WorldWideScience

Sample records for strengthened ods superalloy

  1. Electron-microscopic investigations of dispersion-strengthened superalloys

    International Nuclear Information System (INIS)

    Schroeder, J.H.; Arzt, E.

    1988-01-01

    Oxide dispersion strengthened (ODS) superalloys possess a high creep strength up to temperatures above 1000 0 C. This is due to a fine dispersion of incoherent Y 2 O 3 particles in connection with a highly elongated grain structure. To investigate the production and properties of ODS alloys, the grain structure was studied and the shape and distribution of dispersoids were characterized after each of the various production steps. Because the interactions between lattice dislocations and dispersoids control the deformation behaviour at high temperatures, the dislocation-dispersoid configurations in crept specimens have been studied by a TEM stereo technique and under weak-beam conditions. It was possible to detect strain fields around the dispersoids using TEM. The results lead to an improved understanding of dispersion strengthening at high temperatures and provide guidelines for the optimum use of this strengthening mechanism. (orig.) [de

  2. Characterisation of As-deformed microstructure of ODS NI-Base superalloy and ODS ferritic steel prior to directional recrystallisation

    International Nuclear Information System (INIS)

    Baloch, M.M.; Memon, S.A.

    2007-01-01

    The materials studied are unusual in the sense that they have been prepared from mechanically alloyed procedures, including compaction and hot extrusion. It was felt necessary to characterise the initial microstructure thoroughly prior to directional recrystallisation of the alloys. Following consolidation by hot extrusion, dispersion strengthened superalloys appear to display a very fine sub-micron grain size consisting of both dislocation free recrystallised material and un- recrystallised regions of high dislocation density. It is found that there is a very fine dislocation cell structure in the ODS (Oxide Dispersion Strengthened) Ferritic stainless Steel prior to recrystallisation treatment, which shows that alloy is in old-deformed condition after mechanical alloying, extrusion I hot-working. This is in contrast to the mechanically alloyed Nickel Base Superalloy, which have consistently been found to be in primary recrystallisation state following extrusion. In order to understand the recrystallisation behaviour of the two mechanically illoyed materials with commercial designations MA6000 and MA956, a measurement of the orientation relationship between adjacent grains in the as- deformed ODS alloys has also been carried out using Transmission Electron microscope. (author)

  3. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  4. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    Science.gov (United States)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  5. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  6. Recrystallization of the ODS superalloy PM-1000

    International Nuclear Information System (INIS)

    Sandim, H.R.Z.; Hayama, A.O.F.; Raabe, D.

    2006-01-01

    The primary recrystallization of a -fiber textured coarse-grained oxide dispersion strengthened nickel-based superalloy (PM-1000) has been investigated by high-resolution electron backscatter diffraction. The annealing behavior of this alloy is quite complex. Even at high annealing temperatures (e.g. 1200 deg. C), recrystallization is only partial. The microstructure of this superalloy in the annealed state consists of a blurred subgrain structure, coarse grains with sizes of about 10-20 μm at the pre-existing grain boundaries and a significant fraction of small crystals in the interior of the recovered grains. These small grains are elongated and display anisotropic growth. In the present paper we present a detailed explanation for this peculiar microstructure. Particular focus is placed on the origin of the new grains in the recovered structure in a [1 0 0]-oriented grain

  7. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    Science.gov (United States)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  8. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.

    Science.gov (United States)

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-12

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.

  9. Process of welding gamma prime-strengthened nickel-base superalloys

    Science.gov (United States)

    Speigel, Lyle B.; White, Raymond Alan; Murphy, John Thomas; Nowak, Daniel Anthony

    2003-11-25

    A process for welding superalloys, and particularly articles formed of gamma prime-strengthened nickel-base superalloys whose chemistries and/or microstructures differ. The process entails forming the faying surface of at least one of the articles to have a cladding layer of a filler material. The filler material may have a composition that is different from both of the articles, or the same as one of the articles. The cladding layer is machined to promote mating of the faying surfaces, after which the faying surfaces are mated and the articles welded together. After cooling, the welded assembly is free of thermally-induced cracks.

  10. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James [Univ. of Illinois, Urbana-Champaign, IL (United States); Heuser, Brent [Univ. of Illinois, Urbana-Champaign, IL (United States); Robertson, Ian [Kyushu Univ. (Japan); Sehitoglu, Huseyin [Univ. of Illinois, Urbana-Champaign, IL (United States); Sofronis, Petros [Kyushu Univ. (Japan); Gewirth, Andrew [Kyushu Univ. (Japan)

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  11. Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Shi, Shuang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Yang, Jenn-Ming [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wang, Yinong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Li, Jiayan; You, Qifan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2017-03-24

    Inconel 718 superalloy was fabricated by electron beam smelting (EBS) technique. The effect of solution heat treatment on the precipitation behavior and mechanical properties of EBS 718 superalloys were studied, the strengthening mechanisms were analyzed and related to the mechanical properties. The results indicate that the optimized microstructures can be acquired by means of EBS, which is attributed to the rapid cooling rate of approximately 280 ℃/min. The solution heat treatment shows a great impact on the microstructures, precipitation behavior and mechanical properties of EBS 718 superalloy. The γ'' phase shows an apt to precipitate at relatively lower solution temperatures followed by aging, while the γ' precipitates are prone to precipitate at higher temperatures. When solution treated at 1150 ℃, the γ' precipitates are dispersively distributed in the matrix with size and volume fraction of 8.43 nm and 21.66%, respectively, a Vickers hardness of approximately 489 HV{sub 0.1} is observed for the aged superalloy. The precipitation strengthening effect of EBS 718 superalloy could be elucidated by considering the interaction between the dislocations and γ''/γ' precipitates. The shearing of γ' is resisted by the coherency strengthening and formation of antiphase boundary (APB), which shows equal effect as weakly coupled dislocation (WCD) model. And for γ'', the strengthening effect is much more prominent with the primary strengthening mechanism of ordering. Moreover, it is interestingly found that the strengthening mechanism of stacking fault (SF) shearing coexists with APB shearing, and SF shearing plays a major role in strengthening of EBS 718 superalloy.

  12. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  13. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  14. Powder-metallurgy superalloy strengthened by a secondary gamma phase.

    Science.gov (United States)

    Kotval, P. S.

    1971-01-01

    Description of experiments in which prealloyed powders of superalloy compositions were consolidated by extrusion after the strengthening by precipitation of a body-centered tetragonal gamma secondary Ni3 Ta phase. Thin foil electron microscopy showed that the mechanical properties of the resultant powder-metallurgy product were correlated with its microstructure. The product exhibited high strength at 1200 F without loss of ductility, after thermomechanical treatment and aging.

  15. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys

    International Nuclear Information System (INIS)

    Mueller, A.J.; Bianco, R.; Buckman, R.W. Jr.

    1999-01-01

    Oxide dispersion strengthened (ODS) molybdenum alloys being developed for high temperature applications possess excellent high temperature strength and creep resistance. In addition they exhibit a ductile-to-brittle transition temperature (DBIT) in the worked and stress-relieved condition under longitudinal tensile load well below room temperature. However, in the recrystallized condition, the DBTT maybe near or above room temperature, depending on the volume fraction of oxide dispersion and the amount of prior work. Dilute rhenium additions (7 and 14 wt.%) to ODS molybdenum were evaluated to determine their effect on low temperature ductility. The addition of 7 wt.% rhenium to the ODS molybdenum did not significantly enhance the mechanical properties. However, the addition of 14 wt.% rhenium to the ODS molybdenum resulted in a DBTT well below room temperature in both the stress-relieved and recrystallized condition. Additionally, the tensile strength of ODS Mo-14Re is greater than the base ODS molybdenum at 1,000 to 1,250 C

  16. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars

    Science.gov (United States)

    Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; de Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; Ulbricht, A.

    2017-11-01

    The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.

  17. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  18. Overview of welding of oxide dispersion strengthened (ODS) alloys for advanced nuclear reactor applications

    International Nuclear Information System (INIS)

    Kalvala, Prasad Rao; Raja, K.S.; Misra, Manoranjan; Tache, Ricard A.

    2009-01-01

    Oxide dispersion strengthened (ODS) alloys are very promising materials for Generation IV reactors with a potential to be used at elevated temperatures under severe neutron exposure environment. Welding of the ODS alloys is an understudied problem. In this paper, an overview of welding of the ODS alloys useful for advanced nuclear reactor applications is presented. The microstructural changes and the resultant mechanical properties obtained by various solid state welding processes are reviewed. Based on our results on PM2000, an approach for future work on welding of the ODS alloys is suggested. (author)

  19. Strengthening mechanisms in an inertia friction welded nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tiley, J.S., E-mail: Jaimie.Tiley@us.af.mil [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); Mahaffey, D.W. [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); Alam, T.; Rojhirunsakool, T. [Department of Materials Engineering, University of North Texas, Denton, TX 76203 (United States); Senkov, O.; Parthasarthy, T. [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); UES, Inc., Dayton, OH 45433 (United States); Banerjee, R. [Department of Materials Engineering, University of North Texas, Denton, TX 76203 (United States)

    2016-04-26

    This research investigated the strengthening mechanisms associated with the as-welded microstructure developed during inertia friction welding of dissimilar superalloys LHSR and Mar-M247. The weld interface and heat affected regions of the sample were analyzed using hardness indentation techniques and subsequently characterized using SEM, TEM and advanced atom probe tomography. The yield strength of the welded joint was modeled to determine the impact of the gradients in the as-welded microstructure on strengthening mechanisms within the LSHR material. Characterization centered on formation of γ′, γ grain size and chemical segregation within the heat affected regions. Results indicate an increased hardness in the vicinity of the weld interface, resulting from the refined dispersion of γ′ and γ grains.

  20. Forging Oxide-Dispersion-Strengthened Superalloys

    Science.gov (United States)

    Harf, F. H.; Glasgow, T. K.; Moracz, D. J.; Austin, C. M.

    1986-01-01

    Cladding of mild steel prevents surface cracking when alloy contacts die. Continual need for improvements in properties of alloys capable of withstanding elevated temperatures. Accomplished by using oxide-dispersion-strengthed superalloys such as Inconel Alloy MA 6000. Elevated tensile properties of forged alloy equal those of hot-rolled MA 6000 bar. Stress-rupture properties somewhat lower than those of bar stock but, at 1,100 degrees C, exceed those of strongest commercial single crystal, directionally solidified and conventionally cast superalloys.

  1. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-04-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  2. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels

    International Nuclear Information System (INIS)

    Certain, Alicia G.; Kuchibhatla, Satyanarayana; Shutthanandan, V.; Allen, T. R.

    2013-01-01

    Nanostructured oxide dispersion strengthened (ODS) steels are considered candidates for nuclear fission and fusion applications at high temperature and dose. The complex oxide nanoclusters in these alloys provide high-temperature strength and are expected to afford better radiation resistance. Proton, heavy ion, and neutron irradiations have been performed to evaluate cluster stability in 14YWT and 9CrODS steel under a range of irradiation conditions. Energy-filtered transmission electron microscopy and atom probe tomography were used in this work to analyze the evolution of the oxide population.

  3. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  4. Computational thermodynamics and genetic algorithms to design affordable γ′-strengthened nickel–iron based superalloys

    International Nuclear Information System (INIS)

    Tancret, F

    2012-01-01

    Computational thermodynamics based on the CALPHAD approach (Thermo-Calc software) are used to design creep-resistant and affordable superalloys for large-scale applications such as power plants. Cost is reduced by the introduction of iron and by avoiding the use of expensive alloying elements such as Nb, Ta, Mo, Co etc. Strengthening is ensured by the addition of W, and of Al and Ti to provoke the precipitation of γ′. However, the addition of iron reduces the maximum possible volume fraction of γ′. The latter is maximized automatically using a genetic algorithm during simulation, while keeping the alloys free of undesirable phases at high temperatures. New superalloys with 20 wt% Cr are designed, with Fe content up to 37 wt%. They should be forgeable, weldable, oxidation resistant and significantly cheaper than existing alloys with equivalent properties. (paper)

  5. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed {beta}-NiAl coatings for Hf-containing superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo [School of Materials Science and Engineering, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China)], E-mail: Guo.hongbo@buaa.edu.cn; Cui Yongjing; Peng Hui; Gong Shengkai [School of Materials Science and Engineering, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China)

    2010-04-15

    Oxide dispersed (OD) {beta}-NiAl coatings and OD-free {beta}-NiAl coatings were deposited onto a Hf-containing Ni-based superalloy by electron beam physical vapor deposition (EB-PVD). Excessive enrichment of Hf was found in the TGO on the OD-free coating due to outward diffusion of Hf from the superalloy, causing accelerated TGO thickening and spalling. The OD-coating effectively prevented Hf from outward diffusion. Only small amount of Hf diffused to the coating surface and improved the TGO adherence by virtue of the reactive element effect. The OD-coating exhibited an improved oxidation resistance as compared to the OD-free coating.

  6. Microstructural, mechanical and weldability assessments of the dissimilar welds between γ′- and γ″-strengthened nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

    2013-08-15

    Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. γ′-Strengthened nickel-base Alloy 500 and γ″-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of γ″-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type

  7. Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements

    International Nuclear Information System (INIS)

    Pröbstle, M.; Neumeier, S.; Feldner, P.; Rettig, R.; Helmer, H.E.; Singer, R.F.; Göken, M.

    2016-01-01

    Solid solution strengthening of the γ matrix is one key factor for improving the creep strength of single crystal nickel-base superalloys at high temperatures. Therefore a strong partitioning of solid solution hardening elements to the matrix is beneficial for high temperature creep strength. Different Rhenium-free alloys which are derived from CMSX-4 are investigated. The alloys have been characterized regarding microstructure, phase compositions as well as creep strength. It is found that increasing the Titanium (Ti) as well as the Tungsten (W) content causes a stronger partitioning of the solid solution strengtheners, in particular W, to the γ phase. As a result the creep resistance is significantly improved. Based on these ideas, a Rhenium-free alloy with an optimized chemistry regarding the partitioning behavior of W is developed and validated in the present study. It shows comparable creep strength to the Rhenium containing second generation alloy CMSX-4 in the high temperature / low stress creep regime and is less prone to the formation of deleterious topologically close packed (TCP) phases. This more effective usage of solid solution strengtheners can enhance the creep properties of nickel-base superalloys while reducing the content of strategic elements like Rhenium.

  8. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  9. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    Science.gov (United States)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  10. High temperature properties of polycrystalline γ"'-strengthened cobalt-base superalloys

    International Nuclear Information System (INIS)

    Bauer, Alexander

    2016-01-01

    The recent discovery of a stable γ"'-phase in Co-based superalloys opened up a pathway for the development of a new high temperature material class, which is similar in microstructure and properties to the modern γ"'-hardened Ni-based superalloys. In this work, the first attempt was done to check the influence of several for Ni-based superalloys typical alloying elements on the properties of the new Co-based superalloys. It became clear that the basic characteristics of the first experimental alloys are similar to those of the γ"'-hardened Ni-based alloys. The results of the multinary experimental alloys show that, based on the insight gained so far, targeted alloy development is possible. These materials have the potential to be used as disc materials in turbines.

  11. Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process

    Science.gov (United States)

    Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.

  12. Fabrication development for ODS-superalloy, air-cooled turbine blades

    Science.gov (United States)

    Moracz, D. J.

    1984-01-01

    MA-600 is a gamma prime and oxide dispersion strengthened superalloy made by mechanical alloying. At the initiation of this program, MA-6000 was available as an experimental alloy only and did not go into production until late in the program. The objective of this program was to develop a thermal-mechanical-processing approach which would yield the necessary elongated grain structure and desirable mechanical properties after conventional press forging. Forging evaluations were performed to select optimum thermal-mechanical-processing conditions. These forging evaluations indicated that MA-6000 was extremely sensitive to die chilling. In order to conventionally hot forge the alloy, an adherent cladding, either the original extrusion can or a thick plating, was required to prevent cracking of the workpiece. Die design must reflect the requirement of cladding. MA-6000 was found to be sensitive to the forging temperature. The correct temperature required to obtain the proper grain structure after recrystallization was found to be between 1010-1065 C (1850-1950 F). The deformation level did not affect subsequent crystallization; however, sharp transition areas in tooling designs should be avoided in forming a blade shape because of the potential for grain structure discontinuities. Starting material to be used for forging should be processed so that it is capable of being zone annealed to a coarse elongated grain structure as bar stock. This conclusion means that standard processed bar materials can be used.

  13. Preparation of Inconel 740 superalloy by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); You, Qifan; Shi, Shuang; Li, Jiayan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Ye, Fei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Wei, Xin [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2016-08-15

    A novel method, namely electron beam smelting (EBS) technology was used to prepare the Inconel 740 superalloy. The microstructures, hardness and oxidation behavior were characterized and compared with the traditionally prepared Inconel 740 superalloy. The results imply that the solution treatment gives rise to the coarsening of γ′ precipitates, with further aging treatment, the γ′ precipitates with size of less than 30 nm are distributed dispersively in the matrix, leading to a decreasing of the lattice parameters and an increasing of the misfit. The γ′ precipitates result in shearing mechanism of weakly pair coupling. The EBS 740 superalloy produces better properties than that prepared in the traditional method in both precipitation strengthening effect and oxidation resistance. - Highlights: • Electron beam smelting, a new method, was used to prepare the Inconel 740 superalloy. • The EBS 740 shows higher strengthening effect than 740 made in traditional method. • The EBS 740 shows better oxidation resistance than traditional 740. • It shows application prospect of EBS technology in preparing Ni-base superalloys.

  14. Superalloy applications in the nuclear field

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Padilha, A.F.

    1984-01-01

    The process conditions in the areas of nuclear fuel processing, fabrication, utilization, reprocessing and disposal are severe, demanding therefore the use of materials with high temperature mechanical strength and corrosion resistance. A number of refractory metal containing superalloys have found application in the diferrent areas of the nuclear field. The main aspects of the microstructure, strengthening mechanisms and corrosion resistance of 3 superalloys, namely Incoloy 825, Inconel 718 and Hastelloy C have been discussed. The role of the refractory metal elements in influencing the mechanical strength and corrosion resistance of superalloys has been emphasised. (Author) [pt

  15. Helium behavior in oxide dispersion strengthened (ODS) steel: Insights from ab initio modeling

    Science.gov (United States)

    Sun, Dan; Li, Ruihuan; Ding, Jianhua; Huang, Shaosong; Zhang, Pengbo; Lu, Zheng; Zhao, Jijun

    2018-02-01

    Using first-principles calculations, we systemically investigate the energetics and stability behavior of helium (He) atoms and small Hen (n = 2-4) clusters inside oxide dispersion strengthened (ODS) steel, as well as the incorporation of large amount of He atoms inside Y2O3 crystal. From the energetic point of view, He atom inside Y2O3 cluster is most stable, followed by the interstitial sites at the α-Fe/Y2O3 interface, and the tetrahedral interstitial sites inside α-Fe region. We further consider Hen (n = 2-4) clusters at the tetrahedral interstitial site surrounded by four Y atoms, which is the most stable site in the ODS steel model. The incorporation energies of all these Hen clusters are lower than that of single He atom in α-Fe, while the binding energy between two He atoms is relatively small. With insertion of 15 He atoms into 80-atom unit cell of Y2O3 crystal, the incorporation energy of He atoms is still lower than that of He4 cluster in α-Fe crystal. These theoretical results suggest that He atoms tend to aggregate inside Y2O3 clusters or at the α-Fe/Y2O3 interface, which is beneficial to prevent the He embrittlement in ODS steels.

  16. Water corrosion test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    As a part of feasibility study of ODS steel cladding, its water corrosion resistance was examined under water pool condition. Although addition of Cr is effective for preventing water corrosion, excessive Cr addition leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, water corrosion test was conducted for these ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) Corrosion rate of 9Cr-ODS martensitic and 12Cr-ODS ferritic steel are significantly small and no pitting was observed. Thus, these ODS steels have superior resistance for water corrosion under the condition of 60degC and pH8-12. (2) It was showed that 9Cr-ODS martensitic steel and 12Cr-ODS ferritic steel have comparable water corrosion resistance to that of PNC316 and PNC-FMS at 60degC for 1,000h under varying pH of 8, 10. Water corrosion resistance of these alloys is slightly larger than that of PNC316 and PNC-FMS at pH12 without significant difference of appearance and uneven condition. (author)

  17. Changes in the properties of superalloys by long term heating

    International Nuclear Information System (INIS)

    Susukida, H.; Tsuji, I.; Kawai, H.

    1976-01-01

    A laboratory study was conducted in order to determine the effect of long term heating (max. 10000h at 850 0 and 950 0 C) on the microstructure, tensile properties, hardness and stress rupture properties of four kinds of superalloys. These superalloys are two kinds of solid solution hardened Ni-base superalloys Hastelloy X and Inconel 617 and two kinds of dispersion strengthened Ni-base superalloys TD-Ni and TD-NiCr. The result of the study can be summarized as follows: (1) Solid solution hardened superalloys: Many precipitates were observed in the grains and on the grain boundaries after 100 hours of heating, and the precipitates became coarse-grained by over 1000 hours of heating. This tendency was remarkable when they were heated at 950 0 C. With the change of their microstructure, their mechanical properties also changed, particularly their tensile ductility decreased remarkably. (2) Dispersion strengthened superalloys: Their microstructure and mechanical properties were almost unchanged by long term heating. (3) The authors proposed ''solid solution hardening value'' in order to grasp quantitatively the solid solution hardening which has been discussed by the content of each element hitherto. (auth.)

  18. Transmission electron microscopy of oxide dispersion strengthened (ODS) molybdenum: effects of irradiation on material microstructure

    International Nuclear Information System (INIS)

    Baranwal, R.; Burke, M.G.

    2003-01-01

    Oxide dispersion strengthened (ODS) molybdenum has been characterized using transmission electron microscopy (TEM) to determine the effects of irradiation on material microstructure. This work describes the results-to-date from TEM characterization of unirradiated and irradiated ODS molybdenum. The general microstructure of the unirradiated material consists of fine molybdenum grains (< 5 (micro)m average grain size) with numerous low angle boundaries and isolated dislocation networks. 'Ribbon'-like lanthanum oxides are aligned along the working direction of the product form and are frequently associated with grain boundaries, serving to inhibit grain boundary and dislocation movement. In addition to the 'ribbons', discrete lanthanum oxide particles have also been detected. After irradiation, the material is characterized by the presence of nonuniformly distributed large (∼ 20 to 100 nm in diameter), multi-faceted voids, while the molybdenum grain size and oxide morphology appear to be unaffected by irradiation

  19. High temperature oxidation test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    In a feasibility study of ODS steel cladding, its high temperature oxidation resistance was evaluated. Although addition of Cr is effective for preventing high temperature oxidation, excessively higher amount of Cr leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, high temperature oxidation test was conducted for ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) 9Cr-ODS martensitic and 12Cr-ODS ferritic steel have superior high temperature oxidation resistance compared to 11mass%Cr PNC-FMS and even 17mass% SUS430 and equivalent to austenitic PNC316. (2) The superior oxidation resistance of ODS steel was attributed to earlier formation of the protective alpha-Cr 2 O 3 layer at the matrix and inner oxide scale interface. The grain size of ODS steel is finer than that of PNC-FMS, so the superior oxidation resistance of ODS steel can be attributed to the enhanced Cr-supplying rate throughout the accelerated grain boundary diffusion. Finely dispersed Y 2 O 3 oxide particles in the ODS steel matrix may also stabilized the adherence between the protective alpha-Cr 2 O 3 layer and the matrix. (author)

  20. First approach for thermodynamic modelling of the high temperature oxidation behaviour of ternary γ′-strengthened Co–Al–W superalloys

    International Nuclear Information System (INIS)

    Klein, L.; Zendegani, A.; Palumbo, M.; Fries, S.G.; Virtanen, S.

    2014-01-01

    Highlights: • Thermodynamic modelling of the oxidation behaviour of a novel Co-base superalloy. • Calculated oxide layer sequence is in good agreement with formed oxide scales. • Prediction of an optimised alloy composition with increased phase stability. • Prediction of the influence of oxygen partial pressure on Al 2 O 3 formation. - Abstract: In the present work, thermodynamic modelling of the high temperature oxidation behaviour of a γ′-strengthened Co-base superalloy is presented. The ternary Co–9Al–9W alloy (values in at%) was isothermally oxidised for 500 h at 800 and 900 °C in air. Results reveal that the calculated oxide layer sequence (Thermo-Calc, TCNI6) is in good agreement with the formed oxide scales on the alloy surface. Furthermore, prediction of the influence of oxygen partial pressure on Al 2 O 3 formation is presented. The modelling results indicate pathways for alloy development or possible pre-oxidation surface treatments for improved oxidation resistance of the material

  1. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  2. Fast high-temperature consolidation of Oxide-Dispersion Strengthened (ODS) steels: process, microstructure, precipitation, properties

    International Nuclear Information System (INIS)

    Boulnat, Xavier

    2014-01-01

    This work aims to lighten the understanding of the behavior of a class of metallic materials called Oxide-Dispersion Strengthened (ODS) ferritic steels. ODS steels are produced by powder metallurgy with various steps including atomization, mechanical alloying and high-temperature consolidation. The consolidation involves the formation of nanoparticles in the steel and various evolutions of the microstructure of the material that are not fully understood. In this thesis, a novel consolidation technique assisted by electric field called 'Spark Plasma Sintering' (SPS) or 'Field-Assisted Sintering Technique' (FAST) was assessed. Excellent mechanical properties were obtained by SPS, comparable to those of conventional hot isostatic pressed (HIP) materials but with much shorter processing time. Also, a broad range of microstructures and thus of tensile strength and ductility were obtained by performing SPS on either milled or atomized powder at different temperatures. However, SPS consolidation failed to avoid heterogeneous microstructure composed of ultrafine-grained regions surrounded by micron grains despite of the rapid consolidation kinetics. A multi-scale characterization allowed to understand and model the evolution of this complex microstructure. An analytical evaluation of the contributing mechanisms can explain the appearance of the complex grain structure and its thermal stability during further heat treatments. Inhomogeneous distribution of plastic deformation in the powder is argued to be the major cause of heterogeneous recrystallization and further grain growth during hot consolidation. Even if increasing the solute content of yttrium, titanium and oxygen does not impede abnormal growth, it permits to control the fraction and the size of the retained ultrafine grains, which is a key-factor to tailor the mechanical properties. Since precipitation through grain boundary pinning plays a significant role on grain growth, a careful

  3. Tensile properties and temperature-dependent yield strength prediction of GH4033 wrought superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jianzuo [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Li, Weiguo, E-mail: wgli@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xianhe; Kou, Haibo; Shao, Jiaxing; Geng, Peiji; Deng, Yong [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Fang, Daining [LTCS and College of Engineering, Peking University, Beijing 100871 (China)

    2016-10-31

    The tensile properties of superalloy GH4033 have been evaluated at temperatures ranging from room temperature to 1000 °C. Fracture surfaces and precipitation were observed using a field-emission scanning electron microscope (FE-SEM). The alloy mainly consisted of γ’ precipitate particles homogeneously dispersed in the γ matrix interior. The effects of dynamic strain aging and precipitation on the strength were verified. A temperature-dependent yield strength model was developed to describe the temperature and precipitation effects on the alloy's yield behaviour. The model is able to consider the effect of precipitation strengthening on the yield strength. The yield behaviour of the precipitation-strengthened superalloy was demonstrated to be adequately predictable over a wide range of temperatures. Note that this model reflects the quantitative relationship between the yield strength of the precipitation-strengthened superalloy and the temperature, the elastic modulus, the specific heat capacity at constant pressure, Poisson's ratio, the precipitate particle size and the volume fraction of the particles.

  4. The oxidation and corrosion of ODS alloys

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  5. Oxidation And Hot Corrosion Of ODS Alloy

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  6. Metallurgical comparison between the experimental ED-ODS and commercial ODS steels

    International Nuclear Information System (INIS)

    Fernandez, P.; Serrano, M.; Lapena, J.

    2007-01-01

    Full text of publication follows: Recently, reduced activation oxide dispersion strengthened ferritic/martensitic steels have been identified as potential structural material candidates for first wall and blanket structures of fusion devices. These steels allow to increase the operation temperature of the fusion reactor, around of 100 deg. C or even more, because of their excellent thermal creep resistance. ODS steels are being developed and investigated for nuclear fission and fusion applications in Japan, Europe and the United States. Commercial ODS products, such as MA956 and PM2000 are available and are being used for high temperature applications. Since no reduced activation ferritic/martensitic steels are commercially available at present, the European Materials Fusion Programme has considered in the last years initiate adequate research activities to produce and characterize these materials to evaluate the feasibility of their use in the different blanket designs. Nowadays, the ODS steel that are being extensively investigated in Europe is the denominated EU-ODS. This alloy has the basic composition of the Eurofer'97 with 0.3% of Y 2 O 3 particles. In this paper, the metallurgical properties (microstructural, Charpy, etc) of the newly developed EU-ODS steel are presented and discussed together with the properties of the commercial MA956 and PM2000 ODS steels, also studied in this work, in order to show the differences and similarities between these ODS alloys. (authors)

  7. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  8. Effect of interlayer composition diffusion bonding behavior of an ods nickel alloy

    International Nuclear Information System (INIS)

    Saha, R.K.; Khan, T.I.

    2005-01-01

    Oxide dispersion strengthened superalloys have been developed with excellent mechanical properties for use at elevated temperatures. However, in order to achieve commercial application an appropriate joining process is necessary which minimizes the disruption to the alloy microstructure. In transient liquid phase (TLP) diffusion Hardness, and bonding technique an interlayer containing melting point depressants is placed between the bonding surfaces and at the bonding temperature this interlayer melts and solidifies isothermally. In this study, TLP bonding technique , was used to join a Ni-based ODS alloy, MA 758, using a number of different nickel based interlayer compositions, namely, Ni-Cr-Fe-Si-B-Co, Ni-Cr-B, Ni-P and Ni-Cr-Si-B. These foils are ductile and melt quickly within a narrow temperature range producing strong, non-porous joints. The results showed that the hold time at the bonding temperature affected the rate of isothermal solidification during the TLP bonding process. Furthermore, the use of a post-bond heat treatment helped to homogenize the joint region. (author)

  9. Microstructure, Lattice Misfit, and High-Temperature Strength of γ'-Strengthened Co-Al-W-Ge Model Superalloys

    Science.gov (United States)

    Zenk, Christopher H.; Bauer, Alexander; Goik, Philip; Neumeier, Steffen; Stone, Howard J.; Göken, Mathias

    2016-05-01

    The quaternary alloy system Co-Al-W-Ge was investigated and it was found that a continuous γ /γ ^' two-phase field extends between the systems Co-Al-W and Co-Ge-W. All alloys examined comprised cuboidal L1_2 precipitates coherently embedded in an A1 matrix. Differential scanning calorimetry measurements revealed that the liquidus, solidus, and γ ^' -solvus temperatures decrease when the Ge content is increased. The lower liquidus temperature and the capability of γ ^' -strengthening in the Ge-rich alloys make them interesting as potential candidates for brazing applications of Co-base superalloys. The γ /γ ^' lattice misfit was determined by high-resolution X-ray diffraction and found to be positive for all alloys investigated, decreasing with increasing Ge content. The mechanical properties of the Al-rich alloys surpass those rich in Ge.

  10. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  11. 75 FR 9232 - Office of Dietary Supplements (ODS) 2010-2014 Strategic Plan

    Science.gov (United States)

    2010-03-01

    ... completed a strategic planning process resulting in the development of the ODS Strategic Plan for 2010-2014, entitled Strengthening Knowledge and Understanding of Dietary Supplements. The strategic plan is available... Supplements (ODS) 2010-2014 Strategic Plan ACTION: Notice of availability of the ODS Strategic Plan for 2010...

  12. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  13. ODS iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Ohriner, E.K.; Tortorelli, P.F. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200{degrees}C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The program has two main thrusts: (a) alloy processing, which involves mechanical alloying and thermomechanical processing to achieve the desired size and distribution of the oxide dispersoid, and (b) optimization of the oxidation behavior to provide increased service life compared to ODS-FeCrAl alloys intended for the same applications. Control of the grain size and shape in the final alloy is very dependent on the homogeneity of the alloy powder, in terms of the size and distribution of the dispersed oxide particles, and on the level of strain and temperature applied in the recrystallization step. Studies of the effects of these variables are being made using mechanically-alloyed powder from two sources: a commercial powder metallurgy alloy vendor and an in-house, controlled environment high-energy mill. The effects of milling parameters on the microstructure and composition of the powder and consolidated alloy are described. Comparison of the oxidation kinetics of ODS-Fe{sub 3}Al alloys with commercial ODS-FeCrAl alloys in air at 1000-1300{degrees}C indicated that the best Fe{sub 3}Al-based alloys oxidized isothermally at the same rate as the ODS-FeCrAl alloys but, under thermal cycling conditions, the oxidation rate of ODS-Fe{sub 3}Al was faster. The main difference was that the ODS-Fe{sub 3}Al experienced significantly more scale spallation above 1000{degrees}C. The differences in oxidation behavior were translated into expected lifetimes which indicated that, for an alloy section thickness of 2.5 mm, the scale spallation of ODS-Fe{sub 3}Al leads to an expected service lifetime similar to that for the INCO alloy MA956 at 1100 to 1300{degrees}C.

  14. Creep constitutive equation of dual phase 9Cr-ODS steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Ukai, Shigeharu; Tamura, Manabu; Ohtsuka, Satoshi; Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Kohyama, Akira; Fujiwara, Masayuki

    2008-01-01

    9Cr-ODS (oxide dispersion strengthened) steels developed by JAEA (Japan Atomic Energy Agency) have superior creep properties compared with conventional heat resistant steels. The ODS steels can enormously contribute to practical applications of fast breeder reactors and more attractive fusion reactors. Key issues are developments of material processing procedures for mass production and creep life prediction methods in present R and D. In this study, formulation of creep constitutive equation was performed against the backdrop. The 9Cr-ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the δ ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the α' martensite. The δ ferrite functions as a reinforcement in the dual phase 9Cr-ODS steel. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative qualitative model of creep mechanism was formulated at the start of this study using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated using the exponential type creep equation extended by a law of mixture

  15. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  16. Studies on phase kinetics of new superalloys

    International Nuclear Information System (INIS)

    Weisbrodt, A.; Penkalla, H.J.; Schubert, F.; Nickel, H.

    1990-08-01

    At the development of new ODS (Oxide-Dispersion-Strengthened) alloys for components being exposed to hot-gas temperatures nickel-base alloys and ODS alloys have been investigated. The experimental work mainly referred to phase investigations of thermally loaded samples. The addition of alloying elements will have a decisive influence on the γ'-phase fraction, γ'-lattice parameter, the morphology as well as the coarsening behaviour of the γ'-phase under temperature load. The main characteristics of ODS alloys are Y,Al-mixed oxides and microstructural inhomogenities. As for MA6000 a Time-Temperature-Precipitation diagram has been elaborated. By means of the improved computer programme PHASCALC for phase and N v (= average electron vacancy concentration) - value calculation many microstructural parameters such as the γ/γ'-misfit, the solution of the γ'-phase and melting temperatures can be determined. Tensile tests made at temperatures above 900deg C have shown that the strengthening parameters are dependent on alloy composition, temperature conditions, γ'-phase fraction and oxide dispersion content. (orig.) [de

  17. Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongsheng, E-mail: chen.dongsheng85@gmail.com [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko; Han, Wentuo; Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-10-15

    Highlights: • The role of oxide particles in α/α′ phase decomposition behavior; microstructure of phase decomposition observed by TEM. • The characteristics of ductility loss caused by age-hardening. • Correlation of phase decomposition and age-hardening explained by dispersion strengthened models. • Age-hardening susceptibility of ODS steels and SUS430 steel. - Abstract: The effect of aging on high-Cr ferritic steels was investigated with focusing on the role of oxide particles in α/α′ phase decomposition behavior. 12Cr-oxide dispersion strengthened (ODS) steel, 15Cr-ODS steel and commercial SUS430 steel were isothermally aged at 475 °C for up to 10,000 h. Thermal aging caused a larger hardening in SUS430 than 15Cr-ODS, while 12Cr-ODS showed almost no hardening. A characteristic of the ODS steels is that the hardening was not accompanied by the significant loss of ductility that was observed in SUS430 steel. After aging for 2000 h, SUS430 steel shows a larger ductile–brittle transition temperature (DBTT) shift than 15Cr-ODS steel, which suggests that the age-hardening susceptibility is lower in 15Cr-ODS steel than in conventional SUS430 steel. Thermal aging leaded to a large number of Cr-rich α′ precipitates, which were confirmed by transmission electron microscopy (TEM). Correlation of age-hardening and phase decomposition was interpreted by Orowan type strengthening model. Results indicate that oxide particles cannot only suppress ductility loss, but also may influence α/α′ phase decomposition kinetics.

