WorldWideScience

Sample records for strengthening iaea safeguards

  1. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  2. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    Full text: In May 1997, the IAEA Board of Governors adopted the Additional Safeguards Protocol to improve its ability to detect the undeclared production of fissile material. This new strengthened safeguards system has opened the door for the IAEA to use of all types of information, including the potential use of commercial satellite imagery. We have therefore been investigating the feasibility of strengthening IAEA safeguards using commercial satellite imagery. Based on our analysis on a number of one-meter resolution IKONOS satellite images of military nuclear production facilities at nuclear states including Russia, China, India, Pakistan and Israel, we found that the new high-resolution commercial satellite imagery would play a new and valuable role in strengthening IAEA safeguards. Since 1999, images with a resolution of one meter have been available commercially from Space Imaging's IKONOS satellite. One-meter images from other companies are expected to enter the market soon. Although still an order of magnitude less capable than military imaging satellites, the capabilities of these new high-resolution commercial satellites are good enough to detect and identify the major visible characteristics of nuclear production facilities and sites. Unlike the classified spy satellite photos limited to few countries, the commercial satellite imagery is commercially available to anyone who wants to purchase it. Therefore, the new commercial satellite open a new chance that each state, international organizations, and non-governmental groups could use the commercial images to play a more proactive role in monitoring the nuclear activities in related countries and verifying the compliance of non-proliferation agreements. This could help galvanize support for intensified efforts to slow the pace of nuclear proliferation. To produce fissile materials (plutonium and highly enriched uranium) for weapons, a country would operate dedicated plutonium-production reactors and the

  3. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  4. Optimizing IAEA Safeguards

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  5. Strengthening Performance Management in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Villiers, V. Z. de

    2015-01-01

    This paper will describe an initiative to develop a management support tool to improve performance management in the IAEA Department of Safeguards. The envisaged mechanism should enable the Department to (a) plan, assess and report on the achievement of its objectives and (b) to improve its performance on a continuous basis. The performance management tool should be aligned with related processes in the Department and the IAEA as a whole such as strategic planning, programming and budget, the result-based management approach and various reporting mechanisms. It should be integrated with existing and planned information and other management systems. The initially, departmental working group that was established for this initiative focussed on two aspects: confirmation of the overall and specific objectives to be achieved by the Department of Safeguards, and compiling an inventory of indicators of activities, outputs and outcomes that were being used in the Department. This exercise confirmed that alignment and prioritization of activities relating to assessment of, and reporting on, performance could be improved. A value creation map was subsequently developed to assist in focussing the performance management tool to identified needs of stakeholders. Other activities of the working group included the determination of the desired characteristics of a hierarchy of performance indicators to be used to drive desired behaviour across organizational levels. Complexities to be handled included the following: · reflecting the appropriate component of the results chain (such as activities, outputs, outcomes and impact); · maintaining the linkages between objectives and performance indicators across organizational levels; · developing a balanced set of performance indicators (e.g. reflecting in-field and Headquarters activities, incorporating all main components of Departmental processes and balanced scorecard perspectives, measurable vs qualitative indicators); and

  6. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  7. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  8. Strengthening of Organizational Infrastructure for Meeting IAEA Nuclear Safeguards Obligations: Bangladesh Perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2010-01-01

    Safeguards are arrangements to account for and control the use of nuclear materials. This verification is a key element in the international system which ensures that uranium in particular is used only for peaceful purposes. The only nuclear reactor in Bangladesh achieved critically on September 14, 1986. Reactor Operation and Maintenance Unit routinely carries out certain international obligations which need to undertake as signatory of different treaties, agreements and protocols in the international safeguards regime. Pursuant to the relevant articles of these agreements/protocols, the reactor and associated facilities of Bangladesh (Facility code: BDA- and BDZ-) are physically inspected by the designated IAEA safeguards inspectors. The Bangladesh Atomic Energy Commission (BAEC) has recently created a new division called 'Nuclear Safeguards and Security Division' for enhancing the safeguards activities as per international obligations. This division plays a leading role in the planning, implementation, and evaluation of the BAEC's nuclear safeguards and nuclear security activities. This division is actively working with USDOE, IAEA and EU to enhance the nuclear safeguards and security activities in the following areas: - Analysis of nuclear safeguards related reports of 3 MW TRIGA Mark-II research reactor; - Upgrading of physical protection system of 3 MW TRIGA Mark-II research reactor, gamma irradiation facilities, central radioactive storage and processing facility and different radiation oncology facilities of Bangladesh under GTRI programme; - Supervision for installation of radiation monitoring system of the Chittagong port under USDOE Megaports Initiative Programmes for detection of illicit trafficking of nuclear and radioactive materials; - Development of laboratory capabilities for analysis of nuclear safeguards related samples; - Planning for development of organizational infrastructure to carry out safeguards related activities under IAEA different

  9. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  10. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  11. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  12. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  13. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  14. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  15. The IAEA's safeguards systems. Ready for the 21st century

    International Nuclear Information System (INIS)

    1998-01-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? what assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification? (author)

  16. The IAEA's safeguards system. Ready for the 21st century

    International Nuclear Information System (INIS)

    1997-09-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? What assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification?

  17. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  18. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  19. IAEA safeguards for the 21st century

    International Nuclear Information System (INIS)

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  20. IAEA safeguards for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  1. Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank V [Los Alamos National Laboratory

    2012-08-14

    This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previously used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant

  2. Strengthening safeguards information evaluation

    International Nuclear Information System (INIS)

    Harry, J.; Hudson, P.

    2001-01-01

    The strengthening of safeguards should not be limited to the verification of explicit declarations made by the States. Additional information should guide the IAEA to set priorities for further investigations. Not only all aspects of the State's nuclear programme, including the application of safe, secure and transparent nuclear management, but also the level of compliance with other verifiable treaties, political motivation, economic capabilities, international relations and ties, co-operative attitude to safeguards, and general openness and transparency should be included. The evaluation of the diverse forms of information from different sources requires new reliable processes that will result in a high credibility and detection probability. The IAEA uses the physical model for the evaluation of the technical information, and proposed also Fuzzy Logic, or Calculation with Words, to handle the information. But for the evaluation it is questioned whether fuzziness could lead to a crisp judgement. In this paper an objective method of information evaluation is proposed, which allows to integrate different kinds of information and to include calibration and tests in the establishment of the evaluation process. This method, Delta, uses elicitation of a syndicate of experienced inspectors to integrate obvious indicators together with apparently innocent indicators, into a database that forms the core of the evaluation process. Nominal or ordinal scales could be applied to come to an objective and quantifiable result. Experience with this method can in the course of time result in predictive conclusions. 9 refs

  3. Strengthening the effectiveness and improving the efficiency of the IAEA safeguards system (Programme 93+2)

    International Nuclear Information System (INIS)

    Tani, Hiroshi

    1999-01-01

    Present safeguards systems against nuclear proliferation as well as their improvement activities for more effective results are reviewed. First, the mechanism of the NPT Safeguards System is explained, which is the grasp of inventories of nuclear materials through change and transfer booking starting with actual investigation. Then, other various safeguards systems are described, including TLATELOCO (Treaty for the prohibition of nuclear weapons in Latin America), VO (Voluntary Offer), OCA (Other Comprehensive Safeguards Agreement), PA (Project Agreement), US (Unilateral Submission), and OSA (Other Safeguards Agreement). Thirdly, the present status and problems of the nuclear proliferation prevention in the world are described, including competitive nuclear weapon development in India and Pakistan, and Iraq and North Korea problems. Lastly, the 93 + 2 plan to improve the present system is explained. (M.M.)

  4. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  5. The basis for the strengthening of safeguards

    International Nuclear Information System (INIS)

    Goldschmidt, P.

    1999-01-01

    For the past 30 years, the International Atomic Energy Agency's safeguards system has contributed to the international non-proliferation regime, by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons programme in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. This paper will summarize the evolution of the safeguards system, describe strengthened safeguards, report on the status of implementing the strengthening measures, and outline plans for integrating all available safeguards measures. (author)

  6. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  7. IAEA safeguards: Staying ahead of the game

    International Nuclear Information System (INIS)

    2007-07-01

    What are nuclear safeguards and why are they important? Answers are provided in the booklet, describing and explaining the fundamentals of the IAEA safeguards system and its role as a key element of international security, and addressing the system's implementation, costs, requirements, resources and historical development, with an emphasis on trends and strengthening measures over the past 10-15 years. Topics discussed include the safeguards State evaluation process and and the key requirements of the safeguards system including information sources (open source information, commercial satellite imagery and nuclear trade related information) and the state of the art equipment, techniques and technology (unattended and remote monitoring equipment, environmental sampling, etc.)

  8. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  9. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  10. IAEA safeguards - a 1988 perspective

    International Nuclear Information System (INIS)

    Jennekens, J.

    1988-01-01

    The problem of IAEA safeguards as regards its perspectives for 1988 is discussed. The necessity of balancing between safeguards measures required for the timely detection of nuclear material diversion to military purposes and measures to prove the absence of diversion is stated. Accurately working safeguards system aimed at the provision of nondiversion can include, as an accompanying component, any deterrence element required. Such a system will be more expensive than any other altrenatives but it will undoubtly be more suitable and accepatble

  11. Strengthening regional safeguards

    International Nuclear Information System (INIS)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-01-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980's and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States

  12. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  13. IAEA safeguards information system

    International Nuclear Information System (INIS)

    Nardi, J.

    1984-01-01

    The basic concepts, structure, and operation of the Agency Safeguards Information System is discussed with respect to its role in accomplishing the overall objectives of safeguards. The basis and purposes of the Agency's information system, the structure and flow of information within the Agency's system, the relationship of the components is the Agency system, the requirements of Member States in respect of their reporting to the Agency, and the relationship of accounting data vis-a-vis facility and inspection data are described

  14. Contribution of the Member State Support Programmes to IAEA safeguards

    International Nuclear Information System (INIS)

    Fortakov, V.; Gardiner, D.; Rautjaervi, J.

    1999-01-01

    Over the last twenty years, Member States of the International Atomic Energy Agency (IAEA) have provided invaluable technical support to IAEA Safeguards. This support has covered practically all aspects of traditional safeguards activities and also those activities recently proposed and introduced for strengthening the safeguards system. As of August 1997, there were fourteen Member States, plus EURATOM, with active programmes in support of IAEA safeguards and the activities conducted under these Member State Support Programmes (MSSPs) are currently valued at an annual twenty million dollars of extra-budgetary contribution to the IAEA. The overall administration in the IAEA of the support programmes is the responsibility of Support Programmes Administration (SPA) in the Safeguards Division of Technical Services. This paper describes the roles and the contributions of the MSSPs, the functions of the MSSP administration activities, and the vital importance the IAEA attaches to the MSSPs. (author)

  15. IAEA safeguards: Challenges and opportunities

    International Nuclear Information System (INIS)

    1993-01-01

    The history of the IAEA safeguards regime is described. New challenges and opportunities are discussed in connection with the discovery in Iraq of a clandestine nuclear weapons development programme, the difficulties experienced in the implementation of the safeguards agreement with the Democratic People's Republic of Korea, the conclusion of a comprehensive safeguards agreement with Argentina, Brazil and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, recent developments in South Africa, the emergence of newly independent States that made up the former USSR. 2 figs

  16. IAEA safeguards: some pros and cons

    International Nuclear Information System (INIS)

    Kelly, P.

    1986-01-01

    The author gives a personal view of the International Atomic Energy Agency's (IAEA) safeguards. The IAEA safeguards system is described (including containment, surveillance and inspection), and the limitations and strengths of the system are examined. (U.K.)

  17. IAEA safeguards and classified materials

    International Nuclear Information System (INIS)

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  18. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  19. IAEA safeguards and non-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R J.S.

    1995-02-01

    An overview is given of efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this `Full Scope Safeguards` on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear weapon applications.

  20. IAEA safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1995-02-01

    An overview is given of the efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the exclusively peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this 'Full Scope Safeguards' on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear

  1. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  2. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  3. Development of the strengthened safeguards system and the Additional Protocol

    International Nuclear Information System (INIS)

    Vidaurre-Henry, Jaime

    2001-01-01

    For the past 30 years, the IAEA's safeguards system has contributed to the international non-proliferation regime by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons program in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. The paper summarizes the evolution of the safeguards system, describes strengthened safeguards, reports on the status of implementing the strengthening measures, and outlines plans for integrating all available safeguards measures. (author)

  4. The IAEA safeguards information system

    International Nuclear Information System (INIS)

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  5. Improving the Transparency of IAEA Safeguards Reporting

    International Nuclear Information System (INIS)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-01-01

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  6. IAEA safeguards and detection of undeclared nuclear activities

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.)

  7. IAEA safeguards and detection of undeclared nuclear activities

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.).

  8. Information collection strategies to support strengthened safeguards

    International Nuclear Information System (INIS)

    Costantini, L.; Hill, J.

    2001-01-01

    The IAEA Board of Governors approved the implementation of Part 1 of Strengthened Safeguards in June 1995. Since then, the collection and analysis of information beyond that provided by States parties and acquired by inspectors under NPT Safeguards Agreements has been an integral part of IAEA safeguards. The Agency has formally established internal structures and procedures to facilitate the effective use of open-source and other information not previously used in safeguards. Over this period the IAEA Division of Safeguards Information Technology (SGIT) has been building its collections of electronically held open source information. Some of these collections are quite nuclear-specific, such as material from the Monterey Institute in California, and nuclear news collections provided voluntarily by a number of Member States. Others are completely general news sources. Several of these collections contain many more reports than could possibly be reviewed by a human analyst. So a need has arisen for computerised search facilities to identify nuclear-relevant items from those collections. The Agency has more than one piece of software available to help searching and analysis of substantial collections of reports. Search 97 from Verity was chosen for this particular application because it is very straightforward to use, and it was expected that personnel from all over the Department of Safeguards would carry out these searches on a routine basis. The approach whereby special-purpose search mechanisms are designed for use by a large number of users, who are unfamiliar with the details of the search software, seems to be unusual if not unique to the Agency

  9. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1984-01-01

    The general structure of the safeguards system, the SSAC interfaces, and physical protection principles, equipment, and techniques are reviewed. In addition, the interactions between the State, the facility operator, and the IAEA are described

  10. IAEA Safeguards: Present status and experience gained

    International Nuclear Information System (INIS)

    Thorne, L.; Buechler, C.; Haegglund, E.

    1983-01-01

    IAEA safeguards are at the present under critical review with regard to their purpose and effectiveness. This paper describes the development of the IAEA Safeguards System from the early days, when procedures were developed on an ad hoc basis, to the present day. The development of State Systems of Accounting for and Control of Nuclear Material (SSAC), and of sophisticated instrumentation, has been necessary to deal with the rapid growth in the quantities of nuclear material and in the number of facilities under safeguards. The paper also discusses some of the managerial and organizational issues that are inherent in such a large international inspectorate. (author)

  11. IAEA Safeguards: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A. [Los Alamos National Laboratory; Hypes, Philip A. [Los Alamos National Laboratory

    2012-06-14

    This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

  12. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS

    International Nuclear Information System (INIS)

    PEPPER, S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-01-01

    techniques and methods that could be used by the IAEA to strengthen safeguards. Creative thinking was encouraged during discussion of the proposals. On the final day of the workshop, the OAC facilitators summarized the participant's ideas in a combined briefing. This paper will report on the results of the April 2007 USSP-IAEA Workshop on Advanced Sensors for Safeguards and give an overview of the proposed technologies of greatest promise

  13. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1985-01-01

    In this session, physical protection, nuclear material accounting and control, and containment and surveillance have been discussed, with emphasis on the interactions of these measures within the context of IAEA safeguards. In addition, the current physical protection equipment and techniques have been reviewed. The interactions can be summarized as follows. Although physical protection is a fundamental element of IAEA safeguards, it is solely a state/facility operator responsibility. While the IAEA has an interest in promoting the implementation of effective physical protection systems, it serves only in an advisory capacity. Nuclear material accounting directly involves the state, facility operator, and the IAEA. Facility records and reports provided by the state are independently verified by the IAEA. The SSAC is of fundamental importance in this process. Containment and surveillance measures are used by the UAEA. Installation and routine use of C/S equipment must be approved by the state and facility operator, and must not affect facility operations or safety

  14. Recent advances in IAEA safeguards systems analysis

    International Nuclear Information System (INIS)

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  15. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  16. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  17. Strengthened safeguards: Present and future challenges

    International Nuclear Information System (INIS)

    Goldschmidt, Pierre

    2001-01-01

    Full text: The safeguards system is experiencing what has been seen as a revolution and, in doing so, it is confronting a series of challenges. These can be grouped into three areas. Drawing and maintaining safeguards conclusions - The process by which the safeguards conclusions are derived is based upon the analysis, evaluation and review of all the information available to the Agency. This process is on- going, but the State Evaluation Reports are compiled and reviewed periodically. For States with an additional protocol in force, the absence of indicators of the presence of undeclared nuclear material or activities provides the basis for the safeguards conclusion. Future challenges center on States' expectations of, and reactions to, the results of the evaluation and review process. Designing and implementing integrated safeguards - The conceptual framework of integrated safeguards is being actively pursued. Basic principles have been defined and integrated safeguards approaches have been developed for various types of facilities. Work is also progressing on the design of integrated safeguards approaches for specific States. Complementary access is being successfully implemented, and procedures for the use of unannounced inspections are being developed with the prospect of cost- effectiveness gains. Costs neutrality vs. quality and credibility - The Department faces serious staff and financial challenges. It has succeeded so far in 'doing more' and 'doing better' within a zero-real growth budget, but the scope for further significant efficiency gains is exhausted. There is no capacity to absorb new or unexpected tasks. Difficulties in recruiting and retaining qualified and experienced staff exacerbate the problems and add to costs. The Director General of the IAEA has referred to the need for new initiatives to bridge the budgetary gap; a possible measure is proposed. The tasks of meeting the challenges and demands of strengthened safeguards have been added to

  18. The IAEA`s safeguards systems. Ready for the 21st century; Le systeme de garanties de l`AIEA au seuil du 21e siecle; El sistema de salvaguardias del OIEA a punto para el siglo 21; Sistema garantij magateh gotova vstupleniyu v 21-j vek

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The publication reviews the IAEA`s safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? what assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification? (author)

  19. National viewpoints: Views on strengthened safeguards from Australia, Cuba and South Africa

    International Nuclear Information System (INIS)

    Biggs, I.; Saburido, E.F.; Mxakato-Diseko, N.J.

    1999-01-01

    This paper presents views of Australia, Cuba and South Africa concerned with strengthened safeguards regime. Australia has been involved with the IAEA safeguards system since the first plenary meeting of the Conference on the IAEA Statute in 1956, joined the NPT in 1973 and began concluding bilateral safeguards agreements in 1977. Australia has the greatest respect for the IAEA coordinated efforts started in 1998 to strengthen and integrate the safeguards system. Cuba has always attached special importance to nuclear safeguards activities, recognizing their high priority as well as the important role they have in respect to international disarmament and security. South Africa supports the efforts in strengthening the safeguards activities and remains hopeful that the international community will address the challenges posed by the Trilateral Initiative between Russian federation, USA and IAEA in a mature and cooperative way

  20. The IAEA: politicization and safeguards

    International Nuclear Information System (INIS)

    Scheinman, L.

    1983-01-01

    The International Atomic Energy Agency is widely understood to be an essential element of an effective international nonproliferation regime which is itself a condition sine qua non to international nuclear cooperation and commerce. The progressive intrusion into Agency activities of extraneous political issues has threatened the Agency's integrity and undermined confidence in the organization. The consequences of continued deterioration would be substantial, most particularly for international safeguards which are unique and invaluable to peaceful nuclear development and international security. Measures to reverse this trend are identified and discussed

  1. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R. [Pacific Northwest Lab., Richland, WA (United States); Anzelon, G. [Lawrence Livermore National Lab., CA (United States); Deland, S. [Sandia National Labs., Albuquerque, NM (United States); Whiteson, R. [Los Alamos National Lab., NM (United States)

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

  2. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    International Nuclear Information System (INIS)

    Badalamente, R.; Anzelon, G.; Deland, S.; Whiteson, R.

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information

  3. IAEA safeguards information system re-engineering project (IRP)

    International Nuclear Information System (INIS)

    Whitaker, G.; Becar, J.-M.; Ifyland, N.; Kirkgoeze, R.; Koevesd, G.; Szamosi, L.

    2007-01-01

    The Safeguards Information System Re-engineering Project (IRP) was initiated to assist the IAEA in addressing current and future verification and analysis activities through the establishment of a new information technology framework for strengthened and integrated safeguards. The Project provides a unique opportunity to enhance all of the information services for the Department of Safeguards and will require project management 'best practices' to balance limited funds, available resources and Departmental priorities. To achieve its goals, the Project will require the participation of all stakeholders to create a comprehensive and cohesive plan that provides both a flexible and stable foundation for address changing business needs. The expectation is that high quality integrated information systems will be developed that incorporate state-of-the-art technical architectural standards, improved business processes and consistent user interfaces to store various data types in an enterprise data repository which is accessible on-line in a secure environment. (author)

  4. Improving technical support to IAEA safeguards

    International Nuclear Information System (INIS)

    Rundquist, D.

    1986-01-01

    Changes present new safeguards challenges and require that the entire safeguards process become more efficient. A development process has evolved at the Agency that aids in matching appropriate technology to the needs, primarily through the mechanism of voluntary Member States Support Programme, which gives IAEA access to many of the worlds finest nuclear laboratories. The function of these programs is discussed in this article with particular emphasis on the Agency's co-ordination role. Besides a description of the Member States Support Programme the problems involved (coordination and communication aspects) as well as the results achieved are indicated. The support is categorized under the following headlines: 1) Information and expertise; 2) Instrumentation, methods and techniques; 3) Training; 4) Test and calibration facilities. As mentioned in the article Member States also benefit from the Support Programme. Other means of technical support such as multi-national co-operation programmes and bilateral research agreements are mentioned

  5. IAEA safeguards for the Fissile Materials Disposition Project

    International Nuclear Information System (INIS)

    Close, D.A.

    1995-06-01

    This document is an overview of International Atomic Energy Agency (IAEA) safeguards and the basic requirements or elements of an IAEA safeguards regime. The primary objective of IAEA safeguards is the timely detection of the diversion of a significant quantity of material and the timely detection of undeclared activities. The two important components of IAEA safeguards to accomplish their primary objective are nuclear material accountancy and containment and surveillance. This overview provides guidance to the Fissile Materials Disposition Project for IAEA inspection requirements. IAEA requirements, DOE Orders, and Nuclear Regulatory Commission regulations will be used as the basis for designing a safeguards and security system for the facilities recommended by the Fissile Materials Disposition Project

  6. IAEA's Safeguards Implementation Practices Guides

    International Nuclear Information System (INIS)

    Mathews, C.; Sahar, S.; Cisar, V.

    2015-01-01

    Implementation of IAEA safeguards benefits greatly from effective cooperation among the IAEA, State or regional authorities (SRAs), and operators of facilities and other locations. To improve such cooperation, the IAEA has produced numerous safeguards guidance documents in its Services Series publications. The IAEA also provides assistance, training and advisory services that are based on the published guidance. The foundation of the IAEA's safeguards guidance is the Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (IAEA Services Series 21) published in March of 2012. The large majority of States have concluded CSAs and therefore will benefit from this guidance. Many States with CSAs also have concluded small quantities protocols (SQPs) to their CSAs. In April of 2013, the IAEA published the Safeguards Implementation Guide for States with SQPs (IAEA Services Series 22). Other guidance focuses on specific topics such as preparing additional protocol declarations and nuclear material accounting. This paper will describe a recent effort to produce a ''Safeguards Implementation Practices'' (SIP) series of guides that will provide additional explanatory information about safeguards implementation, and share the practical experiences and lessons learned of States and the IAEA over the many decades of implementing safeguards. The topics to be addressed in four SIP guides include: 1) Facilitating IAEA Verification Activities; 2) Establishing and Maintaining State Safeguards Infrastructure; 3) Provision of Information to the IAEA; and 4) Collaborative Approaches to Safeguards Implementation. The SIP Guides build upon the content of IAEA Services Series 21. Because the SIP Guides are intended to share implementation practices and lessons learned of States, a number of experienced State experts have participated in the development of the documents, through a joint Member State Support Programme task

  7. Safeguards implementation and strengthening in Belarus

    International Nuclear Information System (INIS)

    Sudakou, I.; Piotukh, O.

    2001-01-01

    transportation of nuclear materials is carried out by Promatomnadzor. Promatomnadzor also issues permits on movement of nuclear materials across the borders of Belarus. State Customs Committee is responsible for detection of unauthorised imports and exports of nuclear and other radioactive materials at the customs border of the Republic of Belarus. They report each case to other responsible authorities. Belarus is a transport corridor between the East and West, and the issues relating to regulation of export and import, exercising control over export, import of nuclear materials, prevention of smuggling of nuclear materials and maintaining of international co-operation are very important for us. Further development of the safeguards system - It should be noted that control over use of nuclear materials and facilities, which is still of crucial importance can not ensure the absence of undeclared nuclear activities as required. The IAEA has developed the strengthened safeguards system (INFIRC/590) the essence of which is to expand control over relevant technologies, dual use commodities and services. Of course, the implementation of the system provides for more effective and efficient safeguards. Co-operation with the IAEA and other international organisations is regarded as one of the conditions of further improvement of reliability and efficiency of the safeguards. In conclusion I would like to express my profound gratitude to the IAEA and donor countries, in particular Japan, USA and Sweden, for their assistance aimed at strengthening safeguards in Belarus. (author)

  8. Containment and surveillance - A principal IAEA safeguards measure

    International Nuclear Information System (INIS)

    Drayer, D.D.; Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    The growth of the safeguards inspectorate of the Agency, spanning more than 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. Although the Agency was established in 1957, the first practical inspections did not occur until the early 1960s. In the early inspections, thee was little C/S equipment available, and no optical surveillance was used. However, by the third decade of the IAEA, the 1980s, many technology advances were made, and the level of C/S equipment activities increased. By the late 1980s, some 200 Twin Minolta film camera systems were deployed by the Agency for safeguards use. At the present time, the Agency is evaluating and beginning to implement remote monitoring as part of the Strengthened Safeguards System. However, adoption of remote monitoring by international agencies cannot occur rapidly because of the many technical and policy issues associated with this activity. A glimpse into the future indicates that an important element of safeguards instrumentation will be the merging of C/S and NDA equipment into integrated systems. The use of modern interior area monitors in International Safeguards also offers a great potential for advancing C/S measures. The research in microsensors is in its infancy, and the opportunities for their reducing the cost, increasing the life time, and increasing the reliability of sensors for safeguards applications are manifold. A period may be approaching in which the terminology of C/S will no longer have its original meaning, as integrated systems combining NDA instruments and C/S instruments are already in use and are expected to be the norm in the near future

  9. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  10. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  11. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a 'Model Protocol Additional to Safeguards Agreements'. The Protocol provides the legal basis necessary to enhance the Agency's ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following 'Implementation Blueprint' study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small 'imagery unit' within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild's long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small 'imagery unit' using high-resolution data will be a sound and

  12. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  13. IAEA and EC to Strengthen Cooperation in Nuclear Safety

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: The International Atomic Energy Agency and the European Commission today signed a Memorandum of Understanding on Nuclear Safety, establishing a framework for cooperation to help improve nuclear safety in Europe. The Memorandum, signed by IAEA Director General Yukiya Amano and the European Commissioner for Energy, Guenther Oettinger, is the first concrete result of an enhanced dialogue between the IAEA and the EU, launched in January 2013 at their first Senior Officials Meeting in Brussels. Cooperation has been rapidly growing in recent years between the IAEA and the EU, which, together with its Member States, is one of the biggest donors to the IAEA, both in financial terms and in provision of technical expertise. Cooperation in the field of nuclear safeguards is already well-established and formalised, but in other areas it is less structured. ''The EU is one of our most important partners, providing practical and financial assistance, as well as expertise, in many areas of our work,'' Mr. Amano said. ''This Memorandum of Understanding is further evidence that EU countries take very seriously the need to strengthen nuclear safety in the aftermath of the Fukushima Daiichi accident.'' Mr. Oettinger highlighted that such intensified cooperation is important to ensure that nuclear energy is produced safely all over the world. He added that the EU nuclear stress tests set a global benchmark and contribute to the IAEA's Action Plan on Nuclear Safety , which was endorsed unanimously by the IAEA's Member States in September 2011. ''Under the new Memorandum, all this experience will be made available to the international community. I hope that the European safety approach leads to a global initiative,'' said the Commissioner. The Memorandum creates an enhanced framework for planning and reviewing various forms of cooperation in nuclear safety, such as expert peer reviews and strengthening emergency preparedness and response capabilities. It will allow both

  14. IAEA to implement Safeguards Additional Protocols in the EU

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: IAEA Director General Mohamed ElBaradei welcomed the entry into force today of the Additional Protocols for 15 States of the European Union - France, the United Kingdom and the 13 non-nuclear weapon States of the EU - and the European Atomic Energy Community (EURATOM). The Protocols, which provide the Agency with better tools to verify compliance with nuclear non-proliferation commitments, entered into force when the European Commission informed the Agency that EURATOM's own requirements for entry into force had been met. The 15 States had provided similar notifications over the past years since signing the Protocols in 1998. The simultaneous entry into force of Additional Protocols for the 15 EU States is 'a very positive development and a milestone in our efforts to strengthen the verification regime', said Dr. ElBaradei. 'In my view, the Additional Protocol should become the standard for verification under the Treaty on the Non-Proliferation of Nuclear Weapons (NPT).' He added that the Agency had been preparing for the entry into force of the EU protocols and was confident that, in co-operation with the 15 States and EURATOM, it would be able to ensure effective and efficient implementation in the EU States. The Model Additional Protocol was developed following the discovery of Iraq's clandestine nuclear weapons programme to ensure that the IAEA is given the information and access it needs for timely discovery of any similar activities in States that have pledged not to use nuclear material and activities for weapons purposes. In the past year, Additional Protocols entered into force for 22 countries, and the Agency will now implement Additional Protocols in 58 States, which includes the 15 EU States. The 10 countries joining the EU on 1 May 2004 - seven of which already have brought into force Additional Protocols to their respective safeguards agreements - are expected to gradually accede to the Safeguards Agreement and Additional Protocol covering

  15. A technical analysis of the IAEA nuclear safeguards

    International Nuclear Information System (INIS)

    Yoon, J. W.

    1998-01-01

    In the post-Cold War era, the threats of horizontal nuclear proliferation emerge as the forefront security issue while the nuclear arms races among existing nuclear weapon states reduce to a remarkable extent. In this context, there arises lots of research attention to the IAEA nuclear safeguards which have been viewed as the core of international monitoring on the clandestine nuclear activities of potential proliferators. However, previous attention tended to highlight the political aspects of the IAEA nuclear safeguards, centering on the possibilities and limitations of the IAEA's inspection authority. In contrast, this paper purports to focus on the technical aspects of the IAEA nuclear safeguards, so it can show the intrinsic problems of those safeguards in stemming the proliferation of nuclear weapons. This paper mainly deals with the technical objectives and options of the IAEA nuclear safeguards, the technical indices of clandestine nuclear activities, and some measures to improve the efficacy of the IAEA nuclear safeguards. Hopefully, this paper is expected to lead us to approach the issue of the North Korean nuclear transparency from the technical perspective as well as the political one

  16. Canadian safeguards research and development in support of the IAEA

    International Nuclear Information System (INIS)

    1980-03-01

    Canada has established a safeguards research and development program whose purpose is to supplement the resources of the IAEA. The program of support is a coordinated effort for the development and application of safeguards techniques and instruments to reactors of Canadian design. This document sets forth those tasks that make up the program

  17. Finnish support programme to IAEA safeguards. Annual report 1994

    International Nuclear Information System (INIS)

    Tarvainen, M.

    1995-05-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out trough separate tasks concentrating on verification of nuclear material, training and expert services to the IAEA. In addition to the Finnish summary, the report includes detailed description of each task in English

  18. Integrated Safeguards Information System for Japan (ISIS-J) - Strengthening SSAC for Enhancing Confidence in Compliance with Safeguards Obligations -

    International Nuclear Information System (INIS)

    Iso, S.; Nishiyama, N.; Kumakura, S.; Takizawa, K.; Yoshida, H.; Kobayashi, I.; Kikuchi, M.; Kimura, N.; Matsubara, T.; Yatsu, S.

    2010-01-01

    IAEA has stated the importance of enhancing cooperation with SSAC. Therefore, Japan has developed the Integrated Safeguards Information System for enhancing confidence in compliance with the national obligation under the safeguards agreement and the additional protocol. Japan already established the National System including national inspections with NDA and DA verification functions and evaluation of data obtained from national inspections and has maintained the National System of safeguards as a SSAC in accordance with the safeguards agreement. Nuclear Material Control Center (NMCC) is engaged in national safeguards activities as designated organization of national inspectorate and information treatment including safeguards data analysis. Recently, purpose of IAEA's safeguards activities may shift to detection of proliferation based on plausible proliferation paths from detection of diversion by certain material accountancy measures. Major safeguards activities of IAEA have changed from quantitative aspects to qualitative them. As supplements for declining the quantitative measures such as the activities based on the safeguards criteria the IAEA would expect the SSAC functions for maintaining the activities of quantitative manners. Japan believes that the State's responsibility for enhancing cooperation between the National System and the IAEA must assure the confidence level of correctness and completeness of the State declarations with accurate and precise accountability as findings from SSAC. Japan has started the development of the strengthened and autonomous national system namely the Integrated safeguards Information System for Japan (ISIS-J) in order to fulfil our responsibility. Japan would seek to improve quality of information including nuclear material accounting data as well as expanded declaration relevant to nuclear activities in Japan, and to increase abilities for explaining safeguards relevant events in Japan. The enhanced findings could include

  19. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in open-quotes Observational Skillsclose quotes. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector's job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector's job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA's consideration in further developing its Safeguards training program

  20. Finnish support programme to IAEA safeguards. Annual report 1994; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1994 toimintakertomus

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, M [ed.

    1995-05-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out trough separate tasks concentrating on verification of nuclear material, training and expert services to the IAEA. In addition to the Finnish summary, the report includes detailed description of each task in English.

  1. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1978-11-01

    The present IAEA approach to safeguarding various types of nuclear facilities is examined. The IAEA safeguards objectives, criteria and specific techniques are addressed, with reference e.g. to concepts like timely detection, quantities of safeguards significance, and conversion times. Material accountancy and containment and surveillance as basic features of IAEA safeguards verification are discussed. Safeguards measures for specific facility types are considered and corresponding levels of IAEA safeguards experience are assessed. Outlines of expected IAEA safeguard approaches to large bulk handling facilities are discussed. The evolutionary nature of safeguards based on experience and research and development is mentioned

  2. Non-proliferation and international safeguards. [Booklet by IAEA

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This booklet consists of 13 separate, brief analyses related to the subject title, namely: The International Scope of IAEA Safeguards; Application of Safeguards Procedures; Computer-Based Safeguards Information and Accounting System; IAEA Training Activities Related to State Systems of Nuclear Materials Accountancy and Control; Surveillance and Containment Measures to Support IAEA Safeguards; International Plutonium Management; Safeguards for Reprocessing and Enrichment Plants; Non-Destructive Assay: Instruments and Techniques for Agency Safeguards; The Safeguards Analytical Laboratory: Its Functions and Analytical Facilities; Resolution of the UN General Assembly on the Treaty on the Non-Proliferation of Nuclear Weapons of 12 June 1968; The Treaty on the Non-Proliferation of Nuclear Weapons; Final Declaration of the Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons, May 1975; Resolutions on the IAEA's Work in the Field of the Peaceful Uses of Atomic Energy, adopted by the UN General Assembly on 8 and 12 December, 1977; and a Map on the NPT situation in the world (with explanations).

  3. IAEA Guidance for Safeguards Implementation in Facility Design and Construction

    International Nuclear Information System (INIS)

    Sprinkle, J.; Hamilton, A.; Poirier, S.; Catton, A.; Ciuculescu, C.; Ingegneri, M.; Plenteda, R.

    2015-01-01

    One of the IAEA's statutory objectives is to seek to accelerate and enlarge the contribution of nuclear energy to peace, health and prosperity throughout the world. One way the IAEA works to achieve this objective is through the publication of technical series that can provide guidance to Member States. These series include the IAEA Services Series, the IAEA Safety Standard Series, the IAEA Nuclear Security Series and the IAEA Nuclear Energy Series. The Nuclear Energy Series is comprised of publications designed to encourage and assist research and development on, and practical application of, nuclear energy for peaceful purposes. This includes guidance to be used by owners and operators of utilities, academia, vendors and government officials. The IAEA has chosen the Nuclear Energy Series to publish guidance for States regarding the consideration of safeguards in nuclear facility design and construction. Historically, safeguards were often applied after a facility was designed or maybe even after it was built. However, many in the design and construction community would prefer to include consideration of these requirements from the conceptual design phase in order to reduce the need for retro-fits and modifications. One can then also take advantage of possible synergies between safeguards, security, safety and environmental protection and reduce the project risk against cost increments and schedule slippage. The IAEA is responding to this interest with a suite of publications in the IAEA Nuclear Energy Series, developed with the assistance of a number of Member State Support Programmes through a joint support programme task: · International Safeguards in Nuclear Facility Design and Construction (NP-T-2.8, 2013), · International Safeguards in the Design of Nuclear Reactors (NP-T-2.9, 2014), · International Safeguards in the Design of Spent Fuel Management (NF-T-3.1, tbd), · International Safeguards in the Design of Fuel Fabrication Plants (NF-T-4.7, tbd

  4. Croatian Support for Strengthening International Safeguards

    International Nuclear Information System (INIS)

    Cizmek, Ankica; Novosel, Nevenka

    2010-01-01

    Nuclear science and technology has the potential to contribute to health and prosperity. However, it is also the basis for the development of nuclear weapons. The acceptance and implementation of IAEA safeguards therefore serve as important confidence building measures, through which a State can demonstrate, and other States can be assured, that nuclear energy is being used only for peaceful purpose. Practically, all countries around the world use nuclear techniques for a variety of peaceful purposes, including food and water security, energy, industrial application and human health. Only a few of these activities involve the type of nuclear material that could potentially be diverted to make nuclear weapons or other explosive devices. And here the safeguards are on duty. The safeguards system aims at detecting the diversion of nuclear material. In this paper will be presented international conventions and bilateral agreements in the field of nuclear safety as well as the Croatian cooperation with international organizations and associations in the nuclear area, such as Nuclear Supplier Group, Zangger Committee, Wassenaar Arrangement, Comprehensive Nuclear-Test- Ban treaty Organization, Euratom and civil expert groups of NATO. (author)

  5. Non-proliferation of nuclear weapons and nuclear security. IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    Lodding, Jan; Kinley, David III

    2002-09-01

    One of the most urgent challenges facing the International Atomic Energy Agency (IAEA) is to strengthen the Agency's safeguards system for verification in order to increase the likelihood of detecting any clandestine nuclear weapons programme in breach of international obligations. The IAEA should be able to provide credible assurance not only about declared nuclear material in a State but also about the absence of undeclared material and activities. Realising the full potential of the strengthened system will require that all States bring into force their relevant safeguards agreements, as well as additional protocols thereto. Today, 45 years after the Agency's foundation, its verification mission is as relevant as ever. This is illustrated by the special challenges encountered with regard to verification in Iraq and North Korea in the past decade. Moreover, the horrifying events of 11 September 2001 demonstrated all too well the urgent need to strengthen worldwide control of nuclear and other radioactive material. The IAEA will continue to assist States in their efforts to counter the spread of nuclear weapons and to prevent, detect and respond to illegal uses of nuclear and radioactive material. Adherence by as many States as possible to the strengthened safeguards system is a crucial component in this endeavour

  6. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  7. The future of IAEA safeguards: challenges and responses

    International Nuclear Information System (INIS)

    Pilat, Joseph F.; Budlong-Sylvester, Kory W.

    2011-01-01

    For nearly two decades, the International Atomic Energy Agency (lAEA) has been transforming its safeguards system to address the challenges posed by undeclared nuclear programs, the associated revelation of an extensive non-State nuclear procurement network and other issues, including past limits to its verification mandate and the burden of noncompliance issues. Implementing the new measures, including those in the Additional Protocol, and integrating new and old safeguards measures, remains a work in progress. Implementation is complicated by factors including the limited teclmological tools that are available to address such issues as safeguarding bulk handling facilities, detection of undeclared facilities/activities, especially related to enrichment, etc. As this process continues, new challenges are arising, including the demands of expanding nuclear power production worldwide, so-called safeguards by design for a new generation of facilities, the possible IAEA role in a fissile material cutoff treaty and other elements of the arms control and disarmament agenda, the possible role in 'rollback' cases, etc. There is no doubt safeguards will need to evolve in the future, as they have over the last decades. In order for the evolutionary path to proceed, there will inter alia be a need to identify technological gaps, especially with respect to undeclared facilities, and ensure they are filled by adapting old safeguards technologies, by developing and introducing new and novel safeguards teclmologies and/or by developing new procedures and protocols. Safeguards will also need to respond to anticipated emerging threats and to future, unanticipated threats. This will require strategic planning and cooperation among Member States and with the Agency. This paper will address challenges to IAEA safeguards and the technological possibilities and R and D strategies needed to meet those challenges in the context of the forty-year evolution of safeguards, including the

  8. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, M.; Zarimpas, N.; Zarucki, R., E-mail: M.Barletta@iaea.or [IAEA, Wagramerstrasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2010-10-15

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  9. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Barletta, M.; Zarimpas, N.; Zarucki, R.

    2010-10-01

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  10. Achievements to date in strengthened safeguards

    International Nuclear Information System (INIS)

    Heinonen, O.

    1999-01-01

    There is substantial progress in developing and implementing measures to strengthen the effectiveness and improve the efficiency of the Safeguards System. The measures comprise those to be implemented pursuant to the Agency's legal authority conferred by existing safeguards agreements as well as those to be implemented under the complementary legal authority conferred by Additional Protocols concluded on the basis of Document INFCIRC/540(Corrected). Activities on implementing measures under existing legal authority, particularly with respect to the evaluation of States' nuclear programmes, environmental sampling and the use of remote monitoring for safeguards purposes had been carried continuously ion the recent post. In 1998, additional protocols entered into force with four States (the Holy See, Jordan, New Zealand and Uzbekistan). Additional protocols with a further 27 States were approved by the Board and were awaiting ratification by the respective States. The additional protocol with Australia, which entered into force in December 1997, was being implemented following receipt of its Article 2 declaration. Agency consultations on concluding additional protocols take place with a number of States on a regular basis. As of 1 October 1999, Additional Protocols had been concluded and approved by the Board of Governors with a total of 45 States. Of these, Additional Protocols with 44 States had been signed and five had entered into force. (author)

  11. Finnish support programme to IAEA safeguards. Annual report 1993; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1993 toimintakertomus

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, M [ed.

    1994-03-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out through separate tasks related to development of non-destructive measurement methods (NDA methods) for verification of nuclear material, training and expert services to the IAEA. In addition to a Finnish summary, the report includes detailed description of each task in English. (editor).

  12. Finnish support programme to IAEA safeguards. Annual report 1992; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1992 toimintakertomus

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, M [ed.

    1993-04-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out through separate tasks related to development of non-destructive measurement methods (NDA methods) for verification of nuclear material, training and expert services to the IAEA. In addition to a Finnish summary, the report includes detailed description of each task in English. (editor).

  13. Design features to facilitate IAEA safeguards at light water reactors

    International Nuclear Information System (INIS)

    Pasternak, T.; Glancy, J.; Goldman, L.; Swartz, J.

