WorldWideScience

Sample records for streptococcus promotes resistance

  1. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo.

    Science.gov (United States)

    Perez, Antonia C; Pang, Bing; King, Lauren B; Tan, Li; Murrah, Kyle A; Reimche, Jennifer L; Wren, John T; Richardson, Stephen H; Ghandi, Uma; Swords, W Edward

    2014-04-01

    Otitis media (OM) is an extremely common pediatric ailment caused by opportunists that reside within the nasopharynx. Inflammation within the upper airway can promote ascension of these opportunists into the middle ear chamber. OM can be chronic/recurrent in nature, and a wealth of data indicates that in these cases, the bacteria persist within biofilms. Epidemiological data demonstrate that most cases of OM are polymicrobial, which may have significant impact on antibiotic resistance. In this study, we used in vitro biofilm assays and rodent infection models to examine the impact of polymicrobial infection with Moraxella catarrhalis and Streptococcus pneumoniae (pneumococcus) on biofilm resistance to antibiotic treatment and persistence in vivo. Consistent with prior work, M. catarrhalis conferred beta-lactamase-dependent passive protection from beta-lactam killing to pneumococci within polymicrobial biofilms. Moreover, pneumococci increased resistance of M. catarrhalis to macrolide killing in polymicrobial biofilms. However, pneumococci increased colonization in vivo by M. catarrhalis in a quorum signal-dependent manner. We also found that co-infection with M. catarrhalis affects middle ear ascension of pneumococci in both mice and chinchillas. Therefore, we conclude that residence of M. catarrhalis and pneumococci within the same biofilm community significantly impacts resistance to antibiotic treatment and bacterial persistence in vivo. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Streptococcus pneumoniae Drugs Resistance in Acute Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Chong Jie Hao

    2016-03-01

    Full Text Available Background: Acute rhinosinusitis that usually caused by Streptococcus pneumoniae becomes the reason why patients seek for medical care. Drugs resistance in Streptococcus pneumoniae is increasing worldwide. This study was conducted to determine drugs resistance of Streptococcus pneumonia from acute rhinosinusitis in Dr. Hasan Sadikin General Hospital. Methods: A descriptive laboratory study was conducted in June–October 2014 at the Laboratory of Microbiology Faculty of Medicine Universitas Padjadjaran. The sample was taken using nasopharyngeal swabbing from 100 acute rhinosinusitis patients in Dr. Hasan Sadikin General Hospital and planted on tryptic soy agar containing 5% sheep blood and 5 μg/ml of gentamicin sulphate and then incubated in 5% CO2 incubator at 37°C for 24 hours. The identification of Streptococcus pneumonia was performed by optochin test. The susceptibility test against Streptococcus pneumoniae was done using disk diffusion method.The antibiotic disks were trimethoprim-sulfamethoxazole, oxacillin, levofloxacin, azithromycin, and doxycycline. Results: Out of 100 samples, 8 of them were tested positive for Streptococcus pneumoniae. Three of Streptococcus pneumoniae isolates died with unknown reason after it were stored at -80 .The drugs resistance test showed the resistance of Streptococcus pneumonia to oxacillin, azithromycin and trimethoprim were 6, whereas levofloxacin and doxycycline are 4. Conclusions: Streptococcus pneumonia drugs resistance in acute rhinosinusitis shows the resistance of Streptococcus pneumoniae to oxacillin, azithromycin and trimethoprim are 6, whereas the resistance to levofloxacin and doxycycline are 4.

  3. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence

    DEFF Research Database (Denmark)

    Gustafsson, Caj Ulrik Mattias; Lannergård, Jonas; Nilsson, Olof Rickard

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against...... represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited...... to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed...

  4. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    Science.gov (United States)

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  5. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    Directory of Open Access Journals (Sweden)

    Mattias C U Gustafsson

    Full Text Available Many pathogens express a surface protein that binds the human complement regulator factor H (FH, as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  6. Fluoride resistance in Streptococcus mutans

    NARCIS (Netherlands)

    Liao, Ying

    2017-01-01

    Fluoride has been used as the most effective anti-caries agent for over five decades. It functions not only on the dental hard tissues, but also as an antimicrobial agent. It is known that oral bacteria are able to develop resistance to fluoride, which may affect the effectiveness of fluoride in

  7. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis

    Science.gov (United States)

    Xu, Yifan; Itzek, Andreas

    2014-01-01

    Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm. PMID:25280752

  8. Factors That Cause Trimethoprim Resistance in Streptococcus pyogenes

    Science.gov (United States)

    Bergmann, René; van der Linden, Mark; Chhatwal, Gursharan S.

    2014-01-01

    The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent. PMID:24492367

  9. Antimicrobial Susceptibility/Resistance of Streptococcus Pneumoniae

    Science.gov (United States)

    Karcic, Emina; Aljicevic, Mufida; Bektas, Sabaheta; Karcic, Bekir

    2015-01-01

    Introduction: Pneumococcal infections are a major cause of morbidity and mortality worldwide, whose treatment is threatened with an increase in the number of strains resistant to antibiotic therapy. Goal: The main goal of this research was to investigate the presence of antimicrobial susceptibility/resistance of S. pneumoniae. Material and methods: Taken are swabs of the nose and nasopharynx, eye and ear. In vitro tests that were made in order to study the antimicrobial resistance of pneumococci are: disk diffusion method and E-test. Results: The resistance to inhibitors of cell wall synthesis was recorded at 39.17%, protein synthesis inhibitors 19.67%, folate antagonists 47.78% and quinolone in 1.11%. S. pneumoniae has shown drug resistance to erythromycin in 45%, clindamycin in 45%, chloramphenicol–0.56%, rifampicin–6.11%, tetracycline–4.67%, penicillin-G in 4.44%, oxacillin in 73.89%, ciprofloxacin in 1.11% and trimethoprim-sulfamethoxazole in 5.34% of cases. Conclusion: The highest resistance pneumococcus showed to erythromycin, clindamycin and trimethoprim-sulfamethoxazole and these should be avoided in the treatment. The least resistance pneumococcus showed to tetracycline, rifampicin, chloramphenicol, penicillin-G and ciprofloxacin. PMID:26236165

  10. Comparative genomic analysis of multidrug-resistant Streptococcus pneumoniae isolates

    Directory of Open Access Journals (Sweden)

    Pan F

    2018-05-01

    Full Text Available Fen Pan,1 Hong Zhang,1 Xiaoyan Dong,2 Weixing Ye,3 Ping He,4 Shulin Zhang,4 Jeff Xianchao Zhu,5 Nanbert Zhong1,2,6 1Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China; 2Department of Respiratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China; 3Shanghai Personal Biotechnology Co., Ltd, Shanghai, China; 4Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 5Zhejiang Bioruida Biotechnology co. Ltd, Zhejiang, China; 6New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA Introduction: Multidrug resistance in Streptococcus pneumoniae has emerged as a serious problem to public health. A further understanding of the genetic diversity in antibiotic-resistant S. pneumoniae isolates is needed. Methods: We conducted whole-genome resequencing for 25 pneumococcal strains isolated from children with different antimicrobial resistance profiles. Comparative analysis focus on detection of single-nucleotide polymorphisms (SNPs and insertions and deletions (indels was conducted. Moreover, phylogenetic analysis was applied to investigate the genetic relationship among these strains. Results: The genome size of the isolates was ~2.1 Mbp, covering >90% of the total estimated size of the reference genome. The overall G+C% content was ~39.5%, and there were 2,200–2,400 open reading frames. All isolates with different drug resistance profiles harbored many indels (range 131–171 and SNPs (range 16,103–28,128. Genetic diversity analysis showed that the variation of different genes were associated with specific antibiotic resistance. Known antibiotic resistance genes (pbps, murMN, ciaH, rplD, sulA, and dpr were identified, and new genes (regR, argH, trkH, and PTS-EII closely related with antibiotic resistance were found, although these genes were primarily annotated

  11. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus

    OpenAIRE

    Sozzi, Tommaso; Smiley, Martin B.

    1980-01-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns.

  12. Determination of Serotypes and Antibiotic Resistance in Streptococcus Pneumoniae

    Directory of Open Access Journals (Sweden)

    Deniz Akgun Karapinar

    2016-01-01

    Full Text Available Aim: In this study, the distribution of serogroup/serotype and antibiotic susceptibility testing of Streptococcus pneumoniae strains, recovered from pediatric and adult patients were evaluated. Material and Method: A total of 80 clinical isolates recovered from 19 pediatric and 61 adult patients were performed by latex aglutination method and antibiotic susceptibility tests in Istanbul University, Istanbul Faculty of Medicine, Medical Microbiology Laboratories. Results: Sixty-two strains (76 %, were serogroup/serotyped and 18 (23 % strains couldn%u2019t serogroup/serotyped. The most frequent identified serogroups were 19, 14, 23, 6, 4 in pediatrics, and 3, 19, 23 and 9 in adults. In adults, serogroups 3, 9, 5, 8, 18, 1, 15 were determined, but these serogroups weren%u2019t found in pediatrics. Vaccine serotypes rates were found as 53 % in pediatric and as 85 % in adults. The serogroups 2, 7, 10, 11, 12, 17, 20, 22, 33 were not detected, which are available in vaccine serotypes. Only 1 (1 % strain was found to exhibit low level resistance to penicillin and high level resistance wasn%u2019t found in any strain. Resistant results for trimethoprim-sulfamethoxazole, erythromycin, chloramphenicol and ofloxacin were found as 45 (56 %, 22 (27.5 %, 7 (9 %, 2 (2.5 %, respectively. All strains were found susceptible to vancomycin, linezolid and levofloxacin. The most resistant serogroups were 19, 23, 9 and 14 in the tested antibiotics. Multidrug resistance was found in 9 (11 % strains and these strains were found as serogroups 19, 23, 9, 6 and 14. Discussion: The epidemiological studies are important that the distribution of serotype and antibiotic resistance vary depending on many factors like age, and geographic region.

  13. Combination Therapy Strategies Against Multiple-Resistant Streptococcus Suis

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2018-05-01

    Full Text Available Streptococcus suis is a major swine pathogen, an emerging zoonotic agent responsible for meningitis, endocarditis and septicaemia followed by deafness in humans. The development of antimicrobial resistance in S. suis increases the risk for therapeutic failure in both animals and humans. In this study, we report the synergism of combination therapy against multi-resistant S. suis isolates from swine. Twelve antibiotic profiles were determined against 11 S. suis strains. To investigate their synergistic/antagonistic activity, checkerboard assay was performed for all the possible combinations. In-vitro killing curves and in-vivo treatment trials were used to confirm the synergistic activity of special combinations against S. suis dominant clones. In this study, 11 S. suis isolates were highly resistant to erythromycin, clindamycin, trimethoprim/sulfamethoxazole, and tetracycline with ratios of 80–100%, and the resistance percentages to enrofloxacin, florfenicol, and spectinomycin were ~50%. The checkerboard data identified two combination regimens, ampicillin plus apramycin and tiamulin plus spectinomycin which gave the greatest level of synergism against the S. suis strains. In-vitro kill-curves showed a bacterial reduction of over 3-logCFU with the use of combination treatments, whilst the application of mono-therapies achieve less than a 2-logCFU cell killing. In-vivo models confirm that administration of these two combinations significantly reduced the number of bacterial cells after 24 h of treatment. In conclusions, the combinations of ampicillin plus apramycin and tiamulin plus spectinomycin showed the greatest synergism and may be potential strategies for treatment of multi-resistant S. suis in animal.

  14. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Onkar Sharma

    2016-03-01

    Full Text Available A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase. When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO, and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.

  15. Associations of Streptococcus suis serotype 2 ribotype profiles with clinical disease and antimicrobial resistance

    DEFF Research Database (Denmark)

    Rasmussen, S. R.; Aarestrup, Frank Møller; Jensen, N. E.

    1999-01-01

    A total of 122 Streptococcus suis serotype 2 strains were characterized thoroughly by comparing clinical and pathological observations, ribotype profiles, and antimicrobial resistance. Twenty-one different ribotype profiles were found and compared by cluster analysis, resulting in the identificat......A total of 122 Streptococcus suis serotype 2 strains were characterized thoroughly by comparing clinical and pathological observations, ribotype profiles, and antimicrobial resistance. Twenty-one different ribotype profiles were found and compared by cluster analysis, resulting...

  16. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Directory of Open Access Journals (Sweden)

    Légaré Danielle

    2011-10-01

    Full Text Available Abstract Background Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid. Results Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021. The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant. Conclusions Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.

  17. Spring forward with improved Nile tilapia Oreochromis niloticus resistant to Streptococcus iniae and Streptococcus agalactiae IB

    Science.gov (United States)

    Tilapia aquaculture worldwide is valued around US $ 7 billion. Tilapia are an important source of protein for domestic (top 5 most consumed seafoods) and global food security. Two gram postitive bacteria, Streptococcus iniae and S. agalactiae, are responsible for billion dollar losses annually. Gen...

  18. Isolation and characterization of promoter regions from Streptococcus gordonii CH1

    NARCIS (Netherlands)

    Vriesema, A.J.M.; Dankert, J.; Zaat, S.A.J.

    1999-01-01

    We aimed to identify transcription signal sequences from Streptococcus gordonii strain CH1 by random chromosomal cloning. Five genomic fragments from a Sau3A digest, which constitutively activated transcription of a promoterless spectinomycin resistance gene in this strain, were isolated and

  19. Characterization and transfer studies of macrolide resistance genes in Streptococcus pneumoniae from Denmark

    DEFF Research Database (Denmark)

    Nielsen, Karen L; Hammerum, Anette M; Lambertsen, Lotte M

    2010-01-01

    Over the last decade, erythromycin resistance has been increasing in frequency in Streptococcus pneumoniae in Denmark. In the present study, 49 non-related erythromycin-resistant S. pneumoniae isolates from invasive sites and 20 isolates from non-invasive sites were collected; antimicrobial...

  20. Dominance of multidrug resistant CC271 clones in macrolide-resistant streptococcus pneumoniae in Arizona

    Directory of Open Access Journals (Sweden)

    Bowers Jolene R

    2012-01-01

    Full Text Available Abstract Background Rates of resistance to macrolide antibiotics in Streptococcus pneumoniae are rising around the world due to the spread of mobile genetic elements harboring mef(E and erm(B genes and post-vaccine clonal expansion of strains that carry them. Results Characterization of 592 clinical isolates collected in Arizona over a 10 year period shows 23.6% are macrolide resistant. The largest portion of the macrolide-resistant population, 52%, is dual mef(E/erm(B-positive. All dual-positive isolates are multidrug-resistant clonal lineages of Taiwan19F-14, mostly multilocus sequence type 320, carrying the recently described transposon Tn2010. The remainder of the macrolide resistant S. pneumoniae collection includes 31% mef(E-positive, and 9% erm(B-positive strains. Conclusions The dual-positive, multidrug-resistant S. pneumoniae clones have likely expanded by switching to non-vaccine serotypes after the heptavalent pneumococcal conjugate vaccine release, and their success limits therapy options. This upsurge could have a considerable clinical impact in Arizona.

  1. Resistance of Streptococcus sanguis biofilms to antimicrobial agents

    DEFF Research Database (Denmark)

    Larsen, T; Fiehn, N E

    1996-01-01

    of Streptococcus sanguis 804 and ATCC 10556 to amoxicillin, doxycycline and chlorhexidine was determined by a broth dilution method. Subsequently, S. sanguis biofilms established in an in vitro flow model were perfused with the antimicrobial agents for 48 h at concentrations equal to and up to 500 times the MIC...

  2. Plasmid mediated enhancement of uv resistance in Streptococcus faecalis

    International Nuclear Information System (INIS)

    Miehl, R.; Miller, M.; Yasbin, R.E.

    1980-01-01

    A 38.5-Mdal plasmid of Streptococcus faecalis subdp. zymogenes has been shown to enhance survival following uv irradiation. In addition, the presence of this plasmid increases the mutation frequencies following uv irradiation and enhanced W-reactivation. The data presented indicate that S. faecalis has an inducible error-prone repair system and that the plasmid enhances these repair functions

  3. Streptococcus suis, an emerging drug-resistant animal and human pathogen

    Directory of Open Access Journals (Sweden)

    Claudio ePalmieri

    2011-11-01

    Full Text Available Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin, and cadmium salts. Resistance gene-carrying genetic elements described so far include integrative and conjugative elements, transposons, genomic islands, phages, and chimeric elements. Some of these elements are similar to those reported in major streptococcal pathogens such as Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae and share the same chromosomal insertion sites. The available information strongly suggests that S. suis is an important antibiotic resistance reservoir that can contribute to the spread of resistance genes to the above-mentioned streptococci. S. suis is thus a paradigmatic example of possible intersections between animal and human resistomes.

  4. Complete genome sequence of an attenuated Sparfloxacin resistant Streptococcus agalactiae strain 138spar

    Science.gov (United States)

    Through selection of resistance to sparfloxacin, an attenuated Streptococcus agalactiae strain 138spar was obtained from its virulent parent strain S. agalactiae 138P. The full genome of S. agalactiae 138spar is 1,838,126 bp. The availability of this genome will allow comparative genomics to identi...

  5. Development of live attenuated sparfloxacin-resistant Streptococcus agalactiae polyvalent vaccines to protect Nile tilapia

    Science.gov (United States)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  6. Translation quality control is maintained by the penicillin resistance factor MurM in Streptococcus pneumoniae

    DEFF Research Database (Denmark)

    Shepherd, Jennifer; Ibba, Michael

    2013-01-01

    Streptococcus pneumoniae is a causative agent of nosocomial infections such as pneumonia, meningitis and septicaemia. Penicillin resistance in S. pneumoniae depends in part upon MurM, an aminoacyl-tRNA-ligase that attaches L-serine or L-alanine to the stem peptide lysine of Lipid II in cell wall...

  7. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Science.gov (United States)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  8. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  9. Antibiotic resistant profile of Streptococcus pneumoniae from the ...

    African Journals Online (AJOL)

    The isolates were subjected to antimicrobial susceptibility testing using the disc diffusion method. Results: S. pneumoniae was isolated from 37(42.04%) of the 88 samples. Isolates showed the highest resistance of 12 (32.43%) to erythromycin and lowest resistance of 4(10.81%) to ciprofloxacin. The resistance profiles for ...

  10. Streptococcus pneumoniae aislados de infecciones invasivas: serotipos y resistencia antimicrobiana Streptococcus pneumoniae isolated from invasive infections: serotypes and antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    Gladys Antonia Cueto Montoya

    2007-03-01

    Full Text Available Las meningoencefalitis bacterianas constituyen una enfermedad invasiva importante, quizás no tanto por su frecuencia, como por la gravedad de su cuadro. Los cambios en la epidemiología de los síndromes neurológicos infecciosos en Cuba a partir de la vacunación contra meningococo BC y Haemophilus influenzae b han hecho que el Streptococcus pneumoniae constituya el agente causal más frecuente. Debido al incremento de la resistencia de este microorganismo a los antibióticos habituales, se realizaron modificaciones al régimen terapéutico convencional, fundamentalmente en las meningitis pediátricas. Es necesario lograr el aislamiento en cultivo de este agente para conocer los serotipos más frecuentes en el país, y lograr una vacuna neumocócica conjugada, así como para la vigilancia de las cepas frente a los antimicrobianos.The bacterial meningoencephalitis is an important invasive disease, not only because of its frequency, but also because of the severity of its picture. The changes in the epidemiology of the neurological infectious syndromes in Cuba starting from the vaccination against meningococcus BC and Haemophilus infuenzae b have made that Streptococcus pneumoniae be the most frequent causal agent. Due to the increase of the resistance of this microorganism to habitual antibiotics, modifications were made in the conventional therapeutic regimen, mainly in the pediatric meningitis. It is necessary to achieve the isolation in culture of this agent to know the most common serotypes in the country, to attain a conjugated pneumococcal vaccine, and to keep the surveillance of the strains against the antimicrobials.

  11. Genetic diversity of Streptococcus equi subsp. zooepidemicus and doxycycline resistance in kennelled dogs.

    Science.gov (United States)

    Chalker, Victoria J; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe; Erles, Kerstin

    2012-06-01

    The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010.

  12. A reação em cadeia da polimerase na detecção da resistência à penicilina em Streptococcus pneumoniae Polymerase chain reaction used to detect Streptococcus pneumoniae resistance to penicillin

    Directory of Open Access Journals (Sweden)

    Eduardo Walker Zettler

    2004-12-01

    Full Text Available INTRODUÇÃO: O Streptococcus pneumoniae é o mais freqüente agente etiológico de infecções respiratórias adquiridas na comunidade e sua resistência aos antimicrobianos tem aumentado nos últimos anos. A determinação da resistência é feita rotineiramente por método lento que depende do crescimento em cultura e determinação da concentração inibitória mínima (CIM. A reação em cadeia da polimerase (PCR detecta os genes responsáveis pela resistência do Streptococcus pneumoniae a penicilina em cerca de 8 horas. OBJETIVO: Comparar a PCR com o método da CIM no diagnóstico da resistência da Streptococcus pneumoniae a penicilina. MÉTODO: Foram estudadas 153 amostras de Streptococcus pneumoniae, isoladas de diferentes sítios anatômicos, usando-se para detecção de mutações nos genes que codificam as proteínas ligadoras de penicilina 1a, 2b e 2x, responsáveis pela resistência à penicilina. A ocorrência das mutações foi correlacionada com a CIM de penicilina, determinada pelo teste de difusão em ágar. RESULTADOS: A resistência global à penicilina do Streptococcus pneumoniae foi de 22,8% (16,3% de resistência intermediária e 6,5% de resistência alta. Em proporções estatisticamente significativas, as amostras sensíveis à penicilina não tinham mutações, as intermediárias apenas uma, geralmente na proteína ligadora de penicilina 2x, e as altamente resistentes tinham mutações nas três proteínas investigadas. CONCLUSÃO: A PCR é um método rápido para a detecção da resistência à penicilina do Streptococcus pneumoniae, que poderá vir a ser utilizado na prática clínica.BACKGROUND: Streptococcus pneumoniae is the most common etiologic agent of community-acquired respiratory infections. In recent years, S. pneumoniae resistance to antimicrobial agents has increased. Minimum inhibitory concentration (MIC is routinely used to determine resistance. Polymerase chain reaction (PCR detects the genes

  13. Levofloxacin-resistant-Streptococcus mitis endophthalmitis: a unique presentation of bacterial endocarditis.

    Science.gov (United States)

    Dinani, Amreen; Ktaich, Nessrine; Urban, Carl; Rubin, David

    2009-10-01

    Endogenous endophthalmitis is a rare complication of infective endocarditis and has been decreasing due to the availability of effective antibiotics. We highlight a case of endogenous endophthalmitis due to levofloxacin-resistant Streptococcus mitis presenting as infective endocarditis. Endogenous endophthalmitis should be considered as a manifestation of an underlying systemic disease, especially in patients who present with non-specific signs and symptoms with no obvious source of precipitating infection.

  14. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability

    International Nuclear Information System (INIS)

    Chopin, M.C.; Chopin, A.; Rouault, A.; Simon, D.

    1986-01-01

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains

  15. Whole-Genome Sequence Analysis of Antimicrobial Resistance Genes in Streptococcus uberis and Streptococcus dysgalactiae Isolates from Canadian Dairy Herds

    Directory of Open Access Journals (Sweden)

    Julián Reyes Vélez

    2017-05-01

    Full Text Available The objectives of this study are to determine the occurrence of antimicrobial resistance (AMR genes using whole-genome sequence (WGS of Streptococcus uberis (S. uberis and Streptococcus dysgalactiae (S. dysgalactiae isolates, recovered from dairy cows in the Canadian Maritime Provinces. A secondary objective included the exploration of the association between phenotypic AMR and the genomic characteristics (genome size, guanine–cytosine content, and occurrence of unique gene sequences. Initially, 91 isolates were sequenced, and of these isolates, 89 were assembled. Furthermore, 16 isolates were excluded due to larger than expected genomic sizes (>2.3 bp × 1,000 bp. In the final analysis, 73 were used with complete WGS and minimum inhibitory concentration records, which were part of the previous phenotypic AMR study, representing 18 dairy herds from the Maritime region of Canada (1. A total of 23 unique AMR gene sequences were found in the bacterial genomes, with a mean number of 8.1 (minimum: 5; maximum: 13 per genome. Overall, there were 10 AMR genes [ANT(6, TEM-127, TEM-163, TEM-89, TEM-95, Linb, Lnub, Ermb, Ermc, and TetS] present only in S. uberis genomes and 2 genes unique (EF-TU and TEM-71 to the S. dysgalactiae genomes; 11 AMR genes [APH(3′, TEM-1, TEM-136, TEM-157, TEM-47, TetM, bl2b, gyrA, parE, phoP, and rpoB] were found in both bacterial species. Two-way tabulations showed association between the phenotypic susceptibility to lincosamides and the presence of linB (P = 0.002 and lnuB (P < 0.001 genes and the between the presence of tetM (P = 0.015 and tetS (P = 0.064 genes and phenotypic resistance to tetracyclines only for the S. uberis isolates. The logistic model showed that the odds of resistance (to any of the phenotypically tested antimicrobials was 4.35 times higher when there were >11 AMR genes present in the genome, compared with <7 AMR genes (P < 0.001. The odds of resistance was lower for S

  16. Antibiotic resistance of Streptococcus pneumoniae in children with acute otitis media treatment failure.

    Science.gov (United States)

    Zielnik-Jurkiewicz, Beata; Bielicka, Anna

    2015-12-01

    The emergence of antibiotic-resistant bacteria is a major cause of treatment failure in children with acute otitis media (AOM). This study aimed to analyze the types of bacterial strains in fluid isolated from the middle ear of children with AOM who did not respond to oral antibiotic treatment. We also determined the antibiotic resistance of the most frequently isolated bacterial strain (Streptococcus pneumoniae) found in these children. This was a prospective study of 157 children with AOM aged from 6 months to 7 years admitted due to unsuccessful oral antibiotic treatment. All children underwent a myringotomy, and samples of the middle ear fluid were collected for bacteriological examination. Positive bacterial cultures were obtained in 104 patients (66.2%), with Streptococcus pneumoniae (39.69%), Haemophilus influenzae (16.03%) Staphylococcus aureus (16.03%), Staphylococcus haemolyticus (6.9%) and Streptococcus pyogenes (5.34%) found most frequently. The majority (65.4%) of S. pneumoniae strains were penicillin-intermediate-resistant or penicillin-resistant, and 67.2% strains of S. pneumoniae were multidrug-resistant. We identified S. pneumoniae as the most frequently isolated pathogen from the middle ear in children with AOM treatment failure and determined that the majority of strains were antibiotic-resistant. We propose that the microbiological identification of bacterial strains and their degree of antibiotic resistance should be performed prior to therapy in order to choose the most appropriate antibiotic therapy for children with AOM treatment failure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Bacitracin Resistance of Streptococcus mutans Regulated by Two Component System

    OpenAIRE

    北河, 憲雄

    2011-01-01

    Streptococcus mutansは、主要なう蝕の原因細菌であり、バシトラシンに耐性を持つことが知られている。本研究では、この耐性メカニズムを解明するため、バシトラシン存在下で顕著に発現誘導される遺伝子をマイクロアレイを用いて探索した。4 倍以上発現誘導されていた8 つの遺伝子のうち、耐性に主に関与していたのは ABC トランスポーターをコードすると推定される 2 つの遺伝子、mbrA、mbrB であった。以前の研究から、mbrABCD 遺伝子群はバシトラシン耐性に関与することが分かっているが mbrABCD 遺伝子群による耐性のメカニズムの詳細は判明していない。アミノ酸配列のホモロジーより mbrCD は 二成分制御系 (TCS) の遺伝子と推測されており、mbrC、mbrD それぞれの欠損株を作製して検討したところ、推測通り、 mbrCD が mbrA の発現を制御していた。また、ゲルシフトアッセイにより MbrC はmbrA の発現調節領域と推定される部位と特異的に結合すること、及びリン酸化部位と予測される 54 番目のアスパラギン酸をアスパラギンに置換した変異 Mb...

  18. Intravitreal Ampicillin Sodium for Antibiotic-Resistant Endophthalmitis: Streptococcus uberis First Human Intraocular Infection Report

    Directory of Open Access Journals (Sweden)

    Raul Velez-Montoya

    2010-01-01

    Full Text Available Purpose. To describe the clinical characteristics, diagnosis, and treatment with intravitreal ampicillin sodium of a postoperative endophthalmitis case due to Streptococcus uberis; an environmental pathogen commonly seen in mastitis cases of lactating cows. Methods. Case Report. A 52-year-old, Hispanic diabetic patient who suddenly developed severe pain and severe loss of vision, following vitrectomy. Results. The patient was diagnosed with postoperative endophthalmitis secondary to a highly resistant strain of Streptococcus uberis that did not respond to intravitreal antibiotics. He was treated with an air-fluid interchange, anterior chamber washout, intravitreal ampicillin sodium (5 mg/0.1 mL, and silicon oil tamponade (5000 ck. The eye was anatomically stabilized, though there was no functional recovery. Conclusion. Streptococcus uberis is an uncommon pathogen to the human eye, which has unique features that help the strain in developing resistance to antibiotics. While treatment with intravitreal ampicillin is feasible, there are still concerns about its possible toxicity.

  19. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae?

    Science.gov (United States)

    Colijn, Caroline; Cohen, Ted; Fraser, Christophe; Hanage, William; Goldstein, Edward; Givon-Lavi, Noga; Dagan, Ron; Lipsitch, Marc

    2010-01-01

    The rise of antimicrobial resistance in many pathogens presents a major challenge to the treatment and control of infectious diseases. Furthermore, the observation that drug-resistant strains have risen to substantial prevalence but have not replaced drug-susceptible strains despite continuing (and even growing) selective pressure by antimicrobial use presents an important problem for those who study the dynamics of infectious diseases. While simple competition models predict the exclusion of one strain in favour of whichever is ‘fitter’, or has a higher reproduction number, we argue that in the case of Streptococcus pneumoniae there has been persistent coexistence of drug-sensitive and drug-resistant strains, with neither approaching 100 per cent prevalence. We have previously proposed that models seeking to understand the origins of coexistence should not incorporate implicit mechanisms that build in stable coexistence ‘for free’. Here, we construct a series of such ‘structurally neutral’ models that incorporate various features of bacterial spread and host heterogeneity that have been proposed as mechanisms that may promote coexistence. We ask to what extent coexistence is a typical outcome in each. We find that while coexistence is possible in each of the models we consider, it is relatively rare, with two exceptions: (i) allowing simultaneous dual transmission of sensitive and resistant strains lets coexistence become a typical outcome, as does (ii) modelling each strain as competing more strongly with itself than with the other strain, i.e. self-immunity greater than cross-immunity. We conclude that while treatment and contact heterogeneity can promote coexistence to some extent, the in-host interactions between strains, particularly the interplay between coinfection, multiple infection and immunity, play a crucial role in the long-term population dynamics of pathogens with drug resistance. PMID:19940002

  20. Streptococcus lutetiensis Bacteremia. First Clindamycin Resistant Isolate Carrying lnuB Gene

    OpenAIRE

    Almuzara, Marisa; Bonofiglio, Laura; Cittadini, Roberto Arnaldo; Vera Ocampo, C.; Montilla, A.; del Castillo, M.; Ramirez, Maria Soledad; Mollerach, Marta Eugenia; Vay, C.

    2015-01-01

    First Case of Streptococcus lutetiensis Bacteremia Involving a Clindamycin-Resistant Isolate Carrying the lnuB Gene Fil: Almuzara, Marisa. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina; Fil: Bonofiglio, Laura. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología; Argentina; Fil: Cittadini, Roberto Arnaldo. Instituto Nacional de Tecnologia Agropecuaria;...

  1. Molecular Basis of Resistance to Selected Antimicrobial Agents in the Emerging Zoonotic Pathogen Streptococcus suis.

    Science.gov (United States)

    Gurung, Mamata; Tamang, Migma Dorji; Moon, Dong Chan; Kim, Su-Ran; Jeong, Jin-Ha; Jang, Geum-Chan; Jung, Suk-Chan; Park, Yong-Ho; Lim, Suk-Kyung

    2015-07-01

    Characterization of 227 Streptococcus suis strains isolated from pigs during 2010 to 2013 showed high levels of resistance to clindamycin (95.6%), tilmicosin (94.7%), tylosin (93.8%), oxytetracycline (89.4%), chlortetracycline (86.8%), tiamulin (72.7%), neomycin (70.0%), enrofloxacin (56.4%), penicillin (56.4%), ceftiofur (55.9%), and gentamicin (55.1%). Resistance to tetracyclines, macrolides, aminoglycosides, and fluoroquinolone was attributed to the tet gene, erm(B), erm(C), mph(C), and mef(A) and/or mef(E) genes, aph(3')-IIIa and aac(6')-Ie-aph(2″)-Ia genes, and single point mutations in the quinolone resistance-determining region of ParC and GyrA, respectively. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Erythromycine resistance in streptococcus pyogenes group a throat isolates in sukkur city

    International Nuclear Information System (INIS)

    Memon, B.

    2007-01-01

    To examine and evaluate the predominant and common etiologic agent(s) of pharyngitis in Sukkur city and to determine their current antibiotic susceptibility/resistance trends. Out of 257 throat samples, 149 positive for Streptococcus pyogenes Group A between November 2001 and May 2003 from adult population of Sukkur city were tested for their susceptibility to erythromycin, clindamycin, azithromycin and clairithromycin. The throat samples (swabs) were examined by Gram-stain, API system, and for presence of a hemolysis. Samples were further cultured on Muller Hinton agar for determination of antibiotic sensitivity patterns. The sensitivity was performed on only those samples which were positive for S. pyogenes. Of all throat isolates, 95% were predominantly resistant to erythromycin. Their sensitivity towards clindamycin was 30%, azithromycin 44% and clairithromycin 76% respectively. The current pharyngeal isolates of S. pyogenes exhibited frequent and alarmingly high erythromycin resistance which may be due to both intrinsic and acquired mechanisms. (author)

  3. Genotyping and serotyping of macrolide and multidrug resistant Streptococcus pneumoniae isolated from carrier children

    Directory of Open Access Journals (Sweden)

    S F Swedan

    2016-01-01

    Full Text Available Aims: Streptococcus pneumoniae, an opportunistic pathogen commonly carried asymptomatically in the nasopharynx of children, is associated with increasing rates of treatment failures due to a worldwide increase in drug resistance. We investigated the carriage of S. pneumoniae in children 5 years or younger, the identity of prevalent serotypes, the rates of resistance to macrolides and other antimicrobial agents and the genotypes responsible for macrolide resistance. Materials and Methods: Nasopharyngeal swabs were collected from 157 children under 5 years for cultural isolation of S. pneumoniae. Antibiogram of isolates  was determined using the disk diffusion test, and the minimal inhibitory concentration to macrolides was determined using the E-test. Isolate serotypes and macrolide resistance genes, erm(B and mef(E, were identified using multiplex polymerase chain reactions. Results: S. pneumoniae was recovered from 33.8% of children; 41.9% among males and 21.9% among females (P = 0.009. The highest carriage rate occurred among age groups 7-12 months and 49-60 months. Most frequent serotypes were 19F, 6A/B, 11A, 19A, 14 and 15B/C.  Resistance to macrolides was 60.4%. Resistance to oxacillin, trimethoprim/sulfamethoxazole and clindamycin was present among 90.6%, 54.7% and 32.1% of isolates, respectively. All isolates were susceptible to chloramphenicol, levofloxacin and vancomycin. Isolates resistant to one or more macrolide drugs were more likely to be multidrug resistant. Resistance to clindamycin or oxacillin coexisted with macrolide resistance. Among the erythromycin-resistant isolates, erm(B, mef(E and erm(B and mef(E genes were present at rates of 43.8%, 37.5% and 6.3%, respectively. Erm(B and mef(E were associated with very high level and moderate-to-high level resistance to macrolides, respectively. Conclusion: A significant proportion of children harboured macrolide and multidrug-resistant S. pneumoniae.

  4. Penicillin resistance and serotype distribution of Streptococcus pneumoniae in Ghanaian children less than six years of age

    DEFF Research Database (Denmark)

    Dayie, Nicholas T. K. D.; Arhin, Reuben E.; Newman, Mercy J.

    2013-01-01

    Background: The objective of this study was to determine the prevalence of nasopharyngeal carriage, serotype distribution, and penicillin resistance of Streptococcus pneumoniae in children 2 mu g/ml and were classified as fully penicillin resistant with 45% of the isolates having intermediate...... serotypes detected. The two penicillin resistant isolates (MIC 32 mu g/ml) were serotypes included in both PCV-13 and PPV-23. A nationwide monitoring system of penicillin susceptibility patterns and pneumococcal serotypes is recommended....

  5. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract.

    Science.gov (United States)

    Sheen, Tamsin R; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M; Doran, Kelly S

    2011-12-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment.

  6. Serine-Rich Repeat Proteins and Pili Promote Streptococcus agalactiae Colonization of the Vaginal Tract ▿

    Science.gov (United States)

    Sheen, Tamsin R.; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M.; Doran, Kelly S.

    2011-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment. PMID:21984789

  7. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    Full Text Available Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  8. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.

    Science.gov (United States)

    Wang, Xiao-Nan; Qin, Mei; Feng, Yu-Ying; Chen, Jian-Kang; Song, Yi-Shan

    2017-09-01

    The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg -1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Genetic and physiological studies of antibiotic resistance in a clinical isolate of Streptococcus faecalis

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1987-01-01

    An erythromycin-sensitive clinical isolate of Streptococcus faecalis (CS-4B) generated intermediate-level erythromycin-resistant isolates ([CS-4B(S)] at a frequency of 4 x 10 -8 per cell. CS-4B(S) produces high-level erythromycin-resistant isolates [CS-4B(L)] at a very high frequency. The erythromycin-resistance is non-transferable, chromosomally located, and distinct from the well described erythromycin-resistance of the MLS type. The erythromycin-resistance of CS-4B(S) and CS-4B(L) is not due to an in vitro or in vivo alteration or inactivation of erythromycin. 14 C-erythromycin binds in vitro, as evaluated with sucrose gradients, to 70S ribosomes and 50S ribosomal subunits in CS-4B. Binding to CS-4B(L) ribosomes was barely detectable whereas CS-4B(S) ribosomes retained binding capacity. The binding studies on filter membranes revealed a substantial reduction of 14 C-erythromycin binding to CS-4B(S) ribosomes when compared to CS-4B ribosomes. The in vivo accumulation of 14 C-erythromycin in CS-4B and CS-4B(S) parallel the in vitro binding capacity of ribosomes indicating the apparent absence of a permeability barrier to erythromycin in CS-4B

  10. The effect of immunization with pneumococcal conjugated vaccines on Streptococcus pneumoniae resistance patterns in acute otitis media

    Directory of Open Access Journals (Sweden)

    Tal Marom

    2017-10-01

    Full Text Available Following the introduction of 7- and 13-pneumococcal conjugate vaccines (PCVs in Israel, we demonstrated that within Streptococcus pneumoniae (Sp positive middle ear cultures, obtained from young children with severe acute otitis media (AOM episodes, there were more penicillin-susceptible and less multi-drug resistant Sp isolates in PCV immunized children.

  11. Antimicrobial resistance and molecular characteristics of Streptococcus agalactiae isolated from women of reproductive age

    Directory of Open Access Journals (Sweden)

    Magdalena Musiorska

    2016-12-01

    Full Text Available Introduction. Streptococcus agalactiae infections are among the most significant causes of neonatal invasive diseases. Proper screening and detection of pregnant women carrying GBS allows intrapartum administration of antibiotic prophylaxis and is an effective measure in preventing transmission of bacteria from mother to newborns. Material and methods. Sixty three bacterial strains were isolated from vaginal swabs from pregnant and nonpregnant women of reproductive age. Species were identified by colony morphology, haemolysis type, Gram staining and SLIDEX® Strepto Plus latex test. Antimicrobial resistance of 56 strains was determined using disk-diffusion method. The presence of molecular resistance determinants was assessed using PCR with specific primers, and capsular types were identified using multiplex PCR. Results. None of the strains were resistant to the first drug of choice, penicillin. A large percentage of isolates (78.6% were resistant to doxycycline. The prevalence of resistance to macrolides and lincosamides, antibiotics used in women allergic to penicillin, was high. Those results corresponded with PCR tests, as tetM and ermA1 were most frequently detected genes (98.4 and 87.3%, respectively. 7.94% of strains possessed 7 different out of 13 tested genes determining resistance to different groups of antimicrobials. Among the capsular types, Ia, which proved to be associated with the most severe and invasive infections in mothers and neonates, was the most prevalent (65.08%. Conclusions. Even though they are susceptible to penicillin, multidrug resistance is common among S. agalactiae strains isolated from women of reproductive age and this resistance can be caused by more than one gene per single isolate

  12. Drug-resistance in Streptococcus pneumoniae isolates among Spanish middle aged and older adults with community-acquired pneumonia

    Directory of Open Access Journals (Sweden)

    Raga-Luria Xavier

    2009-03-01

    Full Text Available Abstract Background Pneumococcal diseases remain a major cause of morbidity and mortality worldwide. Updated data on drug-resistance from different populations may be important to recognize changes in disease patterns. This study assessed current levels of penicilin resistance among Streptococcus Pneumoniae causing pneumonia in Spanish middle age and older adults. Methods Antimicrobial susceptibility was tested for 104 consecutive isolates of Streptococcus pneumoniae recovered from patients 50 years or older with radiographically confirmed pneumonia in the region of Tarragona (Spain between 2002 and 2007. According to the minimum inhibitory concentration of tested antimicrobials (penicillin, erythromycin, cefotaxime and levofloxacin strains were classified as susceptible or resistant. Antimicrobial resistance was determined for early cases (2002–2004 and contemporary cases (2005–2007. Results Twenty-seven (25.9% were penicillin-resistant strains (19 strains with intermediate resistance and 8 strains with high resistance. Penicillin-resistance was higher in 2002–2004 than in 2005–2007 (39.5% vs 18.2%, p = 0.017. Of 27 penicillin-resistant strains, 10 (37% were resistant to erythromycin, 8 (29.6% to cefotaxime, 2 (7.4% to levofloxacin, and 4 (14.8% were identified as multidrug resistant. Case-fatality rate was higher among those patients who had an infection caused by any penicillin susceptible strain (16.9% than in those with infections due to penicillin-resistant strains. Conclusion Resistance to penicillin among Streptococcus pneumoniae remains high, but such resistance does not result in increased mortality in patients with pneumococcal pneumonia.

  13. Serine-Rich Repeat Proteins and Pili Promote Streptococcus agalactiae Colonization of the Vaginal Tract

    NARCIS (Netherlands)

    Sheen, Tamsin R.; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M.; Doran, Kelly S.

    2011-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal

  14. Streptococcus pneumoniae from Palestinian nasopharyngeal carriers: serotype distribution and antimicrobial resistance.

    Directory of Open Access Journals (Sweden)

    Abedelmajeed Nasereddin

    Full Text Available Infections of Streptococcus pneumoniae in children can be prevented by vaccination; left untreated, they cause high morbidity and fatalities. This study aimed at determining the nasopharyngeal carrier rates, serotype distribution and antimicrobial resistance patterns of S. pneumoniae in healthy Palestinian children under age two prior to the full introduction of the pneumococcal 7-valent conjugate vaccine (PCV7, which was originally introduced into Palestine in a pilot trial in September, 2010. In a cross sectional study, nasopharyngeal specimens were collected from 397 healthy children from different Palestinian districts between the beginning of November 2012 to the end of January 2013. Samples were inoculated into blood agar and suspected colonies were examined by amplifying the pneumococcal-specific autolysin gene using a real-time PCR. Serotypes were identified by a PCR that incorporated different sets of specific primers. Antimicrobial susceptibility was measured by disk diffusion and MIC methods. The resulting carrier rate of Streptococcus pneumoniae was 55.7% (221/397. The main serotypes were PCV7 serotypes 19F (12.2%, 23F (9.0%, 6B (8.6% and 14 (4% and PCV13 serotypes 6A (13.6% and 19A (4.1%. Notably, serotype 6A, not included in the pilot trial (PCV7 vaccine, was the most prevalent. Resistance to more than two drugs was observed for bacteria from 34.1% of the children (72/211 while 22.3% (47/211 carried bacteria were susceptible to all tested antibiotics. All the isolates were sensitive to cefotaxime and vancomycin. Any or all of these might impinge on the type and efficacy of the pneumococcal conjugate vaccines and antibiotics to be used for prevention and treatment of pneumococcal disease in the country.

  15. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin.

    Science.gov (United States)

    Pridgeon, Julia W; Klesius, Phillip H

    2013-05-31

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resistant S. agalactiae isolates were tested in 10-12g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, 31 were found to be avirulent to fish. Of the 31 avirulent sparfloxacin-resistant S. agalactiae isolates, 30 provided 75-100% protection to 10-12g Nile tilapia against challenges with a virulent S. agalactiae isolate Sag 50. When the virulence of the 30 sparfloxacin-resistant S. agalactiae isolates was tested in 3-5g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, six were found to be avirulent to 3-5g Nile tilapia. Of the six avirulent sparfloxacin-resistant S. agalactiae isolates, four provided 3-5g Nile tilapia 100% protection against challenges with homologous isolates, including Sag 97-spar isolate that was non-hemolytic. However, Sag 97-spar failed to provide broad cross-protection against challenges with heterologous isolates. When Nile tilapia was vaccinated with a polyvalent vaccine consisting of 30 sparfloxacin-resistant S. agalactiae isolates at dose of 2×10(6)CFU/fish, the polyvalent vaccine provided significant (PS. agalactiae. Taken together, our results suggest that a polyvalent vaccine consisting of various strains of S. agalactiae might be essential to provide broader protection to Nile tilapia against infections caused by S. agalactiae. Published by Elsevier Ltd.

  16. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    Science.gov (United States)

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati, India

    Directory of Open Access Journals (Sweden)

    Mrinalee Devi

    2017-05-01

    Full Text Available Aim: This study was conducted to determine the prevalence and antimicrobial susceptibility of Streptococcus suis and their resistance patterns isolated from both clinically healthy carriers and diseased pigs in and around Guwahati, Assam, India. Materials and Methods: A total of 497 samples were collected during October, 2012, to April, 2014, from clinically healthy (n=67 and diseased (n=230 pigs of varying age and either sex maintained under organized and unorganized farming systems. Samples were processed for isolation and identification of S. suis by biochemical characterization and polymerase chain reaction targeting the housekeeping gene glutamate dehydrogenase. In vitro antimicrobial susceptibility of the recovered isolates against nine antibiotic groups comprising 17 antimicrobial agents was studied by standard method. Results: Of the 497 samples examined, 7 (1.41% isolates were confirmed to be S. suis of which 5 (1.87% and 2 (0.87% were derived from clinically healthy and diseased pigs, respectively. All the isolates were susceptible to gentamicin, amikacin, and erythromycin (100% followed by the penicillin group and enrofloxacin (85.71%, ceftriaxone, doxycycline HCL, ofloxacin and chloramphenicol (71.43%, to kanamycin, clindamycin and co-trimoxazole (42.85%. The isolates showed least susceptibility to cefalexin, tetracycline and streptomycin (28.57%. All the five S. suis isolates from clinically healthy pigs were susceptible to penicillin G, amoxyclav, doxycycline HCl, gentamicin, amikacin and erythromycin, 80.00% isolates susceptible to ampicillin, enrofloxacin and ofloxacin, 60.00% to ceftriaxone, kanamycin and chloramphenicol, 40% to cefalexin, tetracycline, clindamycin and co-trimoxazole, respectively. Only 20.00% isolates were susceptible to streptomycin. Both the isolates recovered from diseased pigs were susceptible to ampicillin, ceftriaxone, gentamicin, amikacin, enrofloxacin, erythromycin, and clindamycin. On the other hand

  18. Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae.

    OpenAIRE

    Dowson, C G; Hutchison, A; Woodford, N; Johnson, A P; George, R C; Spratt, B G

    1990-01-01

    Penicillin-resistant strains of Streptococcus pneumoniae possess altered forms of penicillin-binding proteins (PBPs) with decreased affinity for penicillin. The PBP2B genes of these strains have a mosaic structure, consisting of regions that are very similar to those in penicillin-sensitive strains, alternating with regions that are highly diverged. Penicillin-resistant strains of viridans groups streptococci (e.g., S. sanguis and S. oralis) that produce altered PBPs have also been reported. ...

  19. The Fitness Cost of Fluoride Resistance for Different Streptococcus mutans Strains in Biofilms

    Directory of Open Access Journals (Sweden)

    Yanling Cai

    2017-08-01

    Full Text Available The cariogenic bacterium Streptococcus mutans can develop stable resistance to fluoride through chromosomal mutations in vitro. Fluoride-resistant S. mutans has seldom been isolated in clinical settings, despite the wide application of fluoride in oral-care products. One explanation is that the fluoride-resistant S. mutans strains have decreased fitness. However, so far, there has been no conclusive evidence to support this idea. The aim of this study was to investigate the fitness cost of 48-h biofilms of two fluoride-resistant S. mutans strains, UF35 and UA159-FR (UAFR, using the wild-type fluoride-sensitive strain UA159 as a reference. The engineered UF35 strain contains one point mutation, whereas UAFR, selected from NaF-containing agar plates, has multiple chromosomal mutations. All biofilms were formed for 48 h under a constantly neutral pH or a pH-cycling (8 h of neutral pH and 16 h of pH 5.5 condition in the absence of fluoride. The biomass of the biofilms was quantified with a crystal violet assay. The biofilms were also treated with chlorhexidine or solutions at pH 3.0, after which their lactic acid production was quantified. Compared to the UF35 and UA159 biofilms, the biomass of UAFR biofilms was two–four fold higher, and the UAFR biofilms were more resistant to chlorhexidine and low pH in terms of lactic acid production. No difference in biomass and lactic acid production was detected between UF35 and UA159 biofilms. The fluoride resistance of UAFR and UF35 strains in biofilms was further confirmed by treating the biofilms with NaF solutions. The level of NaF resistance of the three biofilms is generally ranked as follows: UAFR > UF35 > UA159. In conclusion, there is indeed a fitness consequence in UAFR, but surprisingly, this fluoride-resistant strain performs better than UF35 and UA159 under the described conditions. In addition, UF35 did not display a reduced fitness; it performed as well as the wild-type fluoride

  20. Penicillin-Resistant trend of Streptococcus pneumoniae in Asia: A systematic review.

    Science.gov (United States)

    Mamishi, Setareh; Moradkhani, Sepideh; Mahmoudi, Shima; Hosseinpour-Sadeghi, Reihaneh; Pourakbari, Babak

    2014-08-01

    The high prevalence of resistance to penicillin by Streptococcus pneumoniaeis considered as a great concern, particularly in Asian countries. The aim of this study was to investigate the changing trend of penicillin-resistant S. pneumoniae (PRSP) in Asia over a 20 years period. A review of the literature was conducted using the PubMed database, Google Scholar, Scopus, two Persian scientific search engines "Scientific Information Database" (www.sid.ir), and "Mag Iran" (www.magiran.com) through 1993 to 2013. Our study provides a unique chance to investigate the changing trend in PSSP in Asia over a 20 years period. Susceptibility rates among different centers in each country varied widely. In Malaysia, the PSSP rate decreased from 97.2% in 1995-1996 to 69% in 2000. In Singapore, PSSP levels decreased from 72.6% in 1997 to 30.5% in 2007-2008. In Iran, PSSP ranged from 0% to 100%. In Taiwan, the rate of PSSP was 60.3% in 1995 and countries such as Vietnam, Singapore, Philippines, Pakistan, Nepal, Kuwait, Korea and Indonesia.

  1. Surveillance of antimicrobial resistance in clinical isolates of Pasteurella multocida and Streptococcus suis from Ontario swine

    Science.gov (United States)

    Glass-Kaastra, Shiona K.; Pearl, David L.; Reid-Smith, Richard J.; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A.

    2014-01-01

    Susceptibility results for Pasteurella multocida and Streptococcus suis isolated from swine clinical samples were obtained from January 1998 to October 2010 from the Animal Health Laboratory at the University of Guelph, Guelph, Ontario, and used to describe variation in antimicrobial resistance (AMR) to 4 drugs of importance in the Ontario swine industry: ampicillin, tetracycline, tiamulin, and trimethoprim–sulfamethoxazole. Four temporal data-analysis options were used: visualization of trends in 12-month rolling averages, logistic-regression modeling, temporal-scan statistics, and a scan with the “What’s strange about recent events?” (WSARE) algorithm. The AMR trends varied among the antimicrobial drugs for a single pathogen and between pathogens for a single antimicrobial, suggesting that pathogen-specific AMR surveillance may be preferable to indicator data. The 4 methods provided complementary and, at times, redundant results. The most appropriate combination of analysis methods for surveillance using these data included temporal-scan statistics with a visualization method (rolling-average or predicted-probability plots following logistic-regression models). The WSARE algorithm provided interesting results for quality control and has the potential to detect new resistance patterns; however, missing data created problems for displaying the results in a way that would be meaningful to all surveillance stakeholders. PMID:25355992

  2. GC-MS-Based Metabolome and Metabolite Regulation in Serum-Resistant Streptococcus agalactiae.

    Science.gov (United States)

    Wang, Zhe; Li, Min-Yi; Peng, Bo; Cheng, Zhi-Xue; Li, Hui; Peng, Xuan-Xian

    2016-07-01

    Streptococcus agalactiae causes severe systemic infections in human and fish. In the present study, we established a pathogen-plasma interaction model by which we explored how S. agalactiae evaded serum-mediated killing. We found that S. agalactiae grew faster in the presence of yellow grouper plasma than in the absence of the plasma, indicating S. agalactiae evolved a way of evading the fish immune system. To determine the events underlying this phenotype, we applied GC-MS-based metabolomics approaches to identify differential metabolomes between S. agalactiae cultured with and without yellow grouper plasma. Through bioinformatics analysis, decreased malic acid and increased adenosine were identified as the most crucial metabolites that distinguish the two groups. Meanwhile, they presented with decreased TCA cycle and elevated purine metabolism, respectively. Finally, exogenous malic acid and adenosine were used to reprogram the plasma-resistant metabolome, leading to elevated and decreased susceptibility to the plasma, respectively. Therefore, our findings reveal for the first time that S. agalactiae utilizes a metabolic trick to respond to plasma killing as a result of serum resistance, which may be reverted or enhanced by exogenous malic acid and adenosine, respectively, suggesting that the metabolic trick can be regulated by metabolites.

  3. Bioinformatics and structural characterization of a hypothetical protein from Streptococcus mutans: implication of antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Jie Nan

    2009-10-01

    Full Text Available As an oral bacterial pathogen, Streptococcus mutans has been known as the aetiologic agent of human dental caries. Among a total of 1960 identified proteins within the genome of this organism, there are about 500 without any known functions. One of these proteins, SMU.440, has very few homologs in the current protein databases and it does not fall into any protein functional families. Phylogenetic studies showed that SMU.440 is related to a particular ecological niche and conserved specifically in some oral pathogens, due to lateral gene transfer. The co-occurrence of a MarR protein within the same operon among these oral pathogens suggests that SMU.440 may be associated with antibiotic resistance. The structure determination of SMU.440 revealed that it shares the same fold and a similar pocket as polyketide cyclases, which indicated that it is very likely to bind some polyketide-like molecules. From the interlinking structural and bioinformatics studies, we have concluded that SMU.440 could be involved in polyketide-like antibiotic resistance, providing a better understanding of this hypothetical protein. Besides, the combination of multiple methods in this study can be used as a general approach for functional studies of a protein with unknown function.