  18. TEM characterization of simultaneous triple ion implanted ODS Fe12Cr

    International Nuclear Information System (INIS)

    Castro, Vanessa de; Briceno, Martha; Lozano-Perez, Sergio; Trocellier, Patrick; Roberts, Steve G.; Pareja, Ramiro

    2014-01-01

    Understanding the behavior of oxide dispersion strengthened (ODS) ferritic/martensitic steels under irradiation is vital in the design of advanced fusion reactors. In this work, a simultaneous triple ion implanted ODS Fe12Cr steel was investigated by transmission electron microscopy in order to determine the effect of irradiation on the grain and dislocation structures, oxide nanoparticles and other secondary phases present in the steel. The ODS steel was irradiated at RT with Fe 8+ , He + and H + at the JANNUS-Saclay facility to a damage of 4.4 dpa. Results show that ODS nanoparticles appear very stable under these irradiation conditions

  19. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Osoba, L.O. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada); Ding, R.G. [Department of Metallurgy and Materials Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ojo, O.A., E-mail: ojo@cc.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2012-03-15

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.

  20. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    International Nuclear Information System (INIS)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A.

    2012-01-01

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti–Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of γ–γ' eutectic in γ' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: ► A newly developed superalloy was welded by CO 2 laser beam joining technique. ► Electron microscopy characterization of the weld microstructure was performed. ► Identified interdendritic microconstituents consist of MC-type carbides. ► Modification of primary solidification path is used to explain cracking resistance.

  1. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  2. ODS Alloys for Nuclear Applications

    International Nuclear Information System (INIS)

    Jang, Jin Sung

    2006-01-01

    ODS (oxide dispersion strengthening) alloy is one of the potential candidate alloys for the cladding or in reactor components of Generation IV reactors and for the structural material even for fusion reactors. It is widely accepted as very resistant material to neutron irradiation as well as strong material at high temperature due to its finely distributed and stable oxide particles. Among Generation IV reactors SFR and SCWR are anticipated in general to run in the temperature range between 300 and 550 .deg. C, and the peak cladding temperature is supposed to reach at about 620 .deg. C during the normal operation. Therefore Zr.base alloys, which have been widely known and adopted for the cladding material due to their excellent neutron economics, are no more adequate at these operating conditions. Fe-base ODS alloys in general has a good high temperature strength at the above high temperature as well as the neutron resistance. In this study a range of commercial grade ODS alloys and their applications are reviewed, including an investigation of the stability of a commercial grade 20% Cr Fe-base ODS alloy(MA956). The alloy was evaluated in terms of the fracture toughness change along with the aging treatment. Also an attempt of the development of 9% Cr Fe-base ODS alloys is introduced

  3. Irradiation response of ODS Eurofer97 steel

    Energy Technology Data Exchange (ETDEWEB)

    Luzginova, N.V., E-mail: luzginova@nrg.eu [Nuclear Research and Consultancy Group, Petten (Netherlands); Nolles, H.S.; Pierick, P. ten; Bakker, T.; Mutnuru, R.K.; Jong, M.; Blagoeva, D.T. [Nuclear Research and Consultancy Group, Petten (Netherlands)

    2012-09-15

    Oxide dispersion strengthened (ODS) Eurofer97 steel (EU batch, 0.3 wt.% of Y{sub 2}O{sub 3} particles), produced by mechanical alloying followed by hot rolling, is irradiated in the High Flux Reactor in Petten, The Netherlands at three different irradiation temperatures (300, 450 and 550 Degree-Sign C) up to nominal doses of 1 dpa and 3 dpa. The effect of neutron irradiation on the mechanical properties of ODS Eurofer97 material is investigated. It is shown that the irradiation hardening of ODS Eurofer97 steel occurs at 300 Degree-Sign C, whereas during irradiation at 450 and 550 Degree-Sign C no changes in mechanical properties are observed compared to the unirradiated material. This effect is possibly a result of the annealing of the irradiation damage at temperatures higher than 300 Degree-Sign C. The observed shifts in the Ductile to Brittle Transition Temperatures due to irradiation at different temperatures are discussed and compared with non-ODS Eurofer97 steel.

  4. Mechanical Behavior of Three-Dimensional Braided Nickel-Based Superalloys Synthesized via Pack Cementation

    Science.gov (United States)

    Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.

  5. Microstructure and Mechanical Properties in Gamma(face-centered cubic) + Gamma Prime(L12) Precipitation-Strengthened Cobalt-based Superalloys

    Science.gov (United States)

    Bocchini, Peter J.

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-based superalloys, whose high-temperature strength and creep resistance can be attributed to a two-phase microstructure consisting of a large volume fraction of ordered gamma'(L12)-precipitates embedded in a disordered gamma(f.c.c.)-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement, are nearing the theoretical limit of their operating temperatures. In 2006, an analogous gamma(f.c.c.) + gamma'(L12) microstructure was identified in the Co-Al-W ternary system with liquidus and solidus temperatures 50-150 °C higher than conventional Ni-based superalloys. The work herein focuses on assessing the effects of alloying additions on microstructure and mechanical behavior in an effort to lay the foundations for understanding this emerging alloy system. A variety of Co-based superalloys are investigated in order to study fundamental materials properties and to address key engineering challenges. Coarsening rate constants and temporal exponents are measured for gamma'(L1 2)-precipitates in a ternary Co-Al-W alloy aged at 650 °C and 750 °C. A series of Co-Al-W-B-Zr alloys are cast to study the influence of segregation of B and Zr to grain boundaries (GBs) on mechanical properties. Co-Ni-Al-W-Ti alloys with various amounts of Al, W, and Ti are cast in order to fabricate Co-based superalloys with decreased density and increased gamma'(L1 2)-solvus temperature. 2-D dislocation dynamics modeling is employed to predict how gamma'(L12)-precipitate size and volume fraction affect the mechanical properties of Ni- and Co-based superalloys. Compositional information such as phase concentrations, partitioning behavior, and GB segregation are measured with local electrode atom probe (LEAP) tomography in alloys with fine microstructures and with scanning electron microscope (SEM) electron dispersive x

  6. Oxide Evolution in ODS Steel Resulting From Friction Stir Welding

    Science.gov (United States)

    2014-06-01

    the SZ on both the AS and RS of 304L stainless steel , from [16]. ...........................................12  Figure 7.  Past research conditions...being done on void swelling and embrittlement effects. Reduced activation ferritic/ martensitic (RAFM) steels and oxide dispersion strengthened (ODS...growth by grain boundary pinning at higher temperatures. Another type of ODS steel is 9-Cr martensitic steel , which is not considered in this research

  7. TEM characterization of simultaneous triple ion implanted ODS Fe12Cr

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vanessa de, E-mail: vanessa.decastro@uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); Briceno, Martha [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Johnson Matthey Technology Centre, Blount’s Court Rd, Sonning Common RG4 9NH (United Kingdom); Lozano-Perez, Sergio [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Trocellier, Patrick [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Roberts, Steve G. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Pareja, Ramiro [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain)

    2014-12-15

    Understanding the behavior of oxide dispersion strengthened (ODS) ferritic/martensitic steels under irradiation is vital in the design of advanced fusion reactors. In this work, a simultaneous triple ion implanted ODS Fe12Cr steel was investigated by transmission electron microscopy in order to determine the effect of irradiation on the grain and dislocation structures, oxide nanoparticles and other secondary phases present in the steel. The ODS steel was irradiated at RT with Fe{sup 8+}, He{sup +} and H{sup +} at the JANNUS-Saclay facility to a damage of 4.4 dpa. Results show that ODS nanoparticles appear very stable under these irradiation conditions.

  8. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Feng, Zhili [ORNL

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  9. High temperature properties of polycrystalline γ{sup '}-strengthened cobalt-base superalloys; Hochtemperatureigenschaften polykristalliner γ{sup '}-gehaerteter Kobaltbasis-Superlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alexander

    2016-07-01

    The recent discovery of a stable γ{sup '}-phase in Co-based superalloys opened up a pathway for the development of a new high temperature material class, which is similar in microstructure and properties to the modern γ{sup '}-hardened Ni-based superalloys. In this work, the first attempt was done to check the influence of several for Ni-based superalloys typical alloying elements on the properties of the new Co-based superalloys. It became clear that the basic characteristics of the first experimental alloys are similar to those of the γ{sup '}-hardened Ni-based alloys. The results of the multinary experimental alloys show that, based on the insight gained so far, targeted alloy development is possible. These materials have the potential to be used as disc materials in turbines.

  10. ODS alloys for structures subjected to irradiation

    International Nuclear Information System (INIS)

    Carlan, Y. de

    2010-01-01

    ODS (oxide-dispersion-strengthened) materials are considered for cladding purposes for the fourth-generation sodium-cooled fast reactors. ODS materials afford many benefits. Indeed, these high-performance materials combine, at the same time, remarkable mechanical strength, in hot conditions, and outstanding irradiation behavior. New ODS steel grades, exhibiting better performance levels than the last-generation austenitic steels, afford not only negligible swelling under irradiation, owing to their 'ferritic' body-centered cubic structure - by contrast to austenitic grades, which feature a face-centered cubic structure - but equally outstanding creep properties, owing to the nano-reinforcements present in the matrix. ODS materials are obtained by powder metallurgy, the first fabrication step involves co-grinding a metal powder together with yttrium oxide (Y 2 O 3 ) powder. At this stage, an iron oxide may also be added, or an yttrium-rich intermetallic compound in order to provide the amounts of yttrium, and oxygen required for the formation of nano-oxides. The metal powder consists of a powder pre-alloyed to the chemical composition of the desired material. Once the powder has been obtained, consolidation of the ODS materials is achieved either by hot extrusion, or by hot isostatic pressing. (A.C.)

  11. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  12. Inhibited Aluminization of an ODS FeCr Alloy

    International Nuclear Information System (INIS)

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A.

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small (∼ 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  13. Positron annihilation characteristics of ODS and non-ODS EUROFER isochronally annealed

    International Nuclear Information System (INIS)

    Ortega, Y.; Castro, V. de; Monge, M.A.; Munoz, A.; Leguey, T.; Pareja, R.

    2008-01-01

    Yttrium oxide dispersion strengthened (ODS) and non-ODS EUROFER produced by mechanical alloying and hot isostatic pressing have been subjected to isochronal annealing up to 1523 K, and the evolution of the open-volume defects and their thermal stability have been investigated using positron lifetime and coincidence Doppler broadening (CDB) techniques. Transmission electron microscopy (TEM) observations have also been performed on the studied samples to verify the characteristics of the surviving defects after annealing at 1523 K. The CDB spectra of ODS EUROFER exhibit a characteristic signature that is attributed to positron annihilation in Ar-decorated cavities at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature shows three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. Three-dimensional vacancy clusters, or voids, are detected in either materials in as-HIPed condition and after annealing at T ≤ 623 K. In the temperature range 823-1323 K, these voids' growth and nucleation and the growth of other new species of voids take place. Above 1323 K, some unstable cavities start to anneal out, and cavities associated to oxide particles and other small precipitates survive to annealing at 1523 K. The TEM observations and the positron annihilation results indicate that these cavities should be decorated with Ar atoms absorbed during the mechanical alloying process

  14. Positron annihilation characteristics of ODS and non-ODS EUROFER isochronally annealed

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: yanicet@fis.ucm.es; Castro, V. de; Monge, M.A.; Munoz, A.; Leguey, T.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2008-05-31

    Yttrium oxide dispersion strengthened (ODS) and non-ODS EUROFER produced by mechanical alloying and hot isostatic pressing have been subjected to isochronal annealing up to 1523 K, and the evolution of the open-volume defects and their thermal stability have been investigated using positron lifetime and coincidence Doppler broadening (CDB) techniques. Transmission electron microscopy (TEM) observations have also been performed on the studied samples to verify the characteristics of the surviving defects after annealing at 1523 K. The CDB spectra of ODS EUROFER exhibit a characteristic signature that is attributed to positron annihilation in Ar-decorated cavities at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature shows three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. Three-dimensional vacancy clusters, or voids, are detected in either materials in as-HIPed condition and after annealing at T {<=} 623 K. In the temperature range 823-1323 K, these voids' growth and nucleation and the growth of other new species of voids take place. Above 1323 K, some unstable cavities start to anneal out, and cavities associated to oxide particles and other small precipitates survive to annealing at 1523 K. The TEM observations and the positron annihilation results indicate that these cavities should be decorated with Ar atoms absorbed during the mechanical alloying process.

  15. Computational and Experimental Design of Fe-Based Superalloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Fine, Morris E. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautam [Northwestern Univ., Evanston, IL (United States); Asta, Mark D. [Univ. of California, Berkeley, CA (United States); Liu, Chain T. [Auburn Univ., AL (United States); Sun, Zhiqian [Univ. of Tennessee, Knoxville, TN (United States); Huang, Shenyan [Univ. of Tennessee, Knoxville, TN (United States); Teng, Zhenke [Univ. of Tennessee, Knoxville, TN (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States)

    2012-04-13

    Analogous to nickel-based superalloys, Fe-based superalloys, which are strengthened by coherent B2- type precipitates are proposed for elevated-temperature applications. During the period of this project, a series of ferritic superalloys have been designed and fabricated by methods of vacuum-arc melting and vacuum-induction melting. Nano-scale precipitates were characterized by atom-probe tomography, ultrasmall- angle X-ray scattering, and transmission-electron microscopy. A duplex distribution of precipitates was found. It seems that ferritic superalloys are susceptible to brittle fracture. Systematic endeavors have been devoted to understanding and resolving the problem. Factors, such as hot rolling, precipitate volume fractions, alloy compositions, precipitate sizes and inter-particle spacings, and hyperfine cooling precipitates, have been investigated. In order to understand the underlying relationship between the microstructure and creep behavior of ferric alloys at elevated temperatures, in-situ neutron studies have been carried out. Based on the current result, it seems that the major role of β' with a 16%-volume fraction in strengthening ferritic alloys is not load sharing but interactions with dislocations. The oxidation behavior of one ferritic alloy, FBB8 (Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B, weight percent), was studied in dry air. It is found that it possesses superior oxidation resistance at 1,023 and 1,123 K, compared with other creep-resistant ferritic steels [T91 (modified 9Cr-1Mo, weight percent) and P92 (9Cr-1.8W-0.5Mo, weight percent)]. At the same time, the calculation of the interfacial energies between the -iron and B2-type intermetallics (CoAl, FeAl, and NiAl) has been conducted.

  16. High temperature mechanical properties of unirradiated dispersion strengthened copper

    International Nuclear Information System (INIS)

    Gentzbittel, J.M.; Rigollet, C.; Robert, G.

    1994-01-01

    Oxide Dispersion Strengthened (ODS) copper material, due to its excellent thermal conductivity associated with a high temperature strength is a candidate material for structural applications as divertor plasma facing components of thermonuclear fusion reactor. Tensile and creep results of oxide dispersion strengthened copper are presented. The most important features of ODS copper high temperature behaviour are the high strength corresponding to low creep rates, high stress creep rate dependence, a poor ductility and a brittleness which result in a premature creep fracture at high applied stress. (R.P.) 2 refs.; 6 figs

  17. High resolution SEM characterization of nano-precipitates in ODS steels.

    Science.gov (United States)

    Jóźwik, Iwona; Strojny-Nędza, Agata; Chmielewski, Marcin; Pietrzak, Katarzyna; Kurpaska, Łukasz; Nosewicz, Szymon

    2018-05-01

    The performance of the present-day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low-kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo-diode BSE detector in SEM imaging allowed for the registration of single nm-sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM-EDS. © 2018 Wiley Periodicals, Inc.

  18. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  19. Intermediate Co/Ni-base model superalloys — Thermophysical properties, creep and oxidation

    International Nuclear Information System (INIS)

    Zenk, Christopher H.; Neumeier, Steffen; Engl, Nicole M.; Fries, Suzana G.; Dolotko, Oleksandr; Weiser, Martin; Virtanen, Sannakaisa; Göken, Mathias

    2016-01-01

    The mechanical properties of γ′-strengthened Co–Ni–Al–W–Cr model superalloys extending from pure Ni-base to pure Co-base superalloys have been assessed. Differential scanning calorimetry measurements and thermodynamic calculations match well and show that the γ′ solvus temperature decreases with increasing Co-content. The γ/γ′ lattice misfit is negative on the Ni- and positive on the Co-rich side. High Ni-contents decelerate the oxidation kinetics up to a factor of 15. The creep strength of the Ni-base alloy increases by an order of magnitude with additions of Co before it deteriorates strongly upon higher additions despite an increasing γ′ volume fraction.

  20. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    Science.gov (United States)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  1. Fatigue characteristics of ODS surface treated Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Han; Jung, Yan gIl; Park, Dong Jun; Park, Jung Hwan; Kim, Hyun Gil; Yang, Jae Ho; Koo, Yang Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Various accident tolerant fuel (ATF) cladding concepts are considered and have being developed to increase the oxidation resistance and ballooning/ rupture resistance of current Zr-based cladding material under accident conditions. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. ODS treatment is a way of improve the high temperature- oxidation resistant and mechanical stress by disperse the hardened particles inside of metal to interrupt the movement of the electric potential. In this study, the accident tolerance improved zirconium alloy by the ODS surface treatment was evaluated for the fatigue characteristics which is one of the significant items of the integrity assessment.

  2. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    Science.gov (United States)

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.

  3. Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Howell, C.R. [Oak Ridge National Lab., TN (United States); Hall, F.; Valykeo, J. [Hoskins Mfg. Co., Hamburg, MI (United States)

    1997-12-01

    This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.

  4. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [GE Global Research, NIskayuna, NY (United States); Gupta, Vipul [GE Global Research, NIskayuna, NY (United States); Huang, Shenyan [GE Global Research, NIskayuna, NY (United States); Soare, Monica [GE Global Research, NIskayuna, NY (United States); Zhao, Pengyang [GE Global Research, NIskayuna, NY (United States); Wang, Yunzhi [GE Global Research, NIskayuna, NY (United States)

    2017-02-28

    The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and their long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.

  5. Welding Metallurgy of Nickel-Based Superalloys for Power Plant Construction

    Science.gov (United States)

    Tung, David C.

    Increasing the steam temperature and pressure in coal-fired power plants is a perpetual goal driven by the pursuit of increasing thermal cycle efficiency and reducing fuel consumption and emissions. The next target steam operating conditions, which are 760°C (1400°F) and 35 MPa (5000 psi) are known as Advanced Ultra Supercritical (AUSC), and can reduce CO2 emissions up to 13% but this cannot be achieved with traditional power plant construction materials. The use of precipitation-strengthened Nickel-based alloys (superalloys) is required for components which will experience the highest operating temperatures. The leading candidate superalloys for power plant construction are alloys 740H, 282, and 617. Superalloys have excellent elevated temperature properties due to careful microstructural design which is achieved through very specific heat treatments, often requiring solution annealing or homogenization at temperatures of 1100 °C or higher. A series of postweld heat treatments was investigated and it was found that homogenization steps before aging had no noticeable effect on weld metal microhardness, however; there were clear improvements in weld metal homogeneity. The full abstract can be viewed in the document itself.

  6. Effects of manufacturing process on impact properties and microstructures of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, Takashi, E-mail: tanno.takashi@jaea.go.jp; Ohtsuka, Satoshi; Yano, Yasuhide; Kaito, Takeji; Tanaka, Kenya

    2014-12-15

    Oxide dispersion strengthened (ODS) steels are notable advanced alloys with durability to a high-temperature and high-dose neutron irradiation environment because of their good swelling resistance and mechanical properties under neutron irradiation. 9–12Cr-ODS martensite steels have been developed in the Japan Atomic Energy Agency as the primary candidate material for the fast reactor fuel cladding tubes. They would also be good candidates for the fusion reactor blanket material which is exposed to high-dose neutron irradiation. In this work, modification of the manufacturing process of 11Cr-ODS steel was carried out to improve its impact property. Two types of 11Cr-ODS steels were manufactured: pre-mix and full pre-alloy ODS steels. Miniature Charpy impact tests and metallurgical observations were carried out on these steels. The impact properties of full pre-alloy ODS steels were shown to be superior to those of pre-mix ODS steels. It was demonstrated that the full pre-alloy process noticeably improved the microstructure homogeneity (i.e. reduction of inclusions and pores)

  7. Microstructural investigation of thermally aged nickel-based superalloy 718Plus

    International Nuclear Information System (INIS)

    Whitmore, Lawrence; Ahmadi, Mohammad Reza; Stockinger, Martin; Povoden-Karadeniz, Erwin; Kozeschnik, Ernst; Leitner, Harald

    2014-01-01

    The effects of thermal aging upon the nickel-based 718Plus superalloy are investigated and modelled. Yield strength and micro-hardness measurements are made after solution annealing and after aging at 788 °C for 4 h. In order to explain the differences in strength and hardness, a detailed investigation of the microstructure is performed using transmission electron microscopy. The size and phase fraction of the γ′ precipitates are measured and related to the measured hardness and yield strength using a theoretical model of precipitation strengthening based on the shearing of precipitates in terms of coherency strengthening and the formation of an antiphase boundary

  8. On the microstructural origin of primary creep in nickel-base superalloys

    International Nuclear Information System (INIS)

    Heilmaier, M.; Reppich, B.

    1997-01-01

    The nature of primary creep in nickel-base superalloys is strongly correlated to the different hardening species present in the material. In fine-grained single-phase material the classical assumption of a homogeneous dislocation distribution enables the prediction of the transition from normal via sigmoidal to inverse primary creep with decreasing applied stress σ. In coarse-grained material the back stress σ b of hard subgrain boundaries evolving during plastic deformation must be additionally taken into account. Second-phase particles influence creep in a 2-fold manner via reducing the effective stress σ eff , namely directly by the stress σ p * for particle overcoming, and indirectly by increasing the dislocation density ρ. The proposed approach accounts for the observed pronounced normal primary creep in particle-strengthened superalloys. (orig.)

  9. Development of advanced P/M Ni-base superalloys for turbine disks

    Directory of Open Access Journals (Sweden)

    Garibov Genrikh S.

    2014-01-01

    Full Text Available In the process of evolution of powder metallurgy in Russia the task permanently formulated was the following: to improve strength properties of P/M superalloys without application of additional complex HIPed blanks deformation operation. On the other hand development of a turbine disk material structure to ensure an improvement in aircraft engine performance requires the use of special HIP and heat treatment conditions. To ensure maximum strength properties of disk materials it is necessary to form a structure which would have optimum size of solid solution grains, γ′-phases and carbides. Along with that heating of the material up to a temperature determined by solvus of an alloy ensures a stable and reproducible level of mechanical properties of the disks. The above-said can be illustrated by successful mastering of new complex-alloyed VVP-class superalloys with the use of powder size − 100 μm. Application of special HIP and heat treatment conditions for these superalloys to obtain the desired grain size and the strengthening γ′-phase precipitates allowed a noticeable improvement in ultimate tensile strength and yield strength up to ≥1600 MPa and ≥1200 MPa respectively. 100 hrs rupture strength at 650 ∘C and 750 ∘C was improved up to 1140 MPa and 750 MPa respectively. P/M VVP nickel-base superalloys offer higher characteristics in comparison with many superalloys designed for the same purposes. HIPed disc compacts manufactured from PREP-powder have a homogeneous micro- and macrostructure, a stable level of mechanical properties.

  10. Modification of the Strength Anisotropy in an Austenitic ODS Steel

    International Nuclear Information System (INIS)

    Kim, T. K.; Jang, J.; Kim, S. H.; Lee, C. B.; Bae, C. S.; Kim, D. H.

    2007-01-01

    Among many candidate alloys for Gen IV reactors, the oxide dispersion strengthened (ODS) alloy is widely considered as a good candidate material for the in-reactor component, like cladding tube. The ODS alloy is well known due to its good high temperature strength, and excellent irradiation resistance. For the previous two decades in the nuclear community, the ODS alloy developments have been mostly focused on the ferritic martensitic (F-M) steel-based ones. On the other hand, the austenitic stainless steels (e.g. 316L or 316LN) have been used as a structural material due to its good high temperature strength and a good compatibility with a media. However, the austenitic stainless steel showed unfavorable characteristics in the dimensional stability under neutron irradiation and cracking behavior with the media. It is thus expected that the austenitic ODS steels restrain the dimension stability under neutron irradiation. However, the ODS alloys usually reveal the anisotropic characteristic in mechanical strength in the hoop and longitudinal directions, which is attributed to the grain morphology strongly developed parallel to the rolling direction with a high aspect ratio. This study focuses on a modification of the strength anisotropy of an austenitic ODS alloy by a recrystallization heat treatment

  11. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C

    Science.gov (United States)

    Song, Peng; Morrall, Daniel; Zhang, Zhexian; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2018-04-01

    In order to investigate the effects of oxide particles on radiation response such as hardness change and microstructural evolution, three types of oxide dispersion strengthened (ODS) ferritic steels (named Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS), mostly strengthened by Y-Ti-O, Y-Al-O and Y-Zr-O dispersoids, respectively, were simultaneously irradiated with iron and helium ions at 550 °C up to a damage of 30 dpa and a corresponding helium (He) concentration of ∼3500 appm to a depth of 1000-1300 nm. A single iron ion beam irradiation was also performed for reference. Transmission electron microscopy revealed that after the dual ion irradiation helium bubbles of 2.8, 6.6 and 4.5 nm in mean diameter with the corresponding number densities of 1.1 × 1023, 2.7 × 1022 and 3.6 × 1022 m-3 were observed in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS, respectively, while no such bubbles were observed after single ion irradiation. About 80% of intragranular He bubbles were adjacent to oxide particles in the ODS ferritic steels. Although the high number density He bubbles were observed in the ODS steels, the void swelling in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS was still small and estimated to be 0.13%, 0.53% and 0.20%, respectively. The excellent swelling resistance is dominantly attributed to the high sink strength of oxide particles that depends on the morphology of particle dispersion rather than the crystal structure of the particles. In contrast, no dislocation loops were produced in any of the irradiated steels. Nanoindentation measurements showed that no irradiation hardening but softening was found in the ODS ferritic steels, which was probably due to irradiation induced dislocation recovery. The helium bubbles in high number density never contributed to the irradiation hardening of the ODS steels at these irradiation conditions.

  12. Compósitos de matriz metálica reforçados pela dispersão de partículas cerâmicas produzidos por mecanossíntese: uma revisão

    Directory of Open Access Journals (Sweden)

    Luiz Eloi Vieira Jr.

    2009-01-01

    Full Text Available Mechanical alloying is a solid-state powder processing technique involving repeated cold welding, fracturing, and rewelding of powder particles in a high-energy mill. Originally developed to produce oxide-dispersion strengthened (ODS superalloys for applications in the aerospace industry, it is currently capable of synthesizing a variety of alloys. Process variables and starting materials involved in mechanical allowing are reviewed and discussed.

  13. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  14. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y., E-mail: yano.yasuhide@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T. [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Ukai, S.; Oono, N. [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, S. [Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Torimaru, T. [Nippon Nuclear Fuel Development Co., Ltd., 2163, Narita-cho, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2017-04-15

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900–1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  15. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Science.gov (United States)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  16. Manufacturing Experience for Oxide Dispersion Strengthened Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Wendy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-22

    This report documents the results of the development and the manufacturing experience gained at the Pacific Northwest National Laboratories (PNNL) while working with the oxide dispersion strengthened (ODS) materials MA 956, 14YWT, and 9YWT. The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. ODS materials have the potential to provide improved performance for the U-Mo concept.

  17. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    International Nuclear Information System (INIS)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming

    2017-01-01

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y_2O-3 and Fe-9Cr-2W-0.3Zr-0.3Y_2O_3 were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y_4Zr_3O_1_2 oxides and body-centered cubic Y_2O_3 oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y_4Zr_3O_1_2 particles is much smaller than that of Y_2O_3. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10"2"3/m"3 with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time

  18. Relationship between microstructure and mechanical properties in ODS materials for nuclear application

    International Nuclear Information System (INIS)

    De Carlan, Y.

    2013-01-01

    Oxide Dispersion Strengthened ferritic/martensitic alloys are developed as prospective cladding materials for future Sodium-Cooled-Fast-Reactors (GEN IV) [1]. These advanced alloys present a good resistance to irradiation and a high creep rupture strength due to a reinforcement by the homogeneous dispersion of hard nano-sized particles (such as Y 2 O 3 or YTiO). ODS alloys are elaborated by powder metallurgy, consolidated by hot extrusion and manufactured into cladding tube using the Pilger cold-rolling process [2, 3]. ODS alloys present usually low ductility and high hardness. The aim of this talk is to present the specificity of the metallurgy of ODS materials in relationship with the main mechanical properties (tensile and creep properties, toughness, transition temperature). Two types of alloys will be presented: Fe-9Cr martensitic ODS and Fe-14Cr ferritic ODS alloys. Mechanical properties of the materials depend on the metallurgical state (fine grains, recrystallized, martensitic) and very different behaviors are observed as a function of final microstructure. For example, for a Fe-9Cr ODS alloy, tempered martensite lets obtaining material with high strength whereas softened ferrite see figure 1 [4] tolerates high deformation levels. (authors)

  19. Oxidation behavior of austenitic iron-base ODS alloy in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Dong, Z.; Zahiri, R.; Kohandehghan, A.; Mitlin, D., E-mail: behnamia@ualberta.ca, E-mail: zdong@ualberta.ca, E-mail: kohandeh@ualberta.ca, E-mail: rzahiris@ualberta.ca, E-mail: dave.mitlin@ualberta.ca [Univ. of Alberta, Edmondon, AB (Canada); Zhou, Z., E-mail: zhouzhj@mater.ustb.edu.cn [Univ. of Science and Tech. Beijing, Beijing (China); Chen, W.; Luo, J., E-mail: weixing.chen@ualberta.ca, E-mail: Jingli.luo@ualberta.ca [Univ. of Alberta, Edmonton, AB (Canada); Zheng, W., E-mail: wenyue@nrcan.gc.ca [Natural Resources Canada, Canmet MATERIALS, Hamilton, ON (Canada); Guzonas, D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    In this study, the effect of exposure time on the corrosion of the 304 stainless steel based oxide dispersion strengthened alloy, SS304ODS, in supercritical water was investigated at 650 {sup o}C with constant dissolved oxygen concentration. The results show that the oxidation of SS304ODS in supercritical water followed a parabolic law at 650 {sup o}C. Discontinuous oxide scale with two distinct layers has formed after 550 hours. The inner layer was chromium-rich while the outer layer was iron-rich (Magnetite). The oxide islands grow with increasing the exposure time. With increasing exposure time, the quantity of oxide islands increased in which major preferential growth along oxide-substrate interface was observed. The possible mechanism of SS304ODS oxidation in supercritical water was also discussed. (author)

  20. Monolithic Approach to Oxide Dispersion Strengthened Aluminum, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nassau Stern Company is investigating an approach for manufacturing oxide dispersion strengthened (ODS) aluminum in bulk rather than powder form. The approach...

  1. Analysis of microstructure in electro-spark deposited IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, E.; Khan, A.K.; Ojo, O.A., E-mail: olanrewaju.ojo@umanitoba.ca

    2016-09-15

    The microstructure of electro-spark deposited (ESD) superalloy IN718 was studied by the use of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. In converse to general assumption, the extremely high cooling rate involved in the ESD process did not produce partitionless solidification that is devoid of second phase microconstituents in the material, nano-sized Laves phase and MC carbide particles were observed within the deposited layer. Notwithstanding the several thermal cycles involved in the process, the extremely low heat input of the process produced a deposited region that is free of the main strengthening phase of the alloy, γ″ phase precipitates, which is in contrast to what have been reported on laser deposition. Nevertheless, application of the standard full heat treatment of the alloy resulted in extensive formation of the γ″ phase precipitates and δ phase precipitates, the most stable secondary phase of the alloy, with nearly, if not complete, dissolution of the Laves phase particles. Furthermore, the XPS analysis done in the study revealed the formation of nano-oxides within the deposited layer, which increased the microhardness of the superalloy in the as-deposited condition and inhibited its grain growth during post-process heat treatment. The microstructure analysis done in this work is crucial to the understanding of properties of the superalloy processed by the ESD technique. - Highlights: •Electron microscopy analyses of electro-spark deposited IN 718 superalloy were performed. •Nano-sized secondary phase particles were observed within the deposited layer. •The study shows that the ESD did not produce partitionless solidification of the alloy.

  2. Ion implantation-induced defects in Oxide Dispersion Strengthened (ODS) steel probed by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anwand, Wolfgang; Butterling, Maik; Brauer, Gerhard; Wagner, Andreas [HZDR, Institut fuer Strahlenphysik (Germany); Richter, Astrid [Technische Hochschule Wildau (Germany); Koegler, Reinhard [HZDR, Institut fuer Ionenstrahlphysik und Materialforschung (Germany); Chen, C.L. [I-Shou University, Kaohsiung (China)

    2012-07-01

    ODS steel is a promising candidate for an application in fission and fusion power plants of a new generation because of its advantageous properties as stability and temperature resistance. A microscopic understanding of the physical reasons of the mechanical and thermal properties as well as the behaviour of the material under irradiation is an important pre-condition for such applications. The investigated ODS FeCrAl alloy *PM2000* has been produced in a powder metallurgical way. Neutron-induced damage at ODS steel was simulated by He{sup +} and Fe{sup 2+} co-implantation with energies of 2.5 MeV and 400 keV, respectively, and different fluences. The implantation has been carried out with a dual ion beam which enables a simultaneous implantation of both ion types. Thereby the Fe{sup 2+} implantation was used for the creation of radiation defects, and He{sup +} was implanted in order to reproduce He bubbles as they are expected to appear by neutron irradiation. The implantation-induced damage was investigated by depth dependent Doppler broadening measurements using a variable energy slow positron beam.

  3. Microstructure and mechanical properties of friction stir welded 9Cr ODS steel

    International Nuclear Information System (INIS)

    Min, Hyoung Kee; Kang, Suk Hoon; Noh, Sanghoon; Lee, Jung Gu; Jang, Jinsung; Kim, Tae Kyu

    2013-01-01

    It is well known that the welding of ODS steel with a conventional melting.solidification process is not adequate to reserve nano-oxide particles in the matrix homogeneously. To reserve nano-oxide particles in the matrix homogeneously, friction stir welding (FSW) is the most promising technique to join ODS alloys. In this study, the effects of FSW on the microstructure and mechanical properties of a ODS steel were studied to apply the FSW process to 9Cr ODS steels. Microstructures were observed by means of optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). A tensile test and hardness test were carried out to the investigate mechanical properties. FSW could successfully produce defect-free welds on ODS plates. FSW produced a fine grain structure consisting of ferrite and martensite. Tensile strengths and elongations of the SZs were excellent at 298 K, compared to those of the BM. This study suggests that FSW might be an appropriate welding method of ODS steels. Oxide dispersion strengthened (ODS) ferritic-martensitic (FM) steel containing 9 wt%Cr is a promising candidate material for high temperature components operating in aggressive environments such as nuclear fusion and fission systems because of the excellent elevated temperature strength, corrosion and radiation resistance. These characteristics come from microstructures consisting of fine grains and nano-oxide particles dispersed in high number density. However, for more applications of ODS steel in nuclear systems, its weldability is the one of the barrier to be solved

  4. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang (China)

    2017-02-15

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y{sub 2}O-3 and Fe-9Cr-2W-0.3Zr-0.3Y{sub 2}O{sub 3} were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y{sub 4}Zr{sub 3}O{sub 12} oxides and body-centered cubic Y{sub 2}O{sub 3} oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y{sub 4}Zr{sub 3}O{sub 12} particles is much smaller than that of Y{sub 2}O{sub 3}. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10{sup 23}/m{sup 3} with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

  5. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first

  6. Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades

    Science.gov (United States)

    Wei, Xianping; Gong, Xiufang; Yang, Gongxian; Wang, Haiwei; Li, Haisong; Chen, Xueda; Gao, Zhenhuan; Xu, Yongfeng; Yang, Ming

    The influence of molybdenum, tungsten and cobalt on stress-rupture properties of single crystal superalloy PWA1483 has been investigated using the simulated calculation of JMatPro software which ha s been widely used to develop single crystal superalloy, and the effect of alloying element on the stability of strengthening phase has been revealed by using the Thermo-Calc software. Those properties calculation results showed that the increasing of alloy content could facilitate the precipitation of TCP phases and increase the lattice misfit between γ and γ' phase, and the effect of molybdenum, tantalum was the strongest and that of cobalt was the weakest. Then the chemical composition was optimized, and the selected compositions showed excellent microstructure stability and stress-rupture properties by the confirmation of d-electrons concept and software calculation.