    1981-01-01

    Several studies have been performed recently to identify and analyze light water reactor (LWR) features that, if incorporated into the facility design, would facilitate the implementation of International Atomic Energy Agency (IAEA) safeguards. This paper presents results and conclusions of these studies. 2 refs

  14. The future use of pathway analysis in IAEA safeguards

    International Nuclear Information System (INIS)

    Budlong Sylvester, Kory; Pilat, J.; Murphy, Chantell

    2013-01-01

    Pathway analysis has the potential to play an important role in the development of a safeguards system that is more information driven, leveraging all the information available to the International Atomic Energy Agency (IAEA). Pathway analysis should be seen as an extension of traditional hypothesis testing used by the Agency in the past. The most attractive pathways based on the assessed capabilities of a given state can be identified and used in the development of state-level safeguards approaches. This ranking of pathways can be revised based on evidence of pathway use, or preparations for use, allowing limited safeguards resources to flow to the areas of highest concern. The possible uses of pathway analysis in the implementation of the IAEA's state-level concept are described along with implementation issues that will likely arise. The paper is followed by the slides of the presentation. (authors)

  15. All-Source Information Acquisition and Analysis in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Ferguson, Matthew; Norman, Claude

    2010-01-01

    All source information analysis enables proactive implementation of in-field verification activities, supports the State Evaluation process, and is essential to the IAEA's strengthened safeguards system. Information sources include State-declared nuclear material accounting and facility design information; voluntarily supplied information such as nuclear procurement data; commercial satellite imagery; open source information and information/results from design information verifications (DIVs), inspections and complementary accesses (CAs). The analysis of disparate information sources directly supports inspections, design information verifications and complementary access, and enables both more reliable cross-examination for consistency and completeness as well as in-depth investigation of possible safeguards compliance issues. Comparison of State-declared information against information on illicit nuclear procurement networks, possible trafficking in nuclear materials, and scientific and technical information on nuclear-related research and development programmes, provides complementary measures for monitoring nuclear developments and increases Agency capabilities to detect possible undeclared nuclear activities. Likewise, expert analysis of commercial satellite imagery plays a critical role for monitoring un-safeguarded sites and facilities. In sum, the combination of these measures provides early identification of possible undeclared nuclear material or activities, thus enhancing deterrence of safeguards system that is fully information driven, and increasing confidence in Safeguards conclusions. By increasing confidence that nuclear materials and technologies in States under Safeguards are used solely for peaceful purposes, information-driven safeguards will strengthen the nuclear non-proliferation system. Key assets for Agency collection, processing, expert analysis, and integration of these information sources are the Information Collection and Analysis

  16. Strategic plan for the development of IAEA safeguards equipment

    International Nuclear Information System (INIS)

    Khlebnikov, N.

    2001-01-01

    Full text: The need for a top-down Safeguards Strategy to focus departmental objectives was recognized by the Programme Performance Appraisal System (PPAS) performed on the Equipment Development Project in 1999. The Department of Safeguards prepared at the end of 2000 a 5-year Strategic Plan to identify the changes and improvements expected to take place over the 2001-2005 period. Those Strategic Objectives were supposed to be used to properly plan IAEA Safeguards activities and define appropriate and coherent R and D programmes. The present paper describes the strategic directions that the IAEA will follow in the area of equipment development in order to meet the Safeguards Department long-term objectives for 2001-2005. The paper, which is derived from the IAEA Strategic Equipment Development Plan, prepared by the Division of Technical Support, includes two parts: general principles and policies applicable to all equipment development tasks; specific strategic guidance. The paper will not describe the detailed plans which are prepared based on the strategic plan on a biannual basis. Equipment development activities have been divided in five major projects (NDA, Seals, Surveillance, Unattended Monitoring and Remote Monitoring). Strategic directions for each of these projects will be described in the paper. Separate sections will deal with equipment development strategic guidance in the area of additional protocol inspections, JNFL projects, illicit trafficking and Trilateral Initiative. (author)

  17. Improved IAEA safeguards for closed nuclear fuel cycles

    International Nuclear Information System (INIS)

    1978-12-01

    The paper recognises the limitations of nuclear material accountancy in applying safeguards to future large scale processing plants. For those plants the following will be necessary: (i) The inclusion of safeguards requirements in design criteria. (ii) Extensive application of containment and surveillance with monitors on personnel and goods exits, pipework, tanks, etc. (iii) Continuous inspectorate measurement of input and output flows. Local IAEA laboratories to ensure timeliness. (iv) Upgrading of process control information to enable the inspectorate to monitor the in-process inventory. The inspectorates knowledge of the in-process inventory will be valuable in their assessment of any alarms given by the containment-surveillance system

  18. IAEA safeguards and the additional protocol in the Eurasia Region

    International Nuclear Information System (INIS)

    Murakami, K.

    2001-01-01

    Developing and implementing safeguards against misuse of nuclear material and facilities has always been the Agency's main activities. Like the nuclear non-proliferation regime itself, the development of the safeguards system has been an evolutionary process. The first safeguards inspection was carried out in 1962 (in Norway). In the sixties, the basic concepts behind safeguards were developed (INFCIRC/26, adopted in 1961, for some of you it might still have a familiar ring) and the number of inspections and types of facilities inspected grew slowly. With the advent of INFCIRC/66/Rev. 2, a more complete, albeit limited, system of safeguards covering nuclear material, equipment and facilities emerged. But the quantum leap came, of course, wit the entry into force of the NPT. Today, the IAEA has 224 safeguards agreements in force with 140 States. Nearly all of these States are NPT States. In the Eurasia Region, particularly the Newly Independent States (NIS) significant achievements have been made in the Safeguards Implementation. States with nuclear activities have the SG Agreement in force. Some states are already signing the Additional Protocol and it is in force in two of these States in the NIS region. Much progress has been made in the area of nuclear material and accountancy through the IAEA Coordinated Technical Support Programme (CTSP). The programme was organized to co-ordinate the donor states activities and has been successful for the last seven years in providing assistance in the area of nuclear legislation establishment of the State System of Accountancy of nuclear material (SSAC) and other related areas. Improvement is still foreseen in these areas, particularly as more states in the region will be signing and implementing the Additional Protocols

  19. IAEA integrated safeguards instrumentation program (I2SIP)

    International Nuclear Information System (INIS)

    Arlt, R.; Fortakov, V.; Gaertner, K.J.

    1995-01-01

    This article is a review of the IAEA integrated safeguards instrumentation program. The historical development of the program is outlined, and current activities are also noted. Brief technical descriptions of certain features are given. It is concluded that the results of this year's efforts in this area will provide significant input and be used to assess the viability of the proposed concepts and to decide on the directions to pursue in the future

  20. EURATOM safeguards implementation in France and cooperation with the IAEA

    International Nuclear Information System (INIS)

    Oddou, J.

    2013-01-01

    International safeguards in France are applied both by: -) the European Commission (EC), through the Chapter 7 of the EURATOM Treaty; -) the International Atomic Energy Agency (IAEA) as France is a party to the NPT and has concluded a safeguards agreement with IAEA. With the exception of mining, France has a complete nuclear fuel cycle from ore concentrates to waste. Based on the legal framework of the EURATOM Treaty, all civil nuclear facilities and all civil nuclear materials are safeguarded by EURATOM wherever they are in France. Therefore the two conversion plants, the two enrichment plants, the three fuel fabrication plants, the 59 nuclear power plants including the EPR of Flamanville under construction, the 2 reprocessing plants in La Hague, the five facilities for waste treatment and numerous research centers and reactors of CEA are declared and controlled by the European Commission. The activities of the EURATOM inspectors are of various kind depending of the facility and the type of inspection. The most common checks are: identification and counting of the nuclear material, verification of accountancy declaration vs. physical follow-up of the nuclear material, non-destructive analysis and destructive analysis after sampling in large bulk handling facilities. There is a strong cooperation between IAEA and EC: the majority of IAEA inspections in France are joint team inspections with the EC. This pooling of equipment and teams can save money and human resources. Equipment for containment and surveillance are paid whether by the EC or by the IAEA and can be used by both bodies of inspectors. With the principle of 'One Job One Person', verification activities are done only once and it saves time for the inspectors and the operators. The paper is followed by the slides of the presentation. (A.C.)

  1. Containment and surveillance -- A principle IAEA safeguards measure

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1997-01-01

    In October 1954, the Statue of the IAEA (International Atomic Energy Agency) had been signed by 70 nations. The Agency was established in 1957, and at the end of its first year of operation 130 professionals were employed in all departments. By the end of 1990, the number of professionals in the Safeguards Department had increased to over 270, over 200 of whom are designated inspectors. One of the unique features of the IAEA which directly interfaces with Member States is that of on-site inspections by international officials of the IAEA. This growth cycle, spanning some 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. This paper addresses the specific subject of technical means to maintain continuity of knowledge between inspection intervals--classically referred to as Containment and Surveillance

  2. United States Program for Technical assistance to IAEA Standards. Concept Paper: Knowledge Acquisition, Skills training for enhanced IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ``Knowledge Acquisition Skills`` in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively.

  3. Current status of process monitoring for IAEA safeguards

    International Nuclear Information System (INIS)

    Koroyasu, M.

    1987-06-01

    Based on literature survey, this report tries to answer some of the following questions on process monitoring for safeguards purposes of future large scale reprocessing plants: what is process monitoring, what are the basic elements of process monitoring, what kinds of process monitoring are there, what are the basic problems of process monitoring, what is the relationship between process monitoring and near-real-time materials accountancy, what are actual results of process monitoring tests and what should be studied in future. A brief description of Advanced Safeguards Approaches proposed by the four states (France, U.K., Japan and U.S.A.), the approach proposed by the U.S.A., the description of the process monitoring, the main part of the report published as a result of one of the U.S. Support Programmes for IAEA Safeguards and an article on process monitoring presented at an IAEA Symposium held in November 1986 are given in the annexes. 24 refs, 20 figs, tabs

  4. Knowledge Management in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Konecni, S.; Carrillo de Fischer, J.

    2016-01-01

    Full text: Knowledge Management (KM) is an integral part of the Departmental Quality Management System because knowledge (i.e., the ‘know-how’, ‘know-when’, ‘know-who’, ‘know-why’, etc.) is needed to produce high quality products and services on a daily basis. The ability to continue providing such products and services is challenged each time an experienced staff member leaves the IAEA due to retirement or end of contract and takes with them important job-related knowledge. The most important assets in the International Atomic Energy Agency (IAEA) Department of Safeguards (SG) are people and their knowledge. The Department of Safeguards developed a knowledge management (KM) framework and the corresponding approaches as well as specific guidelines for its implementation. Knowledge retention (KR) is part of knowledge management and focusses on eliminating the risk of losing the critical job-related knowledge by putting in place a systematic knowledge retention plan. Particularly, for knowledge retention, the Safeguards Division of Concepts and Planning (SGCP) developed a model to draw out and capture the critical knowledge and making it available for use by others. This paper describes the knowledge retention model/approach and lessons learned from implementing the knowledge management programme in SG. (author

  5. Overview of IAEA guidelines for state systems of accounting for and control of nuclear materials: objectives, diversion of nuclear material, and the IAEA safeguards system

    International Nuclear Information System (INIS)

    Buechler, C.

    1984-01-01

    Topics discussed include IAEA safeguards statutes, project and transfer agreements, agreements pursuant to the Non-Proliferation Treaty, implementation of IAEA safeguards, diversion strategies, accountancy and surveillance systems, and verification

  6. Collecting Safeguards Relevant Trade Information: The IAEA Procurement Outreach Programme

    International Nuclear Information System (INIS)

    Schot, P.; El Gebaly, A.; Tarvainen, M.

    2010-01-01

    The increasing awareness of activities of transnational procurement networks to covertly acquire sensitive nuclear related dual use equipment prompted an evolution of safeguards methodologies. One of the responses to this challenge by the Department of Safeguards in the IAEA was to establish the Trade and Technology Unit (TTA) in November 2004 to analyse and report on these covert nuclear related trade activities. To obtain information relevant to this analysis, TTA is engaging States that might be willing to provide this information to the Secretariat on a voluntary basis. This paper will give an overview of current activities, sum up the results achieved and discuss suggestions to further improve this programme made by Member States. (author)

  7. Radiation detectors as surveillance monitors for IAEA safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development

  8. Radiation detectors as surveillance monitors for IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  9. Model of a Generic Natural Uranium Conversion Plant ? Suggested Measures to Strengthen International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Raffo-Caiado, Ana Claudia [ORNL; Begovich, John M [ORNL; Ferrada, Juan J [ORNL

    2009-11-01

    This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.

  10. The role of IAEA Safeguards in connection with nuclear trade

    International Nuclear Information System (INIS)

    Imai, R.

    1977-01-01

    IAEA safeguards is one of the means to prevent proliferation of military and/or explosive utilization of nuclear material. As such; safeguards can be a potent instrument, and its characteristics are primarily technical. Other means may include; a) political incentives which make possession of nuclear weapons unnecessary and undescribable; b) an extent of trade restrictions regarding certain sensitive material, equipment and technology; and c) accompanying requirements of physical protection. Peaceful nuclear industry has an aspect which naturally calls for international exchange. The technology itself represents one of the most advanced in our times, and therefore, should be shared throughout the world. Uranium resources of economic grades are found only in a limited number of countries. Many of the components of the industry, including reactor manufacture and fuel cycle, are very capital-intensive and technology-intensive, so that it would be natural that a relatively limited number of manufacturing or processing capabilities should serve the rest of the world. It is useful to look at the existing pattern of nuclear trade, as well as to forecast the effects of increasing trade volume. Regarding technology, the problem divides itself into three in order that safeguards should be effective and non-intrusive. There is a need to decrease international shipper/receiver difference by means of containment/surveillance as well as quick and accurate reporting. Obviously, its effectiveness will be maximized if all the world's trading partners should participate in a system of coordination. Improving technical effectiveness of safeguards is very important, once nuclear material is in a country. Thirdly, in addition to nuclear material accountancy, new techniques may be employed to recognize characteristic patterns of a nations's nuclear activities, or deviation from such a pattern. Tracing nuclear trade might become important input to such an analysis

  11. Is the IAEA's Safeguard Strategic Plan Sufficient?

    International Nuclear Information System (INIS)

    Sokolski, H.; Gilinsky, V.

    2015-01-01

    IAEA safeguards have much improved and the Safeguards Department is commendably planning to further its technical capabilities and to make full use of its authority. Will this be enough to keep countries from exploiting nuclear power programmes to develop nuclear weapons, or to be in a position to do so rapidly should they so decide? Depending on nuclear programmes developments worldwide, especially on expansions in enrichment and reprocessing, and on how international affairs unfold, the answer may well be no. The fundamental limitations on the Department's ability to prevent proliferation are not technical, but conceptual. The Department is clearly motivated to carry out its technical activities competently. Yet it takes a relatively passive view of its role in the worldwide development of nuclear power-whatever technology comes into use, and whoever deploys it, the Department promises to exert its best effort to safeguard. In our view the Department should be more open about what it can or cannot realistically safeguard, and therefore what technology is permissible for deployment in national programmes. The Department's Strategic Plan says at the outset that its verifications assist the Agency to fulfil its statutory objective to ''accelerate and enlarge the contribution of atomic energy. . . '' The Department should judge itself by how well it promotes international security, not by its contribution to expanding nuclear power use. The Department's Vision includes advancing toward a nuclear weapons free world. That vision should include keeping states from deploying technologies that put them within easy reach of nuclear weapons. Our paper will suggest how the Department might supplement its current plan to best accomplish this. (author)

  12. Knowledge Management in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Carrillo-de-Fischer, J.; Martinez, J. D.; Konecni, S.

    2015-01-01

    Knowledge management is the discipline of enabling individuals and teams to collectively and systematically create, share and apply knowledge. The most important assets in the IAEA Department of Safeguards are people and their knowledge. The focus of the Department’s knowledge management activities are to create an environment within which people share, learn and work together. The efforts to manage the knowledge of an individual leaving the Department have been focused on helping the supervisor of the departing staff member to identify what critical knowledge needs to be retained, and how to retain that knowledge. The Safeguards Knowledge Management team developed a person-centred approach. This approach involves interviews with the staff member, co-workers and/or customers to identify the critical knowledge to be transferred. Although time consuming, this method has been found to be effective in capturing the needed knowledge. This approach has four steps: – Identify the critical knowledge to be retained; – Select the knowledge transfer methods; – Apply the knowledge transfer methods; and – Assess and refine the transfer process. The paper will describe the person-centred approach and lessons learned from implementing this programme in the Department over several years. (author)

  13. Knowledge Management in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Konecni, S.; McCullough, R.

    2015-01-01

    Knowledge management is the discipline of enabling individuals and teams to collectively and systematically create, share and apply knowledge. The most important assets in the IAEA Department of Safeguards are people and their knowledge. The focus of the Department is to create an environment within which people share, learn and work together. The efforts to manage the knowledge leaving the Department have been focused on helping the supervisor of the departing staff member to identify what critical knowledge needs to be retained, and how to retain that knowledge. The Safeguards Knowledge Management team developed a person-centred approach. This approach involves interviews with the staff member, co-workers and/or customers to identify the critical knowledge to be transferred. Although time consuming we have found that this method is most effective to capture the needed knowledge. This approach has four steps: · Identify the critical knowledge to be retained; · Select the knowledge transfer methods; · Apply the knowledge transfer methods; and · Assess and refine the transfer process. The paper will describe the person-centred approach and lessons learned from implementing this programme in the Department over several years. (author)

  14. The processing and evaluation of new information for strengthened safeguards

    International Nuclear Information System (INIS)

    Nilsson, A.

    1999-01-01

    The framework of safeguard activities of the IAEA from the viewpoint of informanagement is described. As methodology, major sources of information are, member state supplied information, information obtained by the Agency through its verification activity, and open source information. Software tools are provided to retrieve and to filter information for storage. Organizational structure of the Agency's information activities, and the changing roles of the inspectors are also described. (Yamamoto, A.)

  15. The role of IAEA safeguards in connection with nuclear trade

    International Nuclear Information System (INIS)

    Imai, R.

    1977-01-01

    IAEA safeguards are one of the means to prevent the proliferation of nuclear material for military purposes. As such safeguards can be a potent instrument, and its characteristics are primarily technical. Other means may include (a) political incentives which render possession of nuclear weapons unnecessary and undesirable; (b) extension of trade restrictions regarding certain sensitive material, equipment and technology; and (c) accompanying requirements for physical protection. Peaceful nuclear industry has certain aspects which naturally call for international exchange. The technology itself represents one of the most advanced in our times, and therefore needs to be shared throughout the world. Uranium resources of economic levels are found in only a limited number of countries. Many of the components of the industry, including reactor manufacture and fuel cycle, are vey capital-intensive and technology-intensive, so that it would be natural for a relatively limited number of manufacturing or processing capabilities to serve the rest of the world. It is useful to examine the existing pattern of nuclear trade, as well as to forecast the effects of increasing trade volume. Regarding technology, there is a need to decrease the international shipper/receiver difference by means of containment/surveillance as well as by rapid and accurate reporting. Obviously, its effectiveness will be maximized if all the world's trading partners participated in a system of co-ordination. Improving technical effectiveness of safeguards is very important once nuclear material is in a country. In addition to nuclear material accountancy, new techniques may be employed to recognize the characteristic pattern of a nation's nuclear activities, or deviation from such a pattern. Tracing nuclear trade might become an important input to such an analysis. (author)

  16. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-06-01

    This report provides background information on safeguards and explains procedures for States to conclude Additional Protocols to comprehensive Safeguards Agreements with the IAEA. Since the IAEA was founded in 1957, its safeguards system has been an indispensable component of the nuclear non-proliferation regime and has facilitated peaceful nuclear cooperation. In recognition of this, the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) makes it mandatory for all non-nuclear-weapon States (NNWS) party to the Treaty to conclude comprehensive safeguards agreements with the IAEA, and thus allow for the application of safeguards to all their nuclear material. Under Article III of the NPT, all NNWS undertake to accept safeguards, as set forth in agreements to be negotiated and concluded with the IAEA, for the exclusive purpose of verification of the fulfilment of the States' obligations under the NPT. In May 1997, the IAEA Board of Governors approved the Model Additional Protocol to Safeguards Agreements (reproduced in INFCIRC/540(Corr.)) which provided for an additional legal authority. In States that have both a comprehensive safeguards agreement and an additional protocol in force, the IAEA is able to optimize the implementation of all safeguards measures available. In order to simplify certain procedures under comprehensive safeguards agreements for States with little or no nuclear material and no nuclear material in a facility, the IAEA began making available, in 1971, a 'small quantities protocol' (SQP), which held in abeyance the implementation of most of the detailed provisions of comprehensive safeguards agreements for so long as the State concerned satisfied these criteria. The safeguards system aims at detecting and deterring the diversion of nuclear material. Such material includes enriched uranium, plutonium and uranium-233, which could be used directly in nuclear weapons. It also includes natural uranium and depleted uranium, the latter of which is

  17. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-04-01

    This report provides background information on safeguards and explains procedures for States to conclude Additional Protocols to comprehensive Safeguards Agreements with the IAEA. Since the IAEA was founded in 1957, its safeguards system has been an indispensable component of the nuclear non-proliferation regime and has facilitated peaceful nuclear cooperation. In recognition of this, the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) makes it mandatory for all non-nuclear-weapon States (NNWS) party to the Treaty to conclude comprehensive safeguards agreements with the IAEA, and thus allow for the application of safeguards to all their nuclear material. Under Article III of the NPT, all NNWS undertake to accept safeguards, as set forth in agreements to be negotiated and concluded with the IAEA, for the exclusive purpose of verification of the fulfilment of the States' obligations under the NPT. In May 1997, the IAEA Board of Governors approved the Model Additional Protocol to Safeguards Agreements (reproduced in INFCIRC/540(Corr.)) which provided for an additional legal authority. In States that have both a comprehensive safeguards agreement and an additional protocol in force, the IAEA is able to optimize the implementation of all safeguards measures available. In order to simplify certain procedures under comprehensive safeguards agreements for States with little or no nuclear material and no nuclear material in a facility, the IAEA began making available, in 1971, a 'small quantities protocol' (SQP), which held in abeyance the implementation of most of the detailed provisions of comprehensive safeguards agreements for so long as the State concerned satisfied these criteria. The safeguards system aims at detecting and deterring the diversion of nuclear material. Such material includes enriched uranium, plutonium and uranium-233, which could be used directly in nuclear weapons. It also includes natural uranium and depleted uranium, the latter of which is

  18. Safeguards agreement and additional protocol - IAEA instruments for control of nuclear materials distribution and their application in Tajikistan

    International Nuclear Information System (INIS)

    Nasrulloev, Kh.; Mirsaidov, U.

    2010-01-01

    Full text: It is known that IAEA plays an important role in facilitation of nuclear non-proliferation as international authority which carries out nuclear inspections. Republic of Tajikistan in 1997 signed nuclear weapon non-proliferation treaty. Then in 2004 Safeguards agreement, additional protocol and small quantity protocol were signed. During 5 years Republic of Tajikistan submits information on its nuclear activity as declarations, foreseen in article 2.3 of Additional protocol to Safeguards agreement. Currently 66 declarations are submitted. Information required in accordance with Safeguards agreement and Additional Protocol is figured on that IAEA could compile more detailed and exact conception about nuclear activity in Tajikistan and it has the following purpose: information will lead to more transparency, and make it possible to IAEA to ensure with high extent of confidence that in the framework of declared program, any unstated nuclear activity is concealed; the more exact and comprehensive information, the rare is questions and discrepancies are originating; required information is the basis for effective planning and IAEA activity realization, related not only with safeguards implementation in regard to declared nuclear material but also ensuring of confidence in absence of undeclared nuclear activity in Tajikistan. IAEA inspection mission consisting of Messrs. N.Lazarev and F. Coillou visited Dushanbe in 2008 for verification of republic’s declarations on account for and control of nuclear materials under Additional protocol and Small quantity protocol, as well as consultations were provided on correct declaration completing and providing information on all nuclear materials. Besides, in 2006, the training course was conducted in Chkalovsk with participation of Commonwealth of Independent States countries on Safeguards agreement and Additional protocol. These visits and events will facilitate to strengthening of weapons of mass destruction non

  19. A Little Customs Glossary for IAEA Safeguards: Customs Procedures and Concepts that Matter for the Implementation of Modern Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, Renaud [Consultant, Export Control and IAEA Safeguards Specialist, IAEA (International Atomic Energy Agency (IAEA))

    2012-06-15

    The additional protocols to the IAEA comprehensive safeguards agreements include provisions about the reporting by states of their imports and exports of listed equipment and non-nuclear material, also known as the 'trigger list', as well as nuclear materials. Beyond declarations and their verification, IAEA Safeguards also looks at other Imports and exports as part of its efforts to build confidence on the absence of undeclared nuclear activities or material. In all cases, information about international transfers of interest to Nuclear Safeguards is closely related to export control activities. But, if much has been written about the material and equipment to be declared, neither IAEA Safeguards nor Export control related documents provide much explanation about what exports and imports actually are. In fact, precise legal definitions are to be found generally in national customs regulations and international agreements on customs and trade. Unfortunately, these are not necessarily in line with Safeguards understanding. It is therefore essential that IAEA safeguards comprehends the customs concepts and procedures that are behind Safeguards relevant information.

  20. A Little Customs Glossary for IAEA Safeguards: Customs Procedures and Concepts that Matter for the Implementation of Modern Safeguards

    International Nuclear Information System (INIS)

    Chatelus, Renaud; )

    2012-01-01

    The additional protocols to the IAEA comprehensive safeguards agreements include provisions about the reporting by states of their imports and exports of listed equipment and non-nuclear material, also known as the “trigger list”, as well as nuclear materials. Beyond declarations and their verification, IAEA Safeguards also looks at other Imports and exports as part of its efforts to build confidence on the absence of undeclared nuclear activities or material. In all cases, information about international transfers of interest to Nuclear Safeguards is closely related to export control activities. But, if much has been written about the material and equipment to be declared, neither IAEA Safeguards nor Export control related documents provide much explanation about what exports and imports actually are. In fact, precise legal definitions are to be found generally in national customs regulations and international agreements on customs and trade. Unfortunately, these are not necessarily in line with Safeguards understanding. It is therefore essential that IAEA safeguards comprehends the customs concepts and procedures that are behind Safeguards relevant information.

  1. Recruitment of U.S. citizens for vacancies in IAEA Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Decaro, D.; Williams, G.; Carelli, J.; Assur, M.

    1999-01-01

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is important that persons within and outside the US nuclear and safeguards industries become aware of career opportunities available at the IAEA, and informed about important vacancies. The IAEA has established an impressive web page to advertise opportunities for employment. However, additional effort is necessary to ensure that there is sufficient awareness in the US of these opportunities, and assistance for persons interested in taking positions at the IAEA. In 1998, the Subgroup on Safeguards Technical Support (SSTS) approved a special task under the US Support Program to IAEA Safeguards (USSP) for improving US efforts to identify qualified candidates for vacancies in IAEA's Department of Safeguards. The International Safeguards Project Office (ISPO) developed a plan that includes increased advertising, development of a web page to support US recruitment efforts, feedback from the US Mission in Vienna, and interaction with other recruitment services provided by US professional organizations. The main purpose of this effort is to educate US citizens about opportunities at the IAEA so that qualified candidates can be identified for the IAEA's consideration

  2. Where are we now? The strengthened safeguards system: Origins, aims, features, issues and prospects

    International Nuclear Information System (INIS)

    Schriefer, D.

    1998-01-01

    The present status of the strengthened safeguards system includes the origins, aims, features, issues and future prospects. The areas of emphasis concerning the strengthened safeguards system are: access to information (environmental sampling and improved information analysis), access to sites, rational use of resources (cost analysis of present safeguards, increased cooperation with state systems, cost savings in traditional safeguards activities)

  3. Safeguards activities in Japan

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  4. Quality management at the Safeguards Analytical Laboratory of IAEA

    International Nuclear Information System (INIS)

    Aigner, H.; Doherty, P.; Donohue, D.; Kuno, Y.

    2001-01-01

    Full text: In the year 2000, SAL'S quality management system was certified for conforming with the requirements of the international standard ISO-9002: 1994. The certification incurred considerable efforts, both in manpower and capital investments. The expected benefits of a formal quality management system do not directly target the correctness and reliability of analytical results. SAL believes that it was already performing well in this respect, even before re-shaping its quality system according to the reference model. Systematic QA and QC procedures have been applied since the begin of SAL'S operations in the mid-70's. The management framework specified in ISO-9002: 1994 complements these technical measures. Besides its value of being internationally recognised and thus enhancing perhaps the credibility in the quality of SAL'S services, the quality management system in this form provides additional advantages for the customer of the services of SAL, i.e. the Department of Safeguards of the IAEA, but also for the control and management of SAL'S internal 'business' processes. The paper discusses if these expected additional benefits are indeed obtained and whether or not their value is in balance with operational and initial investment costs. (author)

  5. Case study application of the IAEA safeguards assessment methodology to a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Swartz, J.; McDaniel, T.

    1981-01-01

    Science Applications, Inc. has prepared a case study illustrating the application of an assessment methodology to an international system for safeguarding mixed oxide (MOX) fuel fabrication facilities. This study is the second in a series of case studies which support an effort by the International Atomic Energy Agency (IAEA) and an international Consultant Group to develop a methodology for assessing the effectiveness of IAEA safeguards. 3 refs

  6. Development of Measurement Techniques For Strengthening Nuclear Safeguards

    International Nuclear Information System (INIS)

    Badawy, I.

    2007-01-01

    The strategy of nuclear safeguards is based on the accounting and control of nuclear materials, nuclear technologies and activities in a State in order to attain its ''Legal'' goals of the application of atomic energy. The present paper investigates the development in the measurement techniques used in the verification and control of NMs for the purpose of strengthening safeguards. Its focus is to review the recent nuclear measurement techniques used for the identification and verification of nuclear materials.The different levels of verification and the accuracy of these techniques are discussed. The implementation of stregthened safeguards; and nuclear materials verification and control in the world are mentioned. Also, the recently proposed measures to enhance the ability to detect undeclared nuclear materials, nuclear activities and facilities that would need advanced measurement techniques are indicated.

  7. Safeguards Implementation Practices Guide on Provision of Information to the IAEA

    International Nuclear Information System (INIS)

    2016-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement and is furthered through a common understanding of the respective rights and obligations of States and the IAEA. To address this, in 2012 the IAEA published IAEA Services Series No. 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding and improving cooperation in safeguards implementation. To meet their safeguards obligations, States may establish different processes and procedures at the national level, and set up their infrastructure to meet their specific needs. Indeed, a variety of approaches are to be expected, owing to differences in the size and complexity of States’ nuclear programmes, their regulatory framework and other factors. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. This SIP Guide addresses the important topic of the provision of information by States to the IAEA. Declarations by States form the basis for IAEA verification activities, and the quality and timeliness of such declarations impact significantly the efficiency of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and their use is voluntary. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear

  8. Against the spread of nuclear weapons: IAEA Safeguards in the 1990s

    International Nuclear Information System (INIS)

    1993-12-01

    This booklet describes the role of IAEA verification activities, or safeguards, in the non-proliferation regime and shows how safeguards provide confidence that States fulfill the obligations they have undertaken in relation to the peaceful use of atomic energy. It also describes ways in which this role could develop in the future

  9. The continuing role of item-specific agreements in the IAEA safeguards system

    International Nuclear Information System (INIS)

    DeFrancia, Cristian

    2012-01-01

    The International Atomic Energy Agency's (IAEA) 'safeguards system' serves as the foundation of the global nuclear non-proliferation regime, under which the IAEA acts as an auditor, monitor and inspector of state-administered nuclear energy programmes. The system consists of agreements and practices that enable the IAEA to gain a clear picture of a state's nuclear activities in order to provide credible assurances that nuclear energy is used for exclusively peaceful purposes

  10. Termination of international safeguards on nuclear material discards: An IAEA update

    International Nuclear Information System (INIS)

    Larrimore, J.A.

    1995-01-01

    The IAEA adopted a policy for termination of international safeguards on measured discards in mid-1994. The policy addresses a broad range of termination of safeguards on nuclear material in waste with a focus on conditioned waste arising from reprocessing. The safeguards relevant aspects of waste handling up to the point of termination must be approved, and a determination made that the waste type, form of conditioning and nuclear material concentration satisfy specific criteria. In addition, the State where the terminated waste will be stored is requested to notify the IAEA of future movement or processing of the waste. Cases of international transfers of conditioned waste are also addressed

  11. Preliminary considerations on developing IAEA technical safeguards for LMFBR power systems

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1980-09-01

    Nuclear fuel cycles safeguards should be considered in the dynamic context of a world deployment of various reactor types and varying availability of fuel-cycle services. There will be a close interaction between thermal-reactor cycles and the future deployment of fast breeders. The quantitites of plutonium and the reprocessing, conversion, fabrication, and storage methods of the fuel for the fast breeders will have a significant impact on safeguards techniques. The approach to the fast breeder fuel cycle safeguards follows the general safeguards system approach proposed by the IAEA. Objective of IAEA safeguards is the detection of diversion of nuclear material and deterrence of such diversion. To achieve independent verification of material balance accountancy requires the capability to monitor inventory status and verify material flows and quantities of all nuclear materials subject to safeguards. Containment and surveillance measures are applied to monitor key measurement points, maintain integrity of material balance, and complement material accountancy. The safeguards study attempts to develop a generic reference IAEA Safeguards System and explores various system options using containment/surveillance and material accountancy instrumentation and integrated systems designs

  12. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the present approach of the International Atomic Energy Agency (IAEA) to safeguarding various types of facilities in the nuclear fuel cycle, in the hope that it will serve as useful background material for several of the various working groups of the International Nuclear Fuel Cycle Evaluation (INFCE). The objectives and criteria of safeguards as well as the specific safeguards techniques which are utilized by the Agency, are addressed. In Part I, a general overview of safeguards as well as a discussion of procedures applicable to most if not all IAEA safeguarded facilities are included. Part II is broken down into specific facility types and focusses on the particular safeguards measures applied to them. Safeguards have reached different degrees of development for different types of facilities, in part because the Agency's experience in safeguarding certain types is considerably greater than for other types. Thus the Agency safeguards described herein are not static, but are continuously evolving. This evolution results not only from the fact that larger and more complex facilities have been coming under safeguards. Changes are also continually being introduced based on practical experience and research and development aimed at improving safeguards efficiency, reducing intrusiveness into plant operations, minimizing operator and inspector radiation exposure, and reducing subjective evaluations in determining the effectiveness of safeguards. To these ends, the technical support programmes of various countries are playing an important role. It is emphasized that this paper is not intended to evaluate the effectiveness of Agency safeguards or to highlight problem areas. It is simply aimed at providing a picture of what safeguards are or are planned to be at various stages of the fuel cycle

  13. IAEA Safeguards and technical support programs: POTAS in the 1990s

    International Nuclear Information System (INIS)

    Kessler, C.J.

    1991-01-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) has since 1978 provided technology and technical assistance to the IAEA to support its nuclear safeguards activities. The present level of support, $6.9 million per year, equals 10% of the Department of Safeguards annual budget. During the next decade, the International Atomic Energy Agency (IAEA) will face new technical challenges in carrying out its verification activities. To help the IAEA acquire the technology and other technical support that it will require in the 1990s, POTAS expects to continue its assistance, both in the areas established in the past and in additional areas dictated by newly identified IAEA safeguards requirements. This paper will look at the political and policy context within which the Department of Safeguards, and hence POTAS, operates, and how that context is expected to evolve over the next decade. The roles and functions of POTAS will be identified and discussed in terms of their historical evolution. Lastly, the paper will consider how POTAS is expected to change during the 1990s, both to maintain effectiveness in existing roles and functions, and to meet the challenge of the changing policy context. 5 refs

  14. Integrated Safeguards proposal for Finland. Final report on Task FIN C 1264 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Anttila, M.

    2000-08-01

    The IAEA has requested several member states to present their proposal of the application of the Integrated Safeguards (IS) system in their nuclear facilities. This report contains a IS proposal for Finland prepared under the Task FIN C 1264 of The Finnish Support Programme to IAEA Safeguards. The comprehensive safeguards system of the International Atomic Energy Agency (IAEA) has been one of the main tools in the fight against nuclear proliferation since the entry-into-force of the Nuclear Non-proliferation Treaty three decades ago. In the 1990s some of the inherent weaknesses of this so-called traditional safeguards system were revealed first in Iraq and then in North Korea. Therefore, the member states of the LAEA decided to give the Agency additional legal authority in order to make its control system more effective as well as more efficient than before. This was accomplished by the approval of the so-called Model Additional Protocol (INFCIRC/540) in 1997. Straightforward implementation of new safeguards measures allowed by the Additional Protocol (INF-CIRC540) without careful review of the old procedures based on INFCIRC153 would only result in increased costs within the IAEA and in the member states. In order to avoid that kind of outcome the old and new means available to the Agency shall be combined to form an optimised integrated safeguards (IS) system. When creating an effective and efficient system a necessary approach is a state-level evaluation, which means that each state shall be assessed by the IAEA separately and as a whole. The assessment of a country's nuclear field shall result in credible assurance of the absence of diversion of declared nuclear materials to prohibited purposes and of the absence of clandestine nuclear activities, facilities and materials. Having achieved that assurance and being able to maintain it in a state the LAEA can leave some traditional routine safeguards activities undone there. At present, the nuclear fuel cycle in

  15. IAEA fifty years: more than just safeguards. Interview with Professor Werner Burkart

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Professor Werner Burkart, IAEA Deputy Director General and head of the Nuclear Sciences and Applications Division, comments upon matters associated with the fiftieth anniversary of the International Atomic Energy Agency (IAEA). The Agency was founded on July 29, 1957. Today it is a worldwide organization of the United Nations with 144 member countries and manifold duties in the field of nuclear power utilization. The mandate of IAEA is based on the 'Atoms for Peace' initiative, its essence being support of all member countries in the use of nuclear power as long as IAEA safeguards on the spot ensure that no military aims are pursued in those activities. The safeguards work serves to prevent military uses. IAEA recommendations for a global nuclear safety culture, the so-called Safety Standards, are employed by member countries as a basis of legislation and ordinances. The emerging renaissance of nuclear power will be accompanied by the IAEA especially with regard to the important aspects of harmonization, safeguards, safety, security, and readiness for emergencies. The interview took place in Vienna on September 20, 2007. The questions were asked by the President of the Swiss Nuclear Forum, Dr. Bruno Pellaud, former Deputy Director General of IAEA. (orig.)

  16. Safeguards surveillance equipment and data sharing between IAEA and a member state

    International Nuclear Information System (INIS)

    Park, Seung Sik

    1999-01-01

    Efficiency and reliability are two prongs of implementation of safeguards policy. Unattended surveillance is getting wide acceptance through its field trials and technical advances. In achieving goal of safeguards, new safeguards system should provide less intrusiveness than conventional inspection. Unattended surveillance data share will be a major issue among some countries that have own national inspection scheme in place in parallel with international safeguards to check the resources consuming incurred by the repeated installations. Nonetheless, the issue has not been focussed yet among the States concerned, especially for the country like Korea with national inspection in operation. For balanced development in safeguards regime between IAEA and Korea, sharing of unattended surveillance data with SSAC needs to be worked out in conjunction with the joint use of safeguards instruments that is in the process

  17. Additional physical access and new technologies for strengthened safeguards

    International Nuclear Information System (INIS)

    Tuley, N.

    1999-01-01

    For States with additional protocols, the Agency may request complementary access for any of the following reasons: (a) to ensure the absence of undeclared nuclear material and activities at sites of facilities or locations outside facilities (LOFs) or at other locations declared under Article 2 as containing nuclear material (Article 4.a.i); (b) to resolve a question relating to the correctness and completeness of the information provided pursuant to Article 2 or to resolve an inconsistency relating to that information (Article 4.a.ii); and (c) to confirm, for safeguards purposes, the State's declaration of the decommissioned status of a facility or of a LOF where nuclear material was used (Article 4.a.iii). Under additional protocols, the activities that the Agency may carry out in a State include visual observation, environmental sampling and non-destructive measurement. Agency guidelines for complementary access are being developed. In the late 1980s and in the 1990s, new technologies became available enabling the IAEA to detect even minute trace indicators of various types of nuclear activities. This technique which is known as environmental sampling, contributes to the confirmation of the absence of undeclared nuclear material or nuclear activities. Collection of environmental samples at or near a nuclear site combined with ultra-sensitive analytical techniques can reveal signatures of post and current activities in locations where nuclear material is being handled. Another important new technology is remote monitoring which makes use of unattended safeguards instrument systems and ships off-site the data gathered from those instruments to IAEA Headquarters. Cost effectiveness is a prime justification for adding this feature to unattended monitoring systems such as optical surveillance and advanced optical seals. (author)

  18. IAEA preparations for the year 2000 compliance of safeguards equipment systems

    International Nuclear Information System (INIS)

    Aparo, M.; Barnes, B.; Lewis, W.; Hsiung, Sue

    1999-01-01

    The Department of Safeguards, IAEA, has used equipment systems for acquiring relevant data to support safeguards evaluation and verification activities. Typically an equipment system consists of EPROM (embedded system), a connecting personal computer with instrument software for data acquisition, and may include data evaluation software. Complementing the equipment systems is a collection of general evaluation software systems (application software) which support the analysis of the acquired data. In preparing for the year 2000 compliance of all safeguards systems, SGTS (Safeguards Division of Technical Services) in IAEA, must ascertain the equipment systems and the evaluation software authorised for inspection use can properly operate through the passage of year 2000. We present the year 2000 challenge for these systems, the approach we use to tackle the problem, and the status of our year 2000 project. (author)

  19. IAEA concerns about advanced containment and surveillance concepts or other alternative safeguards concepts

    International Nuclear Information System (INIS)

    von Baeckmann, A.; Powers, J.

    1981-01-01

    Nuclear material accountancy is used in IAEA safeguards as a measure of fundamental importance, with containment and surveillance as important complementary measures. Over the past five years the IAEA has worked with its Standing Advisory Group on Safeguards Implementation (SAGSI) to quantify major terms of the objectives, i.e., timeliness of detection, significant quantities and detection probabilities. The Agency is using those quantifications, as recommended by SAGSI, as guidelines for inspection planning and for evaluating the effectiveness of safeguards. The guidelines are used in this paper, together with other criteria like cost-effectiveness, compliance with legal limitation and non-intrusiveness, as yard-sticks for the assessment of the potential capabilities of alternative safeguards approaches. 4 refs

  20. Physical protection of nuclear facilities and materials. Safeguards and the role of the IAEA in physical protection

    International Nuclear Information System (INIS)

    Smolej, M.

    1999-01-01

    The physical protection and security of nuclear facilities and materials concerns utilities, manufactures, the general public, and those who are responsible for licensing and regulating such facilities. The requirements and process to ensure an acceptable physical protection and security system have been evolutionary in nature. This paper reviews the first step of such process: the State's safeguards system and the international safeguards system of the International Atomic Energy Agency (IAEA), including the relationship between these two safeguards systems. The elements of these systems that are reviewed include the State System of Accounting for and Control of Nuclear Material, physical protection measures, and containment and surveillance measures. In addition, the interactions between the State, the facility operator, and the IAEA are described. The paper addresses the IAEA safeguards system, including material accountancy and containment and surveillance; the State safeguards system, including material control and accountancy, and physical protection; the role of the IAEA in physical protection; a summary of safeguards system interactions.(author)

  1. Current trends in the implementation of IAEA safeguards

    International Nuclear Information System (INIS)

    Adamson, A.; Bychkov, V.

    1993-01-01

    A practical goal, embodying the principle that a minimum amount of material is required in order to manufacture a nuclear explosive device, is that safeguards activities should enable the timely detection of the diversion of a significant quantity of nuclear material. It is important to note that the safeguards activities are not restricted to the International Atomic Energy Agency (the agency) but impose obligations on both state (and consequently on facility operators) and the agency. The beneficiaries are member states of the world community which have enhanced confidence in the competence and probity of states with safeguards agreements. Neither safeguards nor the nuclear industry have remained stationary. As new techniques have been developed, they have found applications, and as new challenges were encountered, the system has responded, for example, through improved measurements; through new or improved techniques for the operator, state or agency; and through new regulations. This paper details approaches, procedures and techniques developed for new complex nuclear facilities. Trends toward increase efficiency and effectiveness, and developments leading to more automated analysis and collection of data and the development of nondestructive assay methods are examined. Also important are trends in the presentation of safeguards results to the states and the general public

  2. Scientific and technical information as a source for IAEA safeguards state evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, M.; Feldman, Y.; Ferguson, M. [International Atomic Energy Agency, Vienna (Austria)

    2014-07-01

    The IAEA Department of Safeguards is continually working to refine its methodologies and procedures for the analysis of information relevant to the evaluation of the nuclear fuel cycle in States that have safeguards agreements with the IAEA. This analysis is required to achieve an understanding of States' nuclear-related activities against which a State's declarations are evaluated for correctness as well as completeness, and to provide credible assurances on the peaceful uses of nuclear material in the State. To achieve this end, diversification of sources and comparison for consistency among available information is essential to ensure an accurate assessment of a State's nuclear activities. Open sources of information on scientific and technical (S&T) developments and research provide the Department of Safeguards with an enhanced basis to evaluate the technical capabilities of States. These information sources are regularly and systematically assessed to provide information about industrial capabilities, patenting activities and research and development activities in States as reflected through published scientific and technical literature. Using such sources, in addition to other, long-established safeguards information sources, helps the IAEA to draw soundly-based safeguards conclusions. The utility of this category of information in terms of the State evaluation process lies primarily in the comparison with other sources of information, especially State-declared information, and in the assessment of consistency of all safeguards-relevant information regarding nuclear fuel cycle technologies and activities in a State. The current paper aims to describe the use of S&T literature, how information from different sources is consolidated, how it is analysed and how it contributes in the overall process of State evaluation in the IAEA Department of Safeguards. (author)

  3. Canadian safeguards research and development in support of the IAEA program document outlining the various tasks which comprise the program

    International Nuclear Information System (INIS)

    1985-12-01

    Canada has established a safeguards research and development program, the purpose of which is to supplement the resources of the International Atomic Energy Agency. The program of support is a coordinated effort for the development and application of safeguards techniques and instruments to facilities safeguarded by the IAEA. This document sets forth those tasks which comprise the program

  4. The IAEA inspectorate, including new requirements

    International Nuclear Information System (INIS)

    Alston, W.