  4. Streptococcus sanguinis isolate displaying a phenotype with cross-resistance to several rRNA-targeting agents.

    Science.gov (United States)

    Mendes, Rodrigo E; Deshpande, Lalitagauri M; Kim, Jihye; Myers, Debra S; Ross, James E; Jones, Ronald N

    2013-08-01

    This study describes a clinical case of a 71-year-old male with a history of ischemic cardiomyopathy after left ventricular assist device (LVAD) endocarditis caused by methicillin-resistant Staphylococcus epidermidis (MRSE) and a rare linezolid-resistant Streptococcus sanguinis strain (MIC, 32 μg/ml). The patient received courses of several antimicrobial agents, including linezolid for 79 days. The S. sanguinis strain had mutations in the 23S rRNA (T2211C, T2406C, G2576T, C2610T) and an amino acid substitution (N56D) in L22 and exhibited cross-resistance to ribosome-targeting agents.

  5. Multidrug Resistance in Non-PCV13 Serotypes of Streptococcus pneumoniae in Northern Japan, 2014.

    Science.gov (United States)

    Kawaguchiya, Mitsuyo; Urushibara, Noriko; Kobayashi, Nobumichi

    2017-03-01

    Since the implementation of routine PCV13 immunization in Japan, nonvaccine serotypes (NVTs) have been increasing among clinical isolates of Streptococcus pneumoniae. In this study, susceptibility to 18 antibiotics was tested for all the 231 isolates with NVTs, which were collected from children Japan in 2014 (July-November). High resistance rates were observed for macrolides (>90.9%), tetracycline (91.3%), and clindamycin (75.3%), while penicillin (PEN) nonsusceptibility (PNSP; MIC ≥0.12 μg/ml) was detected in 42.9% of the pneumococci [39.4%; PEN-intermediate S. pneumoniae (PISP), 3.5%; PEN-resistant S. pneumoniae (PRSP)]. All serotype 15A isolates were PRSP (MIC, ≥2 μg/ml) or PISP, and PNSP was prevalent in also serotypes 23A (96.9%), 6C (41%), and 35B (33.3%). Overall, 42.0% of the isolates showed multidrug resistance (MDR). Sequence types (STs) determined for 20 PNSP isolates with NVTs were ST63 (15A), STs 242 or 5832 (6C), STs 338 or 5242 (23A), and ST558 (35B). All the PNSP isolates possessed tet(M), and erm(B) or mefA(A/E), and 70% of them were gPRSP having three altered genes pbp1a, pbp2x, and pbp2b. Among alterations in transpeptidase-coding region of penicillin-binding proteins (PBPs), two substitutions of T 371 S in the STMK motif and TSQF 574-577 NTGY in PBP1a were common to all PRSP isolates. The present study showed the spread of PNSP in NVTs 15A, 23A, 6C, and 35B, and the emergence of the MDR international clone Sweden 15A -ST63 in northern Japan.

  6. Controlled laboratory challenge demonstrates substantial additive genetic variation in resistance to Streptococcus iniae in Nile tilapia

    Science.gov (United States)

    Streptococcus iniae is an etiologic agent of streptococcal disease in tilapia and is one of several Streptococcus spp. that negatively impact worldwide tilapia production. Methods for the prevention and control of S. iniae include vaccines, management strategies, and antibiotics. An alternative and ...

  7. Prevalência de sorotipos e resistência antimicrobiana de cepas invasivas do Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Mantese Orlando C.

    2003-01-01

    Full Text Available OBJETIVO: Avaliar o perfil de sorotipos e a susceptibilidade aos antimicrobianos de cepas de Streptococcus pneumoniae obtidas em espécimes clínicos de pacientes com doença invasiva, bem como suas implicações na formulação de vacinas pneumocócicas. MÉTODOS: Cepas de pneumococo isoladas no Laboratório de Análises Clínicas do Hospital de Clínicas da Universidade Federal de Uberlândia a partir de amostras clínicas de pacientes com doença invasiva foram identificadas e enviadas ao Instituto Adolfo Lutz em São Paulo para confirmação da identificação, sorotipagem e determinação da susceptibilidade aos antimicrobianos. RESULTADOS: De abril de 1999 a março de 2003, foram isoladas 148 cepas invasivas de pneumococo, sendo 84 (56,7% provenientes de pacientes do sexo masculino. A idade variou de um dia a 88,83 anos, com média de 21,33+25,82 anos e mediana de 4,42 anos. Os diagnósticos clínicos mais comuns foram pneumonia (91 casos; 61,4%, meningite (32 casos; 21,6% e bacteremia sem foco evidente (15 casos; 10,1%. As principais fontes de recuperação foram sangue (76 amostras; 51,3%, líquido pleural (39; 26,3% e liquor (30; 20,2%. No total, foram identificados 23 diferentes sorotipos entre 143 amostras testadas, sendo os mais comuns os seguintes: 14, 3, 1, 5, 6A, 6B e 18C. Dentre 30 (20,2% cepas oxacilina-resistentes, 23 (15,5% confirmaram a resistência à penicilina (12,8% com nível intermediário e 2,7%, com nível pleno, que esteve restrita aos sorotipos 14, 23F, 19A e 6B, predominando em indivíduos com até dois anos de idade (p = 0,0008. Foi detectada susceptibilidade diminuída ao cotrimoxazol (63,4%, à eritromicina (8,3%, à clindamicina (8,7% e à ofloxacina (0,8%. A resistência à cefotaxima foi detectada em três das 30 cepas testadas (2% das 148, todas elas com resistência confirmada à penicilina. Não foi observada resistência a cloranfenicol, rifampicina ou vancomicina. CONCLUSÕES: A resistência

  8. Are Sewage Treatment Plants Promoting Antibiotic Resistance?

    Science.gov (United States)

    1. Introduction 1.1. How bacteria exhibit resistance 1.1.1. Resistance to -lactams 1.1.2. Resistance to sulphonamides and trimethoprim 1.1.3. Resistance to macrolides 1.1.4. Resistance to fluoroquinolones 1.1.5. Resistance to tetracyclines 1.1.6. Resistance to nitroimidaz...

  9. Infective endocarditis caused by multidrug-resistant Streptococcus mitis in a combined immunocompromised patient: an autopsy case report.

    Science.gov (United States)

    Matsui, Natsuko; Ito, Makoto; Kuramae, Hitoshi; Inukai, Tomomi; Sakai, Akiyoshi; Okugawa, Masaru

    2013-04-01

    An autopsy case of infective endocarditis caused by multidrug-resistant Streptococcus mitis was described in a patient with a combination of factors that compromised immune status, including autoimmune hemolytic anemia, post-splenectomy state, prolonged steroid treatment, and IgA deficiency. The isolated S. mitis strain from blood culture was broadly resistant to penicillin, cephalosporins, carbapenem, macrolides, and fluoroquinolone. Recurrent episodes of bacterial infections and therapeutic use of several antibiotics may underlie the development of multidrug resistance for S. mitis. Because clinically isolated S. mitis strains from chronically immunocompromised patients have become resistant to a wide spectrum of antibiotics, appropriate antibiotic regimens should be selected when treating invasive S. mitis infections in these compromised patients.

  10. Bacteraemia due to Streptococcus gallolyticus subspecies pasteurianus is associated with digestive tract malignancies and resistance to macrolides and clindamycin.

    Science.gov (United States)

    Sheng, Wang-Huei; Chuang, Yu-Chung; Teng, Lee-Jene; Hsueh, Po-Ren

    2014-08-01

    This study was intended to delineate the association between digestive tract malignancies and bacteraemia due to Streptococcus gallolyticus subspecies pasteurianus. We reviewed the medical records and microbiological results of patients with bacteraemia due to Streptococcus bovis during the period 2000-2012. Species and subspecies identification of isolates originally classified as S. bovis was confirmed by 16S rRNA sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) assays. Minimum inhibitory concentrations of antimicrobial agents were determined by the broth microdilution method. Of the 172 S. bovis complex isolates obtained from 172 patients (age range, Streptococcus infantarius. The majority (n = 104, 60%) of patients were male and had underlying malignancies (n = 87, 51%). Bacteraemia due to S. gallolyticus subspecies gallolyticus was significantly associated with endocarditis while S. gallolyticus subspecies pasteurianus was more likely to be associated with malignancies of the digestive tract, including gastric, pancreatic, hepatobiliary and colorectal cancers. Septic shock at presentation was the only factor associated with mortality among patients with bacteraemia due to either subspecies of S. bovis. Isolates of S. gallolyticus subspecies pasteurianus had higher rates of resistance to macrolides and clindamycin than isolates of S. gallolyticus subspecies gallolyticus. Extensive diagnostic work-up for digestive tract malignancies and trans-esophageal echocardiogram should be investigated in patients with bacteraemia caused by S. gallolyticus. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  11. Physical structure and genetic expression of the sulfonamide-resistance plasmid pLS80 and its derivatives in Streptococcus pneumoniae and Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P.; Espinosa, M.; Lacks, S.A.

    1984-01-01

    The 10-kb chromosomal fragment of Streptococcus pneumoniae cloned in pLS80 contains the sul-d allele of the pneumococcal gene for dihydropteroate synthase. As a single copy in the chromosome this allele confers resistance to sulfanilamide at 0.2 mg/ml; in the multicopy plasmid it confers resistance to 2.0 mg/ml. The sul-d mutation was mapped by restriction analysis to a 0.4-kb region. A spontaneous deletion beginning approx. 1.5 kb to the right of the sul-d mutation prevented gene function, possibly by removing a promoter. This region could be restored by chromosomal facilitation and be demonstrated in the plasmid by selection for sulfonamide resistance. Under selection for a vector marker, tetracycline resistance, only the deleted plasmid was detectable, apparently as a result of plasmid segregation and the advantageous growth rates of cells with smaller plasmids. When such cells were selected for sulfonamide resistance, the deleted region returned to the plasmid, presumably by equilibration between the chromosome and the plasmid pool, to give a low frequency (approx. 10/sup -3/) of cells resistant to sulfanilamide at 2.0 mg/ml. Models for the mechanisms of chromosomal facilitation and equilibration are proposed. Several derivatives of pLS80 could be transferred to Bacillus subtilis, where they conferred resistance to sulfanilamide at 2 mg/ml, thereby demonstrating cross-species expression of the pneumococcal gene. Transfer of the plasmids to B. subtilis gave rise to large deletions to the left of the sul-d marker, but these deletions did not interfere with the sul-d gene function. Restriction maps of pLS80 and its variously deleted derivatives are presented.

  12. The change of macrolide resistance rates in group A Streptococcus isolates from children between 2002 and 2013 in Asahikawa city.

    Science.gov (United States)

    Sakata, Hiroshi

    2015-05-01

    This study targeted patients in the Department of Pediatrics, Asahikawa Kosei Hospital, between January 2002 and December 2013. In patients suspected of having hemolytic streptococcal infection, Group A Streptococcus (GAS) strains isolated from a throat swab were examined for antimicrobial susceptibility testing. The MICs were measured by the broth microdilution method. The annual number of GAS strains examined for antimicrobial susceptibility testing ranged from 28 to 65 strains, for a total of 574 strains. Some of the isolates obtained from 2006 to 2009 and from 2011 to 2013 were analyzed to determine their emm types. An erythromycin (EM) resistant strain was not detected until 2004, but one EM-resistant strain appeared in 2005. Subsequently, EM-resistant strains rapidly increased, and 48 of 65 strains (73.8%) examined in 2009 were resistant. In 2010, the number of EM-resistant strains decreased to 12 of 36 strains (33.3%). However, it gradually increased afterwards, and 37 of 60 strains (61.7%) were resistant in 2013. Out of 574 strains examined, 184 exhibited EM-resistance, and the overall resistance rate was 31.9%. Partitioning the 124 strains examined between 2006 and 2008 according to emm types, only emm28 strains, which exhibited a high resistance rate, and emm12 strains demonstrated resistance. For the 142 strains examined between 2011 and 2013, the resistance rate of emm28 strains was similarly high; the resistance of emm12 strains significantly increased, and emm1 strains exhibited a high resistance rate. The number of emm types associated with the resistant strains increased. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. A Potential Food-Grade Cloning Vector for Streptococcus thermophilus That Uses Cadmium Resistance as the Selectable Marker

    OpenAIRE

    Wong, Wing Yee; Su, Ping; Allison, Gwen E.; Liu, Chun-Qiang; Dunn, Noel W.

    2003-01-01

    A potential food-grade cloning vector, pND919, was constructed and transformed into S. thermophilus ST3-1, a plasmid-free strain. The vector contains DNAs from two different food-approved organisms, Streptococcus thermophilus and Lactococcus lactis. The 5.0-kb pND919 is a derivative of the cloning vector pND918 (9.3 kb) and was constructed by deletion of the 4.3-kb region of pND918 which contained DNA from non-food-approved organisms. pND919 carries a heterologous native cadmium resistance se...

  14. Postantibiotic effects and postantibiotic sub-MIC effects of tilmicosin, erythromycin and tiamulin on erythromycin-resistant Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2009-12-01

    Full Text Available The postantibiotic effects (PAEs and postantibiotic sub-MIC effects (PA SMEs of tilmicosin, erythromycin and tiamulin on erythromycin-susceptible and erythromycin-resistant strains of Streptococcus suis (M phenotype were investigated in vitro. Tilmicosin and tiamulin induced significantly longer PAE and PA SME against both erythromycin-susceptible and erythromycin-resistant strains than did erythromycin. The durations of PAE and PA SMEs were proportional to the concentrations of drugs used for exposure. The PA SMEs were substantially longer than PAEs on S. suis (P<0.05 regardless of the antimicrobial used for exposure. The results indicated that the PAE and PA SME could help in the design of efficient control strategies for infection especially caused by erythromycin-resistant S. suis and that they may provide additional valuable information for the rational drug use in clinical practice.

  15. Postantibiotic effects and postantibiotic sub-MIC effects of tilmicosin, erythromycin and tiamulin on erythromycin-resistant Streptococcus suis.

    Science.gov (United States)

    Wang, Liping; Zhang, Yuanshu

    2009-10-01

    The postantibiotic effects (PAEs) and postantibiotic sub-MIC effects (PA SMEs) of tilmicosin, erythromycin and tiamulin on erythromycin-susceptible and erythromycin-resistant strains of Streptococcus suis (M phenotype) were investigated in vitro. Tilmicosin and tiamulin induced significantly longer PAE and PA SME against both erythromycin-susceptible and erythromycin-resistant strains than did erythromycin. The durations of PAE and PA SMEs were proportional to the concentrations of drugs used for exposure. The PA SMEs were substantially longer than PAEs on S. suis (P<0.05) regardless of the antimicrobial used for exposure. The results indicated that the PAE and PA SME could help in the design of efficient control strategies for infection especially caused by erythromycin-resistant S. suis and that they may provide additional valuable information for the rational drug use in clinical practice.

  16. Induction of prophages by fluoroquinolones in Streptococcus pneumoniae: implications for emergence of resistance in genetically-related clones.

    Directory of Open Access Journals (Sweden)

    Elena López

    Full Text Available Antibiotic resistance in Streptococcus pneumoniae has increased worldwide by the spread of a few clones. Fluoroquinolone resistance occurs mainly by alteration of their intracellular targets, the type II DNA topoisomerases, which is acquired either by point mutation or by recombination. Increase in fluoroquinolone-resistance may depend on the balance between antibiotic consumption and the cost that resistance imposes to bacterial fitness. In addition, pneumococcal prophages could play an important role. Prophage induction by fluoroquinolones was confirmed in 4 clinical isolates by using Southern blot hybridization. Clinical isolates (105 fluoroquinolone-resistant and 160 fluoroquinolone-susceptible were tested for lysogeny by using a PCR assay and functional prophage carriage was studied by mitomycin C induction. Fluoroquinolone-resistant strains harbored fewer inducible prophages (17/43 than fluoroquinolone-susceptible strains (49/70 (P = 0.0018. In addition, isolates of clones associated with fluoroquinolone resistance [CC156 (3/25; CC63 (2/20, and CC81 (1/19], had lower frequency of functional prophages than isolates of clones with low incidence of fluoroquinolone resistance [CC30 (4/21, CC230 (5/20, CC62 (9/21, and CC180 (21/30]. Likewise, persistent strains from patients with chronic respiratory diseases subjected to fluoroquinolone treatment had a low frequency of inducible prophages (1/11. Development of ciprofloxacin resistance was tested with two isogenic strains, one lysogenic and the other non-lysogenic: emergence of resistance was only observed in the non-lysogenic strain. These results are compatible with the lysis of lysogenic isolates receiving fluoroquinolones before the development of resistance and explain the inverse relation between presence of inducible prophages and fluoroquinolone-resistance.

  17. Antimicrobial resistance and serotyping of Streptococcus pneumoniae isolated from pediatric patients in Belo Horizonte, MG, Brazil Resistência antimicrobiana e sorotipagem de Streptococcus pneumoniae isolado de pacientes pediátricos em Belo Horizonte, MG

    Directory of Open Access Journals (Sweden)

    Ana Paula Gomes de Oliveira Magalhães

    2003-07-01

    Full Text Available Thirty one Streptococcus pneumoniae invasive strains were isolated from a pediatric population in Belo Horizonte from June, 1999 to May, 2001. Penicillin, trimethoprim-sulfamethoxazole, tetracycline and chloramphenicol resistance rates for the isolates were 41.9, 58.1, 25.8 and 3.2%, respectively. Intermediate penicillin resistant (MICs between 0.1 and 1.0 µg/ml and resistant (MICs > 2.0 µg/ml isolates occured at rates of 38.7 and 3.2%, respectively. Resistance to erythromycin, ofloxacin, rifampin or vancomicyn was not detected. Ten S. pneumoniae serotypes (14, 5, 10 A, 6B, 15B, 18C, 6 A, 18 A, 19 A and 19 F were identified. Serotype 14 (12 out of 31 was predominant among the isolates. Penicillin and trimethoprim-sulfamethoxazole resistance was more common in 14 and 6B serotypes.Trinta e três linhagens invasivas do S. pneumoniae foram isoladas a partir de pacientes pediátricos em Belo Horizonte, MG, Brasil, de junho de 1999 a maio de 2001. As taxas de resistência à penicilina, ao trimetoprim-sultametoxazol, tetraciclina e cloranfenicol foram respectivamente, 41, 9; 58,1 e 3,2%. A resistência intermediária à penicilina (MICs entre 0,1 e 1,0 µg/ml e resistência total (MICs>2.0 µg/ml ocorreram, respectivamente, nas porcentagens de 38,7 e 3,2%. Não foi detectada resistência à eritromicina, ofloxacin, rifampina e vancomicina. Foram identificados 9 sorotipos do S. pneumoniae (14, 5, 10 , 6B, 15B, 18C, 6 A, 18 19 A e 19F entre os isolados. O sorotipo 14 (12 de 31 foi predominate entre os isolados. A resistência à penicilina e ao trimetoprim-sulfametoxazol estava sempre associada aos sorotipos 14 e 6B.

  18. Single- and multistep resistance selection studies on the activity of retapamulin compared to other agents against Staphylococcus aureus and Streptococcus pyogenes.

    Science.gov (United States)

    Kosowska-Shick, Klaudia; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bogdanovich, Tatiana; Appelbaum, Peter C

    2006-02-01

    Retapamulin had the lowest rate of spontaneous mutations by single-step passaging and the lowest parent and selected mutant MICs by multistep passaging among all drugs tested for all Staphylococcus aureus strains and three Streptococcus pyogenes strains which yielded resistant clones. Retapamulin has a low potential for resistance selection in S. pyogenes, with a slow and gradual propensity for resistance development in S. aureus.

  19. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media

    Science.gov (United States)

    Murrah, Kyle A.; Turner, Roberta L.; Pang, Bing; Perez, Antonia C.; Reimche, Jennifer L.; King, Lauren B.; Wren, John; Gandhi, Uma; Swords, W. Edward; Ornelles, David A.

    2015-01-01

    Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae. The hyperinflammatory adenovirus mutant dl327 and the nonreplicating adenovirus mutant H5wt300ΔpTP were used to test the role of inflammation and viral replication, respectively, in promotion of pneumococcal middle ear infection. Precedent infection with adenovirus resulted in a significantly greater incidence of middle ear disease by S. pneumoniae as compared to nonadenovirus infected animals. Infection with the adenovirus mutant dl327 induced a comparable degree of bacterial ascension into the middle ear as did infection with the wild-type virus. By contrast, infection with the nonreplicating adenovirus mutant H5wt300ΔpTP resulted in less extensive middle ear infection compared to the wild-type adenovirus. We conclude that viral replication is necessary for adenoviral-induced pneumococcal middle ear disease. PMID:25251686

  20. [Macrolide-resistant Streptococcus pneumoniae on the islands of Gran Canaria and Lanzarote (Spain): molecular mechanisms and serogroup relationships].

    Science.gov (United States)

    Artiles, Fernando; Horcajada-Herrera, Iballa; Noguera-Catalán, Javier; Alamo-Antúnez, Isabel; Bordes-Benítez, Ana; Lafarga-Capuz, Bernardo

    2007-11-01

    Macrolide resistance in Streptococcus pneumoniae is coded by the ermB and mefA/E genes. The aim of this study was to determine the status of macrolide-resistance, the molecular mechanisms involved, the serogroup relationships, and the level of co-resistance in S. pneumoniae isolates from Gran Canaria and Lanzarote, in the Canary Islands, Spain. Macrolide resistance phenotypes were investigated in 261 S. pneumoniae clinical isolates over a two-year period (2004 and 2005). Genotypes were determined by PCR (detection of ermB and mefA/E genes). Overall macrolide resistance was 40.6% (106 isolates); 79.2% (84) of resistant isolates presented the MLSB phenotype (98.8% harbored the ermB gene), with a predominance of serogroup 19, and 20.8% (22) presented the M phenotype (77.3% displayed the mefA/E gene), all associated with serogroup 14. Worthy of note, the M phenotype was found in 8 invasive isolates from Lanzarote (80%) all from serogroup 14. The ermB and mefA/E genes were detected in 7 isolates belonging to serogroup 19. Absence of co-resistance was observed most frequently in serogroup 14 (66.7%). Co-resistance with penicillin G, tetracycline, and trimethoprim-sulfamethoxazole was associated with serogroup 19 (36.8%). Two isolates (0.8%) were resistant to telithromycin. The frequency of macrolide resistance mechanisms in the Canary Islands is different from that observed in the rest of Spain, particularly in Lanzarote, where 80% of isolates harbored the mefA/E gene and belonged to serogroup 14.

  1. The comparative development of elevated resistance to macrolides in community-acquired pneumonia caused by Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Yayan J

    2014-10-01

    Full Text Available Josef Yayan Department of Internal Medicine, Division of Pulmonary, Allergy and Sleep Medicine, Saarland University Medical Center, Homburg/Saar, Germany Background: Community-acquired pneumonia (CAP is an acute inflammation of the lungs, which is often caused by Streptococcus pneumoniae. CAP is the leading cause of death by infectious disease in industrialized countries. Therefore, an immediate and effective antibiotic therapy is of great importance for the nonfatal outcome of the disease. The literature contains increasing data about the development of resistance to antibiotics that are used for the treatment of CAP caused by S. pneumoniae; this article also examines the possible development of resistance to antibiotics in S. pneumoniae in recent years.Methods: Within the study period of 2004–2014, all hospital charts from patients with CAP caused by S. pneumoniae were collected from the Department of Internal Medicine, Saarland University Medical Center, Homburg/Saar, Germany. The tracheal secretions of S. pneumoniae in CAP patients were obtained by bronchoalveolar lavage; bronchial aspirates were obtained through flexible bronchoscopy and directly from sputum, and blood cultures were examined microbiologically for microorganisms.Results: From a total of 100 patients with CAP caused by S. pneumoniae, 23 (53.49% [34.78% female], 95% confidence interval, 38.58–68.4 patients with a mean age of 59.78±15.77 years met the inclusion criteria of this investigation. These patients were compared to a total of 20 (46.51% [35% female], 95% confidence interval, 31.6–61.42 patients with a mean age of 58.9±13.36 years with CAP who were infested with S. pneumoniae. In the latter group, the streptococcal antigen was detected in pulmonary aspirations by bronchoscopy or in urine using polymerase chain reaction and a rapid pneumococcal test. Penicillin G and vancomycin had a high rate of sensitivity on the antibiogram for S. pneumoniae, which was

  2. Role of Streptococcus mutans two-component systems in antimicrobial peptide resistance in the oral cavity

    OpenAIRE

    Kawada-Matsuo, Miki; Komatsuzawa, Hitoshi

    2017-01-01

    Summary Approximately 100 trillion microorganisms exist in the oral cavity. For the commensal bacteria of the oral cavity, it is important to adapt to environmental stimuli, including human- or bacteria-derived antimicrobial agents. Recently, bacterial-specific signal transduction regulatory systems, called two-component systems (TCSs), which appear to be focused on sensing and adapting to the environment, were discovered. Streptococcus mutans is an oral commensal bacteria and is also known a...

  3. Effects of dietary levels of vitamin A on growth, hematology, immune response and resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae

    Science.gov (United States)

    This study was conducted to evaluate the effect of supplemental levels of vitamin A (0, 2,500, 5,000, 10,000, and 20,000 IU/kg diet) on the growth performance, hematology, immune response and resistance of Nile tilapia, Oreochromis niloticus to Streptococcus iniae challenge. Each diet was fed to Nil...

  4. Draft Genome Sequence of Streptococcus agalactiae Serotype Ia Strain M19, a Multidrug-Resistant Isolate from a Cow with Bovine Mastitis

    OpenAIRE

    Yang, Feng; Li, Hongsheng; Zhang, Shidong; Wang, Xurong

    2016-01-01

    Streptococcus agalactiae is a major contagious pathogen causing bovine mastitis worldwide. We report here the draft sequence of S.?agalactiae Ia strain M19, a multidrug-resistant isolate from a bovine mastitis case in Ningxia Hui autonomous region, China.

  5. Antibacterial resistance in Streptococcus pyogenes (GAS) from healthy carriers and tonsillitis patients and association with antibacterial sale in the Faroe Islands

    DEFF Research Database (Denmark)

    Magnussen, Marita D; Gaini, Shahin; Gislason, Hannes

    2016-01-01

    The aim of this study was to investigate the antibacterial resistance of Streptococcus pyogenes (GAS), and correlate the findings with the sales of erythromycin and tetracycline. General practitioners in the Faroe Islands were recruited to send oropharyngeal swabs. From an ongoing pneumococcal...

  6. Identification and Characterization of Fluoroquinolone Non-susceptible Streptococcus pyogenes Clones Harboring Tetracycline and Macrolide Resistance in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Yinfang Shen

    2018-03-01

    Full Text Available Streptococcus pyogenes, also known as group A Streptococcus (GAS, is one of the top 10 infectious causes of death worldwide. Macrolide and tetracycline resistant GAS has emerged as a major health concern in China coinciding with an ongoing scarlet fever epidemic. Furthermore, increasing rates of fluoroquinolone (FQ non-susceptibility within GAS from geographical regions outside of China has also been reported. Fluoroquinolones are the third most commonly prescribed antibiotic in China and is an therapeutic alternative for multi-drug resistant GAS. The purpose of this study was to investigate the epidemiological and molecular features of GAS fluoroquinolone (FQ non-susceptibility in Shanghai, China. GAS (n = 2,258 recovered between 2011 and 2016 from children and adults were tested for FQ-non-susceptibility. Efflux phenotype and mutations in parC, parE, gyrA, and gyrB were investigated and genetic relationships were determined by emm typing, pulsed-field gel electrophoresis and phylogenetic analysis. The frequency of GAS FQ-non-susceptibility was 1.3% (30/2,258, with the phenotype more prevalent in GAS isolated from adults (14.3% than from children (1.2%. Eighty percent (24/30 of FQ-non-susceptible isolates were also resistant to both macrolides (ermB and tetracycline (tetM including the GAS sequence types emm12, emm6, emm11, and emm1. Genomic fingerprinting analysis of the 30 isolates revealed that non-susceptibility may arise in various genetic backgrounds even within a single emm type. No efflux phenotype was observed in FQ non-susceptible isolates, and molecular analysis of the quinolone resistance-determining regions (QRDRs identified several sequence polymorphisms in ParC and ParE, and none in GyrA and GyrB. Expansion of this analysis to 152 publically available GAS whole genome sequences from Hong Kong predicted 7.9% (12/152 of Hong Kong isolates harbored a S79F ParC mutation, of which 66.7% (8/12 were macrolide and tetracycline resistant

  7. Interaction of Fibrinogen and Muramidase-released Protein Promotes the Development of Streptococcus suis Meningitis

    Directory of Open Access Journals (Sweden)

    Junping eWang

    2015-09-01

    Full Text Available Muramidase-released protein (MRP is as an important virulence marker of Streptococcus suis (S. suis serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg; however, the function of this interaction in S.suis meningitis is not known. In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3. Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood-brain barrier (BBB. In the mouse meningitis model, wild type S. suis caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the mrp mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of S. suis meningitis.

  8. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  9. Group A Streptococcus Prevents Mast Cell Degranulation to Promote Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Mary Clark

    2018-02-01

    Full Text Available The resurgence of Group A Streptococcus (GAS infections in the past two decades has been a rising major public health concern. Due to a large number of GAS infections occurring in the skin, mast cells (MCs, innate immune cells known to localize to the dermis, could play an important role in controlling infection. MCs can exert their antimicrobial activities either early during infection, by degranulation and release of antimicrobial proteases and the cathelicidin-derived antimicrobial peptide LL-37, or by forming antibacterial MC extracellular traps (MCETs in later stages of infection. We demonstrate that MCs do not directly degranulate in response to GAS, reducing their ability to control bacterial growth in early stages of infection. However, MC granule components are highly cytotoxic to GAS due to the pore-forming activity of LL-37, while MC granule proteases do not significantly affect GAS viability. We therefore confirmed the importance of MCETs by demonstrating their capacity to reduce GAS survival. The data therefore suggests that LL-37 from MC granules become embedded in MCETs, and are the primary effector molecule by which MCs control GAS infection. Our work underscores the importance of a non-traditional immune effector cell, utilizing a non-conventional mechanism, in the defense against an important human pathogen.

  10. ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae.

    Science.gov (United States)

    Zhou, Kaixin; Xie, Lianyan; Han, Lizhong; Guo, Xiaokui; Wang, Yong; Sun, Jingyong

    2017-01-01

    ICE Sag37 , a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae . Two clinical strains of S. agalactiae , Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. Sma I-PFGE revealed a new Sma I fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICE Sag37 , which was characterized using several molecular methods and in silico analyses. ICE Sag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae . Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA , which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICE Sag37 carried genes for resistance to multiple antibiotics, including erythromycin [ erm(B) ], tetracycline [ tet(O) ], and aminoglycosides [ aadE, aphA , and ant(6) ]. Potential virulence factors, including a two-component signal transduction system ( nisK/nisR ), were also observed in ICE Sag37 . S1-PFGE analysis ruled out the existence of plasmids. ICE Sag37 is the first ICE Sa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae .

  11. In vitro antimicrobial susceptibility and genetic resistance determinants of Streptococcus agalactiae isolated from mastitic cows in Brazilian dairy herds

    Directory of Open Access Journals (Sweden)

    Juliana Rosa da Silva

    2017-08-01

    Full Text Available Streptococcus agalactiae is one of the main causative agents of bovine mastitis and is associated with several economic losses for producers. Few studies have evaluated antimicrobial susceptibility and the prevalence of genetic resistance determinants among isolates of this bacterium from Brazilian dairy cattle. This work aimed to evaluate the frequency of the antimicrobial resistance genes ermA, ermB, mefA, tetO, tetM, aphA3, and aad-6, and in vitro susceptibility to the antimicrobials amikacin, erythromycin, clindamycin, tetracycline, gentamicin, penicillin, ceftiofur, and cefalotin, and the associations between resistance genotypes and phenotypes among 118 S. agalactiae isolates obtained from mastitic cows in Brazilian dairy herds. Of the resistance genes examined, ermB was found in 19 isolates (16.1%, tetO in 23 (19.5%, and tetM in 24 (20.3%. The genes ermA, mefA, aphA3, and aad-6 were not identified. There was an association between the presence of genes ermB, tetM, and tetO and phenotypic resistance to erythromycin, clindamycin, and tetracycline. Rates of resistance to the tested antibiotics varied, as follows: erythromycin (19.5%, tetracycline (35.6%, gentamicin (9.3%, clindamycin (20.3%, penicillin (3.4%, and amikacin (38.1%; conversely, all isolates were susceptible to ceftiofur and cefalotin. Antimicrobial resistance testing facilitates the treatment decision process, allowing the most judicious choice of antibiotics. Moreover, it enables regional and temporal monitoring of the resistance dynamics of this pathogen of high importance to human and animal health.

  12. [Antibiotic resistance analysis of Streptococcus pneumoniae isolates from the hospitalized children in Shanxi Children's Hospital from 2012 to 2014].

    Science.gov (United States)

    Ge, L L; Han, Z Y; Liu, A H; Zhu, L; Meng, J H

    2017-02-02

    Objective: To investigate the antibiotic resistance status of Streptococcus pneumoniae isolates from hospitalized children in Shanxi Children's Hospital. Method: E-test and Kirby-Bauer methods were applied to determine drug sensitivity of the isolates collected from the body fluid specimens of hospitalized children in Shanxi Children's Hospital from January 2012 to December 2014. The antimicrobial sensitivity and minimum inhibitory concentration (MIC) of Streptococcus pneumoniae to the conventional antibiotics were analyzed, in order to compare the annual trends of non-invasive isolates, while the differentiation of sensitivity from specimens. The comparison of rates was performed by Chi-squared test and Fisher's exact test. Result: A total of 671 isolates of streptococcus pneumoniae were obtained, which could be divided as non-invasive isolates(607), invasive isolates from non-cerebrospinal fluid(non-CSF)(40) and invasive isolates from cerebrospinal fluid(CSF)(24). The antimicrobial sensitivity(isolates(%)) of the 671 isolates were respectively vancomycin 671(100.0%), linezolid 671(100.0%), levofloxacin 665(99.1%), penicillin 595(88.7%), ceftriaxone 516(76.9%), cefotaxime 512(76.3%), sulfamethoxazole-trimethoprin(SMZ-TMP) 103(15.4%), clindamycin 28(4.2%), tetracycline 26(3.9%), erythromycin 12(1.8%). From 2012 to 2014, the susceptibility rates of non-invasive isolates to penicillin every year were 95.0%(96/101), 97.3%(110/113), 87.3%(343/393), respectively, and there was significant difference among the three years(χ(2)=13.266, P penicillin were 0.064, 2.000, 6.000 in 2012, which grew up to 1.000, 3.000, 16.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to ceftriaxone and cefotaxime during these three years, (χ(2)=1.172, 1.198, both P >0.05). On the other hand, the values of MIC(50, )MIC(90) and the maximum value of MIC(mg/L) of ceftriaxone and cefotaxime both increased from 0.500, 2.000, 8.000 in 2012 to 0

  13. Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis.

    Science.gov (United States)

    Seitz, Maren; Valentin-Weigand, Peter; Willenborg, Jörg

    2016-01-01

    Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.

  14. Molecular epidemiology, antimicrobial susceptibilities and resistance mechanisms of Streptococcus pyogenes isolates resistant to erythromycin and tetracycline in Spain (1994–2006

    Directory of Open Access Journals (Sweden)

    Rubio-López Virginia

    2012-09-01

    Full Text Available Abstract Background Group A Streptococcus (GAS causes human diseases ranging in severity from uncomplicated pharyngitis to life-threatening necrotizing fasciitis and shows high rates of macrolide resistance in several countries. Our goal is to identify antimicrobial resistance in Spanish GAS isolates collected between 1994 and 2006 and to determine the molecular epidemiology (emm/T typing and PFGE and resistance mechanisms of those resistant to erythromycin and tetracycline. Results Two hundred ninety-five out of 898 isolates (32.8% were erythromycin resistant, with the predominance of emm4T4, emm75T25, and emm28T28, accounting the 67.1% of the 21 emm/T types. Spread of emm4T4, emm75T25 and emm28T28 resistant clones caused high rates of macrolide resistance. The distribution of the phenotypes was M (76.9%, cMLSB (20.3%, iMLSB (2.7% with the involvement of the erythromycin resistance genes mef(A (89.5%, msr(D (81.7%, erm(B (37.3% and erm(A (35.9%. Sixty-one isolates were tetracycline resistant, with the main representation of the emm77T28 among 20 emm/T types. To note, the combination of tet(M and tet(O tetracycline resistance genes were similar to tet(M alone reaching values close to 40%. Resistance to both antibiotics was detected in 19 isolates of 7 emm/T types, being emm11T11 and the cMLSB phenotype the most frequent ones. erm(B and tet(M were present in almost all the strains, while erm(A, mef(A, msr(D and tet(O appeared in less than half of them. Conclusions Spanish GAS were highly resistant to macrolides meanwhile showed minor resistance rate to tetracycline. A remarkable correlation between antimicrobial resistance and emm/T type was noticed. Clonal spread of emm4T4, emm75T25 and emm28T28 was the main responsable for macrolide resistance where as that emm77T28 clones were it to tetraclycline resistance. A wide variety of macrolide resistance genes were responsible for three macrolide resistance phenotypes.

  15. Novel Tn916-like elements confer aminoglycoside/macrolide co-resistance in clinical isolates of Streptococcus gallolyticus ssp. gallolyticus.

    Science.gov (United States)

    Kambarev, Stanimir; Pecorari, Frédéric; Corvec, Stéphane

    2018-02-09

    Streptococcus gallolyticus ssp. gallolyticus (Sgg) is a commensal bacterium and an opportunistic pathogen. In humans it has been clinically associated with the incidence of colorectal cancer (CRC) and epidemiologically recognized as an emerging cause of infective endocarditis (IE). The standard therapy of Sgg includes the administration of a penicillin in combination with an aminoglycoside. Even though penicillin-resistant isolates have still not been reported, epidemiological studies have shown that this microbe is a reservoir of multiple acquired genes, conferring resistance to tetracyclines, aminoglycosides, macrolides and glycopeptides. However, the underlying antibiotic resistance mobilome of Sgg remains poorly understood. To investigate the mobile genetic basis of antibiotic resistance in multiresistant clinical Sgg. Isolate NTS31106099 was recovered from a patient with IE and CRC at Nantes University Hospital, France and studied by Illumina WGS and comparative genomics. Molecular epidemiology of the identified mobile element(s) was performed using antibiotic susceptibility testing (AST), PCR, PFGE and WGS. Mobility was investigated by PCR and filter mating. Two novel conjugative transposons, Tn6263 and Tn6331, confer aminoglycoside/macrolide co-resistance in clinical Sgg. They display classical family Tn916/Tn1545 modular architecture and harbour an aph(3')-III→sat4→ant(6)-Ia→erm(B) multiresistance gene cluster, related to pRE25 of Enterococcus faecium. These and/or closely related elements are highly prevalent among genetically heterogeneous clinical isolates of Sgg. Previously unknown Tn916-like mobile genetic elements conferring aminoglycoside/macrolide co-resistance make Sgg, collectively with other gut Firmicutes such as enterococci and eubacteria, a potential laterally active reservoir of these antibiotic resistance determinants among the mammalian gastrointestinal microbiota. © The Author(s) 2018. Published by Oxford University Press on behalf

  16. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity.

    Science.gov (United States)

    Alves, Livia A; Harth-Chu, Erika N; Palma, Thais H; Stipp, Rafael N; Mariano, Flávia S; Höfling, José F; Abranches, Jacqueline; Mattos-Graner, Renata O

    2017-10-01

    Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRK Sm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRK Sm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicK Sm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (Pmutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRK Sm. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Genetic Transformation of Streptococcus mutans

    OpenAIRE

    Perry, Dennis; Kuramitsu, Howard K.

    1981-01-01

    Three strains of Streptococcus mutans belonging to serotypes a, c, and f were transformed to streptomycin resistance by deoxyribonucleic acids derived from homologous and heterologous streptomycin-resistant strains of S. mutans and Streptococcus sanguis strain Challis. Homologous transformation of S. mutans was less efficient than heterologous transformation by deoxyribonucleic acids from other strains of S. mutans.

  18. Transcriptional attenuation controls macrolide inducible efflux and resistance in Streptococcus pneumoniae and in other Gram-positive bacteria containing mef/mel(msr(D)) elements.

    Science.gov (United States)

    Chancey, Scott T; Bai, Xianhe; Kumar, Nikhil; Drabek, Elliott F; Daugherty, Sean C; Colon, Thomas; Ott, Sandra; Sengamalay, Naomi; Sadzewicz, Lisa; Tallon, Luke J; Fraser, Claire M; Tettelin, Hervé; Stephens, David S

    2015-01-01

    Macrolide resistance, emerging in Streptococcus pneumoniae and other Gram-positive bacteria, is increasingly due to efflux pumps encoded by mef/mel(msr) operons found on discrete mobile genetic elements. The regulation of mef/mel(msr) in these elements is not well understood. We identified the mef(E)/mel transcriptional start, localized the mef(E)/mel promoter, and demonstrated attenuation of transcription as a mechanism of regulation of macrolide-inducible mef-mediated macrolide resistance in S. pneumoniae. The mef(E)/mel transcriptional start site was a guanine 327 bp upstream of mef(E). Consensus pneumococcal promoter -10 (5'-TATACT-3') and -35 (5'-TTGAAC-3') boxes separated by 17 bp were identified 7 bp upstream of the start site. Analysis of the predicted secondary structure of the 327 5' region identified four pairs of inverted repeats R1-R8 predicted to fold into stem-loops, a small leader peptide [MTASMRLR, (Mef(E)L)] required for macrolide induction and a Rho-independent transcription terminator. RNA-seq analyses provided confirmation of transcriptional attenuation. In addition, expression of mef(E)L was also influenced by mef(E)L-dependent mRNA stability. The regulatory region 5' of mef(E) was highly conserved in other mef/mel(msr)-containing elements including Tn1207.1 and the 5612IQ complex in pneumococci and Tn1207.3 in Group A streptococci, indicating a regulatory mechanism common to a wide variety of Gram-positive bacteria containing mef/mel(msr) elements.

  19. Colonização e resistência antimicrobiana de Streptococcus pneumoniae isolado em nasofaringe de crianças com rinofaringite aguda Nasopharyngeal colonization and antimicrobial resistance of Streptococcus pneumoniae isolated in children with acute rinofaringitis

    Directory of Open Access Journals (Sweden)

    Lêda Lúcia M. Ferreira

    2001-06-01

    ças com infecção respiratória alta podem ser usados na vigilância da resistência antimicrobiana numa determinada comunidade.OBJECTIVE: to determine the prevalence and risk factors for nasopharyngeal colonization by, and to evaluate antimicrobial susceptibility of Streptococcus pneumoniae strains in children with acute rhinopharyngitis. METHODS: we collected nasopharyngeal swab specimens from 400 children aged 3 months to 5 years and with clinical status of acute rhinopharyngitis from June 16, 1997 to May 20, 1998 at the outpatient clinics of two hospitals in the city of São Paulo. Nasopharyngeal specimens were collected pernasally using a calcium alginate swab and plated immediately after collection onto trypticose soy agar with 5% sheep blood and garamicin 5 mcg/ml. Penicillin susceptibility was determined by oxacillin 1 mcg disk screening test and the minimal inhibitory concentration by the E-test. RESULTS: Pneumococci were recovered from 139 children, indicating a colonization prevalence of 35%. The risk factors analyzed indicated that the colonization was more prevalent in children attending day-care centers, children with siblings younger than 5 years, and children with recent use of antimicrobial agents. The prevalence of penicillin non-susceptible strains was of 16 % (20 strains. All strains were intermediately resistant (0.1mcg/ ml < MIC < 1.0 mcg/ ml. Out of the penicillin intermediately resistant strains, 7 (37% showed intermediate resistance to cotrimoxazol and 2 (11% full resistance to trimethoprim-sulfamethoxazole. No strains were resistant to ceftriaxone, amoxicillin, clarithromicin, or chloramphenicol. CONCLUSIONS: our findings indicate that the prevalence of nasopharyngeal colonization by Streptococcus pneumoniae in children with upper respiratory infections was of 34.8%. Children attending day-care centers and children with younger siblings showed higher levels of colonization The results of prevalence of bacterial resistance were similar to those

  20. A reação em cadeia da polimerase na detecção da resistência à penicilina em Streptococcus pneumoniae

    OpenAIRE

    Zettler,Eduardo Walker; Scheibe,Rosane M.; Dias,Cícero A. G.; Santafé,Patrícia; Moreira,José da Silva; Santos,Diógenes S.; Fritscher,Carlos Cezar

    2004-01-01

    INTRODUÇÃO: O Streptococcus pneumoniae é o mais freqüente agente etiológico de infecções respiratórias adquiridas na comunidade e sua resistência aos antimicrobianos tem aumentado nos últimos anos. A determinação da resistência é feita rotineiramente por método lento que depende do crescimento em cultura e determinação da concentração inibitória mínima (CIM). A reação em cadeia da polimerase (PCR) detecta os genes responsáveis pela resistência do Streptococcus pneumoniae a penicilina em cerca...

  1. Multidrug-resistant Streptococcus pneumoniae isolates from healthy Ghanaian preschool children

    DEFF Research Database (Denmark)

    Dayie, Nicholas Tete Kwaku Dzifa; Arhin, Reuben E.; Newman, Mercy J.

    2015-01-01

    in a previous study, to six antimicrobials was determined by disk diffusion test. Overall, 90.4% of isolates were intermediate penicillin resistant, 99.1% were trimethoprim resistant, 73.0% were tetracycline resistant, and 33.9% were sulfamethoxazole resistant. Low resistance was recorded for erythromycin (2...... of this study was to determine the antibiogram of S. pneumoniae recovered from Ghanaian children younger than six years of age and to what extent resistances were due to the spread of certain sero- and multilocus sequence typing (MLST) types. The susceptibility of 115 pneumococcal isolates, recovered...

  2. Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci.

    Science.gov (United States)

    Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping

    2016-01-01

    Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis . Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species ( Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes , and S. suis ) revealed the existence of different groups of MGEs, including Tn5252, ICE Sp 1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICE Sa 2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICE Sa 2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.

  3. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other streptococci

    Directory of Open Access Journals (Sweden)

    Jinhu Huang

    2016-10-01

    Full Text Available Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR determinants. Although previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs, prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs’ expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.

  4. Epidemiological study on the penicillin resistance of clinical Streptococcus pneumoniae isolates identified as the common sequence types.

    Science.gov (United States)

    Gao, Wei; Shi, Wei; Chen, Chang-hui; Wen, De-nian; Tian, Jin; Yao, Kai-hu

    2016-10-20

    There were some limitation in the current interpretation about the penicillin resistance mechanism of clinical Streptococcus pneumoniae isolates at the strain level. To explore the possibilities of studying the mechanism based on the sequence types (ST) of this bacteria, 488 isolates collected in Beijing from 1997-2014 and 88 isolates collected in Youyang County, Chongqing and Zhongjiang County, Sichuan in 2015 were analyzed by penicillin minimum inhibitory concentration (MIC) distribution and annual distribution. The results showed that the penicillin MICs of the all isolates covering by the given ST in Beijing have a defined range, either penicillin MIC penicillin MICs in the first few years after it was identified. The penicillin MIC of isolates identified as common STs and collected in Youyang County, Chongqing and Sichuan Zhongjiang County, including the ST271, ST320 and ST81, was around 0.25~2 mg/L (≥0.25 mg/L). Our study revealed the epidemiological distribution of penicillin MICs of the given STs determined in clinical S. pneumoniae isolates, suggesting that it is reasonable to research the penicillin resistance mechanism based on the STs of this bacteria.

  5. Tau deletion promotes brain insulin resistance.

    Science.gov (United States)

    Marciniak, Elodie; Leboucher, Antoine; Caron, Emilie; Ahmed, Tariq; Tailleux, Anne; Dumont, Julie; Issad, Tarik; Gerhardt, Ellen; Pagesy, Patrick; Vileno, Margaux; Bournonville, Clément; Hamdane, Malika; Bantubungi, Kadiombo; Lancel, Steve; Demeyer, Dominique; Eddarkaoui, Sabiha; Vallez, Emmanuelle; Vieau, Didier; Humez, Sandrine; Faivre, Emilie; Grenier-Boley, Benjamin; Outeiro, Tiago F; Staels, Bart; Amouyel, Philippe; Balschun, Detlef; Buee, Luc; Blum, David

    2017-08-07

    The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients. © 2017 Marciniak et al.

  6. In vitro capability of faropenem to select for resistant mutants of Streptococcus pneumoniae and Haemophilus influenzae.

    Science.gov (United States)

    Kosowska-Shick, Klaudia; Clark, Catherine; Credito, Kim; Dewasse, Bonifacio; Beachel, Linda; Ednie, Lois; Appelbaum, Peter C

    2008-02-01

    When tested against nine strains of pneumococci and six of Haemophilus influenzae of various resistotypes, faropenem failed to select for resistant mutants after 50 days of consecutive subculture in subinhibitory concentrations. Faropenem also yielded low rates of spontaneous mutations against all organisms of both species. By comparison, resistant clones were obtained with macrolides, ketolides, and quinolones.

  7. Streptococcus iniae and Streptococcus agalactiae

    Science.gov (United States)

    Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...

  8. Controlled challenge experiment demonstrates substantial additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae

    Science.gov (United States)

    Streptococcus iniae is an etiologic agent of streptococcal disease in tilapia and is one of several Streptococcus spp. that negatively impact worldwide tilapia production. Methods for the prevention and control of S. iniae include vaccines, management strategies, and antibiotics. A complimentary pre...

  9. Antibiotic Susceptibility of Periodontal Streptococcus Constellatus and Streptococcus Intermedius Clinical Isolates

    NARCIS (Netherlands)

    Rams, Thomas E; Feik, Diane; Mortensen, Joel E; Degener, John E; van Winkelhoff, Arie J

    2014-01-01

    Background: Streptococcus constellatus and Streptococcus intermedius in subgingival dental plaque biofilms may contribute to forms of periodontitis that resist treatment with conventional mechanical root debridement/surgical procedures and may additionally participate in some extraoral infections.

  10. The fitness cost of antibiotic resistance in Streptococcus pneumoniae: insight from the field.

    Directory of Open Access Journals (Sweden)

    M Cyrus Maher

    Full Text Available Laboratory studies have suggested that antibiotic resistance may result in decreased fitness in the bacteria that harbor it. Observational studies have supported this, but due to ethical and practical considerations, it is rare to have experimental control over antibiotic prescription rates.We analyze data from a 54-month longitudinal trial that monitored pneumococcal drug resistance during and after biannual mass distribution of azithromycin for the elimination of the blinding eye disease, trachoma. Prescription of azithromycin and antibiotics that can create cross-resistance to it is rare in this part of the world. As a result, we were able to follow trends in resistance with minimal influence from unmeasured antibiotic use. Using these data, we fit a probabilistic disease transmission model that included two resistant strains, corresponding to the two dominant modes of resistance to macrolide antibiotics. We estimated the relative fitness of these two strains to be 0.86 (95% CI 0.80 to 0.90, and 0.88 (95% CI 0.82 to 0.93, relative to antibiotic-sensitive strains. We then used these estimates to predict that, within 5 years of the last antibiotic treatment, there would be a 95% chance of elimination of macrolide resistance by intra-species competition alone.Although it is quite possible that the fitness cost of macrolide resistance is sufficient to ensure its eventual elimination in the absence of antibiotic selection, this process takes time, and prevention is likely the best policy in the fight against resistance.

  11. 99mTcN-gatifloxacin dithiocarbamate complex. A novel multi-drug-resistance Streptococcus pneumoniae (MRSP) infaction radiotracer

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Mohammad Rafiullah Khan

    2011-01-01

    Gatifloxacin (GTN) was derivatized to its dithiocarbamate derivative and its radiolabeling with technetium-99m ( 99m Tc) using the [ 99m Tc≡N] 2+ core was investigated. The appropriateness of the 99m TcN - gatifloxacin dithiocarbamate ( 99m TcN - GTND) complex as a potential multi-drug-resistance Streptococcus pneumoniae (MRSP) infection radiotracer was evaluated in terms of stability in saline, serum, in vitro binding with MRSP and biodistribution in artificially MRSP infected Male Wistar Rats (MWR). In saline the 99m TcN - GTND complex showed more than 90% labeling yield up to 4 h with a maximum yield of 98.25 ± 0.20%, after reconstitution. In serum the 99m TcN - GTND complex showed stability up to 16 h of incubation with the appearance of insignificant 15.95% undesirable side products. The 99m TcN - GTND complex demonstrated saturated in vitro binding with MRSP with a maximum value of 75.50 ± 1.00% (at 90 min). In MWR model of group A, almost six times higher uptake of the labeled GTND was monitored in the muscle of MWR infected with live MRSP as compared to the inflamed and normal muscles. Based on the higher labeling yield in saline, in vitro stability in serum, saturated in vitro binding with live MRSP and promising biodistribution in MWR model we recommend 99m TcN - gatifloxacin dithiocarbamate complex as a potential MRSP infection radiotracer. (author)

  12. A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker.

    Science.gov (United States)

    Wong, Wing Yee; Su, Ping; Allison, Gwen E; Liu, Chun-Qiang; Dunn, Noel W

    2003-10-01

    A potential food-grade cloning vector, pND919, was constructed and transformed into S. thermophilus ST3-1, a plasmid-free strain. The vector contains DNAs from two different food-approved organisms, Streptococcus thermophilus and Lactococcus lactis. The 5.0-kb pND919 is a derivative of the cloning vector pND918 (9.3 kb) and was constructed by deletion of the 4.3-kb region of pND918 which contained DNA from non-food-approved organisms. pND919 carries a heterologous native cadmium resistance selectable marker from L. lactis M71 and expresses the Cd(r) phenotype in S. thermophilus transformants. With the S. thermophilus replicon derived from the shuttle vector pND913, pND919 is able to replicate in the two S. thermophilus industrial strains tested, ST3-1 and ST4-1. Its relatively high retention rate in S. thermophilus further indicates its usefulness as a potential food-grade cloning vector. To our knowledge, this is the first report of a replicative potential food-grade vector for the industrially important organism S. thermophilus.

  13. Effect of Excoecaria agallocha on non-specific immune responses and disease resistance of Oreochromis niloticus against Streptococcus agalactiae.

