. The bacteriophage inhibited the formation of and disrupted preformed A. baumannii biofilms. Results of disinfection assay showed that the lytic bacteriophage lysed A. baumannii cells suspended in blood or grown on metal surfaces. These results suggest the potential of the lytic bacteriophage to disrupt A. baumannii biofilms.

  20. HybProbes-based real-time PCR assay for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei, the potato common scab pathogens.

    Science.gov (United States)

    Xu, R; Falardeau, J; Avis, T J; Tambong, J T

    2016-02-01

    The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.

  1. Crystallization and diffraction analysis of thioredoxin reductase from Streptomyces coelicolor

    International Nuclear Information System (INIS)

    Koháryová, Michaela; Brynda, Jiří; Řezáčová, Pavlína; Kollárová, Marta

    2011-01-01

    Thioredoxin reductase from S. coelicolor was crystallized and diffraction data were collected to 2.4 Å resolution. Thioredoxin reductases are homodimeric flavoenzymes that catalyze the transfer of electrons from NADPH to oxidized thioredoxin substrate. Bacterial thioredoxin reductases represent a promising target for the development of new antibiotics. Recombinant thioredoxin reductase TrxB from Streptomyces coelicolor was crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from cryocooled crystals to 2.4 Å resolution using a synchrotron-radiation source. The crystals belonged to the primitive monoclinic space group P2 1 , with unit-cell parameters a = 82.9, b = 60.6, c = 135.4 Å, α = γ = 90.0, β = 96.5°

  2. TOF-SIMS investigation of Streptomyces coelicolor, a mycelial bacterium

    International Nuclear Information System (INIS)

    Vaidyanathan, Seetharaman; Fletcher, John S.; Lockyer, Nicholas P.; Vickerman, John C.

    2008-01-01

    Streptomyces coelicolor is a mycelial microorganism that produces several secondary metabolites, including antibiotics. The physiology of the organism has largely been investigated in liquid cultures due to ease of monitoring different physiological parameters and more homogeneous culture conditions. However, solid cultures reflect the natural physiology of the microorganism better, given that in its natural state it grows in the soil. Imaging mass spectrometry with TOF-SIMS and C 60 + primary ion beams offers a potential route to studying chemical changes at the molecular level, both intracellular and extracellular that can help in understanding the natural physiology of the microorganism. Here, we report the application of the technique for studying the lateral distribution of the chemical species detected in a population, grown in both liquid and solid cultures. The capability of the technique for studying biological systems with minimal system intervention is demonstrated.

  3. Purification and characterization of an intracellular peroxidase from Streptomyces cyaneus.

    OpenAIRE

    Mliki, A; Zimmermann, W

    1992-01-01

    An intracellular peroxidase (EC 1.11.1.7) from Streptomyces cyaneus was purified to homogeneity. The enzyme had a molecular weight of 185,000 and was composed of two subunits of equal size. It had an isoelectric point of 6.1. The enzyme had a peroxidase activity toward o-dianisidine with a Km of 17.8 microM and a pH optimum of 5.0. It also showed catalase activity with a Km of 2.07 mM H2O2 and a pH optimum of 8.0. The purified enzyme did not catalyze C alpha-C beta bond cleavage of 1,3-dihydr...

  4. TOF-SIMS investigation of Streptomyces coelicolor, a mycelial bacterium

    Science.gov (United States)

    Vaidyanathan, Seetharaman; Fletcher, John S.; Lockyer, Nicholas P.; Vickerman, John C.

    2008-12-01

    Streptomyces coelicolor is a mycelial microorganism that produces several secondary metabolites, including antibiotics. The physiology of the organism has largely been investigated in liquid cultures due to ease of monitoring different physiological parameters and more homogeneous culture conditions. However, solid cultures reflect the natural physiology of the microorganism better, given that in its natural state it grows in the soil. Imaging mass spectrometry with TOF-SIMS and C 60+ primary ion beams offers a potential route to studying chemical changes at the molecular level, both intracellular and extracellular that can help in understanding the natural physiology of the microorganism. Here, we report the application of the technique for studying the lateral distribution of the chemical species detected in a population, grown in both liquid and solid cultures. The capability of the technique for studying biological systems with minimal system intervention is demonstrated.

  5. Three new amides from streptomyces sp. H7372

    Energy Technology Data Exchange (ETDEWEB)

    Cheenpracha, Sarot; Borris, Robert P.; Tran, Tammy T.; Chang, Leng Chee, E-mail: lengchee@hawaii.ed [University of Hawaii Hilo, HI (United States). College of Pharmacy. Dept. of Pharmaceutical Sciences; Jee, Jap Meng; Seow, Heng Fong; Cheah, Hwen-Yee [Universiti Putra Malaysia, Selangor (Malaysia). Faculty of Medicine and Health Sciences. Department of Pathology. bImmunology Unit; Hoc, Coy Choke [University Malaysia Sabah (Malaysia). School of Science and Technology. Biotechnology Program

    2011-07-01

    Three new amides, methyl phenatate A (1), actiphenamide (2) and actiphenol 1-beta-D-glucopyranoside (3), along with thirteen known compounds, were isolated from the organic extract of a fermentation culture of Streptomyces sp. H7372. The structures were elucidated by spectroscopic methods including 1D- and 2D-NMR techniques, and MS analyses. Cycloheximide (6) and cyclo({Delta}Ala-L-Val) (8) gave a clear zone of inhibition of Ras-Raf-1 interaction in the yeast two hybrid assay which showed high potency with 10 and 25 mm clear ZOIs on SD His{sup -} and inactive on SD His{sup +} at 2.5 mug per disk, respectively. (author)

  6. Characterization of Xylanase Streptomyces spp. SKK1-8

    Directory of Open Access Journals (Sweden)

    ANJA MERYANDINI

    2006-12-01

    Full Text Available Streptomyces spp. SKK1-8 producing xylanase was isolated from soil sample from Sukabumi West Java. The xylanase have an optimum condition at pH 6 and 50 °C. Addition of 5 mM Cu2+ decreased the xylanase activity up to about 77%, whereas not by other cations. The xylanase was stable at 3 °C for 48 hours, and the enzyme half lifetime was 1 hour 45 minute at 50 °C. This xylanase showed the highest activity on oatspelt xylan, and their molecular masses were estimated approximately 16.80, 15.21, and 13.86 kDa. HPLC analysis showed that xylosa and arabinosa were the main hydrolytic product of birchwood xylan.

  7. α-Glucosidase inhibitors and phytotoxins from Streptomyces xanthophaeus.

    Science.gov (United States)

    Wei, Jing; Zhang, Xiu-Yun; Deng, Shan; Cao, Lin; Xue, Quan-Hong; Gao, Jin-Ming

    2017-09-01

    Twenty-four metabolites 1-24 were isolated from the fermentation broth of Streptomyces xanthophaeus. Their structures were elucidated on the basis of spectroscopic analysis and by comparison of their NMR data with literature data reported. Daidzein (1), genistein (2) and gliricidin (3) inhibited α-glucosidase in vitro with IC 50 values of 174.2, 36.1 and 47.4 μM, respectively, more potent than the positive control, acarbose. Docking study revealed that the amino acid residue Thr 215 is the essential binding site for active ligands 2. In addition, the phytotoxic effects of all compounds were assayed on radish seedlings, five of which, 3, 8, 13, 15 and 18, inhibited the growth of radish (Raphanus sativus) seedlings with inhibitory rates of >60% at a concentration of 100 ppm, which was comparable or superior to the positive control glyphosate. This is the first report of the phytotoxicity of the compounds.

  8. Bioactive metabolite production by Streptomyces albolongus in favourable environment

    Directory of Open Access Journals (Sweden)

    Myn Uddin

    2013-06-01

    Full Text Available Objectives: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic.This attempt was taken to find out a novel antimicrobial metabolite.Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimicrobialmetabolite production. Primary screening was done by selective media and antibiotic assay was done by agarcup plate method. Fermented product was recovered by separating funnel using suitable solvent.Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day ofincubation. The medium consisting of corn steep liquor (0.2%, glucose (1.0%, NaCl (0.5%, K2HPO4 (0.1% was screenedout as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source amongfour sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respectively.The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wideand shows activity against Shigella dysenteriae (AE14612, Shigella sonnei (CRL, ICDDR, B, Salmonella typhi (AE14296,Vibrio cholerae (AE14748, Pseudomonas aeruginosa (CRL, ICDDR, B, Bacillus cereus (BTCC19, Staphylococcus aureus(ATCC6538, Bacillus subtilis (BTTC17 and Bacillus megaterium (BTTC18.Conclusions: The findings of antibacterial activity of S. albolongus against several species of human pathogens includingboth Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimicrobialsubstance to control human diseases. J Microbiol Infect Dis 2013; 3(2: 75-82Key words: Streptomyces albolongus, antimicrobial metabolite, optimum production, antimicrobial spectrum

  9. Optimization of medium for antimycotic production by Streptomyces spp.

    Directory of Open Access Journals (Sweden)

    Bajić Bojana Ž.

    2013-01-01

    Full Text Available Numerous species of the genus Streptomyces, on the appropriate cultivation medium in the process of submerged biosynthesis, as a product of the secondary metabolism, and under aerobic conditions synthesize pharmacologically active compounds. The aim of presented study was optimization of different nitrogen sources in the cultivation medium for the production of antimycotics using a strain of Streptomyces spp. isolated from the environment. Experiments were carried out in accordance with Box-Behnken design with three factors at three levels (peptone: 3.0 g/l, 7.0 g/l and 11.0 g/l; yeast extract: 1.0 g/l, 3.0 g/l and 5.0 g/l; soybean meal: 5.0 g/l, 15.0 g/l and 25.0 g/l and three repetitions in the central point. Cultivation mediums were analyzed for determination of residual sugar, residual nitrogen, pellet diameter and RNA. Also, antimycotic activity of the obtained culti­vation mediums was determined using diffusion disc method on the Aspergillus spp. as the test microorganism. For the optimization of selected parameters, a Response Surface Methodology was used and the obtained data were analyzed using the software package DESIGN EXPERT 8.1. Achieved model with a coefficient of determination (R of 0.952 predicted that the maximum inhibition zone diameter (24.0 mm against microorganism Aspergillus spp. and the minimum amount of residual sugar (0.551528 g/l under applied experimental conditions was produced when the contents of varied nitrogen sources were: peptone 11.0 g/l, yeast extract 4.32 g/l and soybean meal 25.00 g/l.

  10. UV ability to destroy poliovirus end FRNA specific bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Joret, J.C.; Lesavre, J.; Perrot, J.Y.

    1996-01-01

    In France, the use of ultraviolet radiation to disinfect secondary effluents is only in its initial stage. The aim of this study was to examine the ability of UV to destroy Poliovirus Type 1 and FRNA specific bacteriophages (laboratory MS2 phages and indigenous phages). Concentrated viral solutions were mixed with secondary effluents artificially enriched with suspended solids and then irradiated at various UV dose in a collimated beam. Bacteriological analysis of Escherichia coli and enterococci were performed at the same time. UV were very efficient to kill Poliovirus : Inactivation of 3 and 5 log units were observed respectively at UV doses of 20 and 40 mW/cm{sup 2}. The Poliovirus disinfection rate was almost the same than Escherichia coli. Enterococci were more resistant than E. coli. Inactivation of MS2 bacteriophages was significantly correlated to UV dose following the relationship MS2 Inactivation = 0.047{sup *} Dose + 0,396. At UV dose of 20 mWs/cm{sup 2}, MS2 phages were 2.3 times more resistant to UV than Poliovirus, i.e. they need UV dose 2,3 times greater to be disinfected at the same level. A review of the literature has also shown that viruses more resistant to UV treatment have never been reported. All this would tend to confirm the interest of this group of virus as indicators of the disinfection efficiency of UV, which could indicate, on site, the inactivation of pathogenic viruses. Inactivation rates obtained for FRNA phages proved the good virucidal activity of UV. The inactivation of indigenous FRNA bacteriophages was not correlated with E. coli inactivation. On the other hand, it was correlated with enterococci inactivation. (Author). 23 refs., 7 figs., 4 tabs.

  11. Cholera dynamics with Bacteriophage infection: A mathematical study

    International Nuclear Information System (INIS)

    Misra, A.K.; Gupta, Alok; Venturino, Ezio

    2016-01-01

    Highlights: • A mathematical model for the biological control of cholera has been proposed. • The feasibility and stability of all the equilibria have been investigated. • The ODE model is found to exhibit Hopf-bifurcation. • Conditions of global asymptotic stability have been obtained. • The impact of important parameters on cholera spread has been shown. - Abstract: Mathematical modeling of waterborne diseases, such as cholera, including a biological control using Bacteriophage viruses in the aquatic reservoirs is of great relevance in epidemiology. In this paper, our aim is twofold: at first, to understand the cholera dynamics in the region around a water body; secondly, to understand how the spread of Bacteriophage infection in the cholera bacterium V. cholerae controls the disease in the human population. For this purpose, we modify the model proposed by Codeço, for the spread of cholera infection in human population and the one proposed by Beretta and Kuang, for the spread of Bacteriophage infection in the bacteria population [1, 2]. We first discuss the feasibility and local asymptotic stability of all the possible equilibria of the proposed model. Further, in the numerical investigation, we have found that the parameter ϕ, called the phage adsorption rate, plays an important role. There is a critical value, ϕ c , at which the model possess Hopf-bifurcation. For lower values than ϕ c , the equilibrium E * is unstable and periodic solutions are observed, while above ϕ c , the equilibrium E * is locally asymptotically stable, and further shown to be also globally asymptotically stable. We investigate the effect of the various parameters on the dynamics of the infected humans by means of numerical simulations.

  12. Bacteriophages : an underestimated role in human and animal health ?

    Directory of Open Access Journals (Sweden)

    Marianne eDe Paepe

    2014-03-01

    Full Text Available Metagenomic approaches applied to viruses have highlighted their prevalence in almost all microbial ecosystems investigated. In all ecosystems, notably those associated with humans or animals, the viral fraction is dominated by bacteriophages. Whether they contribute to dysbiosis, i.e. the departure from microbiota composition in symbiosis at equilibrium and entry into a state favoring human or animal disease is unknown at present. This review summarizes what has been learnt on phages associated with human and animal microbiota, and focuses on examples illustrating the several ways by which phages may contribute to a shift to pathogenesis, either by modifying population equilibrium, by horizontal transfer, or by modulating immunity.

  13. Mechanisms for the initiation of bacteriophage T7 DNA replication

    International Nuclear Information System (INIS)

    Fuller, C.W.; Beauchamp, B.B.; Engler, M.J.; Lechner, R.L.; Matson, S.W.; Tabor, S.; White, J.H.; Richardson, C.C.

    1983-01-01

    Genetic analysis of bacteriophage T7 has shown that the products of phage genes 1, 2, 3, 4, 5, and 6 are required for phage DNA synthesis in vivo. T7 RNA polymerase is the translation product of gene 1. This RNA polymerase is required for transcription of most of the phage genome, including genes 2 through 6. T7 RNA polymerase promoters consist of a highly conserved 23-bp DNA sequence. There are 17 such promoters in the T7 DNA molecule, all of which direct transcription from the same strand of the DNA. 70 references, 11 figures

  14. A quorum-sensing-induced bacteriophage defense mechanism

    DEFF Research Database (Denmark)

    Høyland-Kroghsbo, Nina Molin; Mærkedahl, Rasmus Baadsgaard; Svenningsen, Sine

    2013-01-01

    of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of ¿ phage infection through a different receptor. IMPORTANCE To enable the successful manipulation of bacterial populations, a comprehensive...... sensing plays an important role in determining the susceptibility of E. coli to infection by bacteriophages ¿ and ¿. On the basis of our findings in the classical Escherichia coli-¿ model system, we suggest that quorum sensing may serve as a general strategy to protect bacteria specifically under...

  15. Bacteriophages use hypermodified nucleosides to evade host's defence systems

    DEFF Research Database (Denmark)

    Kot, Witold; Olsen, Nikoline S.; Carstens, Alexander Byth

    developed several strategies to evade these defence mechanisms. Ultimately, this led to the oldest and still running arms race - microorganisms vs. their molecular parasites. We here describe a remarkable new strategy used by the recently isolated Escherichia coli phage CAjan belonging to...... to investigate this mechanism in detail we have used several methods including direct plaque sequencing, restriction endonuclease analysis and CRISPR-Cas genome editing. Through generation of specific mutants, we were able to introduce a restriction sensitive phenotype in the CAjan bacteriophage providing new...

  16. Re-initiation repair in bacteriophage T4

    International Nuclear Information System (INIS)

    Cupido, M.

    1981-01-01

    Irradiation of bacteriophage T4 with ultraviolet light induces the formation of pyrimidine dimers in its DNA. These dimers hamper replication of DNA and, to a lesser extent, transcription of DNA after its infection of bacteria. A number of pathways enable phage T4 to multiply dimer-containing DNA. One of these pathways has been named replication repair and is described in this thesis. The properties of two phage strains, unable to perform replication repair, have been studied to obtain a picture of the repair process. The mutations in these strains that affect replication repair have been located on the genomic map of T4. (Auth.)

  17. Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins.

    Science.gov (United States)

    Zhang, Bo; Yang, Dong; Yan, Yijun; Pan, Guohui; Xiang, Wensheng; Shen, Ben

    2016-03-01

    The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators.

  18. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F.; Reyes, Fernando; García, Luis A.; Blanco, Gloria

    2018-01-01

    A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to

  19. Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest.

    Science.gov (United States)

    Biswas, Kaushik; Choudhury, Jayanta D; Mahansaria, Riddhi; Saha, Malay; Mukherjee, Joydeep

    2017-06-01

    A Gram-positive, aerobic, non-motile actinomycete (strain MS 3/20 T ) was isolated from the sediment of the Sundarbans mangrove forest in India. On International Streptomyces Project (ISP) medium 2, the isolate produced yellowish brown to red aerial hyphae that carried spiny-surfaced spores in a retinaculum-apertum arrangement. Whole-cell hydrolysate of the strain contained LL-diaminopimelic acid and galactose. Predominant menaquinones were MK-9(H 8 ) and MK-9(H 6 ). Diagnostic polar lipids were glycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unidentified phospholipid and unidentified amino lipid. The major fatty acids were anteiso-C 15:0 (17.53%), iso-C 16:0 (23.89%) and anteiso-C 17:0 (10.29%). The strain showed 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces variabilis NBRC 12825 T , Streptomyces erythrogriseus LMG 19406 T , Streptomyces griseoincarnatus LMG 19316 T and Streptomyces labedae NBRC 15864 T . However, strain MS 3/20 T could be distinguished from these and seven other closely related species based on low levels of DNA-DNA relatedness (27.2-53.8%), supported by the unique banding pattern obtained from random amplified polymorphic DNA-PCR amplification and the distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain MS 3/20 T in comparison with its phylogenetic relatives. Disparate morphological, physiological and chemotaxonomic features, principally growth in NaCl, further corroborated the distinction of strain MS 3/20 T from other phylogenetic relatives. Strain MS 3/20 T is therefore suggested to be a novel species of the genus Streptomyces, for which the name Streptomyces euryhalinus sp. nov. is proposed. The type strain is MS 3/20 T (=CICC 11032 T =DSM 103378 T ).

  20. Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria.

    Science.gov (United States)

    Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario

    2016-10-01

    Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.

  1. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention.

    Directory of Open Access Journals (Sweden)

    Eric Morello

    Full Text Available Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy--the use of specific viruses that infect bacteria--is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were isolated from environmental samples and characterized. Bacteria and bacteriophages were applied intranasally to the immunocompetent mice. Survival was monitored and bronchoalveolar fluids were analysed. Quantification of bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as histology and immunohistochemistry analyses were performed. A curative treatment (one single dose administrated 2 h after the onset of the infection allowed over 95% survival. A four-day preventive treatment (one single dose resulted in a 100% survival. All of the parameters measured correlated with the efficacy of both curative and preventive bacteriophage treatments. We also showed that in vitro optimization of a bacteriophage towards a clinical strain improved both its efficacy on in vivo treatments and its host range on a panel of 20 P. aeruginosa cystic fibrosis strains. This work provides an incentive to develop clinical studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung infections.

  2. Systematics of Plant-Pathogenic and Related Streptomyces Species Based on Phylogenetic Analyses of Multiple Gene Loci

    Science.gov (United States)

    The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...

  3. Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials

    Science.gov (United States)

    Streptomyces spp. cause scab disease in plants like potato and radish. To seek effective control methods of this disease, biologically based materials were examined on their efficacies for disease control. In greenhouse or growth chamber tests, potting soil was infested with Streptomyces scabies (10...

  4. Streptomyces capitiformicae sp. nov., a novel actinomycete producing angucyclinone antibiotics isolated from the head of Camponotus japonicus Mayr.

    Science.gov (United States)

    Jiang, Shanwen; Piao, Chenyu; Yu, Yang; Cao, Peng; Li, Chenxu; Yang, Fan; Li, Mutong; Xiang, Wensheng; Liu, Chongxi

    2018-01-01

    A novel actinomycete, designated strain 1H-SSA4 T , was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce angucyclinone antibiotics. A polyphasic approach was used to determine the taxonomic status of strain 1H-SSA4 T . The DNA G+C content of the draft genome sequence, consisting of 11.4 Mbp, was 70.0 mol%. 16S rRNA gene sequence similarity studies showed that strain 1H-SSA4 T belongs to the genus Streptomyces with the highest sequence similarity to Streptomyces hygroscopicus subsp. ossamyceticus NBRC 13983 T (98.9 %), and phylogenetically clustered with this species, Streptomyces torulosus LMG 20305 T (98.8 %), Streptomyces ipomoeae NBRC 13050 T (98.5 %) and Streptomyces decoyicus NRRL 2666 T (98.4 %). The morphological and chemotaxonomic properties of the strain were also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-SSA4 T and the above-mentioned strains, which further clarified their relatedness and demonstrated that strain 1H-SSA4 T could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces capitiformicae sp. nov. is proposed. The type strain is 1H-SSA4 T (=CGMCC 4.7403 T =DSM 104537 T ).