  7. Growth mechanisms of oxide scales on ODS alloys in the temperature range 1000-1100deg C

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1990-01-01

    After a short overview of the production, microstructure and mechanical properties of nickel- and iron-based oxide dispersion strengthened (ODS) alloys, the oxidation properties of this class of materials is extensively discussed. The excellent oxidation resistance of ODS alloys is illustrated by comparing their behaviour with conventional chromia and alumina forming wrought alloys of the same base composition. ODS alloys exhibit improved scale adherence, decreased oxide growth rates, enhanced selective oxidation and decreased oxide grain size compared to corresponding non-ODS alloys. It is shown, that these experimental observations can be explained by a change in oxide growth mechanism. The presence of the oxide dispersion reduces cation diffusion in the scale, causing the oxides on the ODS alloys to grow mainly by oxygen grain boundary transport. As oxide grain size increases with time, the oxide growth kinetics obey a sub-parabolic time dependence especially in the case of the alumina forming iron-based ODS alloy. (orig.) [de

  8. Effect of microstructure on low cycle fatigue properties of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubena, Ivo, E-mail: kubena@ipm.cz [IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno (Czech Republic); Fournier, Benjamin [CEA/DEN/DANS/DMN/SRMA, Bat. 453, 91191 Gif-sur-Yvette Cedex (France); Kruml, Tomas [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno (Czech Republic)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Three various ODS steels are studied and compared. Black-Right-Pointing-Pointer Low cycle fatigue data at RT, 650 Degree-Sign C and 750 Degree-Sign C are given. Black-Right-Pointing-Pointer Microstructural characterization. Black-Right-Pointing-Pointer Detailed discussion of strengthening mechanisms. - Abstract: Low cycle fatigue properties at room temperature, 650 Degree-Sign C and 750 Degree-Sign C of three high chromium steels (9%Cr ferritic-martensitic and two 14%Cr ferritic steels) strengthened by oxide dispersion were studied and compared. Cyclic softening/hardening curves, cyclic deformation curves, S-N curves and Coffin-Manson curves are presented together with microstructural observations. Differences in cyclic response, stress level and fatigue life are attributed to differences in the matrix microstructure. The oxide particles stabilize the cyclic response, even if cyclic softening is detected for some experimental conditions. The strength of these steels is discussed in terms of strengthening mechanisms such as grain size effect, particle-dislocations interaction and dislocation density. Comparing three different ODS steels offers an opportunity to tests the contribution of individual mechanisms to the cyclic strength. The reduction of fatigue life in one of the ferritic steels is explained by the presence of large grains, facilitating the fatigue crack nucleation and the early growth.

  9. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum

    International Nuclear Information System (INIS)

    Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2014-01-01

    The oxide dispersion strengthened (ODS) ferritic steels with nominal composition of Fe–16Cr–2W–0.5Ti–0.4Y 2 O 3 –4Al–1Zr (16Cr–4Al–Zr–ODS) were fabricated by a sol–gel method combining with mechanical alloying and spark plasma sintering (SPS) technique, and the 16Cr–ODS and 16Cr–4Al–ODS steels were prepared for comparison in the same way. Microstructure characterization reveals that in the 16Cr–4Al–ODS steel coarse Y–Al–O particles were formed while in the 16Cr–4Al–Zr–ODS steel finer Y–Zr–O particles were formed. The mean size and number density of the nano-oxide particles in the 16Cr–4Al–Zr–ODS steel are about 25 nm and 2.6 × 10 21 /m 3 , respectively. The ultimate tensile strength (UTS) of the 16Cr–ODS steel is about 1045 MPa, but UTS of the 16Cr–4Al–ODS steel decreases to 974 MPa. However, UTS of the 16Cr–4Al–Zr–ODS steel increases to 1180 MPa while keeping a large uniform elongation up to 23%, indicating the enhancement of mechanical properties by Zr addition

  10. Void formation in ODS EUROFER produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Ortega, Y.; Monge, M.A.; Castro, V. de; Munoz, A.; Leguey, T.; Pareja, R.

    2009-01-01

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  11. Void formation in ODS EUROFER produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: yanicet@fis.ucm.es; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Munoz, A.; Leguey, T.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2009-04-30

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  12. New concept of composite strengthening in Co-Re based alloys for high temperature applications in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, D.; Roesler, J.; Fricke, T.; Schmitz, F. [Technische Univ. Braunschweig (DE). Inst. fuer Werkstoffkunde (IfW); Piegert, S. [Siemens AG, Berlin (DE). Energy Sector (F PR GT EN)

    2010-07-01

    High temperature material development is mainly driven by gas turbine needs. Today, Ni-based superalloys are the dominant material class in the hot section of turbines. Material development will continue to push the maximum service temperature of Ni-superalloys upwards. However, this approach has a fundamental limit and can not be sustained indefinitely, as the Ni-superalloys are already used very close to their melting point. Within the frame work of a DFG Forschergruppe program (FOR 727) - ''Beyond Ni-base Superalloys'' - Co-Re based alloys are being developed as a new generation of high temperature materials that can be used at +100 C above single crystal Ni-superalloys. Along with other strengthening concepts, hardening by second phase is explored to develop a two phase composite alloy. With quaternary Co-Re-Cr-Ni alloys we demonstrate this development concept, where Co{sub 2}Re{sub 3}-type {sigma} phase is used in a novel way as the hardening phase. Thermodynamic calculation was used for designing model alloy compositions. (orig.)

  13. Tensile and fracture characteristics of oxide dispersion strengthened Fe–12Cr produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vanessa de, E-mail: vanessa.decastro@uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); Garces-Usan, Jose Maria; Leguey, Teresa; Pareja, Ramiro [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain)

    2013-11-15

    The mechanical characteristics of a model oxide dispersion strengthened (ODS) alloy with nominal composition Fe–12 wt%Cr–0.4 wt%Y{sub 2}O{sub 3} were investigated by means of microhardness measurements, tensile tests up to fracture in the temperature range of 298–973 K, and fracture surface analyses. A non-ODS Fe–12 wt%Cr alloy was also studied to assess the real capacity of the oxide dispersion for strengthening the alloy. The materials were produced by mechanical alloying followed by hot isostatic pressing consolidation and heat treatment at 1023 K. The strengthening effect of the oxide nanodispersion was effective at all temperatures studied, although the tensile strength converges towards the one obtained for the reference alloy at higher temperatures. Moreover, the ODS alloys failed prematurely at T < 673 K due to the presence of Y-rich inclusions, as seen in the fracture surface of these alloys.

  14. Tensile and fracture characteristics of oxide dispersion strengthened Fe–12Cr produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Castro, Vanessa de; Garces-Usan, Jose Maria; Leguey, Teresa; Pareja, Ramiro

    2013-01-01

    The mechanical characteristics of a model oxide dispersion strengthened (ODS) alloy with nominal composition Fe–12 wt%Cr–0.4 wt%Y 2 O 3 were investigated by means of microhardness measurements, tensile tests up to fracture in the temperature range of 298–973 K, and fracture surface analyses. A non-ODS Fe–12 wt%Cr alloy was also studied to assess the real capacity of the oxide dispersion for strengthening the alloy. The materials were produced by mechanical alloying followed by hot isostatic pressing consolidation and heat treatment at 1023 K. The strengthening effect of the oxide nanodispersion was effective at all temperatures studied, although the tensile strength converges towards the one obtained for the reference alloy at higher temperatures. Moreover, the ODS alloys failed prematurely at T < 673 K due to the presence of Y-rich inclusions, as seen in the fracture surface of these alloys

  15. Hardness distribution and effect of irradiation in FSW-ODS ferritic steels

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Kasada, Ryuta; Kimura, Akihiko; Nagasaka, Takuya; Sokolov, M.A.; Yamamoto, T.

    2014-01-01

    Oxide dispersion strengthened ferritic steels (ODS-FS) have been considered as one of the most promising structural materials for advanced nuclear systems such as fusion reactors and next generation fission reactors, because of its excellent elevated temperature strength, corrosion and radiation resistance. Especially, irradiation resistance is a critical issue for the high performance of ODS-FS. In this study, effects of the irradiation on hardness properties of friction stri processed (FSP) ODS-FS were investigated. FSP technique was employed on ODS-FS. A plate specimen was cut out from the cross section and irradiated to 1.2 dpa at 573K in the High Flux Isotope Reactor (HFIR). To investigate the effect of neutron irradiation on processed area, the hardness distributions were evaluated on the cross section. Hardness of FSP ODS-FS was various with each microstructure after irradiation to 1.2 dpa at 573K. The increase of Vickers hardness was significant in the stirred zone and heat affected zone. Base material exhibited the lowest hardening about 38HV. Since nano-oxide particles in stirred zone showed identical mean diameter and number density, it is considered that hardening differences between stirred zone and base material is due to differences in initial dislocation density. (author)

  16. Hydrogen Transport and Trapping in ODS-EUROFER

    International Nuclear Information System (INIS)

    Esteban, G.A.; Pena, A.; Legarda, F.; Lindau, R.

    2006-01-01

    Oxide Dispersion Strengthened (ODS) EUROFER is a candidate structural material to be used in the design of several blanket options [R. Lindau et al. Fusion Eng. Des. 75 - 79 (2005) 989]. This type of material allows higher temperature performance (650 o C) than standard RAFM steels and shows improved mechanical properties like superior tensile and creep properties in comparison to the base material EUROFER [R. Lindau, A. Moeslang, M. Schirra, P. Schlossmacher, M. Klimenkov, J. Nucl. Mater. 307-311 (2002) 769]. Together with mechanical and activation properties, the characterization of hydrogen isotope transport properties in any fusion technology material is compulsory because they affect important issues of the blanket concept using a specific collection of materials, such as the fuel economy, plasma stability and the radiological security of the fusion reactor. The hydrogen interaction properties of permeability, diffusivity and Sieverts' constant in ODS-EUROFER are experimentally evaluated by using the gas evolution permeation technique. The results are analysed together with the properties of the base material in order to study the influence of the particular microstructure of ODS in the hydrogen transport. Higher permeability of hydrogen in ODS-EUROFER has been obtained in comparison to the base material EUROFER. The effect of trapping showing a high time lag for non steady-state permeation has been noticed in the low temperature range. The trapping phenomena is identified to be the cause of such effect and the presence of nanoparticles of Yttria the reason for the source of additional trapping sites. The concluding remark is a decrease in the diffusivity and an increase in the solubility of hydrogen in the material at low temperature. All the hydrogen transport parameters obtained for ODS-EUROFER are compared to the properties of base material and available data corresponding to other RAFM steels of the same kind. (author)

  17. Computational design and performance prediction of creep-resistant ferritic superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Wang, Shao-Yu [Univ. of Tennessee, Knoxville, TN (United States); Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautum [Northwestern Univ., Evanston, IL (United States); Song, Gian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rawlings, Michael [Univ. of Tennessee, Knoxville, TN (United States); Baik, Sung Il [Northwestern Univ., Evanston, IL (United States)

    2017-12-04

    Ferritic superalloys containing the B2 phase with the parent L21 phase precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate-strengthened ferritic alloy (HPSFA), had been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by adding Ti into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). Following with the concept of HPSFAs, in the present research, a systematic investigation on adding other elements, such as Hf and Zr, and optimizing the Ti content within the alloy system, has been conducted, in order to further improve the creep resistance of the model alloys. Studies include advanced experimental techniques, first-principles calculations on thermodynamic and mechanical properties, and numerical simulations on precipitation hardening, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of alloys. The experimental techniques include transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), neutron diffraction (ND), and atom-probe tomography (APT), which provide the detailed microstructural information of the model alloys. Systematic tension/compression creep tests have also been conducted in order to verify the creep resistance of the potential alloy compositions. The results show that when replacing Ti with Hf and Zr, it does not form the L21 phase. Instead, the hexagonal Laves phase forms and distributes majorly along the grain boundary, or large segregation within grains. Since the Laves phase does not form parent to the B2-phase precipitates, it cannot bring the strengthening effect of HPSFAs. As a result, the FBB8 + 2 wt. % Hf and FBB8 + 2 wt. % Zr alloys have similar mechanical properties to the original FBB8. The FBB8 + Ti series alloys had also been studied, from the creep tests and microstructural characterizations, the FBB8 + 3.5 wt.% Ti

  18. The metallurgy of superalloys part 2

    International Nuclear Information System (INIS)

    Abdelazim, M.E.; Hammad, F.H.

    1990-01-01

    This is part II of the report titled 'the metallurgy of superalloys'. It deals with the effect of heat treatment and operating conditions (thermal exposure and environment) on the mechanical properties of superalloys. The heat treatment is important in the development of superalloys through that it controls type, amount, size shape and distribution of the precipitate and the grain size of the matrix. The thermal exposure leads to reduction in the amount of the primary carbides and to precipitation of secondary carbides. Also it leads to the agglomeration and coarsening of gamma or the transformation of gamma phase to phase. The environment may lead to the internal oxidation, carburization, decarburization or sulphidization of the superalloys which may result in the degradation of their mechanical properties. This part gives also an example of applications of superalloys in the field of nuclear reactors especially high temperature-gas cooled reactors. Joined with this part a table which contains the major superalloys including its chemical analysis, creep rupture strength and some of its applications. 1 tab

  19. The metallurgy of superalloys part 1

    International Nuclear Information System (INIS)

    Abdelazim, M.E.; Hammad, F.H.

    1990-01-01

    This is part I of the report titled 'the metallurgy of superalloys'. In this part the structure, phases and systems of superalloys are reviewed. The role of alloying elements in the design of superalloys and the mechanical properties of superalloys are also reviewed. Superalloys are important in high temperature technology, especially above 700 degree c. They are 'super' mainly because their creep and stress rupture resistances are very high. Superalloys are based on an austenitic matrix including secondary phases, mainly gamma precipitates, inter and intragranular carbides mainly M 23 C 6 and M 6 C. They are classified into three systems, Ni-base, Fe-Ni base and Ce-base alloys. Different alloying elements mainly Cr, Mo, Al, Ti are added to increase the strength either by solid solution hardening (Cr, Mo, Al), precipitation hardening (A 1, Ti to produce gamma) or by dispersion hardening (Cr, Mo to form M 23 C 6 and M 6 C carbides) and to increase the oxidation resistance (Cr, Al). 3 tab., 2 fig

  20. Investigation of the relationships between mechanical properties and microstructure in a Fe-9%Cr ODS steel

    OpenAIRE

    Hary Benjamin; Guilbert Thomas; Wident Pierre; Baudin Thierry; Logé Roland; de Carlan Yann

    2016-01-01

    Ferritic-martensitic Oxide Dispersion Strengthened (ODS) steels are potential materials for fuel pin cladding in Sodium Fast Reactor (SFR) and their optimisation is essential for future industrial applications. In this paper, a feasibility study concerning the generation of tensile specimens using a quenching dilatometer is presented. The ODS steel investigated contains 9%Cr and exhibits a phase transformation between ferrite and austenite around 870 °C. The purpose was to generate different ...

  1. Activation volume of martensitic ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Noh, S.; Kim, T. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Apparent activation volume as a function of temperature is 86b{sup 3}-42b{sup 3}. Activation volume decreases with increasing temperature. Activation volume changes scarcely with decreasing strain rate. Strain rate sensitivity increases with increasing temperature and decreasing strain rate. Nano-sized oxide dispersion strengthened (ODS) martensitic steel has a high strength, low thermal expansion coefficient, high thermal conductivity, and a good swelling resistance. Martensitic ODS steel is a candidate material for fuel cladding of sodium cooled fast breeder reactor (SFR). The plastic flow stress is determined through the interaction of dislocations with the obstacles encountered inside lattice. Dislocation movement through the lattice or past an obstacle requires surmounting of the energy barrier by a combination of applied stress and thermal activation. The plastic deformation of materials is a thermally activated process dependent upon time, temperature, and strain rate. Characterization of the rate controlling mechanism for plastic deformation due to dislocation motion in crystalline materials is done by the assessment of activation volume based on thermal activation analysis.

  2. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • Diffusion bonding was employed to join 9Cr oxide dispersion strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure, and the microstructure and tensile properties of the joints were investigated. • ODS steel was successfully diffusion bonded at an austenization temperature to migrate a residual diffusion bonding interface. • The tensile properties of the joint region were comparable with that of the base metal with a ductile fracture occurred far from the bonding interface. • It is considered that diffusion bonding with a phase transformation can be a very useful joining method for fabricating components in next-generation nuclear systems using 9Cr ODS ferritic/martensitic steel. - Abstract: Diffusion bonding was employed to join oxide-dispersion-strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure using a high vacuum hot press, and the microstructure and tensile properties of the joints were investigated. 9Cr oxide dispersion strengthened (ODS) steel was successfully diffusion bonded at 1150 °C for 1 h to migrate a residual bonding interface. Following heat treatment, including normalising at 1050 °C and tempering at 800 °C for 1 h, comparable results without inclusions or micro-voids at the bonding interface, or degradation in the base metal were achieved. Transmission electron microscopy (TEM) observation revealed that the nano-oxide particles in the bonding region were uniformly distributed in the matrix. At room temperature, the joint had nearly the same tensile properties with that of the base metal. The tensile strength of the joint region at elevated temperatures was comparable with that of the base metal. The total elongation of the joint region decreased slightly, but reached 80% of the base metal at 700 °C, and a ductile fracture occurred far from the bonding interface. Therefore, it is considered that diffusion bonding with a phase transformation can be a very useful joining method for

  3. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  4. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  5. Development of oxide dispersion strengthened steels for FBR core application. 2. Morphology improvement by martensite transformation

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Nishida, Toshio; Yoshitake, Tunemitsu; Okuda, Takanari

    1998-01-01

    Previously manufactured oxide dispersion strengthened (ODS) ferritic steel cladding tubes had inferior internal creep rupture strength in the circumferential hoop direction. This unexpected feature of ODS cladding tubes was substantially ascribed to the needle-like grain structure aligned with the forming direction. In this study, the grain morphology was controlled by using the martensite transformation in ODS martensitic steels to produce an equi-axial grain structure. A major improvement in the strength anisotropy was successfully achieved. The most effective yttria addition was about 1 mass% in improving the strength of the ODS martensitic steels. A simple addition of titanium was particularly effective in increasing the strength level of the ODS martensitic steels to that of ODS ferritic steels. (author)

  6. Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liye [State Key Lab of Hydraulic Engineering Simulation and Safety, Tianjin key Lab of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Yu, Liming, E-mail: lmyu@tju.edu.cn [State Key Lab of Hydraulic Engineering Simulation and Safety, Tianjin key Lab of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu, Yongchang; Liu, Chenxi; Li, Huijun [State Key Lab of Hydraulic Engineering Simulation and Safety, Tianjin key Lab of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Wu, Jiefeng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-05-17

    Oxide dispersion strengthened (ODS) steel is one of the most promising candidate structural materials for the high-temperature nuclear reactor application. In this study, two compositions of ODS steels (14Cr-ODS and 14Cr-Zr-ODS) were prepared to investigate the influence of Zr addition on the microstructures and mechanical properties of ODS steels. The microstructures, including dispersion morphology and crystal structures of oxide particles, particle-matrix interface coherency and particle-dislocation interactions, were characterized using TEM, HRTEM, and SEM, and the mechanical properties at room and high temperatures were measured using uniaxial tensile tests. Results show that Zr addition leads to the formation of finer precipitated particles, which was identified as rhombohedral Y{sub 4}Zr{sub 3}O{sub 12}, with denser dispersion in the matrix. The calculation results reveal that the lattice misfit, δ, at the interface between particle and matrix increases as the particle size increases. In addition, the strength and elongation of ODS steels are improved with Zr addition due to the stronger interface bonding force between fine particles and matrix as well as the larger pinning effect of small particles to dislocation movements.

  7. Self-ion Irradiation Damage of F/M and ODS steels

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Chun, Young-Bum; Noh, Sanghoon; Jang, Jinsung; Kim, Tae Kyu

    2014-01-01

    Oxide dispersion strengthened (ODS) ferritic steels are potential high-temperature materials that are stabilized by dispersed particles at elevated temperatures. These dispersed particles improve the tensile strength and creep rupture strength, they are expected to increase the operation temperature up to approximately 650 .deg. C and also enhance the energy efficiency of the fusion reactor. Some reports described that the nano-clusters are strongly resistant to coarsening by annealing up to 1000 .deg. C, and nanoclusters do not change after ion irradiation up to 0.7 dpa at 300 .deg. C. ODS steels will be inevitably exposed to neutron irradiation condition; the irradiation damages, creep and swelling are always great concern. The dispersed oxide particles are believed to determine the performance of the steel, even the radiation resistance. In this study, F/M and ODS model alloys of Korea Atomic Energy Research Institute (KAERI) were irradiated by Fe 3+ self-ion to emulate the neutron irradiation effect. In this study, Fe 3+ self-ion irradiation is used as means of introducing radiation damage in F/M steel and ODS steel. The ion accelerator named DuET (in Kyoto University, Japan) was used for irradiation of Fe 3+ ion by 6.4 MeV at 300 .deg. C. The maximum damage rate in F/M and ODS steels were estimated roughly 6 dpa. After radiation, point or line defects were dominantly observed in F/M steel, on the other hands, small circular cavities were typically observed in ODS steel. Nanoindentation is a useful tool to determine the irradiationinduced hardness change in the damage layer of ionirradiated iron base alloys

  8. Contribution to the development of the MARS beamline to study oxide dispersion strengthened steels (ODS) irradiated with neutrons using synchrotron source: secondary phases evolution under irradiation

    International Nuclear Information System (INIS)

    Menut, Denis

    2016-01-01

    X-Ray Diffraction (XRD) coupled with X-ray Absorption Fine Structure (XAFS) analyses at the MARS beamline of the synchrotron SOLEIL facility were used to study the microstructural evolution of oxides phases found in oxide dispersion strengthened steels (ODS) irradiated in Material Testing Reactors. Two hold generations of ODS steel grades (DY and MA957) irradiated up to high fluencies (∼75 dpa) were studied. These experiments have required specific developments, in particular a dedicated sample holder. An important milestone was overcome integrating the MARS beamline to the nuclearized facilities accessible for CEA. First, XRD analysis provide new results concerning intermediate sizes of precipitates (around 100 nm) essentially from crystallographic point of view, the nano-sized oxides (from 1 to 10 nm) being not detected, due to the material itself, sample preparation as thin foil and experimental set-up calibration. Secondly, XAFS analysis is not a discriminating technique as soon as the absorber atom is involved in the chemical composition of various precipitates found in ODS. Nevertheless, the stability of the Ti with a coordination number of 5 is evidenced whatever the irradiation conditions. As our experimental study was not able to detect the nano-sized oxides, an alternative way is to perform modeling approach of the behavior of massive oxides under irradiation, compared to experimental analyses under ion irradiations. We have shown that the defect fluorite is an intermediate phase of the crystal-to-amorphous phase transition of the pyrochlore oxide structure, whatever the irradiation conditions and the ratio of the cationic radii, the Ti coordination number remaining around 5 in the amorphous state. (author) [fr

  9. Designing Nanoscale Precipitates in Novel Cobalt-based Superalloys to Improve Creep Resistance and Operating Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Seidman, David N. [Northwestern Univ., Evanston, IL (United States); Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States); Saal, James E. [Northwestern Univ., Evanston, IL (United States); Bocchini, Peter J. [Northwestern Univ., Evanston, IL (United States); Sauza, Daniel J. [Northwestern Univ., Evanston, IL (United States)

    2014-10-01

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-base superalloys, whose strength and creep resistance can be attributed to microstructures consisting of a large volume fraction of ordered (L12) γ'-precipitates embedded in a disordered’(f.c.c.) γ-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement are nearing the theoretical limit of their operating temperatures. Conventional Co-base superalloys are solid-solution or carbide strengthened; although they see industrial use, these alloys are restricted to lower-stress applications because the absence of an ordered intermetallic phase places an upper limit on their mechanical performance. In 2006, a γ+γ' microstructure with ordered precipitates analogous to (L12) Ni3Al was first identified in the Co-Al-W ternary system, allowing, for the first time, the development of Co-base alloys with the potential to meet or even exceed the elevated-temperature performance of their Ni-base counterparts. The potential design space for these alloys is complex: the most advanced Ni-base superalloys may contain as many as 8-10 minor alloying additions, each with a specified purpose such as raising the γ' solvus temperature or improving creep strength. Our work has focused on assessing the effects of alloying additions on microstructure and mechanical behavior of γ'-strengthened Co-base alloys in an effort to lay the foundations for understanding this emerging alloy system. Investigation of the size, morphology, and composition of γ' and other relevant phases is investigated utilizing scanning electron microscopy (SEM) and 3-D picosecond ultraviolet local electrode atom probe tomography (APT). Microhardness, compressive yield stress at ambient and elevated temperatures, and compressive high-temperature creep measurements are employed to

  10. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Guo, Xianglong, E-mail: guoxianglong@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Shen, Zhao [Department of Materials Science, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Zhang, Lefu, E-mail: lfzhang@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer. - Highlights: • We evaluated the corrosion resistance of three different Cr content ODS steels at 650 °C in supercritical water. • Corrosion behavior of ODS steels is rarely reported and ODS steel may be promising material for generation IV reactors. • We found total opposite phenomenon compared to Lee's work before. Our result may be more reasonable.

  11. Development oxide dispersion strengthened ferritic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    Uniaxial tension creep response is reported for an oxide dispersion strengthened (ODS) steel, Fe-13.5Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) manufactured using the mechanical alloying process. Acceptable creep response is obtained at 900{degrees}C.

  12. The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Pinghuai [Fusion Reactor & Materials Division, Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Miao, Yinbin [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Li, Shaofu; Wang, Man [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Gong, Mengqiang [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-11-05

    In this study, a 9Cr oxide-dispersion strengthened (ODS) alloy with additional corrosion resistant element Al was fabricated by mechanical alloying (MA) and hot pressing (HP) to explore the impact of Al on the microstructure and mechanical property of a 9Cr ODS alloy. It is found that the Al completely dissolved into the Fe–Cr matrix after milling for 30 h. The minor phases in the Al-containing 9Cr ODS ferritic alloy were investigated by a high-energy X-ray, and were identified to be orthorhombic-YAlO{sub 3} (YAP), bcc-Y{sub 3}Al{sub 5}O{sub 12} (YAG), monoclinic-Al{sub 2}Y{sub 4}O{sub 9} (YAM), and hexagonal-YAlO{sub 3} (YAH). These phases were further confirmed by selected area diffraction pattern (SADP), energy dispersive spectroscopy (EDS), and high resolution transmission electron microscopy (HRTEM). In addition, their volume fractions were also calculated from the integrated intensities. According to the analysis of the particles and their formation sequences, the larger particles (greater than 100 nm) are identified as mainly YAG and Al{sub 2}O{sub 3} particles, while the particles with small size (less than 30 nm) are likely primarily YAM, YAH, and YAP particles. The yielding strength (YS) and ultimate tensile strength (UTS) at RT are 563 MPa and 744 MPa, respectively, while the YS and UTS at 700 °C are 245 MPa and 276 MPa, respectively. Although the addition Al in ODS alloys decreases the strength at RT, the values at high temperature are similar to those obtained for 9Cr ODS alloys strengthened by fine Y–Ti–O particles. - Graphical abstract: Synchrotron X-ray diffraction line profile of the 9CrAl ODS alloy; (Ferrite matrix phases, along with minor phases, orthorhombic YAlO{sub 3} (yttrium aluminum perovskite, YAP), bcc Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet, YAG), monoclinic Al{sub 2}Y{sub 4}O{sub 9} (yttrium aluminum monoclinic, YAM), and hexagonal YAlO{sub 3} (yttium aluminum hexagonal, YAH) were recognized.). - Highlights: • The

  13. Evaluation of mechanical properties and nano-meso structures of 9–11%Cr ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, Takashi, E-mail: tanno.takashi@jaea.go.jp [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Ohtsuka, Satoshi; Yano, Yasuhide; Kaito, Takeji [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Oba, Yojiro; Ohnuma, Masato [National Institute for Materials Science, Tsukuba 305-1195 (Japan); Koyama, Shinichi; Tanaka, Kenya [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan)

    2013-09-15

    Highlights: • We successfully manufactured 11Cr-ODS steels with residual α-ferrite controlled. • Dispersion conditions of nano oxide particles were quantitatively characterized. • Tungsten solid solution could improve only tensile strength of ODS steels at 973 K. • Oxide dispersion strengthening was dominant in creep strength of ODS steels at 973 K. -- Abstract: This study carried out mechanical tests and microstructural characterizations of several 9Cr and 11Cr-ODS tempered martensitic steels. From those results, the appropriate chemical composition range of 11Cr-ODS tempered martensitic steel was discussed from the viewpoint of high temperature strength improvement. It was shown that the residual α-ferrite fraction in 11Cr-ODS steel was successfully controlled to the same level as the 9Cr-ODS steel, which has excellent high temperature strength, by selecting the chemical compositions on the basis of the multi-component phase diagram. The tensile strength decreased with decreasing W content from 2.0 to 1.4 wt%. On the other hand, creep strength at 973 K did not degrade by the decreasing W content. Both tensile strength and creep strength increased with increasing population of the nano-sized oxide particles. Small angle X-ray scattering analysis revealed that titanium and excess oxygen contents were key parameters in order to improve the dispersion conditions of nano-sized oxide particles.

  14. Superior creep strength of a nickel-based superalloy produced by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Pröbstle, M., E-mail: martin.proebstle@fau.de [Department of Materials Science & Engineering Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 5, D-91058 Erlangen (Germany); Neumeier, S.; Hopfenmüller, J.; Freund, L.P. [Department of Materials Science & Engineering Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 5, D-91058 Erlangen (Germany); Niendorf, T. [Institut für Werkstofftechnik (Materials Engineering), Universität Kassel, Mönchebergstr. 3, D-34125 Kassel (Germany); Schwarze, D. [SLM Solutions GmbH, Roggenhorster Straße 9c, D-23556 Lübeck (Germany); Göken, M. [Department of Materials Science & Engineering Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 5, D-91058 Erlangen (Germany)

    2016-09-30

    The creep properties of a polycrystalline nickel-based superalloy produced via selective laser melting were investigated in this study. All heat treatment conditions of the additively manufactured material show superior creep strength compared to conventional cast and wrought material. The process leads to a microstructure with fine subgrains. In comparison to conventional wrought material no Niobium rich δ phase is necessary to control the grain size and thus more Niobium is available for precipitation hardening and solid solution strengthening resulting in improved creep strength.

  15. Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions

    Science.gov (United States)

    Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji

    2017-10-01

    Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.

  16. Thermo-Viscoplastic Behavior of Ni-Based Superalloy Haynes 282 and Its Application to Machining Simulation

    Directory of Open Access Journals (Sweden)

    Marcos Rodríguez-Millán

    2017-12-01

    Full Text Available Ni-based superalloys are extensively used in high-responsibility applications in components of aerospace engines and gas turbines with high temperature service lives. The wrought, γ’-strengthened superalloy Haynes 282 has been recently developed for applications similar to other common superalloys, such as Waspaloy or Inconel 718, with improved creep behavior, thermal stability, and fabrication ability. Despite the potential of Haynes 282, there are still important gaps in the knowledge of the mechanical behavior of this alloy. In fact, it was not possible to find information concerning the mechanical behavior of the alloy under impulsive loading. This paper focuses on the mechanical characterization of the Haynes 282 at strain rates ranging from 0.1 to 2800 s−1 and high temperatures ranging from 293 to 523 K using Hopkinson bar compression tests. The experimental results from the thermo-mechanical characterization allowed for calibration of the Johnson–Cook model widely used in modeling metallic alloy’s responses under dynamic loading. Moreover, the behavior of Haynes 282 was compared to that reported for Inconel 718, and the results were used to successfully model the orthogonal cutting of Haynes 282, being a typical case of dynamic loading requiring previous characterization of the alloy.

  17. Expert systems for superalloy studies

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES).

  18. Soft Computing Methods in Design of Superalloys

    Science.gov (United States)

    Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.

    1996-01-01

    Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.

  19. Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong [Southern Univ. and A& M College, Baton Rouge, LA (United States)

    2016-05-30

    This report summarizes our recent works of theoretical modeling, simulation and experimental validation of the simulation results on the ferritic oxide dispersion strengthened (ODS) alloy research. The simulation of the stability and thermal dynamics simulation on potential thermal stable candidates were performed and related ODS samples were synthesized and characterized. The simulation methods and experimental texture validation techniques development, achievements already reached, course work development, students and postdoc training, and future improvement are briefly introduced.

  20. Influence of Normalizing Temperature on the Microstructure and Hardness of 9Cr-1Mo ODS Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ki Nam; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Kyu Tae [Dongguk University, Gyeongju (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthened(ODS) steel has superior high-temperature strength and creep properties because fine oxide particles having an excellent stability at high temperatures are uniformly distributed in the matrix. ODS steel has being developed for structure materials of sodium fast cooled reactor(SFR) because of its excellent irradiation resistance and mechanical properties. 9Cr-1Mo ODS steel has better high temperature strength and irradiation resistance than common 9Cr-1Mo steel because Y{sub 2}O{sub 3} nano-sized particles which interrupt dislocation movement and grain boundary slip are uniformly dispersed in the martensite matrix. The mechanical properties of the ODS steels are mainly determined by their microstructures, and the microstructure is considerably decided by the heat-treatment conditions. This study focused on the effect of normalizing temperature on microstructure and hardness of 9Cr-1Mo martensitic ODS steel so as to optimize the heat-treatment condition. In this study, the effect of normalizing temperature on mechanical property and microstructures of 9Cr-1Mo martensitic ODS steel was investigated. It was shown that the microhardness was steadily increased with increasing of the normalizing temperature. According to TEM observation, mechanical property of 9Cr-1Mo ODS steel was significantly affected by lath width. These observations, could be useful to understand the relationship between normalizing temperature and microstructure.

  1. Formation of Lamellar Structured Oxide Dispersion Strengthening Layers in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Jung-Hwan; Park, Dong-Jun; Kim, Hyun-Gil; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Yoon-Soo [Hanbat National University, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. According to our previous investigations, the tensile strength of Zircaloy-4 was increased by up to 20% with the formation of a thin dispersed oxide layer with a thickness less than 10% of that of the Zircaloy-4 substrate. However, the tensile elongation of the samples decreased drastically. The brittle fracture was a major concern in development of the ODS Zircaloy-4. In this study, a lamellar structure of ODS layer was formed to increase ductility of the ODS Zircaloy-4. The mechanical properties were varied depending on the structure of ODS layer. For example, the partial formation of ODS layer with the thickness of 10% to the substrate thickness induced the increase in tensile strength up to about 20% than fresh Zircaloy-4.

  2. Microstructure and Mechanical Property of ODS Ferritic Steels Using Commercial Alloy Powders for High Temperature Service Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Choi, Byoung-Kwon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthening (ODS) is one of the promising ways to improve the mechanical property at high temperatures. This is mainly attributed to uniformly distributed nano-oxide particle with a high density, which is extremely stable at the high temperature and acts as effective obstacles when the dislocations are moving. In this study, as a preliminary examination to develop the advanced structural materials for high temperature service applications, ODS ferritic steels were fabricated using commercial alloy powders and their microstructural and mechanical properties were investigated. In this study, ODS ferritic steels were fabricated using commercial stainless steel 430L powder and their microstructures and mechanical properties were investigated. Morphology of micro-grains and oxide particles were significantly changed by the addition of minor alloying elements such as Ti, Zr, and Hf. The ODS ferritic steel with Zr and Hf additions showed ultra-fine grains with fine complex oxide particles. The oxide particles were uniformly located in grains and on the grain boundaries. This led to higher hardness than ODS ferritic steel with Ti addition.

  3. High Cr ODS steels R and D for high burnup fuel cladding

    International Nuclear Information System (INIS)

    Kimura, A.; Kasada, R.; Kishimoto, H.; Iwata, N.; Cho, H.-S.; Toda, N.; Yutani, K.; Ukai, S.; Fujiwara, M.