    1998-01-01

    The basic purpose of the IAEA safeguards system is 'timely detection of diversion of significant quantities of nuclear material'. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  5. The IAEA inspectorate, including new requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alston, W [International Atomic Energy Agency, Department of Safeguards, Division of Operations A, Vienna (Austria)

    1999-12-31

    The basic purpose of the IAEA safeguards system is `timely detection of diversion of significant quantities of nuclear material`. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  6. Gamma techniques for IAEA [International Atomic Energy Agency] safeguards at centrifuge enrichment cascades

    International Nuclear Information System (INIS)

    Aaldijk, J.K.; de Betue, P.A.C.; van der Meer, K.; Harry, R.J.S.

    1987-01-01

    On February 4, 1983, the Hexapartite Safeguards Project (HSP) concluded that the safeguards approach involving limited frequency unannounced access (LFUA) by International Atomic Energy Agency (IAEA) inspectors to cascades areas together with inspection activities outside the cascade areas meets the IAEA safeguards objectives in an effective and efficient way. In this way, the risks of revealing sensitive information were also minimized. The approach has been defined clearly and unambiguously, and it should be applied equally to all technology holders. One of the conclusions of the HSP was that a nondestructive assay go/no-go technique should be used during the LFUA inspections in the cascade areas of centrifuge enrichment plants. The purpose is to verify that the enrichment of the product UF 6 gas is in the range of low-enriched uranium (LEU), i.e., the enrichment is below 20%

  7. Quality assurance measures applicable to IAEA anomaly and discrepancy resolution (ISPO Task D.52). Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Harms, N.L.; Smith, B.W.

    1984-11-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations comply with their commitments for the peaceful use of nuclear energy. This assurance is based on the capabilities of the IAEA safeguards program to detect diversion of nuclear material. Anomalies and discrepancies, which occur in the event of a diversion or concealment, are detected as part of the IAEA safeguards program. Anomalies and discrepancies normally result from innocent causes and it is the purpose of the resolution process to determine the significance of them. The IAEA is instituting quality assurance measures for the IAEA inspection process. This paper reviews the anomaly and discrepancy resolution process and describes quality control measures which are the basis for quality assurance. 13 references, 6 tables

  8. A Comparative Study on Safeguards Implementation under Bilateral Nuclear Cooperation Agreements and the IAEA Comprehensive Safeguards Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jihye; Kim, Ki-Hyun; Lee, Young Wook [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    A Nuclear Cooperation Agreement (NCA) requires several conditions, so-called obligations, on the items under the agreement such as: 1) peaceful use, 2) retransfer consent, 3) consent prior to reprocessing or enrichment and 4) safeguards and security. These obligations of the NCAs are imposed by the supplier country. The Comprehensive Safeguards Agreement (CSA) between the International Atomic Energy Agency (IAEA) and its member states require similar activities. However, there is a significant gap in nuclear material accountancy between safeguards implementation under the NCA and CSA. The difference of those two frameworks is compared herein, focusing on the unique features of the NCA safeguards and its implications are presented. In this study, the NCAs between the ROK and Canada, Australia and US were analyzed since each of them is one of the ROK’s major nuclear trading partners. The safeguards implementation under the NCA is usually specified in an Administrative Arrangement (AA) under the Agreement. The ROK has two AAs in force with Canada and Australia among 29 countries with NCA. Recently, the AA with Canada was revised in December 2015, with those concepts mentioned above. The AA with the US is currently under discussion. Cooperation in nuclear energy between two countries could be further enhanced through reliable implementation of the NCA undertakings. Taking into account the unique features of the NCA, we need to establish effective strategy for fulfilling the obligation under the Agreement.

  9. The US Support Program to IAEA Safeguards Priority of Containment and Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Diaz,R.A.

    2008-06-13

    The United States Support Program (USSP) priority for containment and surveillance (US) focuses on maintaining or improving the reliability and cost-effectiveness of C/S systems for IAEA safeguards, expanding the number of systems that are unattended and remotely monitored, and developing verification methods that help streamline the on-site inspection process. Existing IAEA C/S systems have evolved to become complex, integrated systems, which may include active seals, nondestructive assay (NDA) instruments, video cameras, and other sensors. These systems operate autonomously. They send analytical data to IAEA headquarters where it can be reviewed. These systems present challenges to the goals of improved system performance, standardization, reliability, maintainability, documentation, and cost effectiveness. One critical lesson from past experiences is the need for cooperation and common objectives among the IAEA, the developer, and the facility operator, to create a successful, cost effective system. Recent USSP C/S activities include Rokkasho Reprocessing Plant safeguard systems, production of a new shift register, numerous vulnerability assessments of C/S systems, a conduit monitoring system which identifies tampering of IAEA conduit deployed in the field, fiber optic seal upgrades, unattended monitoring system software upgrades, next generation surveillance system which will upgrade existing camera systems, and support of the IAEA's development of the universal nondestructive assay data acquisition platform.

  10. Incident involving radioactive material at IAEA Safeguards Laboratory - No radioactivity released to environment

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: Pressure build-up in a small sealed sample bottle in a storage safe resulted in plutonium contamination of a storage room at about 02:30 today at the IAEA's Safeguards Analytical Laboratory in Seibersdorf. All indications are that there was no release of radioactivity to the environment. Further monitoring around the laboratory will be undertaken. No one was working in the laboratory at the time. The Laboratory's safety system detected plutonium contamination in the storage room where the safe was located and in two other rooms - subsequently confirmed by a team of IAEA radiation protection experts. The Laboratory is equipped with multiple safety systems, including an air-filtering system to prevent the release of radioactivity to the environment. There will be restricted access to the affected rooms until they are decontaminated. A full investigation of the incident will be conducted. The IAEA has informed the Austrian regulatory authority. The IAEA's Laboratory in Seibersdorf is located within the complex of the Austrian Research Centers Seibersdorf (ARC), about 35 km southeast of Vienna. The laboratory routinely analyses small samples of nuclear material (uranium or plutonium) as part of the IAEA's safeguards verification work. (IAEA)

  11. The development and function of the IAEA's safeguards information system

    International Nuclear Information System (INIS)

    Dell'Acqua, F.; Gmelin, W.; Issaev, L.; Hough, G.; Nardi, J.

    1981-01-01

    The history of the creation and development of ISIS (International Safeguards Information System), a system for processing information received from Safeguards inspectors about both NPT and non-NPT states, is described. The main procedures for the evaluation of information received from inspectors are also described. ISIS was created on the basis of a commercially available Adaptable DAta-BAse Management System (ADABAS). At the outset, the main efforts of ISIS were devoted to processing the information reported by individual states themselves. The processing of this information fell into three stages: the putting of the information into an intermediate file, then loading the data into logical files, and the quality control of the information. The purpose and motives behind the creation of the new system GULUS (Generalized User Load and Update System) are described, together with its main characteristics. This system is an additional tool for the processing of information provided by inspectors and available even to the not very qualified user. The quick growth of the volume of Safeguards information required more computer power and motivated the buying of a new computer (IBM 3033) which permits the further development of ISIS

  12. European Commission and IAEA Celebrate 30 Years Co-operation on Nuclear Safeguards

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Today the European Commission and the International Atomic Energy Agency (IAEA) celebrate 30 years of cooperation in the safeguarding of nuclear materials and facilities. This anniversary is marked by an event at the AEA Headquarters in Vienna. The Joint Research Centre (JRC) of the European Commission has provided scientific and echnical support to the work of IAEA since 1981, with over 100 scientists and technicians working on more than 25 projects. The anniversary is also an opportunity for both parties to plan their future joint activities. ''Nuclear safety and security are absolute priorities for the EU and in this context expertise on nuclear safeguards is extremely important for global security,'' says Dominique Ristori, Director General of the Joint Research Centre. ''The JRC is constantly at work on state-of-the-art technologies for nuclear safeguards and training of nuclear inspectors to stay ahead of the evolving challenges, in its long-standing cooperation in support of the Agency's mission.'' ''The JRC has provided us with vital scientific and technical support which has helped us to implement safeguards more effectively,'' said Herman Nackaerts, Deputy Director General for Safeguards at the IAEA. ''This has had a positive impact on the security of all the citizens of the European Union and beyond.'' An important chapter in the collaboration between the two organisations is training: high-quality training programmes are provided by the JRC for the next generation of IAEA and EURATOM Inspectors. Other examples of cooperation include special tools to improve environmental particle analysis, a 3D laser-based verification system of nuclear facilities, new nuclear reference materials, and secure sealing for underwater nuclear spent fuel assemblies. Future cooperation between the JRC and IAEA will be in line with the new priorities of the IAEA to further increase the safeguards' effectiveness and efficiency, through a customized approach

  13. Quality assurance procedures for the IAEA Department of Safeguards Twin Minolta Camera Surveillance System

    International Nuclear Information System (INIS)

    Geoffrion, R.R.; Bussolini, P.L.; Stark, W.A.; Ahlquist, A.J.; Sanders, K.E.; Rubinstein, G.

    1986-01-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations are complying with nuclear safeguards treaties. In one aspect of the program, the Department of Safeguards has developed a twin Minolta camera photo surveillance systems program to assure itself and the international community that material handling is accomplished according to safeguards treaty regulations. The camera systems are positioned in strategic locations in facilities such that objective evidence can be obtained for material transactions. The films are then processed, reviewed, and used to substantiate the conclusions that nuclear material has not been diverted. Procedures have been developed to document and aid in: 1) the performance of activities involved in positioning of the camera system; 2) installation of the systems; 3) review and use of the film taken from the cameras

  14. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pepper S. E.; .; Worrall, L.; Pickett, C.; Bachner, K.; Queirolo, A.

    2014-08-08

    The U.S. National Nuclear Security Administration’s Next Generation Safeguards Initiative, the U.S. Department of State, and the International Atomic Energy Agency (IAEA) organized a a workshop on the subject of ”Software Sustainability for Safeguards Instrumentation.” The workshop was held at the Vienna International Centre in Vienna, Austria, May 6-8, 2014. The workshop participants included software and hardware experts from national laboratories, industry, government, and IAEA member states who were specially selected by the workshop organizers based on their experience with software that is developed for the control and operation of safeguards instrumentation. The workshop included presentations, to orient the participants to the IAEA Department of Safeguards software activities related to instrumentation data collection and processing, and case studies that were designed to inspire discussion of software development, use, maintenance, and upgrades in breakout sessions and to result in recommendations for effective software practices and management. This report summarizes the results of the workshop.

  15. Safeguards

    International Nuclear Information System (INIS)

    Carchon, R.

    1998-01-01

    Safeguards activities at the Belgian Nuclear Research Centre SCK/CEN answer internal needs, support the Belgian authorities, and support the IAEA. The main objectives of activities concerning safeguards are: (1) to contribute to a prevention of the proliferation of nuclear materials by maintaining an up-to-date expertise in the field of safeguards and providing advice and guidance as well as scientific and technical support to the Belgian authorities and nuclear industry; (2) to improve the qualification and quantification of nuclear materials via nondestructive assay. The main achievements for 1997 are described

  16. Japan-IAEA Workshops on Advanced Safeguards for Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Hoffheins, B.; Hori, M.; Suzuki, M.; Kuno, Y.; Kimura, N.; Naito, K.; Hosoya, M.; Khlebnikov, N.; Whichello, J.; Zendel, M.

    2010-01-01

    Beginning in 2007, the Japan Atomic Energy Agency (JAEA) and the International Atomic Energy Agency (IAEA) Department of Safeguards initiated a workshop series focused on advanced safeguards technologies for the future nuclear fuel cycle (NFC). The goals for these workshops were to address safeguards challenges, to share implementation experiences, to discuss fuel cycle plans and promising research and development, and to address other issues associated with safeguarding new fuel cycle facilities. Concurrently, the workshops also served to promote dialog and problem solving, and to foster closer collaborations for facility design and planning. These workshops have sought participation from IAEA Member States' support programmes (MSSP), the nuclear industry, R and D organizations, state systems of accounting and control (SSAC), regulators and inspectorates to ensure that all possible stakeholder views can be shared in an open process. Workshop presentations have covered, inter alia, national fuel cycle programs and plans, research progress in proliferation resistance (PR) and safeguardability, approaches for nuclear measurement accountancy of large material throughputs and difficult to access material, new and novel radiation detectors with increased sensitivity and automation, and lessons learned from recent development and operation of safeguards systems for complex facilities and the experiences of integrated safeguards (IS) in Japan. Although the title of the workshops presumes an emphasis on technology, participants recognized that early planning and organization, coupled with close cooperation among stakeholders, that is, through the application of 'Safeguards by Design' (SBD) processes that include nuclear safety and security coordination, 'Remote Inspections' and 'Joint-Use of Equipment (JUE)' would be required to enable more successful implementations of safeguards at future NFC facilities. The needs to cultivate the future workforce, effectively preserve

  17. Addressing Safeguards Challenges for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Majali, Raed; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    IAEA safeguard system is considered the corner stone of the international nuclear nonproliferation regime. Effective implementation of this legal instrument enables the IAEA to draw a conclusion with a high degree of confidence on the peaceful use of nuclear material and activities in the state. This paper aims to provide an opportunity to address various challenges encountered by IAEA. Strengthening safeguards system for verification is one of the most urgent challenges facing the IAEA. The IAEA should be able to provide credible assurance not only about declared use of nuclear material and facilities but also about the absence of undeclared material and activities. Implementation of IAEA safeguards continue to play a vital role within the nuclear non-proliferation regime. IAEA must move towards more enhanced safeguards system that is driven by the full use of all the safeguards available relevant information. Safeguards system must be responsive to evolving challenges and continue innovation through efficient implementations of more effective safeguards.

  18. Framework for fuel-cycle approaches to IAEA safeguards

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.

    1986-01-01

    A framework is presented for comparing various safeguards verification approaches which have been proposed for consideration. Each inventory change, inventory, and material balance for each nuclear facility, reported by a state, may be verified. Verification approaches are compared by listing which of these reports would be verified and to what degree for each approach as they might be applied to a state with a closed fuel cycle. The comparison indicates that the extended-material-balance-area (or zone), the information-correlation, and the randomization-over-facilities approaches make more efficient use of Agency resources than the facility-oriented approach for states with large nuclear power programs. In contrast, any advantages of randomizing inspections over inspection activities within facilities are, percentagewise, relatively independent of the size of a state's nuclear program

  19. Strengthening the infrastructure for RI applications in cooperation with the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Hong, Young Don; Kim, Seung Yun; Kim, Kyoung Pyo; Lee, Jeong Kong

    2000-12-01

    The future direction for nuclear cooperation should be implemented with the aim of enhancing the status of Korea within the international society as well as carrying out the established national nuclear policy goal. Strategies for implementing cooperation with the IAEA were described into four separate parts; 'strategies for strengthening cooperation in general areas', 'strategies for implementing IAEA technical cooperation programs', 'strategies for implementing IAEA CRP programs' and 'Strategies for effective participation in the area of radiation and RI application'. As for strategies for implementing IAEA technical cooperation programs, i) expanding domestic personnel's entering into the IAEA ii) establishment of a liaison office for support of IAEA technical cooperation iii) expanding domestic experts entering into member of consultation group for a director-general of the IAEA and more participation in the international meetings iv) cooperation with IAEA's Seibersdorf Laboratories. For the strengthening of IAEA technical cooperation, strategies for effective implementation of technical cooperation programs such as i) strengthening role of national TC liaison officer ii) strengthening application of Model Project concept iii) Implementing End-user oriented programs iv) Establishment of measure to increase the TC implementation rate v) hosting of fellowship, scientific visitors, support for expert mission, were presented. Strategies for expanding domestic participation in the IAEA technical cooperation programs were also described for producing the benefits from implementing the IAEA technical cooperation programs. As for strategies for implementing the IAEA CRP programs, i) measures for active participation in the IAEA CRP programs and ii) measures for gradual participation in the IAEA CRP programs were separately described. To maximize the utilization of HANARO, a multi-purpose research reactor, the on

  20. Strengthening the infrastructure for RI applications in cooperation with the IAEA

    International Nuclear Information System (INIS)

    Park, Kyung Bae; Hong, Young Don; Kim, Seung Yun; Kim, Kyoung Pyo; Lee, Jeong Kong

    2000-12-01

    The future direction for nuclear cooperation should be implemented with the aim of enhancing the status of Korea within the international society as well as carrying out the established national nuclear policy goal. Strategies for implementing cooperation with the IAEA were described into four separate parts; 'strategies for strengthening cooperation in general areas', 'strategies for implementing IAEA technical cooperation programs', 'strategies for implementing IAEA CRP programs' and 'Strategies for effective participation in the area of radiation and RI application'. As for strategies for implementing IAEA technical cooperation programs, i) expanding domestic personnel's entering into the IAEA ii) establishment of a liaison office for support of IAEA technical cooperation iii) expanding domestic experts entering into member of consultation group for a director-general of the IAEA and more participation in the international meetings iv) cooperation with IAEA's Seibersdorf Laboratories. For the strengthening of IAEA technical cooperation, strategies for effective implementation of technical cooperation programs such as i) strengthening role of national TC liaison officer ii) strengthening application of Model Project concept iii) Implementing End-user oriented programs iv) Establishment of measure to increase the TC implementation rate v) hosting of fellowship, scientific visitors, support for expert mission, were presented. Strategies for expanding domestic participation in the IAEA technical cooperation programs were also described for producing the benefits from implementing the IAEA technical cooperation programs. As for strategies for implementing the IAEA CRP programs, i) measures for active participation in the IAEA CRP programs and ii) measures for gradual participation in the IAEA CRP programs were separately described. To maximize the utilization of HANARO, a multi-purpose research reactor, the on-going development and development project are actively

  1. The position of IAEA safeguards relative to nuclear material control accountancy by States

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards, which are always implemented on the basis of agreements which are concluded between one or more Governments and the IAEA, lay down the rights and obligations of the parties; and the more modern types of agreement, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do this in quite some detail. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. These are based on two basic obligations - that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the IAEA to ascertain the absence of diversion of nuclear material by verifying the findings of the States' systems, inter alia through independent measurements and observations. Other articles dealing also with the working relations between States and the IAEA rule that the IAEA should take due account of the technical effectiveness of the States' systems and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy on that of the facility operator. However, quantitative relationships in this respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rationale has been developed and possible practical arrangements discussed with several States concerned. The rationale for co-ordinating the work of the States' inspectorate with that of the IAEA was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted so as to reduce to a certain extent the IAEA's independent verification work in case the States would themselves do extensive verifications in a manner transparent to the IAEA. However, in practice it proved that there are a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards

  2. Overview of IAEA year 2000 activities in the Department of Safeguards

    International Nuclear Information System (INIS)

    Chitumbo, K.

    1999-01-01

    The IAEA Department of Safeguards established a project in 1996 for the year 2000 (Y2K) conversion activities. This project covered assessment, conversion and testing of the software applications, instrument evaluation software, embedded systems and Personal Computer (PC) hardware attached to various equipment. Significant progress has been made in converting the applications and instruments to be year 2000 compliant. At the same time Member states have made an effort as well in converting the systems used jointly at the facilities

  3. A view to the new safeguards system

    International Nuclear Information System (INIS)

    Tsuboi, Hiroshi

    2000-01-01

    The Additional Protocol to the Safeguards Agreement between Japan and the IAEA entered into force on 16 December 1999. An initial declaration of the expanded information will be provided to the IAEA by next June in accordance with the Additional Protocol. In Japan the new integrated safeguards system, which strengthens the effectiveness and improves efficiency of IAEA Safeguards, is considered to be very important issue. The establishment of a permanent and universal safeguards system including application of safeguards in Nuclear Weapon States also is an important issue from the view-point of not only non-proliferation but also nuclear disarmament. Safeguards are expected to have an increasingly important role. (author)

  4. Exploiting the Geospatial Dimension of Data in Support of IAEA Safeguard

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, M.; Bleakly, D.; Horak, K. [Sandia National Laboratories, Albuquerque, New Mexico (United States)

    2012-06-15

    The nuclear fuel cycle is highly dependent upon geographic factors and each step in a state's nuclear fuel cycle occurs in geographically explicit locations. Because of this, information indicative of these activities is likely to have a strong geographic competent. Therefore, it is suggested that open source information management in support of State Level Assessments also be geographically focused. With an explicit geographic interface for collecting, evaluating, analyzing, structuring, and disseminating open source information, the information management challenges faced by the IAEA can be made more intuitive and result in more effective, information-driven safeguards analyses, potentially leading to more timely safeguards conclusions. This paper proposes an information management framework based upon geographic information systems (GIS) principles for open-source information analysis in support of international safeguards.

  5. Preparing the 1993--94 Safeguards Implementation Support Programme for IAEA

    International Nuclear Information System (INIS)

    Green, L.

    1993-01-01

    The 1993-94 Safeguards Implementation Support (IS) Program describes the Department of Safeguards' program of implementation support for the coming two years. The main body of the document describes the IS program for IAEA. A detailed description of the individual IS needs for 1993-1994 is contained in an annex that specifies the nee, assigns priorities and lists tasks and activities underway to address the need. Other annexes address policy and procedures for program planning and management, current Member State Support Programs (MSSP) tasks, and identification of MSSP resources required for implementation of developed technologies that could be provided. The primary responsibility for supporting the implementation of safeguards technology is with the support divisions of the Department of Safeguards. However, in this time of limited resources it is essential that, where possible, the Department receives assistance from MSSPs that have the needed resources. This document should serve as a guide for IAEA, in planning implementation support activities and for identifying tasks for MSSPs wishing to provide assistance

  6. RECRUITMENT OF U.S. CITIZENS FOR VACANCIES IN IAEA SAFEGUARDS

    International Nuclear Information System (INIS)

    OCCHIOGROSSO, D.; PEPPER, S.

    2006-01-01

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is likewise important to the U.S. government for U.S. citizens to take positions with the IAEA to contribute to its success. It is important for persons within and outside the U.S. nuclear and safeguards industries to become aware of the job opportunities available at the IAEA and to be informed of important vacancies as they arise. The International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) is tasked by the U.S. government with recruiting candidates for positions within the Department of Safeguards at the IAEA and since 1998, has been actively seeking methods for improving outreach. In addition, ISPO has been working more closely with the IAEA Division of Personnel. ISPO staff members attend trade shows to distribute information about IAEA opportunities. The shows target the nuclear industry as well as shows that are unrelated to the nuclear industry. ISPO developed a web site that provides information for prospective candidates. They have worked with the IAEA to understand its recruitment processes, to make suggestions for improvements, and to understand employment benefits so they can be communicated to potential U.S. applicants. ISPO is also collaborating with a State Department working group that is focused on increasing U.S. representation within the United Nations as a whole. Most recently Secretary of State Condoleezza Rice issued a letter to all Federal Agency heads encouraging details and transfers of their employees to international organizations to the maximum extent feasible and with due regard to their manpower requirements. She urged all federal agencies to review their detail and transfer policies and practices to ensure that employment in international organizations is promoted in a positive and active manner. In addition, she wrote that it is

  7. Ultra-sensitive detection of nuclear signatures in support of IAEA safeguards

    International Nuclear Information System (INIS)

    Hotchkis, M.; Child, D.; Tuniz, C.; Williams, M.

    2003-01-01

    The International Atomic Energy Agency (IAEA) applies a range of ultra-sensitive detection techniques to provide assurance that Member States are in compliance with their safeguards agreements. Environmental samples are collected which can contain minute traces of nuclear material or other evidence. Careful analysis of these samples reveals the nature of the activities undertaken in the vicinity of the sampling point. This paper reviews the analytical techniques that are being applied. To ensure that the IAEA has access to the best available methods, samples are distributed to a group of qualified laboratories around the world for analysis. The Accelerator Mass Spectrometry facility at the Australian Nuclear Science and Technology Organisation (ANSTO) is part of this select group of laboratories, and is the only AMS facility currently accredited with the IAEA. AMS provides the highest sensitivity available for detection of particularly useful signature radioisotopes, including 129 I, 236 U and plutonium isotopes

  8. Japanese Quality Assurance System Regarding the Provision of Material Accounting Reports and the Safeguards Relevant Information to the IAEA

    International Nuclear Information System (INIS)

    Goto, Y.; Namekawa, M.; Kumekawa, H.; Usui, A.; Sano, K.

    2015-01-01

    The provision of the safeguards relevant reports and information in accordance with the comprehensive safeguards agreement (CSA) and the additional protocol (AP) is the basis for the IAEA safeguards. The government of Japan (Japan Safeguards Office, JSGO) has believed that the correct reports contribute to effective and efficient safeguards therefore the domestic quality assurance system for the reporting to the IAEA was already established at the time of the accession of the CSA in 1977. It consists of Code 10 interpretation (including the seminars for operators in Japan), SSAC's checks for syntax error, code and internal consistency (computer based consistency check between facilities) and the discussion with the IAEA on the facilities' measurement system for bulk-handling facilities, which contributes to the more accurate reports from operators. This spirit has been maintained for the entry into force of the AP. For example, questions and amplification from the IAEA will be taken into account the review of the AP declaration before sending to the IAEA and the open source information such as news article and scientific literature in Japanese is collected and translated into English, and the translated information is provided to the IAEA as the supplementary information, which may contribute to broadening the IAEA information source and to their comprehensive evaluation. The other safeguards relevant information, such as the mail-box information for SNRI at LEU fuel fabrication plants, is also checked by the JSGO's QC software before posting. The software was developed by JSGO and it checks data format, batch IDs, birth/death date, shipper/receiver information and material description code. This paper explains the history of the development of the Japanese quality assurance system regarding the reports and the safeguards relevant information to the IAEA. (author)

  9. Implementation of a Strengthened International Safeguards System. ABACC 15 Years

    International Nuclear Information System (INIS)

    Vicens, H.R.; Maceiras, E.; Dominguez, C.A.

    2011-01-01

    The purpose of the paper is to explain how the system of a regional safeguard has been operating and developing in the framework of the Brazilian-Argentine Agency of Accounting and control of nuclear Materials (ABACC), and how the international recommendations of radiological protection must be taken into account in the safeguards implementation and its impact in the international context.

  10. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    International Nuclear Information System (INIS)

    Laughter, Mark D.; Whitaker, J. Michael; Howell, John

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF 6 feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated load

  11. Outcome and Perspectives from the First IAEA International Technical Meeting on Statistical Methodologies for Safeguards

    International Nuclear Information System (INIS)

    Norman, C.; Binner, R.; Peter, N. J.; Wuester, J.; Zhao, K.; Krieger, T.; Walczak-Typke, A.C.; Richet, S.; Portaix, C.G.; Martin, K.; Bonner, E.R.

    2015-01-01

    Statistical and probabilistic methodologies have always played a fundamental role in the field of safeguards. In-field inspection approaches are based on sampling algorithms and random verification schemes designed to achieve a designed detection probability for defects of interest (e.g., missing material, indicators of tampering with containment and other equipment, changes of design). In addition, the evaluation of verification data with a view to drawing soundly based safeguards conclusions rests on the application of various advanced statistical methodologies. The considerable progress of information technology in the field of data processing and computational capabilities as well as the evolution of safeguards concepts and the steep increase in the volume of verification data in the last decades call for the review and modernization of safeguards statistical methodologies, not only to improve the efficiency of the analytical processes but also to address new statistical and probabilistic questions. Modern computer-intensive approaches are also needed to fully exploit the large body of verification data collected over the years in the increasing number and diversifying types of nuclear fuel cycle facilities in the world. The first biennial IAEA International Technical Meeting on Statistical Methodologies for Safeguards was held in Vienna from the 16 to 18 October 2013. Recommendations and a working plan were drafted which identify and chart necessary steps to review, harmonize, update and consolidate statistical methodologies for safeguards. Three major problem spaces were identified: Random Verification Schemes, Estimation of Uncertainties and Statistical Evaluation of Safeguards Verification Data for which a detailed list of objectives and actions to be taken were established. Since the meeting, considerable progress was made to meet these objectives. The actions undertaken and their outcome are presented in this paper. (author)

  12. IAEA safeguards: Stemming the spread of nuclear weapons. As the world's nuclear inspectorate, the IAEA performs an indispensable role in furthering nuclear non-proliferation

    International Nuclear Information System (INIS)

    2002-01-01

    Following the completion of the Treaty on the Non- Proliferation of Nuclear Weapons (NPT) in 1968, the IAEA has become the instrument with which to verify that the peaceful use commitments made under the NPT or similar agreements are kept through performing what is known as its safeguards role. Under the NPT, governments around the world have committed to three common objectives: preventing the proliferation of nuclear weapons; pursuing nuclear disarmament; and promoting the peaceful uses of nuclear energy. The NPT has made it obligatory for all its non-nuclear weapon State parties to submit all nuclear material in nuclear activities to IAEA safeguards, and to conclude a comprehensive safeguards agreement with the Agency. With all but a handful of the world community as State parties, the NPT is by far the most widely adhered to legal agreement in the field of disarmament and non-proliferation. The IAEA takes account of all source and special fissionable material in countries under safeguards. Monitoring and verification activities focus on those types of nuclear material that are the most crucial and relevant to nuclear weapons manufacturing. This includes plutonium-239, uranium-233 and -235 and any material containing one or more of these. Safeguards activities are applied routinely at over 900 facilities in 71 countries. In 2001 alone, more than 21,000 calendar days in the field were devoted to verifying hundreds of tons of special fissionable material by more than IAEA 250 inspectors

  13. International seminar on safeguards information reporting and processing. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included

  14. Private sector involvement in the US program of technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Epel, L.; Maise, G.; Reisman, A.; Skalyo, J.

    1995-01-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) relies on technical expertise found in the U. S private and public sectors. Since 1993, the international Safeguards Project Office (ISPO) has sought to increase the role of the private sector in POTAS. ISPO maintains and continues to develop a database of US companies interested in providing technical expertise to the IAEA. This database is used by ISPO to find appropriate contractors to respond to IAEA requests for technical assistance when the assistance can be provided by the private sector. The private sector is currently providing support in the development of equipment, training, and procedure preparation. POTAS also supports the work of private consultants. This paper discusses ISPO's efforts to identify suitable vendors and discusses conditions that hinder more substantial involvement by the private sector. In addition, the paper will discuss selected projects that are currently in progress and identify common problems that impede the progress and success of tasks performed by the private sector

  15. Development of a Safeguards Approach for a Pyroprocessing Plant by IAEA Member State Support Program

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, H. D.; Song, D. Y.; Eom, S. H.; Lee, T. H.; Ahn, S. K.; Park, S. H.; Han, B. Y.; Choi, Y.

    2012-01-01

    The objective of this project is to analyze the safeguard ability of pyroprocess facility and to establish the safeguards system for pyroprocess by developing the technology of nuclear material accounting for unit process, surveillance technology and nuclear characteristic analysis technology which are needed to demonstrate the safeguards technology of pyroprocess. Therefore, the development of a safeguards approach for pyroprocessing facilities is required as the interest of pyroprocessing increases. Regarding this issue, the IAEA made a contract the 3-years long Member State Support Program (MSSP) for the 'Support for Development of a Safeguards Approach for a Pyroprocessing Plant' with the Republic of Korea (ROK) in July 2008. Even though the pyroprocess technology is currently being developed all over the world, its safeguards approach has not been established yet, and especially, nuclear material accountancy technology which is the core of safeguards has not been established as well. Therefore, the development of new accountancy technology which is appropriate for the construction of pyroprocess facility is needed. Due to the nature of the process, pyroprocess has various kinds of process material form, and the composition of Pu and U isotopes included in process material is not homogeneous. Also, the existing nuclear material accountancy technology for a wet reprocessing facility is hard to apply because of a large quantity of gamma-ray radiation which is emitted from the fissile products in process material. In this report, the study for the development of a safeguards approach for a pyroprocessing plant pyroprocessing has been described. As the previous results six pyroprocessing facility concepts suggested by US, Japan, and Republic of Korea had been summarized and analyzed, and the determination principles were established to determine a reference pyroprocessing facility concept. The reference pyroprocessing facility was determined to be the ESPF of KAERI

  16. Enhanced cooperation between IAEA and Republic of Korea on safeguards implementation at light water reactors

    International Nuclear Information System (INIS)

    Park, Wan-Sou; Kim, Byung-Koo; Yim, Seuk-Soon

    2001-01-01

    Full text: In Korea, national inspection has been initiated from the second half of 1997. From 1999, national inspection has been carried out for all nuclear facilities in Korea. In 2000, national inspections were performed successfully in 32 nuclear facilities including 12 PWRs, 4 CANDU reactors, 10 research facilities, 4 fuel fabrication plants and others. As the national inspection system settled down, both the IAEA and Korea were looking for possible ways of cooperation for mutual benefit. It was expected that considerable saving on inspection resources as well as more effective safeguards implementation could be achieved, if more enhanced cooperation work was realized. In 1999, the IAEA and Korea agreed to establish a working group for the enhanced cooperation between both sides. A working group, composed of experts from the IAEA and ROK, reviewed several options for enhanced cooperation on LWRs in Korea and suggested a measure for implementing the current safeguards approach for LWRs with remote monitoring. The basic concepts of the Enhanced Cooperation Scheme are: 1. The SSAC shall carry out all scheduled inspections for each facility for each year, while the Agency shall carry out the annual PIV and post-PIV, and a random selection of the remaining inspections; 2, The remote monitoring (RM) data necessary for technical and safeguards review shall be shared between the Agency and SSAC; 3. The IAEA shall bear the costs of purchasing RM equipment and communication operating costs from the central hub station in Korea to Vienna; the ROK will bear the costs of installing all RM equipment and communication operating costs from each LWR to the central hub station in Korea. Typically, around 8-9 inspections are performed for one LWR per annum under current safeguards approach; 1 pre-PIV, 1 PIV, 1 post-PIV, 3-4 interim inspections, fresh fuel receipts and simultaneous inspection. RM design includes 2 digital cameras (equipment hatch and spent fuel pond), VACOSS

  17. Development of IAEA safeguards at low enrichment uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Badawy, I.

    1988-01-01

    In this report the nuclear material at low enrichment uranium fuel fabrication plants under IAEA safeguards is studied. The current verification practices of the nuclear material and future improvements are also considered. The problems met during the implementation of the the verification measures of the nuclear material - particularly for the fuel assemblies are discussed. The additional verification activities as proposed for future improvements are also discussed including the physical inventory verification and the verification of receipts and shipments. It is concluded that the future development of the present IAEA verification practices at low enrichment uranium fuel fabrication plants would necessitate the application of quantitative measures of the nuclear material and the implementation of advanced measurement techniques and instruments. 2 fig., 4 tab

  18. Estimated incremental costs for NRC licensees to implement the US/IAEA safeguards agreement

    International Nuclear Information System (INIS)

    Clark, R.G.; Brouns, R.J.; Chockie, A.D.; Davenport, L.C.; Merrill, J.A.

    1979-01-01

    A study was recently completed for the US Nuclear Regulatory Commision (NRC) by the Pacific Northwest Laboratory (PNL) to identify the incremental cost of implementing the US/IAEA safeguards treaty agreement to eligible NRC licensees. Sources for the study were cost estimates from several licensees who will be affected by the agreement and cost analyses by PNL staff. The initial cost to all eligible licensees to implement the agreement is estimated by PNL to range from $1.9 to $7.2 million. The annual cost to these same licensees for the required accounting and reporting activities is estimated at $0.5 to $1.5 million. Annual inspection costs to the industry for the limited IAEA inspection being assumed is estimated at $80,000 to $160,000

  19. The position of IAEA safeguards relative to nuclear material control accountancy by states

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards are always implemented on the basis of agreements which are concluded between one or more Governments and the Agency. They lay down the rights and obligations of the parties; the more modern types of agreements, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do that in quite some details. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. Those are based on two basic obligations: that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the Agency to ascertain the absence of diversion of nuclear material by verifying the findings of the States' system, inter alia through independent measurements and observations. Other articles dealing also with the working relations States - IAEA rule that the Agency should take due account of the technical effectiveness of the States' system and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy from that of the facility operator. However, quantitative relationships in that respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rational has been developed and possible practical arrangements discussed with several States concerned. The rational for coordinating the work of the States' inspectorate with IAEA's inspectorate was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted in order to reduce to a certain extent the Agency's independent verification work in case the States would do extensive verifications themselves in a manner transparent to IAEA. However, in practice it proved that there are quite a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards objective

  20. Nuclear safeguards in challenging times [Experts on nuclear safeguards and verification assess the global picture

    International Nuclear Information System (INIS)

    Park, W.S.; Hillerman, J.

    2007-01-01

    Meeting at the IAEA's International Safeguards Symposium in October 2006, more than 500 experts from 60-plus countries and organizations addressed current and future challenges related to safeguards concepts, approaches, technologies, and experience. Sessions addressed five main issues driving developments: Current challenges to the safeguards system; Further strengthening safeguards practices and approaches; Improving the collection and analysis of safeguards information; Advances in safeguards techniques and technology; and Future challenges. Every four to five years, the IAEA brings together safeguards experts from all over the world at international symposia. In October 2001, they met in the shadow of 9/11 and the symposium included a special session on the prevention of nuclear terrorism

  1. Implementation of a Strengthened International Safeguards System ABBAC 15 years

    International Nuclear Information System (INIS)

    Vicens, Hugo; Maceiras, Elena; Dominguez, Cristina A.

    2008-01-01

    The purpose of the paper is to explain how the system of a regional safeguard has been operating and developing in the framework of the Brazilian Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), and how the international recommendation of radiological protection must be taken into account in the safeguards implementation and its impact in the international context. The ABACC has been a dynamic system, which contributes worldwide in the application of the regional and international safeguard. In 2006, the ABACC celebrated its 15th anniversary. The ABBAC was created in 1991 in the framework of a Bilateral Agreement for the Exclusively Peaceful use of Nuclear Energy, the ABBAC was created in order to apply the aforementioned system called 'Common System for Accounting and Control of Nuclear Materials' (SCCC). During this time, the ABBAC has grown in its implementation and has become a model in the application of regional safeguards that is recognized internationally. The ABBAC was the pillar to signed an Agreement between Argentina, Brazil, the ABBAC and the International Atomic Energy Agency, called 'Quadripartite Agreement', committed themselves to accept the application of safeguards to all nuclear materials in all the nuclear activities performed in both countries. The ABACC and the relevant implementing and supplementary agreements, set forth the conditions for the peaceful use of nuclear energy, the exchange of technical staff, the transfer of knowledge and international cooperation in a strong commitment to non-proliferation of nuclear weapons. This introduction provides an overview of political, legal and technical aspects implemented in the ABACC, which will be developed later in the paper. (author)

  2. Strengthened International Nuclear Safeguards; burdens and Effects on Nuclear Technology Development

    International Nuclear Information System (INIS)

    Badawy, I.

    2000-01-01

    The present paper deals with the recent direction of strengthening the international nuclear safeguards and the effects on the development of nuclear technology for peaceful applications. The new basic principles for strengthening the international nuclear control in the direction of undeclared nuclear activities are elaborated, and the national obligations are indicated. The burdens on the development of nuclear technology are discussed. Approaches are proposed in this work for coping with the present and future situations

  3. Two low-level gamma spectrometry systems of the IAEA Safeguards Analytical Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Parus, J L [IAEA, SAL, Vienna (Austria); Raab, W [IAEA, SAL, Vienna (Austria); Donohue, D [IAEA, SAL, Vienna (Austria); Jansta, V [IAEA, SAL, Vienna (Austria); Kierzek, J [IAEA, SAL, Vienna (Austria)

    1997-03-01

    A gamma spectrometry system designed for the measurement of samples with low and medium radioactivity (activity from a few to about 10{sup 4} Bq in the energy range from 25 to 2700 keV) has been installed at the IAEA Safeguards Analytical Laboratory in Seibersdorf. The system consists of 3 low level detectors: (1) n-type coaxial Ge with 42.4% relative efficiency, 1.85 keV FWHM at 1.33 MeV (2) planar Ge with 2000 mm{sup 2} area and 20 mm thickness, 562 eV FWHM at 122 keV (3) NaI(Tl) annulus of 25.4 cm diameter and 25.4 cm height, hole diameter 90 mm. (orig./DG)

  4. International safeguards

    International Nuclear Information System (INIS)

    1995-01-01

    The system of international safeguards carried out by the IAEA is designed to verify that governments are living up to pledges to use nuclear energy only for peaceful purposes under the NPT (Treaty on the non-proliferation of nuclear weapons) and similar agreements. The film illustrates the range of field inspections and analytical work involved. It also shows how new approaches are helping to strengthen the system

  5. Transparency and other State-specific factors: exploration of Ideas for evolving the system of State-evaluations and safeguards implementation of IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Everton, C.; Leslie, R.; Bayer, S.; East, M. [Craig Everton, Russell Leslie, Stephan Bayer, Michael East, Australia (Australia)

    2011-12-15

    In November 2010 the IAEA Department of Safeguards launched its Long Term Strategic Plan at the IAEA Symposium on International Safeguards: 'Preparing for Future Verification Challenges'. A key element of the Long Term Strategic Plan is the further evolution of the State-level approach for safeguards implementation away from criteria driven safeguards approaches focussed at the facility level, to a safeguards system that is objectives-based and fully information-driven. The State-level approach is a holistic approach to safeguards implementation, applicable to all States, incorporating comprehensive State evaluations and safeguards implementation approaches that make use of all information available to the IAEA. In further evolving the State-level concept State-specific factors and acquisition path analysis will become increasingly important in State evaluations and in the determination of safeguards approaches for each State. It will be important to determine objective modalities for incorporating these factors. Consideration of State-specific factors in determining safeguards approaches is not new - in fact, paragraph 81 of INFCIRC/153 (concluded June 1972) enumerates several such factors that can be considered. This paper will explore some ideas for State-specific factors that could be used in State-evaluations, and how these factors could be used for determining State-by-State safeguards approaches. Ideas for State-specific factors will include effectiveness of State Systems of Accountancy and Control (SSAC), transparency of States in their dealings with the IAEA, and characteristics of a nuclear fuel cycle of a State.

  6. Transparency and other State-specific factors: exploration of Ideas for evolving the system of State-evaluations and safeguards implementation of IAEA

    International Nuclear Information System (INIS)

    Everton, C.; Leslie, R.; Bayer, S.; East, M.

    2011-01-01

    In November 2010 the IAEA Department of Safeguards launched its Long Term Strategic Plan at the IAEA Symposium on International Safeguards: 'Preparing for Future Verification Challenges'. A key element of the Long Term Strategic Plan is the further evolution of the State-level approach for safeguards implementation away from criteria driven safeguards approaches focussed at the facility level, to a safeguards system that is objectives-based and fully information-driven. The State-level approach is a holistic approach to safeguards implementation, applicable to all States, incorporating comprehensive State evaluations and safeguards implementation approaches that make use of all information available to the IAEA. In further evolving the State-level concept State-specific factors and acquisition path analysis will become increasingly important in State evaluations and in the determination of safeguards approaches for each State. It will be important to determine objective modalities for incorporating these factors. Consideration of State-specific factors in determining safeguards approaches is not new - in fact, paragraph 81 of INFCIRC/153 (concluded June 1972) enumerates several such factors that can be considered. This paper will explore some ideas for State-specific factors that could be used in State-evaluations, and how these factors could be used for determining State-by-State safeguards approaches. Ideas for State-specific factors will include effectiveness of State Systems of Accountancy and Control (SSAC), transparency of States in their dealings with the IAEA, and characteristics of a nuclear fuel cycle of a State.

  7. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, Susan E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pickett, Chris A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Queirolo, Al [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, Katherine M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Worrall, Louise G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-07

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers’ goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term “software sustainability” was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  8. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    International Nuclear Information System (INIS)

    Pepper, Susan E.; Pickett, Chris A.; Queirolo, Al; Bachner, Katherine M.; Worrall, Louise G.