  5. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Hammer, Karin

    1999-01-01

    Previously we showed that only one phage-expressed protein (Orf1), a 425-bp region upstream of the orf1 gene (presumably encoding a promoter), and the attP region are necessary and also sufficient for integration of the bacteriophage TP901-1 genome into the chromosome of Lactococcus lactis subsp......P region seem to be necessary for site-specific integration of the temperate bacteriophage TP901-1. By use of the integrative elements (attP and orf1) expressed by the temperate lactococcal bacteriophage TP901-1, a system for obtaining stable chromosomal single-copy transcriptional fusions in L. lactis...

  6. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    Science.gov (United States)

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  7. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2016-12-01

    Full Text Available Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene. Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  8. Bacteriophage lambda: The path from biology to theranostic agent.

    Science.gov (United States)

    Catalano, Carlos E

    2018-03-13

    Viral particles provide an attractive platform for the engineering of semisynthetic therapeutic nanoparticles. They can be modified both genetically and chemically in a defined manner to alter their surface characteristics, for targeting specific cell types, to improve their pharmacokinetic features and to attenuate (or enhance) their antigenicity. These advantages derive from a detailed understanding of virus biology, gleaned from decades of fundamental genetic, biochemical, and structural studies that have provided mechanistic insight into virus assembly pathways. In particular, bacteriophages offer significant advantages as nanoparticle platforms and several have been adapted toward the design and engineering of "designer" nanoparticles for therapeutic and diagnostic (theranostic) applications. The present review focuses on one such virus, bacteriophage lambda; I discuss the biology of lambda, the tools developed to faithfully recapitulate the lambda assembly reactions in vitro and the observations that have led to cooptation of the lambda system for nanoparticle design. This discussion illustrates how a fundamental understanding of virus assembly has allowed the rational design and construction of semisynthetic nanoparticles as potential theranostic agents and illustrates the concept of benchtop to bedside translational research. This article is categorized under: Biology-Inspired Nanomaterials> Protein and Virus-Based Structures Biology-Inspired Nanomaterials> Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  9. Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils

    Science.gov (United States)

    Sahin, Nurettin

    2004-10-01

    The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ≥70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.

  10. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus.

    Directory of Open Access Journals (Sweden)

    Ryan F Seipke

    Full Text Available Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.

  11. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    Science.gov (United States)

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284

  12. Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi.

    Science.gov (United States)

    Cho, Gyeongjun; Kim, Junheon; Park, Chung Gyoo; Nislow, Corey; Weller, David M; Kwak, Youn-Sig

    2017-07-01

    Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4-7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi. © 2017 The Authors.

  13. A Single Streptomyces Symbiont Makes Multiple Antifungals to Support the Fungus Farming Ant Acromyrmex octospinosus

    Science.gov (United States)

    Seipke, Ryan F.; Barke, Jörg; Brearley, Charles; Hill, Lionel; Yu, Douglas W.; Goss, Rebecca J. M.; Hutchings, Matthew I.

    2011-01-01

    Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds. PMID:21857911

  14. Streptomyces kronopolitis sp. nov., an actinomycete that produces phoslactomycins isolated from a millipede (Kronopolites svenhedind Verhoeff).

    Science.gov (United States)

    Liu, Chongxi; Ye, Lan; Li, Yao; Jiang, Shanwen; Liu, Hui; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing

    2016-12-01

    A phoslactomycin-producing actinomycete, designated strain NEAU-ML8T, was isolated from a millipede (Kronopolites svenhedind Verhoeff) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain NEAU-ML8T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces lydicus NBRC 13058T (99.39 %) and Streptomyces chattanoogensis DSM 40002T (99.25 %). The maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences showed that the isolate formed a distinct phyletic line with NBRC 13058T and S. chattanoogensis DSM 40002T. This branching pattern was also supported by the tree rconstructed with the neighbour-joining method. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain NEAU-ML8T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that NEAU-ML8T could be distinguished from NBRC 13058T and S. chattanoogensis DSM 40002T. Therefore, it is concluded that strain NEAU-ML8T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces kronopolitis sp. nov. is proposed. The type strain is NEAU-ML8T (=DSM 101986T=CGMCC 4.7323T).

  15. The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces spp.

    Science.gov (United States)

    Watkins, Anna L.; Ray, Arpita; R. Roberts, Lindsay; Caldwell, Kim A.; Olson, Julie B.

    2016-01-01

    Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson’s disease (PD), which is widely accepted to have both genetic and environmental factors. PMID:26936423

  16. Screening of wild type Streptomyces isolates able to overproduce clavulanic acid

    Directory of Open Access Journals (Sweden)

    Daniela A. Viana Marques

    2014-09-01

    Full Text Available The selection of new microorganisms able to produce antimicrobial compounds is hoped for to reduce their production costs and the side effects caused by synthetic drugs. Clavulanic acid is a β-lactam antibiotic produced by submerged culture, which is widely used in medicine as a powerful inhibitor of β-lactamases, enzymes produced by bacteria resistant to antibiotics such penicillin and cephalosporin. The purpose of this work was to select the best clavulanic acid producer among strains of Streptomyces belonging to the Microorganism Collection of the Department of Antibiotics of the Federal University of Pernambuco (DAUFPE. Initially, the strains were studied for their capacity to inhibit the action of β-lactamases produced by Klebsiella aerogenes ATCC 15380. From these results, five strains were selected to investigate the batch kinetics of growth and clavulanic acid production in submerged culture carried out in flasks. The results were compared with the ones obtained by Streptomyces clavuligerus ATCC 27064 selected as a control strain. The best clavulanic acid producer was Streptomyces DAUFPE 3060, molecularly identified as Streptomyces variabilis, which increased the clavulanic acid production by 28% compared to the control strain. This work contributes to the enlargement of knowledge on new Streptomyces wild strains able to produce clavulanic acid by submerged culture.

  17. EFEKTIFITAS DAYA HAMBAT BAKTERI Streptomyces sp TERHADAP Erwinia sp PENYEBAB PENYAKIT BUSUK REBAH PADA TANAMAN LIDAH BUAYA (Aloe barbadensis Mill

    Directory of Open Access Journals (Sweden)

    SARMILA TASNIM

    2013-05-01

    Full Text Available Streptomyces sp was conducted from December 2010 - June 2011 at the Laboratoryof Microbiology, Biology Department, Math and Science Faculty, UdayanaUniversity Bukit Jimbaran-Bali. Implementation stages of the research consisted ofisolation and testing of the antibiotic activity Streptomyces sp to inhibit growthbacterial pathogens Erwinia sp as a cause of disease in plants fallen foul (Soft rot ofAloe barbadensis Mill.The results of this study have eight isolates of Streptomyces spwith macroscopic and microscopic characters are varied. Furthermore, all isolateswere obtained and then tested against antibiotic activity to inhibit growth the bacteriaErwinia sp. Test results obtained by Streptomyces sp that has the most effective ininhibiting the ability of the bacteria Erwinia sp isolates are Streptomyces sp2for (45%.

  18. Silver nanoparticle biosynthesis from newly isolated streptomyces genus from soil

    Science.gov (United States)

    Osman Adiguzel, Ali; Könen Adiguzel, Serpil; Mazmanci, Birgül; Tunçer, Münir; Mazmanci, Mehmet Ali

    2018-04-01

    This study aimed to green synthesis of silver nanoparticles (AgNPs) by cell lysates of actinobacterial strains isolated from Mersin soils. Also, free-radical scavenging potential, the inhibitory effect, and genotoxicity of synthesized AgNPs were investigated. As a result of the screening study, it was detected that cell lysate from isolate AOA21, which were classified in Streptomyces genus according to 16S rRNA gene sequences comparison, showed higher potential for AgNPs synthesis. The optimum pH, AgNO3 and cell lysate concentration for AgNPs synthesis were found to be pH 9.0, 1 mM AgNO3 and 2-fold diluted cell lysate, respectively. The FESEM analysis revealed that the size and shape of AgNPs were 35–60 nm and spherical. The x-ray diffraction patterns displayed typical peaks of crystalline AgNPs at 34.07°, 44.04°, 64.45°, 77.40° and 81.36°. The size of cubic crystalline AgNPs was found to be 9.35 nm. The FTIR analysis showed that the especially protein, peptide and amino acid component in the cell lysates of Streptomyces sp. AOA21 may be responsible in reduction of AgNO3 and stabilization of synthesized AgNPs. The MIC values of synthesized AgNPs for Bacillus cereus, Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus were found to be 8 μg ml‑1, 16 μg ml‑1, 16 μg ml‑1 and 32 μg ml‑1, respectively. Free-radical scavenging activity of synthesized AgNPs was 8.54%–55.58% at a concentration range of 800–2000 μg ml‑1. Furthermore, comet assay showed that synthesized AgNPs did not cause significant DNA damage in Saccharomyces cerevisiae at a concentration of 12.5 μg ml‑1 and 25 μg ml‑1.

  19. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae

    DEFF Research Database (Denmark)

    Yagüe, Paula; Willemse, Joost; Koning, Roman I

    2016-01-01

    Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae......, which differentiate into chains of uninucleoid spores. While the tubulin-like FtsZ protein is required for the formation of all peptidoglycan-based septa in Streptomyces, canonical divisome-dependent cell division only occurs during sporulation. Here we report extensive subcompartmentalization in young...... vegetative hyphae of Streptomyces coelicolor, whereby 1 μm compartments are formed by nucleic acid stain-impermeable barriers. These barriers possess the permeability properties of membranes and at least some of them are cross-membranes without detectable peptidoglycan. Z-ladders form during the early growth...

  20. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2017-09-01

    In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A novel gene: sawD related to the differentiation of streptomyces ansochromogenes.

    Science.gov (United States)

    Gang, L; Wei, C; Yuqing, T; Huarong, T; Chater, K F; Buttner, M J

    1999-01-01

    A 1.3 kb DNA fragment was cloned from a total DNA library of Streptomyces ansochromogenes using Southern hybridization. Nucleotide sequencing analysis indicated that the 1320 bp DNA fragment contained a complete open reading frame (ORF). In search of databases, the deduced product of ORF containing 213 amino acids is homologous to the serine protease of Caulobacter cresceatus, and a conserved serine-catalytic active site (GPSAG) exists. The gene was designated as sawD. The function of this gene was studied with the strategy of gene disruption, and the result showed that the sawD may be related to sporulation and especially to the spore septation in Streptomyces ansochromogenes. The preliminary result indicated that sawD mutant could produce abundant pigment in contrast with the wild type, it seems that sawD gene may be involved in pigment biosynthesis, and this gene is also dispensable for biosynthesis of nikkomycin in Streptomyces ansochromogenes.

  2. Determination of ionophore antibiotics nactins produced by fecal Streptomyces from sheep.

    Science.gov (United States)

    Wang, Jun; Tan, Hongming; Lu, Yu; Cao, Lixiang

    2014-04-01

    To investigate the correlation between fecal actinobacteria and host animals, Streptomyces was isolated from fresh faeces of healthy sheep and secondary metabolites were analyzed. The most frequently isolated strain S161 with antibiotic activity against bacteria and fungi were analyzed. The S161 showed the highest 99 % similarity to Streptomyces canus DSB17 based on the 16S rRNA gene sequence analysis. Metabolite analysis based on MS and NMR spectra showed that S161 produces nactins, cyclotetralactones derived from nonactic acid and homononactic acid as building units of ionophoretic character. Due to ionophores are antimicrobial compounds that are commonly fed to ruminant animals to improve feed efficiency, stable beneficial interactions between Streptomyces bacteria and vertebrates have been demonstrated.

  3. Mutation effect of streptomyces kitasatoensis after exposure to heavy ions radiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Wang Shuyang; Li Wenjian

    2011-01-01

    To define the optimum dose of heavy ion beams for selecting high productive strains, we should study mortality and mutation effects of Streptomyces kitasatoensis irradiated by heavy ion beams in different doses. In this research, spores of Streptomyces kitasatoensis were irradiated by heavy ion beams with different doses. And survival rate, mortality rate, positive mutation and negative mutation were analyzed statistically. The results showed that high mortality rate appeared from 5 Gy and then the mortality rate curve became gently. Compared the positive and negative mutations in different doses, highest positive mutation was obtained in 40 Gy, while the negative mutation was lower in this dose, and the survival rate was 0.92%. So we defined that optimum dose of heavy ions radiation for Streptomyces kitasatoensis selection was 40 Gy in this experiment. (authors)

  4. Antibiotic Properties of the endophytic Streptomyces Spp. Isolated from the Leaves of Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    Aye Pe; Mar Mar Nyein; Win Maung

    2002-02-01

    Three medicinal plants of Myanmar are selected in the study of endophytic microorganisms and are taxonomically classified and identified to be Sa-ba-lin (Cymbopogon citratus Stapf.), Shazaungtinga- neah (Euphorbia splendens Bojer. ex Hooker) and Ma-shaw (Sauropus grandifolius Pax. and Hoffm.). The screening of endophytic microorganisms is performed according to the ISP method (International Streptomyces Projects 1993). The morphological and physicochemical properties of isolated strains are studied and identified to be the Genus Streptomyces. The test of apparent antimicrobial activity of isolated Streptomyces is done on 18 strains of pathogenic bacteria. It is found that the isolated endophytic Sireptomyces showed the significant antibacterial activity on most of the test organisms. (author)

  5. Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1.

    Science.gov (United States)

    Lim, Jeong-A; Shin, Hakdong; Lee, Dong Hwan; Han, Sang-Wook; Lee, Ju-Hoon; Ryu, Sangryeol; Heu, Sunggi

    2014-08-01

    PM1, a novel virulent bacteriophage that infects Pectobacterium carotovorum subsp. carotovorum, was isolated. Its morphological features were examined by electron microscopy, which indicated that this phage belongs to the family Myoviridae. It has a 55,098-bp genome, including a 2,665-bp terminal repeat. A total of 63 open reading frames (ORFs) were predicted, but only 20 ORFs possessed homology with functional proteins. There is one tRNA coding region, and the GC-content of the genome is 44.9 %. Most ORFs in bacteriophage PM1 showed high homology to enterobacteria phage ΦEcoM-GJ1 and Erwinia phage νB EamM-Y2. Like these bacteriophages, PM1 encodes an RNA polymerase, which is a hallmark of T7-like phages. There is no integrase or repressor, suggesting that PM1 is a virulent bacteriophage.

  6. 76 FR 66187 - Bacteriophage of Clavibacter Michiganensis Subspecies Michiganensis; Exemption From the...

    Science.gov (United States)

    2011-10-26

    ... history of bacteriophage laboratory and pesticidal usage, adverse reports in the literature have not been... cheese factory in Argentina. Journal of Dairy Science 89:3791-3799. 19. Guillaumes J, Houdeau G, Germain...

  7. Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients

    NARCIS (Netherlands)

    Fong, Stephanie A.; Drilling, Amanda; Morales, Sandra; Cornet, Marjolein E.; Woodworth, Bradford A.; Fokkens, Wytske J.; Psaltis, Alkis J.; Vreugde, Sarah; Wormald, Peter-John

    2017-01-01

    Introduction:Pseudomonas aeruginosa infections are prevalent amongst chronic rhinosinusitis (CRS) sufferers. Many P. aeruginosa strains form biofilms, leading to treatment failure. Lytic bacteriophages (phages) are viruses that infect, replicate within, and lyse bacteria, causing bacterial death.

  8. Pecularities of mutagenesis of T4Br bacteriophage under the direct and indirect radiation effects

    International Nuclear Information System (INIS)

    Yurov, S.S.

    1975-01-01

    Different lethal and mutagenic effects were shown when bacteriophage T4Br + (470 r/min) was irradiated in broth (direct effect) and a buffer solution (direct and indirect action). The survival rate of the bacteriophage in the buffer solution was 0.1 percent for a dose rate of 60 kr; in the broth it was 10 percent. The frequency of mutation of the bacteriophage also showed the greater effect of the irradiation in the buffer solution than in the broth (25 and 5 r-mutants respectively at a dose rate of 10 kr). An analysis of the ratio of the r-groups when the bacteriophage was treated in various ways revealed differences between mutagenesis produced in the broth and the buffer, and spontaneous mutagenesis. (V.A.P.)

  9. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    Science.gov (United States)

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  10. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.

    Directory of Open Access Journals (Sweden)

    Laura J Marinelli

    Full Text Available Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED, in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.

  11. Release of Streptomyces albus propagules from contaminated surfaces

    International Nuclear Information System (INIS)

    Gorny, R.L.; Mainelis, Gediminas; Grinshpun, Sergey A.; Willeke, Klaus; Dutkiewicz, Jacek; Reponen, Tiina

    2003-01-01

    The release of Streptomyces albus propagules from contaminated agar an ceiling tile surfaces was studied under controlled environmental condition in a newly developed aerosolization chamber. The experiments revealed tha both spores and cell fragments can be simultaneously released from the colonized surface by relatively gentle air currents of 0.3 m s -1 . A 100x increase of the air velocity can result in a 50-fold increase in the number of released propagules. The aerosolization rate depends strongly on the typ and roughness of the contaminated surface. Up to 90% of available actinomycete propagules can become airborne during the first 10 min of th release process. Application of vibration to the surface did not reveal an influence on the aerosolization process of S. albus propagules under th tested conditions. This study has shown that propagules in the fine particle size range can be released in large amounts from contaminated surfaces Measurement of the number of S. albus fragments in the vicinity of contaminated area, as an alternative to conventional air or surface sampling appears to be a promising approach for quantitative exposure assessment

  12. Studies on biological reduction of chromate by Streptomyces griseus

    International Nuclear Information System (INIS)

    Poopal, Ashwini C.; Laxman, R. Seeta

    2009-01-01

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  13. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Matouš Čihák

    2017-12-01

    Full Text Available Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing and/or play a role in competitive microflora repression (quorum quenching in their nature environments.

  14. Regioselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680.

    Science.gov (United States)

    Roh, Changhyun; Seo, Su-Hyun; Choi, Kwon-Young; Cha, Minho; Pandey, Bishnu Prasad; Kim, June-Hyung; Park, Jun-Seong; Kim, Duck Hee; Chang, Ih Seop; Kim, Byung-Gee

    2009-07-01

    Screening of bacterial whole cells was performed for regioselective hydroxylation of daidzein and genistein. Among the strains examined, Streptomyces avermitilis MA-4680 showed high ortho-dihydroxylation activity to produce 3',4',7-trihydroxyisoflavone and 3',4',5,7-tetrahydroxyisoflavone from daidzein (4',7-dihydroxyisoflavone) and genistein (4',5,7-trihydroxyisoflavone), respectively. Using 100 mg cells (wet wt.) and 1% (v/v) Triton X100 in 1 ml of total reaction volume, where 100 microl of the substrate solution (0.5 mM in 10% (v/v) mixed solvent of DMSO:MeOH = 3:7) was added to 900 microl of potassium phosphate buffer (100 mM, pH 7.2), a 16% molar conversion yield of 3',4',7-trihydroxyisoflavone was obtained from 0.5 mM daidzein after 24 h of reaction time at 28 degrees C and 200 rpm. Ketoconazole significantly (ca. 90%) inhibited the ortho-hydroxylation activity of daidzein, suggesting that cytochrome P450 enzymes putatively play roles in regiospecific daidzein hydroxylation. The analysis of the reaction products was determined by gas chromatography/mass spectrometry (GC/MS) and (1)H NMR.

  15. Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5

    Directory of Open Access Journals (Sweden)

    Ulrike Groenhagen

    2014-06-01

    Full Text Available Streptomyces sp. FORM5 is a bacterium that is known to produce the antibiotic streptazolin and related compounds. We investigated the strain for the production of volatiles using the CLSA (closed-loop stripping analysis method. Liquid and agar plate cultures revealed the formation of new 2-alkylpyridines (streptopyridines, structurally closely related to the already known 2-pentadienylpiperidines. The structures of the streptopyridines A to E were confirmed by total synthesis. The analysis of the liquid phase by solvent extraction or extraction with an Oasis adsorbent showed that streptazolin and 2-pentadienylpiperidine are the major compounds, while the streptopyridines are only minor components. In the gas phase, only the streptopyridines could be detected. Therefore, an orthogonal set of analysis is needed to assess the metabolic profile of bacteria, because volatile compounds are obviously overlooked by traditional analytical methods. The streptopyridines are strain specific volatiles that are accompanied by a broad range of headspace constituents that occur in many actinomycetes. Volatiles might be of ecological importance for the producing organism, and, as biosynthetic intermediates or shunt products, they can be useful as indicators of antibiotic production in a bacterium.

  16. Biosorption of uranium and lead by Streptomyces longwoodensis

    International Nuclear Information System (INIS)

    Friis, N.; Myers-Keith, P.

    1986-01-01

    Biosorption of uranium and lead by lyophilized cells of Streptomyces longwoodensis was examined as a function of metal concentration, pH, cell concentration, and culture age. Cells harvested from the stationary growth phase exhibited an exceptionally high capacity for uranium (0.44 g U/g dry weight) at pH 5. Calculated values of the distribution coefficient and separation factor indicated a strong preference of the cell mass for uranyl ions over lead ions. The specific uranium uptake was similar for the cell wall and the cytoplasmic fraction. Uranium uptake was associated with an increase in hydrogen ion concentration, and phosphorus analysis of whole cells indicated a simple stoichiometric ratio between uranium uptake and phosphorus content. It is proposed that metal ions are bound to phosphodiester residues present both in the cell wall and cytoplasmic fractions. Based on this model, it was shown that uranium accumulation exhibits a maximum at pH 4.6 that is supported by experimental data from previous investigations

  17. Oxalic acid biosynthesis and oxalacetate acetylhydrolase activity in Streptomyces cattleya

    International Nuclear Information System (INIS)

    Houck, D.R.; Inamine, E.