    Science.gov (United States)

    Laith, A A; Mazlan, A G; Effendy, A W; Ambak, M A; Nurhafizah, W W I; Alia, A S; Jabar, A; Najiah, M

    2017-06-01

    The current study was designed to evaluate the effects of Excoecaria agallocha leaf extracts on immune mechanisms and resistance of tilapia, Oreochromis niloticus, after challenge with Streptococcus agalactiae. Fish were divided into 6 groups; groups 1-5 fed with E. agallocha leaf extracts at 10, 20, 30, 40 and 50mgkg -1 level, respectively. Group 6 were fed without extract addition and acted as control. E. agallocha extracts were administered as feed supplement in fish diet for 28days and the hematological, immunological, and growth performance studies were conducted. Fish were infected with S. agalactiae at a dose of 15×105CFUmL -1 and the total white blood cell (WBC), phagocytosis and respiratory burst activities of leukocytes, serum bactericidal activity, lysozyme, total protein, albumin, and globulin levels were monitored and mortalities recorded for 15days post infection. Results revealed that feeding O. niloticus with 50mgkg -1 of E. agallocha enhanced WBC, phagocytic, respiratory burst, serum bactericidal and lysozyme activities on day 28 pre-challenge and on 3rd, 6th, 9th, 12th and 15th day post-challenge as compared to control. Total protein and albumin were not enhanced by E. agallocha diet. E. agallocha increased the survival of fish after challenge with S. agalactiae. The highest mortality rate (97%) was observed in control fish and the lowest mortality (27%) was observed with group fed with 50mgkg -1 extract. The results indicate that dietary intake of E. agallocha methanolic leaf extract in O. niloticus enhances the non-specific immunity and disease resistance against S. agalactiae pathogen. Copyright © 2017. Published by Elsevier Ltd.

  14. Development of the recombinase-based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter

    NARCIS (Netherlands)

    Junjua, M.; Galia, W.; Gaci, N.; Uriot, O.; Genay, M.; Bachmann, H.; Kleerebezem, M.; Dary, A.; Roussel, Y.

    2014-01-01


    Aims

    To construct and validate the recombinase-based in vivo expression technology (R-IVET) tool in Streptococcus thermophilus (ST).

    Methods and Results

    The R-IVET system we constructed in the LMD-9 strain includes the plasmid pULNcreB allowing transcriptional fusion

  15. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Odenholt, Inga; Erlendsdottir, Helga

    2003-01-01

    Pharmacokinetic (PK) and pharmacodynamic (PD) properties for the selection of resistant pneumococci were studied by using three strains of the same serotype (6B) for mixed-culture infection in time-kill experiments in vitro and in three different animal models, the mouse peritonitis, the mouse....../ml was used in the rabbit tissue cage model. During the different treatment regimens, the differences in numbers of CFU between treated and control animals were calculated to measure the efficacies of the regimens. Selective media with erythromycin or different penicillin concentrations were used to quantify...

  16. Antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and group A beta-haemolytic streptococci in 2002-2003. Results of the multinational GRASP Surveillance Program

    DEFF Research Database (Denmark)

    Beekmann, Susan E; Heilmann, Kris P; Richter, Sandra S

    2005-01-01

    A multinational surveillance study, GRASP, was conducted between November 2002 and April 2003 with the aim of assessing rates of antimicrobial resistance among 2656 isolates of Streptococcus pneumoniae, 2486 isolates of group A beta-haemolytic streptococci, 1358 isolates of Haemophilus influenzae...... and 1047 of Moraxella catarrhalis from 20 countries in Europe, eastern Asia and southern Africa. Conspicuous differences between various countries were noted in the S. pneumoniae resistance rates observed for penicillin (0-79.2%) and erythromycin (4-66%), along with other antimicrobials. The percentage...... of MDR strains was above 25% in 8 of the 20 countries studied. Group A streptococcal macrolide resistance rates ranged from 0% to 35% by country, while rates of beta-lactamase production ranged from 0% to 39% for H. influenzae and 80-100% for M. catarrhalis. Antibiotic resistance in S. pneumoniae remains...

  17. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Odenholt, Inga; Erlendsdottir, Helga

    2003-01-01

    Pharmacokinetic (PK) and pharmacodynamic (PD) properties for the selection of resistant pneumococci were studied by using three strains of the same serotype (6B) for mixed-culture infection in time-kill experiments in vitro and in three different animal models, the mouse peritonitis, the mouse.......016 micro g/ml; erythromycin resistant)/ml, 10(6) CFU of strain B (MIC of penicillin, 0.25 micro g/ml)/ml, and 10(5) CFU of strain C (MIC of penicillin, 4 micro g/ml)/ml, was used in the two mouse models, and a mixture of 10(5) CFU of strain A/ml, 10(4) CFU of strain B/ml, and 10(3) CFU of strain C....../ml was used in the rabbit tissue cage model. During the different treatment regimens, the differences in numbers of CFU between treated and control animals were calculated to measure the efficacies of the regimens. Selective media with erythromycin or different penicillin concentrations were used to quantify...

  18. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.

    Science.gov (United States)

    Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu

    2017-04-01

    The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer. © 2017 International Federation for Cell Biology.

  19. A new mosaic integrative and conjugative element from Streptococcus agalactiae carrying resistance genes for chloramphenicol (catQ) and macrolides [mef(I) and erm(TR)].

    Science.gov (United States)

    Morici, Eleonora; Simoni, Serena; Brenciani, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E; Mingoia, Marina

    2017-01-01

    To investigate the genetic basis of catQ-mediated chloramphenicol resistance in Streptococcus agalactiae. Two clinical strains of catQ-positive chloramphenicol-resistant S. agalactiae (Sag236 and Sag403) were recently isolated, typed (MLST, PFGE pulsotypes, capsular types) and their antibiotic resistances investigated by phenotypic and genotypic approaches. Several molecular methods (PCR mapping, restriction assays, Southern blotting, sequencing and sequence analysis, conjugal transfer assays) were used to determine the genetic context of catQ and characterize a genetic element detected in the isolates. Sag236 and Sag403 shared the same ST (ST19), but exhibited a different capsular type (III and V, respectively) and pulsotype. Both harboured the macrolide resistance genes mef(I) and erm(TR) and the tetracycline resistance gene tet(M). Accordingly, they were resistant to chloramphenicol, erythromycin and tetracycline. catQ and mef(I) were associated in an IQ module that was indistinguishable in Sag236 and Sag403. In mating assays, chloramphenicol and erythromycin resistance proved transferable, at low frequency, only from Sag236. Transconjugants carried not only catQ and mef(I), but also erm(TR), suggesting a linkage of the three resistance genes in a mobile element, which, though seemingly non-mobile, was also detected in Sag403. The new element (designated ICESag236, ∼110 kb) results from recombination of two integrative and conjugative elements (ICEs) originally described in different streptococcal species: S. agalactiae ICESagTR7, carrying erm(TR); and Streptococcus pneumoniae ICESpn529IQ, carrying the prototype IQ module. These findings strengthen the notion that widespread streptococcal ICEs may form mosaics that enhance their diversity and spread, broaden their host range and carry new cargo genes. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions

  20. Septicemia with Streptococcus pseudopneumoniae

    DEFF Research Database (Denmark)

    Fuursted, Kurt; Littauer, Pia Jeanette; Greve, Thomas

    2016-01-01

    Streptococcus pseudopneumoniae was described in 2004 as a new human pathogen, acknowledged in a range of clinical infections typically associated to the respiratory tract. This report demonstrates that S. pseudopneumoniae has the potential to cause invasive infection. In blood cultures from three...... and the antibiogram and resistome revealed no antibiotic resistance....

  1. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    Science.gov (United States)

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  2. Resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae Ib is heritable but not correlated

    Science.gov (United States)

    Tilapia (Oreochromis sp.) are an important source of protein with an economic value approaching US $8 billion yearly. Streptococcal disease, caused by Streptococcus iniae and S. agalactiae (both Gram positive bacteria), is an emerging or re-emerging disease negatively affecting tilapia aquaculture w...

  3. Resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalatiae Ib is heritable but not correlated

    Science.gov (United States)

    Tilapia (Oreochromis sp.) are an important source of protein with an ecomonic value approaching US $8 billion yearly. Streptococcal disease, caused by Streptococcus iniae and S. agalactiae (both Gram positive bacteria), is an emerging or re-emerging disease negatively affecting tilapia aquaculture w...

  4. The Three Major Spanish Clones of Penicillin-Resistant Streptococcus pneumoniae Are the Most Common Clones Recovered in Recent Cases of Meningitis in Spain

    Science.gov (United States)

    Enright, Mark C.; Fenoll, Asunción; Griffiths, David; Spratt, Brian G.

    1999-01-01

    One hundred six isolates of Streptococcus pneumoniae recovered in Spain from patients with meningitis in 1997 and 1998 were characterized by multilocus sequence typing. A heterogeneous collection of genotypes was associated with meningitis in Spain: 65 different sequence types were resolved and, even at a genetic distance of 0.43, there were 37 distinct lineages. Thirty-eight percent of the isolates, including all isolates of serotypes 6B, 9V, 14, and 23F, were resistant to penicillin, and 24% of the isolates were members of the three major Spanish penicillin-resistant or multidrug-resistant clones of serotypes 6B, 9V, and 23F or serotype variants of these clones. These three clones (MICs, 1 to 2 μg of penicillin/ml) were the most common clones associated with pneumococcal meningitis in Spain during 1997 and 1998. Only two of the other clones associated with meningitis were penicillin resistant (MICs, 0.12 to 0.5 μg/ml). One of the two most prevalent penicillin-susceptible clones causing meningitis (serotype 3) has not been detected outside of Spain, whereas the other (serotype 18C) has been recovered from patients with meningitis in the United Kingdom, The Netherlands, and Denmark. The prevalence of meningitis caused by isolates of the three major Spanish penicillin-resistant or multiply antibiotic-resistant clones, which are now globally distributed, is disturbing and clearly establishes their ability to cause life-threatening disease. PMID:10488179

  5. Reduction of saliva-promoted adhesion of Streptococcus mutans MT8148 and dental biofilm development by tragacanth gum and yeast-derived phosphomannan.

    Science.gov (United States)

    Shimotoyodome, A; Kobayashi, H; Nakamura, J; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y

    2006-01-01

    The aim of this study was to investigate materials which reduce saliva-promoted adhesion of Streptococcus mutans onto enamel surfaces, and their potential in preventing dental biofilm development. The effects of hydroxyapatite (HA) surface pretreatment with hydrophilic polysaccharides on saliva-promoted S. mutans adhesion in vitro and de novo dental biofilm deposition in vivo were examined. Saliva-promoted adhesion of S. mutans MT8148 was significantly reduced by pretreatment of the HA surface with tragacanth gum (TG) and yeast-derived phosphoglycans. Extracellular phosphomannan (PM) from Pichia capsulata NRRL Y-1842 and TG reduced biofilm development on lower incisors in plaque-susceptible rats when administered via drinking water at concentrations of 0.5% and 0.01%, respectively. The inhibitory effect of TG on de novo dental biofilm formation was also demonstrated when administered via mouthwash in humans. It is concluded that TG and yeast-derived PM have the potential for use as anti-adherent agents and are effective in reducing de novo dental biofilm formation.

  6. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility.

    Science.gov (United States)

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-10-15

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmA(II) enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmA(II), rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmA(II) in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmA(II) activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmA(II), thereby facilitating TEL binding to the ribosome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Prevalence of penicillin and erythromycin resistance among invasive Streptococcus pneumoniae isolates reported by laboratories in the southern and eastern Mediterranean region.

    Science.gov (United States)

    Borg, M A; Tiemersma, E; Scicluna, E; van de Sande-Bruinsma, N; de Kraker, M; Monen, J; Grundmann, H

    2009-03-01

    Information about the epidemiology of resistance in Streptococcus pneumoniae within southern and eastern countries of the Mediterranean region is incomplete, as reports have been sporadic and difficult to compare. Over a 36-month period, from 2003 to 2005, the ARMed project collected 1298 susceptibility test results of invasive isolates of S. pneumoniae from blood and spinal fluid cultures routinely processed within 59 participating laboratories situated in Algeria, Cyprus, Egypt, Jordan, Lebanon, Malta, Morocco, Tunisia and Turkey. Overall, 26% (335) of isolates were reported as non-susceptible to penicillin, with the highest proportions being reported from Algeria (44%) and Lebanon (40%). During the same time period, the highest proportions of pneumococci that were not susceptible to erythromycin were reported from Malta (46%) and Tunisia (39%). Proportions of dual non-susceptibility in excess of 5% were found in laboratories in Algeria, Tunisia, Lebanon, Jordan and Turkey. ARMed data on the antimicrobial resistance epidemiology of S. pneumoniae in the southern and eastern Mediterranean region provided evidence of high rates of resistance, especially to penicillin. This evidence calls for a greater focus on the identification of relevant drivers of resistance and on the implemention of effective practices in order to address the problem of resistence.

  8. Molecular and antimicrobial susceptibility profiling of atypical Streptococcus species from porcine clinical specimens.

    Science.gov (United States)

    Moreno, Luisa Z; Matajira, Carlos E C; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2016-10-01

    The Streptococcus species present broad phenotypic variation, making identification difficult using only traditional microbiological methods. Even though Streptococcus suis is the most important species for the worldwide swine industry, other Streptococcus species appear to be able to cause disease in swine and could represent a higher underestimated risk for porcine health. The aim of this study was to identify Streptococcus-like isolates by MALDI-TOF MS and 16S rRNA sequencing and further molecular and antibiotic susceptibility characterization of the atypical Streptococcus species capable of causing disease in swine. Fifty presumptive Streptococcus isolates from diseased pigs isolated from different Brazilian States between 2002 and 2014 were evaluated. Among the studied isolates, 26% were identified as Streptococcus hyovaginalis, 24% as Streptococcus plurianimalium, 12% as Streptococcus alactolyticus, 10% as Streptococcus hyointestinalis, and the remaining isolates belonged to Streptococcus henryi (6%), Streptococcus thoraltensis (6%), Streptococcus gallolyticus (6%), Streptococcus gallinaceus (4%), Streptococcus sanguinis (4%), and Streptococcus mitis (2%). The Streptococcus isolates were successfully identified by spectral cluster analysis and 16S rRNA sequencing with 96% of concordance between the techniques. The SE-AFLP analysis also supported Streptococcus species distinction and enabled further observation of higher genetic heterogeneity intra-species. The identified Streptococcus species presented variable MIC values to β-lactams, enrofloxacin and florfenicol, and high resistance rates to tetracyclines and macrolides, which appear to be directly related to the industry's antimicrobial usage and resistance selection. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Characterization of a Staphylococcus aureus surface virulence factor that promotes resistance to oxidative killing and infectious endocarditis.

    Science.gov (United States)

    Malachowa, Natalia; Kohler, Petra L; Schlievert, Patrick M; Chuang, Olivia N; Dunny, Gary M; Kobayashi, Scott D; Miedzobrodzki, Jacek; Bohach, Gregory A; Seo, Keun Seok

    2011-01-01

    Staphylococcus aureus is a prominent human pathogen and a leading cause of community- and hospital-acquired bacterial infections worldwide. Herein, we describe the identification and characterization of the S. aureus 67.6-kDa hypothetical protein, named for the surface factor promoting resistance to oxidative killing (SOK) in this study. Sequence analysis showed that the SOK gene is conserved in all sequenced S. aureus strains and homologous to the myosin cross-reactive antigen of Streptococcus pyogenes. Immunoblotting and immunofluorescence analysis showed that SOK was copurified with membrane fractions and was exposed on the surface of S. aureus Newman and RN4220. Comparative analysis of wild-type S. aureus and an isogenic deletion strain indicated that SOK contributes to both resistance to killing by human neutrophils and to oxidative stress. In addition, the S. aureus sok deletion strain showed dramatically reduced aortic valve vegetation and bacterial cell number in a rabbit endocarditis model. These results, plus the suspected role of the streptococcal homologue in certain diseases such as acute rheumatic fever, suggest that SOK plays an important role in cardiovascular and other staphylococcal infections.

  10. Telithromycin resistance in Streptococcus pneumoniae is conferred by a deletion in the leader sequence of erm(B) that increases rRNA methylation

    DEFF Research Database (Denmark)

    Wolter, Nicole; Smith, Anthony M; Farrell, David J

    2008-01-01

    A telithromycin-resistant clinical isolate of Streptococcus pneumoniae (strain P1501016) has been found to contain a version of erm(B) that is altered by a 136-bp deletion in the leader sequence. By allele replacement mutagenesis, a second strain of S. pneumoniae (PC13) with a wild-type erm(B) gene...... was transformed to the telithromycin-resistant phenotype by introduction of the mutant erm(B) gene. Whereas the wild-type PC13 strain showed slight telithromycin resistance only after induction by erythromycin (telithromycin MIC increased from 0.06 to 0.5 microg/ml), the transformed PC13 strain is constitutively...... resistant (MIC of 16 mug/ml). Expression of erm(B) was quantified by real-time reverse transcription-PCR in the presence of erythromycin or telithromycin; erm(B) expression was significantly higher in the transformed PC13 strain than the wild-type strain. Furthermore, the transformed strain had...

  11. Patterns of antimicrobial resistance in Streptococcus suis isolates from pigs with or without streptococcal disease in England between 2009 and 2014.

    Science.gov (United States)

    Hernandez-Garcia, Juan; Wang, Jinhong; Restif, Olivier; Holmes, Mark A; Mather, Alison E; Weinert, Lucy A; Wileman, Thomas M; Thomson, Jill R; Langford, Paul R; Wren, Brendan W; Rycroft, Andrew; Maskell, Duncan J; Tucker, Alexander W

    2017-08-01

    Antimicrobial resistance in Streptococcus suis, a global zoonotic pathogen of pigs, has been mostly studied only in diseased animals using surveys that have not evaluated changes over time. We compared patterns of resistance between S. suis isolates from clinical cases of disease (CC) and non-clinical case (NCC) pigs in England, collected over two discrete periods, 2009-2011 and 2013-2014. Minimum inhibitory concentrations (MIC) of 17 antimicrobials (nine classes) were determined on 405 S. suis isolates categorised by sampling period and disease association to assess changes in resistance over time and association with disease. First, isolates were characterized as resistant or susceptible using published clinical breakpoints. Second, epidemiological cut-offs (ECOFF) were derived from MIC values, and isolates classified as wild type (WT) below the ECOFF and non-wild type (NWT) above the ECOFF. Finally, isolate subsets were analysed for shifts in MIC distribution. NCC isolates were more resistant than CC isolates to cephalosporins, penams, pleuromutilins, potentiated sulphonamides and tetracyclines in both study periods. Resistance levels among CC isolates increased in 2013-2014 relative to 2009-2011 for antimicrobials including aminoglycosides, cephalosporins, fluoroquinolones, pleuromutilins, potentiated sulphonamides and tetracyclines. The prevalence of isolates categorised as NWT for five or more classes of antimicrobials was greater among NCC than CC isolates for both time periods, and increased with time. This study used standardised methods to identify significant shifts in antimicrobial resistance phenotypes of S. suis isolated from pigs in England, not only over time but also between isolates from known clinical cases or disease-free pigs. Copyright © 2017. Published by Elsevier B.V.

  12. Determination of Trimethoprim-Sulfamethoxazole Resistance in Streptococcus pneumoniae by Using the E Test with Mueller-Hinton Agar Supplemented with Sheep or Horse Blood May Be Unreliable

    Science.gov (United States)

    Lovgren, M.; Dell’Acqua, L.; Palacio, R.; Echániz-Aviles, G.; Soto-Noguerón, A.; Castañeda, E.; Agudelo, C. I.; Heitmann, I.; Brandileone, M. C.; Zanella, R. C.; Rossi, A.; Pace, J.; Talbot, J. A.

    1999-01-01

    An international, multicenter study compared trimethoprim-sulfamethoxazole MICs for 743 Streptococcus pneumoniae isolates (107 to 244 isolates per country) by E test, using Mueller-Hinton agar supplemented with 5% defibrinated horse blood or 5% defibrinated sheep blood, with MICs determined by the National Committee for Clinical Laboratory Standards broth microdilution reference method. Agreement within 1 log2 dilution and minor error rates were 69.3 and 15.5%, respectively, on sheep blood-supplemented agar and 76.9 and 13.6%, respectively, with horse blood as the supplement. Significant interlaboratory variability was observed. E test may not be a reliable method for determining the resistance of pneumococci to trimethoprim-sulfamethoxazole. PMID:9854095

  13. Streptococcus suis

    DEFF Research Database (Denmark)

    Poggenborg, René; Gaïni, Shahin; Kjaeldgaard, Poul

    2008-01-01

    Meningitis and spondylodiscitis caused by Streptococcus suis is a rare disease which is contracted by occupational exposure to pigs. We report a 54-y-old pig-farm worker with S. suis meningitis and septicaemia complicated with thoracal and lumbar spine spondylodiscitis. The S. suis strain involved...

  14. Alta prevalência de crianças portadoras de Streptococcus pneumoniae resistentes à penicilina em creches públicas High prevalence of children colonized with penicillin-resistant Streptococcus pneumoniae in public day-care centers

    Directory of Open Access Journals (Sweden)

    Patrícia A. G. Velasquez

    2009-12-01

    Full Text Available OBJETIVOS: Investigar a prevalência de Streptococcus pneumoniae (pneumococos na nasofaringe de crianças sadias atendidas em creches municipais da cidade de Umuarama (PR. Avaliar a susceptibilidade aos antimicrobianos dos pneumococos isolados. MÉTODOS: Secreção da nasofaringe de 212 crianças foi coletada no período de abril a outubro de 2008. Após semeadura dos espécimes em ágar sangue e incubação a 37 °C por 24-48 horas, as colônias suspeitas de pertencerem a S. pneumoniae foram identificadas pela α-hemólise, sensibilidade à optoquina e bile solubilidade. A susceptibilidade à penicilina foi investigada pelos testes de disco-difusão e de diluição. A susceptibilidade aos demais antimicrobianos indicados no tratamento das infecções pneumocócicas foi realizada por disco-difusão RESULTADOS: A prevalência de pneumococos na nasofaringe foi de 43,4% (92/212, sendo maior em crianças com idade entre 2 e 5 anos (p = 0,0005. Não houve diferença significativa entre os sexos. Resistência intermediária e resistência plena à penicilina foram encontradas respectivamente em 34,8 (32/92 e 22,8% (21/92 dos isolados. Sessenta e sete amostras (72,8% foram resistentes ao sulfametoxazol-trimetoprim, oito (8,7% à eritromicina e seis (6,5% à tetraciclina. Uma amostra apresentou resistência à clindamicina (1,1%, e outra ao cloranfenicol (1,1%. Todas as amostras foram sensíveis a levofloxacina, ofloxacina, rifampicina, telitromicina, linezolide e vancomicina. Nove amostras foram consideradas multirresistentes, por apresentarem resistência a três ou mais classes de antimicrobianos. CONCLUSÕES: O presente estudo registrou uma alta prevalência de crianças portadoras sadias de amostras de S. pneumoniae resistentes à penicilina que podem constituir importantes reservatórios desse patógeno na comunidade.OBJECTIVES: To investigate the prevalence of Streptococcus pneumoniae (pneumococci in the nasopharynx of healthy children enrolled

  15. Características de la resistencia antimicrobiana de una colección clínica de Strptococcus pyogenes Antimicrobial resistance of Streptococcus pyogenes clinical strains

    Directory of Open Access Journals (Sweden)

    Romeo S. Rodríguez

    2000-06-01

    Full Text Available OBJETIVO: Determinar la susceptibilidad antimicrobiana de Streptococcus pyogenes con el fin de estimar la prevalencia de los fenotipos de resistencia a los macrólidos. MATERIAL Y MÉTODOS: Se realizó un estudio de tipo transversal, en 1999, en el que se evaluaron 100 cepas de S. pyogenes, aislados en el Hospital Infantil de México Federico Gómez, en el lapso comprendido entre 1992 y 1998, procedentes de niños con faringoamigdalitis, conservadas en congelación en el laboratorio de bacteriología hasta su procesamiento. Se determinó la susceptibilidad antimicrobiana a algunos beta-lactámicos, macrólidos y clindamicina. La resistencia a eritromicina se probó por medio de la prueba de difusión de doble disco. Se calcularon medidas de tendencia central. RESULTADOS: Todas las cepas fueron sensibles a los beta-lactámicos y clindamicina; 16% fueron resistentes a los macrólidos, y todas correspondieron al fenotipo M. CONCLUSIONES: Es conveniente realizar periódicamente pruebas de escrutinio para conocer los posibles cambios en los patrones de sensibilidad estreptocócica.OBJECTIVE: To determine the antibiotic susceptibility of recent isolates of Streptococcus pyogenes and to evaluate the prevalence of macrolide-resistant phenotypes. MATERIAL AND METHODS: In 1999, we conducted a cross-sectional study at Mexico Children's Hospital "Federico Gomez", to analyze one hundred strains of S. pyogenes isolated from 1992 to 1998, in children with uncomplicated pharyngotonsillitis. Strains were frozen at the bacteriology lab until they were analyzed. Strains were tested for susceptibility against some beta-lactams, macrolides and clindamycin. Double-disk testing was carried out to evaluate erythromycin-resistant phenotypes. Data are presented using central tendency measures. RESULTS: All tested strains were not resistant to beta-lactams and clindamycin; 16% of the strains were resistant to macrolides and all of them belonged to phenotype M. CONCLUSIONS

  16. Binding of glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis.

    Directory of Open Access Journals (Sweden)

    Ho Seong Seo

    Full Text Available The serine-rich repeat glycoprotein Srr1 of Streptococcus agalactiae (GBS is thought to be an important adhesin for the pathogenesis of meningitis. Although expression of Srr1 is associated with increased binding to human brain microvascular endothelial cells (hBMEC, the molecular basis for this interaction is not well defined. We now demonstrate that Srr1 contributes to GBS attachment to hBMEC via the direct interaction of its binding region (BR with human fibrinogen. When assessed by Far Western blotting, Srr1 was the only protein in GBS extracts that bound fibrinogen. Studies using recombinant Srr1-BR and purified fibrinogen in vitro confirmed a direct protein-protein interaction. Srr1-BR binding was localized to amino acids 283-410 of the fibrinogen Aα chain. Structural predictions indicated that the conformation of Srr1-BR is likely to resemble that of SdrG and other related staphylococcal proteins that bind to fibrinogen through a "dock, lock, and latch" mechanism (DLL. Deletion of the predicted latch domain of Srr1-BR abolished the interaction of the BR with fibrinogen. In addition, a mutant GBS strain lacking the latch domain exhibited reduced binding to hBMEC, and was significantly attenuated in an in vivo model of meningitis. These results indicate that Srr1 can bind fibrinogen directly likely through a DLL mechanism, which has not been described for other streptococcal adhesins. This interaction was important for the pathogenesis of GBS central nervous system invasion and subsequent disease progression.

  17. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    Directory of Open Access Journals (Sweden)

    Katherine J Kasper

    2014-05-01

    Full Text Available Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS, how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6 mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  18. Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains isolated from invasive and non-invasive infections from Mexico and the USA during 1999–2010

    Science.gov (United States)

    Villaseñor-Sierra, Alberto; Katahira, Eva; Jaramillo-Valdivia, Abril N.; de los Angeles Barajas-García, María; Bryant, Amy; Morfín-Otero, Rayo; Márquez-Díaz, Francisco; Tinoco, Juan Carlos; Sánchez-Corona, José; Stevens, Dennis L.

    2012-01-01

    Summary Objective To compare the prevalence, phenotypes, and genes responsible for erythromycin resistance among Streptococcus pyogenes isolates from Mexico and the USA. Methods Eighty-nine invasive and 378 non-invasive isolates from Mexico, plus 148 invasive, 21 non-invasive, and five unclassified isolates from the USA were studied. Susceptibilities to penicillin, erythromycin, clindamycin, ceftriaxone, and vancomycin were evaluated according to Clinical and Laboratory Standards Institute (CLSI) standards. Phenotypes of erythromycin resistance were identified by triple disk test, and screening for mefA, ermTR, and ermB genes was carried out by PCR. Results All isolates were susceptible to penicillin, ceftriaxone, and vancomycin. Erythromycin resistance was found in 4.9% of Mexican strains and 5.2% of USA strains. Phenotypes in Mexican strains were 95% M and 5% cMLS; in strains from the USA, phenotypes were 33.3% iMLS, 33.3% iMLS-D, and 33.3% M. Erythromycin resistance genes in strains from Mexico were mefA (95%) and ermB (5%); USA strains harbored ermTR (56%), mefA (33%), and none (11%). In Mexico, all erythromycin-resistant strains were non-invasive, whereas 89% of strains from the USA were invasive. Conclusions Erythromycin resistance continues to exist at low levels in both Mexico and the USA, although the genetic mechanisms responsible differ between the two nations. These genetic differences may be related to the invasive character of the S. pyogenes isolated. PMID:22217469

  19. Rapid Assessment of Resistance to Antibiotic Inhibitors of Protein Synthesis in the Gram-Positive Pathogens, Enterococcus faecalis and Streptococcus pneumoniae, Based on Evaluation of the Lytic Response.

    Science.gov (United States)

    Otero, Fátima; Tamayo, María; Santiso, Rebeca; Gosálvez, Jaime; Bou, Germán; Fernández, José Luis

    2017-04-01

    A novel assay for rapid determination of resistance to antibiotic inhibitors of protein synthesis was developed for the gram-positive pathogens, Enterococcus faecalis and Streptococcus pneumoniae. To this purpose, a lytic response was obtained by a brief incubation with lysozyme or a mixture of lysozyme, Triton X-100, and EDTA for E. faecalis (n = 82) and S. pneumoniae (n = 51), respectively. Lysis was quantified by visualizing the released nucleoids. Antibiotic-susceptible bacteria treated with Clinical and Laboratory Standards Institute (CLSI) breakpoint doses of erythromycin, azithromycin, or doxycycline that inhibited protein synthesis demonstrated a large reduction of lysed cells with respect to the control, that is, without antibiotics. However, cell lysis prevention was much lower in nonsusceptible strains, with unsuccessful inhibition of protein synthesis. ROC analysis showed that a reduction value of ≥35.6% and ≥40.4% discriminates susceptible and nonsusceptible strains for erythromycin and for doxycycline, respectively, in E. faecalis, whereas ≥20.0% is adequate for both macrolides and doxycycline in S. pneumoniae. Resistant stains were identified in 90-120 min with sensitivity and specificity between 91.7% and 100%. This is a proof of concept that evaluation of the lytic response may be a rapid and efficient test for determination of resistance to antibiotic inhibitors of protein synthesis.

  20. Antimicrobial Resistance Profile and Genotypic Characteristics of Streptococcus suis Capsular Type 2 Isolated from Clinical Carrier Sows and Diseased Pigs in China

    Directory of Open Access Journals (Sweden)

    Chunping Zhang

    2015-01-01

    Full Text Available Streptococcus suis serotype 2 is an important zoonotic pathogen. Antimicrobial resistance phenotypes and genotypic characterizations of S. suis 2 from carrier sows and diseased pigs remain largely unknown. In this study, 96 swine S. suis type 2, 62 from healthy sows and 34 from diseased pigs, were analyzed. High frequency of tetracycline resistance was observed, followed by sulfonamides. The lowest resistance of S. suis 2 for β-lactams supports their use as the primary antibiotics to treat the infection of serotype 2. In contrast, 35 of 37 S. suis 2 with MLSB phenotypes were isolated from healthy sows, mostly encoded by the ermB and/or the mefA genes. Significantly lower frequency of mrp+/epf+/sly+ was observed among serotype 2 from healthy sows compared to those from diseased pigs. Furthermore, isolates from diseased pigs showed more homogeneously genetic patterns, with most of them clustered in pulsotypes A and E. The data indicate the genetic complexity of S. suis 2 between herds and a close linkage among isolates from healthy sows and diseased pigs. Moreover, many factors, such as extensive use of tetracycline or diffusion of Tn916 with tetM, might have favored for the pathogenicity and widespread dissemination of S. suis serotype 2.

  1. Antimicrobial growth promoter ban and resistance to macrolides and vancomycin in enterococci from pigs

    DEFF Research Database (Denmark)

    Boerlin, P.; Wissing, A.; Aarestrup, Frank Møller

    2001-01-01

    Ninety-six enterococcus isolates from fecal samples of pigs receiving tylosin as an antimicrobial growth promoter and 59 isolates obtained in the same farms 5 to 6 months after the ban of antimicrobial growth promoters in Switzerland were tested for susceptibility to nine antimicrobial agents....... A clear decrease in resistance to macrolides, lincosamides, and tetracycline was visible after the ban. Vancomycin-resistant Enterococcus faecium belonged to the same clonal lineage as vancomycin-resistant isolates previously isolated from Danish pigs....

  2. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain.

    Science.gov (United States)

    Banks, David J; Porcella, Stephen F; Barbian, Kent D; Beres, Stephen B; Philips, Lauren E; Voyich, Jovanka M; DeLeo, Frank R; Martin, Judith M; Somerville, Greg A; Musser, James M

    2004-08-15

    We describe the genome sequence of a macrolide-resistant strain (MGAS10394) of serotype M6 group A Streptococcus (GAS). The genome is 1,900,156 bp in length, and 8 prophage-like elements or remnants compose 12.4% of the chromosome. A 8.3-kb prophage remnant encodes the SpeA4 variant of streptococcal pyrogenic exotoxin A. The genome of strain MGAS10394 contains a chimeric genetic element composed of prophage genes and a transposon encoding the mefA gene conferring macrolide resistance. This chimeric element also has a gene encoding a novel surface-exposed protein (designated "R6 protein"), with an LPKTG cell-anchor motif located at the carboxyterminus. Surface expression of this protein was confirmed by flow cytometry. Humans with GAS pharyngitis caused by serotype M6 strains had antibody against the R6 protein present in convalescent, but not acute, serum samples. Our studies add to the theme that GAS prophage-encoded extracellular proteins contribute to host-pathogen interactions in a strain-specific fashion.

  3. Engineered strains of Streptococcus macedonicus towards an osmotic stress resistant phenotype retain their ability to produce the bacteriocin macedocin under hyperosmotic conditions.

    Science.gov (United States)

    Anastasiou, Rania; Driessche, Gonzalez Van; Boutou, Effrossyni; Kazou, Maria; Alexandraki, Voula; Vorgias, Constantinos E; Devreese, Bart; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2015-10-20

    Streptococcus macedonicus ACA-DC 198 produces the bacteriocin macedocin in milk only under low NaCl concentrations (<1.0%w/v). The thermosensitive plasmid pGh9:ISS1 was employed to generate osmotic stress resistant (osmr) mutants of S. macedonicus. Three osmr mutants showing integration of the vector in unique chromosomal sites were identified and the disrupted loci were characterized. Interestingly, the mutants were able to grow and to produce macedocin at considerably higher concentrations of NaCl compared to the wild-type (up to 4.0%w/v). The production of macedocin under hyperosmotic conditions solely by the osmr mutants was validated by the well diffusion assay and by mass spectrometry analysis. RT-PCR experiments demonstrated that the macedocin biosynthetic regulon was transcribed at high salt concentrations only in the mutants. Mutant osmr3, the most robust mutant, was converted in its markerless derivative (osmr3f). Co-culture of S. macedonicus with spores of Clostridium tyrobutyricum in milk demonstrated that only the osmr3f mutant and not the wild-type inhibited the growth of the spores under hyperosmotic conditions (i.e., 2.5%w/v NaCl) due to the production of macedocin. Our study shows how genetic manipulation of a strain towards a stress resistant phenotype could improve bacteriocin production under conditions of the same stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Impact of High-Level Daptomycin Resistance in the Streptococcus mitis Group on Virulence and Survivability during Daptomycin Treatment in Experimental Infective Endocarditis

    Science.gov (United States)

    Garcia-de-la-Maria, C.; Xiong, Y. Q.; Pericas, J. M.; Armero, Y.; Moreno, A.; Mishra, N. N.; Rybak, M. J.; Tran, T. T.; Arias, C. A.; Sullam, P. M.; Bayer, A. S.

    2017-01-01

    ABSTRACT Among the viridans group streptococci, the Streptococcus mitis group is the most common cause of infective endocarditis. These bacteria have a propensity to be β-lactam resistant, as well as to rapidly develop high-level and durable resistance to daptomycin (DAP). We compared a parental, daptomycin-susceptible (DAPs) S. mitis/S. oralis strain and its daptomycin-resistant (DAPr) variant in a model of experimental endocarditis in terms of (i) their relative fitness in multiple target organs in this model (vegetations, kidneys, spleen) when animals were challenged individually and in a coinfection strategy and (ii) their survivability during therapy with daptomycin-gentamicin (an in vitro combination synergistic against the parental strain). The DAPr variant was initially isolated from the cardiac vegetations of animals with experimental endocarditis caused by the parental DAPs strain following treatment with daptomycin. The parental strain and the DAPr variant were comparably virulent when animals were individually challenged. In contrast, in the coinfection model without daptomycin therapy, at both the 106- and 107-CFU/ml challenge inocula, the parental strain outcompeted the DAPr variant in all target organs, especially the kidneys and spleen. When the animals in the coinfection model of endocarditis were treated with DAP-gentamicin, the DAPs strain was completely eliminated, while the DAPr variant persisted in all target tissues. These data underscore that the acquisition of DAPr in S. mitis/S. oralis does come at an intrinsic fitness cost, although this resistance phenotype is completely protective against therapy with a potentially synergistic DAP regimen. PMID:28264848

  5. Survey of strain distribution and antibiotic resistance pattern of group B streptococci (Streptococcus agalactiae isolated from clinical specimens

    Directory of Open Access Journals (Sweden)

    Mousavi, Seyed Masoud

    2016-09-01

    Full Text Available Aim: The aims of the present study were to determine the antibiotic susceptibility profils with particular emphasis on susceptible or resistant strains to macrolides and lincosamids antibiotics and to determine possible antibiotic resistance mechanisms occurring in group B streptococci (GBS strains using PCR assay and disk diffusion method.Methods: A total of 62 clinical GBS strains were investigated. Antibacterial susceptibility testing was performed using the disk diffusion method and inducible resistance test for clindamycin by standard double disk diffusion or D-zone test for all isolates to differentiate macrolide resistance phenotype (M, constitutive macrolide-lincosamide-streptogramin B phenotype (cMLS and induced macrolide-lincosamide-streptogramin B phenotype (iMLS. In addition, minimum inhibitory concentrations (MIC of penicillin were determined for all isolates. Finally, possible existence of antibiotic resistance genes for erythromycin , and and for clindamycin were examined among isolates using PCR assay.Results: All 62 isolates were susceptible to penicillin, ampicillin, linezolid, cefazoline and vancomycin. However, 93.5% (n=58 of isolates showed an increased MIC to penicillin. The overall rate of erythromycin resistance was 35.5% (n=22. All erythromycin-resistant isolates displayed the M phenotype (100%, n=22. All three erythromycin resistance genes (i.e. , and were found in erythromycin-resistant isolates.Conclusion: It was concluded that prescribing antibiotic without antibacterial susceptibility tests should be prevented because of the high prevalence of erythromycin-resistant GBS strains and the fact that erythromycin-resistant GBS strains has shown an increased MIC to penicillin, as the drug of choice for treating GBS infections.

  6. In Vitro Capability of Faropenem To Select for Resistant Mutants of Streptococcus pneumoniae and Haemophilus influenzae▿ †

    Science.gov (United States)

    Kosowska-Shick, Klaudia; Clark, Catherine; Credito, Kim; Dewasse, Bonifacio; Beachel, Linda; Ednie, Lois; Appelbaum, Peter C.

    2008-01-01

    When tested against nine strains of pneumococci and six of Haemophilus influenzae of various resistotypes, faropenem failed to select for resistant mutants after 50 days of consecutive subculture in subinhibitory concentrations. Faropenem also yielded low rates of spontaneous mutations against all organisms of both species. By comparison, resistant clones were obtained with macrolides, ketolides, and quinolones. PMID:18086853

  7. SUSCEPTIBILITIES/RESISTANCE OF Staphylococcus coagulase POSITIVE AND Streptococcus sp. ISOLATED FROM THE MILK OF COWS PRESENTING CLINICAL MASTITIS IN MILK BASIN OF GOIÂNIA RESISTÊNCIA DE Staphylococcus coagulase POSITIVA E Streptococcus sp. ISOLADOS DO LEITE DE VACAS COM MASTITE CLÍNICA NA BACIA LEITEIRA DE GOIÂNIA

    Directory of Open Access Journals (Sweden)

    Luiz Antônio Franco da Silva

    2007-09-01

    Full Text Available

    It was verified the spectrum of susceptibilities/resistance of 76 samples of Staphylococcus coagulase positive and 51 samples of Streptococcus sp., isolated from milk of 231 cows presenting clinical mastitis. The diffusion method was used in plate of Kirby-Bauer, being tested ten active principles used in cases of clinical mastitis. Natural penicillin, chloranphenicol, tetraciclyne, kanamicyn, gentamicyn, nitrofurantoin, trimetopryn + sulfametoxazol, enrofloxacyn, perlimicyn and ceftiofur were tested. The samples of Staphylococcus coagulase positive presented a spectrum of larger resistance for the penicillin (78.9%, followed by trimetoprim + sulfametoxazol (59.2% and nitrofurantoin (57.8%. The largest susceptibility frequency was found in enrofloxacyn (96%, in perlimicyn (94% and in ceftiofur (94%. For the samples of Streptococcus sp. there was a profile resistance for penicillin (92%, chloranphenicol (74.5% and trimetoprim + sulfametoxazol (52%. A sensibility profile was also verified for enrofloxacyn (96%, ceftiofur (92% and perlimicyn (92%.

    KEY-WORDS: Bovine mastitis; resistance; susceptibilities.

    Verificou-se o espectro de sensibilidade/resistência de 76 cepas de Staphylococcus coagulase positiva e 51 cepas de Streptococcus sp., isolados do leite proveniente de 231 vacas que apresentaram mastite clínica. Utilizou-se o método de difusão em placa, segundo Kirby-Bauer, testando-se 10 princípios ativos: penicilina natural, cloranfenicol, tetraciclina, kanamicina, gentamicina, nitrofurantoína, trimetoprim + sulfametoxazol, enrofloxacina, perlimicina e ceftiofur. As cepas de Staphylococcus coagulase positiva apresentaram um espectro de resistência maior para a penicilina (78,9%, vindo a seguir trimetoprim + sulfametoxazol (59,2% e

  8. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Van Doan, Hien; Hoseinifar, Seyed Hossein; Tapingkae, Wanaporn; Khamtavee, Pimporn

    2017-03-01

    The present study evaluates the effects of dietary kefir and low molecular weight sodium alginate (LWMSA) (singular or combined) on non-specific immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Fish with average weight of 18.60 ± 0.04 g were supplied and randomly stocked in sixteen glass tanks (150 L) at density of 20 fish per tank. Fish were fed experimental diets as follows: 0 g kg -1 LMWSA (Control, Diet 1), 10 g kg -1 LMWSA (Diet 2), 40 g kg -1 kefir (Diet 3), and 10 g kg -1 LMWSA + 40 g kg -1 kefir (Diet 4) for 50 days. At the end of the feeding trial, serum lysozyme (SL), phagocytosis (PI), respiratory burst (RB), and alternative complement (ACH50) activities as well as growth performance were measured. Singular and combined administration of kefir and low molecular weight sodium alginate (LMWSA) significantly increased serum SL, PI, RB, and ACH50 activities compared control group (P < 0.05); the highest innate immune responses were observed in fish fed combinational diet (kefir + LMWSA) (P < 0.05). The results of experimental challenge revealed significantly higher resistance against Streptococcus agalactiae in fish fed supplemented diets and the highest post challenge survival rate was observed in synbiotic diet (P < 0.05). Similar results obtained in case of growth parameters. Feeding on supplemented diet significantly improved SGR and FCR and the highest growth parameters was observed in fish fed synbiotic diet (P < 0.05). These finding revealed that combined administration of dietary kefir and LMWSA can be considered for improving immune response, disease resistance and growth performance of Nile tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sil: a Streptococcus iniae bacteriocin with dual role as an antimicrobial and an immunomodulator that inhibits innate immune response and promotes S. iniae infection.

    Directory of Open Access Journals (Sweden)

    Mo-fei Li

    Full Text Available Streptococcus iniae is a Gram-positive bacterium and a severe pathogen to a wide range of economically important fish species. In addition, S. iniae is also a zoonotic pathogen and can cause serious infections in humans. In this study, we identified from a pathogenic S. iniae strain a putative bacteriocin, Sil, and examined its biological activity. Sil is composed of 101 amino acid residues and shares 35.6% overall sequence identity with the lactococcin 972 of Lactococcus lactis. Immunoblot analysis showed that Sil was secreted by S. iniae into the extracellular milieu. Purified recombinant Sil (rSil exhibited a dose-dependent inhibitory effect on the growth of Bacillus subtilis but had no impact on the growths of other 16 Gram-positive bacteria and 10 Gram-negative bacteria representing 23 different bacterial species. Treatment of rSil by heating at 50°C abolished the activity of rSil. rSil bound to the surface of B. subtilis but induced no killing of the target cells. Cellular study revealed that rSil interacted with turbot (Scophthalmus maximus head kidney monocytes and inhibited the innate immune response of the cells, which led to enhanced cellular infection of S. iniae. Antibody blocking of the extracellular Sil produced by S. iniae significantly attenuated the infectivity of S. iniae. Consistent with these in vitro observations, in vivo study showed that administration of turbot with rSil prior to S. iniae infection significantly increased bacterial dissemination and colonization in fish tissues. Taken together, these results indicate that Sil is a novel virulence-associated bacteriostatic and an immunoregulator that promotes S. iniae infection by impairing the immune defense of host fish.

  10. Streptococcus mutans forms xylitol-resistant biofilm on excess adhesive flash in novel ex-vivo orthodontic bracket model.

    Science.gov (United States)

    Ho, Cindy S F; Ming, Yue; Foong, Kelvin W C; Rosa, Vinicius; Thuyen, Truong; Seneviratne, Chaminda J

    2017-04-01

    During orthodontic bonding procedures, excess adhesive is invariably left on the tooth surface at the interface between the bracket and the enamel junction; it is called excess adhesive flash (EAF). We comparatively evaluated the biofilm formation of Streptococcus mutans on EAF produced by 2 adhesives and examined the therapeutic efficacy of xylitol on S mutans formed on EAF. First, we investigated the biofilm formation of S mutans on 3 orthodontic bracket types: stainless steel preadjusted edgewise, ceramic preadjusted edgewise, and stainless steel self-ligating. Subsequently, tooth-colored Transbond XT (3M Unitek, Monrovia, Calif) and green Grengloo (Ormco, Glendora, Calif) adhesives were used for bonding ceramic brackets to extracted teeth. S mutans biofilms on EAF produced by the adhesives were studied using the crystal violet assay and scanning electron microscopy. Surface roughness and surface energy of the EAF were examined. The therapeutic efficacies of different concentrations of xylitol were tested on S mutans biofilms. Significantly higher biofilms were formed on the ceramic preadjusted edgewise brackets (P = 0.003). Transbond XT had significantly higher S mutans biofilms compared with Grengloo surfaces (P = 0.007). There was no significant difference in surface roughness between Transbond XT and Grengloo surfaces (P >0.05). Surface energy of Transbond XT had a considerably smaller contact angle than did Grengloo, suggesting that Transbond XT is a more hydrophilic material. Xylitol at low concentrations had no significant effect on the reduction of S mutans biofilms on orthodontic adhesives (P = 0.016). Transbond XT orthodontic adhesive resulted in more S mutans biofilm compared with Grengloo adhesive on ceramic brackets. Surface energy seemed to play a more important role than surface roughness for the formation of S mutans biofilm on EAF. Xylitol does not appear to have a therapeutic effect on mature S mutans biofilm. Copyright © 2017 American

  11. Resisting "Reason": A Comparative Anthropological Study of Social Differences and Resistance toward Health Promotion and Illness Prevention in Denmark.

    Science.gov (United States)

    Merrild, Camilla Hoffmann; Andersen, Rikke Sand; Risør, Mette Bech; Vedsted, Peter

    2017-06-01

    Social differences in health and illness are well documented in Denmark. However, little is known about how health practices are manifested in the everyday lives of different social classes. We propose acts of resistance and formation of health subjectivities as helpful concepts to develop our understanding of how dominant health discourses are appropriated by different social classes and transformed into different practices promoting health and preventing illness. Based on fieldwork in two different social classes, we discuss how these practices both overtly and subtly challenge the normative power of the health promotion discourse. These diverse and ambiguous forms of everyday resistance illustrate how and when situated concerns move social actors to subjectively appropriate health promotion messages. Overall, the different forms of resistance elucidate how the standardized awareness and education campaigns may perpetuate the very inequalities they try to diminish. © 2016 by the American Anthropological Association.

  12. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    Science.gov (United States)

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms.

  13. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance.

    Science.gov (United States)

    Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi

    2017-07-01

    Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.

  14. Dietary Aloe vera supplementation on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT).

    Science.gov (United States)

    Gabriel, Ndakalimwe Naftal; Qiang, Jun; He, Jie; Ma, Xin Yu; Kpundeh, Mathew D; Xu, Pao

    2015-06-01

    This study investigated effects of dietary Aloe vera on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT). Five groups were designed including a basal diet (control) and 100% A. vera powder incorporated in fish feed at 0.5% 1%, 2%, and 4%/kg feed, which were administered for 8 weeks. Fish fed 0.5%, 1%, and 2% A. vera supplemented diet significantly improved (p vera diet at 1% and 2%/kg feed. Feed efficiency ratio, feed conversion ratio, and hepatosomatic index were significantly enhanced in 4% A. vera supplemented fish over unsupplemented ones (p vera supplemented fish showed a significant increase (p vera supplemented fish showed a decrease (p vera diet at 2% and 4% A. vera/kg feed than those fed unsupplemented diet. Unchallenged fish fed 0.5%, 1%, and 2% A. vera showed significantly higher values (p vera supplemented diet. There was a significant increase (p vera unsupplemented fish and those supplemented with A. vera diet at 1%/kg feed increased significantly (p vera supplemented diet maintained higher values at all experimental stages among groups. There was a significant correlation (p Aloe had no significant effect (p > 0.05) on the survival of the fish when compared to the control; no mortality was recorded in challenge trial. Overall, our results indicated that dietary aloe supplementation could improve growth, feed utilization, and haemato-biochemical parameters of cultured tilapia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dominance of multidrug-resistant Denmark(14)-32 (ST230) clone among Streptococcus pneumoniae serotype 19A isolates causing pneumococcal disease in Bulgaria from 1992 to 2013.

    Science.gov (United States)

    Setchanova, Lena Petrova; Alexandrova, Alexandra; Dacheva, Daniela; Mitov, Ivan; Kaneva, Radka; Mitev, Vanio

    2015-02-01

    A pneumococcal conjugate vaccine (PCV10) was introduced in Bulgarian national immunization program since April 2010. Clonal composition based on pulsed-field gel electrophoresis and multilocus sequence typing genotyping of 52 serotype 19A Streptococcus pneumoniae isolates was analyzed. These were invasive and respiratory isolates collected between 1992 and 2013 from both children (78.8% clone. The most frequent sequence type (ST) was ST230 (48.1%) and together with four other closely related STs (15.4%), belonging to ST1611, ST276, ST7466, and ST2013, which were single- and double-locus variants; they were included in the main CC230. The disappearance of highly drug-resistant ST663 clone and emergence of new clones as CC320 and CC199 was also observed among the rest 19A isolates. A comparison of clonal composition between invasive and noninvasive isolates did not show a great genetic diversity among both kinds of isolates. Continuous surveillance of serotype 19A population following the introduction of PCV10 is essential to evaluate the impact of the vaccine on the epidemiology of this serotype.

  16. Antimicrobial resistance patterns of colonizing Streptococcus pneumoniae among young child-mother pairs in the rural highlands of the Peruvian Andes

    Science.gov (United States)

    Howard, Leigh; Edwards, Kathryn; Griffin, Marie; Gil, Ana; Minaya, Gina; Mercado, Erik; Ochoa, Theresa; Lanata, Claudio; Grijalva, Carlos G

    2017-01-01

    Abstract Background Despite widespread use of pneumococcal conjugate vaccines (PCVs), Streptococcus pneumoniae (pneumococcus) remains an important cause of pneumonia. Prior to widespread PCV use, we found a high prevalence of nasopharyngeal (NP) colonization with pneumococcus resistant to multiple antibiotic classes among young children in the rural highlands of Peru. We sought to confirm contemporary resistance profiles among young children, their mothers, and animal contacts in the post-PCV era. Methods We enrolled eligible members of Peruvian households whose children had participated in our previous study. Mothers were questioned about antibiotic use for themselves and their children age <3 years. NP samples were collected from children, mothers, and their animal contacts including cows, guinea pigs, and dogs, when available. Samples were cultured for pneumococcus using standard methods and routine disk antibiotic susceptibility testing was performed. Drinking water and milk samples were tested, when available, for the presence of β-lactam and tetracycline residues (IDEXX Β-Tetra testing kit; Westbrook, ME). Results Members of 47 households were enrolled, including 50 children and 47 mothers (3 sibling pairs). The median (IQR) age of children was 1.2 years (0.6-2.2) and number of household members was 5 (4-6). Sixteen of 50 (32%) children and 7/47 (15%) mothers had received antibiotics in the prior 6 months (Fig 1). Pneumococcus was detected in 31/50 (62%) children, 9/47 (19%) mothers, and 1/31 (3%) guinea pigs. Pneumococci were not detected in dogs (n = 29) or cows (n = 7). Resistance to multiple classes of antibiotics, including TMP-SMX, tetracyclines, and β-lactams, was common among children and adults (Fig 2). No antibiotic residues were detected in water (n = 41) or milk (n = 7) samples. Conclusion Pneumococcal colonization was common among young children, less prevalent among adults, and rare among animals. Resistance to macrolides and

  17. Increasing incidence of penicillin- and cefotaxime-resistant Streptococcus pneumoniae causing meningitis in India: Time for revision of treatment guidelines?

    Science.gov (United States)

    Verghese, Valsan Philip; Veeraraghavan, Balaji; Jayaraman, Ranjith; Varghese, Rosemol; Neeravi, Ayyanraj; Jayaraman, Yuvaraj; Thomas, Kurien; Mehendale, Sanjay M

    2017-01-01

    Pneumococcal meningitis is a life-threatening infection, requiring prompt diagnosis and effective treatment. Penicillin resistance in pneumococcal infections is a concern. Here, we present the antibiotic susceptibility profile of pneumococcal meningeal isolates from January 2008 to August 2016 to elucidate treatment guidelines for pneumococcal meningitis. Invasive pneumococcal isolates from all age groups, were included in this study. Minimum inhibitory concentrations for the isolates were identified by agar dilution technique and VITEK System 2. Serotyping of isolates was done by co-agglutination technique. Out of 830 invasive pneumococcal isolates, 167 (20.1%) isolates were from meningeal infections. Cumulative penicillin resistance in pneumococcal meningitis was 43.7% and cefotaxime non-susceptibility was 14.9%. Penicillin resistance amongst meningeal isolates in those younger than 5 years, 5-16 years of age and those aged 16 years and older was 59.7%, 50% and 27.3%, respectively, with non-susceptibility to cefotaxime in the same age groups being 18%, 22.2% and 10.4%. Penicillin resistance amongst pneumococcal meningeal isolates increased from 9.5% in 2008 to 42.8% in 2016, whereas cefotaxime non-susceptibility increased from 4.7% in 2008 to 28.5% in 2016. Serotypes 14, 19F, 6B, 6A, 23F, 9V and 5 were the most common serotypes causing meningitis, with the first five accounting for over 75% of resistant isolates. The present study reports increasing penicillin resistance and cefotaxime non-susceptibility to pneumococcal meningitis in our setting. This highlights the need for empiric therapy with third-generation cephalosporins and vancomycin for all patients with meningitis while awaiting results of culture and susceptibility testing.