    2015-01-01

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers' goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term ''software sustainability'' was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  9. IAEA Newsbriefs. V. 14, no. 1(82). Jan-Feb 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This issue gives brief information on the following topics: 2000 Budget Goes Before IAEA Board of Governors, IAEA, Inspectors Relocated from Iraq, Review Meeting of Nuclear Safety Convention Set in April, Statements of IAEA Director General, The IAEA and Y2K Issues: Clearinghouse and Contact Point, Strengthened Safeguards System: Status of Additional Protocols, More States Join International Conventions in Nuclear Fields, IAEA International Scientific Symposia and Seminars in 1999, New IAEA Books, and othe short information

  10. Peaceful uses of nuclear energy and IAEA safeguards and related activities

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper reports that deliberations on the peaceful uses of nuclear energy, both within and outside the United Nations, have focused on two divergent points of view. One emphasizes the potential benefits of the peaceful application of this source of energy to a variety of purposes, particularly the generation of electric power. The other stresses the risks engendered by the transfer of nuclear material, equipment and technology that might lend themselves to the manufacture of nuclear weapons. Recipient States have traditionally underlined their need and their inherent right to have unimpaired access to the peaceful applications of nuclear energy, while the supplier States, wishing to avoid contributing to the spread of a nuclear-weapon capability among recipients, have advocated restrictions on international transfers, especially of nuclear know-how and installations. In 1977, 15 supplier States agreed upon criteria for the application of IAEA safeguards to exports and formulated requirements to prevent unauthorized transactions, including restrictions on re-exportation. In February 1980, the Conference on the International Nuclear Fuel Cycle Evaluation (INFCE), initiated by the United States, completed a technical evaluation of data and options that it had undertaken to find less proliferation-prone nuclear fuel cycles. Sixty-six States-both suppliers and recipients of nuclear technology-took part in the evaluation, which did not, however, lead to the hoped-for result

  11. The role of the International Atomic Energy Agency in technology transfer for the peaceful use of nuclear energy and the strengthening of the Safeguards system, Santiago, 9 December 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the IAEA national seminar on 'Nuclear Development and its Implications for Chilean International Policy' in Santiago, Chile, on 9 December 1998. After a short presentation of Chile's participation in all aspects of the work of the Agency, the conference focuses on the Agency's role in the following areas: technology transfer with emphasis on Agency's Technical Co-operation Programme, nuclear power and sustainable energy development, including nuclear safety aspects, and the strengthened safeguards system, including future prospects of verification

  12. SSAC at Your Service: Promoting Co-operation Between IAEA and Finnish SSAC for Safeguards Implementation (Within the EU)

    International Nuclear Information System (INIS)

    Haemaelaeinen, Marko; Okko, Olli; Honkamaa, Tapani; Martikka, Elina

    2010-01-01

    this matter. Finland is also active in supporting IAEA through safeguards support programme (FINSP), for example facilitating training courses for IAEA inspectors in Finnish sites. Enthusiasm and experiences with the view of IAEA demands are the driven forces. For example, safeguarding the final disposal of spent fuel is a task in which STUK has been pushing forward intensively and openly by searching for solutions and developing methods for non-destructive assay. (author)

  13. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  14. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  15. 2. JAPAN-IAEA workshop on advanced safeguards technology for the future nuclear fuel cycle. Abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    This international workshop addressed issues and technologies associated with safeguarding the future nuclear fuel cycle. The workshop discussed issues of interest to the safeguards community, facility operators and State Systems of accounting and control of nuclear materials. Topic areas covered were as follows: Current Status and Future Prospects of Developing Safeguards Technologies for Nuclear Fuel Cycle Facilities, Technology and Instrumentation Needs, Advanced Safeguards Technologies, Guidelines on Developing Instrumentation to Lead the Way for Implementing Future Safeguards, and Experiences and Lessons learned. This workshop was of interest to individuals and organizations concerned with future nuclear fuel cycle technical developments and safeguards technologies. This includes representatives from the nuclear industry, R and D organizations, safeguards inspectorates, State systems of accountancy and control, and Member States Support Programmes

  16. The Additional Protocol as an important tool for the strengthening of the safeguards system

    International Nuclear Information System (INIS)

    Loosch, Reinhard

    2001-01-01

    Full text: The following main points will be dealt with and underlined by illustrative examples: 0. A preliminary clarification: Contrary to the title's short-hand language, it is of course, not the Additional Protocols entered into by the Agency and States and other Parties to Safeguards Agreements since 1997 nor the Model Additional Protocol adopted by the Board of Governors and endorsed by the General Conference in 1997 that are, by themselves, an important tool for the strengthening of the Agency's safeguards system. They are, however, the necessary legal prerequisite as well as a strong political and moral boost for enabling the Agency to develop and apply additional tools in order to make the international nuclear non-proliferation regime more effective and, therefore, more reassuring and at the same time, more efficient and therefore, more widely accepted. 1. The importance of the new tools cannot be assessed yet. Hopefully, it will grow quickly and consistently. This will depend primarily on two factors: - The extent to which Additional Protocols are entered into force and at what speed this is achieved, and the extent to which these Protocols cover all important peaceful nuclear activities and resources, whether these exist in states with comprehensive safeguards agreements or not; - The extent to which the Agency succeeds in merging the new measures with those applicable before into an optimized, integrated toolbox. 2. The first factor tends to increase effectiveness by permitting the collection of safeguards- relevant data provided not only in reports from countries in which such activities are conducted or such resources exist but also in information coming from other sources such as publications in. or intelligence made available by, other countries. Cross-checking all those data against each other may, in the best case, reinforce their credibility or, in the worst case, reveal gaps and inconsistencies, but will at any rate, in one way or other, help

  17. IAEA safeguards related to the Non-Proliferation Treaty of Nuclear Weapons- T.N.P. and the Treaty for the Prohibition of Nuclear Weapons in Latin America-Tlatelolco

    International Nuclear Information System (INIS)

    Rodrigues, M.D.F.

    1978-04-01

    The application of safeguards, focusing mainly the causes that gave origin to this type of control, is studied. The safeguard procedures used by the IAEA are also given, relative to the Treaty for the Prohibition of Nuclear Weapons in Latin America - Tlatelolco, the Non-Proliferation Treaty of Nuclear Weapons - T.N.P. and the Euratom safeguards. Some consideration is given to the organizations related to safeguards application such as IAEA, OPANAL and Euratom, their functions and aims. (F.E.) [pt

  18. IAEA Newsbriefs. V. 14, no. 4(85). Oct-Nov 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This issue gives brief information on the following topics: the new IAEA Board of Governors, conclusions of the 1999 IAEA General Conference, the return of the IAEA fact-finding team from Japan, future energy and nuclear power, talks on future IAEA verification of ex-weapon material, the IAEA and Y2K (steps against the bug intensify), African partnership for technology transfer extended, strengthened safeguards system (status of additional protocols), and other short information

  19. Improvement and validation of isotopic libraries of commercial gamma spectra evaluation packages. Report on task FIN A 955 of Finnish support programme to IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Nikkinen, M.

    1997-06-01

    The Department of Safeguards at the International Atomic Energy Agency (IAEA) is running gamma spectroscopy analysis with various samples taken at various stages of the nuclear fuel cycle. It was found that the commercial gamma spectra analysis packages available do not include proper gamma-line libraries for the various tasks needed for the safeguards purposes because the libraries of these packages are often incomplete and outdated. New libraries were developed to satisfy the needs in the analysis tasks required for the safeguards purposes. These lines are limited by the number of gamma lines to avoid the problems with too many candidates for a single gamma peak. The work was carried out under the Task FIN A 955 Finnish Support Programme to IAEA Safeguards. (orig.) (18 refs.).

  20. Safeguards policy and strategies: An IAEA perspective for spent fuel in geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2002-01-01

    Safeguards for nuclear materials in geologic repositories have to be continued even after the repository has been backfilled and sealed. The nuclear materials disposed in a geologic repository may pose a higher and long-term proliferation risk because the inventory is many times the 'significant quantity' needed safeguards. The safeguards measures must be flexible enough to respond to the changing development of technology and changing need for current as well as future generations. Change in social, economic, environmental and other scenarios might demand recovery of nuclear and other materials from the repository sometime in the future. (author)

  1. GPS positioning and desktop mapping. Applications to environmental monitoring. Report on task JNT B898 on the Finnish support programme to IAEA safeguards

    International Nuclear Information System (INIS)

    Kansanaho, A.; Ilander, T.; Toivonen, H.

    1995-10-01

    Satellite navigation has been used for in-field applications by the Finnish Centre for Radiation and Nuclear Safety since 1993. Because of this experience, training in the use of GPS positioning and desktop mapping was chosen as a task under the Finnish Support programme to IAEA safeguards. A lecture and a field experiment was held in the training course on environmental monitoring at the IAEA headquarters in June 1995. Real-time mapping of the co-ordinates and storing information on sampling sites and procedures can make safeguards implementation more efficient and effective. Further software development are needed for these purposes. (author) (6 figs.)

  2. International seminar on safeguards information reporting and processing. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included Refs, figs, 1 tab

  3. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    International Nuclear Information System (INIS)

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  4. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security.

  5. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses. Addendum

    International Nuclear Information System (INIS)

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards ( including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  6. Safeguards as an evolutionary system

    International Nuclear Information System (INIS)

    Carlson, J.

    1998-01-01

    NPT safeguards pursuant to INFCIRC/153 retain a strong emphasis on materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognized as a major shortcoming in the safeguards system. Since the 'classical' safeguards system is unable to provide credible assurance of the absence of clandestine nuclear activities, substantial efforts are being made to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the Agency's authority, and good progress has been made in developing the new approaches, technologies and techniques required to ensure this authority is used effectively. Increasingly, safeguards will involve more qualitative judgements. Transparency will be very important - without a clear understanding by Member States of how the Agency goes about its new tasks and reaches its conclusions about the absence of undeclared activities, the safeguards system will not fulfil its vital confidence-building role. A major theme in current safeguards thinking is integration, the rationalization of classical safeguards with the new safeguards strengthening measures. As part of the rationalization process, it is timely to re-assess traditional safeguards implementation practices. One of these is uniformity in the way safeguards activities are implemented in different States. Another is whether the traditional concept of safeguards confidentiality is consistent with the increasing importance of transparency. (author)

  7. Need for Strengthening Nuclear Non-Proliferation and Safeguards Education to Prepare the Next Generation of Experts

    International Nuclear Information System (INIS)

    Janssens, W.A.M.; Peerani, P.; ); Gariazzo, C.; Ward, S.; Crete, J.-M.; Braunegger-Guelich, A.

    2015-01-01

    Although nuclear non-proliferation and safeguards are a continuous concern of the international community and discussed frequently at international fora and conferences, the academic world is not really on board with these topics. What we mean by this is that nuclear non-proliferation and safeguards is only very seldom part of a university curriculum. In the few cases where it does appear in the curriculum, whether in a nuclear engineering course or a political sciences master programme, it is typically covered only partially. Nuclear non-proliferation and safeguards are multidisciplinary and embrace, inter alia, historical, legal, technical, and political aspects. This is perhaps the reason why it is challenging for a single professor or university to develop and implement a comprehensive academic course or programme in this area. Professional organizations in this field, like the European Safeguards Research and Development Association (ESARDA) and the Institute for Nuclear Materials Management (INMM), have made first steps to address this issue by implementing specific educational activities. However, much more needs to be done. Therefore, ESARDA, INMM and the International Atomic Energy Agency (IAEA) are in the process of joining efforts to identify key elements and priorities to support universities in establishing appropriate and effective academic programmes in this area. This paper will share best practices, achievements and lessons learned by ESARDA, INMM and the IAEA in providing education and training to develop and maintain the expertise of nuclear non-proliferation and safeguards professionals. In addition, it will suggest potential ways on how to assist universities to get prepared for building-up the next generation of experts able to meet any future challenges in the area of non-proliferation and safeguards. (author)

  8. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS, INFCIRC/540 (Corrected) VOLUME II/III IAEA COMMITTEE 24, Major Issues Underlying the Model Additional Protocol (1996-1997).

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.D.; Saum-Manning, L.; Houck, F.

    2010-01-01

    Volume I of this Review traces the origins of the Model Additional Protocol. It covers the period from 1991, when events in Iraq triggered an intensive review of the safeguards system, until 1996, when the IAEA Board of Governors established Committee 24 to negotiate a new protocol to safeguards agreement. The period from 1991-1996 set the stage for this negotiation and shaped its outcome in important ways. During this 5-year period, many proposals for strengthening safeguards were suggested and reviewed. Some proposals were dropped, for example, the suggestion by the IAEA Secretariat to verify certain imports, and others were refined. A rough consensus was established about the directions in which the international community wanted to go, and this was reflected in the draft of an additional protocol that was submitted to the IAEA Board of Governors on May 6, 1996 in document GOV/2863, Strengthening the Effectiveness and Improving the Efficiency of the Safeguards System - Proposals For Implementation Under Complementary Legal Authority, A Report by the Director General. This document ended with a recommendation that, 'the Board, through an appropriate mechanism, finalize the required legal instrument taking as a basis the draft protocol proposed by the Secretariat and the explanation of the measures contained in this document.'

  9. The role of the International Atomic Energy Agency in technology transfer for the peaceful use of nuclear energy and the strengthening of the Safeguards system, Brasilia, 16 December 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the Diplomatic Academy of the Ministry of Foreign Affairs of Brazil in Brasilia on 16 December 1998. After a short presentation of Brazil's participation in all aspects of the work of the Agency, the conference focuses on the Agency's role in the following areas: verification and the strengthened safeguards system (including future prospects of verification), technology transfer (mainly through the Technical Co-operation Programme), and nuclear power and sustainable energy development, including nuclear safety aspects

  10. The role of the International Atomic Energy Agency in technology transfer for the peaceful use of nuclear energy and the strengthening of the Safeguards system, Buenos Aires, 15 December 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the meeting of the Council for International Relations in Buenos Aires, Argentina, on 15 December 1998. After a short presentation of Argentina's participation in all aspects of the work of the Agency, the conference focuses on the Agency's role in the following areas: nuclear power and sustainable energy development, including nuclear safety aspects, verification and the strengthened safeguards system (including future prospects of verification), and technology transfer with emphasis on Agency's Technical Co-operation Programme

  11. IAEA safeguards to prevent nuclear matrials diversion for fabrication of nuclear explosives

    International Nuclear Information System (INIS)

    Preuschen von und zu Liebenstein, R.

    1982-01-01

    The IAEA precautionary measures in accordance with the Non-Proliferation Treaty can be characterized as measures creating confidence. They constitute at present the essential basis for peaceful use of atomic energy. Even though there is a lot of criticism concerning the efficiency of the precautionary measures, and all justified calls for the elaboration of further legal instruments against nuclear materials diversion must not be neglected, the IAEA precautionary measures have already in a credible way contributed to contain the proliferation of nuclear weapons. (orig./HSCH) [de

  12. International Cooperation for Enhancing Nuclear Safety, Security, Safeguards and Non-proliferation : 60 Years of IAEA and EURATOM

    CERN Document Server

    Abousahl, Said; Plastino, Wolfango

    2018-01-01

    This open access book examines key aspects of international cooperation to enhance nuclear safety, security, safeguards, and non-proliferation, thereby assisting in development and maintenance of the verification regime and fostering progress toward a nuclear weapon-free world. The book opens by addressing important political, institutional, and legal dimensions. Current challenges are discussed and attempts made to identify possible solutions and future improvements. Subsequent sections consider scientific developments that have the potential to increase the effectiveness of implementation of international regimes, particularly in critical areas, technology foresight, and the ongoing evaluation of current capabilities. The closing sections examine scientific and technical challenges and discuss the role of international cooperation and actions of the scientific community in leading the world toward peace and security. The book – which celebrates 60 years of IAEA Atoms for Peace and Development and the EURA...

  13. IAEA preparations for the year 2000 compliance of safeguards information systems

    International Nuclear Information System (INIS)

    Smith, P.M.

    1999-01-01

    The year-2000 (Y2K) problem affects both information systems and equipment systems. This paper describes the work which has been done, and is currently underway, to make the information systems of the Department of Safeguards year-2000 compliant. (author)

  14. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa's participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  15. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa`s participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  16. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  17. Symposium on International Safeguards: Preparing for Future Verification Challenges

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of the symposium is to foster dialogue and information exchange involving Member States, the nuclear industry and members of the broader nuclear non-proliferation community to prepare for future verification challenges. Topics addressed during the 2010 symposium include the following: - Supporting the global nuclear non-proliferation regime: Building support for strengthening international safeguards; Enhancing confidence in compliance with safeguards obligations; Legal authority as a means to enhance effectiveness and efficiency; Verification roles in support of arms control and disarmament. - Building collaboration and partnerships with other international forums: Other verification and non-proliferation regimes; Synergies between safety, security and safeguards regimes. - Improving cooperation between IAEA and States for safeguards implementation: Strengthening State systems for meeting safeguards obligations; Enhancing safeguards effectiveness and efficiency through greater cooperation; Lessons learned: recommendations for enhancing integrated safeguards implementation. - Addressing safeguards challenges in an increasingly interconnected world: Non-State actors and covert trade networks; Globalization of nuclear information and technology. - Preparing for the global nuclear expansion and increasing safeguards workload: Furthering implementation of the State-level concept and integrated safeguards; Information-driven safeguards; Remote data-driven safeguards inspections; Safeguards in States without comprehensive safeguards agreements. - Safeguarding advanced nuclear facilities and innovative fuel cycles: Proliferation resistance; Safeguards by design; Safeguards approaches for advanced facilities. - Advanced technologies and methodologies: For verifying nuclear material and activities; For detecting undeclared nuclear material and activities; For information collection, analysis and integration. - Enhancing the development and use of safeguards

  18. In Situ Object Counting System (ISOCS) Technique: Cost-Effective Tool for NDA Verification in IAEA Safeguards

    International Nuclear Information System (INIS)

    Braverman, E.; Lebrun, A.; Nizhnik, V.; Rorif, F.

    2010-01-01

    Uranium materials measurements using the ISOCS technique play an increasing role in IAEA verification activities. This methodology provides high uranium/plutonium sensitivity and a low detection limit together with the capability to measure items with different shapes and sizes. In addition, the numerical absolute efficiency calibration of a germanium detector which is used by the technique does not require any calibration standards or reference materials. ISOCS modelling software allows performing absolute efficiency calibration for items of arbitrary container shape and wall material, matrix chemical composition, material fill-height, uranium or plutonium weight fraction inside the matrix and even nuclear material/matrix non-homogeneous distribution. Furthermore, in a number of cases, some key parameters such as matrix density and U/Pu weight fraction can be determined along with analysis of nuclear material mass and isotopic composition. These capabilities provide a verification solution suitable for a majority of cases where quantitative and isotopic analysis should be performed. Today, the basic tool for uranium and plutonium mass measurement used in Safeguards verification activities is the neutron counting technique which employs neutron coincidence and multiplicity counters. In respect to the neutron counting technique, ISOCS calibrated detectors have relatively low cost. Taking into account its advantages, this methodology becomes a cost-effective solution for nuclear material NDA verification. At present, the Agency uses ISOCS for quantitative analysis in a wide range of applications: - Uranium scrap materials; - Uranium contaminated solid wastes; - Uranium fuel elements; - Some specific verification cases like measurement of Pu-Be neutron sources, quantification of fission products in solid wastes etc. For uranium hold-up measurements, ISOCS the only available methodology for quantitative and isotopic composition analysis of nuclear materials deposited

  19. Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-01-01

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  20. Measuring Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  1. Specification of a VVER-1000 SFAT device prototype. Interim report on Task FIN A 1073 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Nikkinen, M.; Tiitta, A.; Iievlev, S.; Dvoeglazov, M.; Lopatin, S.

    1999-01-01

    The project to specify the optimal design of the Spent Fuel Attribute Tester (SFAT) for Ukrainian VVER-1000 facilities was run under Finnish Support Programme for IAEA Safeguards under the task FIN A1073. This document illustrates the optimum design and takes into account the special conditions at the Ukrainian facilities. The requirement presented here takes into account the needs of the user (IAEA), nuclear safety authority (NRA) and facilities. This document contains the views of these parties. According to this document, the work to design the optimal SFAT device can be started. This document contains also consideration for the operational procedures, maintenance and safety. (orig.)

  2. Conceptual design of a system for nuclear material control in a research centre according to the IAEA safeguards requirements

    International Nuclear Information System (INIS)

    Bueker, H.; Kotte, U.; Stein, G.

    1976-01-01

    In comparison with other facilities handling nuclear material, a nuclear research centre is characterized by a wider spectrum of operations. This requires a number of installations within the centre such as research reactors, critical assemblies, research institutes and central departments, operating, in general, independently of each other. Nuclear material is stored and processed in small quantities and in different chemical and physical configurations within prescribed license areas. The conceptual design of a new system for nuclear material control in a research centre has to consider the operator's and IAEA's safeguards requirements. Using the example of the Juelich Nuclear Research Centre in the Federal Republic of Germany, these requirements are being examined in conjunction with the specified peculiarities of a nuclear research centre. Following this, a division of the research centre into material balance areas and key measurement points is being proposed, based on the existing facilities and licence areas. The essential characteristic of the concept is a far-reaching displayability of the inventory and flow of nuclear material. The availability of information is based on differentiated material accountancy in conjunction with adequate measurement of nuclear material data. For data processing and generation of data, a computerized record and report system is to be provided as well as a central measurement system. The design of an integrated accountancy system with a central computer and remote terminals is described; various measuring appliances, now being developed or tested, for the non-destructive assay of nuclear material are specified. The functions of a central department for nuclear material management for operating these systems are discussed and the planned verification of nuclear material in the different material balance areas illustrated. On applying the measures described in this paper, the conceptual design of a system for nuclear material

  3. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 25 November 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 25 November 1998. The following aspects from the Agency's activity are presented: inspections in Iraq in relation to its clandestine nuclear programme, conclusion of Additional Protocols to safeguards agreements, the strengthened safeguards system, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), safety review at the Mochovce nuclear power plant in Slovakia, and the year 2000 (Y2K) computer system problems in the Agency's Member States

  4. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 8 June 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 8 June 1998. The following aspects from the Agency's activity are presented: nuclear testing, technical co-operation, programme and budget, safeguards, safeguards implementation report, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, security of material, measures to strengthen international co-operation in nuclear, radiation and waste safety, study of the radiological situation at the atolls of Mururoa and Fangataufa, and Agency's role in safety assessment of the Mochovce nuclear power plant

  5. States strengthen nuclear cooperation for new millennium. IAEA General Conference concludes in Vienna

    International Nuclear Information System (INIS)

    1999-01-01

    The document gives information about the concluding session of the 43rd regular session of the IAEA's General Conference (27 September - 1 October 1999, Austria Center, Vienna), as well as about the most important steps taken during the week of conference

  6. Use of operator-provided, installed C/S equipment in IAEA safeguards

    International Nuclear Information System (INIS)

    Shea, T.; Rundquist, D.; Gaertner, K.; Yellin, E.

    1987-01-01

    Developing solutions for complex safe guards problems in close cooperation with Operators is becoming more common, especially as the IAEA continues to operate under zero-growth limitations. This has in practice taken on various forms; from the extreme case of very specific equipment developed and constructed by the State/Operator for use in only one facility, to the more normal case where only the development is carried out by the State/Operator. This practice has advantages and disadvantages. For example, to ensure that Agency inspections will be carried out in a predictable manner, it will be in the Operator's interest to ensure that any equipment he provides is of the highest quality, meets all national safety requirements, and is installed and maintained in such a manner that it will provide years of service. Agency equipment performs its intended function in a reliable manner, but with very specific, limited applications in mind, improvements in reliability over that obtained with normal Agency equipment are to be expected. Also, the authors experience is that reaching acceptable arrangements for the use of State- of Operator-supplied equipment is often far more straightforward than when arranging to apply Agency equipment

  7. Protocol to suspend the application of safeguards pursuant to the Agreement of 26 February 1976 between the Agency, the Government of the Federative Republic of Brazil and the Government of the Federal Republic of Germany in the light of the provisions for the application of safeguards pursuant to the Quadripartite Safeguards Agreement between Argentina, Brazil, the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials and the IAEA

    International Nuclear Information System (INIS)

    1999-01-01

    The document reproduces the text of the Protocol of 16 October 1998 suspending the application of safeguards under the Safeguards Agreement (INFCIRC/237) of 26 February 1976 between the Agency, Brazil and the Federal Republic of Germany in the light of the provisions for the application of safeguards pursuant to the Quadripartite Safeguards Agreement between the Agency, Brazil, the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials and the IAEA. The Protocol entered into force on 21 October 1999

  8. ISSAS guidelines. Reference report for IAEA SSAC advisory service

    International Nuclear Information System (INIS)

    2005-01-01

    All comprehensive safeguards agreements between the IAEA and Member States concluded on the basis of INFCIRC/153 (Corrected) require the Member State to establish and maintain a system of accounting for and control of nuclear material subject to safeguards. In the years following the negotiation of INFCIRC/153, the IAEA's Secretariat and a large group of experts from Member States collaborated in the production of a set of guidelines to assist Member States in establishing their State system of accounting for and control of nuclear materials (SSAC). These guidelines, termed 'Guidelines for States' Systems of Accounting for and Control of Nuclear Materials', were published in 1980 as part of the IAEA's information series on the then developing safeguards system (IAEA/SG/INF/2). However, events over the past decade have changed the circumstances and requirements of the safeguards system. The IAEA, with support and assistance from Member States, embarked on an extensive multiyear effort to strengthen the safeguards system by increasing the IAEA's capability to detect undeclared nuclear material and activities. The centre-piece of this effort is the Model Protocol Additional to Safeguards Agreements (referred to as the 'additional protocol' and contained in INFCIRC/540 (Corrected)) approved by the Board of Governors in May 1997. The central components of strengthened safeguards and the additional protocol are increased access to information and increased physical access. The effective and efficient implementation of the strengthened safeguards system requires the SSACs to be effective and to cooperate closely with the IAEA. To achieve this aim the IAEA is, inter alia, revising IAEA/SG/INF/2, providing training and equipment to SSAC Authorities and providing an advisory service to Member States known as the IAEA SSAC Advisory Service (ISSAS). Accounting for and control of nuclear material is also key for nuclear security. General Conference resolutions (e.g. GC(48)/RES

  9. IAEA Newsbriefs. V. 14, no. 3(84). Jul-Aug 1999

    International Nuclear Information System (INIS)

    1999-01-01

    Tis issue gives brief information on the following topics: Global Nuclear Issues on IAEA General Conference Agenda (27 September 1999, Vienna), Scientific Forum Looks At Nuclear Energy and Sustainable Development, IAEA Board Approves Year 2000 Budget, More Safeguards Protocols, Nuclear's Future: Director General Looks At Global Developments, Nuclear Plant Safety In Eastern Europe, Nuclear Law, International Symposium: The Mox Fuel Cycle, IAEA Teams With Partners On World Water Issues, The Y2K Computer Bug, Strengthened Safeguards System: Status of Additional Protocols, States Join International Conventions in Nuclear Fields, Upcoming IAEA International Seminars and Symposia, and other short information

  10. A study of a zone approach to IAEA [International Atomic Energy Agency] safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches

  11. A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

  12. Establishment of strengthening technical cooperation system through the IAEA advisory committee

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Hwan; Lee, H. Y.; Kim, Y. T. and others

    2001-03-01

    The International Atomic Energy Agency(IAEA) operates seventeen(17) Standing Advisory Groups(SAG) and nine(9) International Working Groups(IWG). Korean experts are currently participating in most of these advisory groups, but there is something yet to improve especially in faithful reflection of Korean nuclear policy as well as a systematic and effective utilization technical information received in the committee meetings. Therefore, it is necessary firstly to analyze results and systematic follow-up of technology developments for each IAEA committee group to solidate activities of Korean members. Based on these analyses, we can hence support administratively Korean members to do faithful reflection of Korean nuclear policy. In addition, a scheme for systematic management of the information should be drawn up for use of these information effectively for nuclear power projects, R and D, safety regulation, and establishment of nuclear policy in Korea.

  13. Establishment of strengthening technical cooperation system through the IAEA advisory committee

    International Nuclear Information System (INIS)

    Kim, Si Hwan; Lee, H. Y.; Kim, Y. T. and others

    2001-03-01

    The International Atomic Energy Agency(IAEA) operates seventeen(17) Standing Advisory Groups(SAG) and nine(9) International Working Groups(IWG). Korean experts are currently participating in most of these advisory groups, but there is something yet to improve especially in faithful reflection of Korean nuclear policy as well as a systematic and effective utilization technical information received in the committee meetings. Therefore, it is necessary firstly to analyze results and systematic follow-up of technology developments for each IAEA committee group to solidate activities of Korean members. Based on these analyses, we can hence support administratively Korean members to do faithful reflection of Korean nuclear policy. In addition, a scheme for systematic management of the information should be drawn up for use of these information effectively for nuclear power projects, R and D, safety regulation, and establishment of nuclear policy in Korea

  14. Training the IAEA Inspectors

    International Nuclear Information System (INIS)

    Potterton, L.

    2010-01-01

    Newly recruited safeguards inspectors take to the field. There are currently 250 inspectors and every year the IAEA runs an introductory course on the safeguards systems for the organisation's newly appointed inspectors.

  15. Implementation of Safeguards in Thailand

    International Nuclear Information System (INIS)

    Rueanngoen, A.; Changkrueng, K.; Srijittawa, L.; Mungpayaban, H.; Wititteeranon, A.

    2015-01-01

    Thailand is a non-nuclear weapon state. The non-nuclear activities are mainly medical, agricultural, and industrial. Therefore, Thailand ratified the Nuclear Non-Proliferation Treaty (NPT) since 1972 and has been entry into force of the Comprehensive Safeguards Agreement (INFCIRC 241) since 1974. Based on the INFCIRC 153, Thailand established a system of accounting for and control of all nuclear material subject to safeguards under the Agreement. In order to ensure the peaceful use of nuclear in Thailand the Nuclear-Non- Proliferation Center of Office of Atoms for Peace (NPC, OAP) was established to act as State level Safeguards. NPC is responsible for keeping records and providing information under requirement of Comprehensive Safeguards Agreement. In addition, the strengthening of cooperation and good coordination between Thailand and IAEA are indeed important and necessary to implementation safeguards in country. Based on the report of IAEA safeguards statement, there is no indication of the diversion of nuclear materials or misuse of the facility or the items in Thailand. Up to present, nuclear activities in Thailand are peaceful without diversion of using. This paper reviews the current status of the implementation Safeguards in Thailand. (author)

  16. Changes to the way support programme tasks are managed in the IAEA's Department of Safeguards

    International Nuclear Information System (INIS)

    Khlebnikov, N.; Hamilton, A.

    2001-01-01

    Full text: The Department of Safeguards and the 16 Member State Support Programmes jointly manage about 250 tasks. Recently, in response to a number of events, the Department has reorganized the manner in which these tasks are proposed and managed. The presentation and paper will document the following: The need to change - Although there have been a number of significant successes it has been recognised that both the way in which tasks are proposed and the management of tasks could be better performed. In particular the Report of the External Auditor 1999 stated the following: With respect to the R and D Programme the Agency 'has had difficulty in defining and prioritising tasks'; 'Ideas for tasks have come from operational units but not always in a coordinated manner'; 'I support the Agency's consideration of a move towards more centralised planning of task priorities' and the application of the 'general principles of good programme or project management. The tone of these comments was generally repeated by Member State Support Programme Co-ordinators at their meeting in November 1999 and by the Programme Performance Assessment System Report on Equipment Development. Of course the Department already knew that improvements could be made. The 'old' system - Prior to the changes three structures dominated the organisation. Firstly, a task approval process that did not allow for the application of the Department's priorities in a coordinated manner. Each task proposal was judged on its individual merits. Secondly, the distribution of task management responsibilities throughout the Department again did not allow easy coordination. Finally the focus on Member State task review meetings which did not allow the coordination of tasks in a particular subject area. The consequences of this were almost certainly the duplication of tasks, the performance of the wrong tasks and poor prioritisation of work. All at a time when the Department was generally short of resources. The

  17. Prospects for regional safeguards systems - State-level Approach

    International Nuclear Information System (INIS)

    Peixoto, O.J.M.

    2013-01-01

    The increased co-operation with Regional Safeguard's System (RSAC) is a relevant tool for strengthening effectiveness and improving the efficiency of the international safeguard. The new safeguards system that emerges from the application of the Additional Protocol (INFCIRC/540) and the full use of State-level Concept is a challenge and an opportunity for effectively incorporate RSAC into the international safeguards scheme. The challenge is to determine how the co-operation and coordination will be implemented on this new safeguards scheme. This paper presents some discussions and prospects on the issues to be faced by RSAC and IAEA during the implementation of State-level Approach (SLA) using all information available. It is also discussed how different levels of co-operation could be achieved when SLA is applied by IAEA safeguards. The paper is followed by the slides of the presentation. (authors)

  18. Next Generation Safeguards Initiative: 2010 and Beyond

    International Nuclear Information System (INIS)

    Whitney, J.M.; LaMontagne, S.; Sunshine, A.; Lockwood, D.; Peranteau, D.; Dupuy, G.

    2010-01-01

    Strengthening the international safeguards system is a key element of the U.S. non-proliferation policy agenda as evidenced by President Obama's call for more 'resources and authority to strengthen international inspections' in his April 2009 Prague speech. Through programs such as the recently-launched Next Generation Safeguards Initiative (NGSI) and the long standing U.S. Program of Technical Assistance to IAEA Safeguards, the United States is working to implement this vision. The U.S. Department of Energy's National Nuclear Security Administration launched NGSI in 2008 to develop the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new challenges. Following a successful 2009, NGSI has made significant progress toward these goals in 2010. NGSI has recently completed a number of policy studies on advanced safeguards concepts and sponsored several workshops, including a second international meeting on Harmonization of International Safeguards Infrastructure Development in Vienna. The program is also continuing multi-year projects to investigate advanced non-destructive assay techniques, enhance recruitment and training efforts, and strengthen international cooperation on safeguards. In December 2010, NGSI will host the Third Annual International Meeting on International Safeguards in Washington, DC, which will draw together key stakeholders from government, the nuclear industry, and the IAEA to further develop and promote a common understanding of Safeguards by Design principles and goals, and to identify opportunities for practical application of the concept. This paper presents a review of NGSI program activities in 2010 and previews plans for upcoming activities. (author)

  19. A study on the national safeguards system -Current status and suggested development-

    International Nuclear Information System (INIS)

    Park, Wan Su; Kwack, Eun Ho; An, Jong Sung; Kim, Hyun Tae; Min, Kyung Sik; Park, Chan Sik

    1995-03-01

    In Korea, 17 nuclear facilities are currently under IAEA's safeguards and it is expected that more than 25 nuclear facilities will be under IAEA's safeguards in the year 2000 according to nuclear R and D and industry expansion. In connection with unlimited extension of NPT in 1995 and IAEA's measures to strengthen the safeguards like 'Programme 93+2', the international non-proliferation regime will be strengthened more and nuclear advanced countries will require the transparency and credibility of nuclear activities in recipient countries instead of transferring advanced nuclear technologies and nuclear material. In 1995, the Korean government had revised the Atomic Energy Law to control increasing nuclear facilities and nuclear material effectively and to establish international transparency and credibility. In the revised Atomic Energy Law, it is provided that the national inspection, other than IAEA inspection, will be started from 1996. Currently, necessary arrangements for national inspection are being prepared by MOST and TCNC at KAERI. However, the safeguards system in Korea is still beginning stage, Korea's safeguards activity was passive and fragmentary that leads non-attainment of safeguards goal in many facilities. The reasons were; absence of systematic safeguards system (SSAC); lack of understanding safeguards concepts; lack of manpower, designated organization for safeguards, etc. As Korea ranked world top 10 nuclear power generation country and has a plan to be a nuclear advanced country, Korea should have appropriate safeguards system and should not spare necessary assistance to that system. 14 tabs., 15 figs., 29 refs. (Author)

  20. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W S; Cha, H R; Ham, Y S; Lee, Y G; Kim, K P; Hong, Y D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  1. Safeguards Culture: lesson learned

    International Nuclear Information System (INIS)

    Frazar, S.; Mladineo, S.V.

    2010-01-01

    After the discovery of Iraq's clandestine nuclear program in 1991, the international community developed new tools for evaluating and demonstrating states' nuclear intentions. The International Atomic Energy Agency (IAEA) developed a more holistic approach toward international safeguards verification to garner more complete information about states' nuclear activities. This approach manifested itself in State Level Evaluations, using information from a variety of sources, including the implementation of integrated safeguards in Member States, to reach a broader conclusion. Those wishing to exhibit strong nonproliferation postures to a more critical international community took steps to demonstrate their nonproliferation 'bona fides'. As these Member States signed and brought into force the Additional Protocol, submitted United Nations Security Council Resolution 1540 reports and strengthened their export control laws, the international community began to consider the emergence of so-called safeguards cultures. Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been under appreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured.

  2. IAEA Newsbriefs. V. 15, no. 1(86). Jan-Feb 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This issue gives brief information on the following topics: the review of the 2001 draft budget, the return of the IAEA safeguards inspectors from Iraq, the strengthened safeguards system including the signature status of additional protocols as of February 2000, the nomination of the former IAEA Director General H. Blix as head of the new monitoring commission for Iraq, recent statements of the IAEA Director General, the sixth NPT review conference which will open in April 2000, IAEA symposia and seminars in the year 2000, states joining international conventions in nuclear fields, the industry forum convened by the IAEA on nuclear energy issues, cooperation of states against the Y2K problem, IAEA strategy to 2005, sharing lessons from Tokaimura accident, in memoriam of the former IAEA Director General Sigvard Eklund, and other short information

  3. Assisting IAEA Member States to Strengthen Regulatory Control, Particularly in the Medical Area

    International Nuclear Information System (INIS)

    Johnston, P.

    2016-01-01

    As per its Statue and Mandate, IAEA is developing Safety Standards and is also providing assistance for their application in Member States. One target and very large audience of this programme is the community of national regulatory bodies for radiation safety, expected to be established in all 168 Member States. Ionizing radiation is being used throughout the world in medical practices and medical exposure is the most significant manmade source of exposure to the population from ionizing radiation. Radiation accidents involving medical uses have accounted for more injuries and early acute health effects than any other type of radiation accident, including accidents at nuclear facilities. With the constant emerging of new technologies using ionizing radiation for medical diagnostic and treatment, there are on-going challenges for Regulatory bodies. The presentation will highlight some figures related to the medical exposure worldwide, and then it will introduce the main safety standards and other publications developed specifically for Regulatory Bodies and focusing on medical practices. It will also highlight the most important and recent mechanisms (tools, peer reviews and advisory services, training courses, networks) that the Agency is offering to its Member States in order to cope with the main challenges worldwide, contributing thus to the efficiency and effectiveness of the regulatory oversight of medical facilities and activities. (author)

  4. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1980-02-01

    The necessity for statistical inference procedures arises because of time and cost limitations imposed on inspection activities, and also because of inherent limitations of inspection measurement instruments and techniques. This manual produces statistical concepts and techniques in the field of nuclear material control

  5. The entry into force of the Additional Protocol in the European Union: The new dimension of safeguards in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Recio, M. [Deputy Direction General for Nuclear Energy, Direction General for Energy Policy and Mines Ministry of Industry, Tourism and Trade, Paseo de la Castellana, 160 Madrid 28046 (Spain)]. E-mail: MRecio@mityc.es; Prieto, N. [Asesoria Juridica, Direccion de Division Administracion, Enresa, c/Emilio Vargas, 7, Madrid 28043 (Spain)]. E-mail: nprs@enresa.es

    2006-07-01

    The Additional Protocol to the Safeguards Agreement with the International Atomic Energy Agency (IAEA) has entered into force on 30 April 2004. This completes the implementation in the EU of what undoubtedly represents the most ambitious project undertaken by the IAEA, designed to reinforce its current safeguards system, a project that the international community considers to be a key component strengthening the fight against one of the most serious threats for world security: nuclear proliferation. (author)

  6. The entry into force of the Additional Protocol in the European Union: The new dimension of safeguards in Europe

    International Nuclear Information System (INIS)

    Recio, M.; Prieto, N.

    2006-01-01

    The Additional Protocol to the Safeguards Agreement with the International Atomic Energy Agency (IAEA) has entered into force on 30 April 2004. This completes the implementation in the EU of what undoubtedly represents the most ambitious project undertaken by the IAEA, designed to reinforce its current safeguards system, a project that the international community considers to be a key component strengthening the fight against one of the most serious threats for world security: nuclear proliferation. (author)

  7. Brazil and the strengthening of safeguard system of the International Atomic Energy Agency: from the four-part agreement to the additional protocol

    International Nuclear Information System (INIS)

    Moura, Carmen Lidia Richter Ribeiro

    2001-01-01

    The main objective of this paper is to analyse the evolution of IAEA verification system, that constitutes one of the main fundaments of the Non-proliferation nuclear weapons regimen, and to point out elements that contribute to inform the Brazilian position related to the Model Protocol additional to agreements for safeguard application: instrument that comprehend the most recent multilateral efforts of the nuclear verification

  8. IAEA TC Project 'Strengthening safety and reliability of fuel and materials in nuclear power plants'

    International Nuclear Information System (INIS)

    Makihara, Y.

    2008-01-01

    The Regional TC Project in Europe RER9076 'Strengthening Safety and Reliability of Fuel and Materials in Nuclear Power Plants' was launched in 2003 as a four-year project and was subsequently extended in 2006 to run through 2008. The purpose of the Project is to support the Central and Eastern European countries with the necessary tools to fulfill their own fuel and material licensing needs. The main objective will be to provide quality data on fuel and materials irradiated in power reactors and in dedicated experiments carried out in material test reactors (MTRs). Within the framework of the Project, ten tasks were implemented. These included experiments performed at the test facilities in the region, training courses and workshops related to fuel safety. While several tasks are expected to be completed by the end of RER9076, some remain. It would be desirable to initiate a new RER Project from the next TC cycle (2009-2011) in order to take over RER9076 and to implement new tasks required for enhancing fuel safety in the region. (author)

  9. A New Step for ''State-IAEA Cooperation'' Based on the Enhanced Cooperation Program

    International Nuclear Information System (INIS)

    Jo, S.Y.; Kim, M.; Kim, S.

    2015-01-01

    Since joining the IAEA comprehensive safeguards agreements, the ROK has made some exemplary case of implementing the IAEA's safeguards policy in a State. It's the results of the ROK Government's persistent effort for nuclear transparency to maintain its peaceful nuclear activities which is indispensible in Korea. The history of the ROK SSAC development can be reflected on the trajectory of the evolution of the IAEA safeguards. The ROK SSAC has achieved technical capabilities required for IAEA safeguards, which was not possible without cooperation programme with the IAEA. The first memorable moment of the ROK-IAEA cooperation is the enhanced cooperation program for the ROK LWRs in 2001, introducing remote monitoring systems and some changes in interim inspections. The next chance for leveling the ROK SSAC up came with IS implementation. Two parties consulted what should be prepared for efficient implementation of IS through seven times working group meetings. The WG put out IS approaches which have been being applied for the ROK nuclear facilities since 2008. The IS implementation, which is based on the state level approach, allowed the ROK SSAC to get opportunities to improve more its technical capabilities about support for IAEA safeguards activities, developing verification devices and safeguards approaches for pyroprocessing related facilities. The IAEA and the ROK are putting strenuous efforts for strengthening safeguards cooperation based on the Enhanced Cooperation Arrangements which was signed in 2012, discussing the SSAC role in IAEA safeguards activities, joint use equipment, etc. Besides, two parties are considering introducing unannounced inspections at LWRs after several rehearsals. In this paper, the implication and importance of State-IAEA cooperation is presented based on the ROK's experience with summarizing the brief history of SSAC development and cooperation with the IAEA. (author)

  10. Exploratory study on potential safeguards applications for shared ledger technology

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jarman, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joslyn, Cliff A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kreyling, Sean J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sayre, Amanda M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schanfein, Mark J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); West, Curtis L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winters, Samuel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-07

    The International Atomic Energy Agency (IAEA) is responsible for providing credible assurance that countries are meeting their obligations not to divert or misuse nuclear materials and facilities for non-peaceful purposes. To this end, the IAEA integrates information about States’ nuclear material inventories and transactions with other types of data to draw its safeguards conclusions. As the amount and variety of data and information has increased, the IAEA’s data acquisition, management, and analysis processes have greatly benefited from advancements in computer science, data management, and cybersecurity during the last 20 years. Despite these advancements, inconsistent use of advanced computer technologies as well as political concerns among certain IAEA Member States centered on trust, transparency, and IAEA authorities limit the overall effectiveness and efficiency of IAEA safeguards. As a result, there is an ongoing need to strengthen the effectiveness and efficiency of IAEA safeguards while improving Member State cooperation and trust in the safeguards system. These chronic safeguards needs could be met with some emerging technologies, specifically those associated with the digital currency bitcoin.