    2007-01-01

    High-performance cladding materials is essential to realize highly efficient and high-burnup operation over 150 GWd/t of so called Generation IV nuclear energy systems, such as supercritical-water-cooled reactor (SCWR) and lead-cooled fast reactor (LFR). Oxide dispersion strengthening (ODS) ferritic/ martensitic steels, which contain 9-12%Cr, show rather high resistance to neutron irradiation embrittlement and high strength at elevated temperatures. However, their corrosion resistance is not good enough in SCW and in lead at high temperatures. High-Cr ODS steels have been developed to improve corrosion resistance. An increase in Cr content an addition resulted in a drastic improvement of corrosion resistance in SCW and in lead. On the contrary, high-Cr steels often show an enhancement of aging embrittlement as well as irradiation embrittlement. Anisotropy in tensile properties is another issue. In order to overwhelm these issues, surveillance tests of the material performance have been performed for high Cr-ODS steels produced by new processing technologies. It is demonstrated that the dispersion of nono-sized oxide particles in high density is effective to attain high-performance and high-Cr ODS steels have a high potential as fuel cladding materials for SCWR and LFR with high efficiency and high burnup. (authors)

  4. Introduction to superalloys

    International Nuclear Information System (INIS)

    Li-Chenggong

    1995-01-01

    Throughout history, humans have developed mechanical devices to satisfy their needs, Jet aircraft was thrust into public awareness with the 1937 flight of Hans Von Ohains turbine engine Heinkel in Germany and an independent development, the 1939 flight of Whittle's engine in England. Since that time, progress in jet propulsion and industrial gas turbines has been a growing engineering technology of immense importance. This opened a new era of engineering material called superalloy. Superalloy is an alloy developed for elevated temperature service usually based on group VIIA elements, where relatively severe mechanical stressing is encountered, and where high surface stability is frequently required. The title of the speech is T he Effect of a Changing Environment on the requirements of Engine Materials . In this speech, the author emphasized that may changes in the business environment have occurred in recent years, the aircraft engine business is rapidly changing from a military focus to a commercial one, speed to market will assume greater importance in the engine industry, and greater attention to customer value will be required to remain competitive etc. However the superalloys will continue to be developed in the future. (author) 14 figs

  5. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  6. Looking for New Polycrystalline MC-Reinforced Cobalt-Based Superalloys Candidate to Applications at 1200°C

    OpenAIRE

    Patrice Berthod

    2017-01-01

    For applications for which temperatures higher than 1150°C can be encountered the currently best superalloys, the γ/γ′ single crystals, cannot be used under stress because of the disappearance of their reinforcing γ′ precipitates at such temperatures which are higher than their solvus. Cobalt-based alloys strengthened by refractory and highly stable carbides may represent an alternative solution. In this work the interest was focused on MC carbides of several types. Alloys were elaborated wit...

  7. Cooling γ precipitation behavior and strengthening in powder metallurgy superalloy FGH4096

    Institute of Scientific and Technical Information of China (English)

    TIAN Gaofeng; JIA Chengchang; WEN Yin; LIU Guoquan; HU Benfu

    2008-01-01

    Two cooling schemes (continuous cooling and interrupted cooling tests) were applied to investigate the cooling γ precipitation behavior in powder metallurgy superalloy FGH4096.The effect of cooling rate on cooling γ precipitation and the development of γ precipitates during cooling process were involved in this study.The ultimate tensile strength (UTS) of the specimens in various cooling circumstances was tested.The experiential equations were obtained between the average sizes of secondary and tertiary γ precipitates,the strength,and cooling rate.The results show that they are inversely correlated with the cooling rate as well as the grain boundary changes from serrated to straight,the shape of secondary γ precipitates changes from irregular cuboidal to spherical,while the formed tertiary γ precipitates are always spherical.The interrupted cooling tests show that the average size of secondary γ precipitates increases as a linear function of interrupt temperature for a fixed cooling rate of 24℃/min.The strength first decreases and then increases against interrupt temperature,which is fundamentally caused by the multistage nucleation of γ precipitates during cooling process.

  8. Effect of yttrium addition on the microstructure and mechanical properties of ODS RAF steels

    International Nuclear Information System (INIS)

    Auger, M.A.; Castro, V. de; Leguey, T.; Tarcísio-Costa, J.; Monge, M.A.; Muñoz, A.; Pareja, R.

    2014-01-01

    An oxide dispersion strengthened (ODS) alloy with nominal composition Fe–14Cr–2W–0.3Ti–0.24Y (wt.%) was produced by mechanical alloying using elemental powders, and subsequent hot isostatic pressing. The microstructure of the material and characteristics of the oxide particle dispersion were investigated by electron microscopy. The effect of heat treatments on the microhardness and tensile properties at room temperature was also studied. The results show that a fine dispersion of Y–O-rich nanoparticles is achieved, together with larger (Cr, Ti)-rich precipitates. The absence of Ti is apparent in the majority of these nanoparticles, in contrast with reported results for ODS Ti-modified steels processed with Y 2 O 3 addition

  9. Cerium Titanate Nano dispersoids in Ni-base ODS Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Chun, Young-Bum; Rhee, Chang-Kyu; Jang, Jinsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Hee-Suk [Korea Basic Science Institute, Jeonju (Korea, Republic of)

    2016-10-15

    Oxide-dispersion-strengthened (ODS) nickel-base alloys have potential for use in rather demanding elevated-temperature environments, such as aircraft turbine engines, heat exchanger of nuclear reactor. For improved high temperature performance, several ODS alloys were developed which possess good elevated temperature strength and over-temperature capacity plus excellent static oxidation resistance. The high temperature strength of ODS alloys is due to the presence of a uniform dispersion of fine, inert particles. Ceria mixed oxides have been studied because of their application potential in the formation of nanoclusters. By first principle study, it was estimated that the formation energy of the Ce-O dimer with voids in the nickel base alloy is lower than other candidates. The result suggests that the dispersion of the Ceria mixed oxides can suppress the voiding or swelling behavior of nickel base alloy during neutron irradiation. In this study, the evolution of cerium titanate nano particles was investigated using in-situ TEM. It was found that the Ce{sub 2}Ti{sub 3}O{sub 9} phase was easily formed rather than remain as CeO{sub 2} during annealing; Ti was effective to form the finer oxide particles. Ce{sub 2}Ti{sub 3}O{sub 9} is expected to do the great roll as dispersoids in Ni-base alloy, contribute to achieve the better high temperature property, high swelling resistance during neutron radiation.

  10. The influence of Cr content on the mechanical properties of ODS ferritic steels

    Science.gov (United States)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  11. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Mechanical strength properties of sodium exposed and Nickel diffused materials. Interim report

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2004-02-01

    An oxide dispersion strengthened (ODS) ferritic steel have excellent resistance to swelling and superior creep strength, they are expected to be used as a long-life cladding material in future advanced fast reactor. In this study, sodium environmental effects on the ODS steel developed by JNC were clarified through tensile test after sodium exposure for maximum 10,000hrs and creep-rupture test in sodium at elevated temperature. The exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperatures were 923 K and 973 K, the oxygen concentration in sodium was below 2ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/s. Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The results showed excellent sodium-resistance up to a high temperature of about 973 K in stagnant sodium conditions, and its considered that the effects of sodium environment of tensile properties were negligible. In case of stagnant sodium condition, creep-rupture strength in sodium was equal to the in argon gas, and no sodium environmental effect was observed. The same is true for the creep-rupture ductility. (2) The tensile properties of nickel diffused test specimens at high temperatures simulating microstructure change were equal to that of the thermal aging process specimens. These tensile tests suggest that sodium environmental effects can be ignored. However, the effect of nickel diffusion on creep strength are not clear at present and experimental investigation are being conducted. (3) The coefficient of nickel diffusion in the ODS steel can be estimated based on the results of nickel concentration measurement. This value is larger than that of the diffusion coefficient for typical α-Fe steel at temperature below 973 K

  12. Modelling and simulation of superalloys. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)

    2014-07-01

    Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.

  13. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of); Cha, Seung I. [International Center for Young Scientists, National Institute for Materials Science 1-1, Namiki, Tsukuba 305-0044 (Japan); Ryu, Ho J. [DUPIC, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yusong-gu, Taejon 305-353 (Korea, Republic of); Hong, Soon H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of)], E-mail: shhong@kaist.ac.kr

    2007-06-15

    Oxide dispersion strengthened (ODS) tungsten heavy alloys have been considered as promising candidates for advanced kinetic energy penetrator due to their characteristic fracture mode compared to conventional tungsten heavy alloy. In order to obtain high relative density, the ODS tungsten heavy alloy needs to be sintered at higher temperature for longer time, however, induces growth of tungsten grains. Therefore, it is very difficult to obtain controlled microstructure of ODS tungsten heavy alloy having fine tungsten grains with full densification. In this study, two-stage sintering process, consisted of primary solid-state sintering and followed by secondary liquid phase sintering, was introduced for ODS tungsten heavy alloys. The mechanically alloyed 94W-4.56Ni-1.14Fe-0.3Y{sub 2}O{sub 3} powders are solid-state sintered at 1300-1450 deg. C for 1 h in hydrogen atmosphere, and followed by liquid phase sintering temperature at 1465-1485 deg. C for 0-60 min. The microstructure of ODS tungsten heavy alloys showed high relative density above 97%, with contiguous tungsten grains after primary solid-state sintering. The microstructure of solid-state sintered ODS tungsten heavy alloy was changed into spherical tungsten grains embedded in W-Ni-Fe matrix during secondary liquid phase sintering. The two-stage sintered ODS tungsten heavy alloy from mechanically alloyed powders showed finer microstructure and higher mechanical properties than conventional liquid phase sintered alloy. The mechanical properties of ODS tungsten heavy alloys are dependent on the microstructural parameters such as tungsten grain size, matrix volume fraction and tungsten/tungsten contiguity, which can be controlled through the two-stage sintering process.

  14. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Tensile properties of sodium exposed and nickel diffused materials

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2002-12-01

    An oxide dispersion strengthened (ODS) ferritic steel is candidate for a long-life core materials of future FBR, because of good swelling resistance and high creep strength. In this study, tensile tests were carried out the long-term extrapolation of sodium environmental effects on the mechanical properties of ODS steels. The tested heats of materials are M93, M11 and F95. The specimens were pre-exposed to sodium for 1,000 and 3,000 hours under non-stress conditions. The pre-exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperature was 650 and 700degC, the oxygen concentration in sodium was about 1 ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/seconds (nearly static). Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The tensile strength and the fracture elongation after sodium exposure (maximum 3,000 hours) were same as that of as-received materials. If was considered that the sodium environmental effect is negligible under the condition of this study. (2) Tensile properties of nickel diffused specimens were slightly lower than that of the as-received specimens, but it remains equal to that of thermal aging specimens. (3) The change in microstructure such as a degraded layer was observed on the surface of nickel diffused specimen. In the region of the degraded layer, phase transformations from the α-phase to the γ-phase were recognized. But, the microscopic oxide particles were observed same as that of α-phase base metal. (author)

  15. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal

    Science.gov (United States)

    Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan

    2016-02-01

    Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  16. Microstructure of oxide dispersion strengthened Eurofer and iron-chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heintze, C. [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Bergner, F., E-mail: f.bergner@fzd.de [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Ulbricht, A. [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Hernandez-Mayoral, M. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Keiderling, U. [Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Lindau, R. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Weissgaerber, T. [Fraunhofer Institute IFAM-Dresden, Winterbergstr. 28, 01277 Dresden (Germany)

    2011-09-01

    Oxide dispersion strengthening of ferritic/martensitic chromium steels is a promising route for the extension of the range of operation temperatures for nuclear applications. The investigation of dedicated model alloys is an important means in order to separate individual effects contributing to the mechanical behaviour under irradiation and to improve mechanistic understanding. A powder metallurgy route based on spark plasma sintering was applied to fabricate oxide dispersion strengthened (ODS) Fe9Cr model materials. These materials along with Eurofer97 and ODS-Eurofer were investigated by means of small-angle neutron scattering (SANS) and TEM. For Fe9Cr-0.6 wt.%Y{sub 2}O{sub 3}, TEM results indicate a peak radius of the size distribution of Y{sub 2}O{sub 3} particles of 4.2 nm with radii ranging up to 15 nm, and a volume fraction of 0.7%, whereas SANS indicates a peak radius of 3.8 nm and a volume fraction of 0.6%. It was found that the non-ODS Fe9Cr and Eurofer97 are suitable reference materials for ODS-Fe9Cr and ODS-Eurofer, respectively, and that the ODS-Fe9Cr variants are suitable model materials for the separated investigation of irradiation-Y{sub 2}O{sub 3} particle interaction effects.

  17. Effect of yttrium addition on the microstructure and mechanical properties of ODS RAF steels

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A., E-mail: maria.auger@materials.ox.ac.uk [Departamento de Física, Universidad Carlos III de Madrid, Av Universidad 30, 28911 Leganés (Spain); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Castro, V. de; Leguey, T.; Tarcísio-Costa, J.; Monge, M.A.; Muñoz, A.; Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, Av Universidad 30, 28911 Leganés (Spain)

    2014-12-15

    An oxide dispersion strengthened (ODS) alloy with nominal composition Fe–14Cr–2W–0.3Ti–0.24Y (wt.%) was produced by mechanical alloying using elemental powders, and subsequent hot isostatic pressing. The microstructure of the material and characteristics of the oxide particle dispersion were investigated by electron microscopy. The effect of heat treatments on the microhardness and tensile properties at room temperature was also studied. The results show that a fine dispersion of Y–O-rich nanoparticles is achieved, together with larger (Cr, Ti)-rich precipitates. The absence of Ti is apparent in the majority of these nanoparticles, in contrast with reported results for ODS Ti-modified steels processed with Y{sub 2}O{sub 3} addition.

  18. Solid-state diffusion bonding of high-Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: sh-noh@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kasada, Ryuta; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan)

    2011-05-15

    Research highlights: > Oxide dispersion strengthened ferritic steel joined by solid-state diffusion bonding. > Free of precipitates and micro-voids at the bonding interface was existed. > Joints had the same tensile properties with anisotropy of the base material. > USE of joints was fully reserved in L-R bonding orientation. > Cracks did not propagate on the bonding interface at the Charpy impact test. - Abstract: Solid-state diffusion bonding (SSDB) was employed to join high-Cr oxide dispersion strengthened (ODS) ferritic steel (Fe-15Cr-2W-0.2Ti-0.35Y{sub 2}O{sub 3}) blocks under uniaxial hydrostatic pressure using a high-vacuum hot press, and the microstructure and mechanical properties of the joints were investigated. High-Cr ODS ferritic steels were successfully diffusion bonded at 1200 deg. C for 1 h, without precipitates and microvoids at the bonding interface or degradation in the base materials. Transmission electron microscopic observation revealed that the nano-oxide particles near the bonding interface were uniformly distributed in the matrix and that the chemical composition across the bonding interface was virtually constant. At room temperature, the joint had nearly the same tensile properties and exhibited anisotropic behavior similar to that of the base material. The tensile strength of the joint region at elevated temperatures is nearly the same as that of the base material, with necking behavior at several micrometers from the bonding interface. The total elongation of the joint region decreased slightly at 700 {sup o}C, with an exfoliation fracture surface at the bonding interface. Although a small ductile-brittle transition temperature shift was observed in the joints, the upper shelf energy was fully reserved in the case of joints with L-R bonding orientation, for which cracks did not propagate on the bonding interface. Therefore, it is concluded that SSDB can be potentially employed as a joining method for high-Cr ODS ferritic steel owing to

  19. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    International Nuclear Information System (INIS)

    Auger, M.A.; Castro, V. de; Leguey, T.; Muñoz, A.; Pareja, R.

    2013-01-01

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y 2 O 3 powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y 2 O 3 (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS

  20. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A.; Castro, V. de [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Muñoz, A.; Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain)

    2013-05-15

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y{sub 2}O{sub 3} powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y{sub 2}O{sub 3} (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS.

  1. Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application

    International Nuclear Information System (INIS)

    He, P.; Klimenkov, M.; Lindau, R.; Möslang, A.

    2012-01-01

    Highlights: ► We examine Ti influence on microstructure and mechanical properties of ODS steels. ► Ti addition leads to bimodal grain size distribution. ► The formation of Ti oxide and Y–Ti–O particles is observed in Ti-containing steels. ► The best nanoparticle refinement and tensile strength are obtained with 0.3% Ti. ► Ti exhibits adverse effect on the Charpy impact property. - Abstract: Oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels, have been considered as promising materials for application in fusion power reactors up to about 750 °C. Four ODS RAF steels, with compositions of Fe–13.5Cr–2W–(0–0.2–0.3–0.4)Ti–0.3Y 2 O 3 (in wt.%) were produced by powder metallurgy technique. For the different Ti-contents, the correlation between microstructure and mechanical properties was analyzed by means of scanning electron microscope (SEM) and transmission electron microscope (TEM) equipped with energy- dispersive X-ray spectrometer (EDX) and electron energy loss spectrometer (EELS). A bimodal grain size distribution was observed in all as-hipped Ti-containing ODS alloys. These alloys consisted of coarse grains typical ranging from 1 μm to 8 μm and fine grains well below 1 μm in diameter. The addition of Ti resulted in the formation of spherical Ti oxides rather than Cr oxides owing to the stronger affinity of Ti. The influence of Ti on particle size refinement was striking and the optimum effect was obtained when adding 0.3% Ti. Generally the hardness increased consistently with increasing in Ti content. The ODS alloying with 0.3% Ti exhibit the highest strength due to the optimum refinement of mean ODS particle size.

  2. A high-throughput search for new ternary superalloys

    Science.gov (United States)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  3. Transmission electron microscopy study of the heavy-ion-irradiation-induced changes in the nanostructure of oxide dispersion strengthened steels

    Science.gov (United States)

    Rogozhkin, S. V.; Bogachev, A. A.; Orlov, N. N.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffman, Ya.; Möslang, A.; Vladimirov, P.; Klimenkov, M.

    2017-07-01

    Transmission electron microscopy was used to study the effect of heavy-ion irradiation on the structure and the phase state of three oxide dispersion strengthened (ODS) steels: ODS Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti (wt %). Samples were irradiated with iron and titanium ions to fluences of 1015 and 3 × 1015 cm-2 at 300, 573, and 773 K. The study of the region of maximum radiation damage shows that irradiation increases the number density of oxide particles in all samples. The fraction of fine inclusions increases in the particle size distribution. This effect is most pronounced in the ODS 13.5Cr steel irradiated with titanium ions at 300 K to a fluence of 3 × 1015 cm-2. It is demonstrated that oxide inclusions in ODS 13.5Cr-0.3Ti and ODS 13.5Cr steels are more stable upon irradiation at 573 and 773 K than upon irradiation at 300 K.

  4. Influence of the fabrication process parameters on microstructures and mechanical properties of 10Cr-1Mo ODS steel

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Ki Baik; Choi, Byoung Kwon; Kang, Suk Hoon; Noh, Sang Hoon; Kim, Ga Eon; Kim, Tae Kyu

    2016-01-01

    Oxide dispersion strengthened (ODS) FM steels have been developed as the most promising core structural material for high- temperature components operating in severe environments such as nuclear fusion and fission systems owing to its excellent elevated temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in a ferritic/martensitic matrix. To realize the structural components such as plates, sheets and tubes in SFR, the development of manufacturing processes is an essential issue for the ODS FM steel. While the ODS steel has superior radiation resistance and high temperature strength, in comparison with the existing commercial steels, it is difficult for the ODS steel to obtain sufficient workability for the fabrication due to high hardness and low ductility at room temperature, meaning that the manufacturing of the ODS plate including cladding tube can be complicated by the low cold workability. In order to prevent the ODS steel from any damage during the manufacturing process, thus, the introduction of intermediate heat treatments between cold rolling processes is necessary. This study investigates effects of the fabrication process parameters such as the cold working ratio, the intermediate and final heat treatments on the microstructure and mechanical properties of 10Cr-1Mo ODS steel. In an effort to optimize the manufacturing route of the ODS FM steel, the microstructural and mechanical evolutions for the ODS plate manufactured by a control of the fabrication process parameters were evaluated in the present study. In the present study, the effect of a cold rolling and intermediate heat treatments on microstructures and mechanical properties of 10Cr-1Mo FM ODS steel were investigated. During the manufacturing route the hardness measurements remained below the critical value of 400 Hv. Intermediate heat treatment with slow cooling led to a softened ferritic structures which can be further

  5. Load-partitioning in an oxide dispersion-strengthened 310 steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin; Mo, Kun; Zhou, Zhangjian; Liu, Xiang; Lan, Kuan-Che; Zhang, Guangming; Park, Jun-Sang; Almer, Jonathan; Stubbins, James F.

    2016-12-01

    Here the high temperature tensile performance of an oxide dispersion-strengthened (ODS) 310 steel is reported upon. The microstructure of the steel was examined through both transmission electron microscopy (TEM) and synchrotron scattering. In situ synchrotron tensile investigation was performed at a variety of temperatures, from room temperature up to 800°C. Pyrochlore structure yttrium titanate and sodium chloride structure titanium nitride phases were identified in the steel along with an austenite matrix and marginal residual α’-martensite. The inclusion phases strengthen the steel by taking extra load through particle-dislocation interaction during plastic deformation or dislocation creep procedures. As temperature rises, the load partitioning effect of conventional precipitate phases starts to diminish, whereas those ultra-fine oxygen-enriched nanoparticles continue to bear a considerable amount of extra load. Introduction of oxygen-enriched nanoparticles in austenitic steel proves to improve the high temperature performance, making austenitic ODS steels promising for advanced nuclear applications.

  6. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy

    Science.gov (United States)

    Ramar, A.; Spätig, P.; Schäublin, R.

    2008-12-01

    Oxide dispersion in tempered martensitic EUROFER97 steel is an efficient approach to improve its strength. The oxide dispersion strengthened (ODS) EUROFER97 steel shows a good strength up to 600 °C, but degrades rapidly beyond that temperature. To understand the origin in the microstructure of this drop in strength in situ heating experiment in TEM was performed from room temperature to 1000 °C. Upon heating neither microstructure changes nor dislocation movement are observed up to 600 °C. Movement of dislocations are observed above 680 °C. Phase transformation to austenite starts at 840 °C. Yttria particles remain stable up to 1000 °C. Changes in mechanical properties thus do not relate to changes in yttria dispersion. It is attempted to relate these observations to the thermal activation parameters measured by the technique of conventional strain rate experiment, which allow to identify at a mesoscopic scale the microstructural mechanisms responsible for the degradation of ODS steel at high temperatures.

  7. High resolution neutron diffraction crystallographic investigation of Oxide Dispersion Strengthened steels of interest for fusion technology

    International Nuclear Information System (INIS)

    Coppola, R.; Rodriguez-Carvajal, J.; Wang, M.; Zhang, G.; Zhou, Z.

    2014-01-01

    High resolution neutron diffraction measurements have been carried out to characterize the crystallographic phases present in different Oxide Dispersion Strengthened (ODS) steels of interest for fusion technology. The different lattice structures, Im3m for the ferritic ODS and Fm3m for the austenitic ODS, are resolved showing line anisotropy effects possibly correlated with differences in dislocation densities and texture. Many contributions from minority phases are detected well above the background noise; none of the expected crystallographic phases, such as M 23 C 6 and including Y 2 O 3 , fits them, but the TiN phase is identified in accordance with results of other microstructural techniques

  8. Study of the stability of the nanometer-sized oxides dispersed in ODS steels under ion irradiations

    International Nuclear Information System (INIS)

    Lescoat, M.-L.

    2012-01-01

    Oxide Dispersion Strengthened (ODS) Ferritic-Martensitic (FM) alloys are expected to play an important role as cladding materials in Generation IV sodium fast reactors operating in extreme temperature (400-500 C) and irradiation conditions (up to 200 dpa). Since nano-oxides give ODS steels their high temperature strength, the stability of these particles is an important issue. The present study evaluates the radiation response of nano-oxides by the use of in-situ and ex-situ ion irradiations performed on both Fe18Cr1W0,4Ti +0,3 Y 2 O 3 and Fe18Cr1W0,4Ti + 0.3 MgO ODS steels. In particular, the results showed that Y-Ti-O nano-oxides are quite stable under very high irradiation dose, namely 219 dpa at 500 C, and that the oxide interfacial structures are likely playing an important role on the behavior under irradiation (oxide stability and point defect recombination. (author) [fr

  9. Development of ODS-Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  10. Recent trends in superalloys research for critical aero-engine components

    Energy Technology Data Exchange (ETDEWEB)

    Remy, Luc [Mine ParisTech, CNRS UMR 7633, 91 - Evry (France). Centre des Materiaux; Guedou, Jean-Yves [Snecma Safran Group, Moissy-Cramayel (France). Materials and Processes Dept.

    2010-07-01

    This paper is a brief survey of common research activity on superalloys for aero-engines between Snecma and Mines ParisTech Centre des Materiaux during recent years. First in disks applications, the development of new powder metallurgy superalloys is shown. Then grain boundary engineering is investigated in a wrought superalloy. Secondly, design oriented research on single crystals blades is shown: a damage model for low cycle fatigue is used for life prediction when cracks initiated at casting pores. The methodology developed for assessing coating life is illustrated for thermal barrier coating deposited on AMI single crystal superalloy. (orig.)

  11. 76 FR 8773 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1090 (Review)] Superalloy Degassed Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five-year... revocation of the antidumping duty order on superalloy degassed chromium from Japan would be likely to lead...

  12. The Mechanical Properties of Candidate Superalloys for a Hybrid Turbine Disk

    Science.gov (United States)

    Gabb, Timothy P.; MacKay, Rebecca A.; Draper, Susan L.; Sudbrack, Chantal K.; Nathal, Michael V.

    2013-01-01

    The mechanical properties of several cast blade superalloys and one powder metallurgy disk superalloy were assessed for potential use in a dual alloy hybrid disk concept of joined dissimilar bore and web materials. Grain size was varied for each superalloy class. Tensile, creep, fatigue, and notch fatigue tests were performed at 704 to 815 degC. Typical microstructures and failure modes were determined. Preferred materials were then selected for future study as the bore and rim alloys in this hybrid disk concept. Powder metallurgy superalloy LSHR at 15 micron grain size and single crystal superalloy LDS-1101+Hf were selected for further study, and future work is recommended to develop the hybrid disk concept.

  13. Microstructure evolution of the oxide dispersion strengthened CLAM steel during mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Liangliang [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Mao, Xiaodong [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • A nano-sized oxides dispersed ODS-CLAM steel was obtained by MA and HIP. • A minimum saturated grain size of down to 30 nm was achieved by varying the milling time from 0 to 100 h. • Solution of W in the MA powder could be significantly improved by increasing MA rotation speed. - Abstracts: Oxide dispersion strengthened Ferritic/Martensitic steel is considered as one of the most potential structural material for future fusion reactor, owing to its high mechanical properties and good irradiation resistance. The oxide dispersion strengthened China Low Activation Martensitic (ODS-CLAM) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The microstructural evolutions during the process of ball milling and subsequent consolidation were investigated by SEM, XRD and TEM. The results showed that increasing the milling time during the first 36 h milling could effectively decrease the grain size to a value of around 30 nm, over which grain sized remained nearly constant. Increasing the rotation speed promoted the solution of tungsten (W) element obviously and decreased the grain size to a certain degree. Observation on the consolidated and further heat-treated ODS-CLAM steel samples indicated that a martensite microstructure with a high density of nano-particles was achieved.

  14. Effect of the microstructure on the creep behavior of PM Udimet 720 superalloy--experiments and modeling

    International Nuclear Information System (INIS)

    Dubiez-Le Goff, Sophie; Couturier, Raphaeel; Guetaz, Laure; Burlet, Helene

    2004-01-01

    Powder metallurgy processed Udimet 720 is a high creep strength nickel-based superalloy considered for high temperature turbine disks for nuclear gas cooled reactors working under 700 deg. C. Both fine-grained and coarse-grained microstructures have been obtained by applying respectively a subsolvus or a supersolvus solution treatments, followed by ageing treatments. In both microstructures, the distribution of the strengthening γ' precipitates has been characterized by transmission electron microscopy (TEM). The creep curves of the coarse-grained microstructure show the three usual creep stages. On the contrary, the creep curves of the fine-grained microstructure show a transition directly from primary to apparent tertiary creep without any obvious steady state. According to TEM analyses, Orowan loops surround Udimet 720 CR γ' and U720 HS γ' at high stress whereas U720 HS γ' are sheared at low stress. To describe the behavior of the superalloy Udimet 720, a specific creep model is developed on the basis of McLean and Dyson models including physical damage parameters

  15. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on superalloy degassed chromium from Japan. SUMMARY... order on superalloy degassed chromium from Japan would be likely to lead to continuation or recurrence...

  16. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong

    2015-01-01

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO 4 . For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases

  17. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  18. Short Communication on “Coarsening of Y-rich oxide particles in 9%Cr-ODS Eurofer steel annealed at 1350 °C”

    Energy Technology Data Exchange (ETDEWEB)

    Sandim, M.J.R.; Souza Filho, I.R.; Bredda, E.H. [Lorena School of Engineering, University of Sao Paulo, 12602-810, Lorena (Brazil); Kostka, A.; Raabe, D. [Max-Planck-Institut für Eisenforschung, D-40237, Düsseldorf (Germany); Sandim, H.R.Z., E-mail: hsandim@demar.eel.usp.br [Lorena School of Engineering, University of Sao Paulo, 12602-810, Lorena (Brazil)

    2017-02-15

    Oxide-dispersion strengthened (ODS) Eurofer steel is targeted for structural applications in future fusion nuclear reactors. Samples were cold rolled down to 80% reduction in thickness and annealed at 1350 °C up to 8 h. The microstructural characterization was performed using Vickers microhardness testing, electron backscatter diffraction, scanning and scanning transmission electron microscopies. Experimental results provide evidence of coarsening of the Y-rich oxide particles in ODS-Eurofer steel annealed at 1350 °C within delta ferrite phase field.

  19. Material Flow and Oxide Particle Distributions in Friction-Stir Welded F/M-ODS Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Noh, Sanghoon; Jin, Hyun Ju; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    It is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion in ODS(Oxide dispersion strengthened) steel. However, these advantages will disappear while the material is subjected to the high temperature of conventional fusion welding. There is only limited literature available on the joining of ODS steels. Friction stir welding (FSW) is considered to be the best welding technique for welding ODS steels as the technique helps in retaining the homogeneous nano-oxide particles distributions in matrix. FSW is a solid.state, hot.shear joining process in which a rotating tool with a shoulder and terminating in a threaded pin, moves along the butting surfaces of two rigidly clamped plates placed on a backing plate. Heat generated by friction at the shoulder and to a lesser extent at the pin surface, softens the material being welded. Severe plastic deformation and flow of this plasticised metal occurs as the tool is translated along the welding direction. Material is transported from the front of the tool to the trailing edge where it is forged into a joint. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels. This study found that, during FSW, the forward movement of the tool pin results in loose contact between the tool pin and the receding material on the advancing side.

  20. MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2014-08-01

    Full Text Available The surface modification of engineering materials by laser beam scanning (LBS allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and Y2O3 particles of 10 μm were selected for ODS treatment using LBS. Through the LBS method, the Y2O3 particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at 500°C was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive Y2O3 particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

  1. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    Science.gov (United States)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  2. Assessment and comparison of oxides grown on 304l ods steel and 304l ss in water environment in supercritical conditions

    International Nuclear Information System (INIS)

    Mihalache, M.; Dinu, A.; Fulger, M.; Zhou, Z.; Mihalache, M.

    2013-01-01

    In order to fulfil superior cladding for new reactor generation G IV, the austenitic 3 04 L stainless steel was improved by oxide dispersion strengthening (ODS), using two nano-oxides: titanium and yttrium oxides. The behaviour of the new material resulted, 304 ODS, in water at supercritical temperature of about 550 O C and 25 MPa pressure, was considered. The oxidation kinetics by weigh gain measurements for both materials have been estimated and compared. The weight gain of ODS samples is higher than basic austenitic steel up to 1320 hours. The oxides developed on the ODS samples in SCPW are layered and more uniform than in 304 L SS. The protectively character of oxide films was estimated by different techniques. The morphology of oxide surface, the layering and chemical formula of oxides films were investigated by scanning electron microscopy (SEM), Energy Dispersion X-Ray Spectrometry (EDS), electrochemical impedance spectrometry (EIS) and by Small Angle X-ray Diffraction (SAXD). 1. (authors)

  3. Fatigue studies of superalloys in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Masaki

    1985-01-01

    In the past 15 years, several national projects were advanced to develop high temperature machinery, such as high temperature gas-cooled reactors, gas turbines and fusion reactors. Before, the studies on the strength of superalloys were rarely carried out, however, by the above research works, superalloys are in rapid progress. Because these machinery are subjected to temperature cycles and vibration stress, the fatigue failure is the main concern in the safety analysis of the components. The purpose of this paper is to summarize the present status of the fatigue research on the alloys for high temperature use in Japan. The superalloys used for gas turbine and HTGR components are listed, and the materials tested were mostly the alloys of nickel base, cobalt base or iron base. In the above national projects, the main purpose was to clarify the high temperature properties including fatigue properties, to develop the method of forecasting the life span and to develop better materials. As the topics about the fatigue research on superalloys, the development of the method for forecasting the life span, the effect of directional solidification, coating and HIP process on the fatigue strength of gas turbine materials, the effect of helium and aging on the fatigue strength of HTGR materials, the fatigue strength of weldment of HTGR materials and others are reported. (Kako, I.)

  4. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    International Nuclear Information System (INIS)

    He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H.J.

    2014-01-01

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal–mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi–ODS steel exhibits a remarkable lifetime extension with a factor of 10–20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 10 14 m −2 , independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y–Ti–O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti–ODS steel

  5. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    He, P., E-mail: pei.he@kit.edu; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H.J.

    2014-12-15

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal–mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi–ODS steel exhibits a remarkable lifetime extension with a factor of 10–20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 10{sup 14} m{sup −2}, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y–Ti–O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti–ODS steel.

  6. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Baluc, N.

    2009-01-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2 O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  7. Anisotropy in tensile and ductile-brittle transition behavior of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, R., E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan); Lee, S.G.; Isselin, J.; Lee, J.H.; Omura, T.; Kimura, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan); Okuda, T. [KOBELCO Research Institute, 1-5-5, Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan); Inoue, M. [Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Ukai, S.; Ohnuki, S. [Materials Science and Engineering, Hokkaido University, N14 W8, Kita ku, Sapporo 060-8626 (Japan); Fujisawa, T. [Nagoya University, Furocho, Chikusa, Nagoya 464-8603 (Japan); Abe, F. [National Institute of Materials Science, Tsukuba, (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2011-10-01

    Anisotropic fracture behavior of SOC-1 oxide dispersion strengthened (ODS) ferritic steel has been investigated for a hot-extruded bar by tensile tests and Charpy impact tests. These mechanical properties are better in the longitudinal direction than in the transverse directions against extrusion direction (ED). Fracture surface observations by scanning electron microscopy and auger electron spectroscopy indicated bundle-like morphology with existence of segregation/precipitation/inclusions along ED. Pole figures of the hot-extruded bar characterized using electron back scattering diffraction (EBSD) technique and X-ray diffraction exhibited <1 1 0> fiber texture formation along ED. The EBSD orientation map showed a complex bundle-like grain morphology which consists of elongated grains having a specific orientation <1 1 0>// ED and relatively isotropic and small grains having other orientation. The results conclude that the combined effects of observed elongated grain morphology and these small grains with segregation/precipitation/inclusions along ED can explain the anisotropic fracture behavior of the hot-extruded ODS ferritic steel.

  8. Effect of HIP temperature and cooling rate on microstructure and hardness of joints for ODS-RAFM steels and JLF-1 steel

    International Nuclear Information System (INIS)

    Fu, Haiying; Nagasaka, Takuya; Muroga, Takeo; Kimura, Akihiko; Ukai, Shigeharu

    2016-01-01

    Dissimilar-metal joints between ODS-RAFM (oxide-dispersion-strengthened reduced activation ferritic/martensitic) steels and JLF-1 steel were fabricated by hot isostatic pressing (HIP) at 1000 - 1100degC with a cooling rate of 5degC/min. After the HIP, it was always quenched martensite for JLF-1 steel. However, coarse precipitates were found in 9Cr-ODS. Additional annealing experiments to simulate HIP conditions were conducted for 9Cr-ODS with cooling rate ranged from 0.5 to 36degC/min at 800 - 1100degC. The results showed that, to form quenched martensite for 9Cr-ODS, the HIP temperature should be above 1000degC with cooling rate no less than 25dgeC/min. When the cooling rate is increased to 36degC/min, the microstructure of 9Cr-ODS is quenched martensite with precipitate size similar as that before HIP. If the limitation of precipitate size in 9Cr-ODS is 0.2 µm, HIP temperature above 1050degC with cooling rate no less than 30degC/min is needed. In this case, post-weld heat treatment (PWHT) with only tempering is necessary to recover the microstructure of 9Cr-ODS to tempered martensite. For 12Cr-ODS, the HIP temperature and cooling rate has no effect on hardness and precipitate size. PWHT is not necessary for the single-metal joint of 12Cr-ODS from the view point of precipitation control. However, for the dissimilar-metal joints between ODS-RAFM steels and JLF-1 steel, the PWHT condition should be comprehensively determined by considering microstructural evolution of each part in the joints after HIP. (author)

  9. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting

    Science.gov (United States)

    Gao, Rui; Ge, Wen-jun; Miao, Shu; Zhang, Tao; Wang, Xian-ping; Fang, Qian-feng

    2016-03-01

    The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30-40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.