  18. Presence and resistance of Streptococcus agalactiae in vaginal specimens of pregnant and adult non-pregnant women and association with other aerobic bacteria.

    Science.gov (United States)

    Numanović, Fatima; Smajlović, Jasmina; Gegić, Merima; Delibegović, Zineta; Bektaš, Sabaheta; Halilović, Emir; Nurkić, Jasmina

    2017-02-01

    Aim To determine the prevalence rate and resistance profile of Streptococcus agalactiae (S. agalactiae) in vaginal swabs of pregnant and adult non-pregnant women in the Tuzla region, Bosnia and Herzegovina (B&H), as well as its association with other aerobic bacteria. Methods This prospective study included 200 women, 100 pregnant and 100 adult non-pregnant. The research was conducted at the Institute of Microbiology, University Clinical Center Tuzla from October to December 2015. Standard aerobic microbiological techniques were used for isolation and identification of S. agalactiae and other aerobic bacteria. Antimicrobial susceptibility was determined by the disk diffusion and microdilution method(VITEK 2/AES instrument). Results Among 200 vaginal swabs, 17 (8.50%) were positive for S. agalactiae, e. g., 7% (7/100) of pregnant and 10% (10/100) of adult non-pregnant women. In the pregnant group, 71.4% (5/7) of S. agalactiae isolates were susceptible to clindamycin and 85.7%(6/7) to erythromycin. In the adult non-pregnant group, only resistance to clindamycin was observed in one patient (1/10; 10%). S. agalactiae as single pathogen was isolated in 57.14% (4/7) of pregnant and 60% (6/10) of adult non-pregnant S. agalactiae positive women. In mixed microbial cultures S. agalactiae was most frequently associated with Enterococcus faecalis and Escherichia coli. Conclusion The rate of S. agalactiae positive women in the population of pregnant and adult non-pregnant women of Tuzla Canton, B&H is comparable with other European countries. Large studies are needed to develop a common national strategy for the prevention of S. agalactiae infection in B&H, especially during pregnancy. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  19. Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?

    OpenAIRE

    Rodr?guez-Rojas, Alexandro; Rodr?guez-Beltr?n, Jer?nimo; Valverde, Jos? Ram?n; Bl?zquez, Jes?s

    2015-01-01

    The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promot...

  20. Genomic analysis reveals multi-drug resistance clusters in Group B Streptococcus CC17 hypervirulent isolates causing neonatal invasive disease in southern mainland China

    Directory of Open Access Journals (Sweden)

    Edmondo Campisi

    2016-08-01

    Full Text Available Neonatal invasive disease caused by group B Streptococcus (GBS represents a significant public health care concern globally. However, data related to disease burden, serotype distribution and molecular epidemiology in China and other Asian countries are very few and specifically relative to confined regions. The aim of this study was to investigate the genetic characteristics of GBS isolates recovered from neonates with invasive disease during 2013-2014 at Guangzhou and Changsha hospitals in southern mainland China. We assessed the capsular polysaccharide (CPS type, pilus islands (PIs distribution and hvgA gene presence in a panel of 26 neonatal clinical isolates, of which 8 were recovered from Early Onset Disease (EOD and 18 from Late Onset Disease (LOD. Among 26 isolates examined, five serotypes were identified. Type III was the most represented (15 cases, particularly among LOD strains (n=11, followed by types Ib (n=5, V (n=3, Ia (n=2 and II (n=1. We performed whole-genome sequencing (WGS analysis and antimicrobial susceptibility testing on the 14 serotype III isolates belonging to the hypervirulent Clonal Complex 17 (serotype III-CC17.The presence of PI-2b alone was associated with 13 out of 14 serotype III-CC17 strains. Genome analysis led us to identify two multi-drug resistance gene clusters harbored in two new versions of integrative and conjugative elements (ICEs, carrying five or eight antibiotic resistance genes, respectively. These ICEs replaced the 16 kb-locus that normally contains the PI-1 operon. All isolates harboring the identified ICEs showed multiple resistances to aminoglycoside, macrolide and tetracycline antibiotic classes. In conclusion, we report the first whole-genome sequence analysis of 14 GBS serotype III-CC17 strains isolated in China, representing the most prevalent lineage causing neonatal invasive disease. The acquisition of newly identified ICEs conferring multiple antibiotic resistances could in part explain

  1. [From resistance [corrected] to resilience: promoting wellbeing in the workplace].

    Science.gov (United States)

    Magrin, M E

    2008-01-01

    Research on work stress has focused to date for the most part on the environmental and psychosocial factors inducing stress and great strides have been made in assisting both individuals and organizations in managing distress. This, however, is only half of the battle. As a complement to healing the wounded, there is need to explore models of intervention aimed at the promotion of well-being at work through the development and reinforcement of health-promoting factors. An important contribution toward this goal comes today from Positive Psychology, a new current of research focused on investigating the qualities and predictors that enable individuals to flourish. Within this perspective, health is seen not as the absence of disease and of risk factors but rather as the presence of those resources that underpin wellbeing. Among the new theoretical constructs emerging from Positive Psychology, of particular relevance to the domain of occupational health psychology is the notion of adult resilience. A definition of this notion is proposed and a review given of the main resources of resilience identified in the literature. Particular attention is given to the dimension of meaning, which seems to act as an important health-protector in the work setting. Resilience factors may also play a role in the implementing of interventions oriented both to distress prevention and wellbeing promotion. Establishing and maintaining an effective dialogue between researchers and practitioners in the field of work health promotion is strongly recommended.

  2. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    Science.gov (United States)

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.

    Science.gov (United States)

    Huang, Xuelian; Palmer, Sara R; Ahn, Sang-Joon; Richards, Vincent P; Williams, Matthew L; Nascimento, Marcelle M; Burne, Robert A

    2016-01-29

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Influence of methylene blue-mediated photodynamic therapy on the resistance to detachment of streptococcus mutans biofilms from titanium substrata

    Science.gov (United States)

    Sharab, Lina Y.

    In dental settings, as well as in other natural systems, plaque-forming microorganisms develop biofilms in which the microbes become protected via their own phenotypic changes and their polymeric exudates from disinfection by washes and antibiotics. Photodynamic Therapy (PDT) is variably effective against these microorganisms, depending on such factors as whether the bacteria are Gram positive or Gram negative, plaque age and thickness, and internal biofilm oxygen concentration. This investigation applied a novel combination of PDT and water-jet impingement techniques to Streptococcus mutans (ATCC strain 27351)-formed biofilms on commercially pure titanium (cpTi) starting with three different phases (ages) of the bacteria, to examine whether the detachment shear stress --as a signature for the work required for removal of the biofilms- would be affected by prior PDT treatment independently from microbial viability. Biofilms were grown with sucrose addition to Brain Heart Infusion media, producing visible thick films and nearly invisible thin films (within the same piece) having the same numbers of culturable microorganisms, the thicker films having greater susceptibility to detachment by water--jet impingement. Colony-forming-unit (CFU) counts routinely correlated well with results from a spectrophotometric Alamar Blue (AB) assay. Use of Methylene Blue (MB) as a photosensitizer (PS) for PDT of biofilms did not interfere with the AB assay, but did mask AB reduction spectral changes when employed with planktonic organisms. It was discovered in this work that PD-treated microbial biofilms, independently from starting or PS-influenced microorganism viability, were significantly (p<0.05) and differentially more easily delaminated and ultimately removed from their substrata biomaterials by the hydrodynamic forces of water-jet impingement. Control biofilms of varying thickness, not receiving PDT treatment, required between 144 and 228 dynes/cm2 of shear stress to

  5. Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-06-01

    Full Text Available β-Lactam antibiotics are the drugs of choice to treat pneumococcal infections. The spread of β-lactam-resistant pneumococci is a major concern in choosing an effective therapy for patients. Systematically tracking β-lactam resistance could benefit disease surveillance. Here we developed a classification system in which a pneumococcal isolate is assigned to a “PBP type” based on sequence signatures in the transpeptidase domains (TPDs of the three critical penicillin-binding proteins (PBPs, PBP1a, PBP2b, and PBP2x. We identified 307 unique PBP types from 2,528 invasive pneumococcal isolates, which had known MICs to six β-lactams based on broth microdilution. We found that increased β-lactam MICs strongly correlated with PBP types containing divergent TPD sequences. The PBP type explained 94 to 99% of variation in MICs both before and after accounting for genomic backgrounds defined by multilocus sequence typing, indicating that genomic backgrounds made little independent contribution to β-lactam MICs at the population level. We further developed and evaluated predictive models of MICs based on PBP type. Compared to microdilution MICs, MICs predicted by PBP type showed essential agreement (MICs agree within 1 dilution of >98%, category agreement (interpretive results agree of >94%, a major discrepancy (sensitive isolate predicted as resistant rate of <3%, and a very major discrepancy (resistant isolate predicted as sensitive rate of <2% for all six β-lactams. Thus, the PBP transpeptidase signatures are robust indicators of MICs to different β-lactam antibiotics in clinical pneumococcal isolates and serve as an accurate alternative to phenotypic susceptibility testing.

  6. Maternal and neonatal colonisation of group B streptococcus at Muhimbili National Hospital in Dar es Salaam, Tanzania: prevalence, risk factors and antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    Lyamuya Eligius F

    2009-12-01

    Full Text Available Abstract Background Group B streptococcus (GBS, which asymptomatically colonises the vaginal and rectal areas of women, is the leading cause of septicemia, meningitis and pneumonia in neonates. In Tanzania no studies have been done on GBS colonisation of pregnant women and neonates. This study was conducted in Dar es Salaam, Tanzania to determine the prevalence of GBS colonisation among pregnant women, the neonatal colonisation rate and the antimicrobial susceptibility, thus providing essential information to formulate a policy for treatment and prevention regarding perinatal GBS diseases. Methods This cross sectional study involved 300 pregnant women attending antenatal clinic and their newborns delivered at Muhimbili National Hospital (MNH between October 2008 and March 2009. High vaginal, rectal, nasal, ear and umbilical swabs were cultured on Todd Hewitt Broth and in 5% sheep blood agar followed by identification of isolates using conventional methods and testing for their susceptibility to antimicrobial agents using the Kirby-Bauer method. Results GBS colonisation was confirmed in 23% of pregnant women and 8.9% of neonates. A higher proportion of GBS were isolated from the vagina (12.3% as compared to the rectum (5%. Prolonged duration of labour (>12 hrs was significantly shown to influence GBS colonisation in neonates P Conclusion Our findings seem to suggest that a quarter of pregnant women attending ANC clinic at MNH and approximately 10% of their newborns are colonised with GBS. All isolates were found to be sensitive to vancomycin and ampicillin which seem to be the most effective antibiotics for the time being. However there is a need for continuous antibiotics surveillance of GBS to monitor trend of resistance. The high isolation frequency of GBS among pregnant women suggests routine antenatal screening at 35 to 37 weeks of gestation in order to provide antibiotic prophylaxis to GBS carrier.

  7. Group B streptococcus - pregnancy

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000511.htm Group B streptococcus - pregnancy To use the sharing features on this page, please enable JavaScript. Group B streptococcus (GBS) is a type of bacteria that some ...

  8. Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation

    DEFF Research Database (Denmark)

    Safari, Reza; Adel, Milad; Lazado, Carlo Cabacang

    2016-01-01

    The present study evaluated the benefits of dietary administration of host-derived candidate probiotics Enterococcus casseliflavus in juvenile rainbow trout Oncorhynchus mykiss. Experimental diets were prepared by incorporating the microorganisms in the basal feed at 3 inclusion levels (i.e. 107...... CFU g-1 of feed [T1], 108 CFU g-1 of feed [T2], 109 CFU g-1 of feed [T3]). The probiotic feeds were administered for 8 weeks, with a group fed with the basal diet serving as control. The effects on growth performance, gut health, innate immunity and disease resistance were evaluated.Results showed...... that growth performance parameters were significantly improved in T2 and T3 groups. Activities of digestive enzymes such as trypsin and lipase were significantly higher in these two groups as well. Gut micro-ecology was influenced by probiotic feeding as shown by the significant increase in intestinal lactic...

  9. Differences in genotype and virulence among four multidrug-resistant Streptococcus pneumoniae isolates belonging to the PMEN1 clone.

    Directory of Open Access Journals (Sweden)

    N Luisa Hiller

    Full Text Available We report on the comparative genomics and characterization of the virulence phenotypes of four S. pneumoniae strains that belong to the multidrug resistant clone PMEN1 (Spain(23F ST81. Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinants.

  10. Important Mutations Contributing to High-Level Penicillin Resistance in Taiwan19F-14, Taiwan23F-15, and Spain23F-1 of Streptococcus pneumoniae Isolated from Taiwan.

    Science.gov (United States)

    Liu, Esther Yip-Mei; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Fung, Chang-Phone

    2016-12-01

    Penicillin-resistant Streptococcus pneumoniae is a serious concern worldwide. In this study, we analyzed the cause of β-lactam resistance in pandemic multidrug-resistant clones. A total of 41 penicillin-nonsusceptible clinical isolates were collected from 1996 to 2012. Sero- and molecular typing confirmed that these isolates were clonal types of Taiwan 19F -14, Taiwan 23F -15, and Spain 23F -1. Sero-switching was found in four isolates. All isolates were multidrug resistant. Sequencing analysis of the penicillin binding proteins (PBPs) was performed on PBP1a, 2b, and 2x, and a large number of mutations were identified in comparing to clinical penicillin-susceptible isolates and the recipient strain R6 used for homologous recombination. The T 451 A substitution was the key amino acid in PBP2b that contributed to penicillin resistance. T 338 A in PBP2x played a role in resistance and reached the highest level of resistance when combined with other mutations in PBP2x. High-level penicillin resistance could not be obtained without the combination of mutations in PBP1a with PBP2b and 2x. The amino acid substitutions in PBP1a, 2b, and 2x were the crucial factors for β-lactam resistance.

  11. Thyroid hormone promotes remodeling of coronary resistance vessels.

    Directory of Open Access Journals (Sweden)

    Olga V Savinova

    Full Text Available Low thyroid hormone (TH function has been linked to impaired coronary blood flow, reduced density of small arterioles, and heart failure. Nonetheless, little is known about the mechanisms by which THs regulate coronary microvascular remodeling. The current study examined the initial cellular events associated with coronary remodeling induced by triiodothyronine (T3 in hypothyroid rats. Rats with established hypothyroidism, eight weeks after surgical thyroidectomy (TX, were treated with T3 for 36 or 72 hours. The early effects of T3 treatment on coronary microvasculature were examined morphometrically. Gene expression changes in the heart were assessed by quantitative PCR Array. Hypothyroidism resulted in arteriolar atrophy in the left ventricle. T3 treatment rapidly induced small arteriolar muscularization and, within 72 hours, restored arteriolar density to control levels. Total length of the capillary network was not affected by TX or T3 treatment. T3 treatment resulted in the coordinate regulation of Angiopoietin 1 and 2 expression. The response of Angiopoietins was consistent with vessel enlargement. In addition to the well known effects of THs on vasoreactivity, these results suggest that THs may affect function of small resistance arteries by phenotypic remodeling of vascular smooth muscle cells (VSMC.

  12. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  13. Mindless resistance to persuasion : Low self-control fosters the use of resistance-promoting heuristics

    NARCIS (Netherlands)

    Janssen, L; Fennis, Bob

    2017-01-01

    In our consumer society, people are confronted on a daily basis with unsolicited persuasion attempts. The present research challenges the prevailing view that resisting persuasion is more likely to fail when consumers have low self-control. Four experiments tested the hypothesis that impaired

  14. A Eukaryotic-Type Serine/Threonine Protein Kinase Is Required for Biofilm Formation, Genetic Competence, and Acid Resistance in Streptococcus mutans

    Czech Academy of Sciences Publication Activity Database

    Hussain, H.; Branny, Pavel; Allan, E.

    2006-01-01

    Roč. 188, č. 4 (2006), s. 1628-1632 ISSN 0021-9193 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptococcus mutans * stpk * pathogenesis Subject RIV: EE - Microbiology, Virology Impact factor: 3.993, year: 2006

  15. High dietary zinc feeding promotes persistence of multi-resistant E. coli in the swine gut.

    Science.gov (United States)

    Ciesinski, Lisa; Guenther, Sebastian; Pieper, Robert; Kalisch, Martin; Bednorz, Carmen; Wieler, Lothar H

    2018-01-01

    High levels of zinc oxide are used frequently as feed additive in pigs to improve gut health and growth performance and are still suggested as an alternative to antimicrobial growth promoters. However, we have recently described an increase of multi-resistant E. coli in association to zinc feeding in piglets. This previous study focused on clonal diversity of E. coli, observing the effect on multi-resistant strains by chance. To shed further light into this highly important topic and falsify our previous findings, we performed a zinc pig feeding trial where we specifically focused on in-depth analysis of antimicrobial resistant E. coli. Under controlled experimental conditions, piglets were randomly allocated to a high dietary zinc (zinc group) and a background zinc feeding group (control group). At different ages samples were taken from feces, digesta, and mucosa and absolute E. coli numbers were determined. A total of 2665 E. coli isolates were than phenotypically tested for antimicrobial resistance and results were confirmed by minimum inhibitory concentration testing for random samples. In piglets fed with high dietary zinc, we detected a substantial increase of multi-resistant E. coli in all gut habitats tested, ranging from 28.9-30.2% multi-resistant E. coli compared to 5.8-14.0% in the control group. This increase was independent of the total number of E. coli. Interestingly, the total amount of the E. coli population decreased over time. Thus, the increase of the multi-resistant E. coli populations seems to be linked with persistence of the resistant population, caused by the influence of high dietary zinc feeding. In conclusion, these findings corroborate our previous report linking high dietary zinc feeding of piglets with the occurrence of antimicrobial resistant E. coli and therefore question the feeding of high dietary zinc oxide as alternative to antimicrobial growth promoters.

  16. Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2015-07-01

    Full Text Available The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promoters. In fact, several clay materials are routinely added to animal feed with the aim of improving growth and animal product quality. However, recent findings suggest that sepiolite, a clay additive, mediates the direct transfer of plasmids between different bacterial species. We therefore hypothesize that clays present in animal feed facilitate the horizontal transfer of resistance determinants in the digestive tract of farm animals.

  17. Prevalence of mef and ermB genes in invasive pediatric erythromycin-resistant Streptococcus pneumoniae isolates from Argentina Prevalencia de los genes mef y ermB en aislamientos invasivos de Streptococcus pneumoniae resistentes a eritromicina recuperados de pacientes pediátricos en Argentina

    Directory of Open Access Journals (Sweden)

    A. Corso

    2009-03-01

    Full Text Available During the period 1993-2001, a total of 1,499 pneumococci isolates were recovered through the Argentinean surveillance of Streptococcus pneumoniae causing invasive disease in children under 6 years of age, 3.5% of which were erythromycin resistant. Among the 50 erythromycin-resistant strains available, 58% (n=29 harbored mefA/E genes (15 mefA, 30%; and 14 mefE, 28%, 34% (n=17 ermB, and 6% (n=3 both mefA/E plus ermB genes, while one isolate was negative for all the acquired genes studied. The England14-9 (42%, Poland6B-20 (20% and Spain9v-3 (16% clones were responsible for the emergence of pneumococcal macrolide resistance in pediatric population from Argentina.En el marco del programa de vigilancia regional SIREVA, se analizaron 1499 aislamientos de Streptococcus pneumoniae causantes de enfermedad invasiva en menores de 6 años, recuperados entre 1993 y 2001. Se detectó un 3,5% de resistencia a eritromicina. De los 50 aislamientos resistentes a eritromicina que pudieron ser estudiados, el 58% (n=29 tenían los genes mefA/E (15 mefA, 30% y 14 mefE, 28%, el 34% (n=17 el gen ermB y el 6% (n=3 la combinación de genes mefA/E y ermB. Sólo un aislamiento fue negativo para todos los genes analizados. Los clones internacionales England14-9, Poland6B-20 y Spain9v-3 representaron el 78% del total de aislamientos resistentes (42, 20 y 16%, respectivamente y se consideraron los responsables de la emergencia de la resistencia a macrólidos entre los neumococos que afectan a la población pediátrica de Argentina.

  18. Group B Streptococcus and Pregnancy

    Science.gov (United States)

    ... B Strep and Pregnancy • What is group B streptococcus (GBS)? • What does it mean to be colonized ... planned cesarean birth? •Glossary What is group B streptococcus (GBS)? Group B streptococcus is one of the ...

  19. Variable Resistance Training Promotes Greater Strength and Power Adaptations Than Traditional Resistance Training in Elite Youth Rugby League Players.

    Science.gov (United States)

    Rivière, Maxence; Louit, Loic; Strokosch, Alasdair; Seitz, Laurent B

    2017-04-01

    Rivière, M, Louit, L, Strokosch, A, and Seitz, LB. Variable resistance training promotes greater strength and power adaptations than traditional resistance training in elite youth rugby league players. J Strength Cond Res 31(4): 947-955, 2017-The purpose of this study was to examine the strength, velocity, and power adaptations in youth rugby league players in response to a variable resistance training (VRT) or traditional free-weight resistance training (TRAD) intervention. Sixteen elite youth players were assigned to a VRT or TRAD group and completed 2 weekly upper- and lower-body strength and power sessions for 6 weeks. Training programs were identical except that the VRT group trained the bench press exercise with 20% of the prescribed load coming from elastic bands. Bench press 1 repetition maximum (1RM) and bench press mean velocity and power at 35, 45, 65, 75, and 85% of 1RM were measured before and after the training intervention, and the magnitude of the changes was determined using effect sizes (ESs). The VRT group experienced larger increases in both absolute (ES = 0.46 vs. 0.20) and relative (ES = 0.41 vs. 0.19) bench press 1RM. Similar results were observed for mean velocity as well as both absolute and relative mean power at 35, 45, 65, 75, and 85% of 1RM. Furthermore, both groups experienced large gains in both velocity and power in the heavier loads but small improvements in the lighter loads. The improvements in both velocity and power against the heavier loads were larger for the VRT group, whereas smaller differences existed between the 2 groups in the lighter loads. Variable resistance training using elastic bands may offer a greater training stimulus than traditional free-weight resistance training to improve upper-body strength, velocity, and power in elite youth rugby league players.

  20. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  1. Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca{sup 2+} Handling

    Energy Technology Data Exchange (ETDEWEB)

    Sá, Felipe Gonçalves dos Santos de; Lima-Leopoldo, Ana Paula; Jacobsen, Bruno Barcellos; Ferron, Artur Junio Togneri; Estevam, Wagner Muller [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Campos, Dijon Henrique Salomé [Departamento de Clínica Médica - Faculdade de Medicina - Universidade Estadual Paulista, Botucatu, São Paulo (Brazil); Castardeli, Edson; Cunha, Márcia Regina Holanda da [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Cicogna, Antonio Carlos [Departamento de Clínica Médica - Faculdade de Medicina - Universidade Estadual Paulista, Botucatu, São Paulo (Brazil); Leopoldo, André Soares, E-mail: andresoaresleopoldo@gmail.com [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil)

    2015-12-15

    Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling.

  2. Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca2+ Handling

    International Nuclear Information System (INIS)

    Sá, Felipe Gonçalves dos Santos de; Lima-Leopoldo, Ana Paula; Jacobsen, Bruno Barcellos; Ferron, Artur Junio Togneri; Estevam, Wagner Muller; Campos, Dijon Henrique Salomé; Castardeli, Edson; Cunha, Márcia Regina Holanda da; Cicogna, Antonio Carlos; Leopoldo, André Soares

    2015-01-01

    Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling

  3. Novel metabolic activity indicator in Streptococcus mutans biofilms

    NARCIS (Netherlands)

    Deng, D.M.; Hoogenkamp, M.A.; ten Cate, J.M.; Crielaard, W.

    2009-01-01

    Antimicrobial resistance of micro-organisms in biofilms requires novel strategies to evaluate the efficacy of caries preventive agents in actual biofilms. Hence we investigated fluorescence intensity (FI) in Streptococcus mutans biofilms constitutively expressing green fluorescent protein (GFP).

  4. Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer

    Science.gov (United States)

    Kregel, Steven; Kiriluk, Kyle J.; Rosen, Alex M.; Cai, Yi; Reyes, Edwin E.; Otto, Kristen B.; Tom, Westin; Paner, Gladell P.; Szmulewitz, Russell Z.; Vander Griend, Donald J.

    2013-01-01

    Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. PMID:23326489

  5. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer

    International Nuclear Information System (INIS)

    Wang, Yuxia; Gao, Ying; Cheng, Hairong; Yang, Guichun; Tan, Wenhua

    2015-01-01

    Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.

  6. Monoclonal Idiotope Vaccine against Streptococcus pneumoniae Infection

    Science.gov (United States)

    McNamara, Mary K.; Ward, Ronald E.; Kohler, Heinz

    1984-12-01

    A monoclonal anti-idiotope antibody coupled to a carrier protein was used to immunize BALB/c mice against a lethal Streptococcus pneumoniae infection. Vaccinated mice developed a high titer of antibody to phosphorylcholine, which is known to protect against infection with Streptococcus pneumoniae. Measurement of the median lethal dose of the bacteria indicated that anti-idiotope immunization significantly increased the resistance of BALB/c mice to the bacterial challenge. Antibody to an idiotope can thus be used as an antigen substitute for the induction of protective immunity.

  7. New Aspects of the Interplay between Penicillin Binding Proteins, murM, and the Two-Component System CiaRH of Penicillin-Resistant Streptococcus pneumoniae Serotype 19A Isolates from Hungary.

    Science.gov (United States)

    Schweizer, Inga; Blättner, Sebastian; Maurer, Patrick; Peters, Katharina; Vollmer, Daniela; Vollmer, Waldemar; Hakenbeck, Regine; Denapaite, Dalia

    2017-07-01

    The Streptococcus pneumoniae clone Hungary 19A -6 expresses unusually high levels of β-lactam resistance, which is in part due to mutations in the MurM gene, encoding a transferase involved in the synthesis of branched peptidoglycan. Moreover, it contains the allele ciaH232 , encoding the histidine kinase CiaH (M. Müller, P. Marx, R. Hakenbeck, and R. Brückner, Microbiology 157:3104-3112, 2011, https://doi.org/10.1099/mic.0.053157-0). High-level penicillin resistance primarily requires the presence of low-affinity (mosaic) penicillin binding protein (PBP) genes, as, for example, in strain Hu17, a closely related member of the Hungary 19A -6 lineage. Interestingly, strain Hu15 is β-lactam sensitive due to the absence of mosaic PBPs. This unique situation prompted us to investigate the development of cefotaxime resistance in transformation experiments with genes known to play a role in this phenotype, pbp2x , pbp1a , murM , and ciaH , and penicillin-sensitive recipient strains R6 and Hu15. Characterization of phenotypes, peptidoglycan composition, and CiaR-mediated gene expression revealed several novel aspects of penicillin resistance. The murM gene of strain Hu17 ( murM Hu17 ), which is highly similar to murM of Streptococcus mitis , induced morphological changes which were partly reversed by ciaH232. murM Hu17 conferred cefotaxime resistance only in the presence of the pbp2x o f strain Hu17 ( pbp2x Hu17 ). The ciaH232 allele contributed to a remarkable increase in cefotaxime resistance in combination with pbp2x Hu17 and pbp1a of strain Hu17 ( pbp1a Hu17 ), accompanied by higher levels of expression of CiaR-regulated genes, documenting that ciaH232 responds to PBP1a Hu17 -mediated changes in cell wall synthesis. Most importantly, the proportion of branched peptides relative to the proportion of linear muropeptides increased in cells containing mosaic PBPs, suggesting an altered enzymatic activity of these proteins. Copyright © 2017 Schweizer et al.

  8. Resistencia a antibióticos no betalactámicos de aislamientos invasores de Streptococcus pneumoniae en niños latinoamericanos: SIREVA II, 2000-2005 Resistance to non-beta-lactam antibiotics in the clinical isolates of Streptococcus pneumoniae of children in Latin America: SIREVA II, 2000-2005

    Directory of Open Access Journals (Sweden)

    Clara Inés Agudelo

    2009-04-01

    Full Text Available OBJETIVO:Determinar la evolución de la resistencia a la eritromicina, el cloranfenicol, el trimetoprim-sulfametozaxol (SXT y la vancomicina de aislamientos invasores de Streptococcus pneumoniae obtenidos de niños de 10 países de América Latina y del Caribe en seis años de vigilancia. MÉTODOS: Se analizaron 8 993 aislamientos de S. pneumoniae recuperados entre 2000 y 2005 de niños menores de 6 años con infecciones invasoras, procedentes de Argentina, Brasil, Chile, Colombia, Cuba, México, Paraguay, República Dominicana, Uruguay y Venezuela. La sensibilidad a los antibióticos se determinó mediante los métodos establecidos y estandarizados en el proyecto SIREVA. La resistencia a múltiples antibióticos se definió como la resistencia a tres o más familias de antibióticos, de los no betalactámicos analizados en este estudio o de los betalactámicos evaluados en un estudio previo en el que 37,8% de estos aislamientos presentaron sensibilidad disminuida a la penicilina. RESULTADOS: Se encontró algún grado de resistencia al SXT y la eritromicina (56,4% y 15,4% de los aislamientos estudiados, respectivamente y 4,6% presentó alta resistencia al cloranfenicol. Todos los aislamientos fueron sensibles a la vancomicina. Se observó la mayor frecuencia de resistencia al SXT en los aislamientos de neumonía y a la eritromicina en los casos de sepsis (61,6% y 25,5%, respectivamente; P OBJECTIVE: To examine the development of resistance to erythromycin, chloramphenicol, trimethoprim-sulfamethoxazole (TMP-SMZ, and vancomycin of the invasive isolates of Streptococcus pneumoniae obtained from children in 10 Latin American/Caribbean countries during six years of surveillance. METHODS: Analysis of 8 993 isolates of S. pneumoniae recovered in 2000-2005 from children with invasive infections, who were less than 6 years of age, and from Argentina, Brazil, Chile, Colombia, Cuba, Dominican Republic, Mexico, Paraguay, Uruguay, or Venezuela. Antibiotic

  9. Caracterização Genética da Resistência à Eritromicina em Streptococcus agalactia e Degestantes saudáveis

    OpenAIRE

    Pinheiro, Sandra Marisa de Oliveira Sequeira

    2009-01-01

    Dissertação de Mestrado em Biologia Clínica Laboratorial Streptococcus agalactiae (Grupo B de Lancefield, EGB), um microrganismo comensal do homem, reconhecido em 1920 como o agente etiológico da mastite bovina, tem sido associado a infecções em parturientes e recém-nascidos, sendo o principal agente de septicemia e meningite neonatal. Para evitar a infecção perinatal recomenda-se a pesquisa da bactéria na região vagino-perianal durante o terceiro semestre de gravidez, indicando o tratamen...

  10. Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907.

    Science.gov (United States)

    Mingoia, Marina; Morici, Eleonora; Marini, Emanuela; Brenciani, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E

    2016-03-01

    The objective of this study was to investigate macrolide-resistant Streptococcus agalactiae isolates harbouring erm(TR), an erm(A) gene subclass, with emphasis on their erm(TR)-carrying genetic elements. Four erm(TR)-carrying elements have been described to date: three closely related (ICE10750-RD.2, Tn1806 and ICESp1108) in Streptococcus pyogenes, Streptococcus pneumoniae and S. pyogenes, respectively; and one completely different (IMESp2907, embedded in ICESp2906 to form ICESp2905) in S. pyogenes. Seventeen macrolide-resistant erm(TR)-positive S. agalactiae isolates were phenotypically and genotypically characterized. Their erm(TR)-carrying elements were explored by analysing the distinctive recombination genes of known erm(TR)-carrying integrative and conjugative elements (ICEs) and by PCR mapping. The new genetic context and organization of IMESp2907 in S. agalactiae were explored using several experimental procedures and in silico analyses. Five isolates harboured ICE10750-RD.2/Tn1806, five isolates harboured ICESp1108 and five isolates bore unknown erm(TR)-carrying elements. The remaining two isolates, exhibiting identical serotypes and pulsotypes, harboured IMESp2907 in a new genetic environment, which was further investigated in one of the two isolates, SagTR7. IMESp2907 was circularizable in S. agalactiae, as described in S. pyogenes. The new IMESp2907 junctions were identified based on its site-specific integration; the att sites were almost identical to those in S. pyogenes. In strain SagTR7, erm(TR)-carrying IMESp2907 was embedded in an erm(TR)-less internal element related to ICE10750-RD.2/Tn1806, which, in turn, was embedded in an ICESde3396-like element. The resulting whole ICE, ICESagTR7 (∼129 kb), was integrated into the chromosome downstream of the rplL gene, and was excisable in circular form and transferable by conjugation. This is the first study exploring erm(TR)-carrying genetic elements in S. agalactiae. © The Author 2015. Published by

  11. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  12. TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas.

    Science.gov (United States)

    Gao, Ke; Li, Gang; Qu, Yiping; Wang, Maode; Cui, Bo; Ji, Meiju; Shi, Bingyin; Hou, Peng

    2016-02-23

    Increasing evidences have implicated somatic gain-of-function mutations at the telomerase reverse transcriptase (TERT) promoter as one of the major mechanisms that promote transcriptional activation of TERT and subsequently maintain telomere length in human cancers including glioma. To investigate the prognostic value of these mutations and telomere length, individually and their coexistence, in gliomas, we analyzed two somatic mutations C228T and C250T in the TERT promoter, relative telomere length (RTL), IDH1 mutation and MGMT methylation in 389 glioma patients, and explored their associations with patient characteristics and clinical outcomes. Our data showed that C228T and C250T mutations were found in 17.0% (66 of 389) and 11.8% (46 of 389) of gliomas, respectively, and these two mutations were mutually exclusive in this cancer. Moreover, they were significantly associated with WHO grade. We also found that the RTL was significant longer in gliomas than in meningiomas and normal brain tissues (Median, 0.89 vs. 0.44 and 0.50; P radiotherapy. Collectively, TERT promoter mutations and long RTL are not only prognostic factors for poor clinical outcomes, but also the predictors of radiotherapy resistance in gliomas.

  13. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  14. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni.

    Science.gov (United States)

    Dai, Lei; Sahin, Orhan; Tang, Yizhi; Zhang, Qijing

    2017-12-15

    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OX R ) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OX R phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR , which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OX R phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OX R mutants in bacterial organisms. IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OX R mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OX R mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OX R mutants in a bacterial population. This method represents a technical

  15. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Directory of Open Access Journals (Sweden)

    Yi An

    Full Text Available It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP, which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  16. Gene Regulation in Streptococcus pneumoniae: interplay between nutrition and virulence

    NARCIS (Netherlands)

    W.T. Hendriksen (Wouter)

    2010-01-01

    textabstractStreptococcus pneumoniae (the pneumococcus) is a Gram-positive bacterium, which belongs to the species of streptococci. Other pathogenic bacteria belonging to this class include Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus suis, Streptococcus uberis, Streptococcus

  17. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity.

    Science.gov (United States)

    Riedel, Christian G; Dowen, Robert H; Lourenco, Guinevere F; Kirienko, Natalia V; Heimbucher, Thomas; West, Jason A; Bowman, Sarah K; Kingston, Robert E; Dillin, Andrew; Asara, John M; Ruvkun, Gary

    2013-05-01

    Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The forkhead box O (FOXO) transcription factor DAF-16 (hereafter referred to as DAF-16/FOXO) is a central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO-binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally co-localize at DAF-16/FOXO target promoters. We show that specifically for gene activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role for SWI/SNF in DAF-16/FOXO-mediated processes, in particular dauer formation, stress resistance and the promotion of longevity. Thus, we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation.

  18. DAF-16/FOXO employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity

    Science.gov (United States)

    Riedel, Christian G.; Dowen, Robert H.; Lourenco, Guinevere F.; Kirienko, Natalia V.; Heimbucher, Thomas; West, Jason A.; Bowman, Sarah K.; Kingston, Robert E.; Dillin, Andrew; Asara, John M.; Ruvkun, Gary

    2013-01-01

    Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The transcription factor DAF-16/FOXO is central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference (RNAi) revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally colocalize at DAF-16/FOXO target promoters. We show that specifically for gene-activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, in order to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role of SWI/SNF for DAF-16/FOXO-mediated processes, i.e. dauer formation, stress resistance, and the promotion of longevity. Thus we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation. PMID:23604319

  19. Controlled Human Infection for Vaccination Against Streptococcus Pyogenes

    Science.gov (United States)

    2018-04-26

    Streptococcus Pyogenes Pharyngitis; Streptococcus Pharyngitis; Strep Throat; Streptococcus Pyogenes Infection; Group A Streptococcus: B Hemolytic Pharyngitis; Group A Streptococcal Infection; Gram-Positive Bacterial Infections; Bacterial Infections

  20. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    Science.gov (United States)

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth

    DEFF Research Database (Denmark)

    Jiang, Ning; Ke, Binghu; Hjort-Jensen, Kim

    2017-01-01

    Castration resistant prostate cancer (CRPC) is a stage of relapse that arises after various forms of androgen ablation therapy (ADT) and causes significant morbidity and mortality. However, the mechanism underlying progression to CRPC remains poorly understood. Here, we report that YAP1, which...... is negatively regulated by AR, influences prostate cancer (PCa) cell self-renewal and CRPC development. Specifically, we found that AR directly regulates the methylation of YAP1 gene promoter via the formation of a complex with Polycomb group protein EZH2 and DNMT3a. In normal conditions, AR recruits EZH2......-differentiation of PCa cells to stem/progenitor-like cells (PCSC), which potentially contribute to disease recurrence. Finally, the knock down of YAP1 expression or the inhibition of YAP1 function by Verteporfin in TRAMP prostate cancer mice significantly suppresses tumor recurrence following castration. In conclusion...

  2. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei Bao

    Full Text Available Mechanisms governing the metastasis of endometrial carcinoma (EC are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF, are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05 and lymphovascular space involvement (p<0.05 in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT. RNA interference (RNAi-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC.

  3. Linkage mapping of candidate genes for induce resistance and growth promotion by trichoderma koningiopsis (th003) in tomato solanum lycopersicum

    International Nuclear Information System (INIS)

    Simbaqueba, Jaime; Cotes, Alba Marina; Barrero, Luz Stella

    2011-01-01

    Induced systemic resistance (ISR) is a mechanism by which plants enhance defenses against any stress condition. ISR and growth promotion are enhanced when tomato (Solanum lycopersicum) is inoculated with several strains of Trichoderma ssp. this study aims to genetically map tomato candidate genes involved in ISR and growth promotion induced by the Colombian native isolate Trichoderma koningiopsis th003. Forty-nine candidate genes previously identified on tomato plants treated with th003 and T. hamatum T382 strains were evaluated for polymorphisms and 16 of them were integrated on the highly saturated genetic linkage map named TOMATO EXPEN 2000. The location of six unigenes was similar to the location of resistance gene analogs (RGAS), defense related ests and resistance QTLs previously reported, suggesting new possible candidates for these quantitative trait loci (QTL) regions. The candidate gene-markers may be used for future ISR or growth promotion assisted selection in tomato.

  4. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy

    Directory of Open Access Journals (Sweden)

    Carlos Rosas

    2014-01-01

    Full Text Available BACKGROUND: During the last few years it has been shown in several laboratories that Celecoxib (Cx, a non-steroidal anti-inflammatory agent (NSAID normally used for pain and arthritis, mediates antitumor and antiangiogenic effects. However, the effects of this drug on a tumor cell line resistant to chemotherapeutical drugs used in cancer have not been described. Herein we evaluate the angiogenic and antitumor effects of Cx in the development of a drug-resistant mammary adenocarcinoma tumor (TA3-MTXR. RESULTS: Cx reduces angiogenesis in the chick embryonic chorioallantoic membrane assay (CAM, inhibits the growth and microvascular density of the murine TA3-MTXR tumor, reduces microvascular density of tumor metastases, promotes apoptosis and reduces vascular endothelial growth factor (VEGF production and cell proliferation in the tumor. CONCLUSION: The antiangiogenic and antitumor Cx effects correlate with its activity on other tumor cell lines, suggesting that Prostaglandins (PGs and VEGF production are involved. These results open the possibility of using Celecoxib combined with other experimental therapies, ideally aiming to get synergic effects.

  5. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  6. Mouse Rad9b is essential for embryonic development and promotes resistance to DNA damage

    Science.gov (United States)

    Leloup, Corinne; Hopkins, Kevin M.; Wang, Xiangyuan; Zhu, Aiping; Wolgemuth, Debra J.; Lieberman, Howard B.

    2010-01-01

    RAD9 participates in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, apoptosis, embryogenesis, and regulation of transcription. A paralogue of RAD9 (named RAD9B) has been identified. To define the function of mouse Rad9b (Mrad9b), embryonic stem (ES) cells with a targeted gene deletion were constructed and used to generate Mrad9b mutant mice. Mrad9b−/− embryos are resorbed after E7.5 while some of the heterozygotes die between E12.5 and a few days after birth. Mrad9b is expressed in embryonic brain and Mrad9b+/− embryos exhibit abnormal neural tube closure. Mrad9b−/− mouse embryonic fibroblasts are not viable. Mrad9b−/− ES cells are more sensitive to gamma rays and mitomycin C than Mrad9b+/+ controls, but show normal gamma-ray-induced G2/M checkpoint control. There is no evidence of spontaneous genomic instability in Mrad9b−/− cells. Our findings thus indicate that Mrad9b is essential for embryonic development and mediates resistance to certain DNA damaging agents. PMID:20842695

  7. A Tad pilus promotes the establishment and resistance of Vibrio vulnificus biofilms to mechanical clearance.

    Science.gov (United States)

    Pu, Meng; Rowe-Magnus, Dean Allistair

    2018-01-01

    Vibrio vulnificus is autochthonous to estuaries and warm coastal waters. Infection occurs via open wounds or ingestion, where its asymptomatic colonization of seafood, most infamously oysters, provides a gateway into the human food chain. Colonization begins with initial surface contact, which is often mediated by bacterial surface appendages called pili. Type IV Tad pili are widely distributed in the Vibrionaceae, but evidence for a physiological role for these structures is scant. The V. vulnificus genome codes for three distinct tad loci. Recently, a positive correlation was demonstrated between the expression of tad-3 and the phenotypes of a V. vulnificus descendent (NT) that exhibited increased biofilm formation, auto-aggregation, and oyster colonization relative to its parent. However, the mechanism by which tad pilus expression promoted these phenotypes was not determined. Here, we show that deletion of the tad pilin gene ( flp ) altered the near-surface motility profile of NT cells from high curvature, orbital retracing patterns characteristic of cells actively probing the surface to low curvature traces indicative of wandering and diminished bacteria-surface interactions. The NT flp pilin mutant also exhibited decreased initial surface attachment, attenuated auto-aggregation and formed fragile biofilms that disintegrated under hydrodynamic flow. Thus, the tad-3 locus, designated iam , promoted i nitial surface attachment, a uto-aggregation and resistance to m echanical clearance of V. vulnificus biofilms. The prevalence of tad loci in the Vibrionaceae suggests that they may play equally important roles in other family members.

  8. Anti-Restriction Protein, KlcAHS, Promotes Dissemination of Carbapenem Resistance

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-05-01

    Full Text Available Carbapenemase-producing Klebsiella pneumoniae (KPC has emerged and spread throughout the world. A retrospective analysis was performed on carbapenem-resistant K. pneumoniae isolated at our teaching hospital during the period 2009–2010, when the initial outbreak occurred. To determine the mechanism(s that underlies the increased infectivity exhibited by KPC, Multilocus Sequence Typing (MLST was conducted. A series of plasmids was also extracted, sequenced and analyzed. Concurrently, the complete sequences of blaKPC−2-harboring plasmids deposited in GenBank were summarized and aligned. The blaKPC−2 and KlcAHS genes in the carbapenem-resistant K. pneumoniae isolates were examined. E. coli strains, carrying different Type I Restriction and Modification (RM systems, were selected to study the interaction between RM systems, anti-RM systems and horizontal gene transfer (HGT. The ST11 clone predominated among 102 carbapenem-resistant K. pneumoniae isolates, all harbored the blaKPC−2 gene; 98% contained the KlcAHS gene. KlcAHS was one of the core genes in the backbone region of most blaKPC−2 carrying plasmids. Type I RM systems in the host bacteria reduced the rate of pHS10842 plasmid transformation by 30- to 40-fold. Presence of the anti-restriction protein, KlcAHS, on the other hand, increased transformation efficiency by 3- to 6-fold. These results indicate that RM systems can significantly restrict HGT. In contrast, KlcAHS can disrupt the RM systems and promote HGT by transformation. These findings suggest that the anti-restriction protein, KlcAHS, represents a novel mechanism that facilitates the increased transfer of blaKPC-2 and KlcAHS-carrying plasmids among K. pneumoniae strains.

  9. Species distribution and resistance patterns to growth-promoting antimicrobials of enterococci isolated from pigs and chickens in Korea.

    Science.gov (United States)

    Hwang, In Yeong; Ku, Hyun Ok; Lim, Suk Kyung; Park, Choi Kyu; Jung, Gab Su; Jung, Suk Chan; Nam, Hyang Mi

    2009-11-01

    A total of 147 Enterococcus faecium and 165 Enterococcus faecalis isolates from fecal samples of chickens and pigs at slaughterhouses in Korea were tested for their resistance to 8 growth-promoting antimicrobials commonly used in animals and quinupristin and dalfopristin. Resistance to most antimicrobials was very common among both E. faecalis and E. faecium. In particular, E. faecalis showed almost no susceptibility to all the antimicrobials tested except penicillin and flavomycin, to which 1.4% and less than 24% showed resistance, respectively. Although the prevalence of resistance was lower than in E. faecalis, E. faecium showed relatively uniform resistance to all the agents tested. Among the antimicrobials tested, virginiamycin and penicillin were the most effective against E. faecium isolates: less than 31% and 41% showed resistance to those 2 antimicrobials, respectively. Penicillin was the only agent that showed relatively strong activity against both E. faecalis and E. faecium. Resistance observed in E. faecalis and E. faecium against most antimicrobials used for growth promotion was more prevalent in Korea than in European countries. The current study is the first report of resistance against feed additive antimicrobials in enterococcal isolates from livestock in Korea.

  10. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability.

    Science.gov (United States)

    Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe

    2014-02-22

    Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.

  11. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.B. (Cornell Univ., Ithaca, NY (USA))

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  12. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    International Nuclear Information System (INIS)

    Russell, J.B.

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y ATP (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [ 14 C]acetate and [ 14 C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation

  13. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    International Nuclear Information System (INIS)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  14. Bacteremia with Streptococcus pneumoniae

    DEFF Research Database (Denmark)

    Christensen, J S; Jensen, T G; Kolmos, H J

    2012-01-01

    We conducted a hospital-based cohort study among adult patients with first-time Streptococcus pneumoniae bacteremia (SPB) from 2000 through 2008. Patients were identified in a population-based bacteremia database and followed up for mortality through the Danish Civil Registration System (CRS...

  15. Relations between the occurrence of resistance to antimicrobial growth promoters among Enterococcus faecium isolated from broilers and broiler meat

    DEFF Research Database (Denmark)

    Emborg, Hanne-Dorthe; Andersen, J. S.; Seyfarth, Anne Mette

    2003-01-01

    and streptogramin. By February 1998, all antimicrobial growth promoters (AGPs) were withdrawn from the Danish broiler production. The present study investigates, by logistic regression analyses, the (1) changes in the occurrence of AGP resistance among E. faecium from broilers and broiler meat from the fourth...... quarter of 1995 to the fourth quarter of 2001 and (2) relations between the occurrence of AGP resistance among E. faecium isolates from Danish broilers and AGP resistance among E. faecium isolates from the broiler meat of Danish and unknown origin collected in the same quarter within the year....... In the present study, we showed that after the AGP withdrawal, a significant decline in resistance to avilamycin, erythromycin, vancomycin and virginiamycin was observed among E. faecium from broilers and broiler meat. In addition, a decline in the occurrence of AGP resistance among E. faecium from Danish...

  16. Iron-regulated metabolites of plant growth-promoting Pseudomonas fluorescens WCS374 : Their role in induced systemic resistance

    NARCIS (Netherlands)

    Djavaheri, M.

    2007-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r effectively suppresses fusarium wilt in radish by induced systemic resistance (ISR). In radish, WCS374r-mediated ISR depends partly on iron-regulated metabolites. Under iron-limiting conditions, P. fluorescens WCS374r produces

  17. Characterization of a novel Streptococcus suis endolysin and development of a multi-acting antimicrobial enzyme that is refractory to resistance development

    Science.gov (United States)

    The crisis of increasing resistance of pathogenic bacteria to classical antibiotics has driven research towards identification of other means to fight infectious disease. One particularly attractive option is the use of bacteriophage-encoded peptidoglycan hydrolases (endolysins). These enzymes are a...

  18. The GATA transcription factor egl-27 delays aging by promoting stress resistance in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Xiao Xu

    Full Text Available Stress is a fundamental aspect of aging, as accumulated damage from a lifetime of stress can limit lifespan and protective responses to stress can extend lifespan. In this study, we identify a conserved Caenorhabditis elegans GATA transcription factor, egl-27, that is involved in several stress responses and aging. We found that overexpression of egl-27 extends the lifespan of wild-type animals. Furthermore, egl-27 is required for the pro-longevity effects from impaired insulin/IGF-1 like signaling (IIS, as reduced egl-27 activity fully suppresses the longevity of worms that are mutant for the IIS receptor, daf-2. egl-27 expression is inhibited by daf-2 and activated by pro-longevity factors daf-16/FOXO and elt-3/GATA, suggesting that egl-27 acts at the intersection of IIS and GATA pathways to extend lifespan. Consistent with its role in IIS signaling, we found that egl-27 is involved in stress response pathways. egl-27 expression is induced in the presence of multiple stresses, its targets are significantly enriched for many types of stress genes, and altering levels of egl-27 itself affects survival to heat and oxidative stress. Finally, we found that egl-27 expression increases between young and old animals, suggesting that increased levels of egl-27 in aged animals may act to promote stress resistance. These results identify egl-27 as a novel factor that links stress and aging pathways.

  19. Pharyngeal colonization and drug resistance profiles of Morraxella catarrrhalis, Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae among HIV infected children attending ART Clinic of Felegehiwot Referral Hospital, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Wondemagegn Mulu

    Full Text Available Asymptomatic pharyngeal colonization by potential bacteria is the primary reservoir for bacterial species within a population and is considered a prerequisite for development of major childhood diseases such as sinusitis, otitis media, pneumonia, bacteremia, and meningitis. However, there is dearth of data on the colonization and drug resistance pattern of the main bacterial pathogens in the pharynx of HIV infected children in Ethiopia. Therefore, this study determined the pharyngeal colonization and drug resistance profile of bacterial pathogens in HIV infected children attending ART clinic of Felegehiwot Referral Hospital (FHRH, Amhara Region, Ethiopia.A hospital based cross-sectional study was conducted from May 2016 to June 2017 at the ART clinic of FHRH. A total of 300 HIV infected children were enrolled in the study. Data on socio-demographic characteristics of the study participants were collected with face-to-face interview and patient-card review using structured questionnaire. Bacterial species were identified using standard bacteriological techniques. Drug susceptibility testing was performed using disk diffusion technique. Chi-square test was done to determine associations among variables.The median age of the participants was 11 years. Overall, 153 (51% of children were colonized by respiratory bacteria in their pharynx. Colonization rate was higher in children from mothers who had attained college and above levels of education than others (P = 0.04. It was also higher in children without the sign of malnutrition than others (P = 0.004. The colonization rate of S.aureus, M.catarrhalis, S.pneumoniae and H.influenzae were 88 (29%, 37 (12.3%, 31 (10.3% and 6 (2%, respectively. S.aureus-M.catarrhalis concurrent colonization was found in 14 (4.7% of children. Age (P = 0.03, schooling (P = 0.045 and history of running nose (P = 0.043 were significantly associated with S.aureus colonization. Living in urban setting (P = 0.042 and children

  20. Virulence Factors of Streptococcus mutans.

    Science.gov (United States)

    1986-08-01

    763512/715242 Final Report U VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS U Samuel Rosen Department of Oral Biology For the Period April 1, 1983 - June 30...00 FINAL REPORT VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS Sam Rosen, Irving Shklair, E. X. Beck and F. M. Beck Ohio State University Columbus,Oh and...206-212. Johnson CP, Gorss S, Hillman JD (1978). Cariogenic properties of LDH deficient mutants of streptococcus mutans . J Dent Res 57, Special Issue

  1. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Jensen, Lars Bogø

    1999-01-01

    on the Tn1546 transposon. Furthermore, glycopeptide-resistant strains, as well as resistance determinants, can be transmitted from animals to humans. Two antimicrobial classes expected to provide the future therapeutic options for treatment of infections with vancomycin-resistant enterococci have analogues......Supplementing animal feed with antimicrobial agents to enhance growth has been common practice for more than 30 years and is estimated to constitute more than half the total antimicrobial use worldwide. The potential public health consequences of this use have been debated; however, until recently......, clear evidence of a health risk was not available. Accumulating evidence now indicates that the use of the glycopeptide avoparcin as a growth promoter has created in food animals a major reservoir of Enterococcus faecium, which contains the high level glycopeptide resistance determinant vanA, located...

  2. Use of the Lactococcal nisA Promoter To Regulate Gene Expression in Gram-Positive Bacteria : Comparison of Induction Level and Promoter Strength

    NARCIS (Netherlands)

    Eichenbaum, Zehava; Federle, Michael J.; Marra, Diana; Vos, Willem M. de; Kuipers, Oscar P.; Kleerebezem, Michiel; Scott, June R.

    1998-01-01

    We characterized the regulated activity of the lactococcal nisA promoter in strains of the gram-positive species Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, Enterococcus faecalis, and Bacillus subtilis. nisA promoter activity was dependent on the proteins NisR and

  3. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  4. Diversity of Dominant Bacterial Taxa in Activated Sludge Promotes Functional Resistance following Toxic Shock Loading

    KAUST Repository

    Saikaly, Pascal; Oerther, Daniel B. Barton

    2010-01-01

    and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading. © 2010 Springer Science+Business Media, LLC.