  11. IAEA's Implementation of the State-Level Concept

    International Nuclear Information System (INIS)

    Trimble, D.; Ballenger, J.; Levis, G.

    2015-01-01

    The International Atomic Energy Agency (IAEA) has taken several steps over the years to strengthen its safeguards program, including successfully encouraging more countries to bring an Additional Protocol into force, increasing the number of countries that are subject to a broader range of safeguards measures, and upgrading its safeguards analytical laboratories. IAEA's latest strategy to further improve the effectiveness and efficiency of the safeguards programme is to expand implementation of the 'state-level concept' to all countries with safeguards agreements. The state-level concept is an approach in which IAEA considers a broad range of information about a country's nuclear capabilities and tailors its safeguards activities in each country accordingly. IAEA officials have stated that broader implementation of this approach will allow the agency to better allocate resources by reducing safeguards activities where there is no indication of undeclared nuclear activities and to focus its efforts on any issues of safeguards concern. Several member countries, including the United States, support IAEA's plans to broaden implementation of the state- level concept, but other member countries - including some countries with significant nuclear activities - have raised concerns that the agency has not clearly defined and communicated how the state-level concept will be implemented or how it will stay within bounds of the agency's existing legal authorities. In September 2012, the General Conference passed a resolution that included a request for IAEA's Secretariat to report to the Board of Governors on the conceptualization and development of the state-level concept. In August 2013, IAEA released that report to the Board of Governors and started briefing member states on its content. Our paper will discuss (1) IAEA's efforts to clearly define and communicate how IAEA will implement the state-level concept and (2) the status of its

  12. Safeguards culture on 3S interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice.

  13. Safeguards culture on 3S interfaces

    International Nuclear Information System (INIS)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun

    2015-01-01

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice

  14. IAEA Newsbriefs. V. 13, no. 4(81). Oct-Nov 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This issue gives brief information on the following topics: IAEA General Conference Concludes in Vienna, Newly Elected IAEA Board of Governors, Director General Highlights Major Work Ahead, Statement to UN General Assembly, More States Accept Strengthened Safeguards Measures, Status of Additional Protocols, Signings at IAEA General Conference, USA Backs International Nuclear Fusion Project, September Meeting on Trilateral Initiative, Results From IAEA-Supported Projects, Database of Nuclear Medicine Best Practices, 1999 Seminar on Radiopharmaceuticals in Medical Treatment, International Symposium on Marine Pollution in Monaco, Safeguards Support From France and United Kingdom, Nuclear Inspections in Iraq, States Move to Join International Safety Conventions, Safety of Radiation Sources and Security of Radioactive Materials, Technical Team Trained in IAEA-Supported Project, Scientific Forum on Water Issues, International Scientific and Technical Meetings, New IAEA Books, and other short information

  15. Symposium on international safeguards: Addressing verification challenges. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A safeguards symposium has traditionally been organized by the Safeguards Department approximately every four years. The 2006 symposium addresses challenges to IAEA safeguards that have emerged or grown more serious since 2001. The increase in size and flexibility of uranium enrichment plants, for instance, and the spread of enrichment technology to a wider circle of States, pose challenges to traditional safeguards approaches. The procurement and supply networks discovered in 2004, dealing in sensitive nuclear technology and information, have serious implications for the future effectiveness of IAEA safeguards. The symposium will provide an opportunity for the IAEA and Member States to discuss options for dealing constructively with trade in sensitive nuclear technology. Reflecting developments since 2001, the 2006 symposium will focus on current challenges to the safeguards system, improving collection and analysis of safeguards information (analysis, processing tools, satellite imagery), advances in safeguards techniques and technology (future technology, neutron techniques, spent fuel verification, reprocessing, environmental sampling, containment and surveillance), further strengthening safeguards practices and approaches (safeguards approaches, integrated safeguards, R/SSAC, destructive analysis, non-destructive analysis, enrichment, reprocessing, spent fuel transfer) and future challenges. This publication contains 183 extended synopses, each of them was indexed separately.

  16. Symposium on international safeguards: Addressing verification challenges. Book of extended synopses

    International Nuclear Information System (INIS)

    2006-01-01

    A safeguards symposium has traditionally been organized by the Safeguards Department approximately every four years. The 2006 symposium addresses challenges to IAEA safeguards that have emerged or grown more serious since 2001. The increase in size and flexibility of uranium enrichment plants, for instance, and the spread of enrichment technology to a wider circle of States, pose challenges to traditional safeguards approaches. The procurement and supply networks discovered in 2004, dealing in sensitive nuclear technology and information, have serious implications for the future effectiveness of IAEA safeguards. The symposium will provide an opportunity for the IAEA and Member States to discuss options for dealing constructively with trade in sensitive nuclear technology. Reflecting developments since 2001, the 2006 symposium will focus on current challenges to the safeguards system, improving collection and analysis of safeguards information (analysis, processing tools, satellite imagery), advances in safeguards techniques and technology (future technology, neutron techniques, spent fuel verification, reprocessing, environmental sampling, containment and surveillance), further strengthening safeguards practices and approaches (safeguards approaches, integrated safeguards, R/SSAC, destructive analysis, non-destructive analysis, enrichment, reprocessing, spent fuel transfer) and future challenges. This publication contains 183 extended synopses, each of them was indexed separately

  17. Nuclear cooperation targets global challenges. States back main pillars of the IAEA's work to strengthen nuclear safety, verification and technology transfer

    International Nuclear Information System (INIS)

    2000-01-01

    States meeting at the 44th IAEA General Conference in Vienna have set a challenging agenda for international nuclear cooperation into the 21st century that targets issues of global safety, security, and sustainable development. They adopted resolutions endorsing the Agency's programmes for strengthening activities under its three main pillars of work - nuclear verification, safety, and technology - that are closely linked to major challenges before the world. The document presents the main actions taken during the conference

  18. The IAEA at work

    International Nuclear Information System (INIS)

    2004-03-01

    Fifty years ago, Dwight Eisenhower stood before the United Nations to offer both a warning and a vision. The knowledge to build an atomic bomb was in the hands of rival powers and would soon be shared by many countries, the President said. It was time to create a U.N. body that could ensure that the new technology served no military purpose. It was time, moreover, to 'devise methods whereby this fissionable material would be allocated to serve the peaceful pursuits of mankind' in agriculture, medicine and other peaceful activities. Eisenhower foresaw a world safe from the destructive power of atomic fission but gaining from its technological advances. Half a century later, the world continues to witness his foresight through the work of the International Atomic Energy Agency (IAEA). The IAEA aims at four formidable goals: safeguarding nuclear nonproliferation; enhancing the security of nuclear facilities and radioactive materials; ensuring the safety of nuclear technologies; and promoting nuclear science to meet human needs. As the world's 'nuclear watchdog,' the IAEA's impartial inspectorate verifies the peaceful uses of nuclear energy in scores of countries. By joining the Agency's strengthened safeguards system and concluding an Additional Protocol, countries can assure the world-and the IAEA can verify-that their nuclear activities are not used for weapons purposes. True to Eisenhower's vision, the power of the atom is being tapped for many human benefits, especially in the world's less developed nations. Extreme poverty remains a profound problem today: some 1.2 billion people in the developing world survive marginally on less that US$1 per day. Another 2.8 billion struggle on less than US$2 per day. The IAEA is mobilizing nuclear science to help address these pressing needs. From managing water better, to controlling pests and diseases, to protecting the environment, the IAEA is helping poor countries make sizeable advances. At the same time, the IAEA works

  19. Nuclear safeguards

    International Nuclear Information System (INIS)

    Estrampres, J.

    2010-01-01

    Close cooperation with the Ministry of Industry with representation from the UNESA Safeguards Group, has meant that, after almost two years of intense meetings and negotiations, Spain has a specific plant to plant agreement for the application of Safeguards under this new method. This is an agreement which aims to be a benchmark for all other EU countries, as the IAEA tends to apply a generic agreement that, in many cases, majority interferes in the nuclear power plants own processes. (Author).

  20. Remote monitoring field trial. Application to automated air sampling. Report on Task FIN-E935 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Poellaenen, R.; Ilander, T.; Lehtinen, J.; Leppaenen, A.; Nikkinen, M.; Toivonen, H.; Ylaetalo, S.; Smartt, H.; Garcia, R.; Martinez, R.; Glidewell, D.; Krantz, K.

    1999-01-01

    An automated air sampling station has recently been developed by Radiation and Nuclear Safety Authority (STUK). The station is furnished with equipment that allows comprehensive remote monitoring of the station and the data. Under the Finnish Support Programme to IAEA Safeguards, STUK and Sandia National Laboratories (SNL) established a field trial to demonstrate the use of remote monitoring technologies. STUK provided means for real-lime radiation monitoring and sample authentication whereas SNL delivered means for authenticated surveillance of the equipment and its location. The field trial showed that remote monitoring can be carried out using simple means although advanced facilities are needed for comprehensive surveillance. Authenticated measurement data could be reliably transferred from the monitoring site to the headquarters without the presence of authorized personnel in the monitoring site. The operation of the station and the remote monitoring system were reliable. (orig.)

  1. Radionuclide analysis of environmental field trial samples at STUK. Report on Task FIN A 847 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Rantavaara, A.; Klemola, S.; Saxen, R.; Ikaeheimonen, T.K.; Moring, M.

    1994-12-01

    Radionuclide determinations on seventeen field trial test samples were carried out for the International Atomic Energy Agency by the Finnish Centre for Radiation and Nuclear Safety (STUK). All the samples, i.e., samples of sea water, grass and biota were analysed for gamma emitting nuclides. 3 H was determined in water, 90 Sr in grass and 238 Pu, 239 Pu, 240 Pu and 241 Am in biota samples. To avoid losses of radionuclides before gamma activity measurements, the sequence of treatments was adjusted considering the unknown radionuclide composition. The radionuclide contents found in the samples were roughly the same or lower than contents in same types of environmental samples in the Northern hemisphere. The ratios of Pu and Am nuclides in two of the biota samples referred to an origin other than the global atmospheric fallout. The work was carried out under Task FIN A 847 of the Finnish Support Programme to IAEA Safeguards. (orig.) (21 refs., 3 figs., 7 tabs.)

  2. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  3. Nuclear safeguards - a system in transition

    International Nuclear Information System (INIS)

    Carlson, J.

    1999-01-01

    'Classical' safeguards have a strong emphasis on nuclear materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - what has been termed the correctness of States' declarations. Following the Gulf War, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognised as a major shortcoming in the classical safeguards system, and major changes are in progress to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the IAEA's authority, and there has been good progress in developing the new approaches and technologies required to ensure this authority is used effectively. IAEA safeguards are undergoing a major transition, towards greater emphasis on information collection and analysis, diversity of verification methods, incorporation of more qualitative judgments, and improved efficiency. These changes present major challenges to the IAEA and to the international community, but the end result will be a more effective safeguards system

  4. The international safeguards profession

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1986-01-01

    The International Atomic Energy Agency has established a staff of safeguards professionals who are responsible for carrying out on-site inspections to determine compliance with international safeguards agreements. By IAEA Statute, the paramount consideration in recruiting IAEA staff is to secure employees of the highest standards of efficiency, technical competence, and integrity. An analysis of the distribution of professionals in the IAEA Department of Safeguards has revealed some interesting observations regarding the distribution of grade levels, age, time in service, gender, and geographical origin. Following several earlier studies performed by contractors for ACDA, U.S. efforts have been undertaken to attract and better prepare candidates for working at the IAEA

  5. A report on the IAEA co-ordinated research programme on the Application of Isotopic Correlation Techniques to international safeguards 1975-1982

    International Nuclear Information System (INIS)

    Sanatani, S.

    1983-01-01

    A co-ordinated research programme on the Application of Isotopic Correlation Techniques (ICT) to International Safeguards has just ended in the Agency. During the continuation of the programme, scientists from Belgium, Japan, France, United Kingdom, United States and Euratom, engaged in the development of ICT, met periodically to discuss the results obtained by them from both theoretical and experimental investigations. The paper describes the main features of the alternative approaches developed at participating laboratories as well as procedures developed at the IAEA. At the conclusion of the programme, there was an unanimous recommendation from the participants that ICT is a useful tool for verification of input analysis at a chemical reprocessing plant. After the closure of the co-ordinated research programme, the IAEA is now applying data evaluation procedures developed at the Agency and keeping in contact with the progress of work on ICT carried on in laboratories such as JAERI (Japan), CEA (France) and Euratom, through support programmes and through participation in the ESARDA working group dealing with ICT

  6. IAEA yearbook 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The IAEA Yearbook 1991 contains the following 6 chapters: Transfer of Nuclear Technology; Applications of Nuclear Techniques and Research (Also published separately as Part B of the IAEA Yearbook 1991); Nuclear Power, Nuclear Fuel Cycle and Waste Management (Also published separately as Part C of the IAEA Yearbook 1991); Nuclear Safety Review (Also published separately as Part D of the IAEA Yearbook 1991); IAEA Safeguards; The IAEA (operating framework and functions). A separate abstract and indexing was provided for each chapter. Refs, figs and tabs

  7. VVER-1000 SFAT-specification of an industrial prototype. Interim report on Task FIN A 1073 of the Finnish Support Programme to IAEA Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tiitta, A. [VTT Chemical Technology, Espoo (Finland); Dvoyeglazov, A.M.; Iievlev, S.M. [State Scientific and Technical Centre for Nuclear and Radiation Safety, Kiev (Ukraine); Tarvainen, M.; Nikkinen, M. [Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2000-05-01

    The project to develop a Spent Fuel Attribute Tester (SFAT) for Ukrainian VVER-1000 facilities is going on under the Task FIN A 1073 of the Finnish Support Programme to the IAEA safeguards. In the SFAT method the verification is based on an unambiguous detection of gamma radiation of the fission products. This is implemented by detecting the radiation emitted by a fuel assembly with a mobile gamma-spectroscopic instrument consisting of a collimator arrangement and a detector unit. The fuel assemblies stored in a wet storage are not moved during the verification measurement. The principal target is the radiation characteristic to {sup 137}Cs. For short cooled assemblies also {sup 144}Pr can be used as the target fission product nuclide. The generic IAEA SFAT concept has been adapted to the special conditions at the Ukrainian facilities. The requirements of the End User (IAEA), the State Nuclear Safety Authority (NRA) and the facilities have been taken into account and included in the specifications. Since the issuance of the first interim report, additional measurements were conducted at the Zaporozhye NPP to ensure the feasibility of the suggested measurement geometry and to test whether the SFAT device could be operated using the refuelling machine. A clear answer to the optimal measurement geometry and the detector choice was also obtained during this first phase of the task. Basing on the measurement results and the operational experience, the technical specifications for an industrial SFAT prototype are formulated. The technical specifications presented in this report and in the previous report have been approved by the Ukrainian State Authority and one of the facility operators, the Zaporozhye NPP. A procedure has been started for getting the approval of the other Ukrainian operators. (orig.)

  8. IAEA Newsbriefs. V. 9, no. 1(63). Feb-Mar 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This issue gives brief information on the following topics: IAEA Safeguards Inspections Resume in the DPRK, Nuclear Safety Convention, Nuclear Inspections in Iraq, Strengthening the Safeguards System, Nuclear Non-proliferation and Verification, Ban on Sea Dumping of Radioactive Waste, The Decades Project, Food Irradiation's Practical Utilization, International Nuclear Event Scale, Asset and Osart Missions with the subtopics 'Assessment of Safety Significant Events Team (ASSET)', and 'Operational Safety Review Teams(OSARTs)', Transport of Radioactive Waste, and other short information

  9. Market Research Survey of Commercial Off-The-Shelf (COTS) Portable MS Systems for IAEA Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Garret L.; Hager, George J.; Barinaga, Charles J.; Duckworth, Douglas C.

    2013-02-01

    This report summarizes the results for the market research survey of mass spectrometers that are deemed pertinent to International Atomic Energy Agency (IAEA) needs and strategic objectives. The focus of the report is on MS instruments that represent currently available (or soon to be) commercial off-the shelf (COTS) technology and weigh less than 400 pounds. A compilation of all available MS instruments (36 COTS and 2 R&D) is presented, along with pertinent information regarding each instrument.

  10. Next Generation Safeguards Initiative: Human Capital Development

    International Nuclear Information System (INIS)

    Scholz, M.; Irola, G.; Glynn, K.

    2015-01-01

    Since 2008, the Human Capital Development (HCD) subprogramme of the U.S. National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) has supported the recruitment, education, training, and retention of the next generation of international safeguards professionals to meet the needs of both the International Atomic Energy Agency (IAEA) and the United States. Specifically, HCD's efforts respond to data indicating that 82% of safeguards experts at U.S. Laboratories will have left the workforce within 15 years. This paper provides an update on the status of the subprogramme since its last presentation at the IAEA Safeguards Symposium in 2010. It highlights strengthened, integrated efforts in the areas of graduate and post-doctoral fellowships, young and midcareer professional support, short safeguards courses, and university engagement. It also discusses lessons learned from the U.S. experience in safeguards education and training as well as the importance of long-range strategies to develop a cohesive, effective, and efficient human capital development approach. (author)

  11. Approaches for increasing the cooperation between Member States and IAEA under SSS

    International Nuclear Information System (INIS)

    Rheem, Karp-Soon; Park, Wan-Sou; Kim, Byung-Koo

    1997-01-01

    With introduction of the Strengthened Safeguards System (SSS), both the IAEA and Member States are concerned about the limited resources to carry out the SSS activity and the potential increase of additional cost and burdens. Even though the IAEA has recently prepared a procedure of the generalized New Partnership Approach (NPA), its wider application to the general Member States is difficult at the present time. For the generalized NPA necessitates that SSACs of the Member States have sufficient technical capability in safeguards to carry out the necessary activities. Unfortunately a few Member States seem to be qualified to have the sufficient technical capability that the IAEA desires. In this topic, a new approach to increase the cooperation between Member States and IAEA under SSS is proposed such that effective supports can be provided to all of its Member States that are not technically competent in terms of safeguards experience. This is realized by so called 'tunneling effort', meaning that desired goals are accomplished by efforts from both Member States and the IAEA. The Member States having high technical competence in safeguards provide technical assistance to the Member States that are not competent until they attain to a certain level in technical capability, while the IAEA provides the guidelines, and coordinates the process. The formal introduction of the Quality Control concept to the safeguards management is proposed as well so as to efficiently reduce burdens from the implementation of the SSS. (author)

  12. Steps of Ukrainian SSAC to Integrated Safeguards

    International Nuclear Information System (INIS)

    Lopatin, S.

    2010-01-01

    Strengthening of SSAC is a necessary condition for application of integrated safeguards. Ukrainian State System has been working since 1994 and passed several stages in its development: At the early stage it allowed us to conclude the first Safeguards Agreement; In 2003 SSAC covered also all nuclear material at locations outside facilities; In 2006 Additional Protocol (AP) entered into force. The significant contribution to strengthening of SSAC has been made by ISSAS mission carried out in Ukraine in 2007. The mission helped us to evaluate the State Safeguards System, provided us recommendations on improving of legislation, in particular to establish the system of personnel training. Cooperation between the IAEA and Ukrainian SSAC is carried out in following directions. Annual meeting of Safeguards Implementation Review Group takes place in Kiev. Participants discuss current tasks or problem issues of Safeguards implementation and work out Action Plan in order to resolve a problem or find a way for improving situation. Ukrainian State inspectors organize and take part in each IAEA inspection and complementary access. Ukraine has got considerable experience in the AP implementation, to a certain extent determined by peculiarities of Ukraine as a former part of a nuclear weapon state. For 5 years we have accumulated a significant amount of AP information and it became a problem to keep track of it. Due to Protocol Reporter software has limited possibilities there was a need to develop additional software for AP information management. The transmission of encrypted data on nuclear materials from surveillance systems installed at all NPPs directly to the IAEA Headquarters has started recently. Since September 2010 the IAEA plans to use these data for drawing conclusion of safeguards implementation that will allow to reduce the number of IAEA inspections to the Ukrainian NPPs. While implementing the AP we got a question about correspondence of efforts spent for

  13. The IAEA's activities in safeguarding nuclear materials and in developing internationally acceptable safety codes and guides for nuclear power plants

    International Nuclear Information System (INIS)

    Rometsch, Rudolf; Specter, Herschel

    1977-01-01

    Promoting the peaceful use of nuclear energy and aiming at the international sharing of its benefits are objectives that guide the activities of the Agency. But this promotional work is carried out on condition that security and safety are provided for. All Agency assistance involving nuclear facilities will be subjected to standards of safety or other standards, which are proposed by a State the Agency finds essentially equivalent. Safeguards are always applied on the basis of agreement. States party to NPT are obligated to negotiate and conclude with the Agency agreements which cover all their peaceful nuclear activities. Safeguards agreements concluded outside NPT are applied to specific supplies of facilities, equipment and material. To assist countries in laying down their nuclear safety regulations the Agency's program for the developing of codesof practice and safety guides for nuclear power plants draws up guidelines for governmental organizations, siting, design, operation and quality assurance. Codes are the fundamental documents laying down the objectives of each field of nuclear safety

  14. International safeguards 1979

    International Nuclear Information System (INIS)

    Fischer, D.

    1979-01-01

    First, the nature of the nuclear proliferation problem is reviewed. Afterward, the extent to which the risk of further horizontal proliferation of nuclear weapons is being contained by international agreements and by the application of the IAEA's safeguards under these agreements is investigated. The geographical scope of such safeguards, the gaps in safeguards coverage, and the political and technical effectiveness of such safeguards are examined. In conclusion, it is pointed out that IAEA safeguards are the cutting edge of almost every nonproliferation measure that has so far been applied or put forward. Safeguards would also play a part in any international scheme for limiting vertical proliferation. If the cutting edge of safeguards is blunted or if, for one reason or another, safeguards cannot be or are not being applied, the nonproliferation regime will suffer commensurate damage

  15. Safeguards Implementation at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Lee, Byung-Doo; Kim, Hyun-Sook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The main objective of the safeguards implementation activities is to assure that there are no diversions of declared nuclear material and/or no undeclared activity. The purpose of safeguards implementation activities is the assistance facility operators to meet the safeguards criteria set forth by the Atomic Energy Safety Acts and Regulations. In addition, the nuclear material and technology control team has acted as a contact point for domestic and international safeguards inspection activities and for the relevant safeguards cooperation. Domestic inspections were successfully carried out at the KAERI nuclear facilities pursuant to the domestic laws and regulations in parallel with the IAEA safeguards inspections. It is expected that safeguards work will be increased due to the pyro-related facilities such as PRIDE, ACPF and DUPIC, for which the IAEA is making an effort to establish safeguards approach. KAERI will actively cope with the plan of the NSSC by changing its domestic inspection regulations on the accounting and control of nuclear materials.

  16. Independent verification of a material balance at a LEU fuel fabrication plant. Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Sorenson, R.J.; McSweeney, T.I.; Hartman, M.G.; Brouns, R.J.; Stewart, K.B.; Granquist, D.P.

    1977-11-01

    This report describes the application of methodology for planning an inspection according to the procedures of the International Atomic Energy Agency (IAEA), and an example evaluation of data representative of low-enriched uranium fuel fabrication facilities. Included are the inspection plan test criteria, the inspection sampling plans, the sample data collected during the inspection, acceptance testing of physical inventories with test equipment, material unaccounted for (MUF) evaluation, and quantitative statements of the results and conclusions that could be derived from the inspection. The analysis in this report demonstrates the application of inspection strategies which produce quantitative results. A facility model was used that is representative of large low-enriched uranium fuel fabrication plants with material flows, inventory sizes, and compositions of material representative of operating commercial facilities. The principal objective was to determine and illustrate the degree of assurance against a diversion of special nuclear materials (SNM) that can be achieved by an inspection and the verification of material flows and inventories. This work was performed as part of the USA program for technical assistance to the IAEA. 10 figs, 14 tables

  17. International safeguards

    International Nuclear Information System (INIS)

    Sanders, B.; Ha Vinh Phuong

    1976-01-01

    Since the start of the post-war era, international safeguards were considered essential to ensure that nuclear materials should not be diverted to unauthorised uses. In parallel, it was proposed to set up an international atomic energy agency within the United Nations through which international cooperation in nuclear matters would be channelled and controlled. Created in 1957, the IAEA was authorized to administer safeguards in connection with any assistance it provided as well as at the request of Member State and of any party to bilateral or multilateral arrangements in its ambit. Today, there are two international treaties requiring that its parties should accept Agency safeguards unilaterally, the Latin America Tlatelolco Treaty of 1967, and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), operative since 1970, which requires in particular that non-nuclear weapon states should accept Agency safeguards on its peaceful nuclear activities. Thus while NPT covers peaceful nuclear activities indiscriminately in a country, the Agency's original safeguards system is applied according to specific agreements and to given facilities. A basic conflict has now emerged between commercial interests and the increasing wish that transfer of nuclear equipment and know-how should not result in proliferation of military nuclear capacity; however, serious efforts are currently in progress to ensure universal application of IAEA safeguards and to develop them in step with the uses of nuclear energy. (N.E.A.) [fr

  18. The international safeguards and domestic safeguards and security interface

    International Nuclear Information System (INIS)

    Whitworth, A.

    1996-01-01

    The International Safeguards Division, in conjunction with the Office of Safeguards and Security, organized a workshop on the international safeguards/domestic safeguards and security interface that was held in March 1996. The purpose of the workshop was to identify and resolve domestic safeguards and security issues associated with the implementation of International Atomic Energy Agency (IAEA) safeguards in the Department of Energy (DOE) complex. The workshop drew heavily upon lessons learned in the application of IAEA safeguards at storage facilities in oak Ridge, Hanford, and Rocky Flats. It was anticipated that the workshop would facilitate a consistent DOE safeguards and security approach for the implementation of IAEA safeguards in the DOE complex. This paper discusses the issues and resolutions of several issues raised at the workshop that involve primarily the domestic material control and accountability program

  19. Nuclear non-proliferation states urged to conclude Safeguards Agreement with International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1999-01-01

    The document contains a brief presentation of the annual report of the IAEA, the statement of the Director General of the IAEA at the General Assembly Plenary with emphasis on Agency's actions to strengthen safeguards, and statements made by the representatives of Brazil, Finland, Mexico, United States, Lithuania, Cuba, Czech Republic, Japan, Egypt, Ukraine, South Africa, India, Myanmar, and the Russian Federation at the 46th Meeting, on 4 November 1999

  20. Safeguarding of large scale reprocessing and MOX plants

    International Nuclear Information System (INIS)

    Howsley, R.; Burrows, B.; Longevialle, H. de; Kuroi, H.; Izumi, A.

    1997-01-01

    In May 97, the IAEA Board of Governors approved the final measures of the ''93+2'' safeguards strengthening programme, thus improving the international non-proliferation regime by enhancing the effectiveness and efficiency of safeguards verification. These enhancements are not however, a revolution in current practices, but rather an important step in the continuous evolution of the safeguards system. The principles embodied in 93+2, for broader access to information and increased physical access already apply, in a pragmatic way, to large scale reprocessing and MOX fabrication plants. In these plants, qualitative measures and process monitoring play an important role in addition to accountancy and material balance evaluations in attaining the safeguard's goals. This paper will reflect on the safeguards approaches adopted for these large bulk handling facilities and draw analogies, conclusions and lessons for the forthcoming implementation of the 93+2 Programme. (author)

  1. Safeguards-by-Design: An Element of 3S Integration

    International Nuclear Information System (INIS)

    Bean, R.S.; Bjornard, T.A.; Hebdich, D.J.

    2009-01-01

    In 2008, the '20/20 Vision for the Future' background report by the IAEA Director General identified the possibility of integrating certain activities related to safeguards, safety, and security. Later in the year, the independent Commission report prepared at the request of the IAEA Director General noted that the Agency's's roles in nuclear safeguards, safety, and security (3S) complement and can mutually reinforce each other. Safeguards-by-design (SBD) is a practical measure that strengthens 3S integration, especially for the stage of nuclear facility design and construction, but also with ramifications for other stages of the facility life-cycle. This paper describes the SBD concept, with examples for diverse regulatory environments, being developed in the U.S under the U.S. Department of Energy (DOE) Next Generation Safeguards Initiative and the Advanced Fuel Cycle Initiative. This is compared with related international SBD work performed in the recent IAEA workshop on 'Facility Design and Plant Operation Features that Facilitate the Implementation of IAEA Safeguards'. Potential future directions for further development of SBD and its integration within 3S are identified.

  2. Safeguards '85

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  3. Radionuclide analysis of environmental field trial samples at STUK/II. Second report on task FIN A 847 of the Finnish support programme to IAEA safeguards

    International Nuclear Information System (INIS)

    Ikaeheimonen, T.K.; Rantavaara, A.; Moring, M.; Klemola, S.

    1995-06-01

    Radionuclide determinations of 35 environmental samples of eight different materials were carried out for the International Atomic Energy Agency by the Finnish Centre for Radiation and Nuclear Safety (STUK). All the samples were analysed for gamma emitting nuclides, 90 Sr, 238 Pu and 239 , 240 Pu. In most of the samples the found radionuclide contents were roughly at the same levels as in the same types of environmental samples in the northern hemisphere. However, some samples of grass, moss, lichen and sheep faeces showed exceptionally great contents of radionuclides measured. The maximum contents of 90 Sr, 137 Cs, 238 Pu and 239 , 240 Pu were found in the sam individual samples. The ratios of nuclide concentrations in these samples also deviated from ratios in other samples. This referred to an origin of these nuclides other than the global fallout. The work was a continuation to the study carried out under the Task FIN A 847 of the Finnish Support Programme to IAEA Safeguard. (orig.) (1 ref., 1 fig., 4 tabs.)

  4. In situ object counting system (ISOCSi3TM) technique: A cost-effective tool for NDA verification in IAEA Safeguards

    International Nuclear Information System (INIS)

    Nizhnik, V.; Belian, A.; Shephard, A.; Lebrun, A.

    2011-01-01

    Nuclear material measurements using the ISOCS technique are playing an increasing role in IAEA verification activities. The ISOCS capabilities include: a high sensitivity to the presence of U and Pu; the ability to detect very small amounts of material; and the ability to measure items of different shapes and sizes. In addition, the numerical absolute efficiency calibration of a germanium detector used in the technique does not require any calibration standards or reference materials. The ISOCS modelling software performs an absolute efficiency calibration for items with various container shapes, container wall materials, material compositions, material fill-heights, U/Pu weight fractions and even heterogeneously distributed emitting materials. In a number of cases, some key parameters, such as the matrix density and U/Pu weight fraction, can be determined in addition to the emitting material mass and isotopic composition. These capabilities provide a verification solution suitable for a majority of cases where quantitative and isotopic analysis should be performed. Taking into account these advantages, the technique becomes a cost-effective solution for nuclear material non-destructive assay (NDA) verification. At present, the IAEA uses the ISOCS for a wide range of applications including the quantitative analysis of U scrap materials, U/Pu contaminated solid wastes, U fuel elements, U hold-up materials. Additionally, the ISOCS is also applied to some specific verification cases such as the measurement of PuBe neutron sources and the quantification of fission products in solid wastes. In reprocessing facilities with U/Pu waste compaction or facilities with item re-batching, the continuity-of-knowledge can be assured by applying either video surveillance systems together with seals (requiring attaching/detaching and verification activities for each seal) or verification of operator declarations using quantitative measurements for items selected on a random basis

  5. Trade Analysis and Safeguards

    International Nuclear Information System (INIS)

    Chatelus, R.; Schot, P.M.

    2010-01-01

    In order to verify compliance with safeguards and draw conclusions on the absence of undeclared nuclear material and activities, the International Atomic Energy Agency (IAEA) collects and analyses trade information that it receives from open sources as well as from Member States. Although the IAEA does not intervene in national export controls, it has to monitor the trade of dual use items. Trade analysis helps the IAEA to evaluate global proliferation threats, to understand States' ability to report exports according to additional protocols but also to compare against State declarations. Consequently, the IAEA has explored sources of trade-related information and has developed analysis methodologies beyond its traditional safeguards approaches. (author)

  6. IAEA Newsbriefs. V. 14, no. 2(83). Apr-May 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This issue gives brief information on the following topics: Nuclear Safety: States Taking 'Steps in Right Direction', Contracting Parties to Convention on Nuclear Safety, Nuclear Power Worldwide, Nuclear's Future: Director General Address in Japan, Year 2000 Programme and Budget Goes Before IAEA Board, The IAEA and Y2K Issues: Reports, Workshops, Internet Links, Strengthened Safeguards System: Status of Additional Protocols, States Join International Conventions in Nuclear Fields, IAEA International Scientific Symposia and Seminars in 1999, In Memoriam: Munir Ahmad Khan, and other short information

  7. IAEA Newsbriefs. V. 15, no. 2(87). Apr-May 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This issue gives information about the following topics: meeting of states for review of global nuclear non-proliferation treaty, status of signatures of Additional Protocols for strengthened safeguards system as of April 2000, IAEA participation in projects on water resources in relation to the world water day 2000, IAEA's programmes and activities for technology transfer, IAEA international symposia and seminars, safety of radioactive waste management, joining international conventions in nuclear field by more states, status of nuclear power around the world as of April 2000, and other short information

  8. Safeguards Implementation Guide for States with Small Quantities Protocols

    International Nuclear Information System (INIS)

    2013-01-01

    The International Atomic Energy Agency (IAEA) works to enhance the contribution of nuclear energy for peace and prosperity around the world, while helping to ensure that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices. In implementing safeguards, the IAEA plays an instrumental independent verification role, providing credible assurances that States' safeguards commitments are being respected. Most of the world's non-nuclear-weapon States (NNWSs) have concluded comprehensive safeguards agreements (CSAs) with the IAEA, pursuant to the Treaty on the Non- Proliferation of Nuclear Weapons (NPT). The IAEA and States are required to cooperate in the implementation of such agreements. Effective cooperation demonstrates a State's commitment to the peaceful use of nuclear energy and furthers the State's national interests by reducing the risk of unauthorized use of nuclear material. Over 100 NNWSs party to the NPT have very limited quantities of nuclear material and have concluded protocols to their CSAs which hold in abeyance many procedures in Part II of a CSA. These protocols are referred to as 'small quantities protocols' or 'SQPs' and remain in effect as long as the State meets certain eligibility criteria. The purpose of an SQP is to reduce the burden of safeguards implementation for States with little or no nuclear activities, while retaining the integrity of the safeguards system. States with SQPs have very important obligations they must fulfil under their CSAs. In 1997, as part of the IAEA's efforts to strengthen its safeguards system, the Model Additional Protocol to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards was developed to provide the IAEA with broader access to information and locations, thus significantly increasing the IAEA's ability to provide assurance of the absence of undeclared nuclear material and activities in States. Many States with SQPs have

  9. Integrated safeguards and the role of the SSAC: an Australian perspective

    International Nuclear Information System (INIS)

    Carlson, John

    1998-01-01

    'Classical' safeguards retain a strong emphasis on facility-based materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognised as a major shortcoming in the classical safeguards system, and major efforts are being made to establish the Agency's capabilities in this regard. Current priorities include, ensuring the wide-spread conclusion of individual Additional Protocols so the Strengthened Safeguards System enters into general application without delay, and continuing the development of new methodologies - including associated quality assurance and evaluation. A major theme in current safeguards thinking is integration, the rationalisation of classical safeguards with the new safeguards strengthening measures. The strengthening of the IAEA safeguards system is a matter of the highest priority to Australia. Australia has had a major influence in this process, that is provision of consultancy services to the Agency on new safeguards and analytical techniques, and in the development and field testing of new safeguards technology such as remote surveillance. (Yi, J. H.)

  10. Safeguards techniques and equipment. 2003 ed

    International Nuclear Information System (INIS)

    2003-01-01

    The 1990s saw significant non-proliferation related developments in the world, resulting in a new period of safeguards development. Over several years an assessment was made of how to strengthen the effectiveness and improve the efficiency of IAEA safeguards. In May 1997 this culminated in the adoption by the IAEA Board of Governors of a Protocol Additional to Safeguards Agreements which significantly broadens the role of IAEA safeguards. As a consequence, the IAEA safeguards system entered a new era. In 1997 the IAEA began to publish a new series of booklets on safeguards, called the International Nuclear Verification Series (NVS). The objective of these booklets was to help in explaining IAEA safeguards, especially the new developments in safeguards, particularly for facility operators and government officers involved with these topics. The current booklet, which is a revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. A completely new section on data security has been added to describe the specific features that are included in installed equipment systems in order to ensure the authenticity and confidentiality of information. As new verification measures continue to be developed the material in this booklet will be periodically reviewed and updated versions issued. The basic verification measure used by the IAEA is nuclear material accountancy. In applying nuclear material accountancy, IAEA safeguards inspectors make independent measurements to verify quantitatively the amount of nuclear material presented in the State's accounts. For this purpose, inspectors count items (e.g. fuel assemblies, bundles or rods, or containers of powdered compounds of uranium or plutonium) and measure attributes of these items during their inspections using non

  11. Establishment of IAEA knowledge of integrity of the geological repository boundaries and disposed spent fuel assemblies in the context of the Finnish geological repository. Experts' Group meeting Report on Task JNT/C 1204 of the Member States' Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Okko, O.

    2004-05-01

    The Geological Repository Safeguards Experts Group (Member State Support Programme tasks JNT/C1204 and C1226), agreed that annual meetings should be held to address interface issues between IAEA safeguards and radioactive waste management and to explore the use of safety and operational information to make International Atomic Energy Agency (IAEA) safeguards more effective and efficient for geological repository facilities. It has also been recognised that the safeguards measures for geological repositories are to be developed site-specifically. To address these issues to the planned Olkiluoto repository in Finland a meeting of experts in safety, geological repository operations,and safeguards from 6 States, European Commission, and IAEA was held in Olkiluoto and Rauma, Finland, during September 29 - October 4, 2003. The pre-operational phase of the Olkiluoto repository should be efficiently used by the parties involved in safeguards. The applicability and reliability of the potential new techniques and the efficient practices must be developed and proven before their implementation as safeguards measures to be applied at the subsequent stages of the repository development. The visit to the location of the proposed Olkiluoto repository and neighbouring areas and subsequent presentations enabled the working groups to discuss the various issues with reference to actual site conditions. The working groups were thus able to identify potential measurement and monitoring techniques and research and development requirements for consideration by the Finnish authorities, in addition to making recommendations to the IAEA on planned activities for carrying out before and during the early investigation phase of the proposed Olkiluoto repository. It was understood that all parties shall take good care of the implementation of the planned activities to ensure that proven means, approaches and the required verified information is at hand at the time the projected facility will

  12. Overcoming Safeguards Challenges

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2011-01-01

    The focus of the 2010 IAEA International Safeguards Symposium was how best, from a technical perspective, to prepare for future verification challenges during this time of change. By bringing together the leading experts in the field from across the world, this symposium provided an opportunity for stakeholders to explore possible solutions in support of the IAEA's nuclear verification mission, and to identify areas where the different stakeholders in the safeguards business can help address these challenges

  13. IAEA Newsbriefs. V. 12, no. 4(77). Sep-Oct 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This issue gives brief information on the following topics: IAEA General Conference concludes: States strengthen nuclear cooperation, States approve Dr. ElBaradei as next Director General, honour Dr. Blix, New Board Chairman: Ambassador Ikeda, Dr. ElBaradei outlines challenges ahead, Scientific programme at GC, Productive year, Dr. Blix reports, States sign to accept new safeguards measures, Fortieth anniversary presentations, Meetings calendar, Marine scientists plan expedition to Northwest Pacific, States sign new joint convention, Trilateral initiative: Verifying ex-weapons material, Nuclear liability regime strengthened, New IAEA books, and other short information

  14. IAEA Newsbriefs. V. 12, no. 4(77). Sep-Oct 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This issue gives brief information on the following topics: IAEA General Conference concludes: States strengthen nuclear cooperation, States approve Dr. ElBaradei as next Director General, honour Dr. Blix, New Board Chairman: Ambassador Ikeda, Dr. ElBaradei outlines challenges ahead, Scientific programme at GC, Productive year, Dr. Blix reports, States sign to accept new safeguards measures, Fortieth anniversary presentations, Meetings calendar, Marine scientists plan expedition to Northwest Pacific, States sign new joint convention, Trilateral initiative: Verifying ex-weapons material, Nuclear liability regime strengthened, New IAEA books, and other short information

  15. Swift conclusion of Safeguards Agreements with Atomic Energy Agency urged on all signatories to Non-Proliferation Treaty

    International Nuclear Information System (INIS)

    1999-01-01

    The document contains statements made by the representatives of the Republic of Korea, Pakistan, New Zealand, Uruguay, Australia, Armenia, Belarus, Democratic People's Republic of Korea, and Japan at the 47th Meeting in connection with the annual report of the IAEA, especially related to the implementation of strengthened safeguards

  16. Nuclear safeguards policy

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Claims have been made that Australia's nuclear safeguards policy, announced in 1977, has changed. However, examination of the texts of nuclear safeguards agreements negotiated by Australia shows that the policy has been implemented and adhered to. The purpose of these agreements is to obtain assurance that uranium exported is used exclusively for peaceful purposes. The questions of reprocessing, transfer to third countries and the application of IAEA safeguards are discussed

  17. Verification and the safeguards legacy

    International Nuclear Information System (INIS)

    Perricos, Demetrius

    2001-01-01

    ; qualitative and quantitative measurements of nuclear material; familiarity and access to sensitive technologies related to detection, unattended verification systems, containment/surveillance and sensors; examination and verification of design information of large and complex facilities; theoretical and practical aspects of technologies relevant to verification objectives; analysis of inspection findings and evaluation of their mutual consistency; negotiations on technical issues with facility operators and State authorities. This experience is reflected in the IAEA Safeguards Manual which sets out the policies and procedures to be followed in the inspection process as well as in the Safeguards Criteria which provide guidance for verification, evaluation and analysis of the inspection findings. The IAEA infrastructure and its experience with verification permitted in 1991 the organization to respond immediately and successfully to the tasks required by the Security Council Resolution 687(1991) for Iraq as well as to the tasks related to the verification of completeness and correctness of the initial declarations in the cases of the DPRK. and of S. Africa. In the case of Iraq the discovery of its undeclared programs was made possible through the existing verification system enhanced by additional access rights, information and application of modern detection technology. Such discoveries made it evident that there was a need for an intensive development effort to strengthen the safeguards system to develop a capability to detect undeclared activities. For this purpose it was recognized that there was need for additional and extended a) access to information, b) access to locations. It was also obvious that access to the Security Council, to bring the IAEA closer to the body responsible for maintenance of international peace and security, would be a requirement for reporting periodically on non-proliferation and the results of the IAEA's verification activities. While the case

  18. Safeguards in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J.

    2010-01-01

    The former Czechoslovakia acceded to the Non-Proliferation Treaty in 1968. Based on requirements of the Safeguard Agreement the State System of Accounting for and Control of nuclear material has been established. After dissolution of Czechoslovakia the Slovak Republic succeeded to the Safeguards Agreement. As a regulator the Nuclear Regulatory Authority of the Slovak Republic (UJD) has been constituted. After European Union (EU) accession EU legislation became valid in the Slovak republic. Atomic Law No. 541/2004 Coll. on Peaceful Use of Nuclear Energy adopts this legislation. In the frame of strengthening the IAEA safeguards an implementation of the Protocol Additional became actual. The Protocol Additional was signed by the government of the Slovak Republic in September 1999. On 1 December 2005 safeguards agreement INFCIRC/193 including the relevant Additional Protocol entered into force. As an instrument supporting non-proliferation of nuclear weapons a control of export/import of nuclear material, nuclear related and dual-use material following the EC regulation 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual use items. The execution of accountancy and control of nuclear material inspection activities has been considerably influenced by the implementation of integrated safeguards, implemented in the Slovak Republic on 1 September 2009. The aim of mentioned integrated safeguards regime is to decrease the amount and difficulty of inspections. At the same time the possibility of accountancy and control of nuclear material inspections announced 24 hours in advance took effect. The execution of Protocol Additional inspections remains the same. Additionally to international safeguards system UJD has kept the national safeguards system which observes all nuclear material on the territory of the Slovak Republic. The government of the Slovak Republic plays active role within activities of the NSG

  19. Spent fuel encapsulation and verification. Safequards workshop in Helsinki, Finland, 19-20 December 2000. Phase II interim report on Task FIN C1184 of the Finnish Support Programme to IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Honkamaa, T. (ed.)