  10. High temperature deformation mechanisms of L12-containing Co-based superalloys

    Science.gov (United States)

    Titus, Michael Shaw

    Ni-based superalloys have been used as the structural material of choice for high temperature applications in gas turbine engines since the 1940s, but their operating temperature is becoming limited by their melting temperature (Tm =1300degrees C). Despite decades of research, no viable alternatives to Ni-based superalloys have been discovered and developed. However, in 2006, a ternary gamma' phase was discovered in the Co-Al-W system that enabled a new class of Co-based superalloys to be developed. These new Co-based superalloys possess a gamma-gamma' microstructure that is nearly identical to Ni-based superalloys, which enables these superalloys to achieve extraordinary high temperature mechanical properties. Furthermore, Co-based alloys possess the added benefit of exhibiting a melting temperature of at least 100degrees C higher than commercial Ni-based superalloys. Superalloys used as the structural materials in high pressure turbine blades must withstand large thermomechanical stresses imparted from the rotating disk and hot, corrosive gases present. These stresses induce time-dependent plastic deformation, which is commonly known as creep, and new superalloys must possess adequate creep resistance over a broad range of temperature in order to be used as the structural materials for high pressure turbine blades. For these reasons, this research focuses on quantifying high temperature creep properties of new gamma'-containing Co-based superalloys and identifying the high temperature creep deformation mechanisms. The high temperature creep properties of new Co- and CoNi-based alloys were found to be comparable to Ni-based superalloys with respect to minimum creep rates and creep-rupture lives at 900degrees C up to the solvus temperature of the gamma' phase. Co-based alloys exhibited a propensity for extended superlattice stacking fault formation in the gamma' precipitates resulting from dislocation shearing events. When Ni was added to the Co-based compositions

  11. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  12. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu

    2014-01-01

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  13. NASA/ORNL/AFRL Project Work on EBM LSHR: Additive Manufacturing of High-Temperature Gamma-Prime Strengthened Ni-Based Superalloys

    Science.gov (United States)

    Sudbrack, Chantal K.; Kirka, Michael M.; Dehoff, Ryan R.; Carter, Robert W.; Semiatin, Sheldon L.; Gabb, Timothy P.

    2016-01-01

    Powder-bed fabrication of aerospace alloys may revolutionize production by eliminating the need for extensive machining and expensive tooling. Heated-bed electron-beam melting (EBM) offers advantages over non-heated laser additive manufacturing (AM) methods, including lower residual stress, reduced risk of contamination, slower cooling rates, and faster build times. NASA Glenn Research Center has joint project work with Oak Ridge National Lab and the Air Force Research Laboratory to explore the feasibility of fabricating advanced Ni-based gamma-prime superalloys with EBM AM.

  14. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    International Nuclear Information System (INIS)

    Zirker, Larry; Jerred, Nathan; Charit, Indrajit; Cole, James

    2012-01-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  15. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment; Developpement d'une nouvelle nuance martensitique ODS pour utilisation sous rayonnement a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lambard, V

    2000-07-01

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  16. Microstructural Characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr Model Alloy s

    Energy Technology Data Exchange (ETDEWEB)

    De Castro, V.; Jenkins, M.L. [Oxford Univ., Dept. of Materials (United Kingdom); Leguey, T.; Mufioz, A.; Pareja, R.; Monge, M.A. [Madrid Univ. Carlos 3, Dept. de Fisica (Spain)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic (RAFM) steels with Cr contents ranging between 9-12 wt% are promising candidates for use as structural materials in future fusion reactors. They are likely to be superior to austenitic steels because of their better thermal properties and higher swelling resistance. A major concern of these materials is their maximum service temperature, as this determines the overall efficiency of the reactor. It has been demonstrated that one way to increase this temperature is to homogeneously disperse hard nano-sized oxide particles, such as Y{sub 2}O{sub 3}, into the steel matrix. Oxide dispersion strengthened (ODS) steels produced by mechanical milling and hot isostatic pressing (HIP ) are considered as potential structural materials for fusion reactors. In Europe, efforts have been focused on the ODS-RAFM-9CrW steel EUROFER. These ODS steels show good tensile and creep properties, acceptable ductility, but poor impact properties. Microstructural characterization of real steels, especially of the structures of oxide/steel matrix interfaces which play an important role in the performance of the material, is a difficult task. In the present work we have fabricated and characterised a simpler model ODS system based on a Fe-Cr binary alloy, in the belief that this will help us better to understand complex ODS-RAFM steels. Two Fe-12wt% Cr batches, one containing 0.3 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3} free have been produced by milling plus compaction by HIP. These materials are being characterized by X-ray diffraction, electron microscopy and atom probe field ion microscopy. Results will be compared with those obtained for ODS-EUROFER produced under the same conditions. (authors)

  17. Precipitates and boundaries interaction in ferritic ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Sallez, Nicolas, E-mail: nicolas.sallez@simap.grenoble-inp.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); Hatzoglou, Constantinos [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Delabrouille, Fredéric [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Sornin, Denis; Chaffron, Laurent [CEA, DEN, Service de Recherches Métallurgiques Appliqué, 91191 Gif-sur-Yvette (France); Blat-Yrieix, Martine [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Radiguet, Bertrand; Pareige, Philippe [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Donnadieu, Patricia; Bréchet, Yves [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France)

    2016-04-15

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels. - Highlights: • To study the microstructural evolution of a ferritic ODS steel during its extrusion, observations have been carried on samples resulting from a voluntarily interrupted extrusion and extruded materials. • A highly heterogeneous precipitate population have been observed. Nanosized coherent precipitates (2–5 nm) on both sides of the grain boundaries despite grain boundary migration after precipitation due to further thermo-mechanical processing as well as coarse precipitates (10–40 nm) alignments are observed on the grain boundaries and within the grains, parallel to the grain boundaries. • Asymmetrical PFZs can be observed around precipitates alignments and grain boundaries. Using TEM with EDX and APT we have been able to ensure that the PFZs are chemically depleted.

  18. Influence of scandium addition on the high-temperature grain size stabilization of oxide-dispersion-strengthened (ODS) ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu, E-mail: lli18@ncsu.edu; Xu, Weizong; Saber, Mostafa; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2015-06-11

    The influence of 1–4 at% Sc addition on the thermal stability of mechanically alloyed ODS ferritic alloy was studied in this work. Sc addition was found to significantly stabilize grain size and microhardness at high temperatures. Grain sizes of samples with 1 and 4 at% Sc was found maintained in the nanoscale range at temperatures up to 1000 °C with hardness maintained at 5.6 and 6.7 GPa, respectively. The detailed microstructure was also investigated from EDS elemental mapping, where nanofeatures [ScTiO] were observed, while nanosized [YTiO] particles were rarely seen. This is probably due to the concentration difference between Sc and Y, leading to the formation of [ScTiO] favoring that of [YTiO]. Precipitation was considered as the major source for the observed high temperature stabilization. In addition, 14YT–Sc alloys without large second phases such as Ti-oxide can exhibit better performance compared to conventional ODS materials.

  19. Microstructure and phase analysis of Zirconia-ODS (Oxide Dispersion Strengthen) alloy sintered by APS with milling time variation

    Science.gov (United States)

    Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi

    2018-03-01

    Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.

  20. Irradiation performance of oxide dispersion strengthened copper alloys to 150 dpa at 415 degree C

    International Nuclear Information System (INIS)

    Edwards, D.J.; Kumar, A.S.; Anderson, K.R.; Stubbins, J.F.; Garner, F.A.; Hamilton, M.L.

    1991-11-01

    Results have been obtained on the post-irradiation properties of various oxide dispersion strengthened copper alloys irradiated from 34 to 150 dpa at 415 degrees C in the Fast Flux Test Facility. The GlidCop alloys strengthened by Al 2 O 3 continue to outperform other alloys with respect to swelling resistance, and retention of both electrical conductivity and yield strength. Several castable ODS alloys and a Cr 2 O 3 -strengthened alloy show increasingly poor resistance to radiation, especially in their swelling behavior. A HfO 2 -strengthened alloy retains most of its strength and its electrical conductivity reaches a constant level after 50 dpa, but it exhibits a higher residual radioactivity

  1. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...

  2. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    Science.gov (United States)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the

  3. High temperature oxidation and corrosion behavior of Ni-base superalloy in He environment

    International Nuclear Information System (INIS)

    Lee, Gyoeng Geun; Park, Ji Yeon; Jung, Su jin

    2010-11-01

    Ni-base superalloy is considered as a IHX (Intermediate Heat Exchanger) material for VHTR (Very High Temperature Gas-Cooled Reactor). The helium environment in VHTR contains small amounts of impure gases, which cause oxidation, carburization, and decarburization. In this report, we conducted the literature survey about the high temperature behavior of Ni-base superalloys in air and He environments. The basic information of Ni-base superalloy and the basic metal-oxidation theory were briefly stated. The He effect on the corrosion of Ni-base superalloy was also summarized. This works would provide a brief suggestion for the next research topic for the application of Ni-base superalloy to VHTR

  4. Synthesis and Characterization of Oxide Dispersion Strengthened Ferritic Steel via a Sol-Gel Route

    International Nuclear Information System (INIS)

    Sun Qinxing; Zhang Tao; Wang Xianping; Fang Qianfeng; Hu Jing; Liu Changsong

    2012-01-01

    Nanocrystalline oxide dispersion strengthened (ODS) ferritic steel powders with nominal composition of Fe-14Cr-3W-0.3Ti-0.4Y 2 O 3 are synthesized using sol-gel method and hydrogen reduction. At low reduction temperature the impurity phase of CrO is detected. At higher reduction temperature the impurity phase is Cr 2 O 3 which eventually disappears with increasing reduction time. A pure ODS ferritic steel phase is obtained after reducing the sol-gel resultant products at 1200°C for 3 h. The HRTEM and EDS mapping indicate that the Y 2 O 3 particles with a size of about 15 nm are homogenously dispersed in the alloy matrix. The bulk ODS ferritic steel samples prepared from such powders exhibit good mechanical performance with an ultimate tensile stress of 960 MPa.

  5. When do oxide precipitates form during consolidation of oxide dispersion strengthened steels?

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A., E-mail: alexis.deschamps@grenoble-inp.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); De Geuser, F. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Malaplate, J.; Sornin, D. [DEN, DANS, DMN, Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, 91191 Gif-Sur-Yvette (France)

    2016-12-15

    The processing of oxide dispersion strengthened (ODS) steels involves ball milling, where the oxide forming species are driven in solid solution. Precipitation of the nanometre-scale oxides occurs during subsequent annealing and consolidation. This paper reports in-situ Small-Angle X-ray Scattering measurements of the formation of these precipitates during heating of cold-compressed as-milled powders. Clusters are already initially present, and precipitation starts at 300 °C. The maximum precipitate density is achieved at 600 °C, followed by very slow coarsening at higher temperature. These results open the way to understand the coupled evolution of precipitation and crystalline defects during heating and consolidation of ODS steels.

  6. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  7. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    Science.gov (United States)

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  8. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  9. Fracture Resistances of Y_2O_3 Particle Dispersion Strengthened 9Cr Steel at Room Temperature and High Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji Hyun; Kang, Suk Hoon; Lee, Yongbok; Kim, Sung Soo

    2012-01-01

    The fracture resistance and tensile properties of Y_2O_3 oxide dispersion strengthened steel containing 9 wt% Cr (9Cr-ODS) were measured at various temperatures up to 700°C. The fracture characteristics were compared with those of commercial E911 ferritic/martensitic steel. The strength of 9Cr-ODS was at least 30% higher than that of E911 steel at the test temperatures below 500°C. The strength difference between the two materials was almost diminished at 700°C. 9Cr-ODS showed cleavage fracture behavior at room temperature and unstable crack growth behaviors at 300°C and 500°C. The J-R fracture resistance of 9Cr-ODS was much lower than that of E911 steel at all temperatures. It was deduced that the coarse Cr_2O_3 particles that were formed during the alloying process provided the crack initiation sites of cleavage fracture in 9Cr-ODS.

  10. Super ODS steels R and D for fuel cladding of next generation nuclear systems. 4) Mechanical properties at elevated temperatures

    International Nuclear Information System (INIS)

    Furukawa, Tomohiro; Ohtsuka, Satoshi; Inoue, Masaki; Okuda, Takanari; Abe, Fujio; Ohnuki, Somei; Fujisawa, Toshiharu; Kimura, Akihiko

    2009-01-01

    As fuel cladding material for lead bismuth-cooled fast reactors and supercritical pressurized water-cooled fast reactors, our research group has been developing highly corrosion-resistant oxide dispersion strengthened ferritic steels with superior high-temperature strength. In this study, the mechanical properties of super ODS steel candidates at elevated temperature have been evaluated. Tensile tests, creep tests and low cycle fatigue tests were carried out for a total of 21 types of super ODS steel candidates which have a basic chemical composition of Fe-16Cr-4Al-0.1Ti- 0.35Y 2 O 3 , with small variations. The testing temperatures were 700degC (for tensile, creep and low cycle fatigue tests) and 450degC (for tensile test). The major alloying parameters of the candidate materials were the compositions of Cr, Al, W and the minor elements such as Hf, Zr and Ce etc. The addition of the minor elements is considered effective in the control of the formation of the Y-Al complex oxides, which improves high-temperature strength. The addition of Al was very effective for the improvement of corrosion resistance. However, the addition also caused a reduction in high-temperature tensile strength. Among the efforts aimed at increasing high-temperature strength, such as the low-temperature hot-extrusion process, solution strengthening by W and the addition of minor elements, a remarkable improvement of strength was observed in ODS steel with a basic chemical composition of 2W-0.6Hf steel (SOC-14) or 2W-0.6Zr steel (SOC-16). The same behavior was also observed in creep tests, and the creep rupture times of SOC-14 and SOC-16 at 700degC - 100MPa were greater than 10,000 h. The strength was similar to that of no-Al ODS steels. No detrimental effect by the additional elements on low-cycle fatigue strength was observed in this study. These results showed that the addition of Hf/Zr to ODS-Al steels was effective in improving high-temperature strength. (author)

  11. A handbook of statistical graphics using SAS ODS

    CERN Document Server

    Der, Geoff

    2014-01-01

    An Introduction to Graphics: Good Graphics, Bad Graphics, Catastrophic Graphics and Statistical GraphicsThe Challenger DisasterGraphical DisplaysA Little History and Some Early Graphical DisplaysGraphical DeceptionAn Introduction to ODS GraphicsGenerating ODS GraphsODS DestinationsStatistical Graphics ProceduresODS Graphs from Statistical ProceduresControlling ODS GraphicsControlling Labelling in GraphsODS Graphics EditorGraphs for Displaying the Characteristics of Univariate Data: Horse Racing, Mortality Rates, Forearm Lengths, Survival Times and Geyser EruptionsIntroductionPie Chart, Bar Cha

  12. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  13. Effects of Mn addition on microstructures and mechanical properties of 10Cr ODS ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic (FM) steels are very attractive for the structural materials of fast fission reactors such as a sodium cooled fast reactor (SFR) owing to their excellent irradiation resistance to a void swelling, but are known to reveal an abrupt loss of their creep and tensile strengths at temperatures above 600 .deg. C. Accordingly, high temperature strength should be considerably improved for an application of the FM steel to the structural materials of SFR. Oxide dispersion strengthened (ODS) FM steels are considered to be promising candidate materials for high- temperature components operating in severe environments such as nuclear fusion and fission systems due to their excellent high temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in the ferritic/martensitic matrix.. To develop an advanced ODS steel for core structural materials for next generation nuclear reactor system applications, it is important to optimize its compositions to improve the high temperature strength and radiation resistance. This study investigates effects of Mn addition on microstructures and mechanical properties of 10Cr ODS FM steel. For this, two 10 Cr ODS FM steels were prepared by mechanical alloying (MA), hot isostatic pressing (HIP), and hot rolling process. Tensile tests were carried out at room temperature and 700 .deg. C to evaluate the influences of the Mn element on the mechanical properties. The microstructures were observed using SEM, electron back-scatter diffraction (EBSD) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS). In the present study, the effects of Mn addition on the microstructure and mechanical properties of ODS FM steels were investigated. The ODS FM steels were manufactured by the MA, HIP and hot-rolling processes

  14. Structural characterization of degradation of ODS composite using SEM and XRM techniques

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2017-07-01

    Full Text Available The structural characteristics and mechanisms of corrosion and wear of oxide dispersion strengthened stainless steel composite were investigated. Insitu synchrotron x-ray tomography was used as experimental technique for degradation analysis from the corrosion and tribology studies. Corrosion study was carried out using potential dynamic techniques while the tribology experiments were conducted using a tribometer with ball on disc method. The x-ray micro tomography data gave chronological description of crack initiation and propagation in 3D and revealed that pitting did not result from the oxide inclusion. The results also revealed the surface imaging capacity of SEM and XRM’s capability for imaging internal structures. Taber index measurement was used as a complimenting tool for tribology measurements. Tribological behaviour of the sinter Oxide Dispersion Strengthened (ODS steel composite depends on both the composition of the composite and the loading system.

  15. Irradiation and inhomogeneity effects on ductility and toughness of (ODS)-7 -13Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2007-01-01

    Full text of publication follows: The superimposed effect of irradiation defect and structural inhomogeneity formation on tensile ductility and dynamic toughness of ferritic-martensitic 7-13CrW(Mo)VTa(Nb) and oxide dispersion-strengthened (ODS)-7-13CrWVTa(Ti)- RAFM steels has been examined by work hardening and local stress/strain-induced ductile fracture models. Structural inhomogeneities which strongly promoting plastic instability and localized flow might be formed by the applied fabrication process, high dose irradiation and additionally further during deformation by enhanced local dislocation generation around fine particles or due to slip band formation with localized heating at high impact strain rates ε'. The work hardening model takes into account superimposed dislocation multiplication from stored dislocations, dispersions and also grain boundaries as well as annihilation by cross-slip. Analytical relations have been deduced from the model describing uniform ductility and ductile upper shelf energy (USE) observed from Charpy-impact testes. Especially, the influence of different irradiation defects like atomic clusters, dislocation loops and coherent chromium-rich α'- precipitates have been considered together with effects from strain rate as well as irradiation (TI) and test temperature TT. Strengthening by clusters and more pronounced by dislocation loops formed at higher TI>250 deg. C reduces uniform ductility and also distinctly stronger dynamic toughness USE. A superimposed hardening by the α'- formation in higher Cr containing 9-13Cr steels strongly reduces toughness assisted by a combined grain-boundary embrittlement with reduction of the ductile fracture stress. But that improves work hardening and uniform ductility as observed particularly due to nano-scale Y 2 O 3 - dispersions in ODS-RAFM steels. For ODS- steels additionally the strength-induced reduction of toughness is diminished by a combined microstructural-induced increase of the ductile

  16. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: z.oksiuta@pb.edu.pl [Bialystok Technical University, Mechanical Department, Wiejska 45c, 15-351 Bialystok (Poland); Ozieblo, A.; Perkowski, K.; Osuchowski, M. [Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Lewandowska, M. [Warsaw University of Technology, Woloska 141, 02-504 Warsaw (Poland)

    2014-02-15

    Highlights: • The HIPping parameters of the 14Cr–2W–0.3Ti–0.3Y{sub 2}O{sub 3} ODS steel powder were investigated. • The density and microstructure of the tested specimens after HIPping were studied. • The mechanical properties, high temperature tensile tests, were performed. • Residual porosity was observed in all tested specimens. • HIPping pressure has negligible influence on the strength of the ODS steel however improves material ductility. - Abstract: An oxide dispersion strengthened ferritic steel with a nominal composition of Fe–14Cr–2W–0.3Ti–0.3Y{sub 2}O{sub 3} (in wt.%) was consolidated by hot isostatic pressing at 1150 °C under various pressures in the range of 185–300 MPa for 3 h. The microstructure, microhardness and high temperature tensile properties of the steel were investigated. With increasing compaction pressure the density of specimens also increased, however OM and SEM observations revealed residual porosity in all tested specimens and similar ferritic microstructure with bimodal-like grains and numerous of large oxide particles, located at the grain boundaries. Mechanical testing revealed that compaction pressure has negligible influence on the hardness and tensile strength of the ODS steel, however improves the material ductility.

  17. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Ozieblo, A.; Perkowski, K.; Osuchowski, M.; Lewandowska, M.

    2014-01-01

    Highlights: • The HIPping parameters of the 14Cr–2W–0.3Ti–0.3Y 2 O 3 ODS steel powder were investigated. • The density and microstructure of the tested specimens after HIPping were studied. • The mechanical properties, high temperature tensile tests, were performed. • Residual porosity was observed in all tested specimens. • HIPping pressure has negligible influence on the strength of the ODS steel however improves material ductility. - Abstract: An oxide dispersion strengthened ferritic steel with a nominal composition of Fe–14Cr–2W–0.3Ti–0.3Y 2 O 3 (in wt.%) was consolidated by hot isostatic pressing at 1150 °C under various pressures in the range of 185–300 MPa for 3 h. The microstructure, microhardness and high temperature tensile properties of the steel were investigated. With increasing compaction pressure the density of specimens also increased, however OM and SEM observations revealed residual porosity in all tested specimens and similar ferritic microstructure with bimodal-like grains and numerous of large oxide particles, located at the grain boundaries. Mechanical testing revealed that compaction pressure has negligible influence on the hardness and tensile strength of the ODS steel, however improves the material ductility

  18. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of RAF ODS steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Kurzydlowski, K.J.; Baluc, N.

    2009-01-01

    Argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti oxide dispersion strengthened (ODS) ferritic steel powder was mechanically alloyed with 0.3Y2O3 (wt.%) nano-particles in attritor ball mill and consolidated by hot isostatic pressing (HIP) at 1150 deg. C under pressure of 200 MPa for 3 hrs. To improve mechanical properties of as HIPped ODS ingots the material was undergone further thermo-mechanical treatment (TMT), namely: hot rolling (HR) at 850 deg. C or high speed hot extrusion (HSHE) at 850 deg. C. After TMT both materials were annealed at 1050 deg. C for 1 h in vacuum. Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment exhibited elongated in a longitudinal direction grains with an average size of 75 μm. However, an equiaxed, smaller than 500 nm grains were also found in the microstructure of both materials. Different size and morphology of oxides particles were also observed. Bigger, about 150 nm Ti-Al-O particles were usually located at grain boundaries whereas Y-Ti-O nanoclusters of about 5 nm were uniformly distributed in ODS steel matrix. The Charpy impact tests revealed significantly better about 90% (5.8 J) upper shelf energy (USE) of material after HSHE but ductile to brittle transition temperature (DBTT) of both alloys was unsatisfactory. As-HR ODS steel has shown DBTT of about 55 deg. C whereas HSHE ODS steel has about 75 deg. C. This relatively high values of transition temperature were probably caused by oxides particles present at grain boundaries of the ODS alloys which decreased fracture properties of the ODS steels. High temperature tensile properties of both ODS alloys are found to be satisfactory in full range of the testing temperature from 23 up to 750 deg. C. However, about 15% better UTS and YS0.2 (1350 MPa and 1285 MPa, respectively) as well as ductility were measured in the case of the as-HSHE ODS steel. These results indicates that HSHE process of the ODS steel can be considered as more

  19. Evaluation of feasibility of tungsten/oxide dispersion strengthened steel bonding with vanadium insert

    International Nuclear Information System (INIS)

    Noto, Hiroyuki; Kimura, Akihiko; Kurishita, Hiroaki; Matsuo, Satoru; Nogami, Shuhei

    2013-01-01

    A diffusion bonding (DB) technique to reduce thermal expansion coefficient mismatch between tungsten (W) and oxide dispersion strengthened ferritic steel (ODS-FS) was developed by applying a vanadium (V) alloy as an insert material. In order to suppress σ phase precipitation at the interface, DB of ODS-FS and V-4Cr-4Ti was carried out by introducing a Ti insert as a diffusion barrier between V-4Cr-4Ti and ODS-FS, and examined feasibility of W/V/Ti/ODS-FS joint for application to fusion reactor components by comparing the three-point bending strength and microstructure between the joints with and without a Ti diffusion barrier layer. It is shown that the fracture strength of the joint without a Ti insert was decreased by 25% after aging at 700°C for 100 h, but that with a Ti insert shows no change after the aging treatment up to 1000 h. The result indicates that the introduction of a Ti insert leads to the prevention of the formation of σ phase during aging and resultant control of the degradation of the bonding strength. (author)

  20. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  1. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, R. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: rainer.lindau@imf.fzk.de; Moeslang, A. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Rieth, M. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Klimiankou, M. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Materna-Morris, E. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Alamo, A. [CEA-Saclay, SRMA/SMPX, 91191 Gif-sur-Yvette Cedex (France); Tavassoli, A.-A. F. [CEA-Saclay, SRMA/SMPX, 91191 Gif-sur-Yvette Cedex (France); Cayron, C. [CEA-Grenoble, DRT/DTEN/SMP/LS2M, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Lancha, A.-M. [CIEMAT, Avda. Complutense no. 22, 28040 Madrid (Spain); Fernandez, P. [CIEMAT, Avda. Complutense no. 22, 28040 Madrid (Spain); Baluc, N. [CRPP-EPFL, 5232 Villigen PSI (Switzerland); Schaeublin, R. [CRPP-EPFL, 5232 Villigen PSI (Switzerland); Diegele, E. [EFDA Close Support Unit, Boltzmannstr. 2, 85748 Garching (Germany); Filacchioni, G. [ENEA CR Casaccia, Via Anguillarese 301, 00100 S. Maria di Galeria, Rome (Italy); Rensman, J.W. [NRG, MM and I, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands); Schaaf, B. van der [NRG, MM and I, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands); Lucon, E. [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Dietz, W. [MECS, Schoenenborner Weg 15, 51789 Lindlar (Germany)

    2005-11-15

    Within the European Union, the two major breeding blanket concepts presently being developed are the helium cooled pebble bed (HCPB), and the helium cooled lithium lead (HCLL) blankets. For both concepts, different conceptual designs are being discussed with temperature windows in the range 250-550 deg. C for conservative approaches based on reduced activation ferritic-martensitic (RAFM) steels, and in the range 250-650 deg. C for more advanced versions, taking into account oxide dispersion strengthened (ODS) steels. As a final result of a systematic development of RAFM-steels in Europe, the 9% CrWVTa alloy EUROFER was specified and produced in an industrial scale with a variety of product forms. A large characterisation program is being performed including irradiation in materials test reactors between 60 and 450 deg. C ({<=}15 dpa), and in a fast breeder reactor at 330 deg. C up to 30 dpa. EUROFER is resistant to high temperature ageing, and the existing creep-rupture data ({approx}30,000 h, 450-600 deg. C) indicate long-term stability and predictability. The ODS variant of EUROFER shows superior tensile and creep properties compared to EUROFER. Applying a new production route has diminished the problem of lower ductility and inferior impact properties. A reliable joining technique for ODS and RAFM steels employing diffusion welding was successfully developed.

  2. Tensile anisotropy and creep properties of a Fe-14CrWTi ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Steckmeyer, A., E-mail: antonin.steckmeyer@cea.fr [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France); Rodrigo, Vargas Hideroa [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France); Gentzbittel, J.M. [CEA Grenoble, DRT/LITEN/DTBH/LCTA, 38054 Grenoble Cedex 9 (France); Rabeau, V.; Fournier, B. [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France)

    2012-07-15

    A Fe-14Cr oxide dispersion strengthened (ODS) ferritic steel is studied as a potential material for cladding tube application for the next generation of fast-breeder nuclear reactors. Tensile specimens machined out from a hot extruded round bar in three different orientations are used to evaluate the mechanical anisotropy of this steel for temperatures in the range 20-750 Degree-Sign C. Its anisotropy is discussed both in terms of mechanical strength and fracture mode. At high temperatures (HTs), above 500 Degree-Sign C, the longitudinal direction appears to be the most ductile and most resistant direction. Longitudinal creep tests between 650 Degree-Sign C and 900 Degree-Sign C were also carried out. They show this ODS steel has a high HT creep lifetime and a low creep failure strain. Intergranular cracks aligned along the loading axis were observed on fractured creep specimens. They reveal a particular weakness of prior particle boundaries and suggest to modify the elaboration process through mechanical alloying and hot extrusion.

  3. Positron and nanoindentation study of helium implanted high chromium ODS steels

    Science.gov (United States)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  4. Rafting in single crystal nickel-base superalloys – An overview

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Page 1 ... aircraft engines as well as land-based power generation applications. Microstruc- ture and high temperature mechanical properties are the major factors controlling the performance of SX ... Single crystal (SX) superalloys are a group of nickel-base superalloys. They exhibit superior high temperatur mechanical ...

  5. Erosion–corrosion behaviour of Ni-based superalloy Superni-75 in ...

    Indian Academy of Sciences (India)

    microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro ... gas turbines and they have designated this alloy as superalloy Superni-75. ... The nickel-based superalloy Superni-75 (19·5Cr-3Fe-0·3Ti-0·1C- Balance Ni) was ...

  6. The Knossos Od Series. An Epigraphical Study

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech

    This study is an epigraphical investigation of the Linear B records from the West Wing in the palace of Knossos. Its focus is the group of 61 unclassified Od tablets with the ideogram for wool. The author presents a new classification of the Od tablets by identifying new sets, and by integrating...... unclassified Od tablets into existing Od sets or into other series recording wool, such as the two well known and thoroughly researched "bureaux", the textile and the sheep administration. Recent work by FIRTH on find-places has provided new insights for this study. In the present study, 29 prefix changes...... are suggested. Only few unclassified Od tablets, however, can be associated with the initial parts of textile production in which scribes 103 and 113 set targets and manage the production. Rather, many unclassified Od tablets belong to the final stages of the textile production, that is, the finishing...

  7. Development of a Refractory High Entropy Superalloy (Postprint)

    Science.gov (United States)

    2016-03-17

    hardened with HfC precipitates [2], Co-Re- or Co-Al-W-based alloys [3] or two-phase ( FCC + L12) refractory superalloys based on platinum group metals...Ni-based superalloys consisting of cuboids with the ordered L12 structure embedded in an FCC solid-solution matrix. Based on this microstructural...and 5). A comparison of the average atomic radii with the measured lattice parameters allows us to conclude that the disordered BCC phase forming

  8. Microstructural characterization of ODS ferritic steels at different processing stages

    Energy Technology Data Exchange (ETDEWEB)

    Gil, E., E-mail: egil@ceit.es; Ordás, N.; García-Rosales, C.; Iturriza, I., E-mail: iiturriza@ceit.es

    2015-10-15

    Highlights: • ODS ferritic stainless steel produced by new route without mechanical alloying. • Fully dense ferritic stainless steels containing Y and Ti were obtained by HIPping. • Y and Ti-rich precipitates prevent grain growth during heat treatment up to 1320 °C. • HIPping at 1220 °C dissolves the metastable oxides on PPBs. - Abstract: Nanostructured Oxide Dispersion Strengthened Reduced Activation Ferritic Stainless Steels (ODS RAF) are promising structural materials for fusion reactors, due to their ultrafine microstructure and the presence of a dispersion of Y–Ti–O nanoclusters that provide excellent creep strength at high temperatures (up to 750 °C). The traditional powder metallurgical route to produce these steels is based on Gas Atomization (GA) + Mechanical Alloying (MA) + HIP + ThermoMechanical Treatments (TMTs). Recently, alternative methods have arisen to avoid the MA step. In line with this new approach, ferritic stainless steel powders were produced by gas atomization and HIPped, after adjusting their oxygen, Y and Ti contents to form Y–Ti–O nanoclusters during subsequent heat treatments. The microstructure of as-HIPped steels mainly consists of ferrite grains, Y–Ti precipitates, carbides and oxides on Prior Particle Boundaries (PPBs). Post-HIP heat treatments performed at high temperatures (1270 and 1300 °C) evaluated the feasibility of achieving a complete dissolution of the oxides on PPBs and a precipitation of ultrafine Ti- and Y-rich oxides in the Fe14Cr2W matrix. FEG-SEM with extensive EDS analysis was used to characterize the microstructure of the atomized powders and the ODS-RAF specimens after HIP consolidation and post-HIP heat treatments. A deeper characterization of atomized powder was carried out by TEM.

  9. Microstructural evolution in friction stir welding of nanostructured ODS alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Tatlock, G.J.; Jones, A.R.

    2010-01-01

    Nanostructured oxide dispersion strengthened (ODS) Fe-based alloys manufactured by mechanical alloying (MA) are generally considered to be promising candidate materials for high-temperature applications up to at least 1100 o C because of their excellent creep strength and good oxidation resistance. However, a key issue with these alloys is the difficulty in using fusion welding techniques to join components due to oxide particle agglomeration and loss in the weld zone and the disruption and discontinuity in the grain structure introduced at the bond. In this study, the evolution of microstructure has been comprehensively studied in friction stir welds in a ferritic ODS alloy. Initially, electron backscattering diffraction (EBSD) was used to analyze the grain orientation, the grain boundary geometries and recrystallization behaviour. It suggested that deformation heterogeneities were introduced during the friction stirring process which facilitated the onset of recrystallization. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to observe the effects of the friction stir welding (FSW) process on the grain structure and the distribution of Y 2 O 3 and other particles in the metal substrates in the FSW and adjacent regions, after the alloys had been recrystallized at temperatures up to 1380 o C for 1 h in air. The results show that fine-equiaxed grains and a uniform distribution of oxide particles were present in the friction stirred region but that the grain boundaries in the parent metal were pinned by particles. Friction stirring appeared to release these boundaries and allowed secondary recrystallization to occur after further heat treatment. The FSW process appears to be a promising technique for joining ferritic ODS alloys in the form of sheet and tube.

  10. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment

    International Nuclear Information System (INIS)

    Lambard, V.

    2000-01-01

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  11. Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy

    Science.gov (United States)

    Jarrett, R. N.; Tien, J. K.

    1982-01-01

    The effect of cobalt on the basic mechanical properties and microstructure of wrought nickel-base superalloys has been investigated experimentally by systematically replacing cobalt by nickel in Udimet 700 (17 wt% Co) commonly used in gas turbine (jet engine) applications. It is shown that the room temperature tensile yield strength and tensile strength only slightly decrease in fine-grained (disk) alloys and are basically unaffected in coarse-grained (blading) alloys as cobalt is removed. Creep and stress rupture resistances at 760 C are found to be unaffected by cobalt level in the blading alloys and decrease sharply only when the cobalt level is reduced below 8 vol% in the disk alloys. The effect of cobalt is explained in terms of gamma prime strengthening kinetics.