  5. Surveillance of invasive diseases caused by Streptococcus pneumoniae in Italy: evolution of serotypes and antibiotic resistance in different age groups before and after implementation of PCV7

    Directory of Open Access Journals (Sweden)

    Fabio D’Ambrosio

    2013-04-01

    Full Text Available Background: PCV7 has been available in Italy since 2001, however only in 2005 national recommendations were issued and vaccination was implemented with different modalities by the Regions. Objectives: Aim of this study was to describe changes in serotype distribution and antibiotic susceptibility of S. pneumoniae from invasive pneumococcal diseases (IPD in the last decade. Study Design: S. pneumoniae isolates from IPD, collected through a national surveillance system, were serotyped and antibiotic susceptibility was determined by E-test. Data were analyzed according to age groups (5 years, >5-64 years, 65 years and to 3 time periods: prior, during and after PCV7 implementation (2001- 2003, 2006-2008 and 2009-2011. Results: The percentage of PCV7 serotypes (vaccine serotypes, VS decreased over the years not only in children (from 60% to 26% but also in the other age groups. Penicillin resistance was rather low in 2001-2003 (7-12%, but peaked in children in 2006-2008 (24%, and decreased in 2009-2011, while erythromycin resistance slightly decreased over the 3 periods. Conclusions: PCV7 use has largely impacted the epidemiology of S. pneumoniae in Italy, with a decrease in VS in all age groups.The impact of PCV 13, available in Italy since the end of 2010, requires future evaluations.

  6. A drought resistance-promoting microbiome is selected by root system under desert farming.

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    Full Text Available BACKGROUND: Traditional agro-systems in arid areas are a bulwark for preserving soil stability and fertility, in the sight of "reverse desertification". Nevertheless, the impact of desert farming practices on the diversity and abundance of the plant associated microbiome is poorly characterized, including its functional role in supporting plant development under drought stress. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the structure of the microbiome associated to the drought-sensitive pepper plant (Capsicum annuum L. cultivated in a traditional Egyptian farm, focusing on microbe contribution to a crucial ecosystem service, i.e. plant growth under water deficit. The root system was dissected by sampling root/soil with a different degree of association to the plant: the endosphere, the rhizosphere and the root surrounding soil that were compared to the uncultivated soil. Bacterial community structure and diversity, determined by using Denaturing Gradient Gel Electrophoresis, differed according to the microhabitat, indicating a selective pressure determined by the plant activity. Similarly, culturable bacteria genera showed different distribution in the three root system fractions. Bacillus spp. (68% of the isolates were mainly recovered from the endosphere, while rhizosphere and the root surrounding soil fractions were dominated by Klebsiella spp. (61% and 44% respectively. Most of the isolates (95% presented in vitro multiple plant growth promoting (PGP activities and stress resistance capabilities, but their distribution was different among the root system fractions analyzed, with enhanced abilities for Bacillus and the rhizobacteria strains. We show that the C. annuum rhizosphere under desert farming enriched populations of PGP bacteria capable of enhancing plant photosynthetic activity and biomass synthesis (up to 40% under drought stress. CONCLUSIONS/SIGNIFICANCE: Crop cultivation provides critical ecosystem services in arid lands with the

  7. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    Science.gov (United States)

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  8. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells.

    Science.gov (United States)

    Zhang, S; Zhang, Y; Qu, J; Che, X; Fan, Y; Hou, K; Guo, T; Deng, G; Song, N; Li, C; Wan, X; Qu, X; Liu, Y

    2017-11-13

    Cetuximab is widely used in patients with metastatic colon cancer expressing wildtype KRAS. However, acquired drug resistance limits its clinical efficacy. Exosomes are nanosized vesicles secreted by various cell types. Tumor cell-derived exosomes participate in many biological processes, including tumor invasion, metastasis, and drug resistance. In this study, exosomes derived from cetuximab-resistant RKO colon cancer cells induced cetuximab resistance in cetuximab-sensitive Caco-2 cells. Meanwhile, exosomes from RKO and Caco-2 cells showed different levels of phosphatase and tensin homolog (PTEN) and phosphor-Akt. Furthermore, reduced PTEN and increased phosphorylated Akt levels were found in Caco-2 cells after exposure to RKO cell-derived exosomes. Moreover, an Akt inhibitor prevented RKO cell-derived exosome-induced drug resistance in Caco-2 cells. These findings provide novel evidence that exosomes derived from cetuximab-resistant cells could induce cetuximab resistance in cetuximab-sensitive cells, by downregulating PTEN and increasing phosphorylated Akt levels.

  9. Liposome-enhanced transformation of Streptococcus lactis and plasmid transfer by intergeneric protoplast fusion of Streptococcus lactis and Bacillus subtilis

    NARCIS (Netherlands)

    Vossen, Jos M.B.M. van der; Kok, Jan; Lelie, Daniel van der; Venema, Gerhardus

    An efficient protoplast transformation system and a procedure of plasmid transfer by means of protoplast fusion is described for Streptococcus lactis. Protoplasts of S. lactis IL1403 and S. lactis MG1363 were transformed by pGK12 [2.9 MDa erythromycin resistance (Emr)] with an efficiency of 3 × 10^5

  10. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    Full Text Available Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1/ PYRL (PYR-Like/ RCAR (Regulatory Component of ABA Receptor (PYR/PYL/RCAR ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa (PtPYRLs function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  11. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    Science.gov (United States)

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. Copyright © 2014. Published by Elsevier B.V.

  12. Meningitis por Streptococcus suis

    OpenAIRE

    Geffner Sclarsky, D. E.; Moreno Muñoz, R.; Campillo Alpera, Mª.S.; Pardo Serrano, F.J.; Gómez Gómez, A.; Martínez-Lozano, Mª.D.

    2001-01-01

    La infección humana por Streptococcus suis (S. suis) es una zoonosis, con un riesgo ocupacional conocido y que suele presentarse como meningitis purulenta, que tiene baja mortalidad y frecuentes secuelas de hipoacusia y ataxia. Se han publicado menos de 150 casos humanos desde el informe original de hace 30 años. Hay una reconocida distribución geográfica viviendo la mayoría de los afectados en el norte de Europa y el sudeste Asiático. En España se han comunicado dos pacientes con enfermedad ...

  13. Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Anastasiou, Rania; Mavrogonatou, Eleni; Blom, Jochen; Papandreou, Nikos C; Hamodrakas, Stavros J; Ferreira, Stéphanie; Renault, Pierre; Supply, Philip; Pot, Bruno; Tsakalidou, Effie

    2014-04-08

    Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were

  14. Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici

    NARCIS (Netherlands)

    Omrane, Selim; Audéon, Colette; Ignace, Amandine; Duplaix, Clémentine; Aouini, Lamia; Kema, Gert; Walker, Anne Sophie; Fillinger, Sabine

    2017-01-01

    The ascomycete Zymoseptoria tritici is the causal agent of Septoria leaf blotch on wheat. Disease control relies mainly on resistant wheat cultivars and on fungicide applications. The fungus displays a high potential to circumvent both methods. Resistance against all unisite fungicides has been

  15. Lung abscess caused by Streptococcus pneumoniae serotype 6B

    Directory of Open Access Journals (Sweden)

    Yuhei Ito

    Full Text Available Lung abscess has been considered to be a rare complication of pneumococcal infection, and most cases are reported to be Streptococcus pneumoniae serotype 3. A 67-year-old man presented with fever and was diagnosed to have lung abscess caused by S. pneumoniae serotype 6B. The minimal inhibitory concentration (MIC of penicillin for the isolate was 1 μg/mL. He was treated with high-dose intravenous sulbactam/ampicillin as definitive therapy based on susceptibility testing for S. pneumoniae and recovered successfully without surgical intervention. S. pneumoniae serotype 6B can cause lung abscess. Keywords: Streptococcus pneumoniae, Lung abscess, Serotype 6B, Penicillin-resistant Streptococcus pneumoniae

  16. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  17. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  18. Vaccination against group B streptococcus.

    Science.gov (United States)

    Heath, Paul T; Feldman, Robert G

    2005-04-01

    Streptococcus agalactiae (Group B streptococcus) is an important cause of disease in infants, pregnant women, the elderly and in immunosuppressed adults. An effective vaccine is likely to prevent the majority of infant disease (both early and late onset), as well as Group B streptococcus-related stillbirths and prematurity, to avoid the current real and theoretical limitations of intrapartum antibiotic prophylaxis, and to be cost effective. The optimal time to administer such a vaccine would be in the third trimester of pregnancy. The main limitations on the production of a Group B streptococcus vaccine are not technical or scientific, but regulatory and legal. A number of candidates including capsular conjugate vaccines using traditional carrier proteins such as tetanus toxoid and mutant diphtheria toxin CRM197, as well as Group B streptococcus-specific proteins such as C5a peptidase, protein vaccines using one or more Group B streptococcus surface proteins and mucosal vaccines, have the potential to be successful vaccines. The capsular conjugate vaccines using tetanus and CRM197 carrier proteins are the most advanced candidates, having already completed Phase II human studies including use in the target population of pregnant women (tetanus toxoid conjugate), however, no definitive protein conjugates have yet been trialed. However, unless the regulatory environment is changed specifically to allow the development of a Group B streptococcus vaccine, it is unlikely that one will ever reach the market.

  19. Delineation of Streptococcus dysgalactiae, its subspecies, and its clinical and phylogenetic relationship to Streptococcus pyogenes

    DEFF Research Database (Denmark)

    Jensen, Anders; Kilian, Mogens

    2011-01-01

    The close phylogenetic relationship of the important pathogen Streptococcus pneumoniae and several species of commensal streptococci, particularly Streptococcus mitis and Streptococcus pseudopneumoniae, and the recently demonstrated sharing of genes and phenotypic traits previously considered...

  20. Effect of poly-hexamethylene biguanide hydrochloride (PHMB) treated non-sterile medical gloves upon the transmission of Streptococcus pyogenes, carbapenem-resistant E. coli, MRSA and Klebsiella pneumoniae from contact surfaces.

    Science.gov (United States)

    Ali, S; Wilson, A P R

    2017-08-17

    Reduction of accidental contamination of the near-patient environment has potential to reduce acquisition of healthcare-associated infection(s). Although medical gloves should be removed when soiled or touching the environment, compliance is variable. The use of antimicrobial-impregnated medical gloves could reduce the horizontal-transfer of bacterial contamination between surfaces. Determine the activity of antimicrobial-impregnated gloves against common hospital pathogens: Streptococcus pyogenes, carbapenem-resistant E.coli (CREC), MRSA and ESBL-producing Klebsiella pneumoniae. Fingerpads (~1cm 2 ) of PHMB-treated and untreated gloves were inoculated with 10 μL (~10 4 colony-forming-units [cfu]) of test-bacteria prepared in heavy-soiling (0.5%BSA), blood or distilled-water (no-soiling) and sampled after 0.25, 1, 10 or 15 min contact-time. Donor surfaces (~1cm 2 computer-keys) contaminated with wet/dry inoculum were touched with the fingerpad of treated/untreated gloves and subsequently pressed onto recipient (uncontaminated) computer-keys. Approximately 4.50log 10 cfu of all bacteria persisted after 15 min on untreated gloves regardless of soil-type. In the absence of soiling, PHMB-treated gloves reduced surface-contamination by ~4.5log 10 cfu (>99.99%) within 10 min of contact-time but only ~2.5log 10 (>99.9%) and ~1.0log 10 reduction respectively when heavy-soiling or blood was present. Gloves became highly-contaminated (~4.52log 10 -4.91log 10 cfu) when handling recently-contaminated computer-keys. Untreated gloves contaminated "recipient" surfaces (~4.5log 10 cfu) while PHMB-treated gloves transferred fewer bacteria (2.4-3.6log 10 cfu). When surface contamination was dry, PHMB gloves transferred fewer bacteria (0.3-0.6log 10 cfu) to "recipient" surfaces than untreated gloves (1.0-1.9log 10 ; P gloves may be useful in preventing dissemination of organisms in the near-patient environment during routine care. However they are not a substitute for

  1. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Raphaël Laurenceau

    Full Text Available Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.

  2. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice.

    Science.gov (United States)

    Sun, Quancai; Xiao, Xiao; Kim, Yoo; Kim, Daeyoung; Yoon, Kyoon Sup; Clark, John M; Park, Yeonhwa

    2016-12-14

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice.

  3. Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter.

    Science.gov (United States)

    Kathiria, Palak; Sidler, Corinne; Woycicki, Rafal; Yao, Youli; Kovalchuk, Igor

    2013-07-01

    The role of resistance (R) genes in plant pathogen interaction has been studied extensively due to its economical impact on agriculture. Interaction between tobacco mosaic virus (TMV) and the N protein from tobacco is one of the most widely used models to understand various aspects of pathogen resistance. The transcription activity governed by N gene promoter is one of the least understood elements of the model. In this study, the N gene promoter was cloned and fused with two different reporter genes, one encoding β-glucuronidase (N::GUS) and another, luciferase (N::LUC). Tobacco plants transformed with the N::GUS or N::LUC reporter constructs were screened for homozygosity and stable expression. Histochemical analysis of N::GUS tobacco plants revealed that the expression is organ specific and developmentally regulated. Whereas two week old plants expressed GUS in midveins only, 6-wk-old plants also expressed GUS in leaf lamella. Roots did not show GUS expression at any time during development. Experiments to address effects of external stress were performed using N::LUC tobacco plants. These experiments showed that N gene promoter expression was suppressed when plants were exposed to high but not low temperatures. Expression was also upregulated in response to TMV, but no changes were observed in plants treated with SA.

  4. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    Science.gov (United States)

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  5. Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes.

    Science.gov (United States)

    Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka; Kawabata, Shigetada

    2012-02-01

    The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.

  6. Clindamycin Affects Group A Streptococcus Virulence Factors and Improves Clinical Outcome.

    Science.gov (United States)

    Andreoni, Federica; Zürcher, Claudia; Tarnutzer, Andrea; Schilcher, Katrin; Neff, Andrina; Keller, Nadia; Marques Maggio, Ewerton; Poyart, Claire; Schuepbach, Reto A; Zinkernagel, Annelies S

    2017-01-15

    Group A Streptococcus (GAS) has acquired an arsenal of virulence factors, promoting life-threatening invasive infections such as necrotizing fasciitis. Current therapeutic regimens for necrotizing fasciitis include surgical debridement and treatment with cell wall-active antibiotics. Addition of clindamycin (CLI) is recommended, although clinical evidence is lacking. Reflecting the current clinical dilemma, an observational study showed that only 63% of the patients with severe invasive GAS infection received CLI. This work thus aimed to address whether CLI improves necrotizing fasciitis outcome by modulating virulence factors of CLI-susceptible and CLI-resistant GAS in vitro and in vivo. Treatment with CLI reduced extracellular DNase Sda1 and streptolysin O (SLO) activity in vivo, whereas subinhibitory CLI concentrations induced expression and activity of SLO, DNase, and Streptococcus pyogenes cell envelope protease in vitro. Our in vivo results suggest that CLI should be administered as soon as possible to patients with necrotizing fasciitis, while our in vitro studies emphasize that a high dosage of CLI is essential. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells.

    Science.gov (United States)

    Armstrong, Cameron M; Liu, Chengfei; Lou, Wei; Lombard, Alan P; Evans, Christopher P; Gao, Allen C

    2017-06-01

    Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response

  8. Diversity of Dominant Bacterial Taxa in Activated Sludge Promotes Functional Resistance following Toxic Shock Loading

    KAUST Repository

    Saikaly, Pascal

    2010-12-14

    Examining the relationship between biodiversity and functional stability (resistance and resilience) of activated sludge bacterial communities following disturbance is an important first step towards developing strategies for the design of robust biological wastewater treatment systems. This study investigates the relationship between functional resistance and biodiversity of dominant bacterial taxa by subjecting activated sludge samples, with different levels of biodiversity, to toxic shock loading with cupric sulfate (Cu[II]), 3,5-dichlorophenol (3,5-DCP), or 4-nitrophenol (4-NP). Respirometric batch experiments were performed to determine the functional resistance of activated sludge bacterial community to the three toxicants. Functional resistance was estimated as the 30 min IC50 or the concentration of toxicant that results in a 50% reduction in oxygen utilization rate compared to a referential state represented by a control receiving no toxicant. Biodiversity of dominant bacterial taxa was assessed using polymerase chain reaction-terminal restriction fragment length polymorphism (PCR-T-RFLP) targeting the 16S ribosomal RNA (16S rRNA) gene. Statistical analysis of 30 min IC50 values and PCR-T-RFLP data showed a significant positive correlation (P<0.05) between functional resistance and microbial diversity for each of the three toxicants tested. To our knowledge, this is the first study showing a positive correlation between biodiversity of dominant bacterial taxa in activated sludge and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading. © 2010 Springer Science+Business Media, LLC.

  9. Streptococcus suis infection

    Science.gov (United States)

    Feng, Youjun; Zhang, Huimin; Wu, Zuowei; Wang, Shihua; Cao, Min; Hu, Dan; Wang, Changjun

    2014-01-01

    Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis. PMID:24667807

  10. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells

    DEFF Research Database (Denmark)

    Kostopoulou, Ourania N; Mohammad, Abdul-Aleem; Bartek, Jiri

    2018-01-01

    Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM......-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC......-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed...

  11. Melatonin Promotes Apoptosis of Oxaliplatin-resistant Colorectal Cancer Cells Through Inhibition of Cellular Prion Protein.

    Science.gov (United States)

    Lee, Jun Hee; Yoon, Yeo Min; Han, Yong-Seok; Yun, Chul Won; Lee, Sang Hun

    2018-04-01

    Drug resistance restricts the efficacy of chemotherapy in colorectal cancer. However, the detailed molecular mechanism of drug resistance in colorectal cancer cells remains unclear. The level of cellular prion protein (PrP C ) in oxaliplatin-resistant colorectal cancer (SNU-C5/Oxal-R) cells was assessed. PrP C level in SNU-C5/Oxal-R cells was significantly increased compared to that in wild-type (SNU-C5) cells. Superoxide dismutase and catalase activities were higher in SNU-C5/Oxal-R cells than in SNU-C5 cells. Treatment of SNU-C5/Oxal-R cells with oxaliplatin and melatonin reduced PrP C expression, while suppressing antioxidant enzyme activity and increasing superoxide anion generation. In SNU-C5/Oxal-R cells, endoplasmic reticulum stress and apoptosis were significantly increased following co-treatment with oxaliplatin and melatonin compared to treatment with oxaliplatin alone. Co-treatment with oxaliplatin and melatonin increased endoplasmic reticulum stress in and apoptosis of SNU-C5/Oxal-R cells through inhibition of PrP C , suggesting that PrP C could be a key molecule in oxaliplatin resistance of colorectal cancer cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. A Research of nasal methicillin resistant/sensitive Staphylococcus ...

    African Journals Online (AJOL)

    A Research of nasal methicillin resistant/sensitive Staphylococcus aureus and pharyngeal beta-haemolytic Streptococcus carriage in midwifery students in Kahramanmaras, Eastern Mediterranean Region of Turkey.

  13. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance.

    Science.gov (United States)

    Pereira, Renata Oliveira; Tadinada, Satya M; Zasadny, Frederick M; Oliveira, Karen Jesus; Pires, Karla Maria Pereira; Olvera, Angela; Jeffers, Jennifer; Souvenir, Rhonda; Mcglauflin, Rose; Seei, Alec; Funari, Trevor; Sesaki, Hiromi; Potthoff, Matthew J; Adams, Christopher M; Anderson, Ethan J; Abel, E Dale

    2017-07-14

    Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism. © 2017 The Authors.

  14. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments.

    Directory of Open Access Journals (Sweden)

    Andrea Di Cesare

    Full Text Available Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M, tet(L, tet(O] and macrolide [erm(A, erm(B and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M and tet(L in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O, erm(B and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an

  15. BMI-1 Promotes Self-Renewal of Radio- and Temozolomide (TMZ)-Resistant Breast Cancer Cells.

    Science.gov (United States)

    Yan, Yanfang; Wang, Ying; Zhao, Pengxin; Ma, Weiyuan; Hu, Zhigang; Zhang, Kaili

    2017-12-01

    Breast cancer is a hormone-dependent malignancy and is the most prevalent cause of cancer-related mortality among females. Radiation therapy and chemotherapy are common treatments of breast cancer. However, tumor relapse and metastasis following therapy are major clinical challenges. The importance of B-lymphoma Moloney murine leukemia virus insertion region-1 (BMI-1) was implicated in cell proliferation, stem cell maintenance, and tumor initiation. We established radio- and temozolomide (TMZ)-resistant (IRC-R) MCF-7 and MDA-MB-231 cell lines to investigate the mechanism involved in therapeutic resistance. Cell proliferation and sphere number were dramatically elevated, and BMI-1 was remarkably upregulated, in IRC-R cells compared to parental cells. Silencing BMI-1 by RNA interference only affected the cell proliferation of IRC-R but not parental cells, suggesting the critical role of BMI-1 in radio- and TMZ resistance. We used a xenograft mice model to elucidate that BMI-1 was necessary in tumor development by assessing tumor volume and Ki67 expression. We found that Hedgehog (Hhg) signaling exerted synergized functions together with BMI-1, implicating the importance of BMI-1 in Hhg signaling. Downregulation of BMI-1 could be an effective strategy to suppress tumor growth, which supports the potential clinical use of targeting BMI-1 in breast cancer treatment.

  16. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani.

    Science.gov (United States)

    Saini, Shalini; Bharati, Kavita; Shaha, Chandrima; Mukhopadhyay, Chinmay K

    2017-09-05

    Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.

  17. Guava leaf extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle.

    Science.gov (United States)

    Guo, Xiangyu; Yoshitomi, Hisae; Gao, Ming; Qin, Lingling; Duan, Ying; Sun, Wen; Xu, Tunhai; Xie, Peifeng; Zhou, Jingxin; Huang, Liansha; Liu, Tonghua

    2013-03-01

    Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling.

  18. Mechanisms of genome evolution of Streptococcus.

    Science.gov (United States)

    Andam, Cheryl P; Hanage, William P

    2015-07-01

    The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    Science.gov (United States)

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance. Copyright © 2014 by The American Association of Immunologists, Inc.

  20. TM4SF1 Promotes Gemcitabine Resistance of Pancreatic Cancer In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Jia Cao

    Full Text Available TM4SF1 is overexpressed in pancreatic ductal adenocarcinoma (PDAC and affects the development of this cancer. Also, multidrug resistance (MDR is generally associated with tumor chemoresistance in pancreatic cancer. However, the correlation between TM4SF1 and MDR remains unknown. This research aims to investigate the effect of TM4SF1 on gemcitabine resistance in PDAC and explore the possible molecular mechanism between TM4SF1 and MDR.The expression of TM4SF1 was evaluated in pancreatic cancer cell lines and human pancreatic duct epithelial (HPDE cell lines by quantitative RT-PCR. TM4SF1 siRNA transfection was carried out using Hiperfect transfection reagent to knock down TM4SF1. The transcripts were analyzed by quantitative RT-PCR, RT-PCR and western blotting for further study. The cell proliferation and apoptosis were obtained to investigate the sensitivity to gemcitabine of pancreatic cancer cells after silencing TM4SF1 in vitro. We demonstrated that cell signaling of TM4SF1 mediated chemoresistance in cancer cells by assessing the expression of multidrug resistance (MDR genes using quantitative RT-PCR. In vivo, we used orthotopic pancreatic tumor models to investigate the effect of proliferation after silencing TM4SF1 by a lentivirus-mediated shRNA in MIA PaCa-2 cell lines.The mRNA expression of TM4SF1 was higher in seven pancreatic cancer cell lines than in HPDE cell lines. In three gemcitabine-sensitive cell lines (L3.6pl, BxPC-3, SU86.86, the expression of TM4SF1 was lower than that in four gemcitabine-resistant cell lines (MIA PaCa-2, PANC-1, Hs766T, AsPC-1. We evaluated that TM4SF1 was a putative target for gemcitabine resistance in pancreatic cancer cells. Using AsPC-1, MIA PaCa-2 and PANC-1, we investigated that TM4SF1 silencing affected cell proliferation and increased the percentages of cell apoptosis mediated by treatment with gemcitabine compared with cells which were treated with negative control. This resistance was associated

  1. Assessment of root-associated paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper.

    Science.gov (United States)

    Phi, Quyet-Tien; Park, Yu-Mi; Seul, Keyung-Jo; Ryu, Choong-Min; Park, Seung-Hwan; Kim, Jong-Guk; Ghim, Sa-Youl

    2010-12-01

    Twenty-nine P. polymyxa strains isolated from rhizospheres of various crops were clustered into five genotypic groups on the basis of BOX-PCR analysis. The characteristics of several plant growth-promoting factors among the isolates revealed the distinct attributes in each allocated group. Under gnotobiotic conditions, inoculation of pepper roots with P. polymyxa isolates significantly increased the biomass in 17 of total 29 treated plants with untreated plants. Experiments on induced systemic resistance (ISR) against bacterial spot pathogen Xanthomonas axonopodis pv. vesicatoria in pepper by P. polymyxa strains were conducted and only one isolate (KNUC265) was selected. Further studies into ISR mediation by the KNUC265 strain against the soft-rot pathogen Erwinia carotovora subsp. carotovora in tobacco demonstrated that the tobacco seedlings exposed to either bacterial volatiles or diffusible metabolites exhibited a reduction in disease severity. In conclusion, ISR and plant growth promotion triggered by P. polymyxa isolates were systemically investigated on pepper for the first time. The P. polymyxa KNUC265 strain, which elicited both ISR and plant growth promotion, could be potentially used in improving the yield of pepper and possibly of other crops.

  2. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought

    KAUST Repository

    Cherif, Hanene; Marasco, Ramona; Rolli, Eleonora; Ferjani, Raoudha; Fusi, Marco; Soussi, Asma; Mapelli, Francesca; Blilou, Ikram; Borin, Sara; Boudabous, Abdellatif; Cherif, Ameur; Daffonchio, Daniele; Ouzari, Hadda

    2015-01-01

    Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactyliferaL.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara was studied with emphasis on their capacity to promote growth under drought. Endophytic communities segregated along a north-south gradient in correlation with geo-climatic parameters. Screening of 120 endophytes indicated that date palm roots select for bacteria with multiple PGP traits. Bacteria rapidly cross-colonized the root tissues of different species of plants, including the original Tunisian date palm cultivar, Saudi Arabian cultivars and Arabidopsis. Selected endophytes significantly increased the biomass of date palms exposed to repeated drought stress periods during a 9-month greenhouse experiment. Overall, results indicate that date palm roots shape endophytic communities that are capable to promote plant growth under drought conditions, thereby contributing an essential ecological service to the entire oasis ecosystem. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought

    KAUST Repository

    Cherif, Hanene

    2015-07-21

    Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactyliferaL.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara was studied with emphasis on their capacity to promote growth under drought. Endophytic communities segregated along a north-south gradient in correlation with geo-climatic parameters. Screening of 120 endophytes indicated that date palm roots select for bacteria with multiple PGP traits. Bacteria rapidly cross-colonized the root tissues of different species of plants, including the original Tunisian date palm cultivar, Saudi Arabian cultivars and Arabidopsis. Selected endophytes significantly increased the biomass of date palms exposed to repeated drought stress periods during a 9-month greenhouse experiment. Overall, results indicate that date palm roots shape endophytic communities that are capable to promote plant growth under drought conditions, thereby contributing an essential ecological service to the entire oasis ecosystem. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Association between the use of avilamycin for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers: Epidemiological study and changes over time

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Bager, Flemming; Andersen, J. S.

    2000-01-01

    This study describes the changes in the occurrence of resistance to avilamycin among Enterococcus faecium from broilers in Denmark and the epidemiological association between usage of avilamycin for growth promotion and the occurrence of avilamycin-resistant E, faecium on broiler farms....... The consumption of avilamycin for growth promotion increased from 10 kg in 1990 to 2,740 kg 1996 and decreased in the following years to only 7 kg in 1998, Most of this has been used for broilers. As part of the nationwide monitoring program for antimicrobial resistance, a total of 473 E, faecium isolates from...... broilers and 290 isolates from pigs have been tested for their susceptibility to avilamycin from 1995 to 1998, A very limited number of isolates from pigs were resistant to avilamycin, whereas the occurrence of resistance among isolates from broilers increased from 63.6% at the end of 1995 to a maximum...

  5. Group B Streptococcus and the Vaginal Microbiota.

    Science.gov (United States)

    Rosen, Geoffrey H; Randis, Tara M; Desai, Purnahamsi V; Sapra, Katherine J; Ma, Bing; Gajer, Pawel; Humphrys, Michael S; Ravel, Jacques; Gelber, Shari E; Ratner, Adam J

    2017-09-15

    Streptococcus agalactiae (group B Streptococcus [GBS]) is an important neonatal pathogen and emerging cause of disease in adults. The major risk factor for neonatal disease is maternal vaginal colonization. However, little is known about the relationship between GBS and vaginal microbiota. Vaginal lavage samples from nonpregnant women were tested for GBS, and amplicon-based sequencing targeting the 16S ribosomal RNA V3-V4 region was performed. Four hundred twenty-eight of 432 samples met the high-quality read threshold. There was no relationship between GBS carriage and demographic characteristics, α-diversity, or overall vaginal microbiota community state type (CST). Within the non-Lactobacillus-dominant CST IV, GBS positive status was significantly more prevalent in CST IV-A than CST IV-B. Significant clustering by GBS status was noted on principal coordinates analysis, and 18 individual taxa were found to be significantly associated with GBS carriage by linear discriminant analysis. After adjusting for race/ethnicity, 4 taxa were positively associated with GBS, and 6 were negatively associated. Vaginal microbiota CST and α-diversity are not related to GBS status. However, specific microbial taxa are associated with colonization of this important human pathogen, highlighting a potential role for the microbiota in promotion or inhibition of GBS colonization. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. ZEB1 Promotes Oxaliplatin Resistance through the Induction of Epithelial - Mesenchymal Transition in Colon Cancer Cells.

    Science.gov (United States)

    Guo, Cao; Ma, Junli; Deng, Ganlu; Qu, Yanlin; Yin, Ling; Li, Yiyi; Han, Ying; Cai, Changjing; Shen, Hong; Zeng, Shan

    2017-01-01

    Background: Oxaliplatin (OXA) chemotherapy is widely used in the clinical treatment of colon cancer. However, chemo-resistance is still a barrier to effective chemotherapy in cases of colon cancer. Accumulated evidence suggests that the epithelial mesenchymal transition (EMT) may be a critical factor in chemo-sensitivity. The present study investigated the effects of Zinc finger E-box binding homeobox 1 (ZEB1) on OXA-sensitivity in colon cancer cells. Method: ZEB1expression and its correlation with clinicopathological characteristics were analyzed using tumor tissue from an independent cohort consisting of 118 colon cancer (CC) patients who receiving OXA-based chemotherapy. ZEB1 modulation of OXA-sensitivity in colon cancer cells was investigated in a OXA-resistant subline of HCT116/OXA cells and the parental colon cancer cell line: HCT116. A CCK8 assay was carried out to determine OXA-sensitivity. qRT-PCR, Western blot, Scratch wound healing and transwell assays were used to determine EMT phenotype of colon cells. ZEB1 knockdown using small interfering RNA (siRNA) was used to determine the ZEB1 contribution to OXA-sensitivity in vitro and in vivo (in a nude mice xenograft model). Result: ZEB1 expression was significantly increased in colon tumor tissue, and was correlated with lymph node metastasis and the depth of invasion. Compared with the parental colon cancer cells (HCT116), HCT116/OXA cells exhibited an EMT phenotype characterized by up-regulated expression of ZEB1, Vimentin, MMP2 and MMP9, but down-regulated expression of E-cadherin. Transfection of Si-ZEB1 into HCT116/OXA cells significantly reversed the EMT phenotype and enhanced OXA-sensitivity in vitro and in vivo . Conclusion: HCT116/OXA cells acquired an EMT phenotype. ZEB1 knockdown effectively restored OXA-sensitivity by reversing EMT. ZEB1 is a potential therapeutic target for the prevention of OXA-resistance in colon cancer.

  7. Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo.

    Science.gov (United States)

    Pang, Bing; Hong, Wenzhou; Kock, Nancy D; Swords, W Edward

    2012-01-01

    Nontypeable Haemophilus influenzae (NTHi) is a common airway commensal and opportunistic pathogen that persists within surface-attached biofilm communities. In this study, we tested the hypothesis that bacterial stress-responses are activated within biofilms. Transcripts for several factors associated with bacterial resistance to environmental stress were increased in biofilm cultures as compared to planktonic cultures. Among these, a homolog of the DNA-binding protein from starved cells (dps) was chosen for further study. An isogenic NTHi 86-028NP dps mutant was generated and tested for resistance to environmental stress, revealing a significant survival defects in high-iron conditions, which was mediated by oxidative stress and was restored by genetic complementation. As expected, NTHi 86-028NP dps had a general stress-response defect, exhibiting decreased resistance to many types of environmental stress. While no differences were observed in density and structure of NTHi 86-028NP and NTHi 86-028NP dps biofilms, bacterial survival was decreased in NTHi 86-028NP dps biofilms as compared to the parental strain. The role of dps persistence in vivo was tested in animal infection studies. NTHi 86-028NP dps had decreased resistance to clearance after pulmonary infection of elastase-treated mice as compared to NTHi 86-028NP, whereas minimal differences were observed in clearance from mock-treated mice. Similarly, lower numbers of NTHi 86-028NP dps were recovered from middle-ear effusions and bullar homogenates in the chinchilla model for otitis media (OM). Therefore, we conclude that Dps promotes bacterial survival within NTHi biofilm communities both in vitro and in chronic infections in vivo.

  8. Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo

    Directory of Open Access Journals (Sweden)

    Bing ePang

    2012-05-01

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is a common airway commensal and opportunistic pathogen that persists within surface-attached biofilm communities. In this study, we tested the hypothesis that bacterial stress-responses are activated within biofilms. Transcripts for several factors associated with bacterial resistance to environmental stress were increased in biofilm cultures as compared to planktonic cultures. Among these, a homolog of the DNA-binding protein from starved cells (dps was chosen for further study. An isogenic NTHi 86-028NP dps mutant was generated and tested for resistance to environmental stress, revealing a significant survival defects in high-iron conditions, which was mediated by oxidative stress and was restored by genetic complementation. As expected, NTHi 86-028NP dps had a general stress-response defect, exhibiting decreased resistance to many types of environmental stress. While no differences were observed in density and structure of NTHi 86-028NP and NTHi 86-028NP dps biofilms, bacterial survival was decreased in NTHi 86-028NP dps biofilms as compared to the parental strain. The role of dps persistence in vivo was tested in animal infection studies. NTHi 86-028NP dps had decreased resistance to clearance after pulmonary infection of elastase-treated mice as compared to NTHi 86-028NP, whereas minimal differences were observed in clearance from mock-treated mice. Similarly, lower numbers of NTHi 86-028NP dps were recovered from middle-ear effusions and bullar homogenates in the chinchilla model for otitis media. Therefore, we conclude that Dps promotes bacterial survival within NTHi biofilm communities both in vitro and in chronic infections in vivo.

  9. Aerobic exercise training promotes additional cardiac benefits better than resistance exercise training in postmenopausal rats with diabetes.

    Science.gov (United States)

    Quinteiro, Hugo; Buzin, Morgana; Conti, Filipe Fernandes; Dias, Danielle da Silva; Figueroa, Diego; Llesuy, Susana; Irigoyen, Maria-Cláudia; Sanches, Iris Callado; De Angelis, Kátia

    2015-05-01

    The aim of this study was to evaluate the effects of aerobic exercise training or resistance exercise training on cardiac morphometric, functional, and oxidative stress parameters in rats with ovarian hormone deprivation and diabetes. Female Wistar rats (200-220 g) were divided into a sham-operated group (euglycemic sham-operated sedentary [ES]; n = 8) and three ovariectomized (bilateral removal of ovaries) and diabetic (streptozotocin 50 mg/kg IV) groups as follows: diabetic ovariectomized sedentary (DOS; n = 8), diabetic ovariectomized undergoing aerobic exercise training (DOTA; n = 8), and diabetic ovariectomized undergoing resistance exercise training (DOTR; n = 8). After 8 weeks of resistance (ladder) or aerobic (treadmill) exercise training, left ventricle function and morphometry were evaluated by echocardiography, whereas oxidative stress was evaluated at the left ventricle. The DOS group presented with increased left ventricle cavity in diastole and relative wall thickness (RWT), and these changes were attenuated in both DOTA and DOTR groups. Systolic and diastolic function was impaired in the DOS group compared with the ES group, and only the DOTA group was able to reverse this dysfunction. Lipoperoxidation and glutathione redox balance were improved in both trained groups compared with the DOS group. Glutathione peroxidase and superoxide dismutase were higher in the DOTA group than in the other studied groups. Correlations were observed between lipoperoxidation and left ventricle cavity in diastole (r = 0.55), between redox balance and RWT (r = 0.62), and between lipoperoxidation and RWT (r = -0.60). Aerobic exercise training and resistance exercise training promote attenuation of cardiac morphometric dysfunction associated with a reduction in oxidative stress in an experimental model of diabetes and menopause. However, only dynamic aerobic exercise training is able to attenuate systolic and diastolic dysfunction under this condition.

  10. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    Science.gov (United States)

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  11. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  12. Subacute bacterial endocarditis (SBE due to Streptococcus gordonii

    Directory of Open Access Journals (Sweden)

    Raffaella Battista

    2009-12-01

    Full Text Available Endocarditis is an inflammatory state of the endothelium that promotes thrombus formation and tissue damage on the surface of heart valves. Recent studies have reported endocarditis mortality rates ranging from 12% to 46% (2008. The Streptococcus gordonii is a normal inhabitant of the human oral cavity. It is a component of the microbial communities responsible of plaque formation, associated with dental caries and also regarded as the main causative agent in the development of subacute bacterial endocarditis (SBE.

  13. AMPLIFIKASI DAN IDENTIFIKASI MUTASI REGIO PROMOTER inhA PADA ISOLAT Mycobacterium tuberculosis MULTIDRUG RESISTANCE DENGAN TEKNIK POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    Devita Kusdianingrum

    2014-10-01

    Full Text Available ABSTRAK: Sekitar 8-20% isolate M. tuberculosis yang resisten terhadap isoniazid diketahui telah mengalami mutasi pada posisi regio promoter inhA [1]. Untuk memperoleh titik mutasi pada regio promoter, maka amplifikasi fragmen target perlu untuk dilakukan. Tujuan dilakukannya penelitian ini adalah untuk mengamplifikasi regio promoter inhA, mengetahui ada tidaknya mutasi dan jenis mutasi pada isolat 134 MDR-TB. Tahap isolasi DNA dilakukan menggunakan metode Boom yang telah dimodifikasi. Fragmen target diamplifikasi dengan teknik PCR menggunakan sepasang primer (forward primer 5’ ACATACCTGCTGCGCAAT 3’ dan reverse primer 5’ CTCCGGTAACCAGGACT GAA 3’. Amplikon disekuensing secara satu arah menggunakan forward primer. Analisis homologi dilakukan menggunakan program online BLASTn, sementara identifikasi mutasi dilakukan menggunakan software MEGA4. Hasil penelitian menunjukkan bahwa analisis homologi isolate 134 terhadap M. tuberculosis H37Rv adalah sebesar 99%. Tahap analisis mutasi menemukan terjadinya perubahan sitosin menjadi timin (CàT pada posisi -15 isolat 134 MDR-TB   ABSTRACT: Approximately 8-20% M. tuberculosis isolates that are resistant to isoniazid habe been known to have a mutation in inhA promoter region [1]. To find the mutation in inhA promoter region, it is necessary to carry out the amplification of the target fragment. The purpose of this research were to amplify the inhA promoter region and to find out if there is a mutation and type of mutation at MDR-TB isolate. DNA isolation was done by a modified Boom method. Target fragment was amplified by a pair primer (forward primer 5’ ACATACCTGCTGCGCAAT 3’ and reverse primer 5’ CTCCGGTAACCAGGACT GAA 3’ using Polymerase Chain Reaction (PCR technique. Amplicon was sequenced in one forward direction. Homology analysis was conducted by online BLASTn program, while the mutation was identified by MEGA4. The result of this research showed that homology analysis of 134 was homolog

  14. Interaction of Streptococcus agalactiae and cellular innate immunity in colonization and disease

    Directory of Open Access Journals (Sweden)

    Sybille eLandwehr-Kenzel

    2014-10-01

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis and death at the beginning of life, in the elderly and in diabetic patients. Thus GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days seven and 90 of life are at risk of a particularly striking sepsis manifestation (late onset disease, LOD, where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases is caused by one clone, GBS ST-17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like GAPDH-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors (TLRs and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just

  15. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  16. Carrier state of Haemophilus influenzae type b (Hib, Streptococcus pneumoniae, Streptococcus pyogenes, Neisseria meningitidis and Corynebacterium diphtheriae among school children in Pokhara, Nepal

    Directory of Open Access Journals (Sweden)

    Dharm Raj Bhatta

    2014-02-01

    Full Text Available Objective: To determine the incidence of carrier state of Haemophilus influenzae type b, Streptococcus pneumoniae (S. pneumoniae, Streptococcus pyogenes, Neisseria meningitidis and Corynebacterium diphtheriae among school children. Methods: Specimen from posterior pharyngeal wall and tonsils were collected on calcium alginate coated swabs from 1 02 participants. Processing of specimen and antimicrobial susceptibility testing was done by standard procedures. Results: Potential pathogens isolated in our study were S. pneumoniae (14.7%, Staphylococcus aureus (12.7%, Corynebacterium diphtheriae (3.9%, Streptococcus pyogenes (3.9% and Haemophilus influenzae (1.9%. Important findings in antibiogram include high resistance of S. pneumoniae to penicillin (73% and resistance of Staphylococcus aureus to oxacillin (23%. Conclusions: Pharyngeal colonization by S. pneumoniae among school children was found high and there is need of introduction of pneumococcal vaccines among children. Despite expected universal vaccination, pharyngeal colonization by Corynebacterium diphtheriae is possible and there is possibility of transmission.

  17. Public commitment, resistance to advertising, and leisure promotion in a school-based drug abuse prevention program: a component dismantling study.

    Science.gov (United States)

    Hernández-Serrano, Olga; Griffin, Kenneth W; García-Fernández, José Manuel; Orgilés, Mireia; Espada, José P

    2013-01-01

    The objective of the present study was to examine the contribution of three intervention components (public commitment, resistance to advertising, and leisure promotion) on alcohol and protective variables in a school-based substance use prevention program. Participants included 480 Spanish students aged from 14 to 16 who received the Saluda prevention program in one of the following five experimental conditions: complete program, program minus public commitment, program minus resistance to advertising, program minus leisure promotion, and a waiting-list control. The students completed self-report surveys at pretest, posttest, and 6-month follow-up assessments. When excluding the healthy leisure promotion component, the Saluda program showed no loss of efficacy neither on alcohol use nor on other substance-related variables, while public commitment and resistance to advertising improved the aforementioned program's efficacy.

  18. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland.

    Science.gov (United States)

    Kaczorek, E; Małaczewska, J; Wójcik, R; Rękawek, W; Siwicki, A K

    2017-08-01

    Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. DBC1 promotes castration-resistant prostate cancer by positively regulating DNA binding and stability of AR-V7.

    Science.gov (United States)

    Moon, Sue Jin; Jeong, Byong Chang; Kim, Hwa Jin; Lim, Joung Eun; Kwon, Ghee Young; Kim, Jeong Hoon

    2018-03-01

    Constitutively active AR-V7, one of the major androgen receptor (AR) splice variants lacking the ligand-binding domain, plays a key role in the development of castration-resistant prostate cancer (CRPC) and anti-androgen resistance. However, our understanding of the regulatory mechanisms of AR-V7-driven transcription is limited. Here we report DBC1 as a key regulator of AR-V7 transcriptional activity and stability in CRPC cells. DBC1 functions as a coactivator for AR-V7 and is required for the expression of AR-V7 target genes including CDH2, a mesenchymal marker linked to CRPC progression. DBC1 is required for recruitment of AR-V7 to its target enhancers and for long-range chromatin looping between the CDH2 enhancer and promoter. Mechanistically, DBC1 enhances DNA-binding activity of AR-V7 by direct interaction and inhibits CHIP E3 ligase-mediated ubiquitination and degradation of AR-V7 by competing with CHIP for AR-V7 binding, thereby stabilizing and activating AR-V7. Importantly, DBC1 depletion suppresses the tumorigenic and metastatic properties of CRPC cells. Our results firmly establish DBC1 as a critical AR-V7 coactivator that plays a key role in the regulation of DNA binding and stability of AR-V7 and has an important physiological role in CRPC progression.

  20. Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Nathan L. Price

    2018-02-01

    Full Text Available While therapeutic modulation of miRNAs provides a promising approach for numerous diseases, the promiscuous nature of miRNAs raises concern over detrimental off-target effects. miR-33 has emerged as a likely target for treatment of cardiovascular diseases. However, the deleterious effects of long-term anti-miR-33 therapies and predisposition of miR-33−/− mice to obesity and metabolic dysfunction exemplify the possible pitfalls of miRNA-based therapies. Our work provides an in-depth characterization of miR-33−/− mice and explores the mechanisms by which loss of miR-33 promotes insulin resistance in key metabolic tissues. Contrary to previous reports, our data do not support a direct role for SREBP-1-mediated lipid synthesis in promoting these effects. Alternatively, in adipose tissue of miR-33−/− mice, we observe increased pre-adipocyte proliferation, enhanced lipid uptake, and impaired lipolysis. Moreover, we demonstrate that the driving force behind these abnormalities is increased food intake, which can be prevented by pair feeding with wild-type animals.

  1. Molecular events for promotion of vancomycin resistance in vancomycin intermediate Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Qiwen Hu

    2016-10-01

    Full Text Available Vancomycin has been used as the last resort in the clinical treatment of serious Staphylococcus aureus infections. Vancomycin-intermediate S. aureus (VISA was discovered almost two decades ago. Aside from the vancomycin-intermediate phenotype, VISA strains from the clinic or laboratory exhibited common characteristics, such as thickened cell walls, reduced autolysis, and attenuated virulence. However, the genetic mechanisms responsible for the reduced vancomycin susceptibility in VISA are varied. The comparative genomics of vancomycin-susceptible S. aureus (VSSA/VISA pairs showed diverse genetic mutations in VISA; only a small number of these mutations have been experimentally verified. To connect the diversified genotypes and common phenotypes in VISA, we reviewed the genetic alterations in the relative determinants, including mutation in the vraSRT, graSR, walKR, stk1/stp1, rpoB, clpP, and cmk genes. Especially, we analyzed the mechanism through which diverse mutations mediate vancomycin resistance. We propose a unified model that integrates diverse gene functions and complex biochemical processes in VISA upon the action of vancomycin.

  2. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells

    International Nuclear Information System (INIS)

    Chadderton, Naomi; Cowen, Rachel L.; Sheppard, Freda C.D.; Robinson, Suzanne; Greco, Olga; Scott, Simon D.; Stratford, Ian J.; Patterson, Adam V.; Williams, Kaye J.

    2005-01-01

    Purpose: Tumor hypoxia is unequivocally linked to poor radiotherapy outcome. This study aimed to identify enhancer sequences that respond maximally to a combination of radiation and hypoxia for use in genetic radiotherapy approaches. Methods and materials: The influence of radiation (5 Gy) and hypoxia (1% O 2 ) on reporter-gene expression driven by hypoxia (HRE) and radiation (Egr-1) responsive elements was evaluated in tumor cells grown as monolayers or multicellular spheroids. Hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression was monitored in parallel. Results: Of the sequences tested, an HRE from the phosphoglycerate kinase-1 gene (PGK-18[5+]) was maximally induced in response to hypoxia plus radiation in all 5 cell lines tested. The additional radiation treatment afforded a significant increase in the induction of PGK-18[5+] compared with hypoxia alone in 3 cell lines. HIF-1α/2α were induced by radiation but combined hypoxia/radiation treatment did not yield a further increase. The dual responsive nature of HREs was maintained when spheroids were irradiated after delivery of HRE constructs in a replication-deficient adenovirus. Conclusions: Hypoxia-responsive enhancer element sequences are dually responsive to combined radiation and hypoxic treatment. Their use in genetic radiotherapy in vivo could maximize expression in the most radio-resistant population at the time of radiation and also exploit microenvironmental changes after radiotherapy to yield additional switch-on

  3. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer.

    Science.gov (United States)

    Murtaugh, Maureen A; Sweeney, Carol; Ma, Khe-Ni; Potter, John D; Caan, Bette J; Wolff, Roger K; Slattery, Martha L

    2006-01-01

    Modifiable risk factors in colorectal cancer etiology and their interactions with genetic susceptibility are of particular interest. Functional vitamin D receptor (VDR) gene polymorphisms may influence carcinogenesis through modification of cell growth, protection from oxidative stress, cell-cell matrix effects, or insulin and insulin-like growth factor pathways. We investigated interactions between foods (dairy products, red and processed meat, and whole and refined grains) and dietary patterns (sucrose-to-fiber ratio and glycemic index) associated with insulin resistance with the FokI polymorphism of the VDR gene and colon and rectal cancer risk. Data (diet, anthropometrics, and lifestyle) and DNA came from case-control studies of colon (1,698 cases and 1,861 controls) and rectal cancer (752 cases and 960 controls) in northern California, Utah, and the Twin Cities metropolitan area, Minnesota (colon cancer study only). Unconditional logistic regression models were adjusted for smoking, race, sex, age, body mass index, physical activity, energy intake, dietary fiber, and calcium. The lowest colon cancer risk was observed with the Ff/ff FokI genotypes and a low sucrose-to-fiber ratio. Rectal cancer risk decreased with greater consumption of dairy products and increased with red or processed meat consumption and the FF genotype. Modifiable dietary risk factors may be differentially important among individuals by VDR genotype and may act through the insulin pathway to affect colon cancer risk and through fat, calcium, or other means to influence rectal cancer risk.

  4. Development of genetic tools for in vivo virulence analysis of Streptococcus sanguinis.

    Science.gov (United States)

    Turner, Lauren Senty; Das, Sankar; Kanamoto, Taisei; Munro, Cindy L; Kitten, Todd

    2009-08-01

    Completion of the genome sequence of Streptococcus sanguinis SK36 necessitates tools for further characterization of this species. It is often desirable to insert antibiotic resistance markers and other exogenous genes into the chromosome; therefore, we sought to identify a chromosomal site for ectopic expression of foreign genes, and to verify that insertion into this site did not affect important cellular phenotypes. We designed three plasmid constructs for insertion of erm, aad9 or tetM resistance determinants into a genomic region encoding only a small (65 aa) hypothetical protein. To determine whether this insertion affected important cellular properties, SK36 and its erythromycin-resistant derivative, JFP36, were compared for: (i) growth in vitro, (ii) genetic competence, (iii) biofilm formation and (iv) virulence for endocarditis in the rabbit model of infective endocarditis (IE). The spectinomycin-resistant strain, JFP56, and tetracycline-resistant strain, JFP76, were also tested for virulence in vivo. Insertion of erm did not affect growth, competence or biofilm development of JFP36. Recovery of bacteria from heart valves of co-inoculated rabbits was similar to wild-type for JFP36, JFP56 and JFP76, indicating that IE virulence was not significantly affected. The capacity for mutant complementation in vivo was explored in an avirulent ssaB mutant background. Expression of ssaB from its predicted promoter in the target region restored IE virulence. Thus, the chromosomal site utilized is a good candidate for further manipulations of S. sanguinis. In addition, the resistant strains developed may be further applied as controls to facilitate screening for virulence factors in vivo.

  5. Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Pang, R; Li, Y; Dong, Y; Liang, Z; Zhang, Y; Zhang, W

    2014-12-01

    Imidacloprid resistance in the brown planthopper, Nilaparvata lugens, is primarily the result of the over-expression of cytochrome P450 monooxygenases. Here, a field-collected strain of N. lugens was shown to be highly resistant to both imidacloprid and buprofezin. Insecticide exposure and quantitative real-time PCR revealed that its resistance was mainly associated with a cytochrome P450 gene, CYP6AY1. CYP6AY1 is known to metabolize imidacloprid but its effect on buprofezin is unclear. In the 5'-untranslated region of CYP6AY1, a novel alternative splicing was detected. After a 1990-bp promoter region was cloned, its basal luciferase activity was assessed. Furthermore, genotyping studies identified 12 variations in the promoter region that discriminated between the field-collected and control strain. Finally, survival bioassays revealed a single nucleotide polymorphism and an insertion-deletion polymorphism linked to buprofezin and imidacloprid resistance. Mutagenesis of these sites enhanced the promoter activity of CYP6AY1. These results suggest that promoter polymorphisms may affect P450-mediated multiple insecticide resistance of pests. © 2014 The Royal Entomological Society.

  6. Recombination-deficient Streptococcus sanguis

    International Nuclear Information System (INIS)

    Daneo-Moore, L.; Volpe, A.

    1985-01-01

    A UV-sensitive derivative was obtained from Streptococcus sanguis Challis. The organism could be transformed with a number of small streptococcal plasmids at frequencies equal to, or 1 logarithm below, the transformation frequencies for the parent organism. However, transformation with chromosomal DNA was greatly impaired in the UV-sensitive derivative

  7. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco

    Science.gov (United States)

    Deb, Debasish; Shrestha, Ankita; Maiti, Indu B.; Dey, Nrisingha

    2018-01-01

    Development of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of Cassava Vein Mosaic Virus (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter ‘MUASCsV8CP’ through inter-molecular hybridization among the upstream activation sequence (UAS) of Mirabilis Mosaic Virus (MMV; -297 to -38) and CsVMV8, as the core promoter (CP). The MUASCsV8CP was found to be ∼2.2 and ∼2.4 times stronger than the CsVMV8 and CaMV35S promoters, respectively, while its activity was found to be equivalent to that of the CaMV35S2 promoter. Furthermore, we generated transgenic tobacco plants expressing the totiviral ‘Killer protein KP4’ (KP4) under the control of the MUASCsV8CP promoter. Recombinant KP4 was found to accumulate both in the cytoplasm and apoplast of plant cells. The agar-based killing zone assays revealed enhanced resistance of plant-derived KP4 against two deuteromycetous foliar pathogenic fungi viz. Alternaria alternata and Phoma exigua var. exigua. Also, transgenic plants expressing KP4 inhibited the growth progression of these fungi and conferred significant fungal resistance in detached-leaf and whole plant assays. Taken together, we establish the potential of engineering “in-built” fungal stress-tolerance in plants by expressing KP4 under a novel chimeric caulimoviral promoter in a transgenic approach. PMID:29556246

  8. Streptococcus agalactiae infection in domestic rabbits, Oryctolagus cuniculus.

    Science.gov (United States)

    Ren, S Y; Geng, Y; Wang, K Y; Zhou, Z Y; Liu, X X; He, M; Peng, X; Wu, C Y; Lai, W M

    2014-12-01

    Streptococcus agalactiae (Group B streptococcus, GBS) has emerged as an important pathogen that affects humans and animals, including aquatic species. In August 2011, a severe infectious disease affecting rabbits, which caused 42% mortality, occurred in Mianyang, Sichuan Province, China. The main clinical signs included acute respiratory distress syndrome, fever, paddling and convulsions. A Gram-positive, chain-forming coccus was isolated from the primary organs and tissues of diseased rabbits and then identified as S. agalactiae by morphology, biochemical and physiological characteristics, 16S rDNA and gyrB gene sequences analysis. All isolates of S. agalactiae showed a similar antibiotic susceptibility, which were sensitive to florfenicol, ampicillin,gentamicin and norfloxacin, as well as being resistant to penicillin, amoxicillin and tetracycline. To our knowledge, this is the first report on S. agalactiae natural infection in domestic rabbits. © 2013 Blackwell Verlag GmbH.

  9. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae.