    2001-03-01

    According the present plans the final disposal of spent fuel will begin in Finland in 2020. The construction of the encapsulation facility will begin five years earlier. Preliminary design of encapsulation facility has already been presented by Finnish nuclear waste management company Posiva ltd. In order to avoid unnecessary costs and delays in implementation of safeguards regime in the facility, the safeguards-related aspects should be taken into account in early phase. This requires open communication between the operator, regulators and expert bodies. In December 2000, Finnish Support Programme to IAEA safeguards arranged a workshop to facilitate the communication between the operators, regulators and experts. Due to the new concept, the open discussion is beneficial and necessary for all parties. One goal of the workshop was also to provide basis for further designing of the facility. The goals for the meeting were achieved. The discussions were conducted in very good and fruitful atmosphere. The conclusions and recommendations of the workshop were discussed and written down by the chair of the final session. The draft document was distributed to the participants and all comments were taken into account, This report, representing the views of the participants, gives also recommendations for further work. It was tentatively agreed that parties will meet again in 2001 to review and discuss, in an informal atmosphere, facility design developments and potential safeguards measures. Action to convene the meeting is on the FINSP (orig.)

  20. Australian Safeguards and Non-Proliferation Office and the Chemical Weapons Convention Annual Report 1999-2000

    International Nuclear Information System (INIS)

    1999-01-01

    The Australian Safeguards and Non-Proliferation Office (ASNO) primary focus is national security-verification and treaty compliance across several regimes addressing weapons of mass destruction-linked to a major facilitation role in regard to industry compliance. The key aspect here is ensuring Australia's treaty commitments are met. Additionally, ASNO's activities are central to Government policy on the mining and export of uranium. Throughout the past year, ASNO continued to make a substantial contribution to the development of strengthened IAEA safeguards and the integration of strengthened safeguards with the established (classical) safeguards system. Australia played a key role in the negotiations leading to the adoption by the IAEA in 1997 of the Model Protocol, which provides the IAEA Secretariat with the authority to implement strengthened safeguards measures. In December 1997, Australia was the first country to bring into effect a Protocol with the IAEA based on this model. ASNO is working closely with the IAEA to develop the procedures and methods required to effectively implement the IAEA's authority and responsibilities as the Protocol enters general application. ASNO's As mentioned above, ASNO has developed and implemented new safeguards arrangements in Australia under the Protocol for strengthened safeguards, including facilitation of IAEA verification activities at the Ranger uranium mine-this is the first time the IAEA (under the Protocol) has visited a uranium mine and the lessons learned will help the IAEA develop its procedures. One major activity for ASNO is monitoring the progress of the Silex project to ensure that, as soon as appropriate, the technology is declared 'associated technology' and controlled in accordance with relevant legislative and Treaty requirements. In anticipation of this, ASNO has taken steps to protect the Silex technology against unauthorised access. Over the past 12 months, ASNO has established itself as the provisional

  1. The SSAC (State System of Accounting and Control) of Argentina: possible areas to increase co-operation with ABACC and IAEA

    International Nuclear Information System (INIS)

    Castro, Laura B.; Vicens, Hugo E.; Maceiras, Elena; Saavedra, Analia D.; Valentino, Lucia I.; Llacer, Carlos D.; Mairal, Maria L.; Fernandez Moreno, Sonia

    2000-01-01

    This paper deals with one of the measures identified in the program 93+2 to enhance international safeguards effectiveness and efficiency. This measure is related to increase co-operation between the IAEA and the SSAC in the implementation of safeguards. It is recognized that an effective SSAC could contribute to better safeguards. During the discussion to strengthen the safeguards system different levels of co-operation between the IAEA and SSAC were identified, depending on their features and capabilities. To start assessing the possibility of increasing this co-operation, a 'SSAC Questionnaire' was submitted by the IAEA to Member States, EURATOM and ABACC. At present, those questionnaires are being assessed by the IAEA in order to identify areas for further co-operation. One important aspect is the increased co-operation level that might be achieved when the Additional Protocol becomes an integral part of the safeguard agreements. Another one refers to the methodology that IAEA might employ to audit the quality and performance of the SSAC regarding the different levels of such co-operation. This paper will also describe the features of the SSAC of Argentina emphasizing its capabilities and the various areas that might be considered to increase further co-operation with ABACC and the IAEA. (author)

  2. Novel technologies for safeguards

    International Nuclear Information System (INIS)

    Annese, C.; Monteith, A.; Whichello, J.

    2009-01-01

    Full-text: The International Atomic Energy Agency (IAEA) Novel Technologies Project is providing access to a wider range of methods and instruments, as well as establishing a systematic mechanism to analyse gaps in the inspectorate's technical support capabilities. The project also targets emerging and future inspectorate needs in the areas of verification and the detection of undeclared nuclear activities, materials, and facilities, providing an effective pathway to technologies in support of safeguards implementation. The identification of safeguards-useful nuclear fuel cycle (NFC) indicators and signatures (I and S) is a fundamental sub-task within the Project. It interfaces with other IAEA efforts currently underway to develop future safeguards approaches through undertaking an in-depth review of NFC processes. Primarily, the sub-task aims to identify unique and safeguards-useful 'indicators', which identify the presence of a particular process, and 'signatures', which emanate from that process when it is in operation. The matching of safeguards needs to detection tool capabilities facilitates the identification of gaps where no current method or instrument exists. The Project has already identified several promising technologies based on atmospheric gas sampling and analysis, laser spectrometry and optically stimulated luminescence. Instruments based on these technologies are presently being developed through support programme tasks with Member States. This paper discusses the IAEA's project, Novel Technologies for the Detection of Undeclared Nuclear Activities, Materials and Facilities and its goal to develop improved methods and instruments. The paper also describes the method that has been devised within the Project to identify safeguards-useful NFC I and S and to determine how the sub-task interfaces with other IAEA efforts to establish emerging safeguards approaches. As with all safeguards-targeted research and development (R and D), the IAEA depends

  3. Non-proliferation of nuclear weapons and nuclear security. Overview of safeguards requirements for States with limited nuclear material and activities

    International Nuclear Information System (INIS)

    Lodding, J.; Ribeiro, B.

    2006-06-01

    This booklet provides an overview of safeguards obligations that apply to States which are parties to the Nuclear Non-Proliferation Treaty (NPT) that have no nuclear facilities and only limited quantities of nuclear material. Most State parties to the NPT have no nuclear facilities and only limited quantities of nuclear material. For such States, safeguards implementation is expected to be simple and straightforward. This booklet provides an overview of the safeguards obligations that apply to such States. It is hoped that a better understanding of these requirements will facilitate the conclusion and implementation of safeguards agreements and additional protocols, and thereby contribute to the strengthening of the IAEA?s safeguards system and of collective security

  4. Non-proliferation of nuclear weapons and nuclear security. Overview of Safeguards requirements for States with limited nuclear material and activities

    International Nuclear Information System (INIS)

    Lodding, J.; Ribeiro, B.

    2006-06-01

    This booklet provides an overview of safeguards obligations that apply to States which are parties to the Nuclear Non-Proliferation Treaty (NPT) that have no nuclear facilities and only limited quantities of nuclear material. Most State parties to the NPT have no nuclear facilities and only limited quantities of nuclear material. For such States, safeguards implementation is expected to be simple and straightforward. This booklet provides an overview of the safeguards obligations that apply to such States. It is hoped that a better understanding of these requirements will facilitate the conclusion and implementation of safeguards agreements and additional protocols, and thereby contribute to the strengthening of the IAEA?s safeguards system and of collective security

  5. Safeguarding the atom

    International Nuclear Information System (INIS)

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  6. Round robin 'Impurities in uranium matrix': a success for CETAMA and IAEA

    International Nuclear Information System (INIS)

    Granier, Guy; Roudil, Daniele; Balsley, Steven Devry; Bulyha, Siarhei; Aregbe, Yetunde

    2012-01-01

    The safeguard of nuclear material is of paramount importance to the IAEA which increasingly uses this information for characterization purposes in order to strengthen the verification of declared nuclear material and to identify the origin of samples from mines. IAEA tasked CETAMA to conduct a round robin with objective to evaluate the capability of laboratories to measure impurities in uranium with concentration levels between 1 and 500 ppm relative to uranium. This round robin was attended by 17 international laboratories from the nuclear industry and safeguards community. The results are mainly obtained by ICP-MS and ICP-AES. The synthesis of this round robin were helpful in identifying anomalies and will allow the IAEA to better set realistic measurement performance targets for ICP-MS and ICP-AES. (authors)

  7. IAEA monitoring field trials workshop

    International Nuclear Information System (INIS)

    Ross, H.H.; Cooley, J.N.; Belew, W.L.

    1995-01-01

    Recent safeguards inspections in Iraq and elsewhere by the International Atomic Energy Agency (IAEA) have led to the supposition that environmental monitoring can aid in verifying declared and in detecting undeclared nuclear activities or operations. This assumption was most recently examined by the IAEA's Standing Advisory Group on Safeguards Implementation (SAGSI), in their reports to the IAEA Board of Governors. In their reports, SAGSI suggested that further assessment and development of environmental monitoring would be needed to fully evaluate its potential application to enhanced IAEA safeguards. Such an inquiry became part of the IAEA ''Programme 93+2'' assessment of measures to enhance IAEA safeguards. In March, 1994, the International Safeguards Group at Oak Ridge hosted an environmental monitoring field trial workshop for IAEA inspectors to train them in the techniques needed for effective environmental sampling. The workshop included both classroom lectures and actual field sampling exercises. The workshop was designed to emphasize the analytical infrastructure needed for an environmental program, practical sampling methods, and suggested procedures for properly planning a sampling campaign. Detailed techniques for swipe, vegetation, soil, biota, and water associated sampling were covered. The overall approach to the workshop, and observed results, are described

  8. New evolution of safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Seyama, K.; Kurihara, H.

    1999-01-01

    Since the end of the Cold War, circumstances concerning international safeguards and nuclear non-proliferation have changed drastically. At this stage, early introduction of a strengthened and streamlined new safeguards system and broad implementation of the verification activities regarding nuclear material from dismantled nuclear weapons are expected, and in the near future, the international community is expected to establish a verification regime under the Cut Off Treaty. From now on, the roles of the IAEA will become more important in these new areas. At the same time the efficiency of the activities is essential from a financial and human resources aspect in order to introduce those measures smoothly. On the other hand, the Member States should cooperate with the IAEA to improve the transparency of its nuclear policy and activities. Taking account of such circumstances, first, the authors will explain the non-proliferation policy of Japan. Second, the authors will introduce the present status of Japan's safeguards system and activities. Finally, the authors will present several tasks which are important for the IAEA and Japanese safeguards for coming several years. (author)

  9. Safeguards as catastrophic risk management: insights and projections

    International Nuclear Information System (INIS)

    Leffer, T.N.

    2013-01-01

    The system of international agreements designed to prevent the use of nuclear weapons and to control the spread of nuclear weapons, materials and technologies (collectively referred to as the nuclear arms control and nonproliferation regimes) is posited as humanity.s first attempt to mitigate a man-made global catastrophic risk. By extrapolating general principles of government response to risk from the arms control and nonproliferation regimes, a model of international regime building for catastrophic risk mitigation is constructed. This model provides the context for an examination of the system of safeguards implemented by the International Atomic Energy Agency (IAEA), which serves as the nuclear nonproliferation regime.s verification and enforcement mechanism and thereby constitutes the regime's most completely developed discrete mechanism for risk mitigation (a 'system within a system'). An assessment of the history, evolution and effectiveness of the IAEA safeguards system in the context of the regimes-as-risk-mitigation model reveals some general principles for risk-mitigation regimes which are then applied to the safeguards system to identify ways in which it may be strengthened. Finally, the IAEA safeguards system is posited as the prototype verification/enforcement mechanism for future risk mitigation regimes that governments will be compelled to create in the face of new global catastrophic risks that technological advance will inevitably create. (author)

  10. Some reflections on nuclear safeguards

    International Nuclear Information System (INIS)

    Campbell, Ross.

    1981-01-01

    The author doubts whether, in view of the 1976 policy of requiring adherence to the Non-Proliferation Treaty or equivalent IAEA safeguards, Canada still needs the 1974 policy of bilateral safeguards on technology as well as material. The opinion is expressed that bilateral safeguards create difficulties for the IAEA, and are resented by some potential customers. Much better, if it were achievable, would be a code agreed by a convention of vendors and customers alike, to include sanctions against transgressors. The author expresses confidence in the IAEA, but perceives a need for more men and money. Also needed are better instruments to account for materials

  11. Nuclear safeguards in the Federal Republic of Germany by the Commission of the European Communities, EURATOM, and the International Atomic Energy Agency (IAEA)

    International Nuclear Information System (INIS)

    Brueckner, C.

    1979-10-01

    The author reviews the developement of the legal and contractual bases for nuclear safeguards. In doing so, he deals with the EURATOM treaty, the non-proliferation treaty, the verification treaty; adjustment of control by means of the EURATOM regulation no. 3222/76 and the implementary law on the verification treaty. In the second part, he examines the control concept which is based on keeping books on materials, making-out balance sheets and on balance-sheet auditing. He sees problems arising as nuclear safeguards are introduced in nuclear installations in the endeavour to develop nuclear safeguards any further. (HSCH) [de

  12. International safeguards

    International Nuclear Information System (INIS)

    Petit, A.

    1991-01-01

    The IAEA has now 200 Inspectors or so, and Euratom a similar number. People in Vienna are talking about increases of this staff, in the range of a possible doubling in the five years to come, although even an immediate restart of the expansion of nuclear industry, would not materialize significantly within this period. This means that keeping the same safeguarding approach would probably lead to another doubling of such staff in the ten following years, which is completely unrealistic. Such a staff is our of proportion with those of national inspectorates in other fields. The paper analyzes the basic irrealistic dogma which have hindered the progress of international safeguards, and recall the suggestions made since ten years to improve them

  13. Australian Safeguards and Non-Proliferation Office and the Chemical Weapons Convention Annual Report 1999-2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Director General, Australian Safeguards and Non-Proliferation Office (ASNO), combines the statutory office of Director of Safeguards with that of Director, Chemical Weapons Convention Office (CWCO). The Director General also performs the functions of the Director, Australian Comprehensive Test-Ban Office (ACTBO) on an informal basis, as the relevant legislation has not yet come into effect. Throughout the year, ASNO made a substantial contribution to the development of strengthened IAEA safeguards and the integration of strengthened safeguards with the established (classical) safeguards system. ASNO is working closely with the IAEA to develop the procedures and methods required to effectively implement the IAEA's authority and responsibilities as the Additional Protocol enters general application, as well as the specific arrangements which will apply in Australia. In the latter context, ASNO offers the IAEA a safeguards-friendly environment, together with constructive critique, to assist in the development and testing of new techniques. This work is important in ensuring the effective implementation of strengthened safeguards elsewhere. Substantial progress were made on several new bilateral nuclear safeguards agreements. An agreement with the US covering transfer of the Silex laser enrichment technology came into force, and ASNO is now working with US authorities to develop the detailed administrative arrangements required to give effect to this agreement. Also concluded during the year was an agreement with New Zealand covering transfers of uranium for non-nuclear use (as a colouring agent in glass manufacture). ASNO was also working closely with ANSTO to ensure that nuclear material accountancy and control at Lucas Heights accords with best international practice, particularly having regard to the requirements of the IAEA under integrated safeguards. Excellent professional relationship were maintained with the OPCW and counterpart national authorities

  14. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual

    International Nuclear Information System (INIS)

    Tarvainen, M.; Paakkunainen, M.; Tiitta, A.; Sarparanta, K.

    1994-04-01

    A measurement instrument called Spent Fuel Attribute Tester, SFAT, has been designed, fabricated and taken into use by the IAEA in gross defect verification of spent BWR fuel assemblies. The equipment consists of an underwater measurement head connected with cables to a control unit on the bridge of the fuel handling machine as well as to a PMCA for measurement of the gamma spectra. The BWR SFAT is optimized for the AFR interim storage, TVO KPA-STORE, of the TVO Power Company in Olkiluoto, Finland. It has a shape and it is moved like a fuel assembly using the fuel handling machine. No fuel movements are needed. Spent fuel specific radiation from the fission product 137 Cs at the gamma-ray energy of 662 keV is detected above the assemblies in the storage rack using a NaI(Tl) detector. In the design and in licensing the requirements of the IAEA, operator and the safety authority have been taken into account. The BWR SFAT allows modifications for other LWR fuel types with minor changes. The work has been carried out under the task FIN A 563 of the Finnish Support Programme to IAEA Safeguards. (orig.) (9 refs., 22 figs.)

  15. NPT safeguards and the peaceful use of nuclear energy

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1993-10-01

    Origin of safeguards system and of comprehensive safeguards agreements, assurance given by IAEA safeguards, penalties and sanctions in case of breach of a safeguards agreement, recent experiences with Iraq, South Africa and DPRK as well as limits of the safeguards system are described

  16. Safeguards approaches for conversion and gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Stanuch, C.; Whitaker, M.; Lockwood, D.; Boyer, B.

    2013-01-01

    This paper describes recent studies and investigations of new safeguards measures and inspection tools to strengthen international safeguards at GCEPs (Gas Centrifuge Enrichment Plants) and conversion plants. The IAEA has indicated that continuous, unattended process monitoring should play a central role in future safeguards approaches for conversion plants and GCEPs. Monitoring safeguards relevant information from accountancy scales, process load cells, and unit header pipes can make existing safeguards approaches more efficient by replacing repetitive, routine, labor-intensive inspection activities with automated systems. These systems can make the safeguards approach more effective by addressing more completely the safeguards objectives at these facilities. Automated collection and analysis of the data can further enable the IAEA to move towards a fully-information driven inspection regime with randomized (from the operator's perspective), short-notice inspections. The reduction in repetitive on-site inspection activities would also be beneficial to plant operators, but only if sensitive and proprietary information can be protected and the new systems prove to be reliable. New facilities that incorporate Safeguards by Design into the earliest design stages can facilitate the effective DIV (Design Information Verification) of the plant to allow the inspectors to analyze the capacity of the plant, to project maximum production from the plant, and to provide a focus on the areas in the plant where credible diversion scenarios could be attempted. Facilitating efficient nuclear material accountancy by simplifying process pipework and making flow measurement points more accessible can allow for easier estimation of plant holdup and a potential reduction in the number of person-days of inspection. Lastly, a universal monitoring standard that tracks the location, movement, and use of UF 6 cylinders may enhance the efficiency of operations at industry sites and would

  17. Nuclear Safeguards Culture

    International Nuclear Information System (INIS)

    Findlay, T.

    2015-01-01

    The paper will consider safeguards culture both at the IAEA and among member states. It will do so through the lens of organizational culture theory and taking into account developments in safeguards since the Iraq case of the early 1990s. The study will seek to identify the current characteristics of safeguards culture and how it has evolved since the 93+2 programme was initiated, as well as considering the roles of the most important purveyors of such culture, including member states and their national safeguards authorities, the General Conference and Board of Governors, the Director General, the Secretariat as a whole, the Safeguards Department and the inspectorate. The question of what might be an optimal safeguards culture at the Agency and among member states will be investigated, along with the issue of how such a culture might be engendered or encouraged. (author)

  18. Safeguards and nuclear forensics

    International Nuclear Information System (INIS)

    Gangotra, Suresh

    2016-01-01

    Nuclear Safeguards is the detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons, or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by early detection. Safeguards implementation involves nuclear material accounting and containment and surveillance measures. The safeguards are implemented in nuclear facilities by the states, or agencies and International Atomic Energy Agency (IAEA). The measures for the safeguards include nuclear material Accounting (NUMAC) and Containment and surveillance systems. In recent times, there have been advances in safeguards like Near Real Time Monitoring (NRTM), Dynamic Nuclear Material Accounting (DNMA), Safeguards-by-Design (SBD), satellite imagery, information from open sources, remote monitoring etc

  19. Overview of the Facility Safeguardability Analysis (FSA) Process

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  20. Designing a safeguards approach for the transfer and storage of used fuel

    International Nuclear Information System (INIS)

    Benjamin, Robert; Truong, Q.S. Bob; Keeffe, Richard; Whiting, Neville; Green, Brian

    2001-01-01

    Full text: To provide needed space in the bays for continued CANDU reactor discharges, used fuel must be moved from the bays to dry storage facilities, which are built on site. Over the next decades, used fuel in the bays in Canada will be loaded into containers or transfer flasks and moved to the dry storage facilities. The IAEA currently verifies the transfer of used fuel to dry storage at the Point Lepreau and Gentilly and Pickering CANDU reactor stations. When the Bruce Used Fuel Dry Storage Facility starts operating in 2002 followed by the Darlington Used Fuel Dry Storage Facility in 2007-2009 increased Agency safeguards resources will be required. Safeguarding these new facilities and the flow of fuel to them would place additional demand on IAEA resources if the current approach, which relies heavily upon inspectors being present at the facility, were used. In a continuous search for more efficient approaches, the IAEA, the Canadian Nuclear Safety Commission, and the facility operators are working together to develop a safeguards scheme that depends less upon inspectors and more upon instruments, operator activity and remote monitoring. This paper describes the current approach to safeguarding used fuel in transit and in storage at the Pickering site and how that approach might be applied to the Bruce site. Alternative approaches are also discussed and their application to existing and future used fuel dry storage facilities is considered. Safeguards approaches under existing Safeguards Criteria are compared with approaches that might be possible under a safeguards regime strengthened by the Additional Protocol, and with approaches optimised under Integrated Safeguards. The technologies being considered to safeguard used fuel include position tracking using Global Positioning System (GPS), Geospatial Information System (GIS), radio frequency techniques, electronic seals, operator activity and remote surveillance and monitoring. (author)

  1. Safeguards Implementation Guide for States with Small Quantities Protocols (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The International Atomic Energy Agency (IAEA) works to enhance the contribution of nuclear energy for peace and prosperity around the world, while helping to ensure that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices. In implementing safeguards, the IAEA plays an instrumental independent verification role, providing credible assurances that States' safeguards commitments are being respected. Most of the world's non-nuclear-weapon States (NNWSs) have concluded comprehensive safeguards agreements (CSAs) with the IAEA, pursuant to the Treaty on the Non- Proliferation of Nuclear Weapons (NPT). The IAEA and States are required to cooperate in the implementation of such agreements. Effective cooperation demonstrates a State's commitment to the peaceful use of nuclear energy and furthers the State's national interests by reducing the risk of unauthorized use of nuclear material. Over 100 NNWSs party to the NPT have very limited quantities of nuclear material and have concluded protocols to their CSAs which hold in abeyance many procedures in Part II of a CSA. These protocols are referred to as 'small quantities protocols' or 'SQPs' and remain in effect as long as the State meets certain eligibility criteria. The purpose of an SQP is to reduce the burden of safeguards implementation for States with little or no nuclear activities, while retaining the integrity of the safeguards system. States with SQPs have very important obligations they must fulfil under their CSAs. In 1997, as part of the IAEA's efforts to strengthen its safeguards system, the Model Additional Protocol to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards was developed to provide the IAEA with broader access to information and locations, thus significantly increasing the IAEA's ability to provide assurance of the absence of undeclared nuclear material and activities in States. Many States with SQPs have

  2. Safeguards Implementation Guide for States with Small Quantities Protocols (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The International Atomic Energy Agency (IAEA) works to enhance the contribution of nuclear energy for peace and prosperity around the world, while helping to ensure that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices. In implementing safeguards, the IAEA plays an instrumental independent verification role, providing credible assurances that States' safeguards commitments are being respected. Most of the world's non-nuclear-weapon States (NNWSs) have concluded comprehensive safeguards agreements (CSAs) with the IAEA, pursuant to the Treaty on the Non- Proliferation of Nuclear Weapons (NPT). The IAEA and States are required to cooperate in the implementation of such agreements. Effective cooperation demonstrates a State's commitment to the peaceful use of nuclear energy and furthers the State's national interests by reducing the risk of unauthorized use of nuclear material. Over 100 NNWSs party to the NPT have very limited quantities of nuclear material and have concluded protocols to their CSAs which hold in abeyance many procedures in Part II of a CSA. These protocols are referred to as 'small quantities protocols' or 'SQPs' and remain in effect as long as the State meets certain eligibility criteria. The purpose of an SQP is to reduce the burden of safeguards implementation for States with little or no nuclear activities, while retaining the integrity of the safeguards system. States with SQPs have very important obligations they must fulfil under their CSAs. In 1997, as part of the IAEA's efforts to strengthen its safeguards system, the Model Additional Protocol to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards was developed to provide the IAEA with broader access to information and locations, thus significantly increasing the IAEA's ability to provide assurance of the absence of undeclared nuclear material and activities in States. Many States with SQPs have

  3. International safeguards: experience and prospects

    International Nuclear Information System (INIS)

    Keepin, G.R.; Menlove, H.O.

    1982-01-01

    IAEA safeguards have been applied to over 95% of the nuclear material and facilities outside of the nuclear weapon states. The present system of nonproliferation agreements implemented by IAEA safeguards likely will not be changed in the foreseeable future. Instruments used for nondestructive analysis are described: portable multichannel analyzer, high-level neutron coincidence counter, active well coincidence counter, and neutron coincidence collar. 7 figs

  4. Validation of CsNaIF data evaluation software. Final report on task FIN A940 on the Finnish support programme to IAEA safeguards

    International Nuclear Information System (INIS)

    Kaartinen, J.

    1996-07-01

    A new computer programme, called CsNaIF, which calculates the area of 137 Cs peak in spent fuel spectra has been developed for IAEA. This programme has been tested and evaluated in this report. Evaluation has been made by calculating different types of SFAT spectra (NaI- and CdTe-SFAT) with the validated software and with a research grade gamma spectroscopy software, SAMPO 90. Obtained results, mainly 137 Cs peak areas and their errors, have been compared and perceived differences have been reported. Also some recommendations of the usability of CsNaIF programme have been made for IAEA. (orig.) (4 refs.)

  5. Safeguards Practices and Future Challenges for Peaceful Use of Nuclear Energy in Bangladesh

    International Nuclear Information System (INIS)

    Islam, M.S.; Chowdhury, M.D.A.; Kibria, A.F.; Alam, H.B.

    2015-01-01

    Nuclear material and different category of radiation sources are being used in industries, R&D & education purposes. All of them are used for human welfare and economic uplift of the country. Prior to use, Bangladesh has firmly committed for the peaceful use of nuclear energy in a safe, secured and non-proliferation manner. Bangladesh has regularly provided credible assurance about the non-diversion of nuclear material as well as the absence of undeclared material and activities to the international community by fulfiling the obligations under the NPT and Comprehensive Safeguards Agreements (CSA) over the last 35 years. IAEA approved the State Level Safeguards Approach (SLA) for Bangladesh on 1 December, 2006 and consequently Bangladesh entered into the Integrated Safeguards (IS) regime on 1 January, 2007. The Government of Bangladesh enacted a comprehensive nuclear law titled ''Bangladesh Atomic Energy Regulatory (BAER) Act-2012'' and under this act established ''Bangladesh Atomic Energy Regulatory Authority (BAERA)'' in February 2013 to regulate all nuclear activities and to fulfil its international obligations. Furthermore, Bangladesh has signed agreements with Russia for setting up two 1000 MWe generation-III VVER type power reactors. During the INIR missions conducted by IAEA, the team identified some gaps and then recommended to develop, implement and to enforce of safeguards framework including strengthening the SSAC's oversight capability embarking the first nuclear power program in the country. Bangladesh is working on legal and regulatory requirements in adopting the VVER technology into the BAER Act-2012 related to safeguards. The purpose of this paper is to present an overview of country's practices in implementing the IAEA safeguards and also to provide with an in-depth look at the legislations, regulations and facility procedures for strengthening the safeguards infrastructure and to identify future

  6. How safe are nuclear safeguards

    International Nuclear Information System (INIS)

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  7. Integrated safeguards: Australian views and experience

    International Nuclear Information System (INIS)

    Carlson, J.; Bragin, V.; Leslie, R.

    2001-01-01

    Full text: Australia has had a pioneering role in assisting the IAEA to develop the procedures and methods for strengthened safeguards, both before and after the conclusion of Australia's additional protocol. Australia played a key role in the negotiation of the model additional protocol, and made ratification a high priority in order to encourage early ratification by other States. Australia was the first State to ratify an additional protocol, on 10 December 1997, and was the first State in which the IAEA exercised complementary access and managed access under an additional protocol. Australia has undergone three full cycles of evaluation under strengthened safeguards measures, enabling the Agency to conclude it was appropriate to commence implementation of integrated safeguards. In January 2001 Australia became the first State in which integrated safeguards are being applied. As such, Australia's experience will be of interest to other States as they consult with the IAEA on the modalities for the introduction of integrated safeguards in their jurisdictions. The purpose of the paper is to outline Australia's experience with strengthened safeguards and Australia's views on the implementation of integrated safeguards. Australia has five Material Balance Areas (MBAs), the principal one covering the 10 MWt research reactor at Lucas Heights and the associated inventory of fresh and irradiated HEU fuel. Under classical safeguards, generally Australia was subject to annual Physical Inventory Verifications (PIVs) for the four MBAs at Lucas Heights, plus quarterly interim inspections, making a total of four inspections a year (PIVs for the different MBAs were conducted concurrently with each other or with interim inspections in other MBAs), although there was a period when the fresh fuel inventory exceeded one SQ, requiring monthly inspections. Under strengthened safeguards, this pattern of four inspections a year was maintained, with the addition of complementary

  8. Defining and Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2010-01-01

    In light of the shift toward State Level Evaluations and information driven safeguards, this paper offers a refined definition of safeguards culture and a set of metrics for measuring the extent to which a safeguards culture exists in a state. Where the IAEA is able to use the definition and metrics to come to a positive conclusion about the country, it may help reduce the burden on the Agency and the state.

  9. A study on strengthening measures of non-proliferation regime through the export control system of sensitive materials, equipment and technology related to nuclear activities

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Kurosawa, Mitsuru; Komizo, Yasuyoshi

    2004-01-01

    The strengthened safeguards caused from safeguards experiences to Iraq and DPRK leads to the expansion of the IAEA's activities for verification of all nuclear activities as well as verification of nuclear material in the States. The purpose of the activities, of course, includes detection of undeclared exports and imports of specified equipment and non-nuclear material. The Additional Protocol to the agreements between States and the IAEA for the application of safeguards requires to the States to declare the exports and imports information regarding specified equipment and non-nuclear material corresponding to the export control list that is established by the nuclear suppliers group. The Additional Protocol also insists the IAEA's right to access to the location identified by the State to resolve a question related to the declarations. Recently, the IAEA detected the black market group of the sensitive materials, equipment and technologies relevant to the nuclear proliferation through the safeguards activities to Iran and Libya. International community stated deeply concerns to the indecent facts. This paper would discuss and propose the supplemental strengthening measures of non-proliferation regime by effective combination of the safeguards activities under additional protocol and the export control regime. (author)

  10. Information-Driven Safeguards: A Country Officer's Perspective

    International Nuclear Information System (INIS)

    Gyane, E.

    2010-01-01

    Since the transition from 'traditional' to strengthened safeguards, the evaluation and analysis of information has played an increasingly important role in the Agency's safeguards activities. During the State evaluation process, the Agency utilizes all available information for drawing credible safeguards conclusions. Besides State declared information and data gathered during inspections, a large number of information sources are reviewed for any indications of safeguards relevance. The State level approach - in contrast to the facility-based approach under traditional safeguards - considers the acquisition paths available to a State and adjusts safeguards intensity accordingly. An additional protocol widens the information base available to the Agency for analysis and evaluation and it extends the Agency's access rights in the field. The use of information for determining safeguards activities is often referred to as 'information-driven safeguards'. Country officers are inspectors in the Department of Safeguards Operations Divisions who are responsible for States and thus form the base of the Agency's information chain. The information-driven safeguards approach has led to a significant change in the role of inspector country officers: While the verification of declared nuclear material remains the cornerstone of the IAEA Safeguards System, country officers are now not only expected to be knowledgeable about the inspection-related aspects in their countries. They also need to act on information on their States coming from a variety of sources on an ongoing basis, in order to identify proliferation indicators at an early stage. Country officers thus analyse developments in their States as well as their States' relations with other States. They review scientific literature for research that could potentially be of safeguards relevance. They observe their States' nuclear facilities from satellite imagery. They evaluate reports on nuclear trade between their States

  11. Safeguards by design - The early consideration of safeguards concepts

    International Nuclear Information System (INIS)

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  12. Facility Safeguardability Analysis in Support of Safeguards by Design

    International Nuclear Information System (INIS)

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  13. Technical basis of safeguards

    International Nuclear Information System (INIS)

    Buechler, C.

    1975-01-01

    Definition of nuclear materials control. Materials accountancy and physical control as technical possibilities. Legal possibilities and levels of responsibility: material holders, national and international authority. Detection vs. prevention. Physical security and containment surveillance. Accountancy: materials balance concept. Materials measurement: inventory taking, flow determination. IAEA safeguards; verification of operator's statement. (HP) [de

  14. Evaluating National Nuclear Safeguards System Implementation in the Republic of Moldova

    International Nuclear Information System (INIS)

    Mursa, E.; Sidorencu, A.; Vasilieva, N.; Sirbu, I.

    2015-01-01

    Strengthening the multilateral system of Nuclear Safeguards by the International Atomic Energy Agency (IAEA), imposed by the increasing cross-border illicit trafficking of nuclear material and redirecting for military purposes has led Republic of Moldova to ratify on 1 June 2012 the Additional Protocol (INFCIRC/690) to the Agreement of Nuclear Safeguards in relation with the NPT. This was followed by the adoption in the Parliament on 8 June 2012, of the new Law no. 132 of 08.06.2012 on the safe conduct of nuclear and radiological activities, which extends the power of the National Agency for Regulation of Nuclear and Radiological Activities (NARNRA) and details the measures to strengthen the Nuclear Safeguards in the country. The NARNRA implements safeguards measures in relation to nuclear materials by: – normative acts development; – establishing a system for inspecting of nuclear material; – implementing inventory-taking and reporting procedures for quantities of nuclear material; – implementing authorisation and monitoring procedures for the movements of nuclear material; – implementing procedures for reporting quantities of nuclear material to the IAEA; – maintaining and updating the national register of nuclear materials. A very important role to achieve results is the cooperation with the IAEA. Thus, was developed and agreed the Joint Action Plan for implementing the provisions of the Additional Protocol to the Safeguards Agreement, which is an essential aid in fulfilling the country’s international obligations. In this respect have been obtained some good practices: – Routinely performed national inspections; – On-line information provision from the Customs check points; – Developed special form for nuclear material in the National Register; – Systematic interaction with Ministry of Foreign Affairs, Ministry of Internal Affairs and authorisation holders; – Annual and quarterly presentation to the IAEA of the reports on SQP and the

  15. Safeguards by Design Challenge

    International Nuclear Information System (INIS)

    Alwin, Jennifer Louise

    2016-01-01

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA's limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  16. Planning of Medium- and Long-Term Strategy for the Safeguards Technology Development

    International Nuclear Information System (INIS)

    Shin, Dong Hoon; Ahn, Gil Hoon; Choi, Kwan Gyu

    2009-01-01

    In Rep. of Korea, active safeguards technology development suitable to phase of a nuclear advanced country is necessary because of below reasons. First reasons are '6th ranked position in the nuclear energy generation all over the world', 'continuously increased outcomes in the various nuclear fields such as research or patent', 'strengthened intention of the new government for nuclear industries', and 'weakness of the R and D foundation related to the safeguards technology'. Second reasons are optimization necessity of the effectiveness and efficiency of safeguards according to enlargement of the SSAC (State Systems of Accounting for and Control) role. The reason of the enlargement of the SSAC is IAEA IS (Integrated Safeguards) application for Korea. Third reasons are necessity for the systematic national development plan considering the Korea R and D level and the degree of the difficulty of technology. This is to say, there is necessity of the system construction of safeguards technology development connected to the NuTRM(Nuclear Technology Road Map), integrated national nuclear energy promotion plans because of necessity for concentration of the technology level and development abilities which are spread in the industry fields, the academic world and research fields. So, in this study, the foundation of the advanced safeguards technology is provided through determining the priority of the individual technology of National Safeguards, establishing development strategy for the middle or long term of Safeguards technology, based on domestic and foreign status

  17. Clarifying the role of the IAEA

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    The IAEA has many roles in promoting the role of nuclear energy for peaceful purposes. The most significant role that the IAEA undertakes is the development and application of safeguards to nuclear material, other material, equipment and facilities; this work consumes about 35% of the IAEA budget. The authority, procedures and limitations for the application of safeguards were described together with the relationship between the IAEA and the States where safeguards are in effect. Claims that the IAEA is not adequately fulfilling its safeguard role are usually based on misunderstandings of its role and authority. The IAEA's relationship to inspected States is not adversarial, regulatory, or guarding. It provides assurance to all States that peaceful nuclear activities are not diverted to a military program and in so doing enhances the reputation of States to whom safeguards are applied. Safeguards would be only one of many factors that would be involved in a States embarking on a military nuclear program. If proliferation of nuclear weapons occurs, this may be due in entirety or in part to these other factors. Many States could now undertake a military program but do not do so, because of their enlightened viewpoint that such activities are not in their own, or the world's best interests. However, any trend to further proliferation of nuclear weapons could be diminished by: -a lessening of political and economic tension between States, -restrictions on the supply of required technology, equipment, and material, and -an effective IAEA safeguard regime. There has been a regrettable trend to politicization in the direction and operation of the IAEA. It is hoped that this trend will be reversed and that IAEA will return to its earlier more technical role. There is a pressing need for the general public and governments to more fully understand the IAEA's role and its limitations

  18. Development of in-field monitoring techniques. Report on Task FIN A845 on the Finnish Support Programme to IAEA Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Toivonen, H; Honkamaa, T; Kansanaho, A; Poellaenen, R [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Aerosol Lab.; Aarnio, P; Ala-Heikkilae, J; Nikkinen, M [Helsinki Univ. of Technology, Otaniemi (Finland). Nuclear Engineering Lab.

    1994-12-01

    Several in-field measuring techniques were identified for use in safeguards inspections. The radiation measurements play a major role in seeking environmetal signatures. A high-resolution gamma-ray spectrometer, either in-situ or in sample analysis, gives unequivocal evidence of nuclear activities on the site of interest. Although portable spectrometers are commercially available, hardware development and software tailoring seem to be necessary before efficient mobile measurements can be initiated. To understand trends and pattern of contamination, the results of the measurements have be displayed on digital maps. GPS-integration is an essential requirement for the equipment in environmental monitoring. (orig.) (14 refs., 5 figs., 17 tabs.).

  19. Advanced training course on state systems of accounting for and control of nuclear materials. Volume I. Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Schneider, R.A.

    1979-01-01

    Purpose of the course was to provide practical training in the implementation and operation of a national system of accounting for and control of nuclear materials in a bulk processing facility, in the context of international safeguards. This course extends the training received in the basic course on State Systems of Accounting for and Control of Nuclear Materials to a practical, illustrative example utilizing the Exxon Nuclear low enriched uranium fabrication plant. Volume I of this manual contains the text of the presentations following the outline of the syllabus. Sample problems and answers are also included, along with some visual aids

  20. Development of in-field monitoring techniques. Report on Task FIN A845 on the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Toivonen, H.; Honkamaa, T.; Kansanaho, A.; Poellaenen, R.; Aarnio, P.; Ala-Heikkilae, J.; Nikkinen, M.

    1994-12-01

    Several in-field measuring techniques were identified for use in safeguards inspections. The radiation measurements play a major role in seeking environmetal signatures. A high-resolution gamma-ray spectrometer, either in-situ or in sample analysis, gives unequivocal evidence of nuclear activities on the site of interest. Although portable spectrometers are commercially available, hardware development and software tailoring seem to be necessary before efficient mobile measurements can be initiated. To understand trends and pattern of contamination, the results of the measurements have be displayed on digital maps. GPS-integration is an essential requirement for the equipment in environmental monitoring. (orig.) (14 refs., 5 figs., 17 tabs.)

  1. 20 years of the implementation of the safeguards agreements

    International Nuclear Information System (INIS)

    Ramirez Quijada, Renan

    2001-01-01

    Peru has signed an INFIRC/153 type safeguards agreement with the IAEA in 1979. The paper describes the nuclear material under control and outlines the organization and the activities related to the implementation of the safeguards agreements

  2. IAEA at a glance

    International Nuclear Information System (INIS)

    Kinley, D. III

    1997-12-01

    The publication briefly describes the 'peaceful universe' and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  3. IAEA at a glance

    Energy Technology Data Exchange (ETDEWEB)

    Kinley, D III

    1997-12-01

    The publication briefly describes the `peaceful universe` and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  4. SGNucDat. Safeguards nuclear data for windows. Summary documentation

    International Nuclear Information System (INIS)

    Lemmel, H.D.; Schwerer, O.

    1996-01-01

    SGNucDat is a PC code displaying recommended values of nuclear data that are required for nuclear materials analyses by IAEA safeguards. Diskette and report available from the IAEA Nuclear Data Section, costfree upon request. (author)

  5. Introduction of designated organization to safeguards implementation in Japan

    International Nuclear Information System (INIS)

    Terada, Hiromi; Akiba, Mitsunori; Ando, Hisataka; Okazaki, Shuji; Irikura, Masatoshi; Kurihara, Hiroyoshi

    2000-01-01

    With domestic application of the IAEA new measures (program 93+2) for strengthening the effectiveness and improving the efficiency of the safeguards system, the Nuclear Regulation Laws was amended for implementation of the new measures based upon the Additional Protocol, and also the new Designated Organization System was introduced to the SSAC (States' System of Accounting for and Control of Nuclear Materials) for safeguards implementation in Japan since beginning of January 2000. On the basis of accumulated experiences of the state safeguards implementation for more than 20 years and then established standardization of the inspection procedures, the Japan's Government is able to utilize the expertise of private organizations for the safeguards implementation. Any capable organizations can be designated by the Government as the Designated Organization for all or a part of safeguards implementations on behalf of the Government. According to the amended Law, the Prime Minister can make the Designated Organization implement safeguards implementations that are defined firstly as safeguards inspections which can be done along the Government instructions without any discussions and decisions, secondarily as destructive analysis of safeguards samples, and thirdly as technical research on advanced safeguards measures. The amendment of the Law was approved by the National Diet on June 9th 1999 and entered into force on December 16th 1999. The Additional Protocol also entered into force in Japan at the same time. The NMCC (Nuclear Material Control Center) was designated as the Organization on December 27th 1999 and started the safeguards implementation in January 7th 2000. In order to prepare for the Designated Organization, the NMCC rearranged the organizational system and kept capable human resources enough for the safeguards implementations. Also the NMCC carried out many programs of education and training for the inspectors. Furthermore, manuals and criteria for the

  6. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  7. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  8. Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is aimed at enhancing States' understanding of the safeguards obligations of both the State and the IAEA, and at improving the cooperation between States and the IAEA in safeguards implementation. It is principally intended for State or regional safeguards regulatory authorities and facility operators, and is a reference document that will be supported by detailed guidance and examples in 'Safeguards Implementation Practices' (SIPs) to be published separately.

  9. Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is aimed at enhancing States’ understanding of the safeguards obligations of both the State and the IAEA, and at improving the cooperation between States and the IAEA in safeguards implementation. It is principally intended for State or regional safeguards regulatory authorities and facility operators, and is a reference document that is supported by detailed guidance and examples in safeguards implementation practices presented in other publications in the series. (This version is the 2016 update.)

  10. The International Atomic Energy Agency - IAEA

    International Nuclear Information System (INIS)

    Pezzutti, A.A.C.

    1980-01-01

    The origens, functions and objectives of the IAEA are analysed. The application of safeguards to avoid military uses of nuclear energy is discussed. In the final section the agrement between Brazil and Germany regarding IAEA safeguards, as well as the competence for executing the brazilian program are explained. It is, then, an informative study dealing with nuclear energy and its peaceful path, the creation of International Fuel Cycle Evaluation and nonproliferation [pt

  11. Legal instruments related to the application of safeguards

    International Nuclear Information System (INIS)

    Rockwood, Laura

    2001-01-01

    The legal framework of IAEA safeguards consists of a number of elements, not at all of which are documents. These elements include the Statute of the IAEA; treaties and supply agreements calling for verification of nonproliferation undertakings; the basic safeguards documents, the safeguards agreements themselves, along with the relevant protocols and subsidiary arrangements; and finally, the decisions, interpretations and practices of the Board of Governors. After a discussion of these elements the major differences between the various types of IAEA safeguards agreements are outlined. Finally the procedures involved in the initiation, negotiation, conclusion and amendment of safeguards agreements are described. (author)

  12. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  13. Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  14. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  15. Desktop mapping using GPS. SAHTI - a software package for environmental monitoring. Report on task JNTB898 on the Finnish support programme to IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Ilander, T; Kansanaho, A; Toivonen, H

    1996-02-01

    Environmental sampling is the key method of the IAEA in searching signatures of a covert nuclear programme. However, it is not always easy to know the exact location of the sampling site. The satellite navigation system, utilizing a small receiver (GPS) and a PC, allows to have independent positioning data easily. The present task on the Finnish Support Programme was launched to create software to merge information about sampling and positioning. The system is build above a desktop mapping software package. However, the result of the development goes beyond the initial goal: the software can be used to real- time positioning in a mobile unit utilizing maps that can be purchased or produced by the user. In addition, the system can be easily enlarged to visualize data in real time from mobile environmental monitors, such as a Geiger counter, a pressurized ionisation chamber of a gamma-ray spectrometer. (orig.) (7 figs.).