  12. Creep properties of heat-resistant superalloys for nuclear plants in helium

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Satoh, Keisuke; Honda, Yoshio; Matsuda, Shozo; Murase, Hirokazu

    1979-01-01

    Creep properties of candidate superalloys for VHTR components in a helium environment at both temperatures of 800 0 C and 900 0 C were compared with those of the same alloys in the atmospheric condition, and the superalloys were contrasted with each other from the viewpoint of high temperature structural design. At 800 0 C, no significant effect of a helium environment on creep properties of the superalloys is observed. At 900 0 C, however, creep strength of Inconel 617, Incoloy 800 and Incoloy 807 in the helium environment decrease more than in the atmospheric environment. In Hastelloy X and Inconel 625, there is no significant difference between creep strengths in helium and those in the atmospheric condition. Concerning So and St values in helium at 900 0 C, Inconel 617 and Hastelloy X are clearly superior to other superalloys. (author)

  13. Reduced activation ODS ferritic steel - recent development in high speed hot extrusion processing

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Zbigniew [Faculty of Mechanical Engineering, Bialystok Technical University (Poland); Lewandowska, Malgorzata; Kurzydlowski, Krzysztof [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Baluc, Nadine [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Villigen PSI (Switzerland)

    2010-05-15

    The paper presents the microstructure and mechanical properties of an oxide dispersion strengthened (ODS), reduced activation, ferritic steel, namely the Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} alloy, which was fabricated by hot isostatic pressing followed by high speed hydrostatic extrusion (HSHE) and heat treatment HT at 1050 C. Transmission electron microscopy (TEM) observations revealed significant differences in the grain size and dislocation density between the as-HIPped and as-HSHE materials. It was also found that the microstructure of the steel is stable after HT. The HSHE process improves significantly the tensile and Charpy impact properties of the as-HIPped steel. The ultimate tensile strength at room temperature increases from 950 up to 1350 MPa, while the upper shelf energy increases from 3.0 up to 6.0 J. However, the ductile-to-brittle transition temperature (DBTT) remains relatively high (about 75 C).These results indicate that HSHE is a promising method for achieving grain refinement and thus improving the mechanical properties of ODS ferritic steels. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Development of Wrought Superalloy in China

    Directory of Open Access Journals (Sweden)

    DU Jinhui

    2016-06-01

    Full Text Available Wrought superalloy development in China was reviewed in recent ten years. The achievement of basic research and development of industrial manufacture technologies were systematically described from the aspects of new alloys, new technologies of hot deformation. New alloys include: new disc materials 718Plus, GH4720Li and GH4065 alloy, combustion chamber alloy GH3230, and GH4706 alloy for gas turbine engines. New technologies include: ERS-CDS new technology of easy segregation materials, multi upsetting-drawing for improving the microstructure uniformity of bars, slow cooling and multi-cycle thermomechanical treatment for increasing hot plasticity of hard-to-work alloys. Finally, the further development of wrought superalloys was prospected.

  15. Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results

    International Nuclear Information System (INIS)

    Ghosh, G.; Olson, G.B.

    2007-01-01

    An optimal integration of modern computational tools and efficient experimentation is presented for the accelerated design of Nb-based superalloys. Integrated within a systems engineering framework, we have used ab initio methods along with alloy theory tools to predict phase stability of solid solutions and intermetallics to accelerate assessment of thermodynamic and kinetic databases enabling comprehensive predictive design of multicomponent multiphase microstructures as dynamic systems. Such an approach is also applicable for the accelerated design and development of other high performance materials. Based on established principles underlying Ni-based superalloys, the central microstructural concept is a precipitation strengthened system in which coherent cubic aluminide phase(s) provide both creep strengthening and a source of Al for Al 2 O 3 passivation enabled by a Nb-based alloy matrix with required ductile-to-brittle transition temperature, atomic transport kinetics and oxygen solubility behaviors. Ultrasoft and PAW pseudopotentials, as implemented in VASP, are used to calculate total energy, density of states and bonding charge densities of aluminides with B2 and L2 1 structures relevant to this research. Characterization of prototype alloys by transmission and analytical electron microscopy demonstrates the precipitation of B2 or L2 1 aluminide in a (Nb) matrix. Employing Thermo-Calc and DICTRA software systems, thermodynamic and kinetic databases are developed for substitutional alloying elements and interstitial oxygen to enhance the diffusivity ratio of Al to O for promotion of Al 2 O 3 passivation. However, the oxidation study of a Nb-Hf-Al alloy, with enhanced solubility of Al in (Nb) than in binary Nb-Al alloys, at 1300 deg. C shows the presence of a mixed oxide layer of NbAlO 4 and HfO 2 exhibiting parabolic growth

  16. Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, H., E-mail: huwdawson@gmail.com [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Serrano, M.; Hernandez, R. [Structural Materials Division, Technology Department, CIEMAT, Avda de la Complutense 40, 28040 Madrid (Spain); Cater, S. [Friction and Forge Processes Department, Joining Technologies Group, TWI Technology Centre (Yorkshire), Advanced Manufacturing Park, Wallis Way, Catcliffe, Rotherham S60 5TZ (United Kingdom); Jimenez-Melero, E. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-05-02

    We have assessed the microstructure and the temperature-dependent mechanical behaviour of five bead-on-plate friction stir welds of Oxide Dispersion Strengthened (ODS) steel, produced using systematic changes to the tool rotation and traverse speed. Friction stir welding can potentially retain the fine dispersion of nanoparticles, and therefore also the high-temperature strength and radiation damage resistance of these materials. Tensile testing was carried out on the MA956 base material at a range of temperatures, from room temperature up to 750 °C. The mechanical properties of the welds were investigated via tensile testing at room temperature and at 500 °C, together with micro-hardness testing. The welds exhibited similar strength and ductility to the base material at both testing temperatures as welding caused a partial loss of particle strengthening, alongside an increase in grain boundary strengthening due to a greatly refined grain size in the stir zones. The micro-hardness data revealed a trend of increasing hardness with increasing tool traverse speed or decreasing rotation speed. This was attributed to the smaller grain size and lower nanoparticle number density in the welds created with these parameters. At 500 °C, the yield stress and ultimate tensile stress of the base material and the welds decreased, due to a progressive reduction in both the Orowan-type particle strengthening and the grain boundary strengthening.

  17. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  18. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  19. Strengthening of Zircaloy-4 using Oxide Particles by Laser Beam Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Oxide particles such as Y{sub 2}O{sub 3} and CeO{sub 2} were dispersed homogeneously in a Zircaloy-4 plate surface using an LBS method. From the tensile test at 380 .deg. C, the strength of laser ODS alloying on the Zircaloy-4 sheet was increased more than 50% when compared to the initial state of the sheet, although the ODS alloyed layer was less than 20% of the specimen thickness. This technology showed a good opportunity to increase the strength without major changes in the substrates of zirconium-based alloys. Accident tolerant fuel (ATF) cladding is being developed globally after the Fukushima accident with the demands for the nuclear fuel having higher safety at normal operation conditions as well as even in a severe accident conditions. Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures.

  20. The dynamics of the reaction of 16O(1D)+D218O→16OD+18OD

    International Nuclear Information System (INIS)

    Guillory, W.A.; Gericke, K.H.; Comes, F.J.

    1983-01-01

    The detailed energy partitioning in the reaction of a metastable oxygen atom O( 1 D) with D 2 O proceeding to two OD molecules has been studied. In order to distinguish the product state distribution between the two chemically identical product molecules OD, the oxygen atom in the heavy water molecule was labeled isotopically. The use of spectroscopic methods allows a complete analysis of the products' state distribution including such fine details as the distribution of the different #betta# components and of the electron spin. The vibrational energy is almost exclusively channeled into the new ( 16 OD) bond, whereas the original ( 18 OD) bond is produced (>90%) in the ground vibrational state. Both OD radicals show a broad rotational excitation and the rotational energy is equally partitioned among the two bonds. The energy distribution over the rovibrational levels strongly reflects the influence of coincident product molecules emerging from this chemical reaction. The reaction is very direct and must proceed on a time scale which does not allow for efficient energy transfer into all the available phase space

  1. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route

    International Nuclear Information System (INIS)

    Guo Lina; Jia Chengchang; Hu Benfu; Li Huiying

    2010-01-01

    A reduced activation oxide dispersion strengthened (ODS) ferritic steel with nominal composition of Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y 2 O 3 (designated 12Cr-ODS) was produced by using EDTA-citrate complex method to synthesize and add Y 2 O 3 particles to an argon atomized steel powder, followed by hot isostatic pressing at 1160 deg. C for 3 h under the pressure of 130 MPa, forging at 1150 deg. C, and heat treatment at 1050 deg. C for 2 h. The microstructure, tensile, and Charpy impact properties of the 12Cr-ODS steel were investigated. Transmission electron microscopy studies indicate that the 12Cr-ODS steel exhibits the characteristic ferritic structure containing few dislocations. Tensile characterization has shown that the 12Cr-ODS steel has superior tensile strength accompanied by good elongation at room temperature and 550 deg. C. The material exhibits very attractive Charpy impact properties with upper shelf energy of 22 J and a ductile-to-brittle transition temperature (DBTT) of about -15 deg. C. The formation of small, equiaxed grains and fine dispersion of oxide particles are the main reasons for the good compromise between tensile strength and impact properties.

  2. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route

    Energy Technology Data Exchange (ETDEWEB)

    Guo Lina, E-mail: guoln702@yahoo.com.cn [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jia Chengchang; Hu Benfu; Li Huiying [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-07-25

    A reduced activation oxide dispersion strengthened (ODS) ferritic steel with nominal composition of Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y{sub 2}O{sub 3} (designated 12Cr-ODS) was produced by using EDTA-citrate complex method to synthesize and add Y{sub 2}O{sub 3} particles to an argon atomized steel powder, followed by hot isostatic pressing at 1160 deg. C for 3 h under the pressure of 130 MPa, forging at 1150 deg. C, and heat treatment at 1050 deg. C for 2 h. The microstructure, tensile, and Charpy impact properties of the 12Cr-ODS steel were investigated. Transmission electron microscopy studies indicate that the 12Cr-ODS steel exhibits the characteristic ferritic structure containing few dislocations. Tensile characterization has shown that the 12Cr-ODS steel has superior tensile strength accompanied by good elongation at room temperature and 550 deg. C. The material exhibits very attractive Charpy impact properties with upper shelf energy of 22 J and a ductile-to-brittle transition temperature (DBTT) of about -15 deg. C. The formation of small, equiaxed grains and fine dispersion of oxide particles are the main reasons for the good compromise between tensile strength and impact properties.

  3. Study of radiation damage in ODS steels by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Bartošová, I; Bouhaddane, A; Slugeň, V; Dománková, M; Wall, D; Selim, F A

    2016-01-01

    Microstructure of various oxide-dispersion-strengthened (ODS) steels with 15% chromium content was studied in term of vacancy defects presence and their accumulation after defined irradiation treatment, respectively. Studied materials originated from Kyoto University and studied via IAEA collaborative project. Samples were characterized “as received” by positron annihilation lifetime spectroscopy and their microstructure was examined by transmission electron microscopy as well. Samples were afterwards irradiated in Washington State University Nuclear Radiation Center via a strong gamma source (6TBq). Damage induced by gamma irradiation was evaluated by positron lifetime measurements in emphasis on defect accumulation in the materials. We have demonstrated strong defect production induced by gamma irradiation which results from positron measurement data. (paper)

  4. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    Energy Technology Data Exchange (ETDEWEB)

    Indrajit Charit; Megan Frary; Darryl Butt; K.L. Murty; Larry Zirker; James Cole; Mitchell Meyer; Rajiv S. Mishra; Mark Woltz

    2011-03-31

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and lead to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.

  5. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    International Nuclear Information System (INIS)

    Charit, Indrajit; Frary, Megan; Butt, Darryl; Murty, K.L.; Zirker, Larry; Cole, James; Meyer, Mitchell; Mishra, Rajiv S.; Woltz, Mark

    2011-01-01

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and lead to the agglomeration and non-uniform distribution of the needed oxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R and D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.

  6. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in ODS Steel MA956

    Science.gov (United States)

    2013-06-01

    dispersion strengthened - Eurofer steel ,” J. Nucl. Mater., vol. 416 , pp. 2229, Sep 1, 2011. [10] H. J. K. Lemmen and K. J. Sudmeijer, I, “Laser beam...Reynolds and W. Tang, “Structure, properties, and residual stress of 304L stainless steel friction stir welds,” Scr. Mater., vol. 48, pp. 12891294...OF RESIDUAL STRESS AS A FUNCTION OF FRICTION STIR WELDING PARAMETERS IN ODS STEEL MA956 by Martin S. Bennett June 2013 Thesis Advisor

  7. Numerical multi-criteria optimization methods for alloy design. Development of new high strength nickel-based superalloys and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Ralf; Mueller, Alexander; Ritter, Nils C.; Singer, Robert F. [Institute of Science and Technology of Metals, Department of Materials Science and Engineering, University of Erlangen (Germany)

    2016-07-01

    A new approach for the design of optimum balanced metallic alloys is presented. It is based on a mathematical multi-criteria optimization method which uses different property models to predict the alloy behavior in dependency of composition. These property models are mostly based on computational thermodynamics (CALPHAD-method). The full composition range of the alloying elements can be considered using these models. In alloy design usually several contradicting goals have to be fulfilled. This is handled by the calculation of so-called Pareto-fronts. The aim of our approach is to guide the experimental research towards new alloy compositions that have a high probability of having very good properties. Consequently the number of required test alloys can be massively reduced. The approach will be demonstrated for the computer-aided design of a new Re-free superalloy with nearly identical creep strength as that of Re-containing superalloys. Our starting point for the design was to maintain the good properties of the gamma prime-phase in well-known alloys like CMSX-4 and to maximize the solid solution strengthening of W and Mo. The presented experimental measurements proof the excellent properties.

  8. Fatigue of superalloys and intermetallics

    International Nuclear Information System (INIS)

    Stoloff, N.S.

    1993-01-01

    The fatigue behavior of intermetallic alloys and their composites is contrasted to that of nickel-base superalloys. The roles of microstructure and slip planarity are emphasized. Obstacles to use of intermetallics under cyclic loading conditions are described and future research directions are suggested

  9. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  10. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  11. Resistance Upset Welding of ODS Steel Fuel Claddings—Evaluation of a Process Parameter Range Based on Metallurgical Observations

    Directory of Open Access Journals (Sweden)

    Fabien Corpace

    2017-08-01

    Full Text Available Resistance upset welding is successfully applied to Oxide Dispersion Strengthened (ODS steel fuel cladding. Due to the strong correlation between the mechanical properties and the microstructure of the ODS steel, this study focuses on the consequences of the welding process on the metallurgical state of the PM2000 ODS steel. A range of process parameters is identified to achieve operative welding. Characterizations of the microstructure are correlated to measurements recorded during the welding process. The thinness of the clad is responsible for a thermal unbalance, leading to a higher temperature reached. Its deformation is important and may lead to a lack of joining between the faying surfaces located on the outer part of the join which can be avoided by increasing the dissipated energy or by limiting the clad stick-out. The deformation and the temperature reached trigger a recrystallization phenomenon in the welded area, usually combined with a modification of the yttrium dispersion, i.e., oxide dispersion, which can damage the long-life resistance of the fuel cladding. The process parameters are optimized to limit the deformation of the clad, preventing the compactness defect and the modification of the nanoscale oxide dispersion.

  12. Plasticity of oxide dispersion strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Zakine, C.; Prioul, C.; Alamo, A.; Francois, D.

    1993-01-01

    Two 13%Cr oxide dispersion strengthened (ODS) ferritic alloys, DT and DY, exhibiting different oxide particle size distribution and a χ phase precipitation were studied. Their tensile properties have been tested from 20 to 700 C. Experimental observations during room temperature tensile tests performed in a scanning electronic microscope have shown that the main damage mechanism consists in microcracking of the χ phase precipitates on grain boundaries. These alloys are high tensile and creep resistant between 500 and 700 C. Their strongly stress-sensitive creep behaviour can be described by usual creep laws and incorporating a threshold stress below which the creep rate is negligible. (orig.)

  13. Evaluation of microstructural parameters of oxide dispersion strengthened steels from X-ray diffraction profiles

    International Nuclear Information System (INIS)

    Vlasenko, Svetlana; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Uglov, Vladimir; Skuratov, Vladimir; O'Connell, Jacques; Neethling, Johannes

    2016-01-01

    The microstructural parameters of oxide dispersion strengthened (ODS) steels from measured diffraction profiles were evaluated using an approach where the complex oxide nanoparticles (Y 2 Ti 2 O 7 and Y 4 Al 2 O 9 ) are modeled as spherical inclusions in the steel matrix with coherent or incoherent boundaries. The proposed method enables processing of diffraction data from materials containing spherical inclusions in addition to straight dislocations, and taking into account broadening due to crystallite size and instrumental effects. The parameters of crystallite size distribution modeled by a lognormal distribution function (the parameters m and σ), the strain anisotropy parameter q, the dislocation density ρ, the dislocation arrangement parameter M, the density of oxide nanoparticles ρ np and the nanoparticle radius r 0 were determined for the ODS steel samples. The results obtained are in good agreement with the results of transmission electron microscopy (TEM). - Highlights: • The microstructural parameters of oxide dispersion strengthened steels were obtained. • The microstructure of irradiated and unirradiated samples was investigated. • Oxide nanoparticles are modeled as spherical inclusions. • We considered the influence of dislocations, inclusions and size effects.

  14. Evaluation of microstructural parameters of oxide dispersion strengthened steels from X-ray diffraction profiles

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, Svetlana, E-mail: svetlana.vlasenko.bsu@gmail.com [Belarusian State University, Nezavisimosti Avenue 4, Minsk (Belarus); Benediktovitch, Andrei [Belarusian State University, Nezavisimosti Avenue 4, Minsk (Belarus); Ulyanenkova, Tatjana [Rigaku Europe SE, Am Hardtwald 11, Ettlingen (Germany); Uglov, Vladimir [Belarusian State University, Nezavisimosti Avenue 4, Minsk (Belarus); Tomsk Polytechnic University, Lenina Avenue 2a, Tomsk (Russian Federation); Skuratov, Vladimir [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russian Federation); O' Connell, Jacques; Neethling, Johannes [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2016-03-15

    The microstructural parameters of oxide dispersion strengthened (ODS) steels from measured diffraction profiles were evaluated using an approach where the complex oxide nanoparticles (Y{sub 2}Ti{sub 2}O{sub 7} and Y{sub 4}Al{sub 2}O{sub 9}) are modeled as spherical inclusions in the steel matrix with coherent or incoherent boundaries. The proposed method enables processing of diffraction data from materials containing spherical inclusions in addition to straight dislocations, and taking into account broadening due to crystallite size and instrumental effects. The parameters of crystallite size distribution modeled by a lognormal distribution function (the parameters m and σ), the strain anisotropy parameter q, the dislocation density ρ, the dislocation arrangement parameter M, the density of oxide nanoparticles ρ{sub np} and the nanoparticle radius r{sub 0} were determined for the ODS steel samples. The results obtained are in good agreement with the results of transmission electron microscopy (TEM). - Highlights: • The microstructural parameters of oxide dispersion strengthened steels were obtained. • The microstructure of irradiated and unirradiated samples was investigated. • Oxide nanoparticles are modeled as spherical inclusions. • We considered the influence of dislocations, inclusions and size effects.

  15. Zinc-induced embrittlement in nickel-base superalloys by simulation and experiment

    Science.gov (United States)

    Otis, Richard; Waje, Mahesh; Lindwall, Greta; Jefferson, Tiffany; Lange, Jeremy; Liu, Zi-Kui

    2017-09-01

    The high cost of Re has driven interest in processes for recovering Re from scrap superalloy parts. In this work thermodynamic modelling is used to study Zn-induced embrittlement of a superalloy and to direct experiments. Treating superalloy powder with Zn vapour reduces the average particle size after milling from approximately ?m to 0.5-10 ?m, vs. ?m for untreated powder. Simulations predict the required treatment time to increase with temperature. Agreement between predictions and experiments suggests that an embrittling liquid forms in less than an hour of Zn vapour treatment between 950-1000 ?C and partial pressures of Zn between 14-34 kPa (2-5 psi).

  16. Friction stir welding of F/M ODS steel plug and F/M steel tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon, E-mail: shkang77@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute (Korea, Republic of); Vasudevan, M. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Noh, Sanghoon; Jin, Hyun Ju; Jang, Jinsung; Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute (Korea, Republic of)

    2016-11-01

    Highlights: • Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. • The curvature and smaller thickness of tube was the major limitation for applying FSW method, it was solved using specially designed jig. • Considerable hardening occurs in the joint because the cooling rate was sufficient to reproduce a martensitic microstructure. • The measured hoop strength of the FSWed joint was 70–90 MPa, the value was at around 70% of the tube. - Abstract: Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. The dimensions of the tube included outer diameter of 7 mm, wall thickness of 0.5 mm. The objective was to find suitable process variables for gaining enough frictional heat from those thin and curved pieces. A specially designed jig was used for stabilization and slow rotation of tube during FSW. Additionally, the plug was designed to overlap the tube. Inconel 718 was used as FSW tool, the diameter was 3.5 mm. The adequate rotation speed of the tool and jig were 1200 rpm and 1.5 rpm, respectively. The joining was successfully accomplished using above combination, showing a good possibility. The hoop stress tests of joint were conducted by blowing Ar gas into the tube, the flow rate of gas was 10 MPa/min. The measured hoop stress was 70–90 MPa, the value was at around 70% of the tube.

  17. Friction stir welding of F/M ODS steel plug and F/M steel tube

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Vasudevan, M.; Noh, Sanghoon; Jin, Hyun Ju; Jang, Jinsung; Kim, Tae Kyu

    2016-01-01

    Highlights: • Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. • The curvature and smaller thickness of tube was the major limitation for applying FSW method, it was solved using specially designed jig. • Considerable hardening occurs in the joint because the cooling rate was sufficient to reproduce a martensitic microstructure. • The measured hoop strength of the FSWed joint was 70–90 MPa, the value was at around 70% of the tube. - Abstract: Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. The dimensions of the tube included outer diameter of 7 mm, wall thickness of 0.5 mm. The objective was to find suitable process variables for gaining enough frictional heat from those thin and curved pieces. A specially designed jig was used for stabilization and slow rotation of tube during FSW. Additionally, the plug was designed to overlap the tube. Inconel 718 was used as FSW tool, the diameter was 3.5 mm. The adequate rotation speed of the tool and jig were 1200 rpm and 1.5 rpm, respectively. The joining was successfully accomplished using above combination, showing a good possibility. The hoop stress tests of joint were conducted by blowing Ar gas into the tube, the flow rate of gas was 10 MPa/min. The measured hoop stress was 70–90 MPa, the value was at around 70% of the tube.

  18. Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Rui [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lu, Zheng, E-mail: luz@atm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Lu, Chenyang; Li, Zhengyuan [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Ding, Xueyong [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    Highlights: • A 9Cr-ODS steel was produced by mechanical alloying and spark plasma sintering. • Bimodal grain size distribution was observed. • Formation mechanism of bimodal grain size distribution was discussed. • The size and number density of nanoscale particles were obtained by SAXS and HRTEM. • The contribution of nano-sized particles to yield strength is dominating. - Abstract: 9Cr oxide dispersion strengthened (ODS) steel was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The nano-sized particles, grain size distribution and mechanical properties of 9Cr-ODS steel sintered at 950 °C were studied by synchrotron radiation small angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), electron backscatter diffraction (EBSD) and tensile experiment. The results showed that bimodal grain size distribution in the matrix is observed, which is attributed to the heterogeneous recrystallization process during the SPS. High-density nano-sized Y{sub 2}Ti{sub 2}O{sub 7} and some large oxides of Cr{sub 2}Mn(Ti)O{sub 4} are formed in 9Cr-ODS steel. The number density and average size of Y{sub 2}Ti{sub 2}O{sub 7} obtained from SAXS are 4.72 × 10{sup 22}/m{sup 3} and 4.4 nm, respectively. The yield strengths of 9Cr-ODS steel fabricated by SPS are compared with the typical 9Cr-ODS steel produced by HIP.

  19. Plasticity of alloys strengthened with nano-precipitation

    International Nuclear Information System (INIS)

    Praud, M.

    2012-01-01

    As part of the development of the new generation of nuclear power plant, especially sodium-cooled fast reactors (SFR), oxide dispersion strengthened (ODS) steels are considered as potential candidates for cladding materials. Their main advantages are their excellent dimensional stability under irradiation, thanks to their body centered cubic structure, and their high thermal creep resistance due to the nano-particles. The aim of this work is to understand the plasticity of such materials through a multiscale approach. First, the microstructure of 9% and 14% Cr ODS steels has been finely characterized. Then, their mechanical behavior has been studied through tensile tests and creep tests. In addition, in situ Transmission Electron Microscopy straining experiments have been carried out to observe the dynamic behavior at a finer scale. This work emphasizes an evolution of the deformation and damage mechanisms with temperature. At room temperature, a mechanism with a strong intragranular contribution is noticed. At high temperature, an increase in the intergranular component has been pointed out. Consequently, it leads to more severe damage. Finally, the hardening role of the precipitates on the mechanical properties and the plasticity has been evaluated thanks to a 'model' material, without precipitate. (author) [fr

  20. ODS steel fabrication: relationships between process, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Couvrat, M.

    2011-01-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for generation IV and fusion nuclear energy systems thanks to their excellent thermal stability, high-temperature creep strength and good irradiation resistance. Their superior properties are attributed both to their nano-structured matrix and to a high density of Y-Ti-O nano-scale clusters (NCs). ODS steels are generally prepared by Mechanical Alloying of a pre-alloyed Fe-Cr-W-Ti powder with Y 2 O 3 powder. A fully dense bar or tube is then produced from this nano-structured powder by the mean of hot extrusion. The aim of this work was to determine the main parameters of the process of hot extrusion and to understand the link between the fabrication process, the microstructure and the mechanical properties. The material microstructure was characterized at each step of the process and bars were extruded with varying hot extrusion parameters so as to identify the impact of these parameters. Temperature then appeared to be the main parameter having a great impact on microstructure and mechanical properties of the extruded material. We then proposed a cartography giving the microstructure versus the process parameters. Based on these results, it is possible to control very accurately the obtained material microstructure and mechanical properties setting the extrusion parameters. (author) [fr

  1. Evolution of Microstructure and Mechanical Properties of Oxide Dispersion Strengthened Steels Made from Water-Atomized Ferritic Powder

    Science.gov (United States)

    Arkhurst, Barton Mensah; Kim, Jeoung Han

    2018-05-01

    Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.

  2. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    Science.gov (United States)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  3. Experimental study and modelling of the high temperature mechanical behavior of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Steckmeyer, A.

    2012-01-01

    The strength of metals, and therefore their maximum operating temperature, can be improved by oxide dispersion strengthening (ODS). Numerous research studies are carried out at the French Atomic Energy Commission (CEA) in order to develop a cladding tube material for Gen IV nuclear power reactors. Oxide dispersion strengthened steels appear to be the most promising candidates for such application, which demands a minimum operating temperature of 650 C. The present dissertation intends to improve the understanding of the mechanical properties of ODS steels, in terms of creep lifetime and mechanical anisotropy. The methodology of this work includes mechanical tests between room temperature and 900 C as well as macroscopic and polycrystalline modelling. These tests are carried out on a Fe-14Cr1W0,26Ti + 0,3 Y 2 O 3 ODS ferritic steel processed at CEA by mechanical alloying and hot extrusion. The as-received material is a bar with a circular section. The mechanical tests reveal the high mechanical strength of this steel at high temperature. A strong influence of the strain rate on the ductility and the mechanical strength is also observed. A macroscopic mechanical model has been developed on the basis of some experimental statements such as the high kinematic contribution to the flow stress. This model has a strong ability to reproduce the mechanical behaviour of the studied material. Two different polycrystalline models have also been developed in order to reproduce the mechanical anisotropy of the material. They are based on its specific grain morphology and crystallographic texture. The discrepancy between the predictions of both models and experimental results reveal the necessity to formulate alternate assumptions on the deformation mechanisms of ODS ferritic steels. (author) [fr

  4. Annealing effect on the microstructure and magnetic properties of 14%Cr-ODS ferritic steel

    International Nuclear Information System (INIS)

    Ding, H.L.; Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2015-01-01

    Graphical abstract: TEM images of microstructure for 14%Cr-ODS ferritic steel annealed for 2 h at different temperatures: (a) 600 °C, (b) 800 °C, (c) 950 °C, and (d) 1150 °C, and the evolution trends of coercivity field (H_C) and Vickers microhardness for samples annealed at above temperatures for 2 h and 50 h. - Highlights: • The thermal stability of annealed 14%Cr-ODS ferritic steel was investigated. • The particle size keeps fairly constant with increasing annealing temperature. • The grain size is still 2–4 μm even after annealing for 50 h at 1150 °C. • The hardness and H_C are almost unchanged after annealing from 800 °C to 1150 °C. - Abstract: The microstructure and magnetic properties of the 14%Cr oxide dispersion strengthened (ODS) ferritic steel fabricated by sol–gel and HIP method were investigated by annealing in vacuum for 2 h (at 300, 600, 800, 950 and 1150 °C) and 50 h (at 600, 800, 950 and 1150 °C). Microstructure analysis shows that as the annealing temperature increases, the size of oxide nanoparticles becomes smaller and their dispersion in matrix becomes more homogeneous. Grain size remains stable when the annealing temperature is below 800 °C, while above 800 °C, grain size grows with the increasing annealing temperature and time. The Vickers microhardness and coercivity (H_C) display almost similar evolution trend with annealing temperature for 2 h and 50 h. No obvious recrystallization appears after 1150 °C annealing, which indicates the high microstructural stability of 14%Cr-ODS ferritic steel. The possible mechanism for above behaviors is discussed in this paper.

  5. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  6. Atom probe characterization of nano-scaled features in irradiated Eurofer and ODS Eurofer steel

    International Nuclear Information System (INIS)

    Rogozkin, S.; Aleev, A.; Nikitin, A.; Zaluzhnyi, A.; Vladimirov, P.; Moeslang, A.; Lindau, R.

    2009-01-01

    Outstanding performance of oxide dispersion strengthened (ODS) steels at high temperatures and up to high doses allowed to consider them as potential candidates for fusion and fission power plants. At the same time their mechanical parameters strongly correlate with number density of oxide particles and their size. It is believed that fine particles are formed at the last stage of sophisticated production procedures and play a crucial role in higher heat- and radiation resistance in comparison with conventional materials. However, due to their small size - only few nanometers, characterization of such objects requires considerable efforts. Recent study of ODS steel by tomographic atom probe, the most appropriate technique in this case, shown considerable stability of these particles under high temperatures and ion-irradiation. However, these results were obtained for 12/14% Cr with addition of 0.3% Y 2 O 3 and titanium which is inappropriate in case of ODS Eurofer 97 and possibility to substitute neutron by ion irradiation is still under consideration. In this work effect of neutron irradiation on nanostructure behaviour of ODS Eurofer are investigated. Irradiation was performed on research reactor BOR-60 in SSC RF RIAR (Dimitrovgrad, Russia) up to 30 dpa at 280 deg. C and 580 deg. C. Recent investigation of unirradiated state revealed high number density of nano-scaled features (nano-clusters) even without addition of Ti in steel. It was shown that vanadium played significant role in nucleation process and core of nano-clusters was considerably enriched with it. In irradiated samples solution of vanadium in matrix was observed while the size of particles stayed practically unchanged. Also no nitrogen was detected in these particles in comparison with unirradiated state where bond energy of N with V was considered to be high as VN 2+ ions were detected on mass-spectra. (author)

  7. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    Science.gov (United States)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  8. Investigation of the relationships between mechanical properties and microstructure in a Fe-9%Cr ODS steel

    Directory of Open Access Journals (Sweden)

    Hary Benjamin

    2016-01-01

    Full Text Available Ferritic-martensitic Oxide Dispersion Strengthened (ODS steels are potential materials for fuel pin cladding in Sodium Fast Reactor (SFR and their optimisation is essential for future industrial applications. In this paper, a feasibility study concerning the generation of tensile specimens using a quenching dilatometer is presented. The ODS steel investigated contains 9%Cr and exhibits a phase transformation between ferrite and austenite around 870 °C. The purpose was to generate different microstructures and to evaluate their tensile properties. Specimens were machined from a cladding tube and underwent controlled heat treatments inside the dilatometer. The microstructures were observed using Electron Backscatter Diffraction (EBSD and tensile tests were performed at room temperature and at 650 °C. Results show that a tempered martensitic structure is the optimum state for tensile loading at room temperature. At 650 °C, the strengthening mechanisms that are involved differ and the microstructures exhibit more similar yield strengths. It also appeared that decarburisation during heat treatment in the dilatometer induces a decrease in the mechanical properties and heterogeneities in the dual-phase microstructure. This has been addressed by proposing a treatment with a much shorter time in the austenitic domain. Thereafter, the relaxation of macroscopic residual stresses inside the tube during the heat treatment was evaluated. They appear to decrease linearly with increasing temperature and the phase transformation has a limited effect on the relaxation.

  9. Superalloy applications in the fast breeder reactor

    International Nuclear Information System (INIS)

    Powell, R.W.

    1976-01-01

    The economics of the LMFBR are dependent on the breeding of new fuel in the reactor core and this can be improved by the use of advanced alloys as core structural components. The environment of the core makes superalloys a natural choice for these components, but phenomena related directly to neutron irradiation necessitate extensive testing. Consequently, commercially-available superalloys, together with a number of developmental alloys are being tested in existing LMFBR's and by simulation techniques to determine the best alloy for use in the LMFBR core. It presently appears that such materials will indeed be capable of the performance required, and will greatly facilitate the commercial realization of the fast breeder reactor

  10. Progress toward determining the potential of ODS alloys for gas turbine applications

    Science.gov (United States)

    Dreshfield, R. L.; Hoppin, G., III; Sheffler, K.

    1983-01-01

    The Materials for Advanced Turbine Engine (MATE) Program managed by the NASA Lewis Research Center is supporting two projects to evaluate the potential of oxide dispersion strengthened (ODS) alloys for aircraft gas turbine applications. One project involves the evaluation of Incoloy (TM) MA-956 for application as a combustor liner material. An assessment of advanced engine potential will be conducted by means of a test in a P&WA 2037 turbofan engine. The other project involves the evaluation of Inconel (TM) MA 6000 for application as a high pressure turbine blade material and includes a test in a Garrett TFE 731 turbofan engine. Both projects are progressing toward these engine tests in 1984.

  11. Stability of Y-Ti-O nanoparticles in ODS alloys during heat treatment and high temperature swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A. [FLNR, JINR, Dubna (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Dubna State University, Dubna (Russian Federation); Sohatsky, A.S.; Kornieieva, K. [FLNR, JINR, Dubna (Russian Federation); O' Connell, J.H.; Neethling, J.H. [CHRTEM, NMMU, Port Elizabeth (South Africa); Nikitina, A.A.; Ageev, V.S. [JSC VNIINM, Moscow (Russian Federation); Zdorovets, M. [Institute of Nuclear Physics, Astana (Kazakhstan); Ural Federal University, Yekaterinburg (Russian Federation); Volkov, A.D. [Nazarbayev University, Astana (Kazakhstan)

    2016-12-15

    Aim of this report is to compare the morphology of swift (167 and 220 MeV) Xe ion induced latent tracks in Y{sub 2}Ti{sub 2}O{sub 7} nanoparticles during post-irradiation heat treatment and after irradiation at different temperatures in pre-thinned TEM foils and TEM targets prepared from hundreds microns thick irradiated oxide dispersion strengthened (ODS) steel. No difference in track parameters was found in room temperature irradiated nanoparticles in pre-thinned and conventional samples. Microstructural data gathered from pre-thinned foils irradiated in the temperature range 350-650 C or annealed at similar temperatures demonstrate that amorphous latent tracks interact with the surrounding matrix, changing the track and nanoparticle morphology, while such effect is not observed in conventional ODS material treated at the same conditions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Predicting the morphologies of {\\gamma}' precipitates in cobalt-based superalloys

    OpenAIRE

    Jokisaari, Andrea M.; Naghavi, Shahab S.; Wolverton, Chris; Voorhees, Peter W.; Heinonen, Olle G.

    2017-01-01

    Cobalt-based alloys with {\\gamma}/{\\gamma}' microstructures have the potential to become the next generation of superalloys, but alloy compositions and processing steps must be optimized to improve coarsening, creep, and rafting behavior. While these behaviors are different than in nickel-based superalloys, alloy development can be accelerated by understanding the thermodynamic factors influencing microstructure evolution. In this work, we develop a phase field model informed by first-princip...

  13. A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Detor, Andrew [General Electric Company, Niskayuna, NY (United States). GE Global Research; DiDomizio, Richard [General Electric Company, Niskayuna, NY (United States). GE Global Research; McAllister, Don [The Ohio State Univ., Columbus, OH (United States); Sampson, Erica [General Electric Company, Niskayuna, NY (United States). GE Global Research; Shi, Rongpei [The Ohio State Univ., Columbus, OH (United States); Zhou, Ning [General Electric Company, Niskayuna, NY (United States). GE Global Research

    2017-01-03

    The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels. The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.

  14. High temperature oxidation characteristics of developed Ni-Cr-W superalloys in air

    International Nuclear Information System (INIS)

    Suzuki, Tomio; Shindo, Masami

    1996-11-01

    For expanding utilization of the Ni-Cr-W superalloy, which has been developed as one of new high temperature structural materials used in the advanced High Temperature Gas-cooled Reactors (HTGRs), in various engineering fields including the structural material for heat utilization system, the oxidation behavior of this alloy in air as one of high oxidizing environments becomes one of key factors. The oxidation tests for the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition and five kinds of experimental Ni-Cr-W alloys with different Cr/W ratio were carried out at high temperatures in the air compared with Hastelloy XR. The conclusions were obtained as follows. (1) The oxidation resistance of the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition was superior to that of Hastelloy XR. (2) The most excellent oxidation resistance was obtained in an alloy with 19% Cr of the industrial scale heat of Ni-Cr-W superalloy. (author)

  15. Positron annihilation lifetime study of oxide dispersion strengthened steels

    International Nuclear Information System (INIS)

    Krsjak, V.; Szaraz, Z.; Hähner, P.