    Directory of Open Access Journals (Sweden)

    Tristan Lefébure

    Full Text Available Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46% of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86% in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i the integration of new virulence factors (e.g. speB, and the sal locus and (ii the construction of new regulation networks (e.g. rgg, and to some extent speB.

  10. Public Commitment, Resistance to Advertising, and Leisure Promotion in a School-Based Drug Abuse Prevention Program: A Component Dismantling Study

    Science.gov (United States)

    Hernández-Serrano, Olga; Griffin, Kenneth W.; García-Fernández, José Manuel; Espada, Mireia; Orgilés José P.

    2013-01-01

    The objective of the present study was to examine the contribution of three intervention components (public commitment, resistance to advertising, and leisure promotion) on alcohol and protective variables in a school-based substance use prevention program. Participants included 480 Spanish students aged from 14 to 16 who received the…

  11. Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    DEFF Research Database (Denmark)

    Goltermann, Lise; Sarusie, Menachem V; Bentin, Thomas

    2016-01-01

    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short...

  12. Antibiotic susceptibility of periodontal Streptococcus constellatus and Streptococcus intermedius clinical isolates.

    Science.gov (United States)

    Rams, Thomas E; Feik, Diane; Mortensen, Joel E; Degener, John E; van Winkelhoff, Arie J

    2014-12-01

    Streptococcus constellatus and Streptococcus intermedius in subgingival dental plaque biofilms may contribute to forms of periodontitis that resist treatment with conventional mechanical root debridement/surgical procedures and may additionally participate in some extraoral infections. Because systemic antibiotics are often used in these clinical situations, and little is known of the antibiotic susceptibility of subgingival isolates of these two bacterial species, this study determined the in vitro susceptibility to six antibiotics of fresh S. constellatus and S. intermedius clinical isolates from human periodontitis lesions. A total of 33 S. constellatus and 17 S. intermedius subgingival strains, each recovered from separate patients with severe chronic periodontitis (n = 50) before treatment, were subjected to antibiotic gradient strip susceptibility testing with amoxicillin, azithromycin, clindamycin, ciprofloxacin, and doxycycline on blood-supplemented Mueller-Hinton agar and to the inhibitory effects of metronidazole at 16 mg/L in an enriched Brucella blood agar dilution assay. Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing interpretative standards were used to assess the results. Clindamycin was the most active antibiotic against S. constellatus (minimum inhibitory concentration at 90% [MIC90] 0.25 mg/L), and amoxicillin was most active against S. intermedius (MIC90 0.125 mg/L). A total of 30% of the S. constellatus and S. intermedius clinical isolates were resistant in vitro to doxycycline, 98% were only intermediate in susceptibility to ciprofloxacin, and 90% were resistant to metronidazole at 16 mg/L. Subgingival S. constellatus and S. intermedius exhibited variable antibiotic susceptibility profiles, potentially complicating empirical selection of periodontitis antibiotic therapy in patients who are species positive.

  13. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    International Nuclear Information System (INIS)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6- 3 H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces. (author)

  14. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6-/sup 3/H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces.

  15. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.

    Science.gov (United States)

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-10-01

    One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.

  16. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis.

    Science.gov (United States)

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms.

  17. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis

    Directory of Open Access Journals (Sweden)

    Arash Azizi

    2015-01-01

    Full Text Available Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20. Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms.

  18. Streptococcus oligofermentans inhibits Streptococcus mutans in biofilms at both neutral pH and cariogenic conditions

    NARCIS (Netherlands)

    Bao, X.; de Soet, J.J.; Tong, H.; Gao, X.; He, L.; van Loveren, C.; Deng, D.M.

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide

  19. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Kruse, H.; Tast, E.

    2000-01-01

    This study compares the susceptibility of Enterococcus faecium isolated from pigs and poultry in Denmark, Finland, and Norway to antimicrobial agents used for growth promotion. E. faecium was isolated from 211 broilers and 55 pigs in Denmark in 1997, from Norwegian 55 poultry farms (turkey and br......%) of the virginiamycin-resistant isolates from pigs in Denmark. This study indicates that the use of antimicrobial agents for growth promotion in Denmark, Finland, and Norway have selected for resistance to most of these drugs among E. faecium in food animals....... as resistant to monensin or salinomycin. In general, an association between the usage of antimicrobial agents in the respective countries and the occurrence of associated resistance was observed. Resistance to avilamycin was frequently observed among isolates from broilers in Denmark, where avilamycin has been...... used, whereas all isolates from Finland and Norway, where these drugs have not been used, were susceptible. The same phenomenon could be observed for avoparcin, bacitracin, tylosin, and virginiamycin; resistance was frequently observed among isolates from where these antimicrobials have been widely...

  20. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells

    International Nuclear Information System (INIS)

    Li, Tao; Li, Dong; Sha, Jianjun; Sun, Peng; Huang, Yiran

    2009-01-01

    Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.

  1. First Isolation of Streptococcus halichoeri and Streptococcus phocae from a Steller Sea Lion (Eumetopias jubatus) in South Korea.

    Science.gov (United States)

    Lee, Kichan; Kim, Ji-Yeon; Jung, Suk Chan; Lee, Hee-Soo; Her, Moon; Chae, Chanhee

    2016-01-01

    Streptococcus species are emerging potential pathogens in marine mammals. We report the isolation and identification of Streptococcus halichoeri and Streptococcus phocae in a Steller sea lion (Eumetopias jubatus) in South Korea.

  2. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance

    Directory of Open Access Journals (Sweden)

    Atul Kakrana

    2017-12-01

    Full Text Available The root-knot nematode (RKN, Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.

  3. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (Δ cueO ) and three mutants that were both Cu and Zn sensitive (Δ yedYZ , Δ cusA -like, and Δ fixH -like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the Δ cueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the Δ yedYZ and Δ fixH -like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the Δ cusA -like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis. IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy

  4. Streptococcus tangierensis sp. nov. and Streptococcus cameli sp. nov., two novel Streptococcus species isolated from raw camel milk in Morocco.

    Science.gov (United States)

    Kadri, Zaina; Vandamme, Peter; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; Elfahime, El Mostafa; Farricha, Omar El; Swings, Jean; Amar, Mohamed

    2015-02-01

    Biochemical and molecular genetic studies were performed on two unidentified Gram-stain positive, catalase and oxidase negative, non-hemolytic Streptococcus-like organisms recovered from raw camel milk in Morocco. Phenotypic characterization and comparative 16S rRNA gene sequencing demonstrated that the two strains were highly different from each other and that they did not correspond to any recognized species of the genus Streptococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed the unidentified organisms each formed a hitherto unknown sub-line within the genus Streptococcus, displaying a close affinity with Streptococcus moroccensis, Streptococcus minor and Streptococcus ovis. DNA G+C content determination, MALDI-TOF mass spectrometry and biochemical tests demonstrated the bacterial isolates represent two novel species. Based on the phenotypic distinctiveness of the new bacteria and molecular genetic evidence, it is proposed to classify the two strains as Streptococcus tangierensis sp. nov., with CCMM B832(T) (=LMG 27683(T)) as the type strain, and Streptococcus cameli sp. nov., with CCMM B834(T) (=LMG 27685(T)) as the type strain.

  5. Activation of mitochondrial promoter PH-binding protein in a radio-resistant Chinese hamster cell strain associated with Bcl-2

    International Nuclear Information System (INIS)

    Roychoudhury, Paromita; Ghosh, Utpal; Bhattacharyya, Nitai P.; Chaudhuri, Keya

    2006-01-01

    The cellular response to ionizing radiation is mediated by a complex interaction of number of proteins involving different pathways. Previously, we have shown that up regulation of mitochondrial genes ND1, ND4, and COX1 transcribed from the heavy strand promoter (P H ) has been increased in a radio-resistant cell strain designated as M5 in comparison with the parental Chinese hamster V79 cells. These genes are also up regulated in Chinese hamster V79 cells VB13 that express exogenous human Bcl2. In the present study, the expression of the gene ND6 that is expressed from the light strand promoter (P L ) was found to be similar in both the cell lines, as determined by RT-PCR. To test the possibility that this differential expression of mitochondrial genes under these two promoters was mediated by differences in proteins' affinity to interact with these promoters, we have carried out electrophoretic mobility shift assay (EMSA) using mitochondrial cell extracts from these two cell lines. Our result of these experiments revealed that two different proteins formed complex with the synthetic promoters and higher amount of protein from M5 cell extracts interacted with the P H promoter in comparison to that observed with cell extracts from Chinese hamster V79 cells. The promoter-specific differential binding of proteins was also observed in VB13. These results showed that differential mitochondrial gene expression observed earlier in the radio-resistant M5 cells was due to enhanced interaction proteins with the promoters P H and mediated by the expression of Bcl2

  6. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hushna Ara Naznin

    Full Text Available Volatile organic compounds (VOC were extracted and identified from plant growth-promoting fungi (PGPF, Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS. Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp. significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst. Subsequently, m-cresol and methyl benzoate (MeBA were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA or Jasmonic acid (JA/ethylene (ET signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  7. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    DEFF Research Database (Denmark)

    Houthuijzen, Julia M; Oosterom, Ilse; Hudson, Brian D

    2017-01-01

    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts....... M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance....

  8. Multiple lung abscesses caused by Streptococcus constellatus

    Directory of Open Access Journals (Sweden)

    Vanina Rognoni

    2018-02-01

    Full Text Available Despite numerous descriptions of body abscesses produced by Streptococcus milleri group bacteria, lung abscesses caused by this group remain under-reported and the clinical and laboratory features have yet to be fully characterised. We present the case of a patient admitted with lung multiple abscesses produced by Streptococcus constellatus.

  9. Group A Streptococcus vulvovaginitis in breastfeeding women.

    Science.gov (United States)

    Rahangdale, Lisa; Lacy, Judith; Hillard, Paula A

    2008-08-01

    Group A beta-hemolytic streptococcus-associated vulvovaginitis is uncommon in adult women. Clinicians should include group A beta-hemolytic streptococcus as a possible cause of vulvovaginal symptoms in breastfeeding women. Along with appropriate antibiotic therapy, vaginal estrogen therapy may be considered to diminish susceptibility to recurrent infection in women with vaginal atrophy.

  10. Streptococcus suis meningitis, a poacher's risk

    NARCIS (Netherlands)

    Halaby, T.; Hoitsma, E.; Hupperts, R.; Spanjaard, L.; Luirink, M.; Jacobs, J.

    2000-01-01

    Streptococcus suis infection is a zoonosis that has been mainly reported in pig-rearing and pork-consuming countries. The most common disease manifestation is meningitis, often associated with cochleovestibular signs. The causative agent is Streptococcus suis serotype 2, found as a commensal in the

  11. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    Science.gov (United States)

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  12. Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance.

    Science.gov (United States)

    Dupéré-Richer, D; Kinal, M; Ménasché, V; Nielsen, T H; Del Rincon, S; Pettersson, F; Miller, W H

    2013-02-07

    Histone deacetylase inhibitors (HDACi) have shown promising activity against hematological malignancies in clinical trials and have led to the approval of vorinostat for the treatment of cutaneous T-cell lymphoma. However, de novo or acquired resistance to HDACi therapy is inevitable, and their molecular mechanisms are still unclear. To gain insight into HDACi resistance, we developed vorinostat-resistant clones from the hematological cell lines U937 and SUDHL6. Although cross-resistant to some but not all HDACi, the resistant cell lines exhibit dramatically increased sensitivity toward chloroquine, an inhibitor of autophagy. Consistent with this, resistant cells growing in vorinostat show increased autophagy. Inhibition of autophagy in vorinostat-resistant U937 cells by knockdown of Beclin-1 or Lamp-2 (lysosome-associated membrane protein 2) restores sensitivity to vorinostat. Interestingly, autophagy is also activated in parental U937 cells by de novo treatment with vorinostat. However, in contrast to the resistant cells, inhibition of autophagy decreases sensitivity to vorinostat. These results indicate that autophagy can switch from a proapoptotic signal to a prosurvival function driving acquired resistance. Moreover, inducers of autophagy (such as mammalian target of rapamycin inhibitors) synergize with vorinostat to induce cell death in parental cells, whereas the resistant cells remain insensitive. These data highlight the complexity of the design of combination strategies using modulators of autophagy and HDACi for the treatment of hematological malignancies.

  13. Arsenic-resistant and plant growth-promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland.

    Science.gov (United States)

    Qamar, N; Rehman, Y; Hasnain, S

    2017-09-01

    The aim of the study was to explore irrigation water polluted with industrial waste and corresponding cropland to screen bacteria for As detoxification and plant growth promotion. Plant growth-promoting (PGP) As-resistant cropland bacteria were isolated from contaminated irrigation water and corresponding agricultural soil. Phylogenetic analysis revealed that the isolates belonged to two distinct bacterial lineages; Firmicutes and γ-Proteobacteria. Maximum As(V) resistance was exhibited by Klebsiella pneumoniae T22 and Klebsiella oxytoca N53 (550 mmol l -1 ), whereas maximum resistance against As(III) was exhibited by K. oxytoca N53 (200 mmol l -1 ). Maximum As(V) reduction was shown by K. pneumoniae T22 (6·7 mmol l -1 ), whereas maximum As(III) oxidation was exhibited by Bacillus subtilis T23 (4·8 mmol l -1 ). As resistance genes arsB and ACR3 were detected in many of the isolates through polymerase chain reaction. Many of these isolates exhibited PGP traits such as hydrogen cyanide and auxin production as well as phosphate solubilization. The bacterial strains were able to enhance Triticum aestivum growth both in the absence and presence of As, and statistically significant increase in shoot and root lengths was observed especially in case of Acinetobacter lwoffii T24 and Citrobacter freundii N52-treated plants. Cropland bacteria have the ability to support plant growth. Bacteria of croplands irrigated with industrially polluted water develop resistance against toxicants. These bacteria are helpful for the plant growth in such contaminated lands. The bacteria capable of both As detoxification and plant growth promotion, such as A. lwoffii T24 and C. freundii N52, are ideal for remediation and reclamation of polluted lands for agriculture purposes. © 2017 The Society for Applied Microbiology.

  14. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Xiaobing; Wu, Yaxun [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); Wang, Yuchan [Department of Pathogen, Medical College, Nantong University, Nantong 226001, Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu (China); Zhu, Xinghua; Yin, Haibing [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); He, Yunhua [Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu (China); Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); Xu, Xiaohong, E-mail: xuxiaohongnantong@126.com [Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); He, Song, E-mail: hesongnt@126.com [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China)

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1{sup S102} were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1{sup S102} nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. - Highlights: • The expression statuses of YB-1 and pYB-1{sup S102} are reversely correlated with outcomes of DLBCL patients. • YB-1 promotes cell proliferation by accelerating G1/S transition in DLBCL. • YB-1 confers drug resistance to mitoxantrone in DLBCL.

  15. Complete genome and comparative analysis of Streptococcus gallolyticus subsp. gallolyticus, an emerging pathogen of infective endocarditis

    Directory of Open Access Journals (Sweden)

    Dreier Jens

    2011-08-01

    Full Text Available Abstract Background Streptococcus gallolyticus subsp. gallolyticus is an important causative agent of infectious endocarditis, while the pathogenicity of this species is widely unclear. To gain insight into the pathomechanisms and the underlying genetic elements for lateral gene transfer, we sequenced the entire genome of this pathogen. Results We sequenced the whole genome of S. gallolyticus subsp. gallolyticus strain ATCC BAA-2069, consisting of a 2,356,444 bp circular DNA molecule with a G+C-content of 37.65% and a novel 20,765 bp plasmid designated as pSGG1. Bioinformatic analysis predicted 2,309 ORFs and the presence of 80 tRNAs and 21 rRNAs in the chromosome. Furthermore, 21 ORFs were detected on the plasmid pSGG1, including tetracycline resistance genes telL and tet(O/W/32/O. Screening of 41 S. gallolyticus subsp. gallolyticus isolates revealed one plasmid (pSGG2 homologous to pSGG1. We further predicted 21 surface proteins containing the cell wall-sorting motif LPxTG, which were shown to play a functional role in the adhesion of bacteria to host cells. In addition, we performed a whole genome comparison to the recently sequenced S. gallolyticus subsp. gallolyticus strain UCN34, revealing significant differences. Conclusions The analysis of the whole genome sequence of S. gallolyticus subsp. gallolyticus promotes understanding of genetic factors concerning the pathogenesis and adhesion to ECM of this pathogen. For the first time we detected the presence of the mobilizable pSGG1 plasmid, which may play a functional role in lateral gene transfer and promote a selective advantage due to a tetracycline resistance.

  16. Metastasis of breast cancer cells to the bone, lung, and lymph nodes promotes resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Takamitsu [Gunma Prefectural College of Health Sciences, Department of Radiological Technology, School of Radiological Technology, Gunma, Maebashi (Japan); Iwadate, Manabu [Fukushima Medical University, Department of Thyroid and Endocrinology, School of Medicine, Fukushima (Japan); Tachibana, Kazunoshin [Fukushima Medical University, Department of Breast Surgery, School of Medicine, Fukushima (Japan); Waguri, Satoshi [Fukushima Medical University, Department of Anatomy and Histology, School of Medicine, Fukushima (Japan); Takenoshita, Seiichi [Fukushima Medical University, Advanced Clinical Research Center, Fukushima Global Medical Science Center, School of Medicine, Fukushima (Japan); Hamada, Nobuyuki [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo, Komae (Japan)

    2017-10-15

    Metastasis represents the leading cause of breast cancer deaths, necessitating strategies for its treatment. Although radiotherapy is employed for both primary and metastatic breast cancers, the difference in their ionizing radiation response remains incompletely understood. This study is the first to compare the radioresponse of a breast cancer cell line with its metastatic variants and report that such metastatic variants are more radioresistant. A luciferase expressing cell line was established from human basal-like breast adenocarcinoma MDA-MB-231 and underwent in vivo selections, whereby a cycle of inoculations into the left cardiac ventricle or the mammary fat pad of athymic nude mice, isolation of metastases to the bone, lung and lymph nodes visualized with bioluminescence imaging, and expansion of obtained cells was repeated twice or three times. The established metastatic cell lines were assessed for cell proliferation, wound healing, invasion, clonogenic survival, and apoptosis. The established metastatic cell lines possessed an increased proliferative potential in vivo and were more chemotactic, invasive, and resistant to X-ray-induced clonogenic inactivation and apoptosis in vitro. Breast cancer metastasis to the bone, lung, and lymph nodes promotes radioresistance. (orig.) [German] Metastasierung ist die Hauptursache fuer den toedlichen Verlauf von Brustkrebserkrankungen. Darauf muessen spezifische Behandlungsstrategien ausgerichtet werden. Sowohl primaere als auch metastatische Brustkrebsarten koennen mit einer Strahlentherapie behandelt werden, allerdings sind die Unterschiede in der Reaktion auf ionisierende Strahlung bis heute nicht vollstaendig verstanden. In dieser Studie wird zum ersten Mal die Strahlenantwort einer Brustkrebszelllinie mit der ihrer metastatischen Varianten verglichen und die erhoehte Strahlenresistenz der metastatischen Varianten gezeigt. Eine Luciferase-exprimierende Zelllinie wurde aus humanen basaloiden Brustadenokarzinomen

  17. Antimicrobial effects of herbal extracts on Streptococcus mutans and normal oral streptococci.

    Science.gov (United States)

    Lee, Sung-Hoon

    2013-08-01

    Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.

  18. PmrB Mutations Promote Polymyxin Resistance of Pseudomonas aeruginosa Isolated from Colistin-Treated Cystic Fibrosis Patients

    DEFF Research Database (Denmark)

    Moskowitz, Samuel M; Brannon, Mark K; Dasgupta, Nandini

    2012-01-01

    Pseudomonas aeruginosa can develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of colistin (polymyxin E) resistance in laboratory strains and clinical isolates...

  19. PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans.

    Science.gov (United States)

    Keshet, Alex; Mertenskötter, Ansgar; Winter, Sarah A; Brinkmann, Vanessa; Dölling, Ramona; Paul, Rüdiger J

    2017-12-01

    The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.

  20. Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment.

    Science.gov (United States)

    Maillard, Jean-Yves; Bloomfield, Sally; Coelho, Joana Rosado; Collier, Phillip; Cookson, Barry; Fanning, Séamus; Hill, Andrew; Hartemann, Philippe; McBain, Andrew J; Oggioni, Marco; Sattar, Syed; Schweizer, Herbert P; Threlfall, John

    2013-10-01

    The increasing use of microbicides in consumer products is raising concerns related to enhanced microbicide resistance in bacteria and potential cross resistance to antibiotics. The recently published documents on this topic from the European Commission have spawned much interest to better understand the true extent of the putative links for the benefit of the manufacturers, regulators, and consumers alike. This white paper is based on a 2-day workshop (SEAC-Unilever, Bedford, United Kingdom; June 2012) in the fields of microbicide usage and resistance. It identifies gaps in our knowledge and also makes specific recommendations for harmonization of key terms and refinement/standardization of methods for testing microbicide resistance to better assess the impact and possible links with cross resistance to antibiotics. It also calls for a better cohesion in research in this field. Such information is crucial to developing any risk assessment framework on microbicide use notably in consumer products. The article also identifies key research questions where there are inadequate data, which, if addressed, could promote improved knowledge and understanding to assess any related risks for consumer and environmental safety.

  1. In vitro activity of 24 antimicrobial agents against Staphylococcus and Streptococcus isolated from diseased animals in Japan.

    Science.gov (United States)

    Morioka, Ayako; Asai, Tetsuo; Ishihara, Kanako; Kojima, Akemi; Tamura, Yutaka; Takahashi, Toshio

    2005-02-01

    A total of 88 Staphylococcus and 61 Streptococcus isolates from diseased animals throughout Japan were examined in 2000 for the minimum inhibitory concentrations of 24 different antimicrobials by the agar dilution method standardized by the Japanese Society of Chemotherapy. The resistance rates to aminobenzylpenicillin (36.4%) and benzylpenicillin (35.2%) were high in Staphylococcus isolates, and those to oxytetracycline (45.9%) and kanamycin (21.3%) were high in Streptococcus isolates. Two isolates resistant to oxacillin harbored the mecA gene. One was Staphylococcus epidermidis derived from a pig with arthritis, and the other Staphylococcus cohnii from a head of cattle with mastitis.

  2. Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus

    Science.gov (United States)

    Barnett, Timothy C.; McArthur, Jason D.; Cole, Jason N.; Gillen, Christine M.; Henningham, Anna; Sriprakash, K. S.; Sanderson-Smith, Martina L.; Nizet, Victor

    2014-01-01

    SUMMARY Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority. PMID:24696436

  3. The clinical consequences of antimicrobial resistance.

    Science.gov (United States)

    Rice, Louis B

    2009-10-01

    The continued evolution of antimicrobial resistance in the hospital and more recently in the community threatens to seriously compromise our ability to treat serious infections. The major success of the seven-valent Streptococcus pneumoniae vaccine at reducing both infection and resistance has been followed by the emergence of previously minor serotypes that express multiresistance. The almost universal activity of cephalosporins and fluoroquinolones against community Escherichia coli strains has been compromised by the spread of CTX-M beta-lactamase-producing, fluoroquinolone-resistant strains, and the emergence of community-onset methicillin-resistant Staphylococcus aureus, particularly in the United States, has forced us to re-think our empirical treatment guidelines for skin and soft-tissue infections. Finally, our most potent and reliable class of antibiotics, the carbapenems, is compromised by the growth, primarily in intensive care units, of multiresistant Klebsiella pneumoniae, Acinetobacter baumanni, and Pseudomonas aeruginosa. The lack of a robust pipeline of new agents, particularly against resistant Gram-negative bacteria, emphasizes the importance of optimizing our use of current antimicrobials and promoting strict adherence to established infection control practices.

  4. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  5. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape

    International Nuclear Information System (INIS)

    Sheng Xiafang; Xia Juanjuan; Jiang Chunyu; He Linyan; Qian Meng

    2008-01-01

    Two lead (Pb)-resistant endophytic bacteria were isolated from rape roots grown in heavy metal-contaminated soils and characterized. A pot experiment was conducted for investigating the capability of the two isolates to promote the growth and Pb uptake of rape from Pb-amended soil. The two isolates were identified as Pseudomonas fluorescens G10 and Microbacterium sp. G16 based on the 16S rDNA gene sequence analysis. Strains G10 and G16 exhibited different multiple heavy metal and antibiotic resistance characteristics and increased water-soluble Pb in solution and in Pb-added soil. Root elongation assays demonstrated increases in root elongation of inoculated rape seedlings compared to the control plants. Strain G16 produced indole acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase. Increases in biomass production and total Pb uptake in the bacteria-inoculated plants were obtained compared to the control. The two strains could colonize the root interior and rhizosphere soil of rape after root inoculation. - Heavy metal-resistant endophytic bacteria from rape have the potential of promoting the growth and lead uptake of rape

  6. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-01-01

    Research highlights: → Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells → Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway → Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* → miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  7. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-?-mediated signaling

    OpenAIRE

    Peng, X; Gong, F; Chen, Y; Jiang, Y; Liu, J; Yu, M; Zhang, S; Wang, M; Xiao, G; Liao, H

    2014-01-01

    Paclitaxel is one of the most effective chemotherapy drugs for advanced cervical cancer. However, acquired resistance of paclitaxel represents a major barrier to successful anticancer treatment. In this study, paclitaxel-resistant HeLa sublines (HeLa-R cell lines) were established by continuous exposure and increased autophagy level was observed in HeLa-R cells. 3-Methyladenine or ATG7 siRNA, autophagy inhibitors, could restore sensitivity of HeLa-R cells to paclitaxel compared with parental ...

  8. Occurrence, isolation and DNA identification of Streptococcus ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Streptococcus thermophilus involved in Algerian ... among reference, and wild strains of S. thermophilus and for their differentiation from Enterococcus spp. ..... Isolation and characterization of Lactobacillus delbrueckii ssp.

  9. streptococcus pneumoniae , klebsiella pneumoniae proteus vulgaris

    African Journals Online (AJOL)

    DR. AMINU

    2-20mm) on Streptococcus pneumoniae and Proteus vulgaris when compared to the ... The result from this preliminary study suggests that the plant contains active compounds that .... Veterinary and Medical Laboratory Technology, Vom,. Jos.

  10. Streptococcus pneumoniae urinary tract infection in pedeatrics.

    Science.gov (United States)

    Pougnet, Richard; Sapin, Jeanne; De Parscau, Loïc; Pougnet, Laurence

    2017-06-01

    Streptococcus pneumoniae infections in children are most often lung infections or meningitis. Urinary tract infections are much rarer. We present the case of a urinary tract infection with Streptococcus pneumoniae. The clinical picture was classical. The urine culture showed the presence of Streptococcus pneumoniae in urine (10 4 UFC/mL; with 2 × 10 4 leucocytes/mL). The literature mentions a few cases of such infections. In some studies, the prevalence of Streptococcus pneumoniae in urine of children is less than 1%. Those children mostly present abnormalities of urinary tract. In our case, urinary ultrasound scan have shown the presence of an ectopic kidney in this child. The discussion between the clinician and the biologist has contributed to the discovery of this renal anomaly.

  11. Growth of Verticillium longisporum in Xylem Sap of Brassica napus is Independent from Cultivar Resistance but Promoted by Plant Aging.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-09-01

    As Verticillium stem striping of oilseed rape (OSR), a vascular disease caused by Verticillium longisporum, is extending into new geographic regions and no control with fungicides exists, the demand for understanding mechanisms of quantitative resistance increases. Because V. longisporum is strictly limited to the xylem and resistance is expressed in the systemic stage post root invasion, we investigated a potential antifungal role of soluble constituents and nutritional conditions in xylem sap as determinants of cultivar resistance of OSR to V. longisporum. Assessment of biometric and molecular genetic parameters applied to describe V. longisporum resistance (net area under disease progress curve, stunting, stem thickness, plant biomass, and V. longisporum DNA content) showed consistent susceptibility of cultivar 'Falcon' in contrast to two resistant genotypes, 'SEM' and 'Aviso'. Spectrophotometric analysis revealed a consistently stronger in vitro growth of V. longisporum in xylem sap extracted from OSR compared with the water control. Further comparisons of fungal growth in xylem sap of different cultivars revealed the absence of constitutive or V. longisporum induced antifungal activity in the xylem sap of resistant versus susceptible genotypes. The similar growth of V. longisporum in xylem sap, irrespective of cultivar, infection with V. longisporum and xylem sap filtration, was correlated with about equal amounts of total soluble proteins in xylem sap from these treatments. Interestingly, compared with younger plants, xylem sap from older plants induced significantly stronger fungal growth. Growth enhancement of V. longisporum in xylem sap of aging plants was reflected by increased contents of carbohydrates, which was consistent in mock or V. longisporum-infected plants and independent from cultivar resistance. The improved nutritional conditions in the xylem of more mature plants may explain the late appearance of disease symptoms, which are observed only in

  12. Role of Streptococcus Anginosus on the formation of dental caries

    Directory of Open Access Journals (Sweden)

    Yetty Herdiyati Nonong

    2011-11-01

    Full Text Available Generally, the etiology of dental caries is the cariogenic properties of bacteria, these are always associated with Streptococcus mutans. Glucosyltransferase fragment (Gtf are also in other strains of Streptococcus such as Streptococcus anginosus, Streptococcus milleri which includes beta hemolysis. Genotypically B Streptococcus anginosus has genetic characteristics that are similar to Streptococcus mutans. The research objective was to determine the existence of Gtf B/C gene as a cause of caries in Streptococcus anginosus. The study was conducted in experimental laboratories with PCR technique by taking a sample of 20 children who had caries. The results showed there was the amplification of Streptococcus anginosus with a level of homology 96%, 97%, and 99%. The results of the Gtf genes amplification fragment B/C provided 600 pb ribbon. The conclusion was Streptococcus anginosus classified as cariogenic bacteria because they had Gtf B/C genes.

  13. Aortitis with bacteraemia by Streptococcus equi Zooepidemicus

    International Nuclear Information System (INIS)

    Betancur, Carlos Alberto; Giraldo, Juan David; Saldarriaga Eugenia Lucia

    2005-01-01

    Infections by Streptococcus equi subspecies zooepidemicus occur in animals. In human beings these infections are generally accidental, and few cases have been reported. We present the case of a 56-year-old male, a butcher, who presented with abdominal pain. Aneurismatic dilatation of the aorta below the renal arteries was documented by CT-scanning. A purulent collection and arterial ulceration were found during surgery; Streptococcus equi zooepidemicus was isolated from the collection and from blood cultures

  14. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737.

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D; Marnett, Lawrence J

    2013-03-08

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.

  15. The Stress Protein BAG3 Stabilizes Mcl-1 Protein and Promotes Survival of Cancer Cells and Resistance to Antagonist ABT-737*

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D.; Marnett, Lawrence J.

    2013-01-01

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery. PMID:23341456

  16. Recommended conservation of the names Streptococcus sanguis, Streptococcus rattus, Streptococcus cricetus, and seven other names included in the Approved Lists of Bacterial Names. Request for an opinion

    DEFF Research Database (Denmark)

    Kilian, Mogens

    2001-01-01

    With reference to the first Principle of the International Code of Nomenclature of Bacteria, which emphasizes stability of names, it is proposed that the original names Streptococcus sanguis, Streptococcus rattus, Streptococcus cricetus, Erwinia ananas, Eubacterium tarantellus, Lactobacillus sake......, Nitrosococcus oceanus, Pseudomonas betle, Rickettsia canada and Streptomyces rangoon, all included in the Approved Lists of Bacterial Names, be conserved. Request for an Opinion...

  17. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  18. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    Science.gov (United States)

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Forkhead Box Protein C2 Promotes Epithelial-Mesenchymal Transition, Migration and Invasion in Cisplatin-Resistant Human Ovarian Cancer Cell Line (SKOV3/CDDP

    Directory of Open Access Journals (Sweden)

    Chanjuan Li

    2016-08-01

    Full Text Available Background/Aims: Forkhead Box Protein C2 (FOXC2 has been reported to be overexpressed in a variety of human cancers. However, it is unclear whether FOXC2 regulates epithelial-mesenchymal transition (EMT in CDDP-resistant ovarian cancer cells. The aim of this study is to investigate the effects of FOXC2 on EMT and invasive characteristics of CDDP-resistant ovarian cancer cells and the underlying molecular mechanism. Methods: MTT, Western blot, scratch wound healing, matrigel transwell invasion, attachment and detachment assays were performed to detect half maximal inhibitory concentration (IC50 of CDDP, expression of EMT-related proteins and invasive characteristics in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP and its parental cell line (SKOV3. Small hairpin RNA (shRNA was used to knockdown FOXC2 and analyze the effect of FOXC2 knockdown on EMT and invasive characteristics of SKOV3/CDDP cells. Also, the effect of FOXC2 upregulation on EMT and invasive characteristics of SKOV3 cells was analyzed. Furthermore, the molecular mechanism underlying FOXC2-regulating EMT in ovarian cancer cells was determined. Results: Compared with parental SKOV3 cell line, SKOV3/CDDP showed higher IC50 of CDDP (43.26μM (PConclusions: Taken together, these data demonstrate that FOXC2 may be a promoter of EMT phenotype in CDDP-resistant ovarian cancer cells and a potential therapeutic target for the treatment of advanced ovarian cancer.

  20. CD147 promotes IKK/IκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Zhai, Yue; Wu, Bo; Li, Jia; Yao, Xi-ying; Zhu, Ping; Chen, Zhi-nan

    2016-01-01

    TNF is highly expressed in synovial tissue of rheumatoid arthritis (RA) patients, where it induces proinflammatory cytokine secretion. However, in other cases, TNF will cause cell death. Considering the abnormal proliferation and activation of rheumatoid arthritis synovioblasts, the proper rate of synovioblast apoptosis could possibly relieve arthritis. However, the mechanism mediating TNF-induced synovioblast survival versus cell death in RA is not fully understood. Our objective was to study the role of CD147 in TNF downstream pathway preference in RA synovioblasts. We found that overexpressing TNF in synovial tissue did not increase the apoptotic level and, in vitro, TNF-induced mild synovioblast apoptosis and promoted IL-6 secretion. CD147, which was highly expressed in rheumatoid arthritis synovial fibroblasts (RASFs), increased the resistance of synovioblasts to apoptosis under TNF stimulation. Downregulating CD147 both increased the apoptotic rate and inhibited IκB kinase (IKK)/IκB/NF-κB pathway-dependent proinflammatory cytokine secretion. Further, we determined that it was the extracellular portion of CD147 and not the intracellular portion that was responsible for synovioblast apoptosis resistance. CD147 monoclonal antibody inhibited TNF-induced proinflammatory cytokine production but had no effect on apoptotic rates. Thus, our study indicates that CD147 is resistant to TNF-induced apoptosis by promoting IKK/IκB/NF-κB pathway, and the extracellular portion of CD147 is the functional region. CD147 inhibits TNF-stimulated RASF apoptosis. CD147 knockdown decreases IKK expression and inhibits NF-κB-related cytokine secretion. CD147's extracellular portion is responsible for apoptosis resistance. CD147 antibody inhibits TNF-related cytokine secretion without additional apoptosis.

  1. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected

  2. Penetration of Streptococcus sobrinus and Streptococcus sanguinis into dental enamel.

    Science.gov (United States)

    Kneist, Susanne; Nietzsche, Sandor; Küpper, Harald; Raser, Gerhard; Willershausen, Brita; Callaway, Angelika

    2015-10-01

    The aim of this pilot study was to assess the difference in virulence of acidogenic and aciduric oral streptococci in an in vitro caries model using their penetration depths into dental enamel. 30 caries-free extracted molars from 11- to 16-year-olds were cleaned ultrasonically for 1 min with de-ionized water and, after air-drying, embedded in epoxy resin. After 8-h of setting at room temperature, the specimens were ground on the buccal side with SiC-paper 1200 (particle size 13-16 μm). Enamel was removed in circular areas sized 3 mm in diameter; the mean depth of removed enamel was 230 ± 60 μm. 15 specimens each were incubated anaerobically under standardized conditions with 24 h-cultures of Streptococcus sanguinis 9S or Streptococcus sobrinus OMZ 176 in Balmelli broth at 37 ± 2 °C; the pH-values of the broths were measured at the beginning and end of each incubation cycle. After 2, 4, 6, 8, and 10 weeks 3 teeth each were fixed in 2.5% glutaraldehyde in cacodylate buffer for 24 h, washed 3× and dehydrated 30-60min by sequential washes through a series of 30-100% graded ethanol. The teeth were cut in half longitudinally; afterward, two slits were made to obtain fracture surfaces in the infected area. After critical-point-drying the fragments were gold-sputtered and viewed in a scanning electron microscope at magnifications of ×20-20,000. After 10 weeks of incubation, penetration of S. sanguinis of 11.13 ± 24.04 μm below the break edges into the enamel was observed. The invasion of S. sobrinus reached depths of 87.53 ± 76.34 μm. The difference was statistically significant (paired t test: p = 0.033). The experimental penetration depths emphasize the importance of S. sanguinis versus S. sobrinus in the context of the extended ecological plaque hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Functional variation of the antigen I/II surface protein in Streptococcus mutans and Streptococcus intermedius

    NARCIS (Netherlands)

    Petersen, FC; Assev, S; van der Mei, HC; Busscher, HJ; Scheie, AA

    Although Streptococcus intermedius and Streptococcus mutans are regarded as members of the commensal microflora of the body, S. intermedius is often associated with deep-seated purulent infections, whereas S. mutans is frequently associated with dental caries. In this study, we investigated the

  4. Relation of Growth of Streptococcus lactis and Streptococcus cremoris to Amino Acid Transport

    NARCIS (Netherlands)

    Poolman, Bert; Konings, Wil N.

    The maximum specific growth rate of Streptococcus lactis and Streptococcus cremoris on synthetic medium containing glutamate but no glutamine decreases rapidly above pH 7. Growth of these organisms is extended to pH values in excess of 8 in the presence of glutamine. These results can be explained

  5. Isolation of Streptococcus tigurinus - a novel member of Streptococcus mitis group from a case of periodontitis.

    Science.gov (United States)

    Dhotre, Shree V; Mehetre, Gajanan T; Dharne, Mahesh S; Suryawanshi, Namdev M; Nagoba, Basavraj S

    2014-08-01

    Streptococcus tigurinus is a new member of the Streptococcus viridians group and is closely related to Streptococcus mitis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae, Streptococcus oralis, and Streptococcus infantis. The type strain AZ_3a(T) of S. tigurinus was originally isolated from a patient with infective endocarditis. Accurate identification of S. tigurinus is facilitated only by newer molecular methods like 16S rRNA gene analysis. During the course of study on bacteraemia and infective endocarditis with reference to periodontitis and viridians group of streptococci, a strain of S. tigurinus isolated from subgingival plaque of a patient with periodontitis identified by 16S rRNA gene analysis, which was originally identified as Streptococcus pluranimalium by Vitek 2. Confirmation by 16S rRNA gene analysis showed 99.39% similarity (1476/1485 bp) with S. tigurinus AZ_3a(T) (AORU01000002). To the best of our knowledge, this is the first report of isolation of S. tigurinus from the oral cavity of a periodontitis patient. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Reduced Zeta potential through use of cationic adhesion promoter for improved resist process performance and minimizing material consumption

    Science.gov (United States)

    Hodgson, Lorna; Thompson, Andrew

    2012-03-01

    This paper presents the results of a non-HMDS (non-silane) adhesion promoter that was used to reduce the zeta potential for very thin (proprietary) polymer on silicon. By reducing the zeta potential, as measured by the minimum sample required to fully coat a wafer, the amount of polymer required to coat silicon substrates was significantly reduced in the manufacture of X-ray windows used for high transmission of low-energy X-rays. Moreover, this approach used aqueous based adhesion promoter described as a cationic surface active agent that has been shown to improve adhesion of photoresists (positive, negative, epoxy [SU8], e-beam and dry film). As well as reducing the amount of polymer required to coat substrates, this aqueous adhesion promoter is nonhazardous, and contains non-volatile solvents.

  7. Characterization of a Streptococcus suis tet(O/W/32/O)-carrying element transferable to major streptococcal pathogens.

    Science.gov (United States)

    Palmieri, Claudio; Magi, Gloria; Mingoia, Marina; Bagnarelli, Patrizia; Ripa, Sandro; Varaldo, Pietro E; Facinelli, Bruna

    2012-09-01

    Mosaic tetracycline resistance determinants are a recently discovered class of hybrids of ribosomal protection tet genes. They may show different patterns of mosaicism, but their final size has remained unaltered. Initially thought to be confined to a small group of anaerobic bacteria, mosaic tet genes were then found to be widespread. In the genus Streptococcus, a mosaic tet gene [tet(O/W/32/O)] was first discovered in Streptococcus suis, an emerging drug-resistant pig and human pathogen. In this study, we report the molecular characterization of a tet(O/W/32/O) gene-carrying mobile element from an S. suis isolate. tet(O/W/32/O) was detected, in tandem with tet(40), in a circular 14,741-bp genetic element (39.1% G+C; 17 open reading frames [ORFs] identified). The novel element, which we designated 15K, also carried the macrolide resistance determinant erm(B) and an aminoglycoside resistance four-gene cluster including aadE (streptomycin) and aphA (kanamycin). 15K appeared to be an unstable genetic element that, in the absence of recombinases, is capable of undergoing spontaneous excision under standard growth conditions. In the integrated form, 15K was found inside a 54,879-bp integrative and conjugative element (ICE) (50.5% G+C; 55 ORFs), which we designated ICESsu32457. An ∼1.3-kb segment that apparently served as the att site for excision of the unstable 15K element was identified. The novel ICE was transferable at high frequency to recipients from pathogenic Streptococcus species (S. suis, Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae), suggesting that the multiresistance 15K element can successfully spread within streptococcal populations.

  8. Multi-drug resistance and molecular pattern of erythromycin and ...

    African Journals Online (AJOL)

    The appearance and dissemination of penicillin resistant and macrolide resistant Streptococcus pneumoniae strains has caused increasing concern worldwide. The aim of this study was to survey drug resistance and genetic characteristics of macrolide and penicillin resistance in S. pneumoniae. This is a cross-sectional ...

  9. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    Science.gov (United States)

    2011-01-01

    Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma. PMID:21457573

  10. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    International Nuclear Information System (INIS)

    Lechler, Philipp; Renkawitz, Tobias; Campean, Valentina; Balakrishnan, Sanjeevi; Tingart, Markus; Grifka, Joachim; Schaumburger, Jens

    2011-01-01

    Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G 2 /M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma

  11. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Grifka Joachim

    2011-04-01

    Full Text Available Abstract Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma.

  12. Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells.

    Science.gov (United States)

    Zhou, Kairui; Shi, Xiaoli; Huo, Jinling; Liu, Weihua; Yang, Dongxiao; Yang, Tengjiao; Qin, Tiantian; Wang, Cong

    2017-08-01

    Drug resistance and metastasis significantly hinder chemotherapy and worsen prognoses in cancer. Bone morphogenetic protein 4 (BMP4) belongs to the TGF-β superfamily, has broad biological activities in cell proliferation and cartilage differentiation and is also able to induce migration and invasion. Herein, we investigated the role of BMP4 in the regulation of metastasis in paclitaxel-resistant human esophageal carcinoma EC109 cells (EC109/Taxol) and docetaxel-resistant human gastric cancer MGC803 cells (MGC/Doc). In these drug-resistant cell lines, we found the cell motility was enhanced and BMP4 was up-regulated relative to their respective parental cell lines. Consistent with in vitro assays, migration potential and BMP4 expression were increased in EC109/Taxol nude mice. Furthermore, to address whether BMP4 was required to enhance the metastatic in EC109/Taxol cells, the pharmacological inhibitor of BMP signaling dorsomorphin was used; meanwhile, we found that the migration and invasion abilities were inhibited. Moreover, the canonical Smad signaling pathway was investigated. Overall, our studies demonstrated that BMP4 participates in the regulation of invasion and migration by EC109/Taxol cells, and inhibition of BMP4 may be a novel strategy to interfere with metastasis in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of a tumor promoter and an anti-promoter on spontaneous and UV-induced 6-thioguanine-resistant mutations and sister-chromatid exchanges in V79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Kano, Y.; Tatsumi, M.; Paul, P.

    1980-01-01

    The effects of a tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and/or an anti-promoter antipain (protease inhibitor) on spontaneous and ultraviolet-induced sister-chromatid exchanges (SCEs) and 6-thioguanine-resistant (6TGsup(r)) recessive mutations were examined in V79 Chinese hamster cells in culture. TPA and/or antipain neither significantly altered base-line and UV-induced immediate SCE frequencies, nor decreased the level of delayed SCEs which persisted 6-7 days after irradiation. TPA and/or antipain appeared to enhance the recovery of UV-induced 6TGsup(r) colonies at the plateau expression phase despite non-mutagenicity by themselves and unaltered metabolic cooperation. Thus, the results conceivably imply that the 6TGsup(r)-recessive mutation expression, but not fixation, can be modulated at the cell level by TPA and/or antipain. Our results, together with the recent results of Loveday and Latt, may argue against the notion that TPA enhances the antipain-suppressible SCEs as an index of mitotic recombination in relevance with a tumor-promotion mechanism. (orig.)

  14. Functional dissection of Streptococcus pyogenes M5 protein: the hypervariable region is essential for virulence.

    Directory of Open Access Journals (Sweden)

    Johan Waldemarsson

    Full Text Available The surface-localized M protein of Streptococcus pyogenes is a major virulence factor that inhibits phagocytosis, as determined ex vivo. Because little is known about the role of M protein in vivo we analyzed the contribution of different M protein regions to virulence, using the fibrinogen (Fg-binding M5 protein and a mouse model of acute invasive infection. This model was suitable, because M5 is required for mouse virulence and binds mouse and human Fg equally well, as shown here. Mixed infection experiments with wild type bacteria demonstrated that mutants lacking the N-terminal hypervariable region (HVR or the Fg-binding B-repeat region were strongly attenuated, while a mutant lacking the conserved C-repeats was only slightly attenuated. Because the HVR of M5 is not required for phagocytosis resistance, our data imply that this HVR plays a major but unknown role during acute infection. The B-repeat region is required for phagocytosis resistance and specifically binds Fg, suggesting that it promotes virulence by binding Fg. However, B-repeat mutants were attenuated even in Fg-deficient mice, implying that the B-repeats may have a second function, in addition to Fg-binding. These data demonstrate that two distinct M5 regions, including the HVR, are essential to virulence during the early stages of an infection. In particular, our data provide the first in vivo evidence that the HVR of an M protein plays a major role in virulence, focusing interest on the molecular role of this region.

  15. Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Marilyn Sumayo

    2013-06-01

    Full Text Available The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA, 1-hexadecene and linoleic acid (LA, as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens.

  16. Human milk oligosaccharides inhibit growth of group B Streptococcus

    NARCIS (Netherlands)

    Lin, Ann E; Autran, Chloe A; Szyszka, Alexandra; Escajadillo, Tamara; Huang, Mia; Godula, Kamil; Prudden, Anthony R; Boons, Geert-Jan; Lewis, Amanda L; Doran, Kelly S; Nizet, Victor; Bode, Lars

    2017-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of invasive bacterial infections in newborns, typically acquired vertically during childbirth secondary to maternal vaginal colonization. Human milk oligosaccharides (HMOs) have important nutritional and biological activities

  17. Streptococcus salivarius meningitis after dental care: case report

    Directory of Open Access Journals (Sweden)

    Maira Zoppelletto

    2012-12-01

    Full Text Available Introduction. Streptococcus salivarius is a common commensal of the oral mucosa, associated with infections in different sites. Meningitis due to this species are described in a few occasions . In this study refer to a case recently diagnosed in our hospital for treatment of a subsequent dental caries. Case report. A man of 35 years, presents to the emergency room with fever, headache, confusion, marked nuchal rigor.Anamnesis is the treatment of dental caries on the previous day.The blood count showed 24.7x109 / L with WBC 22.9x109 / L (92.9% neutrophils. The lumbar puncture CSF noted cloudy with 15.0 x 109 / L WBC, glicorrachia 5 g / L, protidorrachia 6.5 g / L. Microscopic examination showed numerous granulocytes and prevalence of Gram-positive cocci.The pneumococcal antigen was negative.The blood cultures before starting antibiotic therapy, were negative. CSF was isolated from the culture of a Streptococcus salivarius. To antibiotic therapy started in the ED, after lumbar puncture is associated with the Ampicillin Ceftriaxone and continued for 15 days to improve the patient’s general condition, then resigned in the 17 th day. Materials and methods. From CSF inoculated in blood agar plates and chocolate agar alpha hemolytic colonies were isolated, catalysis negative, optochin resistant. The biochemical identification performed with Phoenix (BD and confirmed by PCR Pan bacterial (16S rDNA bacterial strain identified as Streptococcus salivarius.The antibiogram performed with Phoenix (BD according to the CLSI guidelines indicated sensitivity to penicillin, vancomycin, cefotaxime, cefepime, and chloramphenicol. Conclusions. Meningitis by Streptococcus salivarius was found in a few cases, mainly related to the transmission of health personnel from the oral cavity during lumbar punctures performed without the use of surgical masks. The following bacterial meningitis in dental treatment having a low incidence and often fatal course be suspected by

  18. Genome-wide identification of Streptococcus pneumoniae genes essential for bacterial replication during experimental meningitis

    DEFF Research Database (Denmark)

    Molzen, T E; Burghout, P; Bootsma, H J

    2010-01-01

    Meningitis is the most serious of invasive infections caused by the Gram-positive bacterium Streptococcus pneumoniae. Vaccines protect only against a limited number of serotypes, and evolving bacterial resistance to antimicrobials impedes treatment. Further insight into the molecular pathogenesis...... as targets for future therapy and prevention of pneumococcal meningitis, since their mutants were attenuated in both models of infection as well as in competitive growth in human cerebrospinal fluid in vitro.......Meningitis is the most serious of invasive infections caused by the Gram-positive bacterium Streptococcus pneumoniae. Vaccines protect only against a limited number of serotypes, and evolving bacterial resistance to antimicrobials impedes treatment. Further insight into the molecular pathogenesis...... genes mutants of which had become attenuated or enriched, respectively, during infection. The results point to essential roles for capsular polysaccharides, nutrient uptake, and amino acid biosynthesis in bacterial replication during experimental meningitis. The GAF phenotype of a subset of identified...

  19. The Antiphagocytic Activity of SeM of Streptococcus equi Requires Capsule.

    Science.gov (United States)

    Timoney, John F; Suther, Pranav; Velineni, Sridhar; Artiushin, Sergey C

    2014-01-01

    Resistance to phagocytosis is a crucial virulence property of Streptococcus equi (Streptococcus equi subsp. equi; Se), the cause of equine strangles. The contribution and interdependence of capsule and SeM to killing in equine blood and neutrophils were investigated in naturally occurring strains of Se. Strains CF32, SF463 were capsule and SeM positive, strains Lex90, Lex93 were capsule negative and SeM positive and strains Se19, Se1-8 were capsule positive and SeM deficient. Phagocytosis and killing of Se19, Se1-8, Lex90 and Lex93 in equine blood and by neutrophils suspended in serum were significantly (P ≤ 0.02) greater compared to CF32 and SF463. The results indicate capsule and SeM are both required for resistance to phagocytosis and killing and that the anti-phagocytic property of SeM is greatly reduced in the absence of capsule.

  20. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    Science.gov (United States)

    Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  1. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    Directory of Open Access Journals (Sweden)

    Mototaka Sato

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC.EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined.EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni. EMMPRIN-overexpressing RCC cells were resistant to sunitinib.Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  2. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance

    OpenAIRE

    Campbell, Kirsteen J.; Bath, Mary L.; Turner, Marian L.; Vandenberg, Cassandra J.; Bouillet, Philippe; Metcalf, Donald; Scott, Clare L.; Cory, Suzanne

    2010-01-01

    Diverse human cancers with poor prognosis, including many lymphoid and myeloid malignancies, exhibit high levels of Mcl-1. To explore the impact of Mcl-1 overexpression on the hematopoietic compartment, we have generated vavP-Mcl-1 transgenic mice. Their lymphoid and myeloid cells displayed increased resistance to a variety of cytotoxic agents. Myelopoiesis was relatively normal, but lymphopoiesis was clearly perturbed, with excess mature B and T cells accumulating. Rather than the follicular...

  3. Streptococcus agalactiae: a vaginal pathogen?

    Science.gov (United States)

    Maniatis, A N; Palermos, J; Kantzanou, M; Maniatis, N A; Christodoulou, C; Legakis, N J

    1996-03-01

    The significance of Streptococcus agalactiae as an aetiological agent in vaginitis was evaluated. A total of 6226 samples from women who presented with vaginal symptoms was examined. The presence of >10 leucocytes/high-power field (h.p.f.) was taken to be the criterion of active infection. S. agalactiae was isolated from 10.1% of these samples. The isolation rates of other common pathogens such as Candida spp., Gardnerella vaginalis and Trichomonas spp. were 54.1%, 27.2% and 4.2%, respectively, in the same group of patients. In contrast, the isolation rates of these micro-organisms in the group of patients who had no infection (S. agalactiae was isolated, it was the sole pathogen isolated (83%) and its presence was associated with an inflammatory response in 80% of patients. Furthermore, the relative risk of vaginal infection with S. agalactiae (2.38) in patients with purulent vaginal discharge was greater than that of Candida spp. infection (1.41) and lower than that of Trichomonas spp. infection (8.32). These data suggest that S. agalactiae in symptomatic women with microscopic evidence of inflammation should be considered a causative agent of vaginitis.

  4. Receptor interactive protein kinase 3 promotes Cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available Cisplatin-based chemotherapy is currently the standard treatment for locally advanced esophageal cancer. Cisplatin has been shown to induce both apoptosis and necrosis in cancer cells, but the mechanism by which programmed necrosis is induced remains unknown. In this study, we provide evidence that cisplatin induces necrotic cell death in apoptosis-resistant esophageal cancer cells. This cell death is dependent on RIPK3 and on necrosome formation via autocrine production of TNFα. More importantly, we demonstrate that RIPK3 is necessary for cisplatin-induced killing of esophageal cancer cells because inhibition of RIPK1 activity by necrostatin or knockdown of RIPK3 significantly attenuates necrosis and leads to cisplatin resistance. Moreover, microarray analysis confirmed an anti-apoptotic molecular expression pattern in esophageal cancer cells in response to cisplatin. Taken together, our data indicate that RIPK3 and autocrine production of TNFα contribute to cisplatin sensitivity by initiating necrosis when the apoptotic pathway is suppressed or absent in esophageal cancer cells. These data provide new insight into the molecular mechanisms underlying cisplatin-induced necrosis and suggest that RIPK3 is a potential marker for predicting cisplatin sensitivity in apoptosis-resistant and advanced esophageal cancer.