  16. Desktop mapping using GPS. SAHTI - a software package for environmental monitoring. Report on task JNTB898 on the Finnish support programme to IAEA safeguards

    International Nuclear Information System (INIS)

    Ilander, T.; Kansanaho, A.; Toivonen, H.

    1996-02-01

    Environmental sampling is the key method of the IAEA in searching signatures of a covert nuclear programme. However, it is not always easy to know the exact location of the sampling site. The satellite navigation system, utilizing a small receiver (GPS) and a PC, allows to have independent positioning data easily. The present task on the Finnish Support Programme was launched to create software to merge information about sampling and positioning. The system is build above a desktop mapping software package. However, the result of the development goes beyond the initial goal: the software can be used to real- time positioning in a mobile unit utilizing maps that can be purchased or produced by the user. In addition, the system can be easily enlarged to visualize data in real time from mobile environmental monitors, such as a Geiger counter, a pressurized ionisation chamber of a gamma-ray spectrometer. (orig.) (7 figs.)

  17. Nuclear safeguards implementations in Taiwan

    International Nuclear Information System (INIS)

    Hou, R-H.; Chang, C-K.; Lin, C-R.; Gone, J-K.; Chen, W-L.; Yao, D.

    2006-01-01

    Full text: Now with six Nuclear Power Plant (NPP) units in operation, two Advanced Boiling Water Reactor (ABWR) units under construction, and other peaceful applications of nuclear and radiation technology expanding in great pace, the Atomic Energy Council (AEC) has been focused on reactor safety regulation, radiation protection, radioactive waste administration, environmental monitoring and R and D for technology development and other civilian nuclear applications. Despite Taiwan's departure from the United Nations and therefore its family member International Atomic Energy Agency (IAEA) in 1971, Taiwan remains its commitment to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). To date, Taiwan is still part of the international nuclear safeguards system and accepts IAEA's inspections in accordance with its regulations on nuclear safeguards. In 1998, Taiwan further agreed, through exchange of letters between the AEC and IAEA, to implementation of the measures provided for in the model Protocol Additional to its safeguards agreement. In this paper, we will introduce Taiwan's nuclear safeguards history and describe some highlights of safeguards implementation in recent years, such as complementary accesses, transparency visits, remote monitoring inspections, unannounced inspections, facility attachment termination for the decommissioned facilities, and annual safeguards implementation meeting with IAEA

  18. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  19. Evolution of a safeguards support program: POTAS past and future

    International Nuclear Information System (INIS)

    Kessler, J.C.; Reisman, A.W.

    1992-01-01

    When the Non-Proliferation Treaty came into force, the International Atomic Energy Agency (IAEA) became for the first time responsible for implementing full-scope safeguards in many countries, including countries with large and sophisticated nuclear programs. The IAEA's Department of Safeguards did not have the safeguards technology appropriate for these rapidly expanding responsibilities, nor did it have a research and development program to respond to that need. In response to this situation, the United States initiated the US Program of Technical Assitance to IAEA Safeguards (POTAS) in 1977. This program was originally intended to be a 5-yr, $5 million program. As the United States and the IAEA began to implement this program, several things rapidly became clear. Meeting the evolving safeguards technology needs would require much more than $5 million; within the first 5 yr, the United States allocated more than $20 million. This paper summarizes the policies activities, and practices POTAS has employed in support of IAEA safeguards program

  20. Concepts of IAEA nuclear materials accounting

    International Nuclear Information System (INIS)

    Oakberg, John A.

    2001-01-01

    The paper describes nuclear material accounting from the standpoint of IAEA Safeguards and how this accounting is applied by the Agency. The basic concepts of nuclear material accounting are defined and the way these apply to States with INFCIRC/153-type safeguards agreements is presented. (author)

  1. United States Program for Technical assistance to IAEA Standards

    International Nuclear Information System (INIS)

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ''Knowledge Acquisition Skills'' in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively

  2. Safeguards Implementation Practices Guide on Establishing and Maintaining State Safeguards Infrastructure

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreements. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This

  3. Safeguards by Design Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  4. IAEA Director General to Visit Iran

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: IAEA Director General Yukiya Amano will travel to Tehran on 10 November 2013 to meet senior Iranian leaders on Monday, 11 November 2013, with the aim of strengthening dialogue and cooperation. Separately, as previously announced, IAEA and Iranian experts will meet in Tehran on Monday to discuss technical issues. IAEA)

  5. Contribution of the ''safeguarded'' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in Safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. Management has many reasons to exercise stringent control of nuclear materials stemming from the value and hazardous nature of the materials being used, and the requirements of relevant national legislation. Because systems at a plant and within a State are generally designed to control quantities of nuclear materials within limits smaller than those specified in the I.A.E.A.'s Safeguards objectives, experience at the plant level has contributed significantly to the development of International Safeguards procedures. In making such contributions, plant management and the national authorities have a common objective with that of the I.A.E.A. in developing a Safeguards system which is both technically-effective and cost-effective. The pursuit of this objective requires that implementation of the Safeguards system can be modified in the light of relevant practical experience of plant operators and of the I.A.E.A. The familiar Blue Book (INFCIRC 153) recognises clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective I.A.E.A. system of Safeguards. It is therefore helpful to review the relevant contributions from the 'Safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of

  6. Contribution of the 'safeguarded' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  7. Relations between SSAC and the IAEA

    International Nuclear Information System (INIS)

    Buechler, C.

    1985-01-01

    Nuclear and non nuclear material, services, facilities, equipment and information which are to be used for legally defined purposes may be deliberately diverted from these purposes. Actions aimed at the detection and deterrence of this diversion are known as safeguards. The development of safeguard regulations within the IAEA is described from a historical perspective in part 1 of this report. In part 2 potential divertors and diversion methods are described. Part 3 contains a description of current IAEA safeguards implementation, including discussions of accountancy, surveillance, containment and verification

  8. Activities at Forschungszentrum Juelich in Safeguards Analytical Techniques and Measurements

    International Nuclear Information System (INIS)

    Duerr, M.; Knott, A.; Middendorp, R.; Niemeyer, I.; Kueppers, S.; Zoriy, M.; Froning, M.; Bosbach, D.

    2015-01-01

    The application of safeguards by the IAEA involves analytical measurements of samples taken during inspections. The development and advancement of analytical techniques with support from the Member States contributes to strengthened and more efficient verification of compliance with non-proliferation obligations. Since recently, a cooperation agreement has been established between Forschungszentrum Juelich and the IAEA in the field of analytical services. The current working areas of Forschungszentrum Juelich are: (i) Production of synthetic micro-particles as calibration standard and reference material for particle analysis, (ii) qualification of the Forschungszentrum Juelich as a member of the IAEA network of analytical laboratories for safeguards (NWAL), and (iii) analysis of impurities in nuclear material samples. With respect to the synthesis of particles, a dedicated setup for the production of uranium particles is being developed, which addresses the urgent need for material tailored for its use in quality assurance and quality control measures for particle analysis of environmental swipe samples. Furthermore, Forschungszentrum Juelich has been nominated as a candidate laboratory for membership in the NWAL network. To this end, analytical capabilities at Forschungszentrum Juelich have been joined to form an analytical service within a dedicated quality management system. Another activity is the establishment of analytical techniques for impurity analysis of uranium-oxide, mainly focusing on inductively coupled mass spectrometry. This contribution will present the activities at Forschungszentrum Juelich in the area of analytical measurements and techniques for nuclear verification. (author)

  9. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 9 December 1999

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1999-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 9 December 1999. The following aspects from the Agency's activity are briefly presented: IAEA's safeguards, physical protection of nuclear material, the status of Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), and Agency's actions in connection with Y2K possible problems

  10. Safeguards Implementation Guide for States with Small Quantities Protocols (Spanish Edition); Guia para la aplicacion de salvaguardias en los Estados con protocolos sobre pequenas cantidades

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-15

    The International Atomic Energy Agency (IAEA) works to enhance the contribution of nuclear energy for peace and prosperity around the world, while helping to ensure that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices. In implementing safeguards, the IAEA plays an instrumental independent verification role, providing credible assurances that States' safeguards commitments are being respected. Most of the world's non-nuclear-weapon States (NNWSs) have concluded comprehensive safeguards agreements (CSAs) with the IAEA, pursuant to the Treaty on the Non- Proliferation of Nuclear Weapons (NPT). The IAEA and States are required to cooperate in the implementation of such agreements. Effective cooperation demonstrates a State's commitment to the peaceful use of nuclear energy and furthers the State's national interests by reducing the risk of unauthorized use of nuclear material. Over 100 NNWSs party to the NPT have very limited quantities of nuclear material and have concluded protocols to their CSAs which hold in abeyance many procedures in Part II of a CSA. These protocols are referred to as 'small quantities protocols' or 'SQPs' and remain in effect as long as the State meets certain eligibility criteria. The purpose of an SQP is to reduce the burden of safeguards implementation for States with little or no nuclear activities, while retaining the integrity of the safeguards system. States with SQPs have very important obligations they must fulfil under their CSAs. In 1997, as part of the IAEA's efforts to strengthen its safeguards system, the Model Additional Protocol to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards was developed to provide the IAEA with broader access to information and locations, thus significantly increasing the IAEA's ability to provide assurance of the absence of undeclared nuclear material and activities in States. Many States with SQPs have

  11. Recent advances in safeguards operations

    International Nuclear Information System (INIS)

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  12. Opening remarks at the press conference on the outcome of the Board of Governors' consideration of the implementation of safeguards in the Islamic Republic of Iran. 26 November 2003, Vienna, Austria. IAEA Board of Governors

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    Full text: 1. This is a good day for peace, multilateralism and non-proliferation. - A good day for peace because the Board decided to continue to make every effort to use verification and diplomacy to resolve questions about Iran's nuclear programme. - A good day for multilateralism because the international community has decided to stand as one in addressing what is clearly a very critical issue, with serious implications. - A good day for non-proliferation because of the clear message coming from the international community that the integrity of the nuclear non-proliferation regime must be respected and upheld. 2. By today's decision, the international community affirmed, in no uncertain terms, the integrity of the nuclear non-proliferation regime by strongly deploring Iran's failures and breaches to comply with its obligations under the safeguards agreement. The international community also laid down a marker that Iran must strictly adhere to its non-proliferation obligations in both letter and spirit through a policy of active co-operation and full transparency. Importantly, and in addition, it made it clear that any serious failures in the future by Iran to comply with its obligations will be met with an appropriately serious response. 3. From a nuclear non-proliferation perspective we are in new territory with respect to Iran's nuclear programme. Through verification and diplomacy we now know much more about this programme, its nature, extent and development, than at any time in the past. Corrective actions to address past breaches and failures have been and are being taken by Iran. Iran has committed itself to a policy of full disclosure and has decided, as a confidence building measure, not only to sign the Additional Protocol, making way for more robust and comprehensive inspections, but also to take the important step of suspending all enrichment related and reprocessing activities and to accept IAEA verification of this suspension. These are positive

  13. TECHNOLOGY ROADMAPPING FOR IAEA SEALS.

    Energy Technology Data Exchange (ETDEWEB)

    HOFFHEINS,B.; ANNESE,C.; GOODMAN,M.; OCONNOR,W.; GUSHUE,S.; PEPPER,S.

    2003-07-13

    In the fall of 2002, the U.S. Support Program (USSP) initiated an effort to define a strategy or ''roadmap'' for future seals technologies and to develop a generalized process for planning safeguards equipment development, which includes seals and other safeguards equipment. The underlying objectives of the USSP include becoming more proactive than reactive in addressing safeguards equipment needs, helping the IAEA to maintain an inventory of cost-effective, reliable, and effective safeguards equipment, establishing a long-term planning horizon, and securing IAEA ownership in the process of effective requirements definition and timely transitioning of new or improved systems for IAEA use. At an initial workshop, seals, their functions, performance issues, and future embodiments were discussed in the following order: adhesive seals, metal seals, passive and active loop seals, ultrasonic seals, tamper indicating enclosures (including sample containers, equipment enclosures, and conduits). Suggested improvements to these technologies focused largely on a few themes: (1) The seals must be applied quickly, easily, and correctly; (2) Seals and their associated equipment should not unduly add bulk or weight to the inspectors load; (3) Rapid, in-situ verifiability of seals is desirable; and (4) Seal systems for high risk or high value applications should have two-way, remote communications. Based upon these observations and other insights, the participants constructed a skeletal approach for seals technology planning. The process begins with a top-level review of the fundamental safeguards requirements and extraction of required system features, which is followed by analysis of suitable technologies and identification of technology gaps, and finally by development of a planning schedule for system improvements and new technology integration. Development of a comprehensive procedure will require the partnership and participation of the IAEA. The

  14. Agreement reached on integrated safeguards in European Union

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: The International Atomic Energy Agency (IAEA), in cooperation with the European Commission, has reached agreement on arrangements to implement 'integrated safeguards' in all non-nuclear-weapon States of the European Union with significant nuclear activities. 'This important milestone is the result of the constructive common efforts of all parties concerned. It is a clear signal of the importance attributed by the EU and its Member States, as well as the IAEA, to the reinforcement of the nuclear non-proliferation regime,' said Andris Piebalgs, Member of the European Commission in charge of Energy. 'Once we have sufficient confidence that a State' s nuclear activities are purely peaceful, we can apply safeguards measures in a less prescriptive, more customised manner. This reduces the inspection burden on the State and the inspection effort of the IAEA, while enabling the IAEA to maintain the conclusion that all nuclear material has remained in peaceful activities,' said Olli Heinonen, Deputy Director General and Head of IAEA Safeguards Department. Background The Nuclear Non-Proliferation Treaty (NPT) is the main international Treaty prohibiting the spread of nuclear weapons. It entrusts the IAEA to verify that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices through the application of 'safeguards'. IAEA safeguards include comprehensive safeguards agreements and additional protocols that enable the IAEA to conclude that all nuclear material has remained in peaceful activities in a State. Integrated Safeguards refers to the optimum combination of all safeguards measures available to the Agency under comprehensive safeguards agreements and additional protocols to achieve maximum effectiveness and efficiency in meeting the Agency ' s safeguards obligations. In the European Union, nuclear safeguards are implemented on the basis of the Euratom Treaty and trilateral agreements between Euratom, its Member States and the IAEA

  15. International safeguards and nuclear terrorism

    International Nuclear Information System (INIS)

    Moglewer, S.

    1987-01-01

    This report provides a critical review of the effectiveness of International Atomic Energy Agency (IAEA) safeguards against potential acts of nuclear terrorism. The author argues that IAEA safeguards should be made applicable to deterring diversions of nuclear materials from civil to weapons purposes by subnational groups as well as by nations. Both technical and institutional factors are considered, and suggestions for organizational restructuring and further technical development are made. Awareness of the necessity for effective preventive measures is emphasized, and possible directions for further effort are suggested

  16. Future issues in international safeguards

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Markin, J.T.; Mullen, M.F.

    1991-01-01

    The introduction of large bulk-handling facilities into the internationally safeguarded, commercial nuclear fuel cycle, increased concerns for radiation exposure, and the constant level of resources available to the International Atomic Energy Agency (IAEA) are driving new and innovative approaches to international safeguards. Inspector resources have traditionally been allocated on a facility-type basis. Approaches such as randomization of inspections either within a facility or across facilities in a State or the application of a fuel-cycle approach within a State are being considered as means of conserving resources. Large bulk-handling facilities require frequent material balance closures to meet IAEA timeliness goals. Approaches such as near-real-time accounting, running book inventories, and adjusted running book inventories are considered as means to meet these goals. The automated facilities require that safeguards measures also be automated, leading to more reliance on operator-supplied equipment that must be authenticated by the inspectorate. New Non-Proliferation Treaty signatory States with advanced nuclear programs will further drain IAEA resources. Finally, the role of special inspections in IAEA safeguards may be expanded. This paper discusses these issues in terms of increasing safeguards effectiveness and the possible impact on operators. 14 refs

  17. Topical and working papers on heavy water accountability and safeguards

    International Nuclear Information System (INIS)

    This report contains the following papers: 1) Statement of IAEA concerning safeguarding of heavy water; 2) Preliminary Canadian Comments on IAEA document on heavy water safeguards; 3) Heavy water accountability 03.10.78; 4) Heavy water accountability 05.04.79

  18. Lessons learned in testing of Safeguards equipment

    International Nuclear Information System (INIS)

    Pepper, Susan; Farnitano, Michael; Carelli, Joseph

    2001-01-01

    Upgrade Travel Funding' - This subtask provides funding for the upgrade of DIS equipment installed in the field; E.125.3, 'DIS Radiation Field Characterization' - This subtask provides for the procurement by the IAEA of radiation measurement equipment and technical assistance for the characterization of radiation conditions in the locations where DIS will be installed. This will help the IAEA ensure that the design specifications for the equipment are consistent with the location where the instrument will be used; E.125.4, 'DIS Design Limit Testing and Advise to Strengthen IAEA's Current Equipment Qualification Criteria' - Under this subtask, Wyle Laboratories and Quanterion Solutions will conduct SDIS design limit testing, including harsh environmental testing and accelerated aging, to determine the expected lifetime and produce a design limit report to include maximum operating environment vs. design limit analysis. Additionally, this task will include the development of a strengthened environmental qualification test plan and reliability and maintainability definition methodology for all safeguards equipment. The implementation of new equipment by the Department of Safeguards is costly. Expected costs associated with the implementation of equipment include capital costs, training and in some cases travel. The cost is dramatically increased when operational issues arise due to the costs of studying the issues, modifying and upgrading the equipment and additional travel. The U.S. Support Program believes that the IAEA's Division of Safeguards Technical Support (SGTS) must strengthen its equipment-testing program to ensure that the equipment it approves for inspection use is reliable and will not place additional burden on the Department of Safeguards' maintenance and inspection staff. The U.S. Support Program recognizes that SGTS already requires a series of fundamentally important and revealing tests, but we believe that additional tests should be added to the testing

  19. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and

  20. Middle term prospects for Japan's safeguards

    International Nuclear Information System (INIS)

    Ogawa, T.

    2001-01-01

    Japan has responded to IAEA requirements on reinforced safeguard regulations. The IAEA additional protocol entered in force in Japan on December 1999. Japan submitted a preliminary information report to IAEA on June 2000 after joint works with the Nuclear Material Control Center (NMCC) of Japan. The first annual report was submitted to IAEA on May 2001. Another activity for the additional protocol is complementary accesses. The total 36 accesses to facilities have been done from November 2000 to September 2001. Procedures of access to managements are under discussion. MEXT (Ministry of Education, Culture, Sports, Science and Technology) has been constructing the Rokkasho Safeguards On-Site Laboratory from 1997, and the Rokkasho Safeguards Center from 2000. The Design Information Verification (DIV) is now ongoing. Much more personal resources will be needed for future inspections. Therefore, the budget for safeguards is increasing in contrast to the flat base budget for the total atomic energy. As for future activity, a MOX (Mixed Oxide Fuels) fuel processing plant is one of the issues for discussion. The construction of the MOX processing plant is supposed to begin on around 2004. The conclusion of additional protocol will be given by IAEA until end of 2002. Shift to integrated safeguards are under discussions by MEXT, NMCC and utilities of Japan parallel with IAEA. Key issues of discussion are cost saving for safeguards, development of personal resources for inspectors and the role of NMCC. (Y. Tanaka)

  1. Safeguards instrumentation: a computer-based catalog

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  2. Safeguards instrumentation: a computer-based catalog

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  3. Fuel cycle based safeguards

    International Nuclear Information System (INIS)

    De Montmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-07-01

    In NPT safeguards the same model approach and absolute-quantity inspection goals are applied at present to all similar facilities, irrespective of the State's fuel cycle. There is a continuing interest and activity on the part of the IAEA in new NPT safeguards approaches that more directly address a State's nuclear activities as a whole. This fuel cycle based safeguards system is expected to a) provide a statement of findings for the entire State rather than only for individual facilities; b) allocate inspection efforts so as to reflect more realistically the different categories of nuclear materials in the different parts of the fuel cycle and c) provide more timely and better coordinated information on the inputs, outputs and inventories of nuclear materials in a State. (orig./RF) [de

  4. Establishment of Accurate Calibration Curve for National Verification at a Large Scale Input Accountability Tank in RRP - For Strengthening State System for Meeting Safeguards Obligation

    International Nuclear Information System (INIS)

    Goto, Y.; Kato, T.; Nidaira, K.

    2010-01-01

    Tanks are installed in a reprocessing plant for spent fuel in order to account solution of nuclear material. The careful measurement of volume in tanks is crucial to implement accurate accounting of nuclear material. The calibration curve related with the volume and level of solution needs to be constructed, where the level is determined by differential pressure of dip tubes in tanks. More than one calibration curves depending on the height are commonly applied for each tank, but it's not explicitly decided how many segments are used, where to select segment, or what order of polynomial curve. Here we present the rational construction technique of giving optimum calibration curves and their characteristics. The tank calibration work has been conducted in the course of contract with Japan Safeguards Office (JSGO) about safeguards information treatment. (author)

  5. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  6. IAEA yearbook 1996

    International Nuclear Information System (INIS)

    1996-09-01

    Part A of the Yearbook describes the role played by the IAEA in helping to advance sustainable development by the transfer of nuclear and radiation technology. The introduction to this section this year discusses the application of quality assurance practices to this important work. The main article describes new planning procedures that are being adopted to ensure that these technical co-operation activities are of significant and practical benefit to the States concerned. The work routinely carried out by the IAEA on the development and dissemination of nuclear and radiation techniques covers a wide range of subjects - the practical aspects of physics and chemistry, hydrology, industrial applications, human health, and food and agriculture. Part B of the Yearbook concentrates on food irradiation and the use of nuclear monitoring techniques in programmes for improving human nutrition. Part C of the Yearbook deals with nuclear power and its fuel cycle and waste management technology. The section on nuclear power describes developments during 1995 in a wide range of countries. It also details the IAEA's work on the comparative health and environmental impacts of different types of energy systems. Of particular interest this year in the fuel cycle area is the report of the downturn in world uranium activities that has lasted for more than 15 years may be coming to an end. In the waste management section, emphasis is given to the technology of environmental restoration of sites after contamination resulting from past nuclear activities. A discussion of different aspects of the safety of nuclear power and of the uses of radiation is to be found in Part D, The Nuclear Safety Review. As in previous years, Part E of the IAEA Yearbook 1996 deals with the IAEA's major contribution to the non-proliferation regime - international safeguards. Part E also contains a description of IAEA activities designed to assist Member States in preventing trafficking in nuclear materials

  7. IAEA and EU Review Progress on Cooperation, Agree on Next Steps at Annual Meeting

    International Nuclear Information System (INIS)

    2018-01-01

    The International Atomic Energy Agency (IAEA) and the European Union (EU) reviewed progress achieved in working together on a range of nuclear activities and agreed to further enhance cooperation during their sixth annual Senior Officials Meeting in Vienna. The talks on 8 February at the IAEA’s headquarters provided a forum for exchanging views on strengthening collaboration on nuclear safety, security, safeguards, sustainable development, nuclear energy research and increasing innovation. The two organizations welcomed the fruitful cooperation and progress achieved over the past years. They agreed to deepen cooperation in several areas, particularly in the promotion of nuclear applications for sustainable development.

  8. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  9. Legal instruments related to the application of safeguards

    International Nuclear Information System (INIS)

    Rames, J.

    1999-01-01

    This presentation discusses the legal framework of IAEA Safeguards which consists of a number of elements, including agreements calling for verification of nonproliferation undertakings, basic safeguards documents (INFCIRC/66/Rev.2, INFCIRC/153 (Corr..), INFCIRC/540 (Corr.), INFCIRC/9/Rev.2, GC(V)/INF/39), the safeguards agreements themselves, along with the relevant protocols and subsidiary arrangements, and finally the decisions, interpretations and practices of the Boards of Governors. Major differences between the various types of IAEA safeguards agreements are outlined. Procedures involved in the initiation, negotiation, conclusion and amendment of safeguard agreements are described

  10. SARP-II: Safeguards Accounting and Reports Program, Revised

    International Nuclear Information System (INIS)

    Kempf, C.R.

    1994-01-01

    A computer code, SARP (Safeguards Accounting and Reports Program) which will generate and maintain at-facility safeguards accounting records, and generate IAEA safeguards reports based on accounting data input by the user, was completed in 1990 by the Safeguards, Safety, and Nonproliferation Division (formerly the Technical Support Organization) at Brookhaven National Laboratory as a task under the US Program of Technical Support to IAEA safeguards. The code was based on a State System of Accounting for and Control of Nuclear Material (SSAC) for off-load refueled power reactor facilities, with model facility and safeguards accounting regime as described in IAEA Safeguards Publication STR-165. Since 1990, improvements in computing capabilities and comments and suggestions from users engendered revision of the original code. The result is an updated, revised version called SARP-II which is discussed in this report

  11. IAEA Director General welcomes landmark convention to combat nuclear terrorism

    International Nuclear Information System (INIS)

    2005-01-01

    Full text: IAEA Director General Mohamed ElBaradei welcomed the adoption of an International convention against nuclear terrorism. 'This is a landmark achievement which will bolster global efforts to combat nuclear terrorism,' Dr. ElBaradei said. 'It will be a key part of international efforts to prevent terrorists from gaining access to nuclear weapons'. The United Nations General Assembly adopted the convention, The International Convention for the Suppression of Acts of Nuclear Terrorism, on 13 April 2005. The Convention strengthens the global legal framework to counter terrorist threats. Based on a proposal by the Russian Federation in 1998, the Convention focuses on criminal offences related to nuclear terrorism and covers a broad range of possible targets, including nuclear reactors as well as nuclear material and radioactive substances. Under its provisions, alleged offenders - for example any individual or group that unlawfully and intentionally possesses or uses radioactive material with the intent to cause harm - must be either extradited or prosecuted. States are also encouraged to cooperate with each other in connection with criminal investigations and extradition proceedings. The Convention further requires that any seized nuclear or radiological material be held in accordance with IAEA safeguards, and handled in keeping with the IAEA's health, safety and physical protection standards. Dr. ElBaradei also recalled that the Agency is in the process of amending the Convention on the Physical Protection of Nuclear Material, in order to broaden its scope, and in so doing, strengthen the current legal framework for securing nuclear material against illicit uses. A conference will be held from 4 to 8 July in Vienna to consider and adopt the amendments. The Convention opens for signature in September this year. Dr ElBaradei urged all States to 'sign and ratify the Convention without delay so nuclear terrorism will have no chance'. (IAEA)

  12. Safeguards Technology Strategic Planning Pentachart

    International Nuclear Information System (INIS)

    Carroll, C. J.

    2017-01-01

    Builds on earlier strategic planning workshops conducted for SGIT, SGTS, and SGCP. Many of recommendations from these workshops have been successfully implemented at the IAEA. Provide a context for evaluating new approaches for anticipated safeguards challenges of the future. Approach used by government and military to plan for an uncertain future. Uses consensus decision-making.

  13. Application of safeguards procedures

    International Nuclear Information System (INIS)

    1977-01-01

    technical limitations. Upon completion each analysis is formalized in a Safeguards Implementation Practice (SIP) which becomes both an official guide and instruction to the field inspector for his day to day work. Subsequent to the inspections, a formal report is prepared for each facility that has been visited. The report describes the work which was carried out and, most importantly, the technical conclusions which can be drawn are stated. The conclusions are reviewed at successively higher management levels. Starting in 1977, the conclusions of the reports are summarized and presented to the Board of Governors as a 'Special Safeguards Implementation Report'. To help in formulating the criteria for evaluating the reports, the IAEA Secretariat has been given the help of external consultants known colloquially as 'SAGSI', more formally as the 'Standing Advisory Group on Safeguards Implementation'. (author)

  14. Brazil and the strengthening of safeguard system of the International Atomic Energy Agency: from the four-part agreement to the additional protocol; O Brasil e o fortalecimento do sistema de salvaguardas da Agencia Internacional de Energia Atomica: do acordo quadripartite ao protocolo adicional

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Carmen Lidia Richter Ribeiro

    2001-07-01

    The main objective of this paper is to analyse the evolution of IAEA verification system, that constitutes one of the main fundaments of the Non-proliferation nuclear weapons regimen, and to point out elements that contribute to inform the Brazilian position related to the Model Protocol additional to agreements for safeguard application: instrument that comprehend the most recent multilateral efforts of the nuclear verification

  15. Safeguards Implementation in Kazakhstan: Experience and Challenges

    International Nuclear Information System (INIS)

    Zhantikin, T.

    2015-01-01

    Experience of Kazakhstan joined the NPT in 1993, just after desintegration of USSR, and enforced Safeguards Agreement in 1995 can be interesting in implementation of safeguards in non-standard cases. Having weapon materials and test infrastructure legacy, the country together with IAEA and several donor countries found acceptable approaches to meet NPT provisions. One of challenges was to provide protection of sensitive information that could be accidentally disclosed in safeguards activities. With support of several weapon countries in close cooperation with the IAEA Kazakhstan liquidated test infrastructure in Semipalatinsk, implemented projects on elimination and minimization of use of HEU in civil sector, decommissioning of BN-350 fast breeder reactor. Now the IAEA LEU Bank is going to be established in Kazakhstan, and more challenges are coming in implementation of safeguards. Some technical and organizational details will be described from the experience of Kazakhstan in these projects. (author)

  16. Protecting safeguards information / Division of technical support

    International Nuclear Information System (INIS)

    2002-01-01

    This DVD contains two films representing the key aspects of the IAEA Department of Safeguards. 'Protecting Safeguards Information' is a narrative/fiction film which presents the Agency's information handling and protection measures. A security representative from a fictional nation receives a briefing on the procedures and methods used by the Department. These techniques will assure member states that the information they provide to the Agency is kept safe and confidential. 'Division of Technical Support' is a non-fiction documentary which presents a detailed look at the technical capabilities and management techniques used by the Agency in nuclear material accountancy. The film covers many aspects of safeguards equipment and techniques including: NDA and DA instruments, seals, surveillance, training, development and maintenance. Taken together, these films provide an introduction and overview to many important aspects of the IAEA Department of Safeguards. (IAEA)

  17. The evolution of safeguards

    International Nuclear Information System (INIS)

    Heinonen, O.

    1999-01-01

    The Agency's safeguards system has demonstrated a flexibility capable of responding to the verification demands of its Member States. It is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The Agency is in the process of strengthening safeguards in its verification of declared activities. Since the early 1990's the Board of Governors took up the issue of strengthening measures such as inspections at undeclared locations, the early provision of design information, a system of universal reporting on nuclear material and certain nuclear-related equipment and non-nuclear material. Following the Agency's 'Programme 93+2', a major step forward was the adoption by the Board of Governors of the Additional Protocol in May 1997. This included important strengthened safeguards measures based on greater access to information and locations. A number of member states have already indicated their willingness to participate in this system by signing the Additional Protocol and this is now in the early stages of implementation for a few states. (author)

  18. Safeguards Implementation Guide for States with Small Quantities Protocols (French Edition); Guide d'application des garanties pour les Etats ayant des protocoles relatifs aux petites quantites de matieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-15

    The International Atomic Energy Agency (IAEA) works to enhance the contribution of nuclear energy for peace and prosperity around the world, while helping to ensure that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices. In implementing safeguards, the IAEA plays an instrumental independent verification role, providing credible assurances that States' safeguards commitments are being respected. Most of the world's non-nuclear-weapon States (NNWSs) have concluded comprehensive safeguards agreements (CSAs) with the IAEA, pursuant to the Treaty on the Non- Proliferation of Nuclear Weapons (NPT). The IAEA and States are required to cooperate in the implementation of such agreements. Effective cooperation demonstrates a State's commitment to the peaceful use of nuclear energy and furthers the State's national interests by reducing the risk of unauthorized use of nuclear material. Over 100 NNWSs party to the NPT have very limited quantities of nuclear material and have concluded protocols to their CSAs which hold in abeyance many procedures in Part II of a CSA. These protocols are referred to as 'small quantities protocols' or 'SQPs' and remain in effect as long as the State meets certain eligibility criteria. The purpose of an SQP is to reduce the burden of safeguards implementation for States with little or no nuclear activities, while retaining the integrity of the safeguards system. States with SQPs have very important obligations they must fulfil under their CSAs. In 1997, as part of the IAEA's efforts to strengthen its safeguards system, the Model Additional Protocol to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards was developed to provide the IAEA with broader access to information and locations, thus significantly increasing the IAEA's ability to provide assurance of the absence of undeclared nuclear material and activities in States. Many States with SQPs have

  19. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS,INFCIRC/540 (Corrected) VOLUME I/III SETTING THE STAGE: 1991-1996.

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.D.; Saum-Manning, L.; Houck, F.; Anzelon, G.

    2010-01-01

    Events in Iraq at the beginning of the 1990s demonstrated that the safeguards system of the International Atomic Energy Agency (IAEA) needed to be improved. It had failed, after all, to detect Iraq's clandestine nuclear weapon program even though some of Iraq's's activities had been pursued at inspected facilities in buildings adjacent to ones being inspected by the IAEA. Although there were aspects of the implementation of safeguards where the IAEA needed to improve, the primary limitations were considered to be part of the safeguards system itself. That system was based on the Nuclear Nonproliferation Treaty of 1970, to which Iraq was a party, and implemented on the basis of a model NPT safeguards agreement, published by the IAEA 1972 as INFCIRC/153 (corrected). The agreement calls for states to accept and for the IAEA to apply safeguards to all nuclear material in the state. Iraq was a party to such an agreement, but it violated the agreement by concealing nuclear material and other nuclear activities from the IAEA. Although the IAEA was inspecting in Iraq, it was hindered by aspects of the agreement that essentially limited its access to points in declared facilities and provided the IAEA with little information about nuclear activities anywhere else in Iraq. As a result, a major review of the NPT safeguards system was initiated by its Director General and Member States with the objective of finding the best means to enable the IAEA to detect both diversions from declared stocks and any undeclared nuclear material or activities in the state. Significant improvements that could be made within existing legal authority were taken quickly, most importantly a change in 1992 in how and when and what design information would be reported to the IAEA. During 1991-1996, the IAEA pursued intensive study, legal and technical analysis, and field trials and held numerous consultations with Member States. The Board of Governors discussed the issue of

  20. Now and future of IAEA

    International Nuclear Information System (INIS)

    Taniguchi, Tomihiro; Omoto, Akira; Ichimura, Tomoya

    2005-01-01

    IAEA was established in 1957. Main activities consist of safeguards, cooperation of technologies and safety security. It has six sections such as the cooperation of technologies, nuclear energy, safety standards and security, nuclear science and its application, selfguards and management. Eleven Japanese are working in it and they .reported the present activities, problems and the future. Their subjects contain the problems of IAEA and expectation to Japanese, the utilization of nuclear energy, increasing nuclear safety and security in the world, application of radiation and isotope technologies, change and prospect of cooperation of technologies, and non-proliferation and safeguards. It was concluded as a first country holding many nuclear facilities that Japan had not nuclear materials and development activity in hiding and did not transform nuclear fuels reported to weapons. Accordingly, Japan is expected to make effort leading nuclear use for peace and non-proliferation in the world. (S.Y.)

  1. Introduction to nuclear material safeguards

    International Nuclear Information System (INIS)

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  2. Safeguards against use of nuclear material for weapons

    International Nuclear Information System (INIS)

    Sanders, B.; Rometsch, R.

    1975-01-01

    The history of safeguards is traced from the first session of the United Nations Atomic Energy Commission in 1946, through the various stages of the IAEA safeguard system for nuclear materials and to the initiation of the Treaty on the Non-proliferation of Nuclear Weapons in 1968. The role of the IAEA under the treaty is discussed. The structure and content of safeguards agreements in connection with the treaty were laid down and the objective of safeguards clearly defined. The methods of verification by the IAEA of the facility operator's material accountancy through inspection and statistical analysis and evaluation of 'material unaccounted for' are explained. The extent to which the IAEA may make use of the State's system of accounting and control of nuclear materials is considered. Reference is also made to the question of protection against theft and sabotage. Finally the scope of safeguards work for the next 15 years is forecast. (U.K.)

  3. Video image processing for nuclear safeguards

    International Nuclear Information System (INIS)

    Rodriguez, C.A.; Howell, J.A.; Menlove, H.O.; Brislawn, C.M.; Bradley, J.N.; Chare, P.; Gorten, J.

    1995-01-01

    The field of nuclear safeguards has received increasing amounts of public attention since the events of the Iraq-UN conflict over Kuwait, the dismantlement of the former Soviet Union, and more recently, the North Korean resistance to nuclear facility inspections by the International Atomic Energy Agency (IAEA). The role of nuclear safeguards in these and other events relating to the world's nuclear material inventory is to assure safekeeping of these materials and to verify the inventory and use of nuclear materials as reported by states that have signed the nuclear Nonproliferation Treaty throughout the world. Nuclear safeguards are measures prescribed by domestic and international regulatory bodies such as DOE, NRC, IAEA, and EURATOM and implemented by the nuclear facility or the regulatory body. These measures include destructive and non destructive analysis of product materials/process by-products for materials control and accountancy purposes, physical protection for domestic safeguards, and containment and surveillance for international safeguards

  4. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  5. IAEA Director General welcomes Cuba's intention to join the nuclear Non-Proliferation Treaty

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: IAEA Director General Mohamed ElBaradei welcomed Cuba's announcement to accede to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and to ratify the Treaty of Tlatelolco establishing a nuclear-weapon-free zone in Latin America and the Caribbean. He expressed the hope that Cuba will conclude soon a comprehensive safeguards agreement with the Agency, as required under Article III of the NPT. 'With Cuba's intention to become party to the NPT, we have come a step closer to a universal nuclear non-proliferation regime,' Mr. ElBaradei said. Only three countries worldwide with significant nuclear activities now remain outside the NPT. With 188 countries party to the Treaty, the NPT is the most adhered to international agreement after the United Nations Charter and the most widely adhered to multilateral arms control treaty. The NPT makes it mandatory that all non-nuclear-weapon States conclude comprehensive safeguards agreements with the IAEA, and thus put all of their nuclear material under IAEA safeguards. The Director General also welcomed Cuba's ratification of the Tlatelolco Treaty, which completes the process of having all countries in the region of Latin America and the Caribbean as members of the nuclear-weapon-free zone in that region. Mr. ElBaradei said that, 'the Tlatelolco Treaty provides a good model for other regional nuclear-weapon-free zones to follow'. He added that 'universal adherence of all countries in regions having nuclear-weapon-free zone arrangements is important to further strengthen the non-proliferation regime'. (IAEA)

  6. Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (Spanish Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is aimed at enhancing States’ understanding of the safeguards obligations of both the State and the IAEA, and at improving the cooperation between States and the IAEA in safeguards implementation. It is principally intended for State or regional safeguards regulatory authorities and facility operators, and is a reference document that will be supported by detailed guidance and examples in ‘Safeguards Implementation Practices’ (SIPs) to be published separately

  7. Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is aimed at enhancing States’ understanding of the safeguards obligations of both the State and the IAEA, and at improving the cooperation between States and the IAEA in safeguards implementation. It is principally intended for State or regional safeguards regulatory authorities and facility operators, and is a reference document that will be supported by detailed guidance and examples in ‘Safeguards Implementation Practices’ (SIPs) to be published separately.

  8. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  9. Have IAEA safety precautions failed in Iraq

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    Israel's air raid on the Tamuz-1 research reactor (Osirak) in Iraq has given new impetus to the discussion of the potential and limits of international control as carried out by the IAEA in the framework of the non-proliferation treaty. A lack of faith in the effectiveness of IAEA control must be assuemd to be one of the main reasons for this attack. Prof. Grimm, vice chairman of the nuclear safeguards department of the International Atomic Energy Agency, comments on the possibility of producing nuclear weapons with the aid of this reactor and on the efficiency of present and projected nuclear safeguards measures. (orig.) [de

  10. INF and IAEA: A comparative analysis of verification strategy

    International Nuclear Information System (INIS)

    Scheinman, L.; Kratzer, M.

    1992-07-01

    This is the final report of a study on the relevance and possible lessons of Intermediate Range Nuclear Force (INF) verification to the International Atomic Energy Agency (IAEA) international safeguards activities

  11. IAEA Director General reviews state of the world's nuclear security, safety and technology at annual IAEA General Conference

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA has been unable to draw any conclusion or provide any assurance regarding Iraq's compliance with its obligations under the Security Council resolutions, it will therefore be important for the Agency to resolve, upon re-commencement of inspections, the key issue of whether the situation regarding Iraq's nuclear activities and capabilities has changed in any material way since December 1998. Regarding the status of IAEA's Safeguards Agreement with the Democratic People's Republic of Korea (DPRK) the Agency continues to be unable to verify that the DPRK has declared all the nuclear material that is subject to Agency safeguards measures under its NPT safeguards agreement. The work required to verify the correctness and completeness of the DPRK's initial declaration could take three or four years. On the issue of nuclear non-proliferation, the universalization, consolidation and strengthening of the non-proliferation regime, including concrete steps to reduce the number of and dependence on nuclear weapons, are more important than ever for the continuing sustainability and credibility of the regime. Only 27 countries had brought into force Additional Protocols agreements with the Agency, which gives the Agency increased authority to provide assurances that countries were using their nuclear actives for peaceful civilian purposes only. All countries are urged to do so. An expanded effort was needed including threat assessments to protect nuclear facilities against attack, sabotage or theft. The focus of these efforts must be expanded to cover other nuclear facilities, including research installations that also have nuclear and other radioactive material. A significant short-term priority is to bring radioactive sources under appropriate control, whether in use, storage, orphaned or in transport. Concerning global nuclear safety, it is satisfying to note that nuclear safety continues to improve at power plants worldwide. The future of nuclear power, depends on

  12. Some problems relating to application of safeguards in the future

    International Nuclear Information System (INIS)

    Tolchenkov, D.L.

    1983-01-01

    By the end of this century there will have been a considerable increase in the amount of nuclear material and the number of facilities subject to IAEA safeguards. The IAEA will therefore be faced with problems due to the increased volume of safeguards activity, the application of safeguards to new types of facility and to large facilities, the optimization of the existing IAEA safeguards system and so on. The authors analyse the potential growth in the IAEA's safeguards activities up to the year 2000 and consider how to optimize methods for the application of safeguards, taking into account a number of factors relating to a State's nuclear activity, the application of full-scope IAEA safeguards etc. On the basis of a hypothetical model of the nuclear fuel cycle that allows for the factors considered as part of the International Nuclear Fuel Cycle Evaluation (INFCE), the authors assess the possible risk of diversion as a function of a full-scope safeguards effort. They also examine possible conceptual approaches to safeguarding large-scale facilities such as fuel reprocessing and uranium enrichment plants. (author)

  13. Canada and international safeguards. Verifying nuclear non-proliferation

    International Nuclear Information System (INIS)

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result

  14. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  15. IAEA, EU Senior Officials Review Nuclear-Related Cooperation, Chart Way Ahead

    International Nuclear Information System (INIS)

    Amano, Y.