    2012-01-01

    A comparative positron annihilation lifetime study has been performed on various commercial ferritic and ferritic/martensitic oxide dispersion strengthened (ODS) steels. Both as-extruded and recrystallized materials were investigated. In the materials with recrystallized coarse-grained microstructures, only the positron trapping at small vacancy clusters and yttria nanofeatures was observed. Materials which had not undergone recrystallization treatment clearly showed additional positron trapping which is associated with dislocations. Dislocation densities were calculated from a two-component decomposition of the positron lifetime spectra by assuming the first component to be a superposition of the bulk controlled annihilation rate and the dislocation controlled trapping rate. The second component (which translates into lifetimes of 240–260 ps) was found to be well separated in all those ODS materials. This paper presents the potentialities and limitations of the positron annihilation lifetime spectroscopy, and discusses the results of the experimental determination of the defect concentrations and sensitivity of this technique to the material degradation due to thermally induced precipitation of chromium-rich α′ phases.

  16. Thermomechanical fatigue in single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF is a mechanism of deformation which is growing in importance due to the efficiency of modern cooling systems and the manner in which turbines and associated turbomachinery are now being operated. Unfortunately, at the present time, relatively little research has been carried out particularly on TMF of single crystal (SX superalloys, probably because the testing is significantly more challenging than the more standard creep and low cycle fatigue (LCF cases; the scarcity and relative expense of the material are additional factors. In this paper, the authors summarise their experiences on the TMF testing of SX superalloys, built up over several years. Emphasis is placed upon describing: (i the nature of the testing method, the challenges involved in ensuring that an given testing methodology is representative of engine conditions (ii the behaviour of a typical Re-containing second generation alloy such as CMSX-4, and its differing performance in out-of-phase/in-phase loading and crystallographic orientation and (iii the differences in behaviour displayed by the Re-containing alloys and new Re-free variants such as STAL15. It is demonstrated that the Re-containing superalloys are prone to different degradation mechanisms involving for example microtwinning, TCP precipitation and recrystallisation. The performance of STAL15 is not too inferior to alloys such as CMSX-4, suggesting that creep resistance itself does not correlate strongly with resistance to TMF. The implications for alloy design efforts are discussed.

  17. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  18. Noburnium: Systems design of niobium superalloys

    Science.gov (United States)

    Misra, Abhijeet

    2005-11-01

    A systems-based approach, integrating quantum mechanical calculations with efficient experimentation, was employed to design niobium-based superalloys. The microstructural concept of gamma-gamma' nickel-based superalloys was adopted, where, the coherent gamma ' aluminides act both as the strengthening phase and a source of aluminum for Al2O3 passivation. Building on previous research, the selected bcc-type ordered aluminide was L2 1 structured Pd2HfAl phase. Comprehensive phase relations were measured on Nb-Pd-Hf-Al prototype alloys, and key tie-tetrahedra were identified. Aluminide precipitation in a bcc matrix was demonstrated in designed Nb+Pd2HfAl alloys. Thermodynamic databases were developed by integrating first-principles calculations with measured phase relations. Atomic volume models were developed for the bcc matrix and the Pd2HfAl phase and matrix elements which would reduce lattice misfit were identified. An experimental 2-phase alloy demonstrated a misfit of 3%. A modified Wagner's model was used to predict the required transient properties to form external Al2O3. The principal oxidation design goal was to decrease the oxygen permeability ( NSOx DO ) divided by the aluminum diffusivity (DAl) by 5 orders of magnitude. A multicomponent mobility database was developed to predict the diffusivities. Guided by first-principles calculations the effect of alloying elements on the oxygen diffusivity in Nb was measured, and the mobility database was experimentally validated. Based on the mobility database, it was found that increasing Al solubility in the bcc matrix greatly increased Al diffusivity. Alloying elements were identified that would increase Al solubility in the bcc matrix. Prototype alloys were prepared and the best oxidation performance was exhibited by a bcc+Nb2Al Nb-Hf-Al alloy, which exhibited parabolic oxidation behavior at 1300°C. The alloy was shown to have achieved the required 5 orders of magnitude reduction in the design parameter. The

  19. Tensile behavior of EUROFER ODS steel after neutron irradiation up to 16.3 dpa between 250 and 450 °C

    International Nuclear Information System (INIS)

    Materna-Morris, Edeltraud; Lindau, Rainer; Schneider, Hans-Christian; Möslang, Anton

    2015-01-01

    Highlights: • The first 9%CrWVTa steel (0.5% Y_2O_3), EUROFER ODS HIP, have been neutron irradiated up to 16.3 dpa, between 250 and 450 °C, in the High Flux Reactor (HFR). • After post-irradiation tensile tests, there was not any increase of the upper yield strength or strain localization after irradiation which is typical of RAFM steels. • Initially higher yield strength, R_p_0_._2, and distinctive tensile strength, R_m, of EUROFER ODS HIP compared to EUROFER97 steel. • These values increased due to the neutron irradiation at lower irradiation temperatures. - Abstract: During the development of structural material for future fusion reactors, a 50 kg heat of reduced-activation ferritic-martensitic 9%CrWVTa steel with nanoscaled Y_2O_3-particles, EUROFER97 ODS HIP, was produced using powder metallurgy fabrication technology. This first batch of EUROFER97 ODS HIP and, for comparison, the steel EUROFER97 were prepared for a post-irradiation tensile test program. During neutron irradiation in the HFR (High Flux Reactor, The Netherlands), an accumulated dose of up to 16.3 dpa was reached for 771 days at full power, with the irradiation temperature ranging between 250 and 450 °C. During the post-examinations, all specimens showed the highest tensile strength at lower irradiation temperatures between 250 and 350 °C. However, ODS-alloy and steel were found to clearly differ in the mechanical behavior, which could be documented by fully instrumented tensile tests. In the un-irradiated state, tensile strength of the ODS-alloy already was increased considerably by about 60% compared to the steel. Strengthening was further increased by another 20% after neutron irradiation, but with a much better ductility than observed in the steel. The typical irradiation-induced strain localization of EUROFER97 or RAFM steels could not be observed in the EUROFER97 ODS HIP alloy.

  20. A new method in prediction of TCP phases formation in superalloys

    International Nuclear Information System (INIS)

    Mousavi Anijdan, S.H.; Bahrami, A.

    2005-01-01

    The purpose of this investigation is to develop a model for prediction of topologically closed-packed (TCP) phases formation in superalloys. In this study, artificial neural networks (ANN), using several different network architectures, were used to investigate the complex relationships between TCP phases and chemical composition of superalloys. In order to develop an optimum ANN structure, more than 200 experimental data were used to train and test the neural network. The results of this investigation shows that a multilayer perceptron (MLP) form of the neural networks with one hidden layer and 10 nodes in the hidden layer has the lowest mean absolute error (MAE) and can be accurately used to predict the electron-hole number (N v ) and TCP phases formation in superalloys

  1. A Comparison of the Plastic Flow Response of a Powder Metallurgy Nickel Base Superalloy (Postprint)

    Science.gov (United States)

    2017-04-01

    AFRL-RX-WP-JA-2017-0225 A COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) S.L...COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT...behavior at hot-working temperatures and strain rates of the powder- metallurgy superalloy LSHR was determined under nominally-isothermal and transient

  2. Microstructural evolution and some mechanical properties of nanosized yttrium oxide dispersion strengthened 13Cr steel

    International Nuclear Information System (INIS)

    Nguyen, Van Tich; Doan, Dinh Phuong; Tran, Tran BaoTrung; Luong, Van Duong; Nguyen, Van An; Phan, Anh Tu

    2010-01-01

    Oxide dispersion strengthened (ODS) steels, manufactured by a mechanical alloying method, during the past few years, appear to be promising candidates for structural applications in nuclear power plants. The purpose of this work is to elaborate the manufacturing processes of ODS 13Cr steel with the addition of 1.0 wt% yttrium oxide through the powder metallurgy route using the high energy ball mill. Microstructural analysis by scanning electron microscopy (SEM), x-ray diffraction (XRD) and hardness testing have been used to optimize the technological parameters of milling, hot isostatic pressing and heat-treatment processes. The steel hardness increases with decreasing particle size of 13Cr ODS steel. The best hardness was obtained from more than 70 h of milling in the two tanks planetary ball mill or 30 h of milling in the one tank planetary ball mill and hot isostatic pressing at 1150 °C . The particle size of the steel is less than 100 nm, and the density and hardness are about 7.3 g cm −3 and 490 HB, respectively

  3. σ and η Phase formation in advanced polycrystalline Ni-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, Stoichko, E-mail: santonov@hawk.iit.edu [Illinois Institute of Technology, 10 W. 32nd Street, Chicago, IL 60616 (United States); Huo, Jiajie; Feng, Qiang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Isheim, Dieter; Seidman, David N. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (United States); Northwestern University Center for Atom Probe Tomography (NUCAPT), 2220 Campus Drive, Evanston, IL 60208 (United States); Helmink, Randolph C.; Sun, Eugene [Rolls-Royce Corporation, 450 S. Meridian Street, Indianapolis, IN 46225 (United States); Tin, Sammy [Illinois Institute of Technology, 10 W. 32nd Street, Chicago, IL 60616 (United States)

    2017-02-27

    In polycrystalline Ni-base superalloys, grain boundary precipitation of secondary phases can be significant due to the effects they pose on the mechanical properties. As new alloying concepts for polycrystalline Ni-base superalloys are being developed to extend their temperature capability, the effect of increasing levels of Nb alloying additions on long term phase stability and the formation of topologically close packed (TCP) phases needs to be studied. Elevated levels of Nb can result in increased matrix supersaturation and promote the precipitation of secondary phases. Long term thermal exposures on two experimental powder processed Ni-base superalloys containing various levels of Nb were completed to assess the stability and precipitation of TCP phases. It was found that additions of Nb promoted the precipitation of η-Ni{sub 6}AlNb along the grain boundaries in powder processed, polycrystalline Ni-base superalloys, while reduced Nb levels favored the precipitation of blocky Cr and Mo – rich σ phase precipitates along the grain boundary. Evaluation of the thermodynamic stability of these two phases in both alloys using Thermo-calc showed that while σ phase predictions are fairly accurate, predictions of the η phase are limited.

  4. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing

    International Nuclear Information System (INIS)

    Brocq, M.

    2010-10-01

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe 3 andFe 2 O 3 as starting reactants instead of Y 2 O 3 to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  5. Precipitation in Powder Metallurgy, Nickel Base Superalloys: Review of Modeling Approach and Formulation of Engineering (Postprint)

    Science.gov (United States)

    2016-12-01

    AFRL-RX-WP-JA-2016-0333 PRECIPITATION IN POWDER- METALLURGY , NICKEL-BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF...PRECIPITATION IN POWDER- METALLURGY , NICKEL- BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF ENGINEERING (POSTPRINT) 5a...and kinetic parameters required for the modeling of γ′ precipitation in powder- metallurgy (PM), nickel-base superalloys are summarized. These

  6. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  7. Void formation in ODS EUROFER produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y.; Monge, M.A.; Munoz, A.; Leguey, T.; Pareja, R. [Madrid Univ. Carlos-3, Dept. de Fisica (Spain); Castro, V. de [Oxford Univ., Dept. of Materials (United Kingdom)

    2007-07-01

    Full text of publication follows: An obstacle in the development of oxide dispersion strengthened (ODS) steels for structural applications in fusion reactors is the toughness lack of the material produced by powder metallurgy and consolidated by hot isostatic pressing (HIP). In particular, ODS EUROFER steel with Y{sub 2}O{sub 3} particles appears to exhibit poor impact properties. To asses the capabilities of this material, it is necessary elucidate if its failure is an inherent characteristic of the production process that can not be mitigated by normalizing and tempering treatments. In order to investigate this particular point, the evolution of the structural defects retained in the ODS material during isochronal annealing has been probed by positron annihilation spectroscopy. The present study has been performed on bail milled EUROFER powders consolidated by HIP, containing 0.25 wt % Y{sub 2}O{sub 3} and without Y{sub 2}O{sub 3}. For comparison, un-milled EUROFER powder consolidated under identical conditions, and as-received EUROFER97 plate produced by Boehler AG have been also investigated. Samples from these four materials were isochronally annealed for 90 min up to 1323 K. Materials produced from milled powders had a longer positron lifetime than the one produced from un-milled powder or the EUROFER plate. In the material containing Y{sub 2}O{sub 3}, i.e. in ODS EUROFER, annealing above 723 K produced a continuous increase in the mean positron lifetime <{tau}> up to reach a maximum value of 208 ps after annealing at 1223 K. A similar annealing behavior was observed for Y{sub 2}O{sub 3}-free milled EUROFER (milled EUROFER), but the <{tau}> value steeply changed from {approx}160 ps at 823 K to {approx}200 ps after annealing at 1023 K. Subsequent anneals above this temperature produced meaningless changes in <{tau}>. The <{tau}> increase in milled EUROFER was accompanied by the intensity increase of a lifetime component of {approx}360 ps that is characteristic

  8. Cyclic oxidation of coated Oxide Dispersion Strengthened (ODS) alloys in high velocity gas streams at 1100 deg C

    Science.gov (United States)

    Gedwill, M. A.

    1978-01-01

    Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).

  9. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  10. The structural changes of Y2O3 in ferritic ODS alloys during milling

    International Nuclear Information System (INIS)

    Hilger, I.; Tegel, M.; Gorley, M.J.; Grant, P.S.; Weißgärber, T.; Kieback, B.

    2014-01-01

    Oxide dispersion strengthened (ODS) ferritic steels are usually fabricated via mechanical alloying and subsequent consolidation via hot extrusion or hot isostatic pressing. During the individual process steps, a complex evolution of the nanoparticle structure is taking place. Powders with different Y 2 O 3 contents were milled and examined by means of X-ray diffraction (XRD) and atom probe tomography (APT). It has been observed that the Y 2 O 3 is fragmented and becomes partially amorphous upon milling due to the grain refinement of Y 2 O 3 during the milling process. There was no compelling evidence for Y 2 O 3 dissociation and dissolution into the steel matrix

  11. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    Science.gov (United States)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  12. OD in Schools: The State of the Art. Vol. II: Review of Research on OD. Final Report.

    Science.gov (United States)

    Fullan, Michael; And Others

    The purpose of this document, the second of a five-volume series, was to analyze the various reviews of organizational development (OD) in general, and case studies of school districts in particular, in order to synthesize information about OD as it applies to schools. The review is organized into four main categories: (1) values, themes, and…

  13. Cobalt-free nickel-base superalloys

    International Nuclear Information System (INIS)

    Koizumi, Yutaka; Yamazaki, Michio; Harada, Hiroshi

    1979-01-01

    Cobalt-free nickel-base cast superalloys have been developed. Cobalt is considered to be a beneficial element to strengthen the alloys but should be eliminated in alloys to be used for direct cycle helium turbine driven by helium gas from HTGR (high temp. gas reactor). The elimination of cobalt is required to avoid the formation of radioactive 60 Co from the debris or scales of the alloys. Cobalt-free alloys are also desirable from another viewpoint, i.e. recently the shortage of the element has become a serious problem in industry. Cobalt-free Mar-M200 type alloys modified by the additions of 0.15 - 0.2 wt% B and 1 - 1.5 wt% Hf were found to have a creep rupture strength superior or comparable to that of the original Mar-M200 alloy bearing cobalt. The ductility in tensile test at 800 0 C, as cast or after prolonged heating at 900 0 C (the tensile test was done without removing the surface layer affected by the heating), was also improved by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf. The morphology of grain boundaries became intricated by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf, to such a degree that one can hardly distinguish grain boundaries by microscopes. The change in the grain boundary morphology was considered, as suggested previously by one of the authors (M.Y.), to be the reason for the improvements in the creep rupture strength and tensile ductility. (author)

  14. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Mueller, P.; Spaetig, P.; Baluc, N.

    2011-01-01

    The Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  15. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: oksiuta@pb.edu.pl [Bialystok Technical University, Mechanical Department, Wiejska 45c, 15-351 Bialystok (Poland); Mueller, P.; Spaetig, P.; Baluc, N. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-05-15

    The Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  16. Simulation of the BGO-OD experiment at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Russell [University of Bonn, Physikalisches Institut, Bonn (Germany); Collaboration: BGO-OD-Collaboration

    2011-07-01

    The goal of the BGO Open-Dipole (BGO-OD) project is the systematic investigation of the photoproduction of mesons off the nucleon. These processes are related to the structure of both the mesons and the baryons involved in reactions typical of low-energy hadronic physics. In order to fully understand and accurately interpret the results of the BGO-OD experiment it will be necessary to have a full detector and reaction simulation so that effects from detector resolution and acceptance can be accounted for in the final results. The simulation of the BGO-OD will be be undertaken with the Explora Virtual Monte-Carlo (VMC) software framework. This allows for one common user code to be implemented under Geant4, Geant3 and Fluka. The simulation software is also an analysis tool and such flexibility will be key to an efficient final analysis of the data from the BGO-OD experiment. Presented here are current status of the simulation software for the BGO-OD project and the relevant geometry of the BGO-OD, including the central BGO rugby ball detector with the dual-layer Multiwire Proportional Chambers (MWPCs) and the forward spectrometer, consisting of a large dipole magnet, tracking detectors and the Time-of-Flight walls. Simulation of the magnetic field will also be covered.

  17. High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel

    International Nuclear Information System (INIS)

    Chauhan, Ankur; Litvinov, Dimitri; Aktaa, Jarir

    2016-01-01

    This article describes the tensile properties and fracture characteristics of a 12Cr oxide dispersion strengthened (ODS) ferritic steel with unique elongated bimodal grain size distribution. The tensile tests were carried out at four different temperatures, ranging from room temperature to 700 °C, at a nominal strain rate of 10"−"3 s"−"1. At room temperature the material exhibits a high tensile strength of 1294 MPa and high yield strength of 1200 MPa. At 700 °C, the material still exhibits relatively high tensile strength of 300 MPa. The total elongation-to-failure exceeds 18% over the whole temperature range and has a maximum value of 29% at 600 °C. This superior ductility is attributed to the material's bimodal grain size distribution. In comparison to other commercial, as well as experimental, ODS steels, the material shows an excellent compromise between strength and ductility. The fracture surface studies reveal a change in fracture behavior from a mixed mode fracture at room temperature to fully ductile fracture at 600 °C. At 700 °C, the fracture path changes from intragranular to intergranular fracture, which is associated with a reduced ductility. - Highlights: • The steel has a unique elongated bimodal grain size distribution. • The steel shows an excellent compromise between strength and ductility. • Superior ductility in comparison to other commercial and experimental ODS steels. • Fracture behavior changes from mixed mode fracture at room temperature to fully ductile fracture at 600 °C. • Fracture path changes from intragranular to intergranular fracture at 700 °C.

  18. The effect of organisational context on organisational development (OD interventions

    Directory of Open Access Journals (Sweden)

    Sanjana Brijball Parumasur

    2012-05-01

    Research purpose: This article examines national and international OD practices. It assesses the effect of diverse cultures and cultural values for determining the effectiveness of OD interventions. Motivation for the study: Most organisational change and development programmes fail and only a few result in increased competitiveness, improvements and profitability. This emphasises the need for change interventions to give sufficient attention to leadership, cultures, managing change and adopting context-based OD interventions. Research design, approach and method: This article is a literature review of the current trends and research in the area of OD interventions. It synthesises the influence that cultures and cultural orientations have on determining which OD intervention strategies organisations should adopt in different cultures. Main findings: The analysis emphasises how important it is to achieve congruence between the OD interventions organisations select and their local cultures. Practical/managerial implications: It is important to note the evolving nature of the political and economic climates that influence national cultures and that they emphasise that interventions that reflect OD values, which are tailor-made and shaped to the needs of local cultures, are necessary. Contribution/value-add: This study links various OD interventions to Hofstede’s dimensions for differentiating national cultures. It provides guidelines for aligning the practices and techniques of OD to the values and cultures of the organisations and societies in which they are to be implemented.

  19. Pressure dependence of hydrogen bonding in metal deuteroxides: a neutron powder diffraction study of Mn(OD)2 and β-Co(OD)2

    International Nuclear Information System (INIS)

    Parise, J.B.; Theroux, B.; Li, R.; Loveday, J.S.; Marshall, W.G.; Klotz, S.

    1998-01-01

    The structures of deuterated pyrochroite, Mn(OD) 2 and β-Co(OD) 2 have been refined using the Rietveld method and neutron powder diffraction data collected in an opposed-anvil high pressure (Paris-Edinburgh) cell from room pressure to 9 GPa. The equation of state for Mn(OD) 2 was determined (K=41(3) GPa for fixed K'=4.7) and found to be consistent with previous studies of the isostructural brucite, Mg(OD) 2 . The compressibility of β-Co(OD) 2 on the other hand is apparently anomalous. The c-axis initially decreases at 3 times the rate of decrease of the a-axis; the ratio decreases to about 1.5 at an estimated 6 GPa before increasing again beyond this pressure. There is no obvious corresponding anomaly in the details of the atomic structure. In both materials there is an increase in the D-site disorder with pressure. A split-site model for the D-positions best fits the data at pressures above 8 GPa. There is no statistically significant increase in the O-D interatomic distance at increased pressure while the hydrogen bonding interaction D..O appears to increase as this distance decreases and the O-D..O angle increases. The intramolecular O-D bond valences, determined indirectly from the intermolecular D..O distances, decrease steadily for both materials as pressure is increased. (orig.)

  20. Nano-oxide nucleation in a 14Cr-ODS steel elaborated by reactive-inspired ball-milling: Multiscale characterizations

    International Nuclear Information System (INIS)

    Brocq, M.; Legendre, F.; Sakasegawa, H.; Radiguet, B.; Cuvilly, F.; Pareige, P.; Mathon, M.H.

    2009-01-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for both fusion and fission Generation IV reactors. Indeed, they exhibit excellent mechanical and creep properties and radiation resistance thanks to a fine and dense dispersion of complex nanometric oxides. ODS steels are usually elaborated by ball-milling iron based and yttrium oxide powders and then by thermomechanical treatments. It is expected that ball-milling dissolves yttrium oxides in the metallic matrix and that annealing induces nano-oxide precipitation. However the formation mechanism remains unclear and as a consequence the process is still uncontrolled. In this context, we proposed a new approach based on reactive ball milling of iron oxide (Fe 2 O 3 ), yttria (YFe 3 ) and iron based alloy in a dedicated instrumented ball-milling device. Also, a fine scale characterization, after each step of the process including ball-milling, is performed. A Fe-14Cr-2W-1Ti-0.8Y-0.2O (%wt) ODS steel was synthesized by reactive ball-milling and was characterized at very fine scale in both as-milled and as-annealed state. Atom Probe Tomography (APT) and Small Angle Neutron Scattering (SANS) were combined. After ballmilling, most of Y and O were, as expected, in solution in the ferritic matrix but some complex Y-Ti nano-oxides were also observed, indicating that oxide nucleation can start during ball-milling. With annealing the number of nano-oxides increases. In this presentation, experimental results of APT and SANS will be detailed and compared with what is usually observed in ODS steels elaborated by conventional ball milling. Finally, a formation mechanism of nano-oxides deduced from these results will be proposed. (author)

  1. Manufacturing and mechanical property test of the large-scale oxide dispersion strengthened martensitic mother tube by hot isostatic pressing and hot extrusion process

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2003-09-01

    Mass production capability of Oxide Dispersion Strengthened (ODS) ferritic steel cladding (9Cr) is evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube is a dominant factor in the total cost for manufacturing ODS ferritic cladding. In this study, the large-scale 9Cr-ODS martensitic mother tube was produced by overseas supplier with mass production equipments for commercialized ODS steels. The process of manufacturing the ODS mother tube consists of raw material powder production, mechanical alloying by high energy ball mill, hot isostatic pressing(HIP), and hot extrusion. Following results were obtained in this study. (1) Micro structure of the ODS steels is equivalent to that of domestic products, and fine oxides are uniformly distributed. The mechanical alloying by large capacity (1 ton) ball mill can be satisfactorily carried out. (2) A large scale mother tube (65 mm OD x 48 mm ID x 10,000 mm L), which can produce about 60 pieces of 3 m length ODS ferritic claddings by four times cold rolling, have been successfully manufactured through HIP and Hot Extrusion process. (3) Rough surface of the mother tubes produced in this study can be improved by selecting the reasonable hot extrusion condition. (4) Hardness and tensile strength of the manufactured ODS steels are lower than domestic products with same chemical composition. This is owing to the high aluminum content in the product, and those properties could be improved by decreasing the aluminum content in the raw material powder. (author)

  2. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen

    2015-01-01

    We report here a constitutive model for predicting long-term creep strain evolution in’ strengthened Ni-base superalloys. Dislocation climb-bypassing’, typical in intermediate’ volume fraction (~20%) alloys, is considered as the primary deformation mechanism. Dislocation shearing’ to anti-phase boundary (APB) faults and diffusional creep are also considered for high-stress and high-temperature low-stress conditions, respectively. Additional damage mechanism is taken into account for rapid increase in tertiary creep strain. The model has been applied to Alloy 282, and calibrated in a temperature range of 1375-1450°F, and stress range of 15-45ksi. The model parameters and a MATLAB code are provided. This report is prepared by Monica Soare and Chen Shen at GE Global Research. Technical discussions with Dr. Vito Cedro are greatly appreciated. This work was supported by DOE program DE-FE0005859

  3. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  4. 46 CFR 280.4 - Standards governing payment of ODS.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Standards governing payment of ODS. 280.4 Section 280.4... Standards governing payment of ODS. (a) Full payment. Except to the extent otherwise provided in § 280.8, ODS shall be paid in full to the operator for vessel operations on the inbound and outbound legs of...

  5. The role of particle ripening on the creep acceleration of Nimonic 263 superalloy

    Directory of Open Access Journals (Sweden)

    Angella Giuliano

    2014-01-01

    Full Text Available Physically based constitutive equations need to incorporate the most relevant microstructural features of materials to adequately describe their mechanical behaviour. To accurately model the creep behaviour of precipitation hardened alloys, the value and the evolution of strengthening particle size are important parameters to be taken into account. In the present work, creep tests have been run on virgin and overaged (up to 3500 h at 800 ∘C Nimonic 263, a polycrystalline nickel base superalloy used for combustion chambers of gas turbines. The experimental results suggest that the reinforcing particle evolution is not the main reason for the creep acceleration that seems to be better described by a strain correlated damage, such as the accumulation of mobile dislocations or the grain boundary cavitation. The coarsened microstructure, obtained by overageing the alloy at high temperature before creep testing, mainly influences the initial stage of the creep, resulting in a higher minimum creep rate and a corresponding reduction of the creep resistance.

  6. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  7. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study

    Science.gov (United States)

    Zilnyk, K. D.; Pradeep, K. G.; Choi, P.; Sandim, H. R. Z.; Raabe, D.

    2017-08-01

    Oxide-dispersion strengthened materials are important candidates for several high-temperature structural applications in advanced nuclear power plants. Most of the desirable mechanical properties presented by these materials are due to the dispersion of stable nanoparticles in the matrix. Samples of ODS-Eurofer steel were annealed for 4320 h (6 months) at 800 °C. The material was characterized using atom probe tomography in both conditions (prior and after heat treatment). The particles number density, size distribution, and chemical compositions were determined. No significant changes were observed between the two conditions indicating a high thermal stability of the Y-rich nanoparticles at 800 °C.

  8. 46 CFR 280.9 - Special rules for last year of ODS agreement.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Special rules for last year of ODS agreement. 280.9... LINER OPERATORS § 280.9 Special rules for last year of ODS agreement. (a) Reduction in payment of ODS. ODS payable during the last year of any ODS agreement shall be reduced, as provided in paragraph (b...

  9. Reduction in Defect Content in ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritherdon, J.; Jones, A.R.

    2000-02-01

    The work detailed within this report is a continuation of earlier work that was carried out under contract number IDX-SY382V. The earlier work comprised a literature review of the sources and types of defects found principally in Fe-based ODS alloys together with a series of experiments designed to identify defects in ODS Fe{sub 3}Al material and recommend methods of defect reduction. Defects found in the Mechanically Alloyed (MA) ODS Fe{sub 3}Al included regions of incomplete MA, porosity, intrusions and fine-grained stringers. Some defects tended to be found in association with one another e.g. intrusions and fine-grained stringers. Preliminary powder separation experiments were also performed. The scope and objectives of the present work were laid out in the technical proposal ``Reduction in Defect Content in ODS Alloys--II'' which formed the basis of amendment 3 of the current contract. The current studies were devised in the context of the preceding work with a view to extending and concluding certain experiments while exploring new avenues of investigation of defect control and reduction where appropriate. All work proposed was within the context of achieving an ODS Fe{sub 3}Al alloy of improved overall quality and potential creep performance (particularly) in the consolidated, release condition. The interim outturn of the experimental work performed is also reported.

  10. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    International Nuclear Information System (INIS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-01-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  11. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  12. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  13. Line profile analysis of ODS steels Fe20Cr5AlTiY milled powders at different Y2O3 concentrations

    Science.gov (United States)

    Afandi, A.; Nisa, R.; Thosin, K. A. Z.

    2017-04-01

    Mechanical properties of material are largely dictated by constituent microstructure parameters such as dislocation density, lattice microstrain, crystallite size and its distribution. To develop ultra-fine grain alloys such as Oxide Dispersion Strengthened (ODS) alloys, mechanical alloying is crucial step to introduce crystal defects, and refining the crystallite size. In this research the ODS sample powders were mechanically alloyed with different Y2O3 concentration respectively of 0.5, 1, 3, and 5 wt%. MA process was conducted with High Energy Milling (HEM) with the ball to powder ratio of 15:1. The vial and the ball were made of alumina, and the milling condition is set 200 r.p.m constant. The ODS powders were investigated by X-Ray Diffractions (XRD), Bragg-Brentano setup of SmartLab Rigaku with 40 KV, and 30 mA, step size using 0.02°, with scanning speed of 4°min-1. Line Profile Analysis (LPA) of classical Williamson-Hall was carried out, with the aim to investigate the different crystallite size, and microstrain due to the selection of the full wide at half maximum (FWHM) and integral breadth.

  14. Chemical driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-08-15

    Full Text Available The author provides a brief overview of the chemical driving forces for rafting in superalloys. Until recently, all theories of the driving force for rafting have considered the compositions of the two phases to be fixed, although accepting...

  15. The effect of the initial microstructure in terms of sink strength on the ion-irradiation-induced hardening of ODS alloys studied by nanoindentation

    Science.gov (United States)

    Duan, Binghuang; Heintze, Cornelia; Bergner, Frank; Ulbricht, Andreas; Akhmadaliev, Shavkat; Oñorbe, Elvira; de Carlan, Yann; Wang, Tieshan

    2017-11-01

    Oxide dispersion strengthened (ODS) Fe-Cr alloys are promising candidates for structural components in nuclear energy production. The small grain size, high dislocation density and the presence of particle matrix interfaces may contribute to the improved irradiation resistance of this class of alloys by providing sinks and/or traps for irradiation-induced point defects. The extent to which these effects impede hardening is still a matter of debate. To address this problem, a set of alloys of different grain size, dislocation density and oxide particle distribution were selected. In this study, three-step Fe-ion irradiation at both 300 °C and 500 °C up to 10 dpa was used to introduce damage in five different materials including three 9Cr-ODS alloys, one 14Cr-ODS alloy and one 14Cr-non-ODS alloy. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and nanoindentation testing were applied, the latter before and after irradiation. Significant hardening occurred for all materials and temperatures, but it is distinctly lower in the 14Cr alloys and also tends to be lower at the higher temperature. The possible contribution of Cr-rich α‧-phase particles is addressed. The impact of grain size, dislocation density and particle distribution is demonstrated in terms of an empirical trend between total sink strength and hardening.

  16. Grinding of Inconel 713 superalloy for gas turbines

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Kyncl, J.; Kolařík, K.; Beránek, L.; Pitrmuc, Z.; Medřický, Jan; Pala, Z.

    2016-01-01

    Roč. 16, č. 1 (2016), s. 14-15 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Casting defects * Gas turbine * Grinding * Nickel superalloy * Residual stresses Subject RIV: JJ - Other Materials

  17. Production, microstructure and mechanical properties of two different austenitic ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Gräning, T., E-mail: tim.graening@kit.edu; Rieth, M.; Hoffmann, J.; Möslang, A.

    2017-04-15

    This article is to summarize and examine processing parameters of novel developed austenitic oxide dispersed strengthened (ODS) steels. Comparing hot-rolled and extruded conditions after the same degree of deformation after and before annealing, are just some examples to give insights into the complex processing of austenitic ODS steels. One of the major drawbacks of the material is the more sophisticated production process. Due to a ductile matrix material with an increased stickiness during milling, a two-step milling procedure with the use of ZrO{sub 2} milling balls was applied to raise the production yield and to use the abrasion of the ZrO{sub 2} as an additional element to facilitate the formation of nano-sized precipitates. To get a better understanding how the different powder particle sizes after milling affect final properties, sieving was applied and revealed a serious effect in terms of precipitate size, distribution and mechanical properties. Grain sizes in relation to the precipitate size, annealing time and processing parameters were determined and compared to the mechanical properties. Hardness and tensile test have pointed out, that the precipitate size and number are more important in respect to the ultimate tensile strength than the grain size and that in this study hot-rolled material exhibited the better properties. The investigation of the microstructure illustrated the stability of precipitates during annealing at 1100 °C for 40 h. These heat treatments also led to a consistent grain size, due to the pinning effect of the grain boundaries, caused by precipitates. - Highlights: •Comparison of the microstructure of extruded and hot-rolled ODS. •Two-step mechanical alloying with ZrO{sub 2} milling balls. •Determination of precipitate size distribution depending on chemical composition and annealing times. •Determination of the influence of sieving of mechanical alloyed powder on the near net shape products. •Tensile tests of two

  18. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys.

    Science.gov (United States)

    Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas

    2016-11-16

    Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  19. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys

    Directory of Open Access Journals (Sweden)

    Jianping Hong

    2016-11-01

    Full Text Available Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS and single crystal (SX hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  20. The BGO-OD experiment. Status

    Energy Technology Data Exchange (ETDEWEB)

    Hannappel, Juergen [Physikalisches Institut der Universitaet Bonn (Germany); Collaboration: BGO-OD-Collaboration

    2015-07-01

    In the framework of an international collaboration a new detector is set up at the accelerator facility ELSA in Bonn, the BGO-OD experiment. It aims at systematic investigation of nonstrange and strange meson photoproduction, in particular t-channel processes at low momentum transfer. The setup uniquely combines a central almost 4π acceptance BGO crystal calorimeter with a large aperture forward magnetic spectrometer providing good detection of both neutral and charged particles, complementary to other setups like CB, LEPS or CLAS. An overview of the BGO-OD detector is presented. Preliminary data from the first data takings will be shown and discussed.

  1. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  2. Design of high entropy alloys based on the experience from commercial superalloys

    Science.gov (United States)

    Wang, Z.; Huang, Y.; Wang, J.; Liu, C. T.

    2015-01-01

    High entropy alloys (HEAs) have been drawing increasing attention recently and gratifying results have been obtained. However, the existing metallurgic rules of HEAs could not provide specific information of selecting candidate alloys for structural applications. Our brief survey reveals that many commercial superalloys have medium and even to high configurational entropies. The experience of commercial superalloys provides a clue for helping us in the development of HEAs for structural applications.

  3. Strengthening of Zircaloy-4 with Oxide Particles by Surface Treatment using Laser Beam

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Park, Dong Jun; Kim, Hyun Gil; Yang, Jae Ho; Koo, Yang Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Accident tolerant fuel (ATF) cladding is being developed globally after the Fukushima accident with the demands for the nuclear fuel having higher safety at normal operation conditions as well as even in a severe accident conditions. Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. High-power laser beam was exposed on the zirconium surface previously coated by oxides. Various oxides such as Y{sub 2}O{sub 3}, CeO{sub 2}, Gd{sub 2}O{sub 3}, Er{sub 2}O{sub 3} were used for the ODS treatment. In this study, the effect of strengthening by the ODS treatment was investigated. The oxide particles of Y{sub 2}O{sub 3} were dispersed well in the Zr matrix at the surface region.