  5. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    Science.gov (United States)

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  6. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in Non-Hodgkin's Lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xinghua; Miao, Xiaobing; Wu, Yaxun; Li, Chunsun; Guo, Yan; Liu, Yushan; Chen, Yali; Lu, Xiaoyun [Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong 226361, Jiangsu (China); Wang, Yuchan, E-mail: wangyuchannt@126.com [Department of Pathogen and Immunology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu (China); He, Song, E-mail: hesongnt@126.com [Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong 226361, Jiangsu (China)

    2015-07-15

    Enolases are glycolytic enzymes responsible for the ATP-generated conversion of 2-phosphoglycerate to phosphoenolpyruvate. In addition to the glycolytic function, Enolase 1 (ENO1) has been reported up-regulation in several tumor tissues. In this study, we investigated the expression and biologic function of ENO1 in Non-Hodgkin's Lymphomas (NHLs). Clinically, by western blot analysis we observed that ENO1 expression was apparently higher in diffuse large B-cell lymphoma than in the reactive lymphoid tissues. Subsequently, immunohistochemical staining of 144 NHLs suggested that the expression of ENO1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas. Further, we identified ENO1 as an independent prognostic factor, and it was significantly correlated with overall survival of NHL patients. In addition, we found that ENO1 could promote cell proliferation, regulate cell cycle associated gene and PI3K/AKT signaling pathway in NHLs. Finally, we verified that ENO1 participated in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to FN or HS5 cells significantly protected OCI-Ly8 and Daudi cells from cytotoxicity compared with those cultured in suspension, and these effects were attenuated when transfected with ENO1-siRNA. Based on the study, we propose that inhibition of ENO1 expression may be a novel strategy for therapy for NHLs patients, and it may be a target for drug resistance. - Highlights: • ENO1 expression is reversely correlated with clinical outcomes of patients with NHLs. • ENO1 promotes the proliferation of NHL cells. • ENO1 regulates cell adhesion mediated drug resistance.

  7. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection.

    Science.gov (United States)

    Pandolfini, Tiziana; Molesini, Barbara; Avesani, Linda; Spena, Angelo; Polverari, Annalisa

    2003-06-25

    Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS), is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV) is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana). Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. In the ihprolC-PP197 gene (intron hair pin rolC PPV 197), a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330) was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80%) transgenic plants are virus free and symptomless. Some plants (20%) contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23-25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation. Transitivity of siRNAs was observed in

  8. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2003-06-01

    Full Text Available Abstract Background Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS, is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana. Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. Results In the ihprolC-PP197 gene (intron hair pin rolC PPV 197, a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330 was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80% transgenic plants are virus free and symptomless. Some plants (20% contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23–25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation

  9. Social vaccines to resist and change unhealthy social and economic structures: a useful metaphor for health promotion.

    Science.gov (United States)

    Baum, Fran; Narayan, Ravi; Sanders, David; Patel, Vikram; Quizhpe, Arturo

    2009-12-01

    The term 'social vaccine' is designed to encourage the biomedically orientated health sector to recognize the legitimacy of action on the distal social and economic determinants of health. It is proposed as a term to assist the health promotion movement in arguing for a social view of health which is so often counter to medical and popular conceptions of health. The idea of a social vaccine builds on a long tradition in social medicine as well as on a biomedical tradition of preventing illness through vaccines that protect against disease. Social vaccines would be promoted as a means to encourage popular mobilization and advocacy to change the social and economic structural conditions that render people and communities vulnerable to disease. They would facilitate social and political processes that develop popular and political will to protect and promote health through action (especially governments prepared to intervene and regulate to protect community health) on the social and economic determinants. Examples provided for the effects of social vaccines are: restoring land ownership to Indigenous peoples, regulating the advertising of harmful products and progressive taxation for universal social protection. Social vaccines require more research to improve understanding of social and political processes that are likely to improve health equity worldwide. The vaccine metaphor should be helpful in arguing for increased action on the social determinants of health.

  10. THE MODE OF ACTION OF SULFANILAMIDE ON STREPTOCOCCUS. II.

    Science.gov (United States)

    Gay, F P; Clark, A R; Street, J A; Miles, D W

    1939-04-30

    The precise mode of therapeutic action of sulfanilamide on streptococcus can be arrived at only by considering the sum total of factors that inhibit or favor the natural growth of the microorganism under the experimental conditions that obtain, whether in vivo or in vitro. Too sweeping conclusions have hitherto been drawn from the study of a single variable factor, such as an unfavorable temperature or the absence or presence of peptone. We have attempted here to analyze the factors that have hitherto been recognized and some new ones, but particularly the relationship of these factors to one another. The result obtained on adding sulfanilamide to the streptococcus in the test tube is usually bacteriostasis and not complete destruction of even small numbers of bacteria. This is on the condition that the suspending medium is a favorable one for the growth of the microorganism; the more growth-promoting the medium is the less the bacteriostasis. If, on the other hand, the medium is too poor, or one that in itself inhibits growth, the addition of sulfanilamide may lead to sterilization of the culture. The conditions for growth of the streptococcus in the body of the rabbit or mouse, depend on the strain of bacteria used, but are on the whole favorable. Defence, however, in the form of phagocytosis by both polymorphonuclear and by mononuclear cells is attempted even in the susceptible animal. When sulfanilamide is used to treat such an animal, or when sulfanilamide-grown (inhibited) streptococci are employed, phagocytosis is pronounced, whether studied in the test tube or in the animal body. In the rabbit the delay by sulfanilamide and resultant increased phagocytosis by polymorphonuclears allows mononuclear cells to accumulate and recovery may result. Sulfanilamide not only does not completely destroy the streptococcus but does not even impair its innate virulence. It acts upon the streptococcus not only by inhibiting growth but by a temporary inhibition of hemotoxin

  11. Synthetic Nanoparticles That Promote Tumor Necrosis Factor Receptor 2 Expressing Regulatory T Cells in the Lung and Resistance to Allergic Airways Inflammation

    Directory of Open Access Journals (Sweden)

    Rohimah Mohamud

    2017-12-01

    Full Text Available Synthetic glycine coated 50 nm polystyrene nanoparticles (NP (PS50G, unlike ambient NP, do not promote pulmonary inflammation, but instead, render lungs resistant to the development of allergic airway inflammation. In this study, we show that PS50G modulate the frequency and phenotype of regulatory T cells (Treg in the lung, specifically increasing the proportion of tumor necrosis factor 2 (TNFR2 expressing Treg. Mice pre-exposed to PS50G, which were sensitized and then challenged with an allergen a month later, preferentially expanded TNFR2+Foxp3+ Treg, which further expressed enhanced levels of latency associated peptide and cytotoxic T-lymphocyte associated molecule-4. Moreover, PS50G-induced CD103+ dendritic cell activation in the lung was associated with the proliferative expansion of TNFR2+Foxp3+ Treg. These findings provide the first evidence that engineered NP can promote the selective expansion of maximally suppressing TNFR2+Foxp3+ Treg and further suggest a novel mechanism by which NP may promote healthy lung homeostasis.

  12. The Importance of TLR2 and Macrophages in Modulating a Humoral Response after Encountering Streptococcus pneumoniae

    Science.gov (United States)

    2008-03-26

    Chapter 3 Submited as: Sam Vasilevsky, Jesus Colino, Roman Puliaev, David H. Canaday, and Clifford M...general microbiology 138:249- 259. 7. Musher , D. M. 1992. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity, and...Pneumonia and Its Implications for Antimicrobial Resistance Chest 115:1-2. 230. Musher , D. M., I. Alexandraki, E. A. Graviss, N. Yanbeiy, A. Eid, L

  13. Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer.

    Science.gov (United States)

    Gasca, Jessica; Flores, Maria Luz; Giráldez, Servando; Ruiz-Borrego, Manuel; Tortolero, María; Romero, Francisco; Japón, Miguel A; Sáez, Carmen

    2016-08-16

    FBXW7 is a component of SCF (complex of SKP1, CUL1 and F-box-protein)-type ubiquitin ligases that targets several oncoproteins for ubiquitination and degradation by the proteasome. FBXW7 regulates cellular apoptosis by targeting MCL1 for ubiquitination. Recently, we identified PLK1 as a new substrate of FBXW7 modulating the intra-S-phase DNA-damage checkpoint. Taxanes are frequently used in breast cancer treatments, but the acquisition of resistance makes these treatments ineffective. We investigated the role of FBXW7 and their substrates MCL1 and PLK1 in regulating the apoptotic response to paclitaxel treatment in breast cancer cells and their expression in breast cancer tissues. Paclitaxel-sensitive MDA-MB-468 and a paclitaxel-resistant MDA-MB-468R subclone were used to study the role of FBXW7 and substrates in paclitaxel-induced apoptosis. Forced expression of FBXW7 or downregulation of MCL1 or PLK1 restored sensitivity to paclitaxel in MDA-MB-468R cells. By contrary, FBXW7-silenced MDA-MB-468 cells became resistant to paclitaxel. The expression of FBXW7 and substrates were studied in 296 invasive carcinomas by immunohistochemistry and disease-free survival was analyzed in a subset of patients treated with paclitaxel. In breast cancer tissues, loss of FBXW7 correlated with adverse prognosis markers and loss of FBXW7 and MCL1 or PLK1 accumulation were associated with diminished disease-free survival in paclitaxel-treated patients. We conclude that FBXW7 regulates the response to paclitaxel by targeting MCL1 and PLK1 in breast cancer cells and thus targeting these substrates may be a valuable adjunct for paclitaxel treatment. Also, FBXW7, MCL1 and PLK1 may be relevant predictive markers of tumor progression and response to paclitaxel treatment.

  14. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule....... pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S...... of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species...

  15. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    Science.gov (United States)

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  16. Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Lale Ozcan

    2016-06-01

    Full Text Available Defective insulin signaling in hepatocytes is a key factor in type 2 diabetes. In obesity, activation of calcium/calmodulin-dependent protein kinase II (CaMKII in hepatocytes suppresses ATF6, which triggers a PERK-ATF4-TRB3 pathway that disrupts insulin signaling. Elucidating how CaMKII suppresses ATF6 is therefore essential to understanding this insulin resistance pathway. We show that CaMKII phosphorylates and blocks nuclear translocation of histone deacetylase 4 (HDAC4. As a result, HDAC4-mediated SUMOylation of the corepressor DACH1 is decreased, which protects DACH1 from proteasomal degradation. DACH1, together with nuclear receptor corepressor (NCOR, represses Atf6 transcription, leading to activation of the PERK-TRB3 pathway and defective insulin signaling. DACH1 is increased in the livers of obese mice and humans, and treatment of obese mice with liver-targeted constitutively nuclear HDAC4 or DACH1 small hairpin RNA (shRNA increases ATF6, improves hepatocyte insulin signaling, and protects against hyperglycemia and hyperinsulinemia. Thus, DACH1-mediated corepression in hepatocytes emerges as an important link between obesity and insulin resistance.

  17. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer.

    Science.gov (United States)

    Gerhardt, Josefine; Montani, Matteo; Wild, Peter; Beer, Marc; Huber, Fabian; Hermanns, Thomas; Müntener, Michael; Kristiansen, Glen

    2012-02-01

    Forkhead box protein A1 (FOXA1) modulates the transactivation of steroid hormone receptors and thus may influence tumor growth and hormone responsiveness in prostate cancer. We therefore investigated the correlation of FOXA1 expression with clinical parameters, prostate-specific antigen (PSA) relapse-free survival, and hormone receptor expression in a large cohort of prostate cancer patients at different disease stages. FOXA1 expression did not differ significantly between benign glands from the peripheral zone and primary peripheral zone prostate carcinomas. However, FOXA1 was overexpressed in metastases and particularly in castration-resistant cases, but was expressed at lower levels in both normal and neoplastic transitional zone tissues. FOXA1 levels correlated with higher pT stages and Gleason scores, as well as with androgen (AR) and estrogen receptor expression. Moreover, FOXA1 overexpression was associated with faster biochemical disease progression, which was pronounced in patients with low AR levels. Finally, siRNA-based knockdown of FOXA1 induced decreased cell proliferation and migration. Moreover, in vitro tumorigenicity was inducible by ARs only in the presence of FOXA1, substantiating a functional cooperation between FOXA1 and AR. In conclusion, FOXA1 expression is associated with tumor progression, dedifferentiation of prostate cancer cells, and poorer prognosis, as well as with cellular proliferation and migration and with AR signaling. These findings suggest FOXA1 overexpression as a novel mechanism inducing castration resistance in prostate cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. TP53 suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients

    Science.gov (United States)

    Caceres, Gisela; McGraw, Kathy; Yip, Bon Ham; Pellagatti, Andrea; Johnson, Joseph; Zhang, Ling; Liu, Kenian; Zhang, Lan Min; Fulp, William J.; Lee, Ji-Hyun; Al Ali, Najla H.; Basiorka, Ashley; Smith, Larry J.; Daugherty, F. Joseph; Littleton, Neil; Wells, Richard A.; Sokol, Lubomir; Wei, Sheng; Komrokji, Rami S.; Boultwood, Jacqueline; List, Alan F.

    2013-01-01

    Stabilization of p53 in erythroid precursors in response to nucleosomal stress underlies the hypoplastic anemia in myelodysplastic syndromes (MDS) with chromosome 5q deletion [del(5q)]. We investigated whether cenersen, a clinically active 20-mer antisense oligonucleotide complementary to TP53 exon10, could suppress p53 expression and restore erythropoiesis in del(5q) MDS. Cenersen treatment of ribosomal protein S-14-deficient erythroblasts significantly reduced cellular p53 and p53-up-regulated modulator of apoptosis expression compared with controls, accompanied by a significant reduction in apoptosis and increased cell proliferation. In a two-stage erythroid differentiation assay, cenersen significantly suppressed nuclear p53 in bone marrow CD34+ cells isolated from patients with del(5q) MDS, whereas erythroid burst recovery increased proportionally to the magnitude of p53 suppression without evidence of del(5q) clonal suppression (r = −0.6; P = 0.005). To explore the effect of p53 suppression on erythropoiesis in vivo, dexamethasone, a glucocorticoid receptor-dependent p53 antagonist, was added to lenalidomide treatment in eight lower-risk, transfusion-dependent, del(5q) MDS patients with acquired drug resistance. Transfusion independence was restored in five patients accompanied by expansion of erythroid precursors and decreased cellular p53 expression. We conclude that targeted suppression of p53 could support effective erythropoiesis in lenalidomide-resistant del(5q) MDS. PMID:24043769

  19. Plasmid-mediated UV-protection in Streptococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, M.C.; Rouault, A. (Institut National de la Recherche Agronomique, Rennes (France). Lab. de Recherches de Technologie Laitiere); Moillo-Batt, A. (Institut National de la Sante et de la Recherche Medicale (INSERM), Hopital de Pontchaillon, 35 - Rennes (France))

    1985-02-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by co-transfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci.

  20. Epidemiological Studies of Potent Environmental Pathogen: Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Nazir A. Brohi

    2016-12-01

    Full Text Available A general survey for six months was undertaken for the prevalence of environmental bacterium Streptococcus pneumoniae among the different age groups (3-65 years including both sexes from various hospitals of Hyderabad city. Laboratory examinations revealed S. pneumoniae as most potent environmental pathogen from the sputum and throat swabs of old aged patients and children respectively. During observations, 39 specimens were growth positive; the biochemistry of isolates revealed that they were coagulase, catalase and oxidase negative, TSI, gel hydrolysis positive and were able to ferment glucose, lactose, maltose, galactose, fructose, sucrose, starch and raffinose. The results of antimicrobial activity showed that pneumococci were resistant to the cefspan, septran, cravit, pipemetic acid, azomax, bacitracin, and penicillin and a clear zone of inhibition was observed on clithromycin, optochin, cefizox, genatamycin, minocyclin, levoflaxacin, and vancomycin. There were intermediate zone of inhibition found on claforan, nalidixic acid, amoxycillin, fosfomycin, fortum, and erythromycin on Mueller Hinton’s agar after 24 hours incubation

  1. Epidemiological studies of potent environment pathogen streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Brohi, N.A.; Tunio, S.A.

    2016-01-01

    A general survey for six months was undertaken for the prevalence of environmental bacterium Streptococcus pneumoniae among the different age groups (3-65 years) including both sexes from various hospitals of Hyderabad city. Laboratory examinations revealed S. pneumoniae as most potent environmental pathogen from the sputum and throat swabs of old aged patients and children respectively. During observations, 39 specimens were growth positive; the biochemistry of isolates revealed that they were coagulase, catalase and oxidase negative, TSI, gel hydrolysis positive and were able to ferment glucose, lactose, maltose, galactose, fructose, sucrose, starch and raffinose. The results of antimicrobial activity showed that pneumococci were resistant to the cefspan, septran, cravit, pipemetic acid, azomax, bacitracin, and penicillin and a clear zone of inhibition was observed on clithromycin, optochin, cefizox, genatamycin, minocyclin, levoflaxacin, and vancomycin. There were intermediate zone of inhibition found on claforan, nalidixic acid, amoxycillin, fosfomycin, fortum, and erythromycin on Mueller Hinton's agar after 24 hours incubation. (author)

  2. Plasmid-mediated UV-protection in Streptococcus lactis

    International Nuclear Information System (INIS)

    Chopin, M.-C.; Rouault, A.

    1985-01-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by cotransfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci. (orig.)

  3. Consideraciones sobre elaislamiento en exudados vaginales de Streptococcus morbillorum

    Directory of Open Access Journals (Sweden)

    J.M. F. Egido

    1995-06-01

    Full Text Available De el estúdio de 195 exudados vaginales enviados por el Servicio de Ginecologia de este hospital, durante el período 1988-1990, hemos seleccionado aquellos en los que el cultivo fue positivo para estreptococos, 58 (30% de los cuales 26 (44.8% correspondia a Streptococcus morbillorum, 9 (15.5% a Gardnerella vaginalis, 5 (8.6% a Enterococcus faecalis-durans, y a Streptococcus agalactiae, 3 (5.1% a Streptococcus mitis y Streptococcus mitis, 2 (3-4% a Streptococcus bovis y Streptococcus cremoris y 1 (1.7% a Streptococcus salivarius, Streptococcus equinus y Strptococcus sanguis II respectivamente. En todos los casos se observo antecedentes de actuacción medico- quirurjica en el tracto genital, y en el 52.8% de los casos fuô concomitante con el diagnostico clinico-micologico de candidiasis vaginal. La ideittificaccion bacteriologica se realizo mediante el sistema API 20 STREP (sistema api bioMêríeux GmbH, Nütingen, Alemania dando un patron tipico ("excelente identificacción" para el Streptococcus morbillorum.We have tested 195 vaginal secretions sent by Gynecology Service of this hospital between the years 1988 - 1990. We achieved positive culture for streptococci in 58 (30% of these cultures, 26 (44.8% corresponding to Streptococcus morbillorum 9 (15.5%, to Gardnerella vaginalis 5 (8.6%, to Enterococcus faecalis-durans and to Streptococcus agalactiae, 3 (5.1 % to Streptococcus mitis and milleri 2 (3-4%, to Streptococcus bovis and cremoris, and 1 (1.7% to Streptococcus salivarius, equinus and sanguis II respectively. We previously found that 52.8% of these patients were positive for vaginal candidiasis. The bacteriological identification done by the API 20 STREP System (bioMerieux GmbH, Nútingen, Germanyprovides a typical pattern ("good identification" for the Streptococcus morbillorum.

  4. CSA-90 Promotes Bone Formation and Mitigates Methicillin-resistant Staphylococcus aureus Infection in a Rat Open Fracture Model.

    Science.gov (United States)

    Mills, Rebecca; Cheng, Tegan L; Mikulec, Kathy; Peacock, Lauren; Isaacs, David; Genberg, Carl; Savage, Paul B; Little, David G; Schindeler, Aaron

    2018-06-01

    Infection of open fractures remains a significant cause of morbidity and mortality to patients worldwide. Early administration of prophylactic antibiotics is known to improve outcomes; however, increasing concern regarding antimicrobial resistance makes finding new compounds for use in such cases a pressing area for further research. CSA-90, a synthetic peptidomimetic compound, has previously demonstrated promising antimicrobial action against Staphylococcus aureus in rat open fractures. However, its efficacy against antibiotic-resistant microorganisms, its potential as a therapeutic agent in addition to its prophylactic effects, and its proosteogenic properties all require further investigation. (1) Does prophylactic treatment with CSA-90 reduce infection rates in a rat open fracture model inoculated with S aureus, methicillin-resistant S aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis (MRSE) as measured by survival, radiographic union, and deep tissue swab cultures? (2) Does CSA-90 reduce infection rates when administered later in the management of an open fracture as measured by survival, radiographic union, and deep tissue swab cultures? (3) Does CSA-90 demonstrate a synergistic proosteogenic effect with bone morphogenetic protein 2 (BMP-2) in a noninfected rat ectopic bone formation assay as assessed by micro-CT bone volume measurement? (4) Can CSA-90 elute and retain its antimicrobial efficacy in vitro when delivered using clinically relevant agents measured using a Kirby-Bauer disc diffusion assay? All in vivo studies were approved by the local animal ethics committee. In the open fracture studies, 12-week-old male Wistar rats underwent open midshaft femoral fractures stabilized with a 1.1-mm Kirschner wire and 10 µg BMP-2 ± 500 µg CSA-90 was applied to the fracture site using a collagen sponge along with 1 x 10 colony-forming units of bacteria (S aureus/MRSA/MRSE; n = 10 per group). In the delayed treatment study, débridement and

  5. Elevated levels of interferon-γ production by memory T cells do not promote transplant tolerance resistance in aged recipients.

    Directory of Open Access Journals (Sweden)

    James I Kim

    Full Text Available Immunosenescence predisposes the elderly to infectious and autoimmune diseases and impairs the response to vaccination. We recently demonstrated that ageing also impedes development of transplantation tolerance. Unlike their young counterparts (8-12 weeks of age aged male recipients (greater than 12 months of age transplanted with a full MHC-mismatched heart are resistant to tolerance mediated by anti-CD45RB antibody. Surprisingly, either chemical or surgical castration restored tolerance induction to levels observed using young recipients. Based on the strong impact of endocrine modulation on transplant tolerance, we explored the impact of ageing and castration on the immune system. Here we report a significant increase in the percentage of T cells that produce interferon-γ (IFN-γ in aged male versus young male animals and that the overall increase in IFN-γ production was due to an expansion of IFN-γ-producing memory T cells in aged animals. In contrast to IFN-γ production, we did not observe differences in IL-10 expression in young versus old male mice. We hypothesized that endocrine modulation would diminish the elevated levels of IFN-γ production in aged recipients, however, we observed no significant reduction in the percentage of IFN-γ+ T cells upon castration. Furthermore, we neutralized interferon-γ by antibody and did not observe an effect on graft survival. We conclude that while elevated levels of interferon-γ serves as a marker of tolerance resistance in aged mice, other as yet to be identified factors are responsible for its cause. Defining these factors may be relevant to design of tolerogenic strategies for aged recipients.

  6. INHIBITION OF Malus sylvestris Mill. PEELEXTRACT USING ETANOL SOLVENT ON THE GROWTH OF Streptococcus agalactiae AND Escherichia coli CAUSING MASTITIS

    Directory of Open Access Journals (Sweden)

    Kanzul Kamal Putra

    2017-03-01

    Full Text Available The purpose of this research was to find the resistibility of Manalagi apple peel extract, using etanol, to the growth of was to determine the antibacterial activity of Manalagi apple peel (Malus sylvestris Mill extract in various solvent using ethanol concentration against the growth of Streptococcus agalactiae and Escherichia coli bacteria that causing mastitis.The research methodwas experimental using Completely Randomized Design with 4 treatments and 6 replication. The treatments consisted of P1 (10%, P2 (20%, P3 (50% concentrations and P0 (10% iodips as the control. The variable measured was diameter of inhibition zone. The data were analyzed using ANOVA and continued by Duncan’s New Multiple Range Test (DMRT test if there was significantly difference result. The result of the inhibition zone of Manalagi apple peel extract using etanol in preventing the growth of Streptococcus agalactiae and Escherichia coli bacteria was different (P<0,01. In P2 (30% concentration, the extract resistibility to the growth of Streptococcus agalactiae bacteria was equivalent to P0 (iodips and in P3 (50% concentration, the extract resistibility to Escherichia coli bacteria was greater than P0 (iodips. Manalagi apple peel extract using etanol can be used as a natural antiseptic solution for teat dipping on dairy cows. The recommendation from the research was using extract Manalagi apple peel with etanol solvent concentration of 30% as a solution of teat dipping.   Keywords : Manalagi apple peel, Teat dipping, Mastitis, Streptococcus agalactiaeand Escherichia coli

  7. Pharmaceutical composition and drug effect of synthetic Bacopa monnieri L. health promoting agent from the perspective of resistance fatigue.

    Science.gov (United States)

    Chen, Zhidan; Yan, Yanqin

    2017-09-01

    Bacopa monnieri has effect on the nervous system, digestive system and blood circulation systems. In this paper, the authors conducted pharmacological analysis on Bacopa monniera and its innovative pharmaceutical preparation of promote motor function. The extract of the drug has some effect on relieving the fatigue and providing the movement function. By analyzing the composition and efficacy of Chinese herbal extracts, it can be seen that these drugs have obvious effect on improving immunity. Experimental results show that the agent can increase the liver glycogen energy reserves, reduce Bla and BUN levels, balance and energy metabolism of muscle cells in the environment, it plays a positive role to improve the exercise capacity and exercise fatigue.

  8. Selenium Supranutrition: Are the Potential Benefits of Chemoprevention Outweighed by the Promotion of Diabetes and Insulin Resistance?

    Science.gov (United States)

    Rocourt, Caroline R. B.; Cheng, Wen-Hsing

    2013-01-01

    Selenium was considered a toxin until 1957, when this mineral was shown to be essential in the prevention of necrotic liver damage in rats. The hypothesis of selenium chemoprevention is principally formulated by the observations that cancer incidence is inversely associated with selenium status. However, recent clinical and epidemiological studies demonstrate a role for some selenoproteins in exacerbating or promoting other disease states, specifically type 2 diabetes, although other data support a role of selenium in stimulating insulin sensitivity. Therefore, it is clear that our understanding in the role of selenium in glucose metabolism and chemoprevention is inadequate and incomplete. Research exploring the role of selenium in individual healthcare is of upmost importance and possibly will help explain how selenium is a double-edged sword in the pathologies of chronic diseases. PMID:23603996

  9. Isolation and antibiogram of Staphylococcus, Streptococcus and Escherichia coli isolates from clinical and subclinical cases of bovine mastitis

    Directory of Open Access Journals (Sweden)

    Nihar Nalini Mohanty,

    2013-08-01

    Full Text Available Aim: The present study was aimed to isolate and evaluate the continuous change in the pattern of drug resistance showed by different mastitogenic organisms, isolated from clinical and subclinical cases of mastitis.Materials and Methods: The study was carried out using 150 milk samples received from various clinical and subclinical cases, from which the causative organisms were isolated and subjected to in vitro antibiotic sensitivity test.Results: The bacteriological analysis of the samples indicated the presence of both Gram positive and Gram negative organisms followed by isolation of isolates like Staphylococcus, E. coli, Streptococcus, Bacillus, Corynebacterium, Listeria, Klebsiella. The in vitro sensitivity of Staphylococcus, E. coli and Streptococcus isolates revealed that they were more sensitive towards newer antimicrobials like Levofloxacin and Enrofloxacin.Conclusion: The prevalence of Staphylococcus was found to be maximum followed by Streptococcus and E. coli among the isolated organisms. Levofloxacin and Enrofloxacin were found to be most effective against the targeted isolates.

  10. TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production.

    Science.gov (United States)

    McNab, Finlay W; Ewbank, John; Rajsbaum, Ricardo; Stavropoulos, Evangelos; Martirosyan, Anna; Redford, Paul S; Wu, Xuemei; Graham, Christine M; Saraiva, Margarida; Tsichlis, Philip; Chaussabel, Damien; Ley, Steven C; O'Garra, Anne

    2013-08-15

    Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of mortality and morbidity worldwide, causing ≈ 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1, and TNF-α, as well as IFN-γ and CD4(+) Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I IFN have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to M. tuberculosis in murine models through the negative regulation of key proinflammatory cytokines and the subsequent Th1 response. We show in this study, using a combination of transcriptomic analysis, genetics, and pharmacological inhibitors, that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I IFN production. The TPL-2-ERK1/2 signaling pathway regulated production by macrophages of several cytokines important in the immune response to M. tuberculosis as well as regulating induction of a large number of additional genes, many in a type I IFN-dependent manner. In the absence of TPL-2 in vivo, excess type I IFN promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I IFN may promote susceptibility to this important disease.

  11. fundTPL-2 – ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I Interferon Production3

    Science.gov (United States)

    McNab, Finlay W.; Ewbank, John; Rajsbaum, Ricardo; Stavropoulos, Evangelos; Martirosyan, Anna; Redford, Paul S.; Wu, Xuemei; Graham, Christine M.; Saraiva, Margarida; Tsichlis, Philip; Chaussabel, Damien; Ley, Steven C.; O’Garra, Anne

    2013-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of mortality and morbidity worldwide, causing approximately 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1 and TNF-α, as well as IFN-γ and CD4+ Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I interferon have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to Mtb in murine models through the negative regulation of key pro-inflammatory cytokines and the subsequent Th1 response. We show here, using a combination of transcriptomic analysis, genetics and pharmacological inhibitors that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I interferon production. The TPL-2-ERK1/2 signalling pathway regulated production by macrophages of several cytokines important in the immune response to Mtb as well as regulating induction of a large number of additional genes, many in a type I IFN dependent manner. In the absence of TPL-2 in vivo, excess type I interferon promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I interferon may promote susceptibility to this important disease. PMID:23842752

  12. Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis

    OpenAIRE

    Zheng, Wenning; Tan, Mui Fern; Old, Lesley A.; Paterson, Ian C.; Jakubovics, Nicholas S.; Choo, Siew Woh

    2017-01-01

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virule...

  13. Characterisation of Invasive Streptococcus pneumoniae Isolated from Cambodian Children between 2007 - 2012.

    Science.gov (United States)

    Moore, Catrin E; Giess, Adam; Soeng, Sona; Sar, Poda; Kumar, Varun; Nhoung, Pheakdey; Bousfield, Rachel; Turner, Paul; Stoesser, Nicole; Day, Nicholas P J; Parry, Christopher M

    2016-01-01

    The 13-valent pneumococcal vaccine (PCV13) was introduced in Cambodia in January 2015. There are limited data concerning the common serotypes causing invasive pneumococcal disease (IPD). Knowledge of the circulating pneumococcal serotypes is important to monitor epidemiological changes before and after vaccine implementation. All episodes of IPD defined by the isolation of Streptococcus pneumoniae from blood, cerebrospinal fluid or other sterile site in Cambodian children admitted to the Angkor Hospital for Children in Siem Reap, Northwestern Cambodia, between 1st January 2007 and 1st July 2012 were retrospectively studied. Streptococcus pneumoniae isolates that could be retrieved underwent phenotypic typing and whole genome sequencing. There were 90 Cambodian children hospitalized with IPD with a median (IQR) age of 2.3 years (0.9-6.2). The case fatality was 15.6% (95% CI 8-23). Of 50 Streptococcus pneumoniae isolates available for further testing, 46% were penicillin non-susceptible and 8% were ceftriaxone non-susceptible, 78% were cotrimoxazole resistant, 30% were erythromycin resistant and 30% chloramphenicol resistant. There were no significant changes in resistance levels over the five-year period. The most common serotypes were 1 (11/50; 22%), 23F (8/50; 16%), 14 (6/50; 12%), 5 (5/50; 10%) and 19A (3/50; 6%). Coverage by PCV7, PCV10 and PCV13 was 44%, 76% and 92% respectively. We identified novel multilocus sequence types and resistotypes using whole genome sequencing. This study suggests IPD is an important disease in Cambodian children and can have a significant mortality. PCV13 coverage of the serotypes determined in studied strains was high and consistent with another recent study. The phenotypic resistance patterns observed were similar to other regional studies. The use of whole genome sequencing in the present study provides additional typing and resistance information together with the description of novel sequence types and resistotypes.

  14. Characterisation of Invasive Streptococcus pneumoniae Isolated from Cambodian Children between 2007 - 2012.

    Directory of Open Access Journals (Sweden)

    Catrin E Moore

    Full Text Available The 13-valent pneumococcal vaccine (PCV13 was introduced in Cambodia in January 2015. There are limited data concerning the common serotypes causing invasive pneumococcal disease (IPD. Knowledge of the circulating pneumococcal serotypes is important to monitor epidemiological changes before and after vaccine implementation.All episodes of IPD defined by the isolation of Streptococcus pneumoniae from blood, cerebrospinal fluid or other sterile site in Cambodian children admitted to the Angkor Hospital for Children in Siem Reap, Northwestern Cambodia, between 1st January 2007 and 1st July 2012 were retrospectively studied. Streptococcus pneumoniae isolates that could be retrieved underwent phenotypic typing and whole genome sequencing.There were 90 Cambodian children hospitalized with IPD with a median (IQR age of 2.3 years (0.9-6.2. The case fatality was 15.6% (95% CI 8-23. Of 50 Streptococcus pneumoniae isolates available for further testing, 46% were penicillin non-susceptible and 8% were ceftriaxone non-susceptible, 78% were cotrimoxazole resistant, 30% were erythromycin resistant and 30% chloramphenicol resistant. There were no significant changes in resistance levels over the five-year period. The most common serotypes were 1 (11/50; 22%, 23F (8/50; 16%, 14 (6/50; 12%, 5 (5/50; 10% and 19A (3/50; 6%. Coverage by PCV7, PCV10 and PCV13 was 44%, 76% and 92% respectively. We identified novel multilocus sequence types and resistotypes using whole genome sequencing.This study suggests IPD is an important disease in Cambodian children and can have a significant mortality. PCV13 coverage of the serotypes determined in studied strains was high and consistent with another recent study. The phenotypic resistance patterns observed were similar to other regional studies. The use of whole genome sequencing in the present study provides additional typing and resistance information together with the description of novel sequence types and resistotypes.

  15. Characterisation of Invasive Streptococcus pneumoniae Isolated from Cambodian Children between 2007 – 2012

    Science.gov (United States)

    Giess, Adam; Soeng, Sona; Sar, Poda; Kumar, Varun; Nhoung, Pheakdey; Bousfield, Rachel; Turner, Paul; Stoesser, Nicole; Day, Nicholas P. J.; Parry, Christopher M.

    2016-01-01

    Background The 13-valent pneumococcal vaccine (PCV13) was introduced in Cambodia in January 2015. There are limited data concerning the common serotypes causing invasive pneumococcal disease (IPD). Knowledge of the circulating pneumococcal serotypes is important to monitor epidemiological changes before and after vaccine implementation. Methods All episodes of IPD defined by the isolation of Streptococcus pneumoniae from blood, cerebrospinal fluid or other sterile site in Cambodian children admitted to the Angkor Hospital for Children in Siem Reap, Northwestern Cambodia, between 1st January 2007 and 1st July 2012 were retrospectively studied. Streptococcus pneumoniae isolates that could be retrieved underwent phenotypic typing and whole genome sequencing. Results There were 90 Cambodian children hospitalized with IPD with a median (IQR) age of 2.3 years (0.9–6.2). The case fatality was 15.6% (95% CI 8–23). Of 50 Streptococcus pneumoniae isolates available for further testing, 46% were penicillin non-susceptible and 8% were ceftriaxone non-susceptible, 78% were cotrimoxazole resistant, 30% were erythromycin resistant and 30% chloramphenicol resistant. There were no significant changes in resistance levels over the five-year period. The most common serotypes were 1 (11/50; 22%), 23F (8/50; 16%), 14 (6/50; 12%), 5 (5/50; 10%) and 19A (3/50; 6%). Coverage by PCV7, PCV10 and PCV13 was 44%, 76% and 92% respectively. We identified novel multilocus sequence types and resistotypes using whole genome sequencing. Conclusions This study suggests IPD is an important disease in Cambodian children and can have a significant mortality. PCV13 coverage of the serotypes determined in studied strains was high and consistent with another recent study. The phenotypic resistance patterns observed were similar to other regional studies. The use of whole genome sequencing in the present study provides additional typing and resistance information together with the description of novel

  16. Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to β-lactam antibiotics.

    Science.gov (United States)

    Kuo, David; Yu, Guanping; Hoch, Wyatt; Gabay, Dean; Long, Lisa; Ghannoum, Mahmoud; Nagy, Nancy; Harding, Clifford V; Viswanathan, Rajesh; Shoham, Menachem

    2015-03-01

    The dwindling repertoire of antibiotics to treat methicillin-resistant Staphylococcus aureus (MRSA) calls for novel treatment options. Quorum-quenching agents offer an alternative or an adjuvant to antibiotic therapy. Three biaryl hydroxyketone compounds discovered previously (F1, F12, and F19; G. Yu, D. Kuo, M. Shoham, and R. Viswanathan, ACS Comb Sci 16:85-91, 2014) were tested for efficacy in MRSA-infected animal models. Topical therapy of compounds F1 and F12 in a MRSA murine wound infection model promotes wound healing compared to the untreated control. Compounds F1, F12, and F19 afford significant survival benefits in a MRSA insect larva model. Combination therapy of these quorum-quenching agents with cephalothin or nafcillin, antibiotics to which MRSA is resistant in monotherapy, revealed additional survival benefits. The quorum-quenching agents sensitize MRSA to the antibiotic by a synergistic mode of action that also is observed in vitro. An adjuvant of 1 μg/ml F1, F12, or F19 reduces the MIC of nafcillin and cephalothin about 50-fold to values comparable to those for vancomycin, the antibiotic often prescribed for MRSA infections. These findings suggest that it is possible to resurrect obsolete antibiotic therapies in combination with these novel quorum-quenching agents. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Peroxiredoxin-glutaredoxin and catalase promote resistance of nontypeable Haemophilus influenzae 86-028NP to oxidants and survival within neutrophil extracellular traps.

    Science.gov (United States)

    Juneau, Richard A; Pang, Bing; Armbruster, Chelsie E; Murrah, Kyle A; Perez, Antonia C; Swords, W Edward

    2015-01-01

    Nontypeable Haemophilus influenzae (NTHI) is a common commensal and opportunistic pathogen of the human airways. For example, NTHI is a leading cause of otitis media and is the most common cause of airway infections associated with chronic obstructive pulmonary disease (COPD). These infections are often chronic/recurrent in nature and involve bacterial persistence within biofilm communities that are highly resistant to host clearance. Our previous work has shown that NTHI within biofilms has increased expression of factors associated with oxidative stress responses. The goal of this study was to define the roles of catalase (encoded by hktE) and a bifunctional peroxiredoxin-glutaredoxin (encoded by pdgX) in resistance of NTHI to oxidants and persistence in vivo. Isogenic NTHI strain 86-028NP mutants lacking hktE and pdgX had increased susceptibility to peroxide. Moreover, these strains had persistence defects in the chinchilla infection model for otitis media, as well as in a murine model for COPD. Additional work showed that pdgX and hktE were important determinants of NTHI survival within neutrophil extracellular traps (NETs), which we have shown to be an integral part of NTHI biofilms in vivo. Based on these data, we conclude that catalase and peroxiredoxin-glutaredoxin are determinants of bacterial persistence during chronic/recurrent NTHI infections that promote bacterial survival within NETs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2014-04-01

    A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H₂O₂ could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

  19. Streptococcus loxodontisalivarius sp. nov. and Streptococcus saliviloxodontae sp. nov., isolated from oral cavities of elephants.

    Science.gov (United States)

    Saito, Masanori; Shinozaki-Kuwahara, Noriko; Hirasawa, Masatomo; Takada, Kazuko

    2014-09-01

    Four Gram-stain-positive, catalase-negative, coccoid-shaped organisms were isolated from elephant oral cavities. The isolates were tentatively identified as streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus. Two isolates (NUM 6304(T) and NUM 6312) were related most closely to Streptococcus salivarius with 96.8 % and 93.1 % similarity based on the 16S rRNA gene and the RNA polymerase β subunit encoding gene (rpoB), respectively, and to Streptococcus vestibularis with 83.7 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates (NUM 6306(T) and NUM 6318) were related most closely to S. vestibularis with 97.0 % and 82.9 % similarity based on the 16S rRNA and groEL genes, respectively, and to S. salivarius with 93.5 % similarity based on the rpoB gene. Based on phylogenetic and phenotypic evidence, these isolates are suggested to represent novel species of the genus Streptococcus, for which the names Streptococcus loxodontisalivarius sp. nov. (type strain NUM 6304(T) = JCM 19287(T) = DSM 27382(T)) and Streptococcus saliviloxodontae sp. nov. (type strain NUM 6306(T) = JCM 19288(T) = DSM 27513(T)) are proposed. © 2014 IUMS.

  20. Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk.

    Science.gov (United States)

    Kadri, Zaina; Amar, Mohamed; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; El Farricha, Omar; Vandamme, Peter

    2014-07-01

    Two catalase- and oxidase-negative Streptococcus-like strains, LMG 27682(T) and LMG 27684(T), were isolated from raw camel milk in Morocco. Comparative 16S rRNA gene sequencing assigned these bacteria to the genus Streptococcus with Streptococcus rupicaprae 2777-2-07(T) as their closest phylogenetic neighbour (95.9% and 95.7% similarity, respectively). 16S rRNA gene sequence similarity between the two strains was 96.7%. Although strains LMG 27682(T) and LMG 27684(T) shared a DNA-DNA hybridization value that corresponded to the threshold level for species delineation (68%), the two strains could be distinguished by multiple biochemical tests, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes and by their MALDI-TOF MS profiles. On the basis of these considerable phenotypic and genotypic differences, we propose to classify both strains as novel species of the genus Streptococcus, for which the names Streptococcus moroccensis sp. nov. (type strain, LMG 27682(T)  = CCMM B831(T)) and Streptococcus rifensis sp. nov. (type strain, LMG 27684(T)  = CCMM B833(T)) are proposed. © 2014 IUMS.

  1. Analysis of HBV basal core promoter/precore gene variability in patients with HBV drug resistance and HIV co-infection in Northwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Yeshambel Belyhun

    Full Text Available We recently reported complex hepatitis B virus (HBV drug resistant and concomitant vaccine escape hepatitis B surface antigen (HBsAg variants during human immunodeficiency virus (HIV co-infection and antiretroviral therapy (ART exposure in Ethiopia. As a continuation of this report using the HBV positive sera from the same study participants, the current study further analyzed the HBV basal core promoter (BCP/precore (PC genes variability in patients with HBV drug resistance (at tyrosine-methionine-aspartate-aspartate (YMDD reverse transcriptase (RT motifs and HIV co-infection in comparison with HBV mono-infected counterparts with no HBV drug resistant gene variants.A total of 143 participants of HBV-HIV co-infected (n = 48, HBV mono-infected blood donors (n = 43 and chronic liver disease (CLD patients (n = 52 were included in the study. The BCP/PC genome regions responsible for HBeAg expression from the EcoRI site (nucleotides 1653-1959 were sequenced and analyzed for the BCP/PC mutant variants.Among the major mutant variants detected, double BCP mutations (A1762T/G1764A (25.9%, Kozak sequences mutations (nt1809-1812 (51.7% and the classical PC mutations such as A1814C/C1816T (15.4%, G1896A (25.2% and G1862T (44.8% were predominant mutant variants. The prevalence of the double BCP mutations was significantly lower in HIV co-infected patients (8.3% compared with HBV mono-infected blood donors (32.6% and CLD patients (36.5%. However, the Kozak sequences BCP mutations and the majority of PC mutations showed no significant differences among the study groups. Moreover, except for the overall BCP/PC mutant variants, co-prevalence rates of each major BCP/PC mutations and YMDDRT motif associated lamivudine (3TC/entecavir (ETV resistance mutations showed no significant differences when compared with the rates of BCP/PC mutations without YMDD RT motif drug resistance gene mutations. Unlike HIV co-infected group, no similar comparison made among HBV mono

  2. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China.

    Directory of Open Access Journals (Sweden)

    Xiumei Yu

    Full Text Available To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates and Ochrobactrum intermedium (13 isolates. Altogether 93 isolates tolerated the highest concentration (1000 mg kg(-1 of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg(-1 cadmium whereas only one strain tolerated 1,000 mg kg(-1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA, a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml(-1. In total 21% of the bacteria produced siderophore (5.50-167.67 µg ml(-1 with two Bacillus sp. producing more than 100 µg ml(-1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.

  3. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective.

    Science.gov (United States)

    Lampis, Silvia; Santi, Chiara; Ciurli, Adriana; Andreolli, Marco; Vallini, Giovanni

    2015-01-01

    A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains (AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community.

  4. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective

    Science.gov (United States)

    Lampis, Silvia; Santi, Chiara; Ciurli, Adriana; Andreolli, Marco; Vallini, Giovanni

    2015-01-01

    A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains (AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community. PMID:25741356

  5. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective.

    Directory of Open Access Journals (Sweden)

    Silvia eLampis

    2015-02-01

    Full Text Available A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: i non-inoculated plants; ii plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A; iii plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4 and Pseudoxanthomonas sp. P4V6 (B, and iv plants inoculated with all five bacterial strains (AB. The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community.

  6. Factors associated with colonization of Streptococcus pneumoniae ...

    African Journals Online (AJOL)

    with schooling and presence chronic diseases. ... Streptococcus pneumoniae is a leading cause of serious community-acquired infections such as ... large number of individuals are still suffering from infections caused by these bacteria, especially ... samples of children with severe pneumonia (Nantanda et al., 2008).

  7. Streptococcus suis meningitis in the Netherlands

    NARCIS (Netherlands)

    van de Beek, Diederik; Spanjaard, Lodewijk; de Gans, Jan

    2008-01-01

    We present four patients with Streptococcus suis meningitis identified during a 3.5-year prospective surveillance study in the Netherlands. All cases were associated with exposure to pigs. Patients presented with classic symptoms and signs of bacterial meningitis. Outcome was characterized by severe

  8. STREPTOCOCCUS: A WORLDWIDE FISH HEALTH PROBLEM

    Science.gov (United States)

    Streptococcus iniae and S. agalactiae are important emergent pathogens that affect many fish species worldwide, especially in warm-water regions. In marine and freshwater systems, these Gram-positive bacteria cause significant economic losses, estimated at hundreds of millions of dollars annually. ...

  9. Detection and quantification of Streptococcus pneumoniae from ...

    African Journals Online (AJOL)

    The aim of this study was to develop a real time polymerase chain reaction (PCR) for quantitative detection of Streptococcus pneumoniae from clinical respiratory specimens. Initially, 184 respiratory specimens from patients with community acquired pneumonia (CAP) (n = 129) and 55 cases with hospital associated ...

  10. Antibacterial activity of Euphorbia hirta against Streptococcus ...

    African Journals Online (AJOL)

    This investigation was conducted to determine the in-vitro effect of aqueous, ethanol and methanol crude extracts of Euphorbia hirta at concentrations ranging from 10mg/ml – 100mg/ml against three pathogenic bacteria (Streptococcus pneumoniae, Klebsiella pneumoniae and Proteus vulgaris) using cup plate method.

  11. Dyrkningsnegativ Streptococcus pneumoniae endokarditis diagnosticeret med polymerasekaedereaktion

    DEFF Research Database (Denmark)

    Rasmussen, Rasmus Vedby; Kemp, Michael; Bangsborg, Jette Marie

    2008-01-01

    A 60-year old man was admitted with sepsis and meningitis of unknown aetiology. Underlying aortic valve endocarditis was diagnosed by echocardiography and severe insufficiency led to aortic valve replacement. Application of broad-range PCR to cusp tissue revealed a DNA product, and a diagnosis of...... of Streptococcus pneumoniae endocarditis was obtained by DNA sequencing....

  12. NEW VIRULENCE FACTORS OF STREPTOCOCCUS PNEUMONIAE

    NARCIS (Netherlands)

    Hermans, Peter Wilhelmus Maria; Bootsma, Jeanette Hester; Burghout, Pieter Jan; Kuipers, Oscar; Bijlsma, Johanna Jacoba Elisabeth; Kloosterman, Tomas Gerrit; Andersen, Christian O.

    2011-01-01

    The present invention provides proteins/genes, which are essential for survival, and consequently, for virulence of Streptococcus pneumoniae in vivo, and thus are ideal vaccine candidates for a vaccine preparation against pneumococcal infection. Further, also antibodies against said protein(s) are

  13. 9230 FECAL ENTEROCOCCUS/STREPTOCOCCUS GROUPS

    Science.gov (United States)

    In 1903 the genus name Enterococcus was proposed for gram-positive, catalase-negative, coccoid-shaped bacterial of intestinal origin. Several years later, it was suggested that the genus name be changed to Streptococcus because of the organisms' ability to form chains of coccoid...

  14. Interaction of CDCP1 with HER2 Enhances HER2-Driven Tumorigenesis and Promotes Trastuzumab Resistance in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Abdullah Alajati

    2015-04-01

    Full Text Available Understanding the molecular pathways that contribute to the aggressive behavior of HER2-positive breast cancers may aid in the development of novel therapeutic interventions. Here, we show that CDCP1 and HER2 are frequently co-overexpressed in metastatic breast tumors and associated with poor patient prognosis. HER2 and CDCP1 co-overexpression leads to increased transformation ability, cell migration, and tumor formation in vivo, and enhanced HER2 activation and downstream signaling in different breast cancer cell lines. Mechanistically, we demonstrate that CDCP1 binds to HER2 through its intracellular domain, thereby increasing HER2 interaction with the non-receptor tyrosine kinase c-SRC (SRC, leading to trastuzumab resistance. Taken together, our findings establish that CDCP1 is a modulator of HER2 signaling and a biomarker for the stratification of breast cancer patients with poor prognosis. Our results also provide a rationale for therapeutic targeting of CDCP1 in HER2-positive breast cancer patients.

  15. NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8+ T cells for tumor promotion.

    Science.gov (United States)

    Li, Liwen; Han, Lei; Sun, Fan; Zhou, Jingjiao; Ohaegbulam, Kim C; Tang, Xudong; Zang, Xingxing; Steinbrecher, Kris A; Qu, Zhaoxia; Xiao, Gutian

    2018-01-01

    Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8 + cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated. Here, using an endogenous lung cancer model we uncover a direct crosstalk between TAMs and CTLs. TAMs suppress CTLs through the T-cell inhibitory molecule B7x (B7-H4/B7S1) in a cell-cell contact manner, whereas CTLs kill TAMs in a tumor antigen-specific manner. Remarkably, TAMs secrete the known T-cell suppressive cytokine interleukin-10 (IL-10) to activate, but not to repress, CTLs. Notably, one major role of cell-intrinsic NF-κB RelA is to drive TAMs to suppress CTLs for tumor promotion. It induces B7x expression in TAMs directly, and restricts IL-10 expression indirectly by repressing expression of the NF-κB cofactor Bcl3 and subsequent Bcl3/NF-κB1-mediated transcription of IL-10. It also renders TAMs resistant to CTLs by up-regulating anti-apoptotic genes. These studies help understand how immunity is shaped in lung tumorigenesis, and suggest a RelA-targeted immunotherapy for this deadliest cancer.

  16. Polyfire project- an example of an industrial research project promoting safe industrial production of fire-resistant nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Vaquero, C; Lopez de Ipina, J; Galarza, N [TECNALIA, Leonardo Da Vinci No 11, 01510 Minano (Alava) (Spain); Hargreaves, B; Weager, B [NetComposites Ltd, 4A Broom Business Park, Chesterfield S41 9QG (United Kingdom); Breen, C, E-mail: celinav@leia.es [Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2011-07-06

    New developments based on nanotechnology have to guarantee safe products and processes to be accepted by society. The Polyfire project will develop and scale-up techniques for processing halogen-free, fire-retardant nanocomposite materials and coatings based on unsaturated polyester resins and organoclays. The project includes a work package that will assess the Health and Environmental impacts derived from the manipulation of nanoparticles. This work package includes the following tasks: (1) Identification of Health and Environment Impacts derived from the processes, (2) Experimentation to study specific Nanoparticle Emissions, (3) Development of a Risk Management Methodology for the process, and (4) A Comparison of the Health and Environmental Impact of New and Existing Materials. To date, potential exposure scenarios to nanomaterials have been identified through the development of a Preliminary Hazard Analysis (PHA) of the new production processes. In the next step, these scenarios will be studied and simulated to evaluate potential emissions of nanomaterials. Polyfire is a collaborative European project, funded by the European Commission 7th Framework Programme (Grant Agreement No 229220). It features 11 partners from 5 countries (5 SMEs, 3 research institutes, 2 large companies, 1 association) and runs for three years (1st September 2009 - 31st August 2012). This project is an example of an industrial research development which aims to introduce to the market new products promoting the safe use of nanomaterials.

  17. Polyfire project- an example of an industrial research project promoting safe industrial production of fire-resistant nanocomposites

    International Nuclear Information System (INIS)

    Vaquero, C; Lopez de Ipina, J; Galarza, N; Hargreaves, B; Weager, B; Breen, C

    2011-01-01

    New developments based on nanotechnology have to guarantee safe products and processes to be accepted by society. The Polyfire project will develop and scale-up techniques for processing halogen-free, fire-retardant nanocomposite materials and coatings based on unsaturated polyester resins and organoclays. The project includes a work package that will assess the Health and Environmental impacts derived from the manipulation of nanoparticles. This work package includes the following tasks: (1) Identification of Health and Environment Impacts derived from the processes, (2) Experimentation to study specific Nanoparticle Emissions, (3) Development of a Risk Management Methodology for the process, and (4) A Comparison of the Health and Environmental Impact of New and Existing Materials. To date, potential exposure scenarios to nanomaterials have been identified through the development of a Preliminary Hazard Analysis (PHA) of the new production processes. In the next step, these scenarios will be studied and simulated to evaluate potential emissions of nanomaterials. Polyfire is a collaborative European project, funded by the European Commission 7th Framework Programme (Grant Agreement No 229220). It features 11 partners from 5 countries (5 SMEs, 3 research institutes, 2 large companies, 1 association) and runs for three years (1st September 2009 - 31st August 2012). This project is an example of an industrial research development which aims to introduce to the market new products promoting the safe use of nanomaterials.

  18. Bag3 promotes resistance to apoptosis through Bcl-2 family members in non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Yong; Wang, Jian-Hua; Lu, Qiang; Wang, Yun-Jie

    2012-01-01

    In non-small cell lung cancer (NSCLC) certain molecular characteristics, which are related to molecular alterations have been investigated. These are responsible for both the initiation and maintenance of the malignancy in lung cancer. The aim of this study was to evaluate the influence of Bag3 (Bcl-2 associated athanogene 3) in the regulation of apoptosis on NSCLC. Bag3 and Hsp70 expression were examined by immunohistochemistry to confirm their potential roles in the prevalence of NSCLC. We also established human normal bronchial epithelial cells and HOP-62 cell line as the model to analyze cell apoptosis and the expression of Hsp70, Bcl-XL and Bcl-2, which were affected by Bag3. In this study, we found that Bag3 and Hsp70 are highly expressed in few tissues and cell lines of NSCLC. Bag3 inhibits apoptosis in human normal bronchial epithelial cell lines and sustain the survival of NSCLC cells. Bag3, Hsp70, Bcl-XL and Bcl-2 are up-regulated in NSCLC cell lines. At the same time, the silencing of Bag3 results in diminishing protein levels of Bcl-XL and Bcl-2. The results of immunoprecipitation identified that Bag3 could interact with Hsp70, Bcl-XL and Bcl-2 NSCLC cells directly or indirectly. We conclude that NSCLC cells were protected from apoptosis through increasing Bag3 expression and consequently promoted the expression of Bcl-XL and Bcl-2.