    2014-01-01

    International Atomic Energy Agency (IAEA) and European Union officials met this week for the second annual Senior Officials Meeting to review and further strengthen their nuclear-related cooperation. In the past year, the two institutions have improved collaboration in nuclear safety, security, safeguards and peaceful use of nuclear energy through implementing a number of initiatives. In 2013, new contracts for projects have been signed amounting to approximately 24 million euros. These included an EU Council decision to support IAEA nuclear security and verification activities worth of 8.05 million euros. Furthermore, a Memorandum of Understanding establishing a framework for cooperation to help improve nuclear safety was signed, as well as the Practical Arrangement on technical nuclear security issues. The EU and the IAEA have also worked to explore and identify new areas for cooperation such as using nuclear applications for socio-economic development. The meeting addressed enhanced cooperation in the areas of nuclear safety, nuclear security, nuclear applications, nuclear energy and safeguards. Participants agreed on the following steps, including holding a Senior Officials Meeting planned in early 2015 in the premises of the European Commission in Luxembourg

  16. Report by the Director General of the International Atomic Energy Agency on behalf of the Board of Governors to all members of the Agency on the Non-Compliance of the Democratic People's Republic of Korea with the agreement between the IAEA and the Democratic People's Republic of Korea for the application of safeguards in connection with the treaty on the non-proliferation of nuclear weapons (INFCIRC/403) and on the Agency's inability to verify the non-diversion of material required to be safeguarded

    International Nuclear Information System (INIS)

    1993-01-01

    The document contains the following items: Report by the Director General of the International Atomic Energy Agency on behalf of the Board of Governors to all members of the Agency on the non-compliance of the Democratic People's Republic of Korea with the agreement between the IAEA and the Democratic People's Republic of Korea for the application of Safeguards in connection with the treaty on the non-proliferation of nuclear weapons and on the Agency's inability to verify the non-diversion of material required to be safeguarded; resolution adopted by the Board on 1 April 1993 (Annex 1); Agreement of 30 January 1992 between the Government of the Democratic People's Republic of Korea and the International Atomic Energy Agency for the application of safeguards connection with the treaty on the non-proliferation of nuclear weapons (Annex 2); resolution adopted by the Board of Governors on 25 February 1993 (Annex 3); Communications from the Director General of the IAEA to the Minister for Atomic Energy of DPRK or from the Minister for Atomic Energy of the DPRK of the Director General of the IAEA (Annexes 3, 4, 5, 6, 8, 9, 11, 12); statement of the Government of the Democratic People's Republic of Korea, Pyongyang, 12 March 1993 (Annex 7); resolution adopted by the Board on 18 March 1993 (Annex 10)

  17. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-01-01

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency's (IAEA's) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL's International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  18. Development of DUPIC safeguards technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H D; Ko, W I; Song, D Y [and others

    2000-03-01

    During the first phase of R and D program conducted from 1997 to 1999, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. For the nuclear material measurement system, the performance test was finished and received IAEA approval, and now is being used in DUPIC Fuel Fabrication Facility(DFDF) for nuclear material accounting and control. Other systems being developed in this study were already installed in DFDF and being under performance test. Those systems developed in this study will make a contribution not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author)

  19. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 8 December 1997

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1997-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 8 December 1997. The following aspects from the Agency's activity are presented: nuclear energy, Agency's inspections in Iraq in relation to its clandestine nuclear programme, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), and conclusion of safeguards agreements and additional protocols

  20. IAEA Newsbriefs. V. 10, no. 1(67). Mar-Apr 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This issue gives brief information on the following topics: IAEA Board to Consider Proposal on Safeguards, IAEA Director General to Address NPT Conference in mid-April, IAEA Hosts UN System-Wide Meeting, Joint IAEA/EC/WHO Conference on Chernobyl Announced, IAEA Concludes Post-Chernobyl Research Project, Uranium Data in Environmental Monitoring, Director General Address in Chile, South Africa, the Philippines Host Nuclear Information Seminars, Upcoming IAEA Conferences, Symposia and Seminars, Isotopes in Water Resources Management, Environmental Impacts of Radioactive Releases, Joint FAO/IAEA Symposium on Crop Improvement, Other Conferences, Symposia and Seminars in 1995, Safeguards and Non-Proliferation Developments (IAEA Safeguards Agreements, New NPT Members), Handbook on Nuclear Communications, SIT Campaign in Zanzibar, and other short information

  1. Transit Matching for International Safeguards

    International Nuclear Information System (INIS)

    Gilligan, K.; Whitaker, M.; Oakberg, J.

    2015-01-01

    In 2013 the U.S. Department of Energy / National Nuclear Security Administration Office of Non-proliferation and International Security (NIS) supported a study of the International Atomic Energy Agency's (IAEA) processes and procedures for ensuring that shipments of nuclear material correspond to (match) their receipts (i.e., transit matching). Under Comprehensive Safeguards Agreements, Member States are obliged to declare such information within certain time frames. Nuclear weapons states voluntarily declare such information under INFCIRC/207. This study was funded by the NIS Next Generation Safeguards Initiative (NGSI) Concepts and Approaches program. Oak Ridge National Laboratory led the research, which included collaboration with the U.S. Nuclear Regulatory Commission, the U.S. Nuclear Material Management and Safeguards System (NMMSS), and the IAEA Section for Declared Information Analysis within the Department of Safeguards. The project studied the current transit matching methodologies, identified current challenges (e.g., level of effort and timeliness), and suggested improvements. This paper presents the recommendations that resulted from the study and discussions with IAEA staff. In particular, it includes a recommendation to collaboratively develop a set of best reporting practices for nuclear weapons states under INFCIRC/207. (author)

  2. Non-proliferation and international safeguards

    International Nuclear Information System (INIS)

    Blix, H.

    1992-01-01

    Full text: In my view, drastic nuclear disarmament by nuclear weapon States could be coupled with universal commitment to non-proliferation by non-nuclear weapon States by 1995 when the extension of the NPT Will be discussed. The incentives and disincentives for making and stockpiling nuclear weapons are first of all in the political and security fields, (Global and regional detente reduce the incentive, With the cold war gone, the US and Russia are now agreeing on far-reaching cuts in their nuclear arsenals and at some point the other declared nuclear weapon States Will follow.In the regional fields, we have seen how Argentina and Brazil are about to commit themselves to exclusively peaceful uses of the atom through the Latin American Tlatelolco Treaty. And we have seen how South Africa has joined the NPT. A new wave of States adhering to the NPT may be expected from countries in the former Soviet Union. Some have already come, others are on the way. Detente in the Middle East and on the Indian subcontinent would improve the outlook for non-proliferation in these areas. A second barrier to nuclear proliferation lies in export restrictions on sensitive nuclear material and equipment, Following the discoveries in Iraq, these restrictions are being strengthened in a large number of States. A third barrier to nuclear proliferation lies in the economic and political consequences that would follow for a State if IAEA safeguards inspection revealed activities aimed at the production of nuclear weapons. These must have a high degree of reliability. The case of Iraq showed that it was possible for a closed, highly militarized State to hide nuclear activities from the IAEA and the world We are now drawing the lessons from this case. It is not physically possible for inspectors to look into every building and basement in vast countries, They must have information about where to look, and the IAEA is significantly strengthening its information basis. The IAEA has also re

  3. Inspection technologies -Development of national safeguards technology-

    International Nuclear Information System (INIS)

    Hong, J. S.; Kim, B. K.; Kwack, E. H.

    1996-12-01

    17 facility regulations prepared by nuclear facilities according to the Ministerial Notices were evaluated. Safeguards inspection activities under Safeguards are described. Safeguards inspection equipments and operation manuals to be used for national inspection are also described. Safeguards report are produced and submitted to MOST by using the computerized nuclear material accounting system at state level. National inspection support system are developed to produce the on-site information for domestic inspection. Planning and establishment of policy for nuclear control of nuclear materials, international cooperation for nuclear control, CTBT, strengthening of international safeguards system, and the supply of PWRs to North Korea are also described. (author). 43 tabs., 39 figs

  4. Development of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Doo; Song, Dae Yong; So, Dong Sup; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-04-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described. 3 tabs. (Author)

  5. Paying tribute to 25 years of safeguards leadership

    International Nuclear Information System (INIS)

    1994-01-01

    After phases of intensive development in the 1970s and consolidation in the 1980s, the IAEA's international safeguards system is now in a phase of transition. The 1990s look to be a time when verification activities are further expanded in response to global developments and challenges in the field of nuclear non-proliferation. How far have safeguards come, and where are they headed? This article offers some thoughts and perspectives on the main challenges and opportunities facing IAEA safeguards, in the context of some recent developments and the overall evolution of the safeguards system

  6. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    International Nuclear Information System (INIS)

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

    2010-01-01

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad

  7. Safeguards technology development for spent fuel storage and disposal

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1991-01-01

    This paper reports on facilities for monitored retrievable storage and geologic repository that will be operating in the US by 1998 and 2010 respectively. The international safeguards approach for these facilities will be determined broadly by the Safeguards Agreement and the IAEA Safeguards Criteria (currently available for 1991-1995) and defined specifically in the General Subsidiary Arrangements and Specific Facility Attachments negotiated under the US/IAEA Safeguards Agreement. Design information for these facilities types, as it is conceptualized, will be essential input to the safeguards approach. Unique design and operating features will translate into equally unique challenges to the application of international safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards by enabling efficient and effective application with regard to the operator's interest, US policies, and the IAEA's statutorial obligations. Advanced unattended or remote measurement, authentication of operator's measurement, authentication of operator's measurement data, and integration of monitoring and containment/surveillance potentially are among the most fruitful areas of technology development. During the next year, a long range program plan for international safeguard technology development for monitored retrievable storage and geologic repository will be developed by the International Branch in close coordination with the Office of Civilian Radioactive Waste Management. This presentation preliminarily identifies elements of this long range program

  8. IAEA and International Science and Technology Center sign cooperative agreement

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA and the International Science and Technology Center (ISTC) today signed an agreement that calls for an increase in cooperation between the two organizations. The memorandum of understanding seeks to amplify their collaboration in the research and development of applications and technology that could contribute to the IAEA's activities in the fields of verification and nuclear security, including training and capacity building. IAEA Safeguards Director of Technical Support Nikolay Khlebnikov and ISTC Executive Director Adriaan van der Meer signed the Agreement at IAEA headquarters in Vienna on 22 October 2008. (IAEA)

  9. Design measures to facilitate implementation of safeguards at future water cooled nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The report is intended to present guidelines to the State authorities, designers and prospective purchasers of future water cooled power reactors which, if taken into account, will minimize the impact of IAEA safeguards on plant operation and ensure efficient and effective acquisition of safeguards data to the mutual benefit of the Member State, the plant operator and the IAEA. These guidelines incorporate the IAEA's experience in establishing and carrying out safeguards at currently operating nuclear power plants, the ongoing development of safeguards techniques and feedback of experience from plant operators and designers on the impact of IAEA safeguards on plant operation. The following main subjects are included: The IAEA's safeguards function for current and future nuclear power plants; summary of the political and legal foundations of the IAEA's safeguards system; the technical objective of safeguards and the supply and use of required design information; safeguards approaches for nuclear power plants; design implications of experience in safeguarding nuclear power plants and guidelines for future water cooled reactors to facilitate the implementation of safeguards

  10. Security of material. The changing context of the IAEA's programme

    International Nuclear Information System (INIS)

    Nilsson, Anita

    2001-01-01

    When the IAEA established its programme on the Security of Material about five years ago, the prospect that nuclear or other radioactive materials could fall into the wrong hands was a main concern. Among the major driving forces behind the Agency's action then was an alarming increase in reported cases of illicit nuclear trafficking in the early and mid-1990s, and the recognition that States needed better and more coordinated assistance in their efforts to combat the problem. Today, the dimensions and perceptions of nuclear security are being shaped by additional driving forces, specifically the spectre of nuclear terrorism. The terrorist attacks on the United States in September 2001 have elevated issues of security to unprecedented heights of international concern and they have prompted a broad-based global response. The attacks made it clear that terrorism has new and far-reaching international dimensions and that its aim of inflicting mass casualties is a serious threat for all States. In the nuclear sphere, the IAEA has taken a leading role in international efforts directed at combating nuclear terrorism. Initiatives taken by the Agency aim to upgrade levels of security for nuclear facilities and the protection of nuclear and other radioactive materials. Toward these ends, the IAEA Board of Governors is considering proposed measures for strengthening the Agency's activities relevant to preventing nuclear terrorism. In this new and challenging context, it is worth reviewing some fundamental aspects of the IAEA programme on Security of Material as it has been developed over the years. The programme is part of a wider framework of Agency activities related to nuclear security, safety, and safeguards. In reviewing the programme's evolution, this article principally focuses on the major components and elements of the planned 2002-2003 programme, while pointing to directions ahead in light of additional measures being considered for prevention of nuclear terrorism

  11. Australian Safeguards and Non-Proliferation Office, Annual Report 2001-2002

    International Nuclear Information System (INIS)

    2002-01-01

    During the year Australian Safeguards and Non-Proliferation Office (ASNO) continued our substantial contribution to the development and strengthening of international verification regimes concerned with weapons of mass destruction (WMD). Domestically, ASNO conducted, or contributed to, review of WMD- related legislation and administration, amending permits to enhance security arrangements, and beginning development of supporting legislative changes. Another major area of work is the replacement research reactor project, where ASNO has been closely involved through safeguards and security aspects. This year has been dominated by the terrorist attacks of 11 September 2001 on the United States, and ongoing consequences. These events, and the concern that terrorists would use WMD if they were able to acquire them, have served to emphasise the importance of effective counter-proliferation and counter-terrorism measures to complement the non-proliferation regimes. They have also focused attention on the need to deal with non- compliance with WMD treaty commitments. The key achivements reported for the year under review include: 1. All treaty and statutory requirements met in respect of: nuclear material and nuclear items in Australia, Australian uranium exports (Australian Obligated Nuclear Material), chemicals covered by the CWC (Chemical Weapons Convention) and establishment of CTBT(Comprehensive Nuclear-Test-Ban Treaty) monitoring stations; 2. Effective contribution to strengthening non-proliferation verification regimes and counter terrorism initiatives: ongoing support for IAEA safeguards development, regional outreach on IAEA safeguards, CWC implementation and encouraging CTBT ratification, ANSTO security upgraded; security plan approved for construction of replacement research reactor, review, with other responsible authorities, of security of CWC related chemicals, and radiation sources

  12. IAEA Technical Cooperation and the NPT

    International Nuclear Information System (INIS)

    Barretto, Paulo M.C.; Cetto, Ana Maria

    2005-01-01

    more than $1.3 billion to participating Member States, of which over $600 million has been disbursed in the last 10 years. The assistance has come from voluntary contributions - which constitute the basis of the IAEA Technical Cooperation Fund (TCF) created as the main financing mechanism. An annual target for TCF contributions is set for two years in advance following consultations with Member States. The IAEA's activities related to Article IV of the NPT cover a wide range; they are diverse in scope yet focused on priority needs of countries. These activities continue to enjoy interest and support from all countries, whatever their involvement in the Agency's Technical Cooperation Programme. An effective Agency safeguards system remains the cornerstone of a nuclear non-proliferation regime aimed at stemming the spread of nuclear weapons and moving towards disarmament. At the same time, an effective technical cooperation programme is the complement to this cornerstone, and it needs to be preserved and strengthened to keep the balance foreseen by the NPT. This programme is fundamental and unique to the IAEA in that it seeks to extend the benefits of nuclear technology to all. It is desirable that, at the 2005 NPT Review Conference, the Parties renew their commitment towards these twin and mutually reinforcing goals and fulfill them in the coming years

  13. The present status of safeguards in Turkey

    International Nuclear Information System (INIS)

    Yilmazer, A.; Yuecel, A.

    2001-01-01

    Republic of Turkey signed Non-Proliferation Treaty (NPT) in Vienna, Austria on January 28, 1969 and the Treaty was ratified by Turkish Parliament on March 29, 1979. International Atomic Energy Agency (IAEA) and Republic of Turkey signed the Safeguards Agreement on June 30, 1981. Turkey accepted the international safeguards administered by IAEA and at the same time its subsidiary arrangements and Facility attachments were enforced for all nuclear facilities as an Non-Nuclear-Weapon State party to NPT. Regulation on Nuclear Materials Accounting and Control, which was prepared in accordance with Agreement Between the Government of Turkey and IAEA for the application of Safeguard in Connection with the Treaty on NPT, has been put into force since it was published in Official Gazette on September 10, 1997. This study presents the essential futures of national system of accounting for and control of nuclear materials in Turkey

  14. Containment and surveillance systems for international safeguards

    International Nuclear Information System (INIS)

    Ney, J.F.

    1978-01-01

    Important criteria in measuring the effectiveness of IAEA safeguards include timeliness of detection of diversion, timeliness of reporting such detections, and confidence in determining the amount of material diverted. Optimum use of IAEA inspectors, combined with adequate instrumentation, can provide a practical means for achieving these criteria. System studies are being carried out for different types of facilities that may come under IAEA safeguards to determine the proper balance between inspector's efforts and the use of safeguards instrumentation. A description of a typical study is presented. Based on the results of these studies, the program undertaken to develop those containment and surveillance subsystems for which the technical feasibility and operational acceptability need to be established is described

  15. Overview of IAEA Action Plan on Nuclear Safety

    International Nuclear Information System (INIS)

    Monti, Stefano

    2012-01-01

    The IAEA Action Plan represents a work programme to strengthen and improve nuclear safety world wide. The plan identifies actions for Member States and the IAEA. Success depends upon: • Cooperation between IAEA, Member States, and other stakeholders; • Availability of appropriate financial resources (MS voluntary contributions)

  16. An American Academy for Training Safeguards Inspectors - An Idea Revisited

    International Nuclear Information System (INIS)

    Durst, Philip Casey; Bean, Robert

    2010-01-01

    In 2009, we presented the idea of an American academy for training safeguards inspectors for the International Atomic Energy Agency (IAEA), due to the declining percentage of Americans in that international organization. In this paper we assert that there is still a compelling need for this academy. While the American Safeguards Academy would be useful in preparing and pre-training American inspectors for the IAEA, it would also be useful for preparing Americans for domestic safeguards duties in the U.S. Department of Energy (DOE), U.S. DOE National Laboratories, and the U.S. Nuclear Regulatory Commission (NRC). It is envisioned that such an academy would train graduate and post-graduate university students, DOE National Laboratory interns, and nuclear safeguards professionals in the modern equipment, safeguards measures, and approaches currently used by the IAEA. It is also envisioned that the Academy would involve the domestic nuclear industry, which could provide use of commercial nuclear facilities for tours and demonstrations of the safeguards tools and methods in actual nuclear facilities. This would be in support of the U.S. DOE National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI). This training would also help American nuclear safeguards and non-proliferation professionals better understand the potential limitations of the current tools used by the IAEA and give them a foundation from which to consider even more effective and efficient safeguards measures and approaches.

  17. Inspections talks with IAEA again broken off

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    North Korea again appears likely to resist more detailed safeguards inspections of its disputed nuclear facilities by the International Atomic Energy Agency. The country's loner status was reinforced during the IAEA General Conference in September, when no other nation joined North Korea in voting against the placement of the inspection issue on the conference's agenda

  18. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  19. The Concept of Goals-Driven Safeguards

    International Nuclear Information System (INIS)

    Wigeland, R.; Bjornard, T.; Castle, B.

    2009-01-01

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization's purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations' approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  20. The international safeguards system and physical protection

    International Nuclear Information System (INIS)

    Canty, M.J.; Lauppe, W.D.; Richter, B.; Stein, G.

    1990-02-01

    The report summarizes and explains facts and aspects of the IAEA safeguards performed within the framework of the Non-Proliferation Treaty, and shows perspectives to be discussed by the NPT Review Conferences in 1990 and 1995. The technical background of potential misuse of nuclear materials for military purposes is explained in connection with the physical protection regime of the international safeguards, referring to recent developments for improvement of technical measures for material containment and surveillance. Most attention is given to the peaceful uses of nuclear energy and their surveillance by the IAEA safeguards, including such new technologies and applications as controlled nuclear fusion, laser techniques for uranium enrichment, and particle accelerators. The report's concluding analyses of the current situation show potentials for improvement and desirable or necessary consequences to be drawn for the international safeguards system, also taking into account recent discussions on the parliamentary level. (orig./HP) [de

  1. LESSONS LEARNED IN TESTING OF SAFEGUARDS EQUIPMENT

    International Nuclear Information System (INIS)

    Pepper, S.; Farnitano, M.; Carelli, J.; Hazeltine, J.; Bailey, D.

    2001-01-01

    The International Atomic Energy Agency's (IAEA) Department of Safeguards uses complex instrumentation for the application of safeguards at nuclear facilities around the world. Often, this equipment is developed through cooperation with member state support programs because the Agency's requirements are unique and are not met by commercially available equipment. Before approving an instrument or system for routine inspection use, the IAEA subjects it to a series of tests designed to evaluate its reliability. In 2000, the IAEA began to observe operational failures in digital surveillance systems. In response to the observed failures, the IAEA worked with the equipment designer and manufacturer to determine the cause of failure. An action plan was developed to correct the performance issues and further test the systems to make sure that additional operational issues would not surface later. This paper addresses the steps taken to address operation issues related to digital image surveillance systems and the lessons learned during this process

  2. ABACC: A regional safeguards agency

    International Nuclear Information System (INIS)

    Palacios, E.

    1998-01-01

    Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was created as a common system of accounting and control. It is based on Bilateral Agreement between the two countries and the agreement with the IAEA. After a few years of experience it might be concluded that a regional system may contribute in many ways to enhance the safeguards system. The most relevant are: to improve the effectiveness and efficiency of safeguards by sending as professionals who are experts in the process involved in installations that are to be inspected; to have much more information on nuclear activities in each of the two countries than available to the IAEA; and to maintain formal and informal channels of communication

  3. Safeguard application

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de.

    1979-01-01

    The historical aspects of the International Atomic Energy Agency-IAEA-and the European Atomic Energy Community EURATOM foundations are presented. Besides abrief description of the Tlatelolco Treaty given. The IAEA and EURATOM purposes and activities are also emphasized. (A.L.S.L.) [pt

  4. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 14 September 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 14 September 1998. The following aspects from the Agency's activity are presented: nuclear safety, technical co-operation programme, safeguards and verification, fissile material treaty, nuclear material released from the military sector, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, and Agency's safeguards in the Middle East region

  5. Safeguards for a nuclear weapon convention

    International Nuclear Information System (INIS)

    Fischer, D.

    1999-01-01

    An NDT presupposes a fundamental commitment by all parties to its final objective and hence requires a high and sustained level of confidence amongst all states concerned. The appropriate format for an Nuclear Disarmament Treaty (NDT) would probably be a multilateral treaty open to all states. The treaty must necessarily include the five nuclear weapon states and a procedure would have to be found for securing the ratification of the threshold states without conferring upon them the status of nuclear weapon states. While the IAEA may well be able to carry out the safeguards tasks required by an NDT it would probably be necessary to establish a new international organization to verify the elimination of all nuclear weapons. The experience of UNSCOM and the IAEA in Iraq, and of the IAEA in the DPRK, have shown how difficult the verification of international obligations is in the absence of a commitment to disarm, while the experience of the INF and START treaties, and of the IAEA in South Africa have shown how much simpler it is when the parties concerned are fully committed to the process. Verifying and safeguarding an NDT would be largely an extrapolation of activities already carried out by the nuclear weapon states under the INF and START treaties and by the IAEA in the routine application of safeguards as well as in its less routine work in Iraq, South Africa and the DPRK. Both the verification and safeguarding tasks would be made very much easier if it were possible to bring down to a few hundred the number of nuclear warheads remaining in the hands of any avowed nuclear weapon state, and to conclude a cutoff convention. Experience is needed to show whether the additional safeguards authority accorded to the IAEA by 'programme 93+2' will enable it to effectively safeguard the facilities that would be decommissioned as a result of an NDT and those that would remain in operation to satisfy civilian needs. Subject to this rider and on condition that the IAEA

  6. IAEA Newsbriefs. V. 13, no. 3(80). Jul-Aug 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This issue gives brief information on the following topics: IAEA General Conference Opens 21 September in Vienna, IAEA Board Concludes Mid-Year Review: Approves Six More Protocols to Safeguards Agreements, Safeguards Implementation in 1997 Reported, Study of Radiological Situation at Mururoa and Fangataufa Atolls, Nuclear Inspections in Iraq Seeking Further Clarification, Pioneering Waste Repository Gets 'Green Light' in the USA, Status of International Conventions, Nuclear Techniques Targeted for Studying Water Pollution, Zimbabwe Farmers Realize Benefits from Nuclear Techniques, Waging a War Against Insect Pests, IAEA and WCO Formally Join Forces Against Illicit Trafficking, Annual Report for 1997, Range of Topics on IAEA Meeting Agenda, New IAEA Books, and other short information

  7. The roles of Euratom and the IAEA in nuclear non-proliferation - a Euratom view

    International Nuclear Information System (INIS)

    Szymanski, P.

    2013-01-01

    The IAEA safeguards conclusion that all nuclear material has remained in peaceful activities in a State is based on the finding that there are no indications of diversion of declared nuclear material from peaceful activities and no indications of undeclared nuclear material or activities in the State as a whole. The state-level concept that has been introduced by the IAEA in this respect allows and obliges the IAEA to take into account state specific factors to determine the set of safeguards activities to be applied in a State. The effectiveness of the EURATOM regional safeguards systems, its cooperation with the IAEA and its independence from States and operators are among the factors which the IAEA needs to consider in order to apply safeguards in an effective and efficient way. Socio-economic and political factors like the support to international non-proliferation should also be factors in this concept. The intended evolution of the state-level concept by the IAEA then should result in making better use of the activities of EURATOM safeguards. This is possible by the IAEA relying more on the EURATOM activities for the verification of declared nuclear material and the IAEA concentrating on getting assurance on the absence of undeclared materials and activities. Developing a regional-level concept that supplements the state-level concept can contribute to determine the extent to which the IAEA can make better use of EURATOM safeguards in the future. (author)

  8. IAEA Newsbriefs. V. 12, no. 3(76). Jul-Aug 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This issue gives brief information on the following topics: IAEA General Conference opens in Vienna 29 September, UN special session on environment and development, Safe storage of radiation sources, Implementation of IAEA Safeguards in 1996, IAEA/NEA review of 1996 performance assessment of US waste isolation pilot plant, and other short information

  9. Accountability and Transparency: Essential Underpinnings of Quality Safeguards

    International Nuclear Information System (INIS)

    Everton, C.; Floyd, R.

    2015-01-01

    The fundamental purpose of IAEA safeguards is to maintain confidence in the international community of the compliance of States with their respective non-proliferation commitments. The safeguards system for ensuring this compliance produces the most important output, the IAEA's compliance findings. Confidence in the findings of any compliance verification system requires some basic elements such as independence, accountability, transparency, and quality management systems. Quality management systems are an internal set of documents and procedures that, while clearly important, need to incorporate an external communication component in order to engender confidence as to how compliance is being managed and ensured. This paper will explore the importance of these fundamentals to confidence in IAEA safeguards compliance conclusions, with a focus on the external communication elements of accountability and transparency. Accountability and transparency will be considered with different communication channels through which safeguards implementation matters are explained and reported and at different levels, facility, State, regional, and the IAEA. This will include communications by: the IAEA and State authorities to the general public; State authorities to peers in other national safeguards authorities (regional and beyond); and, the IAEA and State authorities to the international community as represented through the Board of Governors and General Conference. Examples will be presented of good practices in these areas to encourage greater accountability and transparency in the work of safeguards. (author)

  10. Present status and progress of safeguards activities and physical protection on the eve of year 2000 in Bulgaria

    International Nuclear Information System (INIS)

    Simov, R.; Gotzev, A.

    1999-01-01

    From the very beginning of the IAEA safeguards implementation in Bulgaria, up to now the IAEA inspections verified no deviations or uncertainties in accounting of the nuclear materials. According to the official IAEA reports Bulgaria has fulfilled completely its duties under the safeguards and the Non-proliferation Treaty and has fully assisted the IAEA inspection activity. As for the physical protection, the complicated up-to-date system was established contributing to the safety of Kozloduy NPP and the plant operation

  11. The application of state-level integration of safeguards in Sweden. Final report

    International Nuclear Information System (INIS)

    Dahlin, G.; Haeggblom, E.; Larsson, Mats; Rehn, I.

    2000-12-01

    The role of Sweden in disarmament and non-proliferation efforts extends from the late 1940's to the present. It covers active support to place nuclear weapons under international control and participation in practically all control regimes aimed at non-proliferation and elimination of any mass destruction capability. Sweden has also made available highly competent and high-ranking officers to serve many of the institutions and organisations supporting the political work and operative functions in this field. Until 1968, Sweden had a double-track policy where both the nuclear weapons option and non-proliferation as a possibility were pursued and investigated. After 1968, non-proliferation became the established policy, and the nuclear programme, materials and activities have since served exclusively peaceful purposes. It appears possible that the IAEA could, after a short period of initial implementation, be in a position to draw conclusions on the absence of undeclared nuclear materials and activities in Sweden. Sweden has undertaken to ensure the transparency of its nuclear programme by providing all relevant information and by facilitating physical access, as necessary, and by addressing any questions and issues of concern in a direct and open-minded manner. The implementation of traditional safeguards should continue effectively, to enable the Agency to draw its conclusions on the absence of diversion of declared nuclear material in Sweden in the future. Using its reporting mechanisms, the Agency should share these conclusions with Member States so as to ensure that the objectives of the strengthened safeguards are met. Under these conditions, IAEA could and would decide to proceed with the implementation of integrated safeguard measures at the declared facilities and locations in Sweden. It is proposed that IAEA would participate in annual PIV's, but would, however, detach from routine verification work to the extent possible and make full use of the results of

  12. Development of DUPIC safeguards neutron counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gil; Cha, Hong Ryul; Kim, Ho Dong; Hong, Jong Sook; Kang, Hee Young

    1999-08-01

    KAERI, in cooperation with LANL, developed DSNC (DUPIC Safeguards Neutron Counter) for safeguards implementing on DUPIC process which is under development by KAERI for direct use of spent PWR fuel in CANDU reactors. DSNC is a well-type neutron coincidence counter with substantial shielding to protect system from high gamma radiation of spent fuel. General development procedures in terms of design, manufacturing, fabrication, cold and hot test, performance test for DSNC authentication by KAERI-IAEA-LANL are described in this report. It is expected that the techniques related DSNC development and associated neutron detection and evaluation method could be applied for safeguards improvement. (Author). 20 refs., 16 tabs. 98 figs.

  13. Safeguards information treatment in NMCC

    International Nuclear Information System (INIS)

    Kojo, Yukiko; Tanigawa, Takanori; Iwai, Naobumi; Suzuki, Tsuneo

    1994-01-01

    The Nuclear Material Control Center (NMCC) has treated all information of the accounting reports, obligation control reports and plans of import/export or domestic receipt/shipment, etc. submitted by the facilities according to the domestic laws, and prepared the reports to provide the IAEA subject to the safeguards agreement and to provide the partner countries subject to the relevant bilateral agreements. The accounting reports are processed during two weeks in the latter half of month and dispatched to the IAEA by the 30th of the month. On the other hand, the obligation control reports are processed during two weeks in the first half of the next month. The other reports are processed on case's by case's basis and submitted to the IAEA or the partner countries at need. The data processing system consists of the quality check, database update, reporting and conversational inquiry sub-systems with the database management system (ADABAS) which keeps key indexes and summary database. (author)

  14. IAEA introduction

    International Nuclear Information System (INIS)

    Zeman, A.

    2009-01-01

    The Physics Section supports the IAEA Member States regarding utilization of: Accelerators; Research reactors; Cross-cutting material research; Controlled fusion. The activities in the field of material science include studies of present NPP structural materials; investigation of degradation mechanisms and contribution to research programs of new materials, as well as education and training activities. The Section is participating in the coordinated research projects 'Accelerator Simulation and Theoretical Modeling of Radiation Effects' (Jointly NA-NE) and 'Benchmarking of advanced materials pre-selected for innovative nuclear reactors' (Jointly NA and NE)

  15. The standing advisory group on safeguards implementation

    International Nuclear Information System (INIS)

    Jennekens, J.H.F.

    1982-09-01

    In 1975 the Director General of the IAEA called together ten persons from member states with nuclear programs at varying stages of development to form the Standing Advisory Group on Safeguards Implementation. The group was later expanded to twelve. The Director General asked the group to evaluate the technical objectives of Agency safeguards, assess the effectiveness and efficiency of specific safeguards operating methods in meeting these technical objectives, advise on techniques to be employed in safeguards operations, and recommend areas where further work is needed. This paper reviews the work of the Standing Advisory Group on Safeguards Implementation since its formation in 1975, summarizes the subjects that have been examined and the advice rendered, and outlines the problem areas requiring further study

  16. UK Safeguards R and D Project progress report for the period July 1983 - April 1984

    International Nuclear Information System (INIS)

    Adams, J.M.

    1984-10-01

    Progress reports are presented on the following projects: centrifuge enrichment plant safeguards; stores safeguards and general accounting techniques; generic programmes (projects underlying many instrument systems (e.g. tamper proofing and indication; neutron interrogation systems); system studies); FBR fuel cycle safeguards; service programmes (services to the IAEA); exploratory and short projects. (U.K.)

  17. Work Group 1: Future Directions for International Safeguards

    International Nuclear Information System (INIS)

    Casterton, J.; Meylemans, P.

    2013-01-01

    The State-Level Concept (SLC) is a holistic approach to safeguards implementation, applicable to all States with safeguards agreements. It is based on a comprehensive and continuous State evaluation and a State level approach for each State, including a specific combination of safeguards measures. It is executed through an annual implementation plan. The SLC has the value of considering the State as a whole. It provides the opportunity to take State-specific factors into account through all stages of safeguards implementation. The implementation of the SLC permits the IAEA to be responsive to all kinds of changes arising from continuous analysis. As a result the safeguards conclusions remain soundly based and up-to-date. The SLC is implemented by the IAEA as a continuous process involving three major components: establishing knowledge about the State and drawing conclusions, determining the specific State level approach, and planning and implementing safeguards activities. The major products that emerge from this process are the State level approach, the annual implementation plan that is the basis for implementing safeguards activities in a State on an annual basis, and the safeguards conclusions, which are set out in the Safeguards Implementation Report on an annual basis. A better cooperation between IAEA and SSAC (State Systems of Accounting for and Control of nuclear material), RSAC (Regional State Systems of Accounting for and Control of nuclear material is important for developing and implementing SLC. The paper is followed by the slides of the presentation. (A.C.)

  18. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  19. Safeguards and nuclear safety: a personal perspective

    International Nuclear Information System (INIS)

    Manning Muntzing, L.

    1982-01-01

    The IAEA's twenty-fifth anniversary provides an occasion for taking stock, for reviewing what the Agency has accomplished, for appraising its present status and for setting out the imperatives that should guide the activities in the near future. In the spirit of this occasion, the author offers his personal perspective on two fundamental aspects of the Agency's work: safeguards and nuclear safety

  20. State system experience with safeguarding power reactors

    International Nuclear Information System (INIS)

    Roehnsch, W.

    1982-01-01

    This session describes the development and operation of the State System of Accountancy and Control in the German Democratic Republic, and summarizes operating experience with safeguards at power reactor facilities. Overall organization and responsibilities, containment and surveillance measures, materials accounting, and inspection procedures will be outlined. Cooperation between the IAEA, State system, facility, and supplier authorities will also be addressed

  1. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-11-15

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report.

  2. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-11-01

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report

  3. A day in the life of a safeguards inspector

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2016-01-01

    Walking several miles through the winding, narrow corridors of a nuclear facility in protective gear while carrying heavy equipment, often escorted by facility operator personnel: welcome to the life of an IAEA safeguards inspector. Safeguards inspectors are an essential part of the global non-proliferation regime, carrying out verification activities, so the IAEA can provide assurances to States worldwide that other countries are not diverting nuclear material from peaceful to military purposes or misusing nuclear technology. One important activity is the inspection of declared stocks of nuclear material: the IAEA is the only organization in the world with the mandate to verify the use of nuclear material and technology globally.

  4. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  5. Excerpts from the introductory statement. IAEA Board of Governors. Vienna, 20 March 2000

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2000-01-01

    In his Introductory Statement at the IAEA Board of Governors, Vienna, 20 March 2000, the Director General of the IAEA focused on the following topics: the first Review Meeting of Parties to the Convention on Nuclear Safety, response to General Conference Resolutions, Safeguards Agreements and Additional Protocols, relations with DPRK and Iraq, Trilateral Initiative (IAEA, USA, Russian Federation) concerning the fissile material removed from nuclear weapon programmes, and IAEA's Programme and Budget for 2001

  6. International Nuclear Safeguards Inspection Support Tool (INSIST)

    International Nuclear Information System (INIS)

    St. Pierre, D.E.; Steinmaus, K.L.; Moon, B.D.

    1994-07-01

    DOE is committed to providing technologies to the International Atomic Energy Agency (IAEA) to meet escalating monitoring and inspection requirements associated with the Non-Proliferation Treaty (NPT). One example of technology provided to the IAEA is the information management and remote monitoring capabilities being customized for the IAEA by the International Safeguards Division of the Office of Non-Proliferation and National Security. The ongoing Safeguards Information Management Systems (SIMS) program is an interlaboratory effort providing the IAEA with a range of information management capabilities designed to enhance the effectiveness of their nuclear inspection activities. The initial commitment involved the customization of computer capabilities to provide IAEA with the basic capability to geographically organize, store, and retrieve the large quantity of information involved in their nuclear on site inspection activities in Iraq. This initial system, the International Nuclear Safeguards Inspection Support Tool (INSIST), was developed by DOE's Pacific Northwest Laboratory (PNL). To date, two INSIST workstations have been deployed at the IAEA. The first has been used to support the IAEA Action Team in the inspection of Iraqi nuclear facilities since August 1993. A second, and similar, workstation has been deployed to support environmental monitoring under the IAEA 93+2 Programme. Both INSIST workstations geographically integrate analog (video) and digital data to provide an easy to use and effective tool for storing retrieving and displaying multimedia site and facility information including world-wide maps, satellite and aerial imagery, on site photography, live inspection videos, and treaty and inspection textual information. The interactive, UNIX-based workstations have a variety of peripheral devices for information input and output. INSIST software includes commercial-off-the-shelf (COTS) modules and application-specific code developed at PNL

  7. IFSS: The IAEA's inspection field support system

    International Nuclear Information System (INIS)

    Muller, R.; Heinonen, O.J.; Schriefer, D.

    1990-01-01

    Recently, highly automated nuclear facilities with enormous volumes of nuclear material accounting data have come into operation. A few others will become operational shortly. Analysis and verification of the data for safeguards purposes is manageable only with improved computer support in the field. To assist its safeguards inspectors, the IAEA has developed the Inspection Field Support System (IFSS). It allows safeguards inspectors to collect, maintain, analyse, and evaluate inspection data on site at nuclear facilities. Previously, field computer support to safeguards inspectors concentrated on providing measurement instrumentation with data storage, but data analysis capabilities were elementary. Also, generic statistical tools were available to handle data that inspectors could (usually manually) input into a computer. Electronic links between these two directions were rudimentary. IFSS integrates the data required for verification and accounting so that inspectors will be able to devote more time to measurements and to derive conclusions at the site in a more timely manner. The system operates on stationary personal computers as well as on portable ones. Its introduction reflects the IAEA Department of Safeguards determination to further improve operational efficiency. It should be emphasized that IFSS implementation is still under development. Several field installations have been made to obtain practical experience and to determine the system's effectiveness

  8. The SSAC in international safeguards and non-proliferation aspects

    International Nuclear Information System (INIS)

    Bett, F.L.; Humphreys, J.J.

    1989-01-01

    The history of international efforts against horizontal proliferation, including the Baruch Plan, bilateral safeguards agreement, IAEA safeguards, the Nuclear Non-Proliferation Treaty, the Zangger Committee, the Nuclear Supplier Group guidelines and the Physical Protection Convention, is reviewed. The role of IAEA NPT safeguards in verifying nondiversion and ensuring no misuse of supplied nuclear items is discussed. The vital importance of successful performance of this role to peaceful nuclear commerce is stressed. The application of NPT safeguards by the IAEA is described, particularly the IAEA's requirement that a State System of Accounting for and Control of Nuclear Material be established. Such a State System has two different but complementary areas of responsibility - ensuring that the use of nuclear material is controlled effectively and can be readily accounted for (this includes the area of physical protection), and providing accounts of nuclear material to responsible bodies such as the State's government and equally importantly to the IAEA for safeguards purpose, as the IAEA bases its conclusions about diversion on its verification of the data provided by the State System

  9. Directory of IAEA databases

    International Nuclear Information System (INIS)

    1991-11-01

    The first edition of the Directory of IAEA Databases is intended to describe the computerized information sources available to IAEA staff members. It contains a listing of all databases produced at the IAEA, together with information on their availability

  10. Safeguard sleuths

    International Nuclear Information System (INIS)

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  11. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  12. Strengthening financial management, providing financial safeguard mechanism

    International Nuclear Information System (INIS)

    Sun Wumei

    2010-01-01

    This article reviewed the history of Zhong He Shanxi Uranium Enrichment Company, summarizing an efficient and systematical financial management method during both construction period and operational period of the company. It related to fundamental financial management structure building, integrated budgeting, fund management, cost management, asset management, tax planning and HR management. of financial staffs. (author)

  13. Scientific forum - The future role of the IAEA

    International Nuclear Information System (INIS)

    2008-01-01

    The nature and scope of the IAEA's programme to 2020 and beyond was the theme of the Scientific Forum 2008. The theme was chosen to reflect on the challenges and issues facing the IAEA and the resources and requirements needed to meet them. During the opening speech, IAEA Director General Mohamed ElBaradei described the magnitude of the issues lying ahead in the areas of nuclear safeguards, security, safety, and peaceful development. 'We need to look at the big picture, where we are and where we wish to go. This is not only about the IAEA but the kind of world we want to live in, in terms of development and security and the links between those two areas,' he said. Referring to a report completed early this year by an international group of eminent persons, ElBaradei stressed the fact that under present conditions the IAEA is not entirely able to cope with the dramatic changes underway around the world because its financial resources and legal authority are insufficient to fulfill the task. Former Prime Minister of Holland and Scientific Forum Chairman Ruud Lubbers then took the podium. He called for the competence, capacity and capability of the IAEA to be strengthened. 'I hope that in this Scientific Forum we reach some common denominator among the IAEA and Member States.' Former US Senator and Nuclear Threat Initiative (NTI) Co-Chairman Sam Nunn, also a keynote speaker, pointed to the issue of scarcity of resources at a time when the world seems to be heading toward a dangerous direction. 'There is a large and growing gap between the IAEA's resources and the job needed to be done... It is my hope we give the IAEA the tools it needs to protect us all,' he said. The Scientific Forum featured four sessions dedicated to nuclear energy, meeting development needs, nuclear safety and security, and IAEA safeguards and verification. From the discussions it was evident hat the Agency has over half a century of its existence assumed recognisable roles along well defined

  14. IAEA Director General to Visit Iran

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The Director General of the IAEA, Yukiya Amano, will travel to Tehran this Sunday, 20 May 2012, to discuss issues of mutual interest with high Iranian officials. In the course of his one-day working visit, on Monday 21 May 2012 the Director General will meet the Secretary of Iran's Supreme National Security Council, His Excellency Saeed Jalili, and other senior representatives of the Iranian government. Herman Nackaerts, Deputy Director General for Safeguards, and Rafael Mariano Grossi, Assistant Director General for Policy, will accompany the Director General. (IAEA)

  15. Excerpts from the introductory statement by IAEA Director General Dr. Mohamed ElBaradei. IAEA Board of Governors, Vienna, 22 March 1999

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1999-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 22 March 1999. The following aspects from the Agency's activity are presented: nuclear safety, measures against illicit trafficking and for the physical protection of nuclear material, status of safeguards agreements and additional protocols, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), and inspections in Iraq in relation to its clandestine nuclear programme

  16. Designing and Operating for Safeguards: Lessons Learned From the Rokkasho Reprocessing Plant (RRP)

    International Nuclear Information System (INIS)

    Johnson, Shirley J.; Ehinger, Michael

    2010-01-01

    This paper will address the lessons learned during the implementation of International Atomic Energy Agency (IAEA) safeguards at the Rokkasho Reprocessing Plant (RRP) which are relevant to the issue of 'safeguards by design'. However, those lessons are a result of a cumulative history of international safeguards experiences starting with the West Valley reprocessing plant in 1969, continuing with the Barnwell plant, and then with the implementation of international safeguards at WAK in Germany and TRP in Japan. The design and implementation of safeguards at RRP in Japan is the latest and most challenging that the IAEA has faced. This paper will discuss the work leading up to the development of a safeguards approach, the design and operating features that were introduced to improve or aid in implementing the safeguards approach, and the resulting recommendations for future facilities. It will provide an overview of how 'safeguardability' was introduced into RRP.

  17. International inspection activity impacts upon DOE safeguards requirements

    International Nuclear Information System (INIS)

    Zack, N.R.

    1995-01-01

    The US has placed certain special nuclear materials declared excess to their strategic needs under international safeguards through the International Atomic Energy Agency (IAEA). This Presidential initiative has obligated materials at several Department of Energy (DOE) facilities for these safeguards activities to demonstrate the willingness of the US to ban production or use of nuclear materials outside of international safeguards. However, IAEA inspection activities generally tend to be intrusive in nature and are not consistent with several domestic safeguards procedures implemented to reduce worker radiation exposures and increase the cost-effectiveness and efficiency of accounting for and storing of special nuclear materials. To help identify and provide workable solutions to these concerns, the Office of Safeguards and Security has conducted a program to determine possible changes to the DOE safeguards and security requirements designed to help facilities under international safeguards inspections more easily comply with domestic safeguards goals during international inspection activities. This paper will discuss the impact of international inspection activities on facility safeguards operations and departmental safeguards procedures and policies

  18. DOE/ABACC safeguards cooperation

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Toth, P.; Rubio, J.

    1995-01-01

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) thro