    1987-01-01

    In addition to producing the antibiotic thienamycin, Streptomyces cattleya accumulates large amounts of oxalic acid during the course of a fermentation. Washed cell suspensions were utilized to determine the specific incorporation of carbon-14 into oxalate from a number of labeled organic and amino acids. L-[U- 14 C]aspartate proved to be the best precursor, whereas only a small percentage of label from [1,5- 14 C]citrate was found in oxalate. Cell-free extracts catalyzed the formation of [ 14 C]oxalate and [ 14 C]acetate from L-[U- 14 C]aspartate. When L-[4- 14 C]aspartate was the substrate only [ 14 C]acetate was formed. The cell-free extracts were found to contain oxalacetate acetylhydrolase, the enzyme that catalyzes the hydrolysis of oxalacetate to oxalate and acetate. The enzyme is constitutive and is analogous to enzymes in fungi that produce oxalate from oxalacetate. Properties of the crude enzyme were examined

  18. Streptomyces songpinggouensis sp. nov., a Novel Actinomycete Isolated from Soil in Sichuan, China.

    Science.gov (United States)

    Guan, Xuejiao; Li, Wenchao; Liu, Chongxi; Jin, Pinjiao; Guo, Siyu; Wang, Xiangjing; Xiang, Wensheng

    2016-12-01

    During a screening for novel and biotechnologically useful actinobacteria, a novel actinobacteria with weak antifungal activity, designated strain NEAU-Spg19 T , was isolated from a soil sample collected from pine forest in Songpinggou, Sichuan, southwest China. The strain was characterized using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth occurred at a temperature range of 10-30 °C, pH 5.0-11.0 and NaCl concentrations of 0-5 %. The cell wall peptidoglycan consisted of LL-diaminopimelic acid and glycine. The major menaquinones were MK-9(H 6 ), MK-9(H 8 ) and MK-9(H 4 ). The phospholipid profile contained diphosphatidylglycerol (DPG), phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C 15:0 , iso-C 16:0 , and C 16:0 . 16S rRNA gene sequence similarity studies showed that strain NEAU-Spg19 T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces tauricus JCM 4837 T (98.6 %) and Streptomyces rectiviolaceus JCM 9092 T (98.3 %). Some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from S. tauricus JCM 4837 T and S. rectiviolaceus JCM 9092 T . Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NEAU-Spg19 T represents a novel species of the genus Streptomyces, for which the name Streptomyces songpinggouensis sp. nov. is proposed. The type strain is NEAU-Spg19 T (=CGMCC 4.7140 T =DSM 42141 T ).

  19. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp

    Science.gov (United States)

    Viegelmann, Christina; Margassery, Lekha Menon; Kennedy, Jonathan; Zhang, Tong; O’Brien, Ciarán; O’Gara, Fergal; Morrissey, John P.; Dobson, Alan D. W.; Edrada-Ebel, RuAngelie

    2014-01-01

    Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8) isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1), 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2), and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3) that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont. PMID:24893324

  20. Streptomyces camponoticapitis sp. nov., an actinomycete isolated from the head of an ant (Camponotus japonicus Mayr).

    Science.gov (United States)

    Li, Yao; Ye, Lan; Wang, Xiangjing; Zhao, Junwei; Ma, Zhaoxu; Yan, Kai; Xiang, Wensheng; Liu, Chongxi

    2016-10-01

    A novel single-spore-producing actinomycete, designated strain 2H-TWYE14T, was isolated from the head of an ant (Camponotus japonicus Mayr) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain 2H-TWYE14T belongs to the genus Streptomyces, with highest sequence similarity to Streptomyces niveus NRRL 2466T (98.84 %). Analysis based on the gyrB gene also indicated that strain 2H-TWYE14T should be assigned to the genus Streptomyces. The chemotaxonomic properties of strain 2H-TWYE14T were consistent with those of members of the genus Streptomyces. The cell wall contained ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were iso-C16 : 0 and iso-C15 : 0. DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 2H-TWYE14T and its phylogenetically closely related strain S. niveus JCM 4251T, which further clarified their relatedness and demonstrated that 2H-TWYE14T could be distinguished from S. niveus. Therefore, it is concluded that strain 2H-TWYE14T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces camponoticapitis sp. nov. is proposed. The type strain is 2H-TWYE14T (=DSM 100523T=CGMCC 4.7275T).

  1. Establishing a high yielding streptomyces-based cell-free protein synthesis system.

    Science.gov (United States)

    Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C

    2017-06-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Antibiofilm activity of Streptomyces toxytricini Fz94 against Candida albicans ATCC 10231

    Directory of Open Access Journals (Sweden)

    Sheir DH

    2017-06-01

    Full Text Available Candida albicans is a significant cause of morbidity and mortality in immunocompromised patients worldwide. Biofilm formation by Candida species is a significant virulence factor for disease pathogenesis. Keeping in view the importance of Streptomyces' metabolites, the present study was initiated during the bioprospecting programme of Egyptian Streptomyces carried by the authors since 2013. Native Streptomyces isolates were recovered from soil samples collected from different governorates. Antifungal activity of forty isolates of Streptomyces were performed against planktonic (free cells of C. albicans ATCC 10231 and resistant clinical Candida isolates. Streptomyces isolates showed high inhibition activity against free cells of Candida were further assayed against biofilm of C. albicans reference strain. The most active Streptomyces sp. (no.6 was identified phenotypically, biochemically and by using 16S rRNA. The 16S rRNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KM052378 as S. toxytricini Fz94. Screening of S. toxytricini Fz94 extract capability in prevention and destruction of C. albicans reference strain biolfilm was assessed by resazurin dye adopted technique. In the pre-exposure scheme, the lowest concentration of 5 gL-1 showed biofilm viability inhibition of 92% after 120 min, while Ketoconazole® gave 90 % inhibition at concentration of 2 gL-1. In post exposure, the concentration of S. toxytricini Fz94 extract 7gL-1 caused 82 % inhibition of biofilms viability after 120 min, while Ketoconazole did not show any destruction capability. The cytotoxicity of S. toxytricini Fz94 crude extract results showed that it was nontoxic at 10 gL-1. S. toxytricini Fz94 is maintained in the Fungarium of Arab Society for Fungal Conservation (ASFC with accession number FSCU-2017-1110.

  3. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Christina Viegelmann

    2014-06-01

    Full Text Available Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8 isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1, 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2, and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3 that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont.

  4. Genetic diversity among five T4-like bacteriophages

    Directory of Open Access Journals (Sweden)

    Bertrand Claire

    2006-05-01

    Full Text Available Abstract Background Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Results Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Conclusion Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4

  5. Molecular studies on bacteriophage endolysins and their potential to control gram-negative bacteria

    OpenAIRE

    Oliveira, Hugo Alexandre Mendes

    2014-01-01

    Thesis for PhD degree in Chemical and Biological Engineeering Bacteriophages are viruses that specifically infect bacterial hosts to reproduce. At the end of the infection cycle, progeny virions are confronted with a rigid cell wall that impedes their release into the environment. Consequently, bacteriophages encode hydrolytic enzymes, called endolysins, to digest the peptidoglycan and cause bacteriolysis. In contrast to their extensively studied counterparts, active against Gram-positi...

  6. Mutants of Streptomyces coeruleorubidus impaired in the biosynthesis of daunomycinone glycosides and related metabolites

    International Nuclear Information System (INIS)

    Blumauerova, M.; Stajner, K.; Pokorny, V.; Hostalek, Z.; Vanek, Z.

    1978-01-01

    Mutants of Streptomyces coeruleorubidus, blocked in the biosynthesis of anthracycline antibiotics of the daunomycine complex, were isolated from the production strains after treatment with UV light, γ-radiation, nitrous acid, and after natural selection; according to their different biosynthetic activity the mutants were divided into five phenotypic groups. Mutants of two of these groups produced compounds that had not yet been described in Streptomyces coeruleorubidus (aklavinone, 7-deoxyaklavinone, zeta-rhodomycinone and glycosides of epsilon-rhodomycinone). The mutants differed from the parent strains and also mutually in morphological characteristics but no direct correlation between these changes and the biosynthetic activity could be observed in most cases. (author)

  7. Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin

    DEFF Research Database (Denmark)

    Carr, Gavin; Poulsen, Michael; Klassen, Jonathan L.

    2012-01-01

    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the struct......Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re...

  8. Growth Promotion and Disease Suppression Ability of a Streptomyces sp. CB-75 from Banana Rhizosphere Soil

    Science.gov (United States)

    Chen, Yufeng; Zhou, Dengbo; Qi, Dengfeng; Gao, Zhufen; Xie, Jianghui; Luo, Yanping

    2018-01-01

    An actinomycete strain, CB-75, was isolated from the soil of a diseased banana plantation in Hainan, China. Based on phenotypic and molecular characteristics, and 99.93% sequence similarity with Streptomyces spectabilis NBRC 13424 (AB184393), the strain was identified as Streptomyces sp. This strain exhibited broad-spectrum antifungal activity against 11 plant pathogenic fungi. Type I polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) were detected, which were indicative of the antifungal compounds that Streptomyces sp. CB-75 could produce. An ethyl acetate extract from the strain exhibited the lowest minimum inhibitory concentration (MIC) against Colletotrichum musae (ATCC 96167) (0.78 μg/ml) and yielded the highest antifungal activity against Colletotrichum gloeosporioides (ATCC 16330) (50.0 μg/ml). Also, spore germination was significantly inhibited by the crude extract. After treatment with the crude extract of Streptomyces sp. CB-75 at the concentration 2 × MIC, the pathogenic fungi showed deformation, shrinkage, collapse, and tortuosity when observed by scanning electron microscopy (SEM). By gas chromatography-mass spectrometry (GC-MS) of the crude extract, 18 chemical constituents were identified; (Z)-13-docosenamide was the major constituent. Pot experiments showed that the incidence of banana seedlings was reduced after using Streptomyces sp. CB-75 treatment. The disease index was 10.23, and the prevention and control effect was 83.12%. Furthermore, Streptomyces sp. CB-75 had a growth-promoting effect on banana plants. The chlorophyll content showed 88.24% improvement, the leaf area, root length, root diameter, plant height, and stem showed 88.24, 90.49, 136.17, 61.78, and 50.98% improvement, respectively, and the shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight showed 82.38, 72.01, 195.33, and 113.33% improvement, respectively, compared with treatment of fermentation broth without Streptomyces sp. CB-75

  9. Obtaining mutants of Streptomyces griseoflavus strain 1339, producers of glucose isomerase, following gamma irradiation

    International Nuclear Information System (INIS)

    Dzhedzheva, G.; Stoeva, N.; Stojchev, M.

    1990-01-01

    A water suspension of Streptomyces griseoflavus strain 1339 spores of a density of 8.7.10 6 spores/cm 3 is gamma irradiated ( 60 Co, RHM-γ-20, 30.3 Gy/min). The survival of Streptomyces griseoflavus strain 1339 spores was determined depending on radiation doses, exposure times and incubation temperature. Five major morphological types of colonies were isolated, characterized by different levels of glucose isomerase activity. Maximum specific glucose isomerase activity (GIU/g) was attained after the third gamma irradiation step using a dose of 3000 Gy. 2 tabs., 3 figs., 7 refs

  10. Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Kim, Yul-Min; Kim, Jae-heon

    2004-03-01

    The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.

  11. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon

    2011-01-01

    and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...... phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest....

  12. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    Science.gov (United States)

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Silk Route to the Acceptance and Re-Implementation of Bacteriophage Therapy—Part II

    Directory of Open Access Journals (Sweden)

    Expert round table on acceptance and re-implementation of bacteriophage therapy

    2018-04-01

    Full Text Available This perspective paper follows up on earlier communications on bacteriophage therapy that we wrote as a multidisciplinary and intercontinental expert-panel when we first met at a bacteriophage conference hosted by the Eliava Institute in Tbilisi, Georgia in 2015. In the context of a society that is confronted with an ever-increasing number of antibiotic-resistant bacteria, we build on the previously made recommendations and specifically address how the Nagoya Protocol might impact the further development of bacteriophage therapy. By reviewing a number of recently conducted case studies with bacteriophages involving patients with bacterial infections that could no longer be successfully treated by regular antibiotic therapy, we again stress the urgency and significance of the development of international guidelines and frameworks that might facilitate the legal and effective application of bacteriophage therapy by physicians and the receiving patients. Additionally, we list and comment on several recently started and ongoing clinical studies, including highly desired double-blind placebo-controlled randomized clinical trials. We conclude with an outlook on how recently developed DNA editing technologies are expected to further control and enhance the efficient application of bacteriophages.

  14. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages

    Directory of Open Access Journals (Sweden)

    Abbas Soleimani-Delfan

    2015-09-01

    Full Text Available One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668 and D. dadantii strain sip4 (accession no. HQ423669. Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

  15. Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products

    Directory of Open Access Journals (Sweden)

    Domonkos Sváb

    2018-02-01

    Full Text Available During recent years, interest in the use of bacteriophages as biocontrol agents against foodborne pathogens has increased, particularly for members of the family Enterobacteriaceae, with pathogenic Escherichia coli, Shigella, and Salmonella strains among them. Here, we report the isolation and characterisation of 12 novel T5-like bacteriophages from confiscated food samples. All bacterophages effectively lysed E. coli K-12 strains and were able to infect pathogenic E. coli strains representing enterohaemorrhagic (EHEC, enteropathogenic (EPEC, enterotoxigenic (ETEC, and enteroinvasive (EIEC pathotypes, Shigella dysenteriae, S. sonnei strains, as well as multidrug-resistant (MDR E. coli and multiple strains representing different Salmonella enterica serovars. All the bacteriophages exhibited Siphoviridae morphology. Whole genome sequencing of the novel T5-like bacteriophages showed that they represent two distinct groups, with the genome-based grouping correlating to the different host spectra. As these bacteriophages are of food origin, their stability and lack of any virulence genes, as well as their broad and mutually complementary host spectrum makes these new T5-like bacteriophages valuable candidates for use as biocontrol agents against foodborne pathogenic enterobacteria.

  16. [Determination of Azospirillum Brasilense Cells With Bacteriophages via Electrooptical Analysis of Microbial Suspensions].

    Science.gov (United States)

    Gulii, O I; Karavayeva, O A; Pavlii, S A; Sokolov, O I; Bunin, V D; Ignatov, O V

    2015-01-01

    The dependence-of changes in the electrooptical properties of Azospirillum brasilense cell suspension Sp7 during interaction with bacteriophage ΦAb-Sp7 on the number and time of interactions was studied. Incubation of cells with bacteriophage significantly changed the electrooptical signal within one minute. The selective effect of bacteriophage ΦAb on 18 strains of bacteria of the genus Azospirillum was studied: A. amazonense Ami4, A. brasilense Sp7, Cd, Sp107, Sp245, Jm6B2, Brl4, KR77, S17, S27, SR55, SR75, A. halopraeferans Au4, A. irakense KBC1, K A3, A. lipoferum Sp59b, SR65 and RG20a. We determined the limit of reliable determination of microbial cells infected with bacteriophage: - 10(4) cells/mL. The presence of foreign cell cultures of E. coli B-878 and E. coli XL-1 did not complicate the detection of A brasilense Sp7 cells with the use of bacteriophage ΦAb-Sp7. The results demonstrated that bacteriophage (ΦAb-Sp7 can be used for the detection of Azospirillum microbial cells via t electrooptical analysis of cell suspensions.

  17. Bacteriophages-potential for application in wastewater treatment processes

    International Nuclear Information System (INIS)

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  18. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  19. RNA secondary structures of the bacteriophage phi6 packaging regions.

    Science.gov (United States)

    Pirttimaa, M J; Bamford, D H

    2000-06-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.

  20. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  1. The oxygen effect in bacteriophages irradiated in different media. 1

    International Nuclear Information System (INIS)

    Korystov, Yu.N.; Veksler, F.B.

    1983-01-01

    The oxygen effect (OE) on bacteriophage T4 in a salt solution was studied. It is shown that the sign and magnitude of OE depend on the conditions of the postirradiation incubation of the phage in irradiated medium. The direct OE is due to postirradiation lesion of the phage by hydrogen peroxide which is formed in greater amounts after irradiation in oxygen than in anoxia. The addition of catalase is shown to eliminate the postirradiation inactivation of the phage. In this case an opposite OE is observed. The mechanism of this effect is a scavenge of hydrogen atoms which damage the phage by oxygen. In the presence of catalase the OE depends also on pH of the solution. It is suggested that the hydroxyl radical arising from the reaction of H 2 O 2 with Fe 2+ is responsible for the damaging effect of H 2 O 2 . (author)

  2. Bacteriophage-Derived Peptidase CHAPK Eliminates and Prevents Staphylococcal Biofilms

    Directory of Open Access Journals (Sweden)

    Mark Fenton

    2013-01-01

    Full Text Available New antibacterial agents are urgently needed for the elimination of biofilm-forming bacteria that are highly resistant to traditional antimicrobial agents. Proliferation of such bacteria can lead to significant economic losses in the agri-food sector. This study demonstrates the potential of the bacteriophage-derived peptidase, CHAPK, as a biocidal agent for the rapid disruption of biofilm-forming staphylococci, commonly associated with bovine mastitis. Purified CHAPK applied to biofilms of Staphylococcus aureus DPC5246 completely eliminated the staphylococcal biofilms within 4 h. In addition, CHAPK was able to prevent biofilm formation by this strain. The CHAPK lysin also reduced S. aureus in a skin decolonization model. Our data demonstrates the potential of CHAPK as a biocidal agent for prevention and treatment of biofilm-associated staphylococcal infections or as a decontaminating agent in the food and healthcare sectors.

  3. Review: elimination of bacteriophages in whey and whey products

    Directory of Open Access Journals (Sweden)

    Zeynep eAtamer

    2013-07-01

    Full Text Available As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages per mL. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV light irradiation and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favoured - rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent

  4. Review: elimination of bacteriophages in whey and whey products

    Science.gov (United States)

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations

  5. Bacteriophage and their potential roles in the human oral cavity

    Directory of Open Access Journals (Sweden)

    Anna Edlund

    2015-04-01

    Full Text Available The human oral cavity provides the perfect portal of entry for viruses and bacteria in the environment to access new hosts. Hence, the oral cavity is one of the most densely populated habitats of the human body containing some 6 billion bacteria and potentially 35 times that many viruses. The role of these viral communities remains unclear; however, many are bacteriophage that may have active roles in shaping the ecology of oral bacterial communities. Other implications for the presence of such vast oral phage communities include accelerating the molecular diversity of their bacterial hosts as both host and phage mutate to gain evolutionary advantages. Additional roles include the acquisitions of new gene functions through lysogenic conversions that may provide selective advantages to host bacteria in response to antibiotics or other types of disturbances, and protection of the human host from invading pathogens by binding to and preventing pathogens from crossing oral mucosal barriers. Recent evidence suggests that phage may be more involved in periodontal diseases than were previously thought, as their compositions in the subgingival crevice in moderate to severe periodontitis are known to be significantly altered. However, it is unclear to what extent they contribute to dysbiosis or the transition of the microbial community into a state promoting oral disease. Bacteriophage communities are distinct in saliva compared to sub- and supragingival areas, suggesting that different oral biogeographic niches have unique phage ecology shaping their bacterial biota. In this review, we summarize what is known about phage communities in the oral cavity, the possible contributions of phage in shaping oral bacterial ecology, and the risks to public health oral phage may pose through their potential to spread antibiotic resistance gene functions to close contacts.

  6. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  7. Streptomyces lasiicapitis sp. nov., an actinomycete that produces kanchanamycin, isolated from the head of an ant (Lasius fuliginosus L.).

    Science.gov (United States)

    Ye, Lan; Zhao, Shanshan; Li, Yao; Jiang, Shanwen; Zhao, Yue; Li, Jinmeng; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng; Liu, Chongxi

    2017-05-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a kanchanamycin-producing actinomycete with antifungal activity, designated strain 3H-HV17(2)T, was isolated from the head of an ant (Lasius fuliginosus L.) and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3H-HV17(2)T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces spectabilis NBRC 13424T (98.90 %, with which it phylogenetically clustered, Streptomyces alboflavus NRRL B-2373T (98.65 %) and Streptomyces flavofungini NBRC 13371T (98.36 %). Phylogenetic analysis based on the gyrB gene also supported the close relationship of these strains. The morphological and chemotaxonomic properties of the strain are also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 3H-HV17(2)T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that strain 3H-HV17(2)T could be distinguished from these strains. Therefore, strain 3H-HV17(2)T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces lasiicapitis sp. nov. is proposed. The type strain is 3H-HV17(2)T (=CGMCC 4.7349T=DSM 103124T).

  8. Occurrence and numbers of bacteriophages and bacterial indicators in faeces of yellow-legged seagull (Larus cachinnans).

    Science.gov (United States)

    Muniesa, M; Jofre, J; Lucena, F

    1999-12-01

    Faeces from feral populations of yellow-legged seagulls from the northern coastal area of Catalonia (North-eastern Spain) contained variable amounts of faecal coliforms, faecal streptococci, somatic coliphages, F-specific bacteriophages and Bacteroides fragilis bacteriophages. Occurrence and numbers of bacterial indicators and bacteriophages in the faeces of yellow-legged seagulls are in the ranges described in the faeces of different animals. The ratios between numbers of bacterial indicators and numbers of bacteriophages are much higher in faeces of seagulls than in treated or raw sewage contributed by out-falls of the same area.

  9. Determination of optimal conditions of oxytetracyclin production from streptomyces rimosus; Optimisation de la production de l'oxytetracycline par Streptomyces rimosus

    Energy Technology Data Exchange (ETDEWEB)

    Zouaghi, Atef [Institut National des Sciences Appliquees et de Technologie (Tunisia)

    2007-07-01

    Streptomyces rimosus is an oxytetracycline (OTC) antibiotic producing bacteria that exhibited activities against gram positive and negative bacteria. OTC is used widely not only in medicine but also in production industry. The antibiotic production of streptomyces covers a very wide range of condition. However, antibiotic producers are particularly fastidious cultivated by proper selection of media such as carbon source. In present study we have optimised conditions of OTC production (Composition of production media, p H, shaking and temperature). The results have been shown that bran barley is the optimal media for OTC production at 28C pH5.8 at 150rpm for 5 days. For antibiotic determination, OTC was extracted with different organic solvent. Thin-layer chromatography system was used for separation and identification of OTC antibiotic. High performance liquid chromatographic (HPLC) method with ultraviolet detection for the analysis of OTC is applied to the determination of OTC purification. (Author). 24 refs.