  19. Chronic mastitis in cows caused by Streptococcus dysgalactiae: Case report

    Directory of Open Access Journals (Sweden)

    Cojkić Aleksandar

    2015-01-01

    Full Text Available Mastitis in dairy cows is an economically important disease because it makes up 38% of all diseases that occur in intensive cattle breeding. Mastitis affects milk production, either temporarily or permanently, depending on the course of infection and type of pathogen agent. Regular and timely therapy of mastitis based on the application antimicrobials, apart from prophylaxis, is very important for good health of breeding stock. This paper presents the case of repeated mastitis in a cow, Holstein-Friesian breed, 5 years old, which did not respond to antibiotic therapy. Milk samples from each separate quarter of the udder were collected under aseptic conditions and sent to the laboratory for further bacteriological tests, for isolation and identification of pathogens, as well as to test pathogen resistance to some antibiotics. On the basis of bacteriological examinations, there was confirmed the presence of Streptococcus dysgalactiae, which showed sensitivity to ampicillin, cloxacillin and augmentin, intermediate resistance to tetracycline and resistance to kotrimeksazol.(cotrimoxazole-proveriti [Projekat Ministarstva nauke Republike Srbije, br. TR 31085

  20. Corrosion of dental alloys in artificial saliva with Streptococcus mutans.

    Science.gov (United States)

    Lu, Chunhui; Zheng, Yuanli; Zhong, Qun

    2017-01-01

    A comparative study of the corrosion resistance of CoCr and NiCr alloys in artificial saliva (AS) containing tryptic soy broth (Solution 1) and Streptococcus mutans (S. mutans) species (Solution 2) was performed by electrochemical methods, including open circuit potential measurements, impedance spectroscopy, and potentiodynamic polarization. The adherence of S. mutans to the NiCr and CoCr alloy surfaces immersed in Solution 2 for 24 h was verified by scanning electron microscopy, while the results of electrochemical impedance spectroscopy confirmed the importance of biofilm formation for the corrosion process. The R(QR) equivalent circuit was successfully used to fit the data obtained for the AS mixture without S. mutans, while the R(Q(R(QR))) circuit was found to be more suitable for describing the biofilm properties after treatment with the AS containing S. mutans species. In addition, a negative shift of the open circuit potential with immersion time was observed for all samples regardless of the solution type. Both alloys exhibited higher charge transfer resistance after treatment with Solution 2, and lower corrosion current densities were detected for all samples in the presence of S. mutans. The obtained results suggest that the biofilm formation observed after 24 h of exposure to S. mutans bacteria might enhance the corrosion resistance of the studied samples by creating physical barriers that prevented oxygen interactions with the metal surfaces.

  1. Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa.

    Science.gov (United States)

    Suhett, Albert L; Steinberg, Christian E W; Santangelo, Jayme M; Bozelli, Reinaldo L; Farjalla, Vinicius F

    2011-07-01

    Evidence has accumulated that humic substances (HS) are not inert biogeochemicals. Rather, they cause stress symptoms and may modulate the life history of aquatic organisms. Nevertheless, it is still not clear how HS interact with additional stressors and if their effects are transgenerational. We tested the interactive effects of HS and salt to cladocerans, discussing their consequences for the persistence in fluctuating environments, such as coastal lagoons. We used life-table experiments to test the effects of natural HS from a polyhumic coastal lagoon (0, 5, 10, 20, 50, and 100 mg dissolved organic carbon (DOC) L(-1)) on the life-history of the cladoceran Moina macrocopa. We further tested the effects of HS (10 mg DOC L(-1)), within and across generations, on the resistance of M. macrocopa to salt stress (5.5 g L(-1)). HS at 5-20 mg DOC L(-1) extended the mean lifespan of M. macrocopa by ~30%. HS also increased body length at maturity by ~4% at 5-50 mg DOC L(-1) and stimulated male offspring production at all tested concentrations. Exposure to HS (even maternal only) alleviated the salt-induced reduction of somatic growth. Co-exposure to HS increased body volume by 12-22% relative to salt-only treatments, while pre-exposure to HS increased body volume by 40-56% in treatments with salt presence, when compared to non-pre-exposed animals. HS at environmentally realistic concentrations, by acting as mild chemical stressors, modify crucial life-history traits of M. macrocopa, favoring its persistence in fluctuating environments. Some of the effects of HS are even transgenerational.

  2. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?

    Science.gov (United States)

    van Mantgem, Phillip J.; Caprio, Anthony C.; Stephenson, Nathan L.; Das, Adrian J.

    2016-01-01

    Prescribed fire is a primary tool used to restore western forests following more than a century of fire exclusion, reducing fire hazard by removing dead and live fuels (small trees and shrubs).  It is commonly assumed that the reduced forest density following prescribed fire also reduces competition for resources among the remaining trees, so that the remaining trees are more resistant (more likely to survive) in the face of additional stressors, such as drought.  Yet this proposition remains largely untested, so that managers do not have the basic information to evaluate whether prescribed fire may help forests adapt to a future of more frequent and severe drought.During the third year of drought, in 2014, we surveyed 9950 trees in 38 burned and 18 unburned mixed conifer forest plots at low elevation (accounting for differences in individual tree diameter, common conifer species found in the burned plots had significantly reduced probability of mortality compared to unburned plots during the drought.  Stand density (stems ha-1) was significantly lower in burned versus unburned sites, supporting the idea that reduced competition may be responsible for the differential drought mortality response.  At the time of writing, we are not sure if burned stands will maintain lower tree mortality probabilities in the face of the continued, severe drought of 2015.  Future work should aim to better identify drought response mechanisms and how these may vary across other forest types and regions, particularly in other areas experiencing severe drought in the Sierra Nevada and on the Colorado Plateau.

  3. Development of infection with Streptococcus bovis and Aspergillus sp. in irradiated mice after glycopeptide therapy

    International Nuclear Information System (INIS)

    Brook, I.; Tom, S.P.; Ledney, G.D.

    1993-01-01

    The use of ofloxacin and glycopeptides was evaluated for the treatment of infections arising in C3H/HeN female mice irradiated with 8.3 Gy from a 60 Co source. The 21 day regimen began 72 h after irradiation when each of five sets of experimental animals received three antimicrobial therapy regimens and a saline-treated control group. With 40 mice in each group, 20 were used to monitor survival, 20 for the recovery of bacteria from the liver culture. Treatment groups were oral ofloxacin; oral or intramuscular vancomycin oral teicoplanin, ofloxacin and vancomycin; ofloxacin and teicoplanin; or saline. Bacteria recovered from saline treated mice were Enterobacteriaceae and Streptococcus spp. By comparison, fewer Enterobacteriaceae were isolated from ofloxacin treated mice and fewer Streptococcus spp. in both vancomycin and teicoplanin treated mice. However, glycopeptide-treated mice developed infection with Aspergillis fumigatus and glycopeptide resistant Streptococcus bovis. Mortality rates within 60 days of irradiation were 100% in all treatment and control groups with the exception of ofloxacin which was 25%-35%. These data suggest that glycopeptide therapy increases rates of systemic infection with fungi and antibiotic resistant bacteria in irradiated mice. (Author)

  4. Development of infection with Streptococcus bovis and Aspergillus sp. in irradiated mice after glycopeptide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brook, I.; Tom, S.P.; Ledney, G.D. (Armed Forces Radiobiology Research Inst., Bethesda, MD (United States))

    1993-11-01

    The use of ofloxacin and glycopeptides was evaluated for the treatment of infections arising in C3H/HeN female mice irradiated with 8.3 Gy from a [sup 60]Co source. The 21 day regimen began 72 h after irradiation when each of five sets of experimental animals received three antimicrobial therapy regimens and a saline-treated control group. With 40 mice in each group, 20 were used to monitor survival, 20 for the recovery of bacteria from the liver culture. Treatment groups were oral ofloxacin; oral or intramuscular vancomycin oral teicoplanin, ofloxacin and vancomycin; ofloxacin and teicoplanin; or saline. Bacteria recovered from saline treated mice were Enterobacteriaceae and Streptococcus spp. By comparison, fewer Enterobacteriaceae were isolated from ofloxacin treated mice and fewer Streptococcus spp. in both vancomycin and teicoplanin treated mice. However, glycopeptide-treated mice developed infection with Aspergillis fumigatus and glycopeptide resistant Streptococcus bovis. Mortality rates within 60 days of irradiation were 100% in all treatment and control groups with the exception of ofloxacin which was 25%-35%. These data suggest that glycopeptide therapy increases rates of systemic infection with fungi and antibiotic resistant bacteria in irradiated mice. (Author).

  5. CRH Affects the Phenotypic Expression of Sepsis-Associated Virulence Factors by Streptococcus pneumoniae Serotype 1 In vitro

    Directory of Open Access Journals (Sweden)

    Colette G. Ngo Ndjom

    2017-06-01

    Full Text Available Sepsis is a life-threatening health condition caused by infectious pathogens of the respiratory tract, and accounts for 28–50% of annual deaths in the US alone. Current treatment regimen advocates the use of corticosteroids as adjunct treatment with antibiotics, for their broad inhibitory effect on the activity and production of pro-inflammatory mediators. However, despite their use, corticosteroids have not proven to be able to reverse the death incidence among septic patients. We have previously demonstrated the potential for neuroendocrine factors to directly influence Streptococcus pneumoniae virulence, which may in turn mediate disease outcome leading to sepsis and septic shock. The current study investigated the role of Corticotropin-releasing hormone (CRH in mediating key markers of pneumococcal virulence as important phenotypic determinants of sepsis and septic shock risks. In vitro cultures of serotype 1 pneumococcal strain with CRH promoted growth rate, increased capsule thickness and penicillin resistance, as well as induced pneumolysin gene expression. These results thus provide significant insights of CRH–pathogen interactions useful in understanding the underlying mechanisms of neuroendocrine factor's role in the onset of community acquired pneumonias (CAP, sepsis and septic shock.

  6. Regulation of Streptococcus gordonii sspB by the sspA Gene Product

    OpenAIRE

    El-Sabaeny, Azza; Demuth, Donald R.; Lamont, Richard J.

    2001-01-01

    Streptococcus gordonii expresses two related adhesins, SspA and SspB, the genes for which are adjacent on the chromosome and are regulated independently. Although the adhesins are functionally similar, the sspA promoter is more active than that of sspB. In this study we show an additional role for SspA in the control of sspB activity. Gel shift and DNA footprinting assays demonstrate that the SspA protein binds to the sspB promoter and protects a region 233 to 264 bp upstream of the predicted...

  7. Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO_4 and promoted Pteris vittata growth

    International Nuclear Information System (INIS)

    Liu, Xue; Yang, Guang-Mei; Guan, Dong-Xing; Ghosh, Piyasa; Ma, Lena Q.

    2015-01-01

    The impact of siderophore produced by arsenic-resistant bacterium Pseudomonas PG12 on FeAsO_4 dissolution and plant growth were examined. Arsenic-hyperaccumulator Pteris vittata was grown for 7 d in 0.2-strength Fe-free Hoagland solution containing FeAsO_4 mineral and PG12-siderophore or fungal-siderophore desferrioxamine B (DFOB). Standard siderophore assays indicated that PG12-siderophore was catecholate-type. PG12-siderophore was more effective in promoting FeAsO_4 dissolution, and Fe and As plant uptake than DFOB. Media soluble Fe and As in PG12 treatment were 34.6 and 3.07 μM, 1.6- and 1.4-fold of that in DFOB. Plant Fe content increased from 2.93 to 6.24 g kg"−"1 in the roots and As content increased from 14.3 to 78.5 mg kg"−"1 in the fronds. Besides, P. vittata in PG12 treatment showed 2.6-times greater biomass than DFOB. While P. vittata fronds in PG12 treatment were dominated by AsIII, those in DFOB treatment were dominated by AsV (61–77%). This study showed that siderophore-producing arsenic-resistant rhizobacteria may have potential in enhancing phytoremediation of arsenic-contaminated soils. - Graphical abstract: As-induced root exudate phytate enhanced FeAsO_4 dissolution, and As uptake and plant growth of Pteris vittata. Display Omitted - Highlights: • Arsenic-resistant rhizobacterium Pseudomonas PG12 was from rhizosphere of As-hyperaccumulator Pteris vittata. • PG12 was effective in producing catecholate-type siderophore with high affinity with Fe. • PG12-produced siderophore increased Fe and As uptake and growth in P. vittata. - Siderophores produced by arsenic-resistant bacteria were effective in solubilizing FeAsO_4 mineral and enhancing plant growth of As-hyperaccumulator Pteris vittata.

  8. [Construction of a low-pH-sensing system in Streptococcus mutans].

    Science.gov (United States)

    Di, Kang; Yuqing, Li; Xuedong, Zhou

    2017-06-01

    To construct a low-pH-sensing system in Streptococcus mutans (S. mutans) and to visually detect the pH in situ. Promoter of ureaseⅠ(PureⅠ) and green fluorescence protein (gfp) DNA fragments were amplified by polymerase chain reaction (PCR) from the genome of Streptococcus salivarius 57.I and S. mutans containing the gfp fragment. The two amplified DNA fragments were ligated together and further integrated into pDL278 to construct the recombinant plasmid pDL278-pureⅠ-gfp. This recombinant plasmid was then transformed into S. mutans UA159 cells. Subsequently, the intensity of the optical density per unit area of the low-pH-sensing system was measured and compared under different pH conditions and different processing times. PureⅠ and gfp DNA fragments were amplified successfully with the correct molecule sizes (450 and 717 bp, respectively). The recombinant plasmid pDL278-pureⅠ-gfp was constructed and further verified by PCR and sequencing. The intensity of the optical density per unit area of the low-pH-sensing system increased with decreasing pH and increasing processing time. A low-pH-sensing system was constructed successfully in S. mutans. Our research verified that pureⅠ of Streptococcus salivarius can function well in S. mutans as an acid induced promoter, and provided a new method of detecting the pH of plaque biofilms in situ.

  9. Synergism of Plant Compound With Traditional Antimicrobials Against Streptococcus spp. Isolated From Bovine Mastitis

    Directory of Open Access Journals (Sweden)

    Natasha L. Maia

    2018-06-01

    Full Text Available Mastitis is an inflammation of the mammary gland that causes major losses in the dairy industry. Streptococcus spp. are among the main agents of this disease. Increased resistance to antibiotics is one of the causes of therapeutic failure. Plants, due to their broad chemodiversity, are an interesting source of new molecules with antibacterial activity. Using these compounds along with traditional antibiotics is a possible method for reversing resistance. The objective of this work was to determine the interactions between the activities of guttiferone-A and 7-epiclusianone, two active substances isolated from the fruits of Garcinia brasiliensis, and traditional antibiotics against Streptococcus spp. isolated from bovine mastitis and known to be resistant to them. First, the MIC for the antibiotics and bioactive compounds was determined, followed by their activities, alone and in combination. Then, their cytotoxicity was measured in bovine mammary epithelial cells. Finally, molecular docking simulations were performed to elucidate molecular details of the interactions between β-lactamase and the compounds binding to it (clavulanic acid, ampicillin, 7-epiclusianone, and guttiferone-A. The bacterial isolates were resistant to ampicillin and gentamicin. Both antibiotics showed predominantly synergistic antibacterial activities in combination with guttiferone-A or 7-epiclusianone. These two active substances were not cytotoxic at synergistic concentrations and both showed strong binding to β-lactamase, which may explain the reversal of ampicillin resistance. These substances are promising for the treatment of bovine mastitis.

  10. MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial-mesenchymal transition, decreased ER alpha expression and AKT activation

    NARCIS (Netherlands)

    Liang, Yuan-Ke; Zeng, De; Xiao, Ying-Sheng; Wu, Yang; Ouyang, Yan-Xiu; Chen, Min; Li, Yao-Chen; Lin, Hao-Yu; Wei, Xiao-Long; Zhang, Yong-Qu; Kruyt, Frank A. E.; Zhang, Guo-Jun

    2017-01-01

    Tamoxifen resistance presents a prominent clinical challenge in endocrine therapy for hormone sensitive breast cancer. However, the underlying mechanisms that contribute to tamoxifen resistance are not fully understood. In this study, we established a tamoxifen resistant MCF-7 cell line

  11. PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer

    Science.gov (United States)

    Yang, Yinhui; Bai, Yang; He, Yundong; Zhao, Yu; Chen, Jiaxiang; Ma, Linlin; Pan, Yunqian; Hinten, Michael; Zhang, Jun; Karnes, R. Jeffrey; Kohli, Manish; Westendorf, Jennifer J.; Li, Benyi; Zhu, Runzhi; Huang, Haojie; Xu, Wanhai

    2018-01-01

    Purpose Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR)reactivation and anti-androgen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design The effect of components of the AKT-RUNX2-osteocalcin (OCN)-GPRC6A-CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human PCa cell lines. Pten knockout mice were employed to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo. Results We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null PCa cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo. Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null PCa including CRPC. PMID:29167276

  12. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    Science.gov (United States)

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P Pea, Whey and Placebo, respectively; P Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  13. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress.

    Science.gov (United States)

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Sukweenadhi, Johan; Singh, Priyanka; Yang, Deok-Chun

    2017-07-01

    Panax ginseng is an important cash crop in the Asian countries due to its pharmaceutical effects, however the plant is exposed to various abiotic stresses, lead to reduction of its quality. One of them is the Aluminum (Al) accumulation. Plant growth promoting bacteria which able to tolerate heavy metals has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas. In this study, twelve bacteria strains were isolated from rhizosphere of diseased Korean ginseng roots located in Gochang province, Republic of Korea and tested for their ability to grow in Al-embedded broth media. Out of them, four strains (Pseudomonas simiae N3, Pseudomonas fragi N8, Chryseobacterium polytrichastri N10, and Burkholderia ginsengiterrae N11-2) were able to grow. The strains could also show other plant growth promoting activities e.g. auxins and siderophores production and phosphate solubilization. P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 strains were able to support the growth of Arabidopsis thaliana stressed by Al while P. fragi N8 could not. Plants inoculated with P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 showed higher expression level of Al-stress related genes, AtAIP, AtALS3 and AtALMT1, compared to non-bacterized plants. Expression profiles of the genes reveal the induction of external mechanism of Al resistance by P. simiae N3 and B. ginsengiterrae N11-2 and internal mechanism by C. polytrichastri N10. Korean ginseng seedlings treated with these strains showed higher biomass, particularly the foliar part, higher chlorophyll content than non-bacterized Al-stressed seedlings. According to the present results, these strains can be used in the future for the cultivation of ginseng in Al-persisted locations. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17.

    Science.gov (United States)

    Wang, Q; Xiong, D; Zhao, P; Yu, X; Tu, B; Wang, G

    2011-11-01

    Bioremediation of highly arsenic (As)-contaminated soil is difficult because As is very toxic for plants and micro-organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth-promoting rhizobacterium (PGPR). A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05-17) grown on As-amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg(-1)) inhibited its growth. With the bacterial inoculation, in the 300 mg kg(-1) As-amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above-ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation. © 2011 The Authors. Journal of Applied Microbiology ©2011 The Society for Applied

  15. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members

    Directory of Open Access Journals (Sweden)

    Christoph Jans

    2018-04-01

    Full Text Available The Streptococcus bovis/Streptococcus equinus complex (SBSEC comprises several species inhabiting the animal and human gastrointestinal tract (GIT. They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE and colorectal cancer (CRC. Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3 govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact

  16. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members

    Science.gov (United States)

    Jans, Christoph; Boleij, Annemarie

    2018-01-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises several species inhabiting the animal and human gastrointestinal tract (GIT). They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE) and colorectal cancer (CRC). Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG) retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3) govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact system

  17. Seeing Streptococcus pneumoniae, a Common Killer Bacteria

    DEFF Research Database (Denmark)

    Kjærgaard, Rikke Schmidt; Andersen, Ebbe Sloth

    2014-01-01

    Look around you. The diversity and complexity of life on earth is overwhelming and data continues to grow. In our desire to understand and explain everything scientifically from molecular evolution to supernovas we depend on visual representations. This paper investigates visual representations...... of the bacteria Streptococcus pneumoniae by use of ink, watercolours and computer graphics. We propose a novel artistic visual rendering of Streptococcus pneumoniae and ask what the value of these kind of representations are compared to traditional scientific data. We ask if drawings and computer......-assisted representations can add to our scientific knowledge about this dangerous bacteria. Is there still a role for the scientific illustrator in the scientific process and synthesis of scientific knowledge?...

  18. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Makoka Mwai H

    2012-03-01

    Full Text Available Abstract Background Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Methods Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Results Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. Conclusions There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  19. Consideraciones sobre elaislamiento en exudados vaginales de Streptococcus morbillorum

    Directory of Open Access Journals (Sweden)

    J.M. F. Egido

    1995-06-01

    Full Text Available De el estúdio de 195 exudados vaginales enviados por el Servicio de Ginecologia de este hospital, durante el período 1988-1990, hemos seleccionado aquellos en los que el cultivo fue positivo para estreptococos, 58 (30% de los cuales 26 (44.8% correspondia a Streptococcus morbillorum, 9 (15.5% a Gardnerella vaginalis, 5 (8.6% a Enterococcus faecalis-durans, y a Streptococcus agalactiae, 3 (5.1% a Streptococcus mitis y Streptococcus mitis, 2 (3-4% a Streptococcus bovis y Streptococcus cremoris y 1 (1.7% a Streptococcus salivarius, Streptococcus equinus y Strptococcus sanguis II respectivamente. En todos los casos se observo antecedentes de actuacción medico- quirurjica en el tracto genital, y en el 52.8% de los casos fuô concomitante con el diagnostico clinico-micologico de candidiasis vaginal. La ideittificaccion bacteriologica se realizo mediante el sistema API 20 STREP (sistema api bioMêríeux GmbH, Nütingen, Alemania dando un patron tipico ("excelente identificacción" para el Streptococcus morbillorum.

  20. MALDI-TOF mass spectrometry for differentiation between Streptococcus pneumoniae and Streptococcus pseudopneumoniae.

    Science.gov (United States)

    van Prehn, Joffrey; van Veen, Suzanne Q; Schelfaut, Jacqueline J G; Wessels, Els

    2016-05-01

    We compared the Vitek MS and Microflex MALDI-TOF mass spectrometry platform for species differentiation within the Streptococcus mitis group with PCR assays targeted at lytA, Spn9802, and recA as reference standard. The Vitek MS correctly identified 10/11 Streptococcus pneumoniae, 13/13 Streptococcus pseudopneumoniae, and 12/13 S. mitis/oralis. The Microflex correctly identified 9/11 S. pneumoniae, 0/13 S. pseudopneumoniae, and 13/13 S. mitis/oralis. MALDI-TOF is a powerful tool for species determination within the mitis group. Diagnostic accuracy varies depending on platform and database used. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC).

    Science.gov (United States)

    Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A

    2015-07-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are

  2. [Streptococcus suis infection--clinical manifestations].

    Science.gov (United States)

    Dragojlović, Julijana; Milosević, Branko; Sasić, Neda; Pelemis, Mijomir; Sasić, Milan

    2005-01-01

    Streptococcus suis is a bacterium causing a disease in pigs and rarely in humans. This zoonosis is mostly found as a sporadic disease in individuals that were in contact with the affected or infected pigs: farmers, veterinarians and workers engaged in fresh pork processing. It is assumed that the bacterium enters the body through a cut abrasion in the skin. Initially, the condition resembles a flu, followed by signs of bacteriemia and sepsis. The most frequent clinical manifestation of Streptococcus suis infection is meningitis, leading to hearing loss in over 75% of patients, and subsequent arthritis, endophtalmitis, endocarditis and pneumonia. Toxic shock syndrome with hemorhagic manifestations rarely develops. This study included five male patients aged 22 to 63 years treated in the Intensive Care Unit of the Institute of Infectious and Tropical Diseases in Belgrade, due to Streptococcus suis infection. The aim of this study was to point to the existence of this bacteria in our environment, to describe clinical manifestations of the disease and to point out the importance of its prevention. All patients had epidemiological evidence of being in contact with pork meat. There were no data about diseased pigs. The estimated incubation period was 4 to 8 days. All patients had meningeal signs. Clinical symptoms included shivering, fever, vomiting, headache, malaise, vertigo and tinitus. Three patients presented with alerterd level of awarrness. Four patients developed very severe bilateral hearing impairment, whereas one endophtalmtis and one developed endocarditis. The cerebrospinal fluid (CSF) was opalescent in four patients, and only one patient presented with clear CSF. CSF examination showed typical changes characteristic for bacterial meningitis. Streptoccocus suis was isolated in CSF in all patients, and in one patient the bacteria was isolated in blood as well. All patients underwent treatement with II and III generation cephalosporins and one with one

  3. Genetic diversity of penicillin-binding protein 2B and 2X genes from Streptococcus pneumoniae in South Africa.

    OpenAIRE

    Smith, A M; Klugman, K P; Coffey, T J; Spratt, B G

    1993-01-01

    Streptococcus pneumoniae (the pneumococcus) is believed to have developed resistance to penicillin by the production of altered forms of penicillin-binding proteins (PBPs) that have decreased affinity for penicillin. Sixty-eight clinical isolates of serogroup 6 and 19 pneumococci (MICs, < 0.015 to 8 micrograms/ml) were randomly selected from hospitals across South Africa which are at substantial geographic distance from each other. The polymerase chain reaction was used to isolate the penicil...

  4. SOS response activation and competence development are antagonistic mechanisms in Streptococcus thermophilus.

    Science.gov (United States)

    Boutry, Céline; Delplace, Brigitte; Clippe, André; Fontaine, Laetitia; Hols, Pascal

    2013-02-01

    Streptococcus includes species that either contain or lack the LexA-like repressor (HdiR) of the classical SOS response. In Streptococcus pneumoniae, a species which belongs to the latter group, SOS response inducers (e.g., mitomycin C [Mc] and fluoroquinolones) were shown to induce natural transformation, leading to the hypothesis that DNA damage-induced competence could contribute to genomic plasticity and stress resistance. Using reporter strains and microarray experiments, we investigated the impact of the SOS response inducers mitomycin C and norfloxacin and the role of HdiR on competence development in Streptococcus thermophilus. We show that both the addition of SOS response inducers and HdiR inactivation have a dual effect, i.e., induction of the expression of SOS genes and reduction of transformability. Reduction of transformability results from two different mechanisms, since HdiR inactivation has no major effect on the expression of competence (com) genes, while mitomycin C downregulates the expression of early and late com genes in a dose-dependent manner. The downregulation of com genes by mitomycin C was shown to take place at the level of the activation of the ComRS signaling system by an unknown mechanism. Conversely, we show that a ComX-deficient strain is more resistant to mitomycin C and norfloxacin in a viability plate assay, which indicates that competence development negatively affects the resistance of S. thermophilus to DNA-damaging agents. Altogether, our results strongly suggest that SOS response activation and competence development are antagonistic processes in S. thermophilus.

  5. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics......-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid...

  6. Phenotypical characteristics of group B streptococcus in parturients

    Directory of Open Access Journals (Sweden)

    Jose Antonio Simoes

    Full Text Available Colonization by Group B Streptococcus (GBS is highly prevalent among pregnant women, with prevalence rates ranging between 4% and 30%. The infection may be transmitted vertically and may result in serious neonatal consequences. In the period from November 2003 to May 2004, a cross-sectional study was carried out among 316 parturients at the Jundiaí Teaching Hospital to establish the prevalence of genital GBS colonization, to identify the factors associated with colonization and the characteristic phenotypes of these streptococci. Samples from rectal and vaginal areas were collected for selective culture in Todd-Hewitt broth. Susceptibility to 7 antimicrobial agents was tested using the antibiotic diffusion disk technique, and the isolated strains were classified using specific antisera. The prevalence of GBS colonization was 14.6%. No strain was resistant to penicillin, ampicillin, erythromycin or nitrofurantoin. The majority of strains were sensitive to cephalothin. Greatest resistance was to gentamicin (76.1%, followed by clindamycin (17.4%. The most frequent serotype was Ib (23.9%, followed by serotypes II and Ia (19.6% and 17.4%, respectively. There was no correlation between serotype and greater antimicrobial resistance. In conclusion, the prevalence of GBS in parturients was high and penicillin continues to be the drug of choice for intrapartum prophylaxis. The most frequent serotype (Ib found in this study differs from those found in the majority of studies carried out in other countries, revealing the need to identify prevalent serotypes in each region so that specific vaccines can be designed.

  7. Control of Glycolysis by Glyceraldehyde-3-Phosphate Dehydrogenase in Streptococcus cremoris and Streptococcus lactis

    NARCIS (Netherlands)

    POOLMAN, B; BOSMAN, B; KONINGS, WN

    1987-01-01

    The decreased response of the energy metabolism of lactose-starved Streptococcus cremoris upon readdition of lactose is caused by a decrease of the glycolytic activity. The decrease in glycolysis is accompanied by a decrease in the activities of glyceraldehyde-3-phosphate dehydrogenase and

  8. Antimicrobial activity of vanadium chloroperoxidase on planktonic Streptococcus mutans cells and Streptococcus mutans biofilms

    NARCIS (Netherlands)

    Hoogenkamp, M.A.; Crielaard, W.; ten Cate, J.M.; Wever, R.; Hartog, A.F.; Renirie, R.

    2009-01-01

    The aim of this study was to investigate the antimicrobial activity of vanadium chloroperoxidase (VCPO) reaction products on planktonic and biofilm cellsof Streptococcus mutans C180-2. Planktonic and biofilm cells were incubated in a buffered reaction mixture containing VCPO, halide (either chloride

  9. Influence of pH on inhibition of Streptococcus mutans by Streptococcus oligofermentans.

    Science.gov (United States)

    Liu, Ying; Chu, Lei; Wu, Fei; Guo, Lili; Li, Mengci; Wang, Yinghui; Wu, Ligeng

    2014-02-01

    Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4-aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced. © 2013 Eur J Oral Sci.

  10. Efficacy of some synthetic antibiotics on Streptococcus pneumoniae ...

    African Journals Online (AJOL)

    Effects of some synthetic antibiotics on Streptococcus pnemoniae and Proteus mirabilis isolated from cultured Clarias gariepinus, an important food fish raised in a concrete tank was carried out to ascertain their remedies on mortalities of the Clarias gariepinus adult fish. Streptococcus pnemoniae and Proteus mirabilis were ...

  11. Streptococcus suis meningitis can require a prolonged treatment course

    Directory of Open Access Journals (Sweden)

    Jean Dejace

    2017-12-01

    Full Text Available We report a case of recrudescent Streptococcus suis meningitis requiring a prolonged treatment course. A few similar cases can be found in the burgeoning literature on what remains a relatively uncommon disease in humans, and these patients should be monitored carefully upon completion of therapy. Keywords: Meningitis, Relapse, Duration, Streptococcus suis

  12. Endocarditis caused by Streptococcus canis: an emerging zoonosis?

    Science.gov (United States)

    Lacave, Guillaume; Coutard, Aymeric; Troché, Gilles; Augusto, Sandrine; Pons, Stéphanie; Zuber, Benjamin; Laurent, Virginie; Amara, Marlène; Couzon, Brigitte; Bédos, Jean-Pierre; Pangon, Béatrice; Grimaldi, David

    2016-02-01

    We report a human case of infective endocarditis caused by Streptococcus canis. Identification was carried out from positive blood culture using mass spectrometry and SodA gene sequencing. S. canis related zoonotic invasive infections may have been previously underdiagnosed due to inadequate identification of group G Streptococcus species.

  13. Diversity of human small intestinal Streptococcus and Veillonella populations.

    Science.gov (United States)

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

    2013-08-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Molecular screening for erythromycin resistance genes in ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-15

    Jul 15, 2015 ... in Streptococcus pyogenes isolated from Iraqi patients with tonsilo-pharyngites. Hassan .... is an automated colorimetric method used for identification of bacteria and for .... counter medicines in private pharmacies against the regulations. ... Effect of telithromycin on erythromycin resistant S. pyogenes. In this ...

  15. Frequency and expression of mutacin biosynthesis genes in isolates of Streptococcus mutans with different mutacin-producing phenotypes.

    Science.gov (United States)

    Kamiya, Regianne Umeko; Höfling, José Francisco; Gonçalves, Reginaldo Bruno

    2008-05-01

    The aim of this study was to analyse the frequency and expression of biosynthesis genes in 47 Streptococcus mutans isolates with different mutacin-producing phenotypes. Detection of the frequency and expression of genes encoding mutacin types I, II, III and IV were carried out by PCR and semi-quantitative RT-PCR, respectively, using primers specific for each type of biosynthesis gene. In addition, a further eight genes encoding putative bacteriocins, designated bsm 283, bsm 299, bsm 423, bsm 1889c, bsm 1892c, bsm 1896, bsm 1906c and bsm 1914, were also screened. There was a high phenotypic diversity; some Streptococcus mutans isolates presented broad antimicrobial spectra against other Streptococcus mutans clinical isolates, including bacteria resistant to common antibiotics, as well as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Streptococcus pyogenes. The expression frequency of the bsm gene was higher than that of the previously characterized mutacins (I-IV). There was no positive correlation between the number of indicator strains inhibited (antimicrobial spectra) and the number of biosynthesis genes expressed (Spearman correlation test, r=-0.03, P>0.05). In conclusion, the high diversity of mutacin-producing phenotypes, associated with high frequency of expression of the biosynthesis genes screened, reveals a broad repertoire of genetic determinants encoding antimicrobial peptides that can act in different combinations.

  16. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Lillard James W

    2011-05-01

    Full Text Available Abstract Background Chemotherapy heavily relies on apoptosis to kill breast cancer (BrCa cells. Many breast tumors respond to chemotherapy, but cells that survive this initial response gain resistance to subsequent treatments. This leads to aggressive cell variants with an enhanced ability to migrate, invade and survive at secondary sites. Metastasis and chemoresistance are responsible for most cancer-related deaths; hence, therapies designed to minimize both are greatly needed. We have recently shown that CCR9-CCL25 interactions promote BrCa cell migration and invasion, while others have shown that this axis play important role in T cell survival. In this study we have shown potential role of CCR9-CCL25 axis in breast cancer cell survival and therapeutic efficacy of cisplatin. Methods Bromodeoxyuridine (BrdU incorporation, Vybrant apoptosis and TUNEL assays were performed to ascertain the role of CCR9-CCL25 axis in cisplatin-induced apoptosis of BrCa cells. Fast Activated Cell-based ELISA (FACE assay was used to quantify In situ activation of PI3Kp85, AktSer473, GSK-3βSer9 and FKHRThr24 in breast cancer cells with or without cisplatin treatment in presence or absence of CCL25. Results CCR9-CCL25 axis provides survival advantage to BrCa cells and inhibits cisplatin-induced apoptosis in a PI3K-dependent and focal adhesion kinase (FAK-independent fashion. Furthermore, CCR9-CCL25 axis activates cell-survival signals through Akt and subsequent glycogen synthase kinase-3 beta (GSK-3β and forkhead in human rhabdomyosarcoma (FKHR inactivation. These results show that CCR9-CCL25 axis play important role in BrCa cell survival and low chemotherapeutic efficacy of cisplatin primarily through PI3K/Akt dependent fashion.

  17. Deregulation of the Arginine Deiminase (arc) Operon in Penicillin-Tolerant Mutants of Streptococcus gordonii

    OpenAIRE

    Caldelari, I.; Loeliger, B.; Langen, H.; Glauser, M. P.; Moreillon, P.

    2000-01-01

    Penicillin tolerance is an incompletely understood phenomenon that allows bacteria to resist drug-induced killing. Tolerance was studied with independent Streptococcus gordonii mutants generated by cyclic exposure to 500 times the MIC of penicillin. Parent cultures lost 4 to 5 log10 CFU/ml of viable counts/24 h. In contrast, each of four independent mutant cultures lost ≤2 log10 CFU/ml/24 h. The mutants had unchanged penicillin-binding proteins but contained increased amounts of two proteins ...

  18. Antimicrobial susceptibility of Streptococcus suis isolated from clinically healthy swine in Brazil.

    Science.gov (United States)

    Soares, Taíssa Cook Siqueira; Paes, Antonio Carlos; Megid, Jane; Ribolla, Paulo Eduardo Martins; Paduan, Karina dos Santos; Gottschalk, Marcelo

    2014-04-01

    Streptococcus suis is an important pathogen in the swine industry. This study is the first to report on the antimicrobial susceptibility of S. suis isolated from clinically healthy pigs in Brazil; the fourth major pork producer in the world. The antimicrobial susceptibility of 260 strains was determined by disc diffusion method. Strains were commonly susceptible to ceftiofur, cephalexin, chloramphenicol, and florfenicol, with more than 80% of the strains being susceptible to these antimicrobials. A high frequency of resistance to some of the antimicrobial agents was demonstrated, with resistance being most common to sulfa-trimethoprim (100%), tetracycline (97.69%), clindamycin (84.61%), norfloxacin (76.92%), and ciprofloxacin (61.15%). A high percentage of multidrug resistant strains (99.61%) were also found. The results of this study indicate that ceftiofur, cephalexin, and florfenicol are the antimicrobials of choice for empirical control of the infections caused by S. suis.

  19. In silico assessment of virulence factors in strains of Streptococcus oralis and Streptococcus mitis isolated from patients with Infective Endocarditis

    DEFF Research Database (Denmark)

    Rasmussen, Louise H.; Iversen, Katrine Højholt; Dargis, Rimtas

    2017-01-01

    Streptococcus oralis and Streptococcus mitis belong to the Mitis group, which are mostly commensals in the human oral cavity. Even though S. oralis and S. mitis are oral commensals, they can be opportunistic pathogens causing infective endocarditis. A recent taxonomic re-evaluation of the Mitis...

  20. Necrotizing fasciitis caused by group A streptococcus

    Directory of Open Access Journals (Sweden)

    Mikić Dragan

    2002-01-01

    Full Text Available The first case of the confirmed necrotizing fasciitis caused by Group A Streptococcus in Yugoslavia was presented. Male patient, aged 28, in good health, suddenly developed symptoms and signs of severe infective syndrome and intensive pain in the axillary region. Parenteral antibiotic, substitution and supportive therapy was conducted along with the radical surgical excision of the necrotizing tissue. The patient did not develop streptococcal toxic shock syndrome thanks to the early established diagnosis and timely applied aggressive treatment. He was released from the hospital as completely cured two months after the admission.

  1. Streptococcus anginosus infections: crossing tissue planes.

    Science.gov (United States)

    Sunwoo, Bernie Y; Miller, Wallace T

    2014-10-01

    Streptococcus anginosus has long been recognized to cause invasive pyogenic infections. This holds true for thoracic infections where S. anginosus has a propensity for abscess and empyema formation. Early diagnosis is important given the significant morbidity and mortality associated with thoracic S. anginosus infections. Yet, distinguishing thoracic S. anginosus clinically is difficult. We present three cases of thoracic S. anginosus that demonstrated radiographic extension across tissue planes, including the interlobar fissure, diaphragm, and chest wall. Few infectious etiologies are known to cross tissue planes. Accordingly, we propose S. anginosus be considered among the differential diagnosis of potential infectious etiologies causing radiographic extension across tissue planes.

  2. The sensitivity to antibiotics of strains of group B streptococcus isolates from pregnant women in Belgrade

    Directory of Open Access Journals (Sweden)

    Jovanović Luka

    2016-01-01

    Full Text Available Introduction: Group B streptococcus (GBS is a significant human pathogen. GBS colonizes the vagina and it is one of the most important causes of early neonatal sepsis and meningitis. In many countries, screening of pregnant women and intrapartal use of antibiotics are common practice. Macrolide and lincosamide resistant strains of GBS are a significant problem, because these antibiotics are the second line therapy in case of penicillin allergy. Aim: Our aim was to investigate the frequency of antibiotic resistant strains of GBS and to detect macrolide resistance phenotypes in GBS strains obtained from pregnant women in Belgrade. Material and Methods: 105 GBS isolates were obtained from vaginal swabs of pregnant women attending two Gynecology and Obstetrics Centers in Belgrade. The isolates were tested for antimicrobial susceptibility pattern and D test were performed on Mueller Hinton agar. Results: Macrolide and lincosamide resistance was found in 30.4 %, and 23.8 % of isolates, respectively. There was a high frequency of tetracycline resistant strains (88.6 %. Most frequent macrolide resistant phenotype was iMLSb (macrolide and inducibile lincosamide resistance (62.4%. Conclusion: The results of our study indicate that there is a high level of macrolide resistance among GBS isolates in Serbia and the active surveillance is needed.

  3. Antibiotic Susceptibilities and Serotyping of Clinical Streptococcus Agalactiae Isolates

    Directory of Open Access Journals (Sweden)

    Altay Atalay

    2011-11-01

    Full Text Available Objective: Streptococcus agalactiae (Group B streptococci, GBS are frequently responsible for sepsis and meningitis seen in the early weeks of life. GBS may cause perinatal infection and premature birth in pregnant women. The aim of this study was to serotype GBS strains isolated from clinical samples and evaluate their serotype distribution according to their susceptibilities to antibiotics and isolation sites. Material and Methods: One hundred thirty one S. agalactiae strains isolated from the clinical samples were included in the study. Of the strains, 99 were isolated from urine, 20 from soft tissue, 10 from blood and 2 from vaginal swab. Penicillin G and ceftriaxone susceptibilities of GBS were determined by the agar dilution method. Susceptibilities to erythromycin, clindamycin, vancomycin and tetracycline were determined by the Kirby-Bauer method according to CLSI criteria. Serotyping was performed using the latex aglutination method using specific antisera (Ia, Ib, II-VIII. Results: While in 131 GBS strains, serotypes VII and VIII were not detected, the most frequently isolated serotypes were types Ia (36%, III (30.5% and II (13% respectively. Serotype Ia was the most frequently seen serotype in all samples. All GBS isolates were susceptible to penicilin G, ceftriaxone and vancomycin. Among the strains, tetracycline, erythromycin and clindamycin resistance rates were determined as 90%, 14.5%, and 13% respectively. Conclusion: Penicillin is still the first choice of treatment for the infections with all serotypes of S. agalactiae in Turkey.

  4. Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection.

    Science.gov (United States)

    Vornhagen, Jay; Armistead, Blair; Santana-Ufret, Verónica; Gendrin, Claire; Merillat, Sean; Coleman, Michelle; Quach, Phoenicia; Boldenow, Erica; Alishetti, Varchita; Leonhard-Melief, Christina; Ngo, Lisa Y; Whidbey, Christopher; Doran, Kelly S; Curtis, Chad; Waldorf, Kristina M Adams; Nance, Elizabeth; Rajagopal, Lakshmi

    2018-04-09

    Thirteen percent of pregnancies result in preterm birth or stillbirth, accounting for fifteen million preterm births and three and a half million deaths annually. A significant cause of these adverse pregnancy outcomes is in utero infection by vaginal microorganisms. To establish an in utero infection, vaginal microbes enter the uterus by ascending infection; however, the mechanisms by which this occurs are unknown. Using both in vitro and murine models of vaginal colonization and ascending infection, we demonstrate how a vaginal microbe, group B streptococcus (GBS), which is frequently associated with adverse pregnancy outcomes, uses vaginal exfoliation for ascending infection. GBS induces vaginal epithelial exfoliation by activation of integrin and β-catenin signaling. However, exfoliation did not diminish GBS vaginal colonization as reported for other vaginal microbes. Rather, vaginal exfoliation increased bacterial dissemination and ascending GBS infection, and abrogation of exfoliation reduced ascending infection and improved pregnancy outcomes. Thus, for some vaginal bacteria, exfoliation promotes ascending infection rather than preventing colonization. Our study provides insight into mechanisms of ascending infection by vaginal microbes.

  5. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  6. Immunogenic properties of Streptococcus agalactiae FbsA fragments.

    Directory of Open Access Journals (Sweden)

    Salvatore Papasergi

    Full Text Available Several species of Gram-positive bacteria can avidly bind soluble and surface-associated fibrinogen (Fng, a property that is considered important in the pathogenesis of human infections. To gain insights into the mechanism by which group B Streptococcus (GBS, a frequent neonatal pathogen, interacts with Fng, we have screened two phage displayed genomic GBS libraries. All of the Fng-binding phage clones contained inserts encoding fragments of FbsA, a protein displaying multiple repeats. Since the functional role of this protein is only partially understood, representative fragments were recombinantly expressed and analyzed for Fng binding affinity and ability to induce immune protection against GBS infection. Maternal immunization with 6pGST, a fragment containing five repeats, significantly protected mouse pups against lethal GBS challenge and these protective effects could be recapitulated by administration of anti-6pGST serum from adult animals. Notably, a monoclonal antibody that was capable of neutralizing Fng binding by 6pGST, but not a non-neutralizing antibody, could significantly protect pups against lethal GBS challenge. These data suggest that FbsA-Fng interaction promotes GBS pathogenesis and that blocking such interaction is a viable strategy to prevent or treat GBS infections.

  7. Treatment of acute otitis media - challenges in the era of antibiotic resistance.

    Science.gov (United States)

    Dagan, R

    2000-12-08

    The last decade is characterized by the increase in antibiotic resistance among respiratory bacterial pathogens in the presence of only modest progress in the development of new antibacterial agents to overcome this resistance. A series of recent studies show clearly that the increased resistance among the main AOM pathogens (namely Streptococcus pneumoniae and Haemophilus influenzae) is associated with a dramatic decrease in bacteriologic response to antibiotic treatment, which in turn has an impact on clinical response. Thus, the individual patient is affected by the increasing antibiotic resistance. Moreover, the society as a whole is now also affected because the carriage and spread of antibiotic resistant AOM pathogens is remarkably impacted by antibiotic treatment. New studies show the remarkable ability of antibiotics to rapidly promote nasopharyngeal carriage and spread of antibiotic-resistant AOM pathogens. In these studies, the increase in carriage of antibiotic resistant S. pneumoniae is shown already after 3-4 days from initiation of antibiotic treatment and may last for weeks to months after treatment. Children carrying antibiotic-resistant organisms transmit those organisms to their family and to their day care centers and thus a vicious cycle is created in which increased antibiotic resistance with decreased response leads to increased antibiotic use, which in turn leads to further increase in resistance. New antibiotics are not likely to improve this situation. It is clear that the challenge in the next decade is to prevent AOM rather than to treat it. Efforts to prevent AOM include improved environmental factors, immunization with bacterial and viral vaccines and some creative measures such as prevention of colonization and attachment to epithelium of AOM pathogens. Whether these efforts will prove successful or, even if successful, will only modify the clinical and bacteriologic picture presenting new challenges, only time will tell.

  8. Carbohydrates Alone or Mixing With Beef or Whey Protein Promote Similar Training Outcomes in Resistance Training Males: A Double-Blind, Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Naclerio, Fernando; Seijo-Bujia, Marco; Larumbe-Zabala, Eneko; Earnest, Conrad P

    2017-10-01

    Beef powder is a new high-quality protein source scarcely researched relative to exercise performance. The present study examined the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on strength performance (1RM), body composition (via plethysmography), limb circumferences and muscular thickness (via ultrasonography), following an 8-week resistance-training program. After being randomly assigned to one of the following groups: Beef, Whey, or Carbohydrate, twenty four recreationally physically active males (n = 8 per treatment) ingested 20 g of supplement, mixed with orange juice, once a day (immediately after workout or before breakfast). Post intervention changes were examined as percent change and 95% CIs. Beef (2.0%, CI, 0.2-2.38%) and Whey (1.4%, CI, 0.2-2.6%) but not Carbohydrate (0.0%, CI, -1.2-1.2%) increased fat-free mass. All groups increased vastus medialis thickness: Beef (11.1%, CI, 6.3-15.9%), Whey (12.1%, CI, 4.0, -20.2%), Carbohydrate (6.3%, CI, 1.9-10.6%). Beef (11.2%, CI, 5.9-16.5%) and Carbohydrate (4.5%, CI, 1.6-7.4%), but not Whey (1.1%, CI, -1.7-4.0%), increased biceps brachialis thickness, while only Beef increased arm (4.8%, CI, 2.3-7.3%) and thigh (11.2%, 95%CI 0.4-5.9%) circumferences. Although the three groups significantly improved 1RM Squat (Beef 21.6%, CI 5.5-37.7%; Whey 14.6%, CI, 5.9-23.3%; Carbohydrate 19.6%, CI, 2.2-37.1%), for the 1RM bench press the improvements were significant for Beef (15.8% CI 7.0-24.7%) and Whey (5.8%, CI, 1.7-9.8%) but not for carbohydrate (11.4%, CI, -0.9-23.6%). Protein-carbohydrate supplementation supports fat-free mass accretion and lower body hypertrophy. Hydrolyzed beef promotes upper body hypertrophy along with similar performance outcomes as observed when supplementing with whey isolate or maltodextrin.

  9. eGFP expression under the Uchl1 promoter labels corticospinal motor neurons and a subpopulation of degeneration resistant spinal motor neurons in ALS mouse models

    Science.gov (United States)

    Yasvoina, Marina V.

    Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons

  10. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans.

    Science.gov (United States)

    Moye, Zachary D; Son, Minjun; Rosa-Alberty, Ariana E; Zeng, Lin; Ahn, Sang-Joon; Hagen, Stephen J; Burne, Robert A

    2016-08-01

    The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP

  11. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans

    Science.gov (United States)

    Moye, Zachary D.; Son, Minjun; Rosa-Alberty, Ariana E.; Zeng, Lin; Ahn, Sang-Joon

    2016-01-01

    ABSTRACT The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans. IMPORTANCE The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence

  12. Different Erythromycin Resistance Mechanisms in Group C and Group G Streptococci

    OpenAIRE

    Kataja, Janne; Seppälä, Helena; Skurnik, Mikael; Sarkkinen, Hannu; Huovinen, Pentti

    1998-01-01

    Different mechanisms of erythromycin resistance predominate in group C and G streptococcus (GCS and GGS, respectively) isolates collected from 1992 to 1995 in Finland. Of the 21 erythromycin-resistant GCS and 32 erythromycin-resistant GGS isolates, 95% had the mefA or mefE drug efflux gene and 94% had the ermTR methylase gene, respectively.

  13. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    Science.gov (United States)

    Chao, Yashuan; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  14. 35S Promoter Methylation in Kanamycin-Resistant Kalanchoe (Kalanchoe pinnata L.) Plants Expressing the Antimicrobial Peptide Cecropin P1 Transgene.

    Science.gov (United States)

    Shevchuk, T V; Zakharchenko, N S; Tarlachkov, S V; Furs, O V; Dyachenko, O V; Buryanov, Y I

    2016-09-01

    Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases.

  15. Analysis of Streptococcus bovis infections at a monographic oncological centre

    Directory of Open Access Journals (Sweden)

    Lozano TG

    2014-02-01

    Full Text Available The Streptococcus bovis is a Gram-positive, facultative anaerobic, catalase and oxidase negative coccus belonging to the genus Streptococcus. It is part of Streptoccus bovis/ equinus complex and it express the Lancefield antigen D on the surface.This complex has been characterized by molecular biology techniques and specifically by 16S rRNA and sodA gene. Phylogenetic trees based on these techniques are complex and therefore the routine work in laboratories, biochemical techniques are used to identify subspecies if it is necessary.The complex is divided into two subtypes based on biochemical properties: positive mannitol fermentation (biotype I including S. gallolyticus (S. gallolyticus subsp. gallolyticus and S. gallolyticus subsp. macedonicus, mannitol negative and ß-glucuronidase negative (biotype II/ 1, which includes more species (S. infantarius subsp. coli and S. lutetiensis and mannitol negative and ß-glucuronidase positive (biotype II/ 2, with a single species called S. gallolyticus subsp. pasteurianus.Owing to the relationship between colon cancer tumour and Streptococcus bovis, we intend to analyse all isolates in our hospital between the periods of 2010 until March 2013 and analyse tumor epidemiology at our center, in patients infected with this pathogen.Despite the different types of samples and out of the possibility of identification of subspecies, were isolated 14 S. bovis of 14 different patients. The isolates patients were (at the beginning: 4 blood (blood culture, 5 urine, 4 multiple exudates and 1 bronchoalveolar lavage. The proportion of men and women was 8/6. The mean age was 67 years (56±91. Malignant tumor distribution was: 6 prostate cancer, 1 breast cancer, 1 biliary tract, 1 skin, 1, stomach, 1 uterus, 1 vulvar, 1 pyriform sinus and other reproductive organs without specify.The study of antimicrobial in vitro susceptibility was performed by microdilution (MicroScan® WalkAway, Siemens, Sacramento, CA, USA and the

  16. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients

    DEFF Research Database (Denmark)

    Miller, Amanda K; Brannon, Mark K; Stevens, Laurel

    2011-01-01

    Pseudomonas aeruginosa can develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of polymyxin resistance (MICs of 8 - 64 mg/L) in laboratory and clinical strains...

  17. Use of partial budgeting to determine the economic benefits of antibiotic treatment of chronic subclinical mastitis caused by Streptococcus uberis or Streptococcus dysgalactiae

    NARCIS (Netherlands)

    Swinkels, J.M.; Rooijendijk, J.G.A.; Zadoks, R.N.; Hogeveen, H.

    2005-01-01

    The economic effect of lactational antibiotic treatment of chronic subclinical intramammary infections due to Streptococcus uberis or Streptococcus dysgalactiae was explored by means of partial budgeting. Effects at cow level and herd level were modelled, including prevention of clinical mastitis

  18. Interactions between Oral Bacteria: Inhibition of Streptococcus mutans Bacteriocin Production by Streptococcus gordonii

    OpenAIRE

    Wang, Bing-Yan; Kuramitsu, Howard K.

    2005-01-01

    Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacterio...

  19. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov.

    Science.gov (United States)

    Nomoto, R; Maruyama, F; Ishida, S; Tohya, M; Sekizaki, T; Osawa, Ro

    2015-02-01

    In order to clarify the taxonomic position of serotypes 20, 22 and 26 of Streptococcus suis, biochemical and molecular genetic studies were performed on isolates (SUT-7, SUT-286(T), SUT-319, SUT-328 and SUT-380) reacted with specific antisera of serotypes 20, 22 or 26 from the saliva of healthy pigs as well as reference strains of serotypes 20, 22 and 26. Comparative recN gene sequencing showed high genetic relatedness among our isolates, but marked differences from the type strain S. suis NCTC 10234(T), i.e. 74.8-75.7 % sequence similarity. The genomic relatedness between the isolates and other strains of species of the genus Streptococcus, including S. suis, was calculated using the average nucleotide identity values of whole genome sequences, which indicated that serotypes 20, 22 and 26 should be removed taxonomically from S. suis and treated as a novel genomic species. Comparative sequence analysis revealed 99.0-100 % sequence similarities for the 16S rRNA genes between the reference strains of serotypes 20, 22 and 26, and our isolates. Isolate STU-286(T) had relatively high 16S rRNA gene sequence similarity with S. suis NCTC 10234(T) (98.8 %). SUT-286(T) could be distinguished from S. suis and other closely related species of the genus Streptococcus using biochemical tests. Due to its phylogenetic and phenotypic similarities to S. suis we propose naming the novel species Streptococcus parasuis sp. nov., with SUT-286(T) ( = JCM 30273(T) = DSM 29126(T)) as the type strain. © 2015 IUMS.