  10. Evaluation of Anti- Bacteriophage as Feed Additives to Prevent (SE in Broiler

    Directory of Open Access Journals (Sweden)

    K. H. Kim

    2013-03-01

    Full Text Available This experiment was conducted to evaluate anti-Salmonella enteritidis (anti-SE bacteriophage as feed additives to prevent Salmonella enteritidis in broilers. The experimental diets were formulated for 2 phases feeding trial, and 3 different levels (0.05, 0.1 and 0.2% of anti-SE bacteriophage were supplemented in basal diet. The basal diet was regarded as the control treatment. A total of 320 1-d-old male broilers (Ross 308 were allotted by randomized complete block (RCB design in 8 replicates with 10 chicks per pen. All birds were raised on rice hull bedding in ambient controlled environment and free access to feed and water. There were no significant differences in body weight gain, feed intake and feed conversion ratio (FCR at terminal period among treatments (p>0.05. Relative weights of liver, spleen, abdominal fat and tissue muscle of breast obtained from each anti-SE bacteriophage treatment were similar to control, with a slightly higher value in anti-SE bacteriophage 0.2%. In addition, a numerical difference of glutamic-oxaloacetic transaminase (GOT, glutamic-pyruvic transaminase (GPT and LDL cholesterol level was observed in the 0.2% anti-SE bacteriophage application even though blood profiles were not significantly affected by supplemented levels of anti-SE bacteriophage (p>0.05. In the result of a 14 d record after Salmonella enteritidis challenge of 160 birds from 4 previous treatments, mortality was linearly decreased with increasing anti-SE bacteriophage level (p<0.05, and Salmonella enteritidis concentration in the cecum was decreased with increasing levels of anti-SE bacteriophage (p<0.05. Based on the results of this study, it is considered that supplementation of 0.2% anti-SE bacteriophage may not cause any negative effect on growth, meat production, and it reduces mortality after Salmonella enteritidis challenge. These results imply to a possible use of anti-SE bacteriophage as an alternative feed additive instead of antibiotics

  11. The Level of AdpA Directly Affects Expression of Developmental Genes in Streptomyces coelicolor ▿ †

    OpenAIRE

    Wolański, Marcin; Donczew, Rafał; Kois-Ostrowska, Agnieszka; Masiewicz, Paweł; Jakimowicz, Dagmara; Zakrzewska-Czerwińska, Jolanta

    2011-01-01

    AdpA is a key regulator of morphological differentiation in Streptomyces. In contrast to Streptomyces griseus, relatively little is known about AdpA protein functions in Streptomyces coelicolor. Here, we report for the first time the translation accumulation profile of the S. coelicolor adpA (adpASc) gene; the level of S. coelicolor AdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hour...

  12. Streptomyces somaliensis mediated green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Meysam Soltani Nejad

    2015-07-01

    Full Text Available Objective(s: The development of reliable and ecofriendly process for the synthesis of nano-metals is an important aspect in the field of nanotechnology. Nano-metals are a special group of materials with broad area of applications. Materials and Methods: In this study, extracellular synthesis of silver nanoparticles (SNPs performed by use of the gram positive soil Streptomycetes. Streptomycetes isolated from rice fields of Guilan Province, Iran (5 isolates. Initial characterization of SNPs was performed by visual change color. To determine the bacterium taxonomical identity, its colonies characterized morphologically by use of scanning electron microscope. The PCR molecular analysis of active isolate represented its identity partially. In this regard, 16S rDNA of isolate G was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using NCBI GenBank database using BLAST. Also SNPs were characterized by, transmission electron microscopy (TEM and X-ray diffraction spectroscopy (XRD. Results: From all 5 collected Streptomyces somaliensis isolates, isolate G showed highest extracellular synthesis of SNPs via in vitro. SNPs were formed immediately by the addition of (AgNO3 solution (1 mM. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 450 nm, which confirmed the presence of SNPs. TEM revealed the extracellular formation of spherical silver nanoparticles in the size range of 5-35 nm. Conclusions: The biological approach for the synthesis of metal nanoparticles offers an environmentally benign alternative to the traditional chemical and physical synthesis methods. So, a simple, environmentally friendly and cost-effective method has been developed to synthesize AgNPs using Streptomycetes.

  13. Aminopeptidases in Mycelium and Growth Medium of Streptomyces rimosus Strains

    Directory of Open Access Journals (Sweden)

    Jasminka Špoljarić

    2009-01-01

    Full Text Available Aminopeptidases (APs of the same substrate specificities have been detected in the mycelia and culture filtrate of Streptomyces rimosus. To compare extracellular and intracellular prolyl, leucyl and arginyl AP, dynamics of their biosynthesis, excretion and localization were analyzed during submerged cultivation of two S. rimosus strains, T55 and ZGL3, in several media. AP activity in mycelia reached maximum in the stationary phase, and decreased to different extent at a later stage. The accumulation of APs, except prolyl aminopeptidase (ProAP, in the culture filtrate followed the growth of bacteria and decreased later on, when peptide-richer medium was used. When S. rimosus was grown in glucose-richer medium, the accumulation of APs in the medium started at the late log phase and continued to the end of cultivation, due to cell lysis. The combined addition of calcium and ammonium salts to tryptone soy broth increased the AP activity in S. rimosus ZGL3 culture filtrates up to two times. The AP intracellular activity was significantly higher compared to its intercellular activity (2 to 24 times. Mycelium/medium AP activity ratio decreased with the age of the culture, its change being dependent on the S. rimosus strain, growth medium composition and AP specificity. Leucyl AP (LeuAP was the most prone to be released from the mycelium, suggesting that part of the enzyme could be excreted by active transport. Determination of AP distribution within cell compartments has confirmed that the three APs are intracellular enzymes residing in cytosol, but also suggested their partial association with cytoplasmic membrane.

  14. Antimicrobial Activity and Morphological Changes of Streptomyces Ascendable and Streptomyces Eighty-three's as Affected by Environmental Conditions and Gamma Radiation

    International Nuclear Information System (INIS)

    Moussa, L.A.A.; Abou El-Nour, S.A.M.; Mansour, F.A.; Serag, M.S.

    2004-01-01

    Fourteen actinomycetes out of thirty isolates were recovered from different Egyptian soils and exhibited antimicrobial activities. Streptomyces ascendable and Streptomyces eighty-three's used in the present work showed the most active antimicrobial potentialities against bacteria, moulds and yeasts. The optimum temperature and acidity for their growth and production of microbial activity were 50 degree and ph 7.0, while the maximum biomass yield and the highest antimicrobial activity were attained 10 days of incubation. Among carbon sources starch at 30 gm/L highly supported the growth and antimicrobial activity by the two species, while sodium nitrate (3 gm/L) and dipotassium hydrogen phosphate (0.75 gm/L) were the most favorable for both isolates. The presence of microelements such as manganese chloride, zinc sulphate, ferrous sulphate and copper sulphate in the growth medium at a concentration of 1 mg/L for each had a good stimulatory effect on the growth and antimicrobial activity for both Streptomyces species. As different irradiation doses were used (up to 5.0 kGy), the high levels clearly affected the morphological characteristics of both tested isolates either in the first or second generation

  15. Removal of copper ions from dilute solutions by Streptomyces noursei mycelium. Comparison with yeast biomass

    Czech Academy of Sciences Publication Activity Database

    Kujan, Petr; Prell, Aleš; Šafář, Hynek; Sobotka, Miroslav; Řezanka, Tomáš; Holler, Pavel

    2005-01-01

    Roč. 50, č. 4 (2005), s. 309-313 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces noursei * copper * yeast biomass Subject RIV: EE - Microbiology, Virology Impact factor: 0.918, year: 2005

  16. The mutagenic effect of streptomyces and aspergillus niger with fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Shengjun; Zhou Shuxin; Fang Xiaoming

    1992-01-01

    The authors describe the effect of irradiation on some Streptomyces and Aspergillus niger with fast neutron. The death rate(%), production rate(%, W/V), and heredities were determined and analysed. Particularly, five variant types of Strepto. griseous No.1 will be researched in depth

  17. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R

    2011-01-01

    A previously unreported 26-membered polyene macrocyclic lactam, sceliphrolactam, was isolated from an actinomycete, Streptomyces sp., associated with the mud dauber, Sceliphron caementarium. Sceliphrolactam's structure was determined by 1D- and 2D-NMR, MS, UV, and IR spectral analysis. Sceliphrol...

  18. Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine.

    Science.gov (United States)

    Siñeriz, Manuel Louis; Kothe, Erika; Abate, Carlos Mauricio

    2009-09-01

    46 actinomycetes were isolated from two polluted sites and one unpolluted site. One strain, F4, was selected through primary qualitative screening assays because of its cadmium resistance, and physiologically and taxonomically characterized. F4 was able to grow at 7.5% NaCl and 100 microg/ml lysozyme and at a pH between 6 and 10. 16S rDNA sequence analysis showed that F4 was closely related to Streptomyces tendae. Growth of Streptomyces sp. F4 on culture medium with 8 mg/l Cd(2+) for 8 days showed 80% inhibition. Maximum specific biosorption was 41.7 mg Cd(2+)/g dry weight after 7 days of growth and highest Cd(2+ )concentration was found in the cell wall (41.2%). The exopolysaccharide layer only contained 7.4%, whereas 39.4% of Cd(2+) was found in the cytosolic fraction. Twelve % was found in the ribosomes and membrane fraction. This was verified with TEM, showing Streptomyces sp. F4 cytoplasm with dark granulate appearance. This study could present the potential capacity of Streptomyces sp. F4 for Cd(2+) bioremediation. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Martinomycin, a new polyether antibiotic produced by Streptomyces salvialis. I. Taxonomy, fermentation and biological activity.

    Science.gov (United States)

    Bernan, V S; Montenegro, D A; Goodman, J J; Alluri, M R; Carter, G T; Abbanat, D R; Pearce, C J; Maiese, W M; Greenstein, M

    1994-12-01

    Actinomycete culture LL-D37187 has been found to produce the new polyether antibiotic martinomycin. Taxonomic studies, including morphological, physiological, and cell wall chemistry analyses, revealed that culture LL-D37187 is a novel streptomycete species, and the proposed name is Streptomyces salvialis. Martinomycin exhibits activity against the Southern Army Worm (Spodoptera eridania) and Gram-positive bacteria.

  20. Variable antibiotic susceptibility patterns among Streptomyces species causing actinomycetoma in man and animals

    Directory of Open Access Journals (Sweden)

    Hamid Mohamed E

    2011-06-01

    Full Text Available Abstract Background Drug therapy is recommended in conjunction with surgery in treatment of actinomycetoma. The specific prescription depends on the type of bacteria (actinomycetoma or fungi (eumycetoma causing the disease and their in vitro antimicrobial susceptibility. Objectives To investigate the antimicrobial susceptibility among isolates of Streptomyces spp. isolated from cases of actinomycetoma in man and animals in Sudan. Methods Streptomyces strains (n = 18 isolated from cases of actinomycetoma were tested in vitro against 15 commonly prescribed antibacterial agents using MIC agar dilution method as per standard guidelines. Results Streptomyces strains isolated from actinomycetoma fall into various phenotypic groups. All of the strains were inhibited by novobiocin (8 μg/mL, gentamycin (8, 32 μg/mL and doxycycline (32 μg/mL. Fusidic acid (64 μg/mL inhibited 94.4% of the strains; bacitracin, streptomycin, cephaloridine, clindamycin, ampicillin, rifampicin and tetracycline (64 μg/mL inhibited between 61.1 and 77.8% of the strains. All strains were found resistant to amphotericin B (64 μg/mL, penicillin (20 μg/mL and sulphamethoxazole (64 μg/mL. Conclusions Saprophytic Streptomyces spp. cause actinomycetoma in man and animal belong to separate phenotypes and have a wide range of susceptibility patterns to antimicrobial agents, which pose a lot of difficulties in selecting effective in vivo treatment for actinomycetoma.

  1. Isolation, Characterization and Bioactivities of an Extracellular Polysaccharide Produced from Streptomyces sp. MOE6

    Directory of Open Access Journals (Sweden)

    Marwa O. Elnahas

    2017-08-01

    Full Text Available A Streptomyces strain was isolated from soil and the sequence of 1471 nucleotides of its 16S rDNA showed 99% identity to Streptomyces sp. HV10. This newly isolated Streptomyces strain produced an extracellular polysaccharide (EPS composed mainly of glucose and mannose in a ratio of 1:4.1, as was characterized by Fourier transform infrared spectroscopy (FTIR, HPLC and 1H-NMR. The antioxidant activities of the partially purified MOE6-EPS were determined by measuring the hydroxyl free radical scavenging activity and the scavenging of 2,2-diphenyl-2-picryl-hydrazyl (DPPH radicals. In addition, the partially purified MOE6-EPS showed high ferrous ion (Fe2+ chelation activity which is another antioxidant activity. Interestingly, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays that were colorimetric assays for NAD(PH-dependent cellular oxidoreductases and a proxy of the number of viable cells, showed that the partially purified MOE6-EPS inhibited the proliferation of the human breast cancer cells (MDA-MB-231. The scratch wound assay showed that MOE6-EPS reduced the migration of mouse breast cancer cells (4T1. This study reports the production of EPS from Streptomyces species with promising antioxidant, metal chelating and mammalian cell inhibitory activities.

  2. RNase III-Binding-mRNAs Revealed Novel Complementary Transcripts in Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Šetinová, D.; Šmídová, K.; Pohl, P.; Music, I.; Bobek, Jan

    2018-01-01

    Roč. 8, JAN 15 2018 (2018), č. článku 2693. ISSN 1664-302X R&D Projects: GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : cis-antisense RNA * RNase III * Streptomyces Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  3. Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae

    DEFF Research Database (Denmark)

    Phelan, Ryan M.; Sachs, Daniel; Petkiewicz, Shayne J.

    2017-01-01

    precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor...... expression system. These tools advance S. venezuelae to be a practical host for future metabolic engineering efforts....

  4. Fibrinolytic protease production by new Streptomyces sp. DPUA 1576 from Amazon lichens

    Directory of Open Access Journals (Sweden)

    Germana M.M. Silva

    2015-01-01

    Conclusions: These results show that the optimization of the culture medium can enhance protease production, thus becoming a good process for further research. In addition, Streptomyces sp. DPUA 1576, isolated from Amazon lichens, might be a potential strain for fibrinolytic protease production.

  5. Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp.MJM5763.

    Science.gov (United States)

    Palaniyandi, S A; Yang, S H; Cheng, J H; Meng, L; Suh, J-W

    2011-08-01

    To find a suitable biocontrol agent for yam anthracnose caused by Colletotrichum gloeosporioides. An actinobacterial strain, MJM5763, showing strong antifungal activity, multiple biocontrol and plant growth-promoting traits was isolated from a yam cultivation field in Yeoju, South Korea. Based on morphological and physiological characteristics and analysis of the 16S rDNA sequence, strain MJM5763 was identified as a novel strain of Streptomyces and was designated as Streptomyces sp. MJM5763. Treatment with MJM5763 and the crude culture filtrate extract (CCFE) was effective in suppressing anthracnose in detached yam leaves in vitro and reduced incidence and severity of anthracnose in yam plants under greenhouse conditions. The CCFE treatment was the most effective of all the treatments and reduced the anthracnose severity by 85-88% and the incidence by 79-81%, 90 days after inoculation with the pathogen. CCFE treatment was also effective under field conditions and showed a reduction of 86 and 75% of anthracnose severity and incidence, respectively. Streptomyces sp. strain MJM5763 was effective in biocontrolling anthracnose in yam caused by C. gloeosporioides. Streptomyces sp. MJM5763 is a potential alternative to chemical fungicides for reducing yield losses to anthracnose in yam. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil

    Directory of Open Access Journals (Sweden)

    Loh Teng-Hern Tan

    2018-01-01

    Full Text Available Mangrove derived microorganisms constitute a rich bioresource for bioprospecting of bioactive natural products. This study explored the antioxidant potentials of Streptomyces bacteria derived from mangrove soil. Based on 16S rRNA phylogenetic analysis, strain MUM292 was identified as the genus Streptomyces. Strain MUM292 showed the highest 16S rRNA gene sequence similarity of 99.54% with S. griseoruber NBRC12873T. Furthermore, strain MUM292 was also characterized and showed phenotypic characteristics consistent with Streptomyces bacteria. Fermentation and extraction were performed to obtain the MUM292 extract containing the secondary metabolites of strain MUM292. The extract displayed promising antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging and also metal-chelating activities. The process of lipid peroxidation in lipid-rich product was also retarded by MUM292 extract and resulted in reduced MDA production. The potential bioactive constituents of MUM292 extract were investigated using GC-MS and preliminary detection showed the presence of pyrazine, pyrrole, cyclic dipeptides, and phenolic compound in MUM292 extract. This work demonstrates that Streptomyces MUM292 can be a potential antioxidant resource for food and pharmaceutical industries.

  7. Antimicrobial activities of the Streptomyces ceolicolor strain AOB KF977550 isolated from a tropical estuary

    Directory of Open Access Journals (Sweden)

    Bamidele T. Odumosu

    2017-11-01

    Full Text Available The aim of this study was to screen for important antibiotic producing species of the genus Streptomyces from a tropical estuary. Five bacterial strains were isolated from the Lagos lagoon and identified by 16S rDNA gene sequencing as Streptomyces albogriseolus, S. aureus, S. coelicolor, S. albus, and S. pseudogriseolus. Ethyl acetate extracts of Streptomyces spp. fermented broths were evaluated against laboratory strains of MRSA Methicillin-resistant Staphyloccus aureus (MRSA 144 m, Bacillus coagulans UL001, and Escherichia coli as well as the standard strains Klebsiella pneumonia ATCC 8308, Gardnerella vaginalis ATCC 27853 and Salmonella typhi ATCC 13311 using the well diffusion method. The presence of secondary metabolites was determined and analysed using gas chromatography-mass spectrometry (GC-MS. A broad spectrum of activity was only observed for S. coelicolor on all of the tested bacteria except S. typhi, ant GC-MS analysis revealed the presence of 16 secondary metabolites with relevant antibiotic properties. The result of this study suggest that Lagos Lagoon is a potential source and reservoir of novel antibiotics. Keywords: Streptomyces, Antibiotics, Resistance, Secondary Metabolites

  8. Stawamycin analog, JBIR-11 from Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830.

    Science.gov (United States)

    Izumikawa, Miho; Komaki, Hisayuki; Hashimoto, Junko; Takagi, Motoki; Shin-ya, Kazuo

    2008-05-01

    A stawamycin analog, JBIR-11 (1) was isolated from mycelium of Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830. The structure was determined on the basis of the spectroscopic data. Compound 1 exhibited growth inhibitory effect against human fibrosarcoma HT1080 cells with an IC50 value of 25 microM.

  9. Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6

    Czech Academy of Sciences Publication Activity Database

    Farkasovská, J.; Klucar, L.; Vlček, Čestmír; Kokavec, J.; Godány, A.

    2007-01-01

    Roč. 52, č. 4 (2007), s. 347-358 ISSN 0015-5632 R&D Projects: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : phage * genome * streptomyces Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.989, year: 2007

  10. Comparison of laser diffraction and image analysis for measurement of Streptomyces coelicolor cell clumps and pellets

    DEFF Research Database (Denmark)

    Rønnest, Nanna Petersen; Stocks, Stuart M; Eliasson Lantz, Anna

    2012-01-01

    and pellets of Streptomyces coelicolor compare to image analysis. Samples, taken five times during fed-batch cultivation, were analyzed by image analysis and laser diffraction. The volume-weighted size distribution was calculated for each sample. Laser diffraction and image analysis yielded similar size...

  11. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus

    Czech Academy of Sciences Publication Activity Database

    Štosová, T.; Šebela, M.; Řehulka, Pavel; Šedo, O.; Havliš, J.; Zdráhal, Z.

    2008-01-01

    Roč. 376, č. 1 (2008), s. 94-102 ISSN 0003-2697 Institutional research plan: CEZ:AV0Z40310501 Keywords : MALDI-TOF MS * Streptomyces griseus * trypsin Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.088, year: 2008

  12. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5...

  13. Relationship between Volatile Odorous Substances and Production of Avermectins by Streptomyces avermitilis

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Sobotka, Miroslav; Prell, Aleš; Sigler, Karel

    2007-01-01

    Roč. 52, č. 1 (2007), s. 26-30 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces avermitilis * antibiotics * inhibition Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  14. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jennifer R. [Brown University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Wei, Chia-Lin [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Sello, Jason K. [Brown University

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  15. Effect of Protein Kinase Inhibitors on Protein Phosphorylation and Germination of Aerial Spores from Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Palečková, Petra; Kontrová, K.; Kofroňová, Olga; Bobek, Jan; Benada, Oldřich; Mikulík, Karel

    2007-01-01

    Roč. 52, č. 3 (2007), s. 215-222 ISSN 0015-5632 R&D Projects: GA ČR GA203/05/0106 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces coelicolor * protein kinase * phosphoprotein Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  16. First report of Streptomyces stelliscabiei causing potato common scab in Michigan

    Science.gov (United States)

    Streptomyces scabies has been reported as the predominant cause of potato scab in Michigan. In a 2007 survey of common scab in Michigan, however, isolates were collected from a field that did not fit the description for S. scabies. Tests using species-specific PCR primers indicated isolates were S. ...

  17. Synergistic interaction in simultaneous exposure to Streptomyces californicus and Stachybotrys chartarum

    DEFF Research Database (Denmark)

    Huttunen, K.; Pelkonen, J.; Nielsen, Kristian Fog

    2004-01-01

    chartarum, Bacillus cereus, Mycobacterium terrae, and Pseudomonas fluorescens) alone and together with the actinomycete Streptomyces californicus. The production of nitric oxide, levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6), and cytotoxicity were...

  18. Isolation, Characterization and Bioactivities of an Extracellular Polysaccharide Produced from Streptomyces sp. MOE6.

    Science.gov (United States)

    Elnahas, Marwa O; Amin, Magdy A; Hussein, Mohamed M D; Shanbhag, Vinit C; Ali, Amal E; Wall, Judy D

    2017-08-24

    A Streptomyces strain was isolated from soil and the sequence of 1471 nucleotides of its 16S rDNA showed 99% identity to Streptomyces sp. HV10. This newly isolated Streptomyces strain produced an extracellular polysaccharide (EPS) composed mainly of glucose and mannose in a ratio of 1:4.1, as was characterized by Fourier transform infrared spectroscopy (FTIR), HPLC and ¹H-NMR. The antioxidant activities of the partially purified MOE6-EPS were determined by measuring the hydroxyl free radical scavenging activity and the scavenging of 2,2-diphenyl-2-picryl-hydrazyl (DPPH) radicals. In addition, the partially purified MOE6-EPS showed high ferrous ion (Fe 2+ ) chelation activity which is another antioxidant activity. Interestingly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays that were colorimetric assays for NAD(P)H-dependent cellular oxidoreductases and a proxy of the number of viable cells, showed that the partially purified MOE6-EPS inhibited the proliferation of the human breast cancer cells (MDA-MB-231). The scratch wound assay showed that MOE6-EPS reduced the migration of mouse breast cancer cells (4T1). This study reports the production of EPS from Streptomyces species with promising antioxidant, metal chelating and mammalian cell inhibitory activities.

  19. Glucosylglycerate Is an Osmotic Solute and an Extracellular Metabolite Produced by Streptomyces caelestis

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Stanislav; Halada, Petr; Petříček, Miroslav; Sedmera, Petr

    2007-01-01

    Roč. 52, č. 5 (2007), s. 451-456 ISSN 0015-5632 R&D Projects: GA AV ČR IAA600660607 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces caelestis * mass spectrometry Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  20. Antagonistic activity of antibiotic producing Streptomyces sp. against fish and human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Nazmul Hossain

    2014-04-01

    Full Text Available In this study, attempts were made to isolate Streptomyces sp. from soil samples of two different regions of Bangladesh and evaluate their antagonistic activity against fish and human pathogenic bacteria. A total of 10 isolates were identified as Streptomyces sp. based on several morphological, physiological and biochemical tests. Cross streak method was used to observe the antagonistic activity of the Streptomyces sp. isolates against different fish pathogens belonging to the genus Aeromonas, Pseudomonas and Edwardsiella and human clinical isolates belonging to the genus Klebsiella, Salmonella and Streptococcus. Seven Streptomyces sp. isolates showed antagonism against both fish and human pathogenic bacteria. Four isolates viz., N24, N26, N28 and N47 showed broad spectrum of antagonistic activity (80-100% against all genera of fish and human pathogenic bacteria. The isolate N49 exhibited highest spectrum of antagonism against all fish pathogens (90-100% but comparatively lower degree of antagonism against human pathogens (50-60%. Rest of the two isolates (N21 and N23 showed variability in their antagonism. Results showed that broad spectrum antibiotic(s could be developed from the isolates N24, N26, N28 and N47against several human and fish pathogens. The isolate N49 could be a potential source of antibiotic, especially for fish pathogenic bacteria.

  1. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Bobek, Jan; Šmídová, Klára; Čihák, M.

    2017-01-01

    Roč. 8, NOV 13 (2017), s. 1-12, č. článku 2205. ISSN 1664-302X R&D Projects: GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : dormancy * germination * Streptomyces Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  2. Noncoding RNA of Glutamine Synthetase I Modulates Antibiotic Production in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    D'Alia, Davide; Nieselt, Kay; Steigele, Stephan; Mueller, Jonas; Verburg, Ilse; Takano, Eriko; Alia, Davide D’; Müller, Jonas

    Overexpression of antisense chromosomal cis-encoded noncoding RNAss (ncRNAs) in glutamine synthetase I resulted in a decrease in growth, protein synthesis, and antibiotic production in Streptomyces coelicolor. In addition, we predicted 3,597 cis-encoded ncRNAs and validated 13 of them

  3. Detection and properties of A-factor-binding protein from Streptomyces griseus

    International Nuclear Information System (INIS)

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T.

    1989-01-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding 3 H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein

  4. Discovery, characterization, and kinetic analysis of an alditol oxidase from streptomyces coelicolor

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; van Hellemond, Erik W.; Janssen, Dick B.; Fraaije, Marco W.

    2007-01-01

    A gene encoding an alditol oxidase was found in the genome of Streptomyces coelicolor A3(2). This newly identified oxidase, AldO, was expressed at extremely high levels in Escherichia coli when fused to maltose-binding protein. AldO is a soluble monomeric flavoprotein with subunits of 45.1 kDa, each

  5. Mining and polishing of the treasure trove in the bacterial genus streptomyces.

    Science.gov (United States)

    Horinouchi, Sueharu

    2007-02-01

    The complex morphogenesis of the bacterial genus Streptomyces has made this genus a model prokaryote for study of multicellular differentiation, and its ability to produce a wide variety of secondary metabolites has made it an excellent supplier of biologically active substances, including antibiotics. This review summarizes our study of these two characteristics of Streptomyces, focusing on the A-factor regulatory cascade and work derived from the A-factor study. A microbial hormone, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), triggers morphological differentiation and secondary metabolism in Streptomyces griseus. The key steps in the A-factor regulatory cascade, including afsA, encoding the key enzyme for A-factor biosynthesis, arpA, encoding the A-factor receptor, and adpA, encoding a transcriptional activator, are elucidated. The target genes of the regulatory cascade include genes of various functions required for morphological development and secondary metabolite formation. The biosynthesis gene clusters for grixazone and hexahydroxyperylenequinone are examples. The former contains the enzymes for novel benzene ring formation and phenoxazinone formation, and the latter contains enzymes belonging to a type III polyketide synthase and a cytochrome P-450. Enzymes of various catalytic functions in Streptomyces are useful as members of an artificial gene cluster constructed in Escherichia coli for fermentative production of plant-specific flavonoids, including isoflavones and unnatural compounds.

  6. Production of actinorhodin-related ''blue pigments'' by Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Bystrykh, LV; FernandezMoreno, MA; Herrema, JK; Malpartida, F; Hopwood, DA; Dijkhuizen, L

    The genetically well-known strain Streptomyces coelicolor A3(2) produces the pH indicator (red/blue) antibiotic actinorhodin, but not all the ''blue pigment'' produced by this strain is actinorhodin. When the organism was subjected to various nutrient limitations (ammonium, nitrate, phosphate, or

  7. Use of a bacteriophage cocktail to control Salmonella in food and the food industry.

    Science.gov (United States)

    Spricigo, Denis Augusto; Bardina, Carlota; Cortés, Pilar; Llagostera, Montserrat

    2013-07-15

    The use of lytic bacteriophages for the biocontrol of food-borne pathogens in food and in the food industry is gaining increasing acceptance. In this study, the effectiveness of a bacteriophage cocktail composed of three different lytic bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) was determined in four different food matrices (pig skin, chicken breasts, fresh eggs, and packaged lettuce) experimentally contaminated with Salmonella enterica serovar Typhimurium and S. enterica serovar Enteritidis. A significant bacterial reduction (>4 and 2 log/cm(2) for S. Typhimurium and S. Enteritidis, respectively; p≤0.005) was obtained in pig skin sprayed with the bacteriophage cocktail and then incubated at 33 °C for 6h. Significant decreases in the concentration of S. Typhimurium and S. Enteritidis were also measured in chicken breasts dipped for 5 min in a solution containing the bacteriophage cocktail and then refrigerated at 4 °C for 7 days (2.2 and 0.9 log10 cfu/g, respectively; p≤0.0001) as well as in lettuce similarly treated for 60 min at room temperature (3.9 and 2.2 log10 cfu/g, respectively; p≤0.005). However, only a minor reduction of the bacterial concentration (0.9 log10 cfu/cm(2) of S. Enteritidis and S. Typhimurium; p≤0.005) was achieved in fresh eggs sprayed with the bacteriophage cocktail and then incubated at 25 °C for 2 h. These results show the potential effectiveness of this bacteriophage cocktail as a biocontrol agent of Salmonella in several food matrices under conditions similar to those used in their production. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Directory of Open Access Journals (Sweden)

    Roja Rani Pallavali

    Full Text Available Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS, Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100% were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence

  9. Initiation and termination of the bacteriophage phi X174 rolling circle DNA replication in vivo: packaging of plasmid single-stranded DNA into bacteriophage phi X174 coats

    NARCIS (Netherlands)

    van der Ende, A.; Teertstra, R.; Weisbeek, P. J.

    1982-01-01

    The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This

  10. Analysis of the complete DNA sequence of the temperate bacteriophage TP901-1: Evolution, structure, and genome organization of lactococcal bacteriophages

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Østergaard, Solvej; Pedersen, Margit

    2001-01-01

    A complete analysis of the entire genome of the temperate lactococcal bacteriophage TP901-1 has been performed and the function of 21 of 56 TP901-1-encoded ORFs has been assigned. This knowledge has been used to propose 10 functional modules each responsible for specific functions during...

  11. Decoding options and accuracy of translation of developmentally regulated UUA codon in Streptomyces: bioinformatic analysis.

    Science.gov (United States)

    Rokytskyy, Ihor; Koshla, Oksana; Fedorenko, Victor; Ostash, Bohdan

    2016-01-01

    The gene bldA for leucyl [Formula: see text] is known for almost 30 years as a key regulator of morphogenesis and secondary metabolism in genus Streptomyces. Codon UUA is the rarest one in Streptomyces genomes and is present exclusively in genes with auxiliary functions. Delayed accumulation of translation-competent [Formula: see text] is believed to confine the expression of UUA-containing transcripts to stationary phase. Implicit to the regulatory function of UUA codon is the assumption about high accuracy of its translation, e.g. the latter should not occur in the absence of cognate [Formula: see text]. However, a growing body of facts points to the possibility of mistranslation of UUA-containing transcripts in the bldA-deficient mutants. It is not known what type of near-cognate tRNA(s) may decode UUA in the absence of cognate tRNA in Streptomyces, and whether UUA possesses certain inherent properties (such as increased/decreased accuracy of decoding) that would favor its use for regulatory purposes. Here we took bioinformatic approach to address these questions. We catalogued the entire complement of tRNA genes from several relevant Streptomyces and identified genes for posttranscriptional modifications of tRNA that might be involved in UUA decoding by cognate and near-cognate tRNAs. Based on tRNA gene content in Streptomyces genomes, we propose possible scenarios of UUA codon mistranslation. UUA is not associated with an increased rate of missense errors as compared to other leucyl codons, contrasting general belief that low-abundant codons are more error-prone than the high-abundant ones.

  12. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea.

    Science.gov (United States)

    Salla, Tamiris D; Astarita, Leandro V; Santarém, Eliane R

    2016-04-01

    Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.

  13. Streptomyces humi sp. nov., an actinobacterium isolated from soil of a mangrove forest.

    Science.gov (United States)

    Zainal, Nurullhudda; Ser, Hooi-Leng; Yin, Wai-Fong; Tee, Kok-Keng; Lee, Learn-Han; Chan, Kok-Gan

    2016-03-01

    A novel Streptomyces strain, MUSC 119(T), was isolated from a soil collected from a mangrove forest. Cells of MUSC 119(T) stained Gram-positive and formed light brownish grey aerial mycelium and grayish yellowish brown substrate mycelium on ISP 2 medium. A polyphasic approach was used to determine the taxonomic status of strain MUSC 119(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The cell wall peptidoglycan consisted of LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile consisted of phosphatidylinositol, phosphatidylethanolamine, glycolipids, diphosphatidylglycerol and four phospholipids. The predominant cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The cell wall sugars were glucose, mannose, ribose and rhamnose. The phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain MUSC119(T) to be closely related to Streptomyces rhizophilus JR-41(T) (99.0 % sequence similarity), S. panaciradicis 1MR-8(T) (98.9 %), S. gramineus JR-43(T) (98.8 %) and S. graminisoli JR-19(T) (98.7 %). These results suggest that MUSC 119(T) should be placed within the genus Streptomyces. DNA-DNA relatedness values between MUSC 119(T) to closely related strains ranged from 14.5 ± 1.3 to 27.5 ± 0.7 %. The G+C content was determined to be 72.6 mol %. The polyphasic study of MUSC 119(T) showed that this strain represents a novel species, for which the name Streptomyces humi sp. nov. is proposed. The type strain of S. humi is MUSC 119(T) (=DSM 42174(T) = MCCC 1K00505(T)).

  14. Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan.

    Science.gov (United States)

    Amin, Arshia; Ahmed, Iftikhar; Khalid, Nauman; Osman, Ghenijan; Khan, Inam Ullah; Xiao, Min; Li, Wen-Jun

    2017-01-01

    A Gram-staining positive, non-motile, rod-shaped, catalase positive and oxidase negative bacterium, designated NCCP-1331 T , was isolated from a hot water spring soil collected from Tatta Pani, Kotli, Azad Jammu and Kashmir, Pakistan. The isolate grew at a temperature range of 18-40 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0) and with 0-6 % NaCl (optimum 2 % NaCl (w/v)). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain NCCP-1331 T belonged to the genus Streptomyces and is closely related to Streptomyces brevispora BK160 T with 97.9 % nucleotide similarity, followed by Streptomyces drosdowiczii NRRL B-24297 T with 97.8 % nucleotide similarity. The DNA-DNA relatedness values of strain NCCP-1331 T with S. brevispora KACC 21093 T and S. drosdowiczii CBMAI 0498 T were 42.7 and 34.7 %, respectively. LL-DAP was detected as diagnostic amino acid along with alanine, glycine, leucine and glutamic acid. The isolate contained MK-9(H 8 ) as the predominant menaquinone. Major polar lipids detected in NCCP-1331 T were phosphatidylethanolamine, phosphatidylinositol and unidentified phospholipids. Major fatty acids were iso-C 16: 0 , summed feature 8 (18:1 ω7c/18:1 ω6c), anteiso-C 15:0 and C 16:0 . The genomic DNA G + C content was 69.8 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic analysis, it is concluded that strain NCCP-1331 T represents a novel species of the genus Streptomyces, for which the name Streptomyces caldifontis sp. nov. is proposed. The type strain is NCCP-1331 T (=KCTC 39537 T  = CPCC 204147 T ).

  15. Streptomyces capparidis sp. nov., a novel endophytic actinobacterium isolated from fruits of Capparis spinosa L.

    Science.gov (United States)

    Wang, Hong-Fei; Li, Qiu-Li; Xiao, Min; Zhang, Yong-Guang; Zhou, Xing-Kui; Narsing Rao, Manik Prabhu; Duan, Yan-Qing; Li, Wen-Jun

    2017-01-01

    A novel endophytic actinobacterial strain, designated EGI 6500195T, was isolated from fruits of Capparis spinosa. Growth occurred at 10-45 °C (optimum 30 °C), at pH 6-8 (optimum pH 7) and in the presence of 0-1 % (w/v) NaCl. Strain EGI 6500195T shared highest 16S rRNA gene sequence similarity (97.74 %) with Streptomyces vitaminophilus DSM 41686T and less than 97 % sequence similarity with other members of the genus Streptomyces. The diagnostic amino acid in the peptidoglycan was ll-diaminopimelic acid. Whole-cell hydrolysates contained glucose, ribose, fructose and mannose. The predominant menaquinones were MK-9(H6) and MK-9(H8). The polar lipid profile of strain EGI 6500195T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylinositol, phosphatidylcholine, three unknown phospholipids, an unknown aminophospholipid and an unknown aminolipid. The cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, iso-C16 : 0, anteiso-C17 : 1ω9c, summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B) and iso-C17 : 1ω9c. The DNA G+C content of strain EGI 6500195T was 74.1 mol%. The level of DNA-DNA relatedness between strain EGI 6500195T and Streptomyces. vitaminophilus DSM 41686T was 14.1±3.5 %. On the basis of the phenotypic, phylogenetic, chemotaxonomic and DNA-DNA hybridization data, strain EGI 6500195T represents a novel species of the genus Streptomyces, for which the name Streptomyces capparidis sp. nov. is proposed. The type strain is EGI 6500195T (=DSM 42145T=JCM 30089T).

  16. Streptomyces phyllanthi sp. nov., isolated from the stem of Phyllanthus amarus.

    Science.gov (United States)

    Klykleung, Nattaporn; Phongsopitanun, Wongsakorn; Pittayakhajonwut, Pattama; Ohkuma, Moriya; Kudo, Takuji; Tanasupawat, Somboon

    2016-10-01

    The novel endophytic actinomycete strain PA1-07T was isolated from the stem of Phyllanthus amarus. The strain displayed the consistent characteristics of members of the genus Streptomyces. The strain produced short spiral spore chains on aerial mycelia. It grew at pH 5-9, at 40 °C and with a maximum of 5 % (w/v) NaCl. It contained ll-diaminopimelic acid, glucose and ribose in the whole-cell hydrolysate. The major cellular menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8), while the major cellular fatty acids were C16 : 0, iso-C14 : 0, iso-C16 : 0 and anteiso-C15 : 0. The polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and four unknown lipids. The DNA G+C content of the strain was 71 mol%. The strain showed the highest 16S rRNA gene sequence similarity with Streptomyces curacoi JCM 4219T (98.77 %). The DNA-DNA relatedness values between strain PA1-07T and S. curacoi JCM 4219T were lower than 70 %, the cut-off level for assigning strains to the same species. On the basis of these phenotypic and genotypic characteristics, the strain could be distinguished from closely related species of the genus Streptomyces and thus represents a novel species of the genus Streptomyces, for which the name Streptomyces phyllanthi sp. nov. is proposed. The type strain is PA1-07T (=JCM 30865T=KCTC 39785T=TISTR 2346T).

  17. Protoplasting impact on polyketide activity and characterization of the interspecific fusants from Streptomyces spp

    International Nuclear Information System (INIS)

    Slama, N.; Lazim, H.; Barkallah, Insaf; Abbassi, M.; Ben Hassen, A.; Limam, F.

    2009-01-01

    Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and antitumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the production of bioactives compounds. The protoplast formation and regeneration are important processes, and they are a major step following genetic manipulations such as fusion and DNA-mediated transformation, which can improve antibiotic production. The protoplast fusion, transformation and improved fermentation features can be used to regenerate strains with increased antibiotic activity. Local Streptomyces spp. CN207 produce a broad range of secondary metabolites which is active against bacteria and fungi. This strain was used as a donor and S. coelicolor strain M145 was used as a recipient host for protoplast fusion. The protoplast fusion resulted in increased isolation of variants with higher antibiotic activity. Recombinant Streptomyces coelicolor PF04 was increased 10 times more than the wild strain. The antimicrobial activity from PF04 strain was studied using the disc method agar. TLC analysis confirmed that the Rf of cell extract for PF04 strain is identical to antimicrobial compound of Streptomyces CN207. Our results confirm the possibility of transferring antibiotics cluster genes by fusion. In fact, many of the selective markers such as Ticarcillin, Cefalotin, Oxacillin and Cefotaxim were transferred during the protoplast fusion. PFGE analysis and DNA-hybridization confirmed the presence of homologous fragments between a wild-type Streptomyces CN207 and a recombinant S. coelicolor PF04

  18. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C

    Directory of Open Access Journals (Sweden)

    Crnovčić I

    2017-04-01

    Full Text Available Ivana Crnovčić,1 Christian Rückert,2 Siamak Semsary,1 Manuel Lang,1 Jörn Kalinowski,2 Ullrich Keller1 1Institut für Chemie, Technische Universität Berlin, Berlin-Charlottenburg, 2Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany Abstract: Sequencing the actinomycin (acm biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X, revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm

  19. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    NARCIS (Netherlands)

    S. Zindel (Stephan); W.E. Kaman (Wendy); S. Fröls (Sabrina); F. Pfeifer (Felicitas); A. Peters (Annette); J.P. Hays (John); H.-L. Fuchsbauer (Hans-Lothar)

    2013-01-01

    textabstractA novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus

  20. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  1. Stenotrophomonas, Mycobacterium, and Streptomyces in home dust and air: associations with moldiness and other home/family characteristics

    Science.gov (United States)

    Abstract Aims: (1) To investigate the dustborne and airborne bacterial concentrations of three emerging moisture-related bacteria: Stenotrophomonas maltophilia, Streptomyces, and Mycobacterium. (2) To study the association between these bacteria concentrations and Environmenta...

  2. Development and application of a T7 RNA polymerase-dependent expression system for antibiotic production improvement in Streptomyces.

    Science.gov (United States)

    Wei, Junhong; Tian, Jinjin; Pan, Guoqing; Xie, Jie; Bao, Jialing; Zhou, Zeyang

    2017-06-01

    To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces. A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h. The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.

  3. Genomics of three new bacteriophages useful in the biocontrol of Salmonella

    Directory of Open Access Journals (Sweden)

    Carlota eBardina

    2016-04-01

    Full Text Available Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87 able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs; 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic

  4. Structure and assembly of bacteriophage T4 head

    Directory of Open Access Journals (Sweden)

    Black Lindsay W

    2010-12-01

    Full Text Available Abstract The bacteriophage T4 capsid is an elongated icosahedron, 120 nm long and 86 nm wide, and is built with three essential proteins; gp23*, which forms the hexagonal capsid lattice, gp24*, which forms pentamers at eleven of the twelve vertices, and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. The past twenty years of research has greatly elevated the understanding of phage T4 head assembly and DNA packaging. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as that found in phage HK97 and several other icosahedral bacteriophages. Folding of gp23 requires the assistance of two chaperones, the E. coli chaperone GroEL and the phage coded gp23-specific chaperone, gp31. The capsid also contains two non-essential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. The structure of Soc shows two capsid binding sites which, through binding to adjacent gp23 subunits, reinforce the capsid structure. Hoc and Soc have been extensively used in bipartite peptide display libraries and to display pathogen antigens including those from HIV, Neisseria meningitides, Bacillus anthracis, and FMDV. The structure of Ip1*, one of the components of the core, has been determined, which provided insights on how IPs protect T4 genome against the E. coli nucleases that degrade hydroxymethylated and glycosylated T4 DNA. Extensive mutagenesis combined with the atomic structures of the DNA packaging/terminase proteins gp16 and gp17 elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. Cryo-EM structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages

  5. Bacteriophage therapy to combat bacterial infections in poultry.

    Science.gov (United States)

    Wernicki, Andrzej; Nowaczek, Anna; Urban-Chmiel, Renata

    2017-09-16

    Infections in poultry are an economic and health problem in Europe and worldwide. The most common infections are associated with salmonellosis, colibacillosis, campylobacteriosis, and others. The prevalence of Campylobacter-positive poultry flocks in European countries varies from 18% to 90%. In the United States, the prevalence of infected flocks is nearly 90%. A similar percentage of infection has been noted for salmonellosis (about 75-90%) and E. coli (90-95%). The occurence of Clostridium perfringens is a major problem for the poultry industry, with some estimates suggesting colonization of as many as 95% of chickens, resulting in clinical or subclinical infections. In the US, annual economic losses due to Salmonella infections run from $1.188 billion to over $11.588 billion, based on an estimated 1.92 million cases. Similar costs are observed in the case of other types of infections. In 2005 economic losses in the the poultry industry due to mortalities reached 1,000,000 USD.Infections caused by these pathogens, often through poultry products, are also a serious public health issue.The progressive increase in the number of multi-drug resistant bacteria and the complete ban on the use of antibiotics in livestock feed in the EU, as well as the partial ban in the US, have led to the growth of research on the use of bacteriophages to combat bacterial infections in humans and animals.The high success rate and safety of phage therapy in comparison with antibiotics are partly due to their specificity for selected bacteria and the ability to infect only one species, serotype or strain. This mechanism does not cause the destruction of commensal bacterial flora. Phages are currently being used with success in humans and animals in targeted therapies for slow-healing infections. They have also found application in the US in eliminating pathogens from the surface of foods of animal and plant origin. At a time of growing antibiotic resistance in bacteria and the resulting

  6. Identification of novel bacteriophage peptides using a combination of gene sequence LC-MS-MS analysis and BLASTP

    Science.gov (United States)

    Introduction: In an effort to characterize novel bacteriophage with lytic activity against pathogenic E.coli associated with foodborne illness, gene sequencing and mass spectrometry have been used to identify expressed peptides which differentiate isolated bacteriophage from other known phage. Here,...

  7. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed

  8. Genetically engineered bacteriophage delivers a tumor necrosis factor alpha antagonist coating on neural electrodes

    International Nuclear Information System (INIS)

    Kim, Young Jun; Nam, Chang-Hoon; Jin, Young-Hyun; Stieglitz, Thomas; Salieb-Beugelaar, Georgette B

    2014-01-01

    This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications. (paper)

  9. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome.

    Science.gov (United States)

    Traxler, Matthew F; Watrous, Jeramie D; Alexandrov, Theodore; Dorrestein, Pieter C; Kolter, Roberto

    2013-08-20

    Soils host diverse microbial communities that include filamentous actinobacteria (actinomycetes). These bacteria have been a rich source of useful metabolites, including antimicrobials, antifungals, anticancer agents, siderophores, and immunosuppressants. While humans have long exploited these compounds for therapeutic purposes, the role these natural products may play in mediating interactions between actinomycetes has been difficult to ascertain. As an initial step toward understanding these chemical interactions at a systems level, we employed the emerging techniques of nanospray desorption electrospray ionization (NanoDESI) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry to gain a global chemical view of the model bacterium Streptomyces coelicolor interacting with five other actinomycetes. In each interaction, the majority of secreted compounds associated with S. coelicolor colonies were unique, suggesting an idiosyncratic response from S. coelicolor. Spectral networking revealed a family of unknown compounds produced by S. coelicolor during several interactions. These compounds constitute an extended suite of at least 12 different desferrioxamines with acyl side chains of various lengths; their production was triggered by siderophores made by neighboring strains. Taken together, these results illustrate that chemical interactions between actinomycete bacteria exhibit high complexity and specificity and can drive differential secondary metabolite production. Actinomycetes, filamentous actinobacteria from the soil, are the deepest natural source of useful medicinal compounds, including antibiotics, antifungals, and anticancer agents. There is great interest in developing new strategies that increase the diversity of metabolites secreted by actinomycetes in the laboratory. Here we used several metabolomic approaches to examine the chemicals made by these bacteria when grown in pairwise coculture. We found that

  10. Functional and comparative genome analysis of novel virulent actinophages belonging to Streptomyces flavovirens

    Czech Academy of Sciences Publication Activity Database

    Sharaf, Abdoallah; Mercati, F.; Elmaghraby, I.; Elbaz, R. M.; Marei, E. M.

    2017-01-01

    Roč. 17, 3 March (2017), č. článku 51. ISSN 1471-2180 Institutional support: RVO:60077344 Keywords : bacteriophage * biological stability * whole genome sequence * ngs * comparative genomics Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.644, year: 2016

  11. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    Science.gov (United States)

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of ∼20,000 compared to the free drug. PMID:17404004

  12. The allosteric switching mechanism in bacteriophage MS2

    Energy Technology Data Exchange (ETDEWEB)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu [Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474 (United States)

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  13. Novel N4 Bacteriophages Prevail in the Cold Biosphere.

    Science.gov (United States)

    Zhan, Yuanchao; Buchan, Alison; Chen, Feng

    2015-08-01

    Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a "genetic orphan" until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Factors influencing lysis time stochasticity in bacteriophage λ

    Directory of Open Access Journals (Sweden)

    Dennehy John J

    2011-08-01

    Full Text Available Abstract Background Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage. Results Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope. Both mean lysis time (MLT and its associated standard deviation (SD were estimated. Using the SD as a measure of lysis time stochasticity, we showed that lysogenic cells in controlled environments varied widely in lysis times, and that the level of lysis time stochasticity depended on allelic variation in the holin sequence, late promoter (pR' activity, and host growth rate. In general, the MLT was positively correlated with the SD. Both lower pR' activities and lower host growth rates resulted in larger SDs. Results from premature lysis, induced by adding KCN at different time points after lysogen induction, showed a negative correlation between the timing of KCN addition and lysis time stochasticity. Conclusions Taken together with results published by others, we conclude that a large fraction of λ lysis time stochasticity is the result of random events following the expression and diffusion of the holin protein. Consequently, factors influencing the timing of reaching critical holin concentrations in the cell membrane, such as holin production rate, strongly influence the mean lysis time and the lysis time stochasticity.

  15. BENEFICIAL FACE OF BACTERIOPHAGES: APPLICATIONS IN FOOD PROCESSING

    Directory of Open Access Journals (Sweden)

    H. V. Raghu

    2012-06-01

    Full Text Available Foods are processed to make them available at all places; consequently, our awareness regarding hygiene measures in food production has also increased dramatically over the last decades. In many countries cases associated with foodborne infectious are increased. However, available techniques are unable to effectively control the problem. Further, exploring novel methods and technologies for ensuring the safety of food with effective quality control approaches are under research. Phages are the natural enemies of bacteria, and are more specific to host renders them ideal candidates for applications designed to increase food safety during the production process. Scientific findings are available showing the possibility to use as biocontrol agents against various pathogens with out interfering with the natural microflora or the cultures in fermented products. Furthermore, phages or phage derived proteins can also be used to detect the presence of unwanted pathogens in food or the production environments, which allows quick and sp ecific identification of viable cells. Bacteriophages are natural, found in various environments including water; foods etc. and are not found significantly influence the human cells.

  16. phiGENOME: an integrative navigation throughout bacteriophage genomes.

    Science.gov (United States)

    Stano, Matej; Klucar, Lubos

    2011-11-01

    phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Disinfection of bacteriophage MS2 by copper in water.

    Science.gov (United States)

    Armstrong, Andrew M; Sobsey, Mark D; Casanova, Lisa M

    2017-09-01

    Households that lack piped water supply are often forced to meet water needs by storing in the home, leaving water vulnerable to contamination by viruses. Storage in copper containers can potentially prevent this type of contamination, but the inactivation kinetics of viruses by copper need to be described to make appropriate storage recommendations. This work characterized inactivation kinetics of bacteriophage MS2 as a surrogate for enteric viruses by dissolved ionic copper in water. Reduction of MS2 increased with increasing doses of copper. At 0.3 mg/L, there was a 1.8-log 10 reduction of MS2 within 6 h. At 1 and 3 mg/L, 2-2.5 log 10 inactivation could be achieved between 6 and 24 h. Parameters for the Chick-Watson, Hom, and One Hit-Two Population models of inactivation were calculated and evaluated, all of which demonstrated strong goodness-of-fit and predictability at various contact times. Copper inactivates MS2 under controlled conditions at doses between 0.3 and 3 mg/L. Although requiring longer contact times than conventional disinfectants, it is a candidate for improving the safety of stored drinking water.

  18. Purification of bacteriophage M13 by anion exchange chromatography.

    Science.gov (United States)

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae).

    Science.gov (United States)

    Yan, Qian; Qiao, Huping; Gao, Jin; Yun, Yueli; Liu, Fengxiang; Peng, Yu

    2015-11-01

    Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.

  20. Fluorescent nanodiamond-bacteriophage conjugates maintain host specificity.

    Science.gov (United States)

    Trinh, Jimmy T; Alkahtani, Masfer H; Rampersaud, Isaac; Rampersaud, Arfaan; Scully, Marlan; Young, Ryland F; Hemmer, Philip; Zeng, Lanying

    2018-06-01

    Rapid identification of specific bacterial strains within clinical, environmental, and food samples can facilitate the prevention and treatment of disease. Fluorescent nanodiamonds (FNDs) are being developed as biomarkers in biology and medicine, due to their excellent imaging properties, ability to accept surface modifications, and lack of toxicity. Bacteriophages, the viruses of bacteria, can have exquisite specificity for certain hosts. We propose to exploit the properties of FNDs and phages to develop phages conjugated with FNDs as long-lived fluorescent diagnostic reagents. In this study, we develop a simple procedure to create such fluorescent probes by functionalizing the FNDs and phages with streptavidin and biotin, respectively. We find that the FND-phage conjugates retain the favorable characteristics of the individual components and can discern their proper host within a mixture. This technology may be further explored using different phage/bacteria systems, different FND color centers and alternate chemical labeling schemes for additional means of bacterial identification and new single-cell/virus studies. © 2018 Wiley Periodicals, Inc.

  1. Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application.

    Science.gov (United States)

    Islam, Golam S; Wang, Qi; Sabour, Parviz M

    2018-01-01

    Due to emerging antibiotic-resistant strains among the pathogens, a variety of strategies, including therapeutic application of bacteriophages, have been suggested as a possible alternative to antibiotics in food animal production. As pathogen-specific biocontrol agents, bacteriophages are being studied intensively. Primarily their applications in the food industry and animal production have been recognized in the USA and Europe, for pathogens including Salmonella, Campylobacter, Escherichia coli, and Listeria. However, the viability of orally administered phage may rapidly reduce under the harsh acidic conditions of the stomach, presence of enzymes and bile. It is evident that bacteriophages, intended for phage therapy by oral administration, require efficient protection from the acidic environment of the stomach and should remain active in the animal's gastrointestinal tract where pathogen colonizes. Encapsulation of phages by spray drying or extrusion methods can protect phages from the simulated hostile gut conditions and help controlled release of phages to the digestive system when appropriate formulation strategy is implemented.

  2. Decreased survival of the λ15 bacteriophage induced by UV-365 nanometers in Escherichia coli

    International Nuclear Information System (INIS)

    Luca, M.E.M. de.

    1989-01-01

    The results of our investigation showed a new effect (not yet described in the current literature) of the UV-365 nm, verified when the bacteria E. coli was irradiated with this wavelenght and then infected with bacteriophage irradiated with short UV (254 nm). In these conditions we observed a decrease in the phage survival. This phenomenon was called Decreased Survival of the Bacteriophage (DSB). We were able to show that DSB was only induced in bacteria irradiated with UV-365 nm, proficient in recombination repair and owning 4-thiouridine in their tRNA. For the induction of DSB it is necessary to promote damage in the bacteriophage through UVA and UVB. It seems that DSB and SOS are antagonistic since DSB is able to suppress the mutation induced by SOS. (author)

  3. Research of pathogenic bacteria and bacteriophages in the residuals of wastewater treatment plants

    International Nuclear Information System (INIS)

    Mathlouthi, Soumaya

    2011-01-01

    The aim of this study is to find the pathogenic bacteria Listeria and Salmonella and to detect of bacterial (fecal coliforms) and viral indicators (bacteriophage) of fecal contamination in the residues of three sewage treatment plants in Greater Tunis: Charguia, Jdaida and Wardia. Three types of samples were analyzed: raw sewage, treated wastewater and sludge. The study showed the presence of pathogenic bacteria in some samples with a frequency of 7 pour cent for Listeria and 21 pour cent for Salmonella. However, none of these organisms has been detected in treated water of Jdaida and Chargia reflecting the efficiency of the purification process in these stations. Furthermore, all samples were positive for the presence of fecal coliforms and bacteriophages with important titles: up to 8.23 log10 (CFU/L) for coliforms and 8.36 log10 (pfu/L) for bacteriophages.

  4. Streptomyces luozhongensis sp. nov., a novel actinomycete with antifungal activity and antibacterial activity.

    Science.gov (United States)

    Zhang, Renwen; Han, Xiaoxue; Xia, Zhanfeng; Luo, Xiaoxia; Wan, Chuanxing; Zhang, Lili

    2017-02-01

    A novel actinomycete strain, designated TRM 49605 T , was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605 T to the genus Streptomyces. Strain TRM 49605 T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815 T (98.62 %), Streptomyces flavovariabilis NRRL B-16367 T (98.45 %) and Streptomyces variegatus NRRL B-16380 T (98.45 %). Whole cell hydrolysates of strain TRM 49605 T were found to contain LL-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605 T were identified as iso C 16:0 , anteiso C 15:0 , C 16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H 4 ), MK-9(H 6 ), MK-9(H 8 ) and MK-10(H 6 ). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA-DNA relatedness between strain TRM 49605 T and the phylogenetically related strain S. roseolilacinus NBRC 12815 T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605 T (=CCTCC AA2015026 T  = KCTC 39666 T ) should be designated as the type strain of a novel species of the genus

  5. Bacteriophages to combat foodborne infections caused by food contamination by bacteria of the Campylobacter genus

    Directory of Open Access Journals (Sweden)

    Magdalena Myga-Nowak

    2016-09-01

    Full Text Available It is estimated that each year more than 2 million people suffer from diarrheal diseases, resulting from the consumption of contaminated meat. Foodborne infections are most frequently caused by small Gram-negative rods Campylobacter. The hosts of these bacteria are mainly birds wherein they are part of the normal intestinal flora. During the commercial slaughter, there is a likelihood of contamination of carcasses by the bacteria found in the intestinal content. In Europe, up to 90% of poultry flocks can be a reservoir of the pathogen. According to the European Food Safety Authority report from 2015, the number of reported and confirmed cases of human campylobacteriosis exceeds 200 thousands per year, and such trend remains at constant level for several years. The occurrence of growing antibiotic resistance in bacteria forces the limitation of antibiotic use in the animal production. Therefore, the European Union allows only using stringent preventive and hygienic treatment on farms. Achieving Campylobacter free chickens using these methods is possible, but difficult to implement and expensive. Utilization of bacterial viruses – bacteriophages, can be a path to provide the hygienic conditions of poultry production and food processing. Formulations applied in the food protection should contain strictly lytic bacteriophages, be non-pyrogenic and retain long lasting biological activity. Currently, on the market there are available commercial bacteriophage preparations for agricultural use, but neither includes phages against Campylobacter. However, papers on the application of bacteriophages against Campylobacter in chickens and poultry products were published in the last few years. In accordance with the estimates, 2-logarithm reduction of Campylobacter in poultry carcases will contribute to the 30-fold reduction in the incidence of campylobacteriosis in humans. Research on bacteriophages against Campylobacter have cognitive and economic

  6. Antibacterial Efficacy of Lytic Bacteriophages against Antibiotic-Resistant Klebsiella Species

    Directory of Open Access Journals (Sweden)

    M. Khajeh Karamoddini

    2011-01-01

    Full Text Available Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran. Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation and solid (double-layer agar plate method; after 24 h of incubation phases. In each method, three different concentrations of bacteriophages (low: 107 PFU/mL were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  7. Detection of bacteriophage-infected cells of Lactococcus lactis using flow cytometry

    DEFF Research Database (Denmark)

    Michelsen, Ole; Cuesta-Dominguez, Álvaro; Albrektsen, Bjarne

    2007-01-01

    Bacteriophage infection in dairy fermentation constitutes a serious problem worldwide. We have studied bacteriophage infection in Lactococcus lactis by using the flow cytometer. The first effect of the infection of the bacterium is a change from cells in chains toward single cells. We interpret...... describe a new method for detection of phage infection in Lactococcus lactis dairy cultures. The method is based on flow cytometric detection of cells with low-density cell walls. The method allows fast and early detection of phage-infected bacteria, independently of which phage has infected the culture...

  8. Selective Deactivation of M13 Bacteriophage in E. Coli using Femtosecond Laser Pulses

    CSIR Research Space (South Africa)

    Molukanele, P

    2010-09-01

    Full Text Available Deactivation of M13 Bacteriophage in E. Coli using Femtosecond Laser Pulses P. Molukanele 1, 3, A. Du Plessis 1, T. Roberts 1, L. Botha 1, M. Khati 2,3, W. Campos 2, 3 1CSIR National Laser Centre, Femtosecond Science group, Pretoria, South Africa 2CSIR... that is about 1 ?m long and 5-6 nm in diameter. Its host Escherichia coli (E.coli), is approximately 2-6 ?m long and 1-1.5 ?m in diameter, see figure 1 below. Figure 1: Schematic representations of M13 bacteriophage and its host E.coli...

  9. Streptomyces pini sp. nov., an actinomycete isolated from phylloplane of pine (Pinus sylvestris L.) needle-like leaves.

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Saravanan, Venkatakrishnan Sivaraj; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah; Pragatheswari, Dhandapani; Santhanakrishnan, Palani; Kim, Soo-Jin; Weon, Hang-Yeon; Kwon, Soon-Wo

    2016-10-01

    A novel siderophore-producing actinomycete, designated PL19T, was isolated from the Scots-pine needle-like leaves collected from TNAU campus, Coimbatore, India. The isolate was chemoorganotrophic in nutrition and able to grow at 30 °C, and the optimum pH and NaCl facilitated the growth pH 6-11 and 0-8 % (w/v), respectively. The cells are filamentous and the mycelia formed are basically of wide and intricately branched substrate mycelium from which aerial mycelia arises, later gets differentiated into spores that are warty and arranged spirally. The 16S rRNA gene of strain PL19T was sequenced and was highly similar to the type strains of species of the genus Streptomyces, including Streptomyces barkulensis RC1831T (98.8 % pairwise similarity), Streptomyces fenghuangensis GIMN4.003T (98.2 %), Streptomyces nanhaiensis SCSIO 01248T (98.0 %), Streptomyces radiopugnans R97T (97.9 %), Streptomyces atacamensis C60T (97.8 %) and Streptomyces macrosporus NBRC 14749T (97.2 %), all of which were subjected to taxonomical characterization using a polyphasic approach. The strains showed unique carbon utilization patterns, and it possesses iso-C16 : 0 anteiso-C15 : 0 and anteiso-C17 : 0 as a major cellular fatty acids. The cell-wall was dominated with ll-type diaminopimelic acid, and the menaquinone type was MK-9(H6, H8). These chemotaxonomic evidences placed strain PL19T within the genus Streptomyces. The determination of G+C ratio (69.5 mol%) and DNA-DNA hybridization values (13.4-31.8 % with the phylogenetically related species) helped in further hierarchical classification of strain PL19T. Based on morphological, physiological and chemotaxonomic data as well as DNA-DNA hybridization values, strain PL19T could be distinguished from the evolutionarily closest species currently available. All these collective data show that strain PL19T represents a novel species of the genus Streptomyces, for which the name Streptomyces pini sp. nov. is proposed

  10. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...... proteins, FtsZ, DivIVA, and FtsH2, were previously demonstrated to be involved in the sporulation process. We thus established for the first time the widespread occurrence and dynamic features of Ser/Thr/Tyr protein phosphorylation in a bacteria species and also revealed a previously unrecognized...

  11. Characterization of Streptomyces isolates causing colour changes of mural paintings in ancient Egyptian tombs.

    Science.gov (United States)

    Abdel-Haliem, M E F; Sakr, A A; Ali, M F; Ghaly, M F; Sohlenkamp, C

    2013-08-25

    Paintings in ancient Egyptian tombs often suffer colour changes due to microbial growth and colonization. Streptomyces strains were isolated from mural paintings of Tell Basta and Tanis tombs (East of Nile Delta, Egypt) and were identified using biochemical and molecular methods. The16S rDNA sequences data indicated that isolated strains were closely related to S. coelicolor, S. albidofuscus, S. ambofaciens, S. canarius, S. parvullus, S. corchorusii, S. albidofuscus and S. nigrifaciens. It could be shown that Streptomyces strains are involved on a large scale in the colour changes of paintings and stone support by producing a wide range of metabolites such as acids (oxalic, citric and sulphuric acids), biopigments of melanin, carotenoids, and hydrogen sulphide. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    Science.gov (United States)

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Studies on Optimization of Growth Parameters for L-Asparaginase Production by Streptomyces ginsengisoli

    Directory of Open Access Journals (Sweden)

    Neelima Deshpande

    2014-01-01

    Full Text Available A species of Streptomyces, Streptomyces ginsengisoli, a river isolate, was evaluated for production of an enzyme, L-asparaginase, with multiple functions mainly anticancer activity. The actinomycete was subjected to submerged fermentation by “shake flask” method. The quantity of L-asparaginase produced was estimated as 3.23 μmol/mL/min. The effect of various culture conditions on L-asparaginase production was studied by adopting a method of variation in one factor at a time. Of the various conditions tested, glucose (followed by starch and peptone served as good carbon and nitrogen sources, respectively, for maximal production of enzyme at pH 8. The temperature of 30°C and an incubation period of 5 days with 0.05 g% asparagine concentration were found to be optimum for L-asparaginase production.

  14. Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Ryan M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). QB3 Inst.; Sachs, Daniel [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Petkiewicz, Shayne J. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Barajas, Jesus F. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Blake-Hedges, Jacquelyn M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Thompson, Mitchell G. [Univ. of California, Berkeley, CA (United States). Dept. of Plant & Microbial Biology; Reider Apel, Amanda [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Rasor, Blake J. [Miami Univ., Oxford, Ohio (United States). Dept. of Biology; Katz, Leonard [Univ. of California, Berkeley, CA (United States). QB3 Inst.; Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). QB3 Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering and Department of Bioengineering; Technical Univ. of Denmark, Kogle Alle (Denmark). Novo Nordisk Foundation Center for Biosustainability

    2016-09-07

    Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promoters and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. In conclusion, these tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.

  15. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2011-09-01

    Full Text Available Abstract Background Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function. However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns. Results In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein. Conclusions The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their function.

  16. Streptomyces rimosus GDS(L Lipase: Production, Heterologous Overexpression and Structure-Stability Relationship

    Directory of Open Access Journals (Sweden)

    Marija Abramić

    2003-01-01

    Full Text Available Streptomyces rimosus lipase gene has been overexpressed in a heterologous host, S. lividans TK23. The maximal lipase activity was determined in the culture filtrates of the late stationary phase. Time course of lipase production was monitored by a modified plate assay. S. rimosus lipase gene has been located on the AseI B fragment approximately 2 Mb far from the left end of the S. rimosus linear chromosome. Out of eight examined streptomycetes, the presence of this rare type of bacterial lipase gene was detected in two belonging to the S. rimosus taxonomic cluster, and in one non-related species. Comparison of protein sequences of the Streptomyces lipolytic enzymes was performed. The result indicated the best structural stability of the putative S. coelicolor lipase-2.

  17. DNA replication is not restricted to specific regions in young vegetative Streptomyces mycelia

    International Nuclear Information System (INIS)

    Kummer, C.; Kretschmer, S.

    1986-01-01

    In order to determine the localization of DNA-synthesis in Streptomyces granaticolor and Streptomyces hygroscopicus, mycelia (growing either on agar or in liquid medium) were pulse-labelled with 3 H-thymidine and prepared for autoradiography. The distribution of silver grains showed no regions of preferential incorporation of 3 H-thymidine in mycelia up 300 μm in length. Since mycelia grow by apical elongation of hyphae, the frequency of silver grains was quantitatively analysed along individual main hyphase. No significant difference of labelling was found within zones of different age up to a distance of 80 μm from the hyphal tip. Also, the very youngest part of the hyphae enclosing only the most apically situated nucleoid did not show any deviation from the average frequency of silver grains. (author)

  18. A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi

    Directory of Open Access Journals (Sweden)

    Lijian Xu

    2016-08-01

    Full Text Available Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008. With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis.

  19. Preliminary X-ray crystallographic analysis of the glycosyltransferase from a marine Streptomyces species

    International Nuclear Information System (INIS)

    Gong, Liping; Xiao, Yi; Liu, Qiang; Li, Sumei; Zhang, Changsheng; Liu, Jinsong

    2010-01-01

    The recombinant glycosyltransferase ElaGT from the elaiophylin-producing marine Streptomyces sp. SCSIO 01934 has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.9 Å resolution. ElaGT is a glycosyltransferase from a marine Streptomyces species that is involved in the biosynthesis of elaiophylin. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of ElaGT are reported. The rod-shaped crystals belonged to space group P2 1 22, with unit-cell parameters a = 66.7, b = 131.7, c = 224.6 Å, α = 90, β = 90, γ = 90°. Data were collected to 2.9 Å resolution. A preliminary molecular-replacement solution implied the presence of two ElaGT molecules in the asymmetric unit

  20. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.

    Science.gov (United States)

    Malik, Danish J; Sokolov, Ilya J; Vinner, Gurinder K; Mancuso, Francesco; Cinquerrui, Salvatore; Vladisavljevic, Goran T; Clokie, Martha R J; Garton, Natalie J; Stapley, Andrew G F; Kirpichnikova, Anna

    2017-11-01

    Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver

  1. Nutritional control of antibiotic production by Streptomyces platensis MA7327: importance of L-aspartic acid

    OpenAIRE

    Falzone, Maria; Crespo, Emmanuel; Jones, Klarissa; Khan, Gulaba; Korn, Victoria L; Patel, Amreen; Patel, Mira; Patel, Krishnaben; Perkins, Carrie; Siddiqui, Sana; Stenger, Drew; Yu, Eileen; Gelber, Michael; Scheffler, Robert; Nayda, Vasyl

    2017-01-01

    Streptomyces platensis MA7327 is a bacterium producing interesting antibiotics, which act by the novel mechanism of inhibiting fatty acid biosynthesis. The antibiotics produced by this actinomycete are platensimycin and platencin plus some minor related antibiotics. Platensimycin and platencin have activity against antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus; they also lack toxicity in animal models. Platensimycin als...

  2. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans

    OpenAIRE

    Castillo, UF; Strobel, GA; Ford, EJ; Hess, WM; Porter, H; Jensen, JB; Albert, H; Robison, R; Condron, MAM; Teplow, DB; Stevens, D; Yaver, D

    2002-01-01

    Munumbicins A, B, C and D are newly described antibiotics with a wide spectrum of activity against many human as well as plant pathogenic fungi and bacteria, and a Plasmodium sp. These compounds were obtained from Streptomyces NRRL 3052, which is endophytic in the medicinal plant snakevine (Kennedia nigriscans), native to the Northern Territory of Australia. This endophyte was cultured, the broth was extracted with an organic solvent and the contents of the residue were purified by bioassay-g...

  3. The Biocontrol Efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in Tomato

    OpenAIRE

    Qinggui Lian; Jing Zhang; Liang Gan; Qing Ma; Zhaofeng Zong; Yang Wang

    2017-01-01

    LMM15, an actinomycete with broad spectrum antifungal activity, was isolated from a diseased tomato leaf using the baiting technique. A phylogenetic tree analysis based on similarity percentage of 16S rDNA sequences showed that the bacterium was 97.0% affiliated with the species Streptomyces pratensis. This strain was therefore coded as S. pratensis LMM15. The ferment filtrate of LMM15 had ability to inhibit mycelia growth of Botrytis cinerea and reduce lesion expansion of gray mold on detach...

  4. Streptomyces cameroonensis sp. nov., a Geldanamycin Producer That Promotes Theobroma cacao Growth.

    Science.gov (United States)

    Boudjeko, Thaddée; Tchinda, Romaric Armel Mouafo; Zitouni, Mina; Nana, Joëlle Aimée Vera Tchatchou; Lerat, Sylvain; Beaulieu, Carole

    2017-03-31

    The taxonomy of an actinobacterial strain, designated JJY4 T , was established using a polyphasic approach. JJY4 T was isolated from the rhizosphere of Chromolaena odorata in Yaoundé (Cameroon) during a project for the selection of biological control agents. Strain JJY4 T exhibited antimicrobial activities against bacteria, fungi, and oomycetes. Strain JJY4 T also exhibited the traits of plant growth-promoting rhizobacteria such as the solubilization of inorganic phosphate, production of siderophores and indole-3-acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase activity. In planta assays performed on cocoa plantlets confirmed that strain JJY4 T exhibited strong abilities to promote plant growth and protect against Phytophthora megakarya, the main causal agent of cocoa pod rot. The formation of rugose-ornamented spores in spiral spore chains by strain JJY4 T is a typical feature of members found in the Streptomyces violaceusniger clade and, similar to some members of the clade, strain JJY4 T produces geldanamycin. A phylogenetic analysis based on 16S rRNA gene sequences confirmed this classification and suggests that strain JJY4 T be added to the subclade constituted of the type strains Streptomyces malaysiensis DSM 41697 T and Streptomyces samsunensis DSM 42010 T . However, DNA-DNA relatedness and physiological characteristics allowed for the differentiation of strain JJY4 T from its closest phylogenetic relatives. Based on these results, strain JJY4 T (=NRRL B-65369, =NBRC 112705) appears to represent a novel species in the S. violaceusniger clade for which the proposed name is Streptomyces cameroonensis sp. nov.

  5. Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory.

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A M; Darwesh, Osama M M

    2014-04-01

    The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables (AgNO3 concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM AgNO3 (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).

  6. Strain improvement in Streptomyces galilaeus, a producer of anthracycline antibiotics galirubins

    International Nuclear Information System (INIS)

    Kralovcova, E.; Blumauerova, M.; Vanek, Z.

    1977-01-01

    The production of epsilon-pyrromycinone glycosides in Streptomyces galilaeus increased 12-fold, with respect to the wild strain, as a result of a sequential procedure including both natural selection and treatment with mutagens (nitrous acid, UV light and γ irradiation). Nitrous acid exhibited the highest mutagenic effect, both in increasing the productivity and in inducing blocked mutants. A mutant strain blocked in the biosynthesis of glycosides and accumulating free epsilon-pyrromycinone as the principal metabolite was obtained. (author)

  7. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity.

    Science.gov (United States)

    Hamm, Paris S; Caimi, Nicole A; Northup, Diana E; Valdez, Ernest W; Buecher, Debbie C; Dunlap, Christopher A; Labeda, David P; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-03-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria , more specifically from the genus Streptomyces Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans , which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans , with 32 (88.9%) actinobacteria belonging to the genus Streptomyces Isolates in the genera Rhodococcus , Streptosporangium , Luteipulveratus , and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans , the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. Copyright © 2017 American Society for Microbiology.

  8. Streptomyces zhihengii sp. nov., isolated from rhizospheric soil of Psammosilene tunicoides.

    Science.gov (United States)

    Huang, Mei-Juan; Fei, Jing-Jing; Salam, Nimaichand; Kim, Chang-Jin; Hozzein, Wael N; Xiao, Min; Huang, Hai-Quan; Li, Wen-Jun

    2016-10-01

    An actinomycete strain, designated YIM T102(T), was isolated from the rhizospheric soil of Psammosilene tunicoides W. C. Wu et C. Y. Wu collected from Lijiang, Yunnan Province, China. The taxonomic position of the new isolate was investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YIM T102(T) belongs to the genus Streptomyces. Strain YIM T102(T) was most closely related to Streptomyces eurocidicus NRRL B-1676(T) with a pairwise 16S rRNA gene sequence similarity of 98.9 %. However, DNA-DNA relatedness value between strain YIM T102(T) and S. eurocidicus NBRC 13491(T) was found to be 37.8 ± 1.8 %. The menaquinone composition detected for strain YIM T102(T) was MK-9 (H6) and MK-9 (H8), while the major fatty acids were summed feature 4 (38.0 %), anteiso-C15:0 (13.1 %), iso-C16:0 (10.1 %), summed feature 3 (9.8 %) and C16:0 (9.0 %) and iso-C15:0 (5.2 %). The whole-cell hydrolysates contained galactose, glucose, ribose and mannose, along with LL-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan. The DNA G+C content was 70.7 mol%. Strain YIM T102(T) also exhibited antagonistic activity against Alternaria alternata, Alternaria brassicae and Colletotrichum nicotianae Averna, based on the findings from the comparative analyses of phenotypic and genotypic characteristics; it is proposed that strain YIM T102 represents a novel species of the genus Streptomyces, for which the name Streptomyces zhihengii sp. nov. is proposed. The type strain is YIM T102(T) (=KCTC 39115(T) = DSM 42176(T) = CGMCC 4.7248(T)).

  9. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India.

    Science.gov (United States)

    Sharma, Trupti K; Mawlankar, Rahul; Sonalkar, Vidya V; Shinde, Vidhya K; Zhan, Jing; Li, Wen-Jun; Rele, Meenakshi V; Dastager, Syed G; Kumar, Lalitha Sunil

    2016-02-01

    A novel alkaliphilic actinomycete, strain NCL716(T), was isolated from a soil sample collected from the vicinity of Lonar Lake, an alkaline salt water meteorite lake in Buldhana district of Maharashtra State in India. The strain was characterised using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth was observed over a pH range of 7-11 at 28 °C. The cell wall was found to contain LL-diaminopimelic acid and traces of meso-diaminopimelic acid. The major fatty acid components were identified as iso-C16:0 (46.8 %), C17:1 (12.4 %), anteiso-C15:0 (5.1 %) and anteiso-C17:1 (4.8 %). The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The major menaquinones were determined to be MK-9 (H6) (70.3 %), MK-9 (H4) (15.5 %) and MK-9 (H8) (7.2 %). The G+C content of the DNA of the type strain was determined to be 71.4 mol %. The 16S rRNA gene sequence has been deposited in GenBank with accession number FJ919811. Although the 16S rRNA gene sequence analysis revealed that strain NCL716(T) shares >99 % similarity with that of Streptomyces bohaiensis strain 11A07(T), DNA-DNA hybridization revealed only 33.2 ± 3.0 % relatedness between them. Moreover, these two strains can be readily distinguished by some distinct phenotypic characteristics. Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NCL716(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces lonarensis sp. nov., is proposed. The type strain is NCL 716(T) (=DSM 42084(T) = MTCC 11708(T) = KCTC 39684(T)).

  10. Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil.

    Science.gov (United States)

    Mo, Ping; Yu, Yi-Zun; Zhao, Jia-Rong; Gao, Jian

    2017-03-01

    An actinomycete strain, designated strain LUSFXJ T , was isolated from a soil sample obtained near the Xiangtan Manganese Mine, Central-South China and characterised using a polyphasic taxonomic approach. The 16S rRNA gene sequence-based phylogenetic analysis indicated that this strain belongs to the genus Streptomyces. The DNA-DNA relatedness between this strain and two closely related type strains, Streptomyces echinatus CGMCC 4.1642 T and Streptomyces lanatus CGMCC 4.137 T , were 28.7 ± 0.4 and 19.9 ± 2.0%, respectively, values which are far lower than the 70% threshold for the delineation of a novel prokaryotic species. The DNA G+C content of strain LUSFXJ T is 75.0 mol%. Chemotaxonomic analysis revealed that the menaquinones of strain LUSFXJ T are MK-9(H 6 ), MK-9(H 8 ), MK-9(H 2 ) and MK-8(H 8 ). The polar lipid profile of strain LUSFXJ T was found to contain diphosphatidylglycerol and an unidentified polar lipid. The major cellular fatty acids were identified as iso-C 15:0 , anteiso-C 15:0 , iso-C 16:0 , C 16:0 and Summed feature 3. Strain LUSFXJ T was found to contain meso-diaminopimelic acid as the diagnostic cell wall diamino acid and the whole cell hydrolysates were found to be rich in ribose, mannose and glucose. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, it is concluded that strain LUSFXJ T represents a novel species of the genus Streptomyces, for which the name S. xiangtanensis sp. nov. is proposed. The type strain is LUSFXJ T (=GDMCC 4.133 T  = KCTC 39829 T ).

  11. Problems of RNA synthesis study using radioactive precursors in Streptomyces aureofaciens

    International Nuclear Information System (INIS)

    Danyi, O.; Trnovsky, J.; Simuth, J.; Zelinka, J.

    1978-01-01

    The studies of the RNA synthesis by 14 C labelled uracil and uridine within Streptomyces aureofaciens were carried out. It was determined, that the substantial part (90%) of the acid insoluble radioactivity was transported after the 20 minutes of hydrolysis in 5% TCA at 90 degC into the acid soluble fraction. 14 C (U) uridine was found to incorporate into DNA, where the radioactivity in cytosine and thymine was determined. The usage of 3 H labelled uridine was not effective. (author)

  12. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

    OpenAIRE

    Pacheco da Rosa, Juliana; Korenblum, Elisa; Franco-Cirigliano, Marcella Novaes; Abreu, Fernanda; Lins, Ulysses; Soares, Rosângela M. A.; Macrae, Andrew; Seldin, Lucy; Coelho, Rosalie R. R.

    2013-01-01

    Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with...

  13. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  14. Four new anthraquinones from a soil actinomycete Streptomyces sp. WS-13394 and their bioactivities.

    Science.gov (United States)

    Wu, Zhaoyuan; Zhang, Yani; Fang, Wei; Shi, Liqiao; Wan, Zhongyi

    2018-02-01

    Further chemical study of secondary metabolites from the soil actinomycete Streptomyces sp. WS-13394 resulted in the isolation of four new alkylated anthraquinone analogues (5-8). Their structures were elucidated on the basis of extensive spectroscopic analysis, including HR-ESI-MS, 1D and 2D NMR. The new compounds, together with analogues obtained before (1-4), were tested for their in vitro cytotoxicity against Huh-7 and SGC-7901.

  15. Scopranones with Two Atypical Scooplike Moieties Produced by Streptomyces sp. BYK-11038.

    Science.gov (United States)

    Uchida, Ryuji; Lee, Daiki; Suwa, Ibuki; Ohtawa, Masaki; Watanabe, Nozomu; Demachi, Ayumu; Ohte, Satoshi; Katagiri, Takenobu; Nagamitsu, Tohru; Tomoda, Hiroshi

    2017-11-03

    Three new compounds, designated scopranones A-C, were isolated from the culture broth of a soil isolate, Streptomyces sp. BYK-11038, and shown to be inhibitors of bone morphogenetic protein (BMP) induced alkaline phosphatase activity in a BMP receptor mutant cell line. The structures were elucidated using NMR and other spectral data. The scopranones have an unusual structure with two atypical scooplike moieties linked at the tails to form part of a unique 3-furanone ring.

  16. Frenolicins C–G, Pyranonaphthoquinones from Streptomyces sp. RM-4-15

    OpenAIRE

    Wang, Xiachang; Shaaban, Khaled A.; Elshahawi, Sherif I.; Ponomareva, Larissa V.; Sunkara, Manjula; Zhang, Yinan; Copley, Gregory C.; Hower, James C.; Morris, Andrew J.; Kharel, Madan K.; Thorson, Jon S.

    2013-01-01

    Appalachian active coal fire sites were selected for the isolation of bacterial strains belonging to the class actinobacteria. A comparison of high resolution electrospray ionization mass spectrometry (HR-ESI-MS) and ultraviolet (UV) absorption profiles from isolate extracts to natural product databases suggested Streptomyces sp. RM-4-15 to produce unique metabolites. Four new pyranonaphthoquinones, frenolicins C–F (1–4), along with three known analogues, frenolicin (6), ...

  17. Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine.

    Science.gov (United States)

    Zhang, Yanyan; Hu, Zhiqiang

    2013-01-01

    Bacterial biofilms are a growing concern in a broad range of areas. In this study, a mixture of RNA bacteriophages isolated from municipal wastewater was used to control and remove biofilms. At the concentrations of 400 and 4 × 10(7) PFU/mL, the phages inhibited Pseudomonas aeruginosa biofilm formation by 45 ± 15% and 73 ± 8%, respectively. At the concentrations of 6,000 and 6 × 10(7) PFU/mL, the phages removed 45 ± 9% and 75 ± 5% of pre-existing P. aeruginosa biofilms, respectively. Chlorine reduced biofilm growth by 86 ± 3% at the concentration of 210 mg/L, but it did not remove pre-existing biofilms. However, a combination of phages (3 × 10(7) PFU/mL) and chlorine at this concentration reduced biofilm growth by 94 ± 2% and removed 88 ± 6% of existing biofilms. In a continuous flow system with continued biofilm growth, a combination of phages (a one-time treatment at the concentration of 1.9 × 10(8) PFU/mL for 1 h first) with chlorine removed 97 ± 1% of biofilms after Day 5 while phage and chlorine treatment alone removed 89 ± 1% and 40 ± 5%, respectively. For existing biofilms, a combined use of a lower phage concentration (3.8 × 10(5) PFU/mL) and chlorination with a shorter time duration (12 h) followed by continuous water flushing removed 96 ± 1% of biofilms in less than 2 days. Laser scanning confocal microscopy supplemented with electron microscopy indicated that the combination treatment resulted in biofilms with lowest cell density and viability. These results suggest that the combination treatment of phages and chlorine is a promising method to control and remove bacterial biofilms from various surfaces. Copyright © 2012 Wiley Periodicals, Inc.

  18. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent.

    Science.gov (United States)

    Schuch, Raymond; Khan, Babar K; Raz, Assaf; Rotolo, Jimmy A; Wittekind, Michael

    2017-07-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC 90 ) value of ≤0.25 μg/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes , and Streptococcus agalactiae were also sensitive to disruption, with MBEC 90 values ranging from 0.25 to 8 μg/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component. Copyright © 2017 American Society for Microbiology.

  19. Molecular characterization of bacteriophages for microbial source tracking in Korea.

    Science.gov (United States)

    Lee, Jung Eun; Lim, Mi Young; Kim, Sei Yoon; Lee, Sunghee; Lee, Heetae; Oh, Hyun-Myung; Hur, Hor-Gil; Ko, Gwangpyo

    2009-11-01

    We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.

  20. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond

    2017-05-02

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  1. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond; Khan, Babar Khalid; Raz, Assaf; Rotolo, Jimmy A.; Wittekind, Michael

    2017-01-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  2. Self-assembly of silver nanoparticles and bacteriophage

    Directory of Open Access Journals (Sweden)

    Santi Scibilia

    2016-03-01

    Full Text Available Biohybrid nanostructured materials, composed of both inorganic nanoparticles and biomolecules, offer prospects for many new applications in extremely diverse fields such as chemistry, physics, engineering, medicine and nanobiotechnology. In the recent years, Phage display technique has been extensively used to generate phage clones displaying surface peptides with functionality towards organic materials. Screening and selection of phage displayed material binding peptides has attracted great interest because of their use for development of hybrid materials with multiple functionalities. Here, we present a self-assembly approach for the construction of hybrid nanostructured networks consisting of M13 P9b phage clone, specific for Pseudomonas aeruginosa, selected by Phage display technology, directly assembled with silver nanoparticles (AgNPs, previously prepared by pulsed laser ablation. These networks are characterized by UV–vis optical spectroscopy, scanning/transmission electron microscopies and Raman spectroscopy. We investigated the influence of different ions and medium pH on self-assembly by evaluating different phage suspension buffers. The assembly of these networks is controlled by electrostatic interactions between the phage pVIII major capsid proteins and the AgNPs. The formation of the AgNPs-phage networks was obtained only in two types of tested buffers at a pH value near the isoelectric point of each pVIII proteins displayed on the surface of the clone. This systematic study allowed to optimize the synthesis procedure to assembly AgNPs and bacteriophage. Such networks find application in the biomedical field of advanced biosensing and targeted gene and drug delivery. Keywords: Phage display, Silver nanoparticles, Self-assembly, Hybrid architecture, Raman spectroscopy

  3. Novel DNA packaging recognition in the unusual bacteriophage N15

    Energy Technology Data Exchange (ETDEWEB)

    Feiss, Michael [Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242 (United States); Geyer, Henriette, E-mail: henriettegeyer@gmail.com [Division of Viral Infections, Robert Koch Institute, Berlin (Germany); Division of Viral Infections, Robert Koch Institute, Berlin (Germany); Klingberg, Franco, E-mail: franco.klingberg@thermofisher.com [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Moreno, Norma, E-mail: nmoreno@islander.tamucc.edu [Texas A& M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States. (United States); Texas A& M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States. (United States); Forystek, Amanda, E-mail: eamanda-forystek@uiowa.edu [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Room # 2911 JPP, Dept. of Psychiatry, The University of Iowa, 200 Hawkins Drive, Iowa City, Iowa, 52242 (United States); Maluf, Nasib Karl, E-mail: fKarl.Maluf@ap-lab.com [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Alliance Protein Laboratories, Inc. 6042 Cornerstone Court West, Suite ASan Diego, CA 92121, USA. (United States); Sippy, Jean [Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242 (United States)

    2015-08-15

    Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos{sup N15}) is closely related to cos{sup λ}, but whereas the cosB{sup N15} subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB{sup λ}. A bioinformatic study of N15-like phages indicates that cosB{sup N15} also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB–λ. The DNA binding domain of TerS-N15 is a dimer. - Highlights: • There are two classes of DNA packaging signals in N15-related phages. • Phage N15's TerS binding site: a critical site and a possible remote accessory site. • Viral DNA recognition signals by the λ-like bacteriophages: the odd case of N15.

  4. Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants.

    Science.gov (United States)

    Kovalskaya, Natalia; Foster-Frey, Juli; Donovan, David M; Bauchan, Gary; Hammond, Rosemarie W

    2016-01-01

    The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

  5. Production and characterization of biosurfactant from marine Streptomyces species B3.

    Science.gov (United States)

    Khopade, Abhijit; Ren, Biao; Liu, Xiang-Yang; Mahadik, Kakasaheb; Zhang, Lixin; Kokare, Chandrakant

    2012-02-01

    The present study demonstrates the production and properties of a biosurfactant isolated from marine Streptomyces species B3. The production of the biosurfactant was found to be higher in medium containing sucrose and lower in the medium containing glycerol. Yeast extract was the best nitrogen source for the production of the biosurfactant. The isolated biosurfactant reduced the surface tension of water to 29 mN/m. The purified biosurfactant was shown critical micelle concentrations of 110 mg/l. The emulsifying activity and stability of the biosurfactant was investigated at different salinities, pH, and temperature. The biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and salt concentration. The purified biosurfactant was shown strong antimicrobial activity. The biosurfactant was produced from the marine Streptomyces sp. using non-hydrocarbon substrates such as sucrose that was readily available and not required extensive purification procedure. Streptomyces species B3 can be used for microbially enhanced oil recovery process. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Localized hydroxylamine mutagenesis, and cotransduction of threonine and lysine genes, in Streptomyces venezuelae.

    Science.gov (United States)

    Stuttard, C

    1983-01-01

    A lysate of the generalized transducing phage SV1, grown on the prototrophic type strain 10712 of Streptomyces venezuelae, was mutagenized with hydroxylamine and used to transduce a lysineless auxotroph to lysine independence on supplemented minimal agar. A complex threonine mutant, strain VS95, was isolated from among the transductants and was shown to be carrying at least two different thr mutations. These were about 50% cotransducible with alleles of four independently isolated lysA mutations, as were two other independently isolated threonine mutations, thr-1 and hom-5. The location of thr genes close to lysA occurs in at least three other streptomycetes, but apparently not in Streptomyces coelicolor A3(2), in which the lysA and thr loci are at diametrically opposite locations on the linkage map. This first observation of cotransduction between loci governing the biosynthesis of different amino acids in the genus Streptomyces demonstrates the feasibility of fine-structure genetic analysis by transduction in these antibiotic-producing bacteria. PMID:6411685

  7. Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa.

    Science.gov (United States)

    Choudoir, Mallory J; Buckley, Daniel H

    2018-06-07

    The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.

  8. Production of Manooligomannan from Palm Kernel Cake by Mannanase Produced from Streptomyces Cyaenus

    Directory of Open Access Journals (Sweden)

    Awan Purnawan

    2017-04-01

    Full Text Available The increase of public attention to health has prompted researchers to look for new sources of functional food. Palm Cake Kernel (PKC waste was abundant in Indonesia, Oligosaccharide has an important benefit for human health. Recently oligosaccharide is not only important as an artificial sweetener, but also as a functional food component. This study was aimed to produce oligo-mannan enzymatically from PKC waste using mannanase derived from of Streptomyces cyaenus isolates of indigenous Indonesia. The enzyme concentration was determined by enzyme activity assay while oligo-mannan content in the PKC was analyzed using TLC and HPLC. Mannanase enzyme activity of 1706 U/ml on the second day of agitation 200 rpm at a temperature of 30°C Hydrolysis of mannooligomannan by using mannanase produced by streptomyces cyaenus. The optimum mannanase enzyme activity obtained on day 2 with the value of the activity as much of 0.702 U/mL. The protein content of the 2nd day at an agitation speed of 150 rpm, 200 rpm, and 250 rpm, respectively, were 1783, 1950 and 2283 ppm. Streptomyces cyaenus is Indonesian original isolates potentially producing mannanase that can produce mannooligomannan.

  9. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    Directory of Open Access Journals (Sweden)

    Mihaela Cotârleţ

    2011-09-01

    Full Text Available The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20ºC, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20ºC. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures.

  10. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    Science.gov (United States)

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  11. Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations.

    Science.gov (United States)

    Arias, Anthony Argüelles; Lambert, Stéphany; Martinet, Loïc; Adam, Delphine; Tenconi, Elodie; Hayette, Marie-Pierre; Ongena, Marc; Rigali, Sébastien

    2015-07-01

    Due to the necessity of iron for housekeeping functions, nutrition, morphogenesis and secondary metabolite production, siderophore piracy could be a key strategy in soil and substrate colonization by microorganisms. Here we report that mutants of bacterium Streptomyces coelicolor unable to produce desferrioxamine siderophores could recover growth when the plates were contaminated by indoor air spores of a Penicillium species and Engyodontium album. UPLC-ESI-MS analysis revealed that the HPLC fractions with the extracellular 'resuscitation' factors of the Penicillium isolate were only those that contained siderophores, i.e. Fe-dimerum acid, ferrichrome, fusarinine C and coprogen. The restored growth of the Streptomyces mutants devoid of desferrioxamine is most likely mediated through xenosiderophore uptake as the cultivability depends on the gene encoding the ABC-transporter-associated DesE siderophore-binding protein. That a filamentous fungus allows the growth of desferrioxamine non-producing Streptomyces in cocultures confirms that xenosiderophore piracy plays a vital role in nutritional interactions between these taxonomically unrelated filamentous microorganisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. VIABILITY AND ANTIMICROBIAL ACTIVITY OF STREPTOMYCES STRAINS FROM NCNM AFTER LYOPHILIZATION

    Directory of Open Access Journals (Sweden)

    Oleg CHISELIŢA

    2016-05-01

    Full Text Available The article deals with the aspects related to lyophilization of streptomycetes strains, preserved in the National Collection of Nonpathogenic Microorganisms (NCNM. Was determined that lyophilization do not significantly modify the antimicrobial activity of streptomycetes. Maximum viability of strains of genus Streptomyces (83,2-90,2% is ensured after lyophilization at initial titer by 9-11 log10UFC ml-1 in protective medium (gelatin 2,5% + glucose 7,5% by rehydra­tion with distillate water.VIABILITATEA ŞI ACTIVITATEA ANTIMICROBIANĂ A TULPINELOR DE STREPTOMYCES DIN CNMN DUPĂ LIOFILIZAREAcest articol prezintă aspecte legate de liofilizarea tulpinilor de streptomicete, depozitate în Colecţia Naţională de Microorganisme Nepatogene (CNMN. A fost stabilit că liofilizarea nu modifică esenţial activitatea antimicrobiană a streptomicetelor. Viabilitatea maximă a tulpinilor genului Streptomyces (83,2-90,2% este asigurată după liofilizarea la titrul iniţial 9-11 log10UFC ml-1 în mediu protectiv (gelatină 2,5% + glucosă 7,5% şi la rehidratarea cu apă distilată. 

  13. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    Directory of Open Access Journals (Sweden)

    Houssam M. Atta

    2015-01-01

    Full Text Available Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9111; Escherichia coli, NCTC 10416; Pseudomonas aeruginosa, ATCC 10145; Saccharomyces cerevisiae ATCC 9763; Candida albicans, IMRU 3669; Aspergillus flavus, IMI 111023; Aspergillus niger IMI 31276; Aspergillus fumigatus ATCC 16424; Fusarium oxysporum; Rhizoctonia solani; Alternaria alternata; Botrytis fabae and Penicillium chrysogenium. The production media were optimized for maximum yield of secondary metabolites. The metabolites were extracted using n-butanol (1:1, v/v at pH 7.0. The chemical structural analysis with UV, IR, and MS spectral analyses confirmed that the compound produced by Streptomyces torulosus, T-4 is tunicamycin antibiotic.

  14. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus.

    Science.gov (United States)

    Yin, Shouliang; Wang, Xuefeng; Shi, Mingxin; Yuan, Fang; Wang, Huizhuan; Jia, Xiaole; Yuan, Fang; Sun, Jinliang; Liu, Tiejun; Yang, Keqian; Zhang, Yuxiu; Fan, Keqiang; Li, Zilong

    2017-09-01

    Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L -1 , which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

  15. Streptomyces tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhao, Junwei; Shi, Linlin; Li, Wenchao; Wang, Jiabin; Wang, Han; Tian, Yuanyuan; Xiang, Wensheng; Wang, Xiangjing

    2018-02-01

    Two novel actinomycete isolates, designated strains NEAU-A4 T and NEAU-A3, were isolated from rhizosphere soil of wheat (Triticumaestivum L.) and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the two strains coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the two isolates exhibited 99.6 % 16S rRNA gene sequence similarity with each other and that they were most closely related to Streptomyces violaceorectus DSM 40279 T (98.8, 99.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains clustered together and formed a separate subclade. Furthermore, a combination of DNA-DNA hybridization results and some physiological and biochemical properties demonstrated that the two strains could be distinguished from its closest relative. Therefore, it is proposed that strains NEAU-A4 T and NEAU-A3 should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomycestritici sp. nov. is proposed. The type strain is NEAU-A4 T (=CGMCC 4.7393 T =DSM 104540 T ).

  16. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions

    Science.gov (United States)

    Rodríguez-Luna, Stefany Daniela; Cruz Vázquez, Angélica Patricia; Jiménez Suárez, Verónica; Rodríguez-Sanoja, Romina; Alvarez-Buylla, Elena R.; Sánchez, Sergio

    2018-01-01

    Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions. PMID:29447216

  17. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions.

    Directory of Open Access Journals (Sweden)

    Corina Diana Ceapă

    Full Text Available Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.

  18. A highly efficient targeted recombination system for engineering linear chromosomes of industrial bacteria Streptomyces.

    Science.gov (United States)

    Pan, Hung-Yin; Chen, Carton W; Huang, Chih-Hung

    2018-04-17

    Soil bacteria Streptomyces are the most important producers of secondary metabolites, including most known antibiotics. These bacteria and their close relatives are unique in possessing linear chromosomes, which typically harbor 20 to 30 biosynthetic gene clusters of tens to hundreds of kb in length. Many Streptomyces chromosomes are accompanied by linear plasmids with sizes ranging from several to several hundred kb. The large linear plasmids also often contain biosynthetic gene clusters. We have developed a targeted recombination procedure for arm exchanges between a linear plasmid and a linear chromosome. A chromosomal segment inserted in an artificially constructed plasmid allows homologous recombination between the two replicons at the homology. Depending on the design, the recombination may result in two recombinant replicons or a single recombinant chromosome with the loss of the recombinant plasmid that lacks a replication origin. The efficiency of such targeted recombination ranges from 9 to 83% depending on the locations of the homology (and thus the size of the chromosomal arm exchanged), essentially eliminating the necessity of selection. The targeted recombination is useful for the efficient engineering of the Streptomyces genome for large-scale deletion, addition, and shuffling.

  19. Cloning and characterization of the first actinomycete β-propeller phytase from Streptomyces sp. US42.

    Science.gov (United States)

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Bouchaala, Kameleddine; Virolle, Marie-Joëlle; Chouayekh, Hichem

    2016-10-01

    A gene encoding an extracellular phytase was cloned for the first time from an Actinomycete, Streptomyces sp. US42 and sequenced. The sequence of this gene revealed an encoded polypeptide (PHY US42) exhibiting one and six residues difference with the putative phytases of Streptomyces lividans TK24 and Streptomyces coelicolor A3(2), respectively. The molecular modeling of PHY US42 indicated that this phytase belongs to the group of β-propeller phytases that are usually calcium-dependent. PHY US42 was purified and characterized. Its activity was calcium-dependent and maximal at pH 7 and 65 °C. The enzyme was perfectly stable at pH ranging from 5 to 10 and its thermostability was greatly enhanced in the presence of calcium. Indeed, PHY US42 maintained 80% of activity after 10 min of incubation at 75 °C in the presence of 5 mM CaCl 2 . PHY US42 was also found to exhibit high stability after incubation at 37 °C for 1 h in the presence of bovine bile and digestive proteases like of pepsin, trypsin, and chymotrypsin. Considering its biochemical properties, PHY US42 could be used as feed additive in combination with an acid phytase for monogastric animals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    2011-02-01

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  1. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences

    Science.gov (United States)

    Chandra, Govind; Chater, Keith F

    2014-01-01

    To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes. PMID:24164321

  2. Induction of genetic recombination in the lambda bacteriophage by ultraviolet radiation of the Escherichia Coli cells

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1986-12-01

    In this work there are reported the results that show that although the stimulation of the recombination of the Lambda bacteriophage, by UV irradiation of the cells of Escherichia Coli, it looks to be the result of the high expression of the functions of the SOS system, doesn't keep some relationship with the high concentration of protein reached RecA. (Author)

  3. Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.

    Science.gov (United States)

    Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir

    2017-08-01

    Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. Problem-Solving Test: RNA and Protein Synthesis in Bacteriophage-Infected "E. coli" Cells

    Science.gov (United States)

    Szeberenyi, Jozsef

    2008-01-01

    The classic experiment presented in this problem-solving test was designed to identify the template molecules of translation by analyzing the synthesis of phage proteins in "Escherichia coli" cells infected with bacteriophage T4. The work described in this test led to one of the most seminal discoveries of early molecular biology: it dealt a…

  5. The inactivating and mutagenic effect of hydroxylamine on bacteriophage φX174

    NARCIS (Netherlands)

    Pol, J.H. van de; Arkel, G.A. van

    1965-01-01

    The inactivation of bacteriophage ΦXI74 by the mutagenic agents nitrous acid and ultraviolet irradiation proceeds according to a single-hit kinetics. However, treatment of purified ΦXI74 by hydroxylamine (HA) at pH 6 and 25° results in an inactivation that is not strictly exponential. The

  6. Regions of incompatibility in single-stranded DNA bacteriophages phi X174 and G4

    NARCIS (Netherlands)

    van der Avoort, H. G.; van der Ende, A.; van Arkel, G. A.; Weisbeek, P. J.

    1984-01-01

    The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or

  7. Multiplex PCR for the detection and identification of dairy bacteriophages in milk.

    Science.gov (United States)

    del Rio, B; Binetti, A G; Martín, M C; Fernández, M; Magadán, A H; Alvarez, M A

    2007-02-01

    Bacteriophage infections of starter lactic acid bacteria are a serious risk in the dairy industry. Phage infection can lead to slow lactic acid production or even the total failure of fermentation. The associated economic losses can be substantial. Rapid and sensitive methods are therefore required to detect and identify phages at all stages of the manufacture of fermented dairy products. This study describes a simple and rapid multiplex PCR method that, in a single reaction, detects the presence of bacteriophages infecting Streptococcus thermophilus and Lactobacillus delbrueckii, plus three genetically distinct 'species' of Lactococcus lactis phages commonly found in dairy plants (P335, 936 and c2). Available bacteriophage genome sequences were examined and the conserved regions used to design five pairs of primers, one for each of the above bacteriophage species. These primers were designed to generate specific fragments of different size depending on the species. Since this method can detect the above phages in untreated milk and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms or for use in those that involve phage-deactivating conditions.

  8. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses.

    Science.gov (United States)

    Garcia, Keila Carolina de Ornellas Dutka; Corrêa, Isadora Mainieri de Oliveira; Pereira, Larissa Quinto; Silva, Tarcísio Macedo; Mioni, Mateus de Souza Ribeiro; Izidoro, Ana Carolina de Moraes; Bastos, Igor Henrique Vellano; Gonçalves, Guilherme Augusto Marietto; Okamoto, Adriano Sakai; Andreatti Filho, Raphael Lucio

    2017-09-01

    Foodborne diseases represent a major risk to public health worldwide. Pathogenic bacteria can live in the form of biofilm within the food industry, providing a permanent source of contamination. The aim of this study was to evaluate the influence of the types of adhesion surfaces on Salmonella biofilm formation at eight different times, and analyze the action time of a bacteriophage pool on established biofilms. Most of the samples used were classified as weak biofilm producers, with serovars Enteritidis and Heidelberg showing the highest frequency of biofilm formation. Glass and stainless steel surfaces significantly favored biofilm formation at 60 and 36 h of incubation respectively, but the polyvinyl chloride surface did not favor biofilm production, suggesting that the type of material may interfere with production. The bacteriophage pool action period focused on 3 h, but treatment of 9 h on glass surface biofilms was superior to other treatments because it affected the largest number of samples. These results suggests that some surface types and Salmonella serotypes may promote biofilm formation and indicate bacteriophages as an alternative to control biofilms. But further studies are required to prove the effectiveness and safety of bacteriophage therapy as an alternative in the antimicrobial control in the processing plants. © 2017 Poultry Science Association Inc.

  9. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents.

    Directory of Open Access Journals (Sweden)

    Bożena Szermer-Olearnik

    Full Text Available Lipopolysaccharide (LPS, endotoxin, pyrogen constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol. During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 10(3 and 10(5 EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 10(3-10(5 EU/10(9 PFU (plaque forming units down to an average of 2.8 EU/10(9 PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli and F8 (P. aeruginosa.

  10. Methods for Isolation, Purification, and Propagation of Bacteriophages of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst

    2017-01-01

    Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque-formin...

  11. The membrane-bound form of gene 9 minor coat protein of bacteriophage M13

    NARCIS (Netherlands)

    Houbiers, M.C.

    2002-01-01

    Bacteriophage M13 is a virus that infects the bacteria Escherichia coli ( E. coli ), a single cell organism that resides in our intestines. It consists of the cytoplasm (contents) and a double membrane that keeps the

  12. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Belén Álvarez

    2017-07-01

    Full Text Available Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  13. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    Science.gov (United States)

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  14. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes

    NARCIS (Netherlands)

    Dutilh, Bas E; Cassman, Noriko; McNair, Katelyn; Sanchez, Savannah E; Silva, Genivaldo G Z; Boling, Lance; Barr, Jeremy J; Speth, Daan R; Seguritan, Victor; Aziz, Ramy K; Felts, Ben; Dinsdale, Elizabeth A; Mokili, John L; Edwards, Robert A

    2014-01-01

    Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the

  15. The effectiveness of bacteriophages against methicillin-resistant Staphylococcus aureus ST398 nasal colonization in pigs

    NARCIS (Netherlands)

    Verstappen, Koen M.; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C.; Carney, Jennifer; Nes, Van Arie; Wagenaar, Jaap A.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential

  16. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs

    NARCIS (Netherlands)

    Verstappen, Koen M; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    UNLABELLED: Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a

  17. Key Players in the Genetic Switch of Bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Alsing, Anne; Pedersen, Margit; Sneppen, Kim

    2011-01-01

    the bistable genetic switch of bacteriophage TP901-1 through experiments and statistical mechanical modeling. We examine the activity of the lysogenic promoter Pr at different concentrations of the phage repressor, CI, and compare the effect of CI on Pr in the presence or absence of the phage-encoded MOR...

  18. Bacteriophage T7 structure according to the data of small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rol' bin, Yu A; Svergun, D I; Feigin, L A; Gashpar, Sh; Ronto, D [AN SSSR, Moscow. Inst. Kristallografii

    1980-01-01

    An attempt is made to obtain complete data on the form, sizes, weight and hydration of the T7 bacteriophage cultivated on E.coli cells and the peculiarities of phage DNA structure using the method of small-angle scattering.

  19. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: Programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production

    OpenAIRE

    Rioseras de Bustos, Beatriz; López García, María Teresa (Bio); Yagüe Menéndez, Paula; Sánchez Martín, Jesús; Manteca Fernández, Ángel

    2014-01-01

    Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or direct...

  20. Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces.

    Science.gov (United States)

    Sevillano, Laura; Díaz, Margarita; Santamaría, Ramón I

    2017-09-26

    The industrial use of enzymes produced by microorganisms is continuously growing due to the need for sustainable solutions. Nevertheless, many of the plasmids used for recombinant production of proteins in bacteria are based on the use of antibiotic resistance genes as selection markers. The safety concerns and legal requirements surrounding the increased use of antibiotic resistance genes have made the development of new antibiotic-free approaches essential. In this work, a system completely free of antibiotic resistance genes and useful for the production of high yields of proteins in Streptomyces is described. This system is based on the separation of the two components of the yefM/yoeBsl (antitoxin/toxin) operon; the toxin (yoeBsl) gene, responsible for host death, is integrated into the genome and the antitoxin gene (yefMsl), which inactivates the toxin, is located in the expression plasmid. To develop this system, the toxin gene was integrated into the genome of a strain lacking the complete operon, and the antibiotic resistance gene integrated along with the toxin was eliminated by Cre recombinase to generate a final host strain free of any antibiotic resistance marker. In the same way, the antibiotic resistance gene from the final expression plasmid was removed by Dre recombinase. The usefulness of this system was analysed by checking the production of two hydrolases from different Streptomyces. Production of both proteins, with potential industrial use, was high and stable over time after strain storage and after serial subcultures. These results support the robustness and stability of the positive selection system developed. The total absence of antibiotic resistance genes makes this system a powerful tool for using Streptomyces as a host to produce proteins at the industrial level. This work is the first Streptomyces antibiotic marker-free system to be described. Graphical abstract Antibiotic marker-free platform for protein expression in Streptomyces