  4. ODS-materials for high temperature applications in advanced nuclear systems

    Directory of Open Access Journals (Sweden)

    C.C. Eiselt

    2016-12-01

    Full Text Available A ferritic ODS-alloy (Fe-14Cr-1W-0.25Ti has been manufactured by application of the powder metallurgical production route involving at first mechanical alloying of ∼10kg pre-alloyed steel powder together with an Y2O3 addition for 12h in a high energy industrial ball mill under hydrogen atmosphere at the company ZOZ GmbH. As a next step, one part of the alloyed powder was hot extruded into rods while another portion was hot isostatically pressed into plates. Both materials were then heat treated. A characterization program on these ODS-alloy production forms included microstructural and mechanical investigations: SANS and TEM assume the existence of Y2Ti2O7 nano clusters and show a bimodal distribution of ODS-particle sizes in both ODS variants. EBSD maps showed a strong 〈110〉 texture corresponding to the α fiber for the hot extruded ODS and a slight 〈001〉 texture for the hipped ODS material. Fracture toughness tests in different specimen orientations (extruded ODS with mini 0.2T C(T specimens together with Charpy impact tests revealed anisotropic mechanical properties: Promising (fracture toughness levels were obtained in the specimen orientation perpendicular to the extrusion direction, while the toughness levels remained low in extrusion direction and generally for the hipped ODS material at all test temperatures. The fracture toughness tests were performed according to ASTM E 1921 and 1820 standards.

  5. The Effect of Forging Variables on the Supersolvus Heat-Treatment Response of Powder-Metallurgy Nickel-Base Superalloys

    Science.gov (United States)

    2014-12-01

    AFRL-RX-WP-JA-2015-0160 THE EFFECT OF FORGING VARIABLES ON THE SUPERSOLVUS HEAT-TREATMENT RESPONSE OF POWDER - METALLURGY NICKEL-BASE SUPERALLOYS... POWDER - METALLURGY NICKEL- BASE SUPERALLOYS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR...treatment (SSHT) of two powder - metallurgy , gamma–gamma prime superalloys, IN-100 and LSHR, was established. For this purpose, isothermal, hot

  6. Development of high performance ODS alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lin [Texas A & M Univ., College Station, TX (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States); Garner, Frank [Texas A & M Univ., College Station, TX (United States)

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoid and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.

  7. Microstructural characteristics of high-temperature oxidation in nickel-base superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.

    1997-01-01

    Superalloys are used for aerospace and nuclear applications where they can withstand high-temperature and severe oxidizing conditions. High-temperature oxidation behavior of a nickel-base superalloy is examined using optical and scanning electron microscopical techniques. The morphology of the oxide layers developed is examined, and EDX microanalysis reveals diffusion of the elements across the oxide-metal interface. Evidence of internal oxidation is presented, and the role of structural defects is considered. The morphology of the oxide-metal interface formed in the specimens exposed in steam and air is examined to elucidate the mechanism of high-temperature oxidation

  8. Nanostructure evolution in ODS steels under ion irradiation

    Directory of Open Access Journals (Sweden)

    S. Rogozhkin

    2016-12-01

    In this work, we carried out atom probe tomography (APT and transmission electron microscopy (TEM studies of three different ODS steels produced by mechanical alloying: ODS Eurofer, 13.5Cr ODS and 13.5Cr-0.3Ti ODS. These materials were investigated after irradiation with Fe (5.6MeV or Ti (4.8MeV ions up to 1015ion/cm2 and part of them up to 3×1015ion/cm2. In all cases, areas for TEM investigation were cut at a depth of ∼ 1.3µm from the irradiated surface corresponding to the peak of the radiation damage dose. It was shown that after irradiation at RT and at 300°С the number density of oxide particles in all the samples grew up. Meanwhile, the fraction of small particles in the size distribution has increased. APT revealed an essential increase in nanoclusters number and a change of their chemical composition at the same depth. The nanostructure was the most stable in 13.5Cr-0.3Ti ODS irradiated at 300°С: the increase of the fraction of small oxides was minimal and no change of nanocluster chemical composition was detected.

  9. Investigation of influence of radioactive irradiation on the microstructure of oxide dispersion strengthened steels

    International Nuclear Information System (INIS)

    Vlasenko, S.V.; Benediktovich, A.I.; Ul'yanenkova, T.A.; O’Konnell, Zh.; Nitling, I.

    2015-01-01

    The microstructure of unirradiated and irradiated samples of oxide dispersion strengthened (ODS) steels was investigated by X-ray diffraction in order to determine the influence of radiation on mechanical properties of steels. The microstructural parameters of ODS steels from measured diffraction profiles were evaluated using an approach where the complex oxide nanoparticles (Y 2 Ti 2 O 7 and Y 4 Al 2 O 9 ) are modeled as spherical inclusions in the steel matrix with coherent boundaries. The proposed method enables processing of diffraction data from materials containing spherical inclusions by treating them as one more source of peak broadening in addition to straight dislocations, and taking into account broadening due to crystallite size and instrumental effects. The microstructural parameters were obtained on the basis of fitting of experimental data by theoretical curve. The parameters of crystallite size distribution modeled by a lognormal distribution function (the median m and the variance σ), the strain anisotropy parameter q, the dislocation density, the dislocation arrangement parameter M, the density of oxide nanoparticles and the nanoparticle radius r 0 were determined for the ODS steel samples. It was established that irradiation has no significant influence on microstructure. The results obtained for physical parameters are in good agreement with the results of high-resolution transmission electron microscopy (HRTEM). (authors)

  10. Detection and evaluation of embedded mild steel can material into 18 Cr-oxide dispersion strengthened steel tubes by magnetic Barkhausen emission

    Science.gov (United States)

    Kishore, G. V. K.; Kumar, Anish; Rajkumar, K. V.; Purnachandra Rao, B.; Pramanik, Debabrata; Kapoor, Komal; Jha, Sanjay Kumar

    2017-12-01

    The paper presents a new methodology for detection and evaluation of mild steel (MS) can material embedded into oxide dispersion strengthened (ODS) steel tubes by magnetic Barkhausen emission (MBE) technique. The high frequency MBE measurements (125 Hz sweep frequency and 70-200 kHz analyzing frequency) are found to be very sensitive for detection of presence of MS on the surface of the ODS steel tube. However, due to a shallow depth of information from the high frequency MBE measurements, it cannot be used for evaluation of the thickness of the embedded MS. The low frequency MBE measurements (0.5 Hz sweep frequency and 2-20 kHz analyzing frequency) indicate presence of two MBE RMS voltage peaks corresponding to the MS and the ODS steel. The ratio of the two peaks changes with the thickness of the MS and hence, can be used for measurement of the thickness of the MS layer.

  11. The effect of organisational context on organisational development (OD) interventions

    OpenAIRE

    Sanjana Brijball Parumasur

    2012-01-01

    Orientation: Systematic and congruent organisational structures, systems, strategies and designs are necessary for the successful implementation of organisational development (OD) interventions. Research purpose: This article examines national and international OD practices. It assesses the effect of diverse cultures and cultural values for determining the effectiveness of OD interventions. Motivation for the study: Most organisational change and development programmes fail and only a ...

  12. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing; Synthese et caracterisation d'un acier ODS prepare par un procede inspiredu broyage reactif: etude de l'influence des conditions de broyage et recuit

    Energy Technology Data Exchange (ETDEWEB)

    Brocq, M.

    2010-10-15

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe{sub 3} andFe{sub 2}O{sub 3} as starting reactants instead of Y{sub 2}O{sub 3} to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  13. Morphology Dependent Flow Stress in Nickel-Based Superalloys in the Multi-Scale Crystal Plasticity Framework

    Directory of Open Access Journals (Sweden)

    Shahriyar Keshavarz

    2017-11-01

    Full Text Available This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ’ morphology in nickel-based superalloys can be divided into three variables including γ’ shape, γ’ volume fraction and γ’ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM of the representative volume element (RVE with explicit depiction of the γ-γ’ morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys.

  14. MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Chen, Wei; Huo, Jiajie; Feng, Qiang; Isheim, Dieter; Seidman, David N.; Sun, Eugene; Tin, Sammy

    2018-04-01

    Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.

  15. Production, microstructure and mechanical properties of two different austenitic ODS steels

    Science.gov (United States)

    Gräning, T.; Rieth, M.; Hoffmann, J.; Möslang, A.

    2017-04-01

    This article is to summarize and examine processing parameters of novel developed austenitic oxide dispersed strengthened (ODS) steels. Comparing hot-rolled and extruded conditions after the same degree of deformation after and before annealing, are just some examples to give insights into the complex processing of austenitic ODS steels. One of the major drawbacks of the material is the more sophisticated production process. Due to a ductile matrix material with an increased stickiness during milling, a two-step milling procedure with the use of ZrO2 milling balls was applied to raise the production yield and to use the abrasion of the ZrO2 as an additional element to facilitate the formation of nano-sized precipitates. To get a better understanding how the different powder particle sizes after milling affect final properties, sieving was applied and revealed a serious effect in terms of precipitate size, distribution and mechanical properties. Grain sizes in relation to the precipitate size, annealing time and processing parameters were determined and compared to the mechanical properties. Hardness and tensile test have pointed out, that the precipitate size and number are more important in respect to the ultimate tensile strength than the grain size and that in this study hot-rolled material exhibited the better properties. The investigation of the microstructure illustrated the stability of precipitates during annealing at 1100 °C for 40 h. These heat treatments also led to a consistent grain size, due to the pinning effect of the grain boundaries, caused by precipitates.

  16. Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review

    Directory of Open Access Journals (Sweden)

    Kaya Eren

    2017-12-01

    Full Text Available Nickel based superalloys offer high strength, corrosion resistance, thermal stability and superb thermal fatigue properties. However, they have been one of the most difficult materials to machine due to these properties. Although we are witnessing improved machining strategies with the developing machining, tooling and inspection technologies, machining of nickel based superalloys is still a challenging task due to in-process strains and post process part quality demands.

  17. 46 CFR 280.3 - Standards governing award of an ODS agreement.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Standards governing award of an ODS agreement. 280.3 Section 280.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING... LINER OPERATORS § 280.3 Standards governing award of an ODS agreement. No ODS agreement, including any...

  18. Microstructure properties relationship in transient liquid phase diffusion bonds made in MA 758 superalloy

    International Nuclear Information System (INIS)

    Ekrami, A.

    2003-01-01

    Transient liquid phase diffusion bonding procedure was used to join an ODS Ma 758 superalloy in two conditions, wrought fine grains, and recrystallised grains. An Ni-Cr-B-Si alloy was used as an interlayer. Bonding was carried out at 1100 d ig C for bonding hold times of 15,30, and 60 minutes under vacuum of 6x10 -4 torr. Bonded samples were homogenized at 1360 d ig C for one hour and then cooled with a rate of 15 d ig C /min. Shear and fatigue strengths of bonds were determined. The results showed that there is no effect of bonding hold times on shear strength after bonding hold time of 30 minutes. At a given bonding hold time, the shear strength of bonds made in the recrystallized condition was greater than the shear strength of bonds made in the fine grain condition. The same was true for fatigue strength at a given cycle to fracture. Transient liquid phase bonding was also carried out under pressure of 0.1 Mpa under the same temperature and bonding hold time for fine grain material. Microstructure studies of bonds made under pressure showed no effects of pressure on bond region grain size. Shear tests results also demonstrate little effects of pressure on shear strength of bonds

  19. Phase-transformation and subgrain-deformation characteristics in a cobalt-based superalloy

    International Nuclear Information System (INIS)

    Benson, M.L.; Reetz, B.; Liaw, P.K.; Reimers, W.; Choo, H.; Brown, D.W.; Saleh, T.A.; Klarstrom, D.L.

    2011-01-01

    Research highlights: → The mechanical behavior of a cobalt-based superalloy was investigated. → Two diffraction techniques were used to study deformation mechanisms of materials. → In-situ neutron diffraction provides the volume-averaged information. → The peak-profile analysis reveals the information on a subgrain level. → The material exhibited a transformation texture for the HCP phase under loading. - Abstract: A complimentary set of experiments, in situ neutron diffraction and ex situ synchrotron X-ray diffraction, were used to study the phase-transformation and subgrain-deformation characteristics of a cobalt-based superalloy. The neutron diffraction indicated a strain-induced phase transformation in the cobalt-based superalloy under uniaxial tension and compression. The synchrotron X-ray diffraction revealed stacking-fault accumulation and twinning under the same loading conditions. The extent of transformation was found to be greater under tension than under compression. Tensile plastic strains below 2% were accommodated by the stacking-fault creation, while those greater than 2% were accommodated by the phase transformation. Twinning was found to be more active under compressive loading than under tensile loading.

  20. High Temperature Degradation of Powder-processed Ni-based Superalloy

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pizúrová, Naděžda; Roupcová, Pavla; Dymáček, Petr

    2015-01-01

    Roč. 22, č. 2 (2015), s. 85-94 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : powder materials * polycrystalline Ni-based superalloy * creep machine grips * oxidation Subject RIV: JG - Metallurgy

  1. OD Matrix Acquisition Based on Mobile Phone Positioning Data

    Directory of Open Access Journals (Sweden)

    Xiaoqing ZUO

    2014-06-01

    Full Text Available Dynamic OD matrix is basic data of traffic travel guidance, traffic control, traffic management and traffic planning, and reflects the basic needs of travelers on the traffic network. With the rising popularity of positioning technology and the communication technology and the generation of huge mobile phone users, the mining and use of mobile phone positioning data, can get more traffic intersections and import and export data. These data will be integrated into obtaining the regional OD matrix, which is bound to bring convenience. In this article, mobile phone positioning data used in the data acquisition of intelligent transportation system, research a kind of regional dynamic OD matrix acquisition method based on the mobile phone positioning data. The method based on purpose of transportation, using time series similarity classification algorithm based on piecewise linear representation of the corner point (CP-PLR, mapping each base station cell to traffic zone of different traffic characteristics, and through a series of mapping optimization of base station cell to traffic zone to realize city traffic zone division based on mobile phone traffic data, on the basis, adjacency matrix chosen as the physical data structure of OD matrix storage, the principle of obtaining regional dynamic OD matrix based on the mobile phone positioning data are expounded, and the algorithm of obtaining regional dynamic OD matrix based on mobile phone positioning data are designed and verified.

  2. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, R., E-mail: r.koegler@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Anwand, W. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Richter, A. [Department of Engineering, Technical University of Applied Sciences Wildau, Bahnhofstrasse 1, 15745 Wildau (Germany); Butterling, M.; Ou, Xin; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Chen, C.-L. [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2012-08-15

    Open volume defects generated by ion implantation into oxide dispersion strengthened (ODS) alloy and the related hardness were investigated by positron annihilation spectroscopy and nanoindentation measurements, respectively. Synchronized dual beam implantation of Fe and He ions was performed at room temperature and at moderately enhanced temperature of 300 Degree-Sign C. For room temperature implantation a significant hardness increase after irradiation is observed which is more distinctive in heat treated than in as-received ODS alloy. There is also a difference between the simultaneous and sequential implantation mode as the hardening effect for the simultaneously implanted ODS alloy is stronger than for sequential implantation. The comparison of hardness profiles and of the corresponding open volume profiles shows a qualitative agreement between the open volume defects generated on the nanoscopic scale and the macroscopic hardness characteristics. Open volume defects are drastically reduced for performing the simultaneous dual beam irradiation at 300 Degree-Sign C which is a more realistic temperature under application aspects. Few remaining defects are clusters of 3-4 vacancies in connection with Y oxide nanoparticles. These defects completely disappear in a shallow layer at the surface. The results are in agreement with hardness measurements showing little hardness increase after irradiation at 300 Degree-Sign C. Suitable characteristics of ODS alloy for nuclear applications and the close correlation between He-related open volume defects and the hardness characteristics are verified.

  3. Crystallographic, microstructure and mechanical characteristics of dynamically processed IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.D., E-mail: ads.hpu@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Sharma, A.K. [Terminal Ballistics Research Laboratory, Chandigarh 160030 (India); Thakur, N. [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2014-06-01

    Highlights: • Measurement of detonation velocity and compaction of powder are achieved together. • A plastic explosive detonation results into dense compacts without grain-growth. • We have studied crystallographic, micromechanical and microstructural features. • The results show no segregation within the compacts. • Density (98%), microhardness (470 ± 3)H{sub v}, microstrain (0.3%), UTS (806 MPa) are obtained. - Abstract: Dynamic consolidation of IN718 superalloy powder without grain-growth and negligible density gradient is accomplished through explosively generated shock wave loading. The compaction of powder and measurement of detonation velocity are achieved successfully in a single-shot experiment by employing instrumented detonics. A plastic explosive having a detonation velocity of the order of 7.1 km/s in a direct proximity with superalloy powder is used for the consolidation process. The compacted specimens are examined for structural, microstructure and mechanical characteristics. X-ray diffraction (XRD) study suggests intact crystalline structure of the compacts. A small micro-strain (0.26%) is observed by using Williamson–Hall method. Wavelength dispersive spectroscopy indicates no segregation within the shock processed superalloy compacted specimens. The monoliths investigated for fractography by using field emission scanning electron microscopy (FE-SEM) show original dendritic structure accompanied by re-solidified molten regions across the interparticle boundaries. Depth-sensing indentations (at 1.96 N) on compacted specimens show excellent micro-hardness of the order of (470 ± 3)H{sub v}. Tensile and compressive strengths of the superalloy monolith are observed to be 806 and 822 MPa, respectively.

  4. Friction Stir Processing of ODS and FM Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Chun, Young Bum; Noh, Sang Hoon; Jang, Jin Sung; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In ODS steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and martensite, and the oxide

  5. Friction Stir Processing of ODS and FM Steels

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Chun, Young Bum; Noh, Sang Hoon; Jang, Jin Sung; Kim, Tae Kyu

    2013-01-01

    In ODS steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and martensite, and the oxide

  6. Microstructure and Mechanical Property of 12Cr Oxide Dispersion Strengthened Steel

    Science.gov (United States)

    Xu, Haijian; Lu, Zheng; Jia, Chunyan; Gao, Hao; Liu, Chunming

    2016-03-01

    Nanostructured oxide dispersion strengthened (ODS) steels with nominal compositions (wt%): Fe-12Cr-2W-0.3Ti-0.3Y2O3 were produced by mechanical alloying and hot isostatic pressing. The microstructure was characterized by means of electron microscopy (EBSD, TEM and HRTEM) and the hardness and the tensile properties at different temperatures were measured. The results showed that the ultimate tensile strength of the fabricated 12Cr-ODS steel reached nearly 1,100 MPa at room temperature and maintained around 340 MPa at 700°C. Nano-oxide particles with size ranging from several nm to 30 nm and the number density was 3.6 × 1020/m3 were observed by TEM. Following heat treatment, including normalizing at 1,100°C for 1 h and tempering at 750°C for 2 h, the average grain size was a little decreased. The number of nano-oxide particles increased and the number density was 8.9 × 1020/m3. Specimens showed much higher ductility and there was a slight increase of ultimate tensile strength and Vickers hardness at the same time.

  7. Phase Stability of a Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Gayda, John; Kantzos, P.; Telesman, Jack; Gang, Anita

    2006-01-01

    Advanced powder metallurgy superalloy disks in aerospace turbine engines now entering service can be exposed to temperatures approaching 700 C, higher than those previously encountered. They also have higher levels of refractory elements, which can increase mechanical properties at these temperatures but can also encourage phase instabilities during service. Microstructural changes including precipitation of topological close pack phase precipitation and coarsening of existing gamma' precipitates can be slow at these temperatures, yet potentially significant for anticipated disk service times exceeding 1,000 h. The ability to quantify and predict such potential phase instabilities and degradation of capabilities is needed to insure structural integrity and air worthiness of propulsion systems over the full life cycle. A prototypical advanced disk superalloy was subjected to high temperature exposures, and then evaluated. Microstructural changes and corresponding changes in mechanical properties were quantified. The results will be compared to predictions of microstructure modeling software.

  8. Effects of electrical discharge surface modification of superalloy Haynes 230 with aluminum and molybdenum on oxidation behavior

    International Nuclear Information System (INIS)

    Bai, C.-Y.

    2007-01-01

    The effects of the electrical discharge alloying (EDA) process on improving the high temperature oxidation resistance of the Ni-based superalloy Haynes 230 have been investigated. The 85 at.% Al and 15 at.% Mo composite electrode provided the surface alloying materials. An Al-rich layer is produced on the surface of the EDA specimen alloyed with positive electrode polarity, whereas, many discontinuous piled layers are attached to the surface of the EDA superalloy when negative electrode polarity is selected. The oxidation resistance of the specimen alloyed with positive electrode polarity is better than that of the unalloyed superalloy, and the effective temperature of oxidation resistance of the alloyed layer can be achieved to 1100 o C. Conversely, the oxidation resistance of the other EDA specimen alloyed with negative electrode polarity is even worse than that of the unalloyed superalloy

  9. Zaburzenia odżywiania – dylematy diagnozy

    Directory of Open Access Journals (Sweden)

    Maciej Wojciech Pilecki

    2014-06-01

    Full Text Available Celem badania było przedstawienie dylematów dotyczących diagnozy zaburzeń odżywiania się na przykładzie alternatywnego do kryteriów klinicznych podziału grupy dziewcząt z rozpoznaniem tych zaburzeń, uwzględniającego wyniki kwestionariuszy samooceny. Badaniem objęto 116 dziewcząt z rozpoznaniem któregoś z zaburzeń odżywiania się według DSM-IV, konsultowanych po raz pierwszy w latach 2002–2004 w ambulatorium Oddziału Klinicznego Psychiatrii Dzieci i Młodzieży Szpitala Uniwersyteckiego w Krakowie. Z uwagi na ograniczenia statystyczne modelu jedynie zmienne zależne, takie jak: samoocena obecności objawów depresyjnych (Kwestionariusz Depresji Becka, BDI, samoocena obecności problemów z odżywianiem się (Kwestionariusz Postaw wobec Odżywiania, EAT26, obraz siebie (Ja Społeczne Kwestionariusza Obrazu Siebie Offera, JaSpoł QSIA i relacje rodzinne (skala Intymności Skali Rodziny Pochodzenia, INT FOS, zostały poddane analizie skupień metodą k-średnich. Przeprowadzone analizy doprowadziły do wyłonienia pięciu skupień niepokrywających się z podziałem na poszczególne diagnozy kliniczne. Wszystkie skupienia różnią się wynikami tworzących je skal kwestionariuszowych. Pierwsze skupienie okazało się charakteryzować osoby o niskim w swojej ocenie nasileniu występowania problemów z odżywianiem się i depresyjności oraz korzystnym obrazie swojego funkcjonowania społecznego i relacji rodzinnych. Zależność obserwowana w skupieniu 5. była odwrotna. Przeważająca liczba pacjentek w skupieniu 1. miała rozpoznaną anoreksję restrykcyjną, a w skupieniu 5. bulimię. Najbardziej odmienne od pozostałych okazało się skupienie 3. Pozytywnemu obrazowi siebie, relacji rodzinnych w badanych obszarach towarzyszyło duże nasilenie występowania problemów z odżywianiem się i niskie depresyjności w samoocenie. Otrzymane wyniki wskazują, iż podział kliniczny zaburzeń odżywania się proponowany w ICD i

  10. MGI-oriented High-throughput Measurement of Interdiffusion Coefficient Matrices in Ni-based Superalloys

    Directory of Open Access Journals (Sweden)

    TANG Ying

    2017-01-01

    Full Text Available One of the research hotspots in the field of high-temperature alloys was to search the substitutional elements for Re in order to prepare the single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients in comparison with that of Re was one of the effective strategies. In multicomponent alloys, the interdiffusivity matrix were used to comprehensively characterize the diffusion ability of any alloying elements. Therefore, accurate determination of the composition-dependant and temperature-dependent interdiffusivities matrices of different elements in γ and γ' phases of Ni-based superalloys was high priority. The paper briefly introduces of the status of the interdiffusivity matrices determination in Ni-based superalloys, and the methods for determining the interdiffusivities in multicomponent alloys, including the traditional Matano-Kirkaldy method and recently proposed numerical inverse method. Because the traditional Matano-Kirkaldy method is of low efficiency, the experimental reports on interdiffusivity matrices in ternary and higher order sub-systems of the Ni-based superalloys were very scarce in the literature. While the numerical inverse method newly proposed in our research group based on Fick's second law can be utilized for high-throughput measurement of accurate interdiffusivity matrices in alloys with any number of components. After that, the successful application of the numerical inverse method in the high-throughput measurement of interdiffusivity matrices in alloys is demonstrated in fcc (γ phase of the ternary Ni-Al-Ta system. Moreover, the validation of the resulting composition-dependant and temperature-dependent interdiffusivity matrices is also comprehensively made. Then, this paper summarizes the recent progress in the measurement of interdiffusivity matrices in γ and γ' phases of a series of core ternary Ni-based superalloys achieved in

  11. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy

    Science.gov (United States)

    Mori, A.; Mamiya, H.; Ohnuma, M.; Ilavsky, J.; Ohishi, K.; Woźniak, Jarosław; Olszyna, A.; Watanabe, N.; Suzuki, J.; Kitazawa, H.; Lewandowska, M.

    2018-04-01

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and alloy contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 °C. Sintering at 1000 °C for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128 nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.

  12. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  13. Analysis of laser beam weldability of Inconel 738 superalloy

    International Nuclear Information System (INIS)

    Egbewande, A.T.; Buckson, R.A.; Ojo, O.A.

    2010-01-01

    The susceptibility of pre-weld heat treated laser beam welded IN 738 superalloy to heat affected zone (HAZ) cracking was studied. A pre-weld heat treatment that produced the minimal grain boundary liquation resulted in a higher level of cracking compared to those with more intergranular liquation. This deviation from the general expectation of influence of intergranular liquation extent on HAZ microfissuring is attributable to the reduction in the ability of the base alloy to accommodate welding tensile stress that accompanied a pre-weld heat treatment condition designed to minimize intergranular liquation. Furthermore, in contrast to what has been generally reported in other nickel-based superalloys, a decrease in laser welding speed resulted in increased HAZ cracking in the IN 738, which can be attributed to exacerbated process instability at lower welding speeds.

  14. Effects of cobalt in nickel-base superalloys

    Science.gov (United States)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  15. Low-Cobalt Powder-Metallurgy Superalloy

    Science.gov (United States)

    Harf, F. H.

    1986-01-01

    Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).

  16. Torsional energy levels of CH3OH+/CH3OD+/CD3OD+ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations

    International Nuclear Information System (INIS)

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-01-01

    The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling

  17. 3D imaging and characterisation of strengthening particles in inconel 718 using FIB tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kruk, Adam; Gruszczynski, Adam; Czyrska-Filemonowicz, Aleksandra [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2011-07-01

    The Inconel 718 is a commercial nickel-base superalloy, widely used for critical pieces in turbine engines. Its microstructure consists of the {gamma} matrix and strengthening coherent nanoparticles {gamma}' and {gamma}''. In the present work FIB tomography technique was used for imaging and characterisation of strengthening particles. FIB tomography is based on a serial sectioning procedure using a FIB/SEM dual beam workstation. Repeated removal of layers as thin as several nm for some hundred times allows to investigate at total a volume of some {mu}m3 with a voxel size as 2.5 nm x 2.5 nm x 2.5 nm. 3D mapping of nanoparticles with high Z-resolution by serial FIB slicing (in a distance of about 2.5 nm) and SEM imaging was performed. Ga ion beam at 30 kV was used to perform a precise in-situ milling. The SEM images at accelerating voltage 1.5 kV were taken with using ESB detector. The real 3D-data of precipitates obtained by FIB tomography, open a new possibility for microstructure analysis of materials for industrial applications.

  18. Microstructural stability of 11Cr ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    Yamashiro, Tetsuya, E-mail: fgsjkr@eng.hokudai.ac.jp [Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Ukai, Shigeharu; Oono, Naoko [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Ohtsuka, Satoshi; Kaito, Takeji [Advanced Nuclear System R& D Directorate, Japan Atomic Energy Agency (JAEA), 4002, Narita, Oarai, Ibaraki-pref. 311-1393 (Japan)

    2016-04-15

    Aiming at further improvement of high-temperature oxidation and corrosion resistance, 11CrODS steel with martensitic base structure has been previously developed, as a candidate fuel cladding material for 4th generation advanced nuclear reactors. In this study, the microstructure of 11CrODS steel was characterized by means of EBSD and nanoindentation hardness measurement. The continuous cooling transformation (CCT) diagram was constructed. Upper critical cooling rate, which is minimum cooling rate necessary to form martensitic structure, was derived to be 60 °C/min (3600 °C/h). In contrast, lower critical cooling rate preventing from martensite formation, was derived to be 10 °C/min (600 °C/h). An area fraction of so called residual ferrite was estimated by image processing of EBSD-IQ map to be 21% of the total area. This fraction of the residual ferrite in 11CrODS steel was evaluated by considering the driving force for α to γ reverse transformation.

  19. Microstructural Characterization and Modeling of SLM Superalloy 718

    Science.gov (United States)

    Smith, Tim M.; Sudbrack, Chantal K.; Bonacuse, Pete; Rogers, Richard

    2017-01-01

    Superalloy 718 is an excellent candidate for selective laser melting (SLM) fabrication due to a combination of excellent mechanical properties and workability. Predicting and validating the microstructure of SLM-fabricated Superalloy 718 after potential post heat-treatment paths is an important step towards producing components comparable to those made using conventional methods. At present, obtaining accurate volume fraction and size measurements of gamma-double-prime, gamma-prime and delta precipitates has been challenging due to their size, low volume fractions, and similar chemistries. A technique combining high resolution distortion corrected SEM imaging and with x-ray energy dispersive spectroscopy has been developed to accurately and independently measure the size and volume fractions of the three precipitates. These results were further validated using x-ray diffraction and phase extraction methods and compared to the precipitation kinetics predicted by PANDAT and JMatPro. Discrepancies are discussed in context of materials properties, model assumptions, sampling, and experimental errors.

  20. Nickel-base superalloy powder metallurgy: state-of-the-art

    International Nuclear Information System (INIS)

    Allen, M.M.; Athey, R.L.; Moore, J.B.

    1975-01-01

    Development of powder metallurgical methods for fabrication of Ni-base superalloy turbine engine disks is reviewed. Background studies are summarized and current state-of-art is discussed for the F100 jet engine, advanced applications, and forging processes

  1. Detection of creep damage in a nickel base superalloy using NDE techniques

    International Nuclear Information System (INIS)

    Carreon, H.; Mora, B.; Barrera, G.

    2009-10-01

    Due to elevated temperatures, excessive stresses and severed corrosion conditions, turbine engine components are subject to creep processes that limit the components life such as a turbine bucket. The failure mechanism of a turbine bucket is related primarily to creep and corrosion and secondarily to thermal fatigue. As a result, it is desirable to assess the current conditions of such turbine component. This study uses the eddy current nondestructive evaluation technique in an effort to monitor the creep damage in a nickel base super-alloy, turbine bucket after service. The experimental results show an important electrical conductivity variation in eddy current images on the creep damage zone of nickel base super-alloy samples cut from a turbine bucket. Thermoelectric power measurements were also conducted in order to obtain a direct correlation between the presence of material changes due to creep damage and the electrical conductivity measurements. This research work shows an alternative non-destructive method in order to detect creep damage in a nickel base super-alloy turbine bucket. (Author)

  2. Zircaloy cladding ID/OD oxidation studies. Final report

    International Nuclear Information System (INIS)

    Westerman, R.E.; Hesson, G.M.

    1977-11-01

    The ID/OD oxide ratio that forms on Zircaloy tubing at temperatures relevant to postulated LOCA conditions was measured as a function of time, temperature, and distance from the rupture. The average ratio at the rupture position was less than unity, and decreased with decreasing test time and increasing distance from the point of rupture. The maximum observed ID/OD oxide ratio was 1.4. Ratios in excess of unity were typically found to be a consequence of the OD oxide being thinner than would have been anticipated from the nominal test conditions. Confirmatory data were also obtained on the isothermal oxidation kinetics of Zircaloy. These data are in good agreement with those obtained by other investigators and confirm the conservative nature of the Baker-Just equation that is required for use in licensing calculations

  3. Degradation of creep properties in a long-term thermally exposed nickel base superalloy

    International Nuclear Information System (INIS)

    Zrnik, J.; Strunz, P.; Vrchovinsky, V.; Muransky, O.; Novy, Z.; Wiedenmann, A.

    2004-01-01

    When exposed for long time at elevated temperatures of 430 and 650 deg. C the nickel base superalloy EI 698 VD can experience a significant decrease in creep resistance. The cause of the creep degradation of nickel base superalloy is generally attributed to the microstructural instability at prolonged high temperature exposure. In this article, the creep-life data, generated on long thermally exposed nickel base superalloy EI698 VD were related to the local microstructural changes observed using SEM and TEM analysing techniques. While structure analysis provided supporting evidence concerning the changes associated with grain boundary carbide precipitation, no persuasive evidence of a morphological and/or dimensional gamma prime change was showed. For clarifying of the role of gamma prime precipitates on alloy on creep degradation, the SANS (small angle neutron scattering) experiment was crucial in the characterization of the bulk-averaged gamma prime morphology and its size distribution with respect to the period of thermal exposure

  4. Internal Delorme's Procedure for Treating ODS Associated With Impaired Anal Continence.

    Science.gov (United States)

    Liu, Weicheng; Sturiale, Alessandro; Fabiani, Bernardina; Giani, Iacopo; Menconi, Claudia; Naldini, Gabriele

    2017-12-01

    The aim of this study was to evaluate the medium-term outcomes of internal Delorme's procedure for treating obstructed defecation syndrome (ODS) patients with impaired anal continence. In a retrospective study, 41 ODS patients who underwent internal Delorme's procedure between 2011 and 2015 were divided into 3 subgroups according to their associated symptoms of impaired continence, as urgency, passive fecal incontinence and both, before study. Then the patients' preoperative statuses, perioperative complications, and postoperative outcomes were investigated and collected from standardized questionnaires, including Altomare ODS score, Fecal Incontinence Severity Index (FISI), Patient Assessment of Constipation-Quality of Life Questionnaire (PAC-QoL), and Fecal Incontinence Quality of Life Scale (FIQLS). All results with a 2-tailed P ODS score, FISI, PAC-QoL, and FIQLS in all patients when comparing scores from before the operation with those at the final follow-up. Similar results were also observed in both the urgency subgroup and passive fecal incontinence subgroup, but there were no statistically significant improvements ( P > .05) in Altomare ODS score, FISI, PAC-QoL, or FIQLS in the urgency and passive fecal incontinence subgroups. Anorectal manometry showed the mean value of anal resting pressure increased 20%. Additionally, no major complications occurred. Internal Delorme's procedure is effective without major morbidity for treating ODS associated with urgency or passive fecal incontinence, but it may be less effective for treating ODS associated with both urgency and passive fecal incontinence.

  5. Proceedings of the Conference on Refractory Alloying Elements in Superalloys

    International Nuclear Information System (INIS)

    1984-01-01

    Some papers about the use of refractory metals in superalloys are presented. Mechanical properties, thermodynamics properties, use for nuclear fuels and corrosion resistance of those alloys are studied. (E.G.) [pt

  6. Reduction in Defect Content of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritherdon, J

    2001-05-15

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes results gathered during powder separation trials, conducted by the University of Groningen, Netherlands and coordinated by the University of Liverpool, involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-III''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out and all work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  7. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    International Nuclear Information System (INIS)

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-01-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ X-ray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 °C, while the screw type dislocations dominate at 600 °C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 °C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 °C may be explained by the activated cross slip of screw segments. - Highlights: • The tensile deformation of 9Cr ODS steel was studied by synchrotron irradiation. • The evolution of internal mean stress was calculated. • The evolution of dislocation character was determined by best-fit method. • Edge type dominates plasticity at RT and 300 °C, while screw type dominates at 600 °C.

  8. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Miao, Yinbin; Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-12-15

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ X-ray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 °C, while the screw type dislocations dominate at 600 °C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 °C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 °C may be explained by the activated cross slip of screw segments. - Highlights: • The tensile deformation of 9Cr ODS steel was studied by synchrotron irradiation. • The evolution of internal mean stress was calculated. • The evolution of dislocation character was determined by best-fit method. • Edge type dominates plasticity at RT and 300 °C, while screw type dominates at 600 °C.

  9. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  10. Erosion–corrosion behaviour of Ni-based superalloy Superni-75

    Indian Academy of Sciences (India)

    The super-heater and re-heater tubes of the boilers used in thermal power plants are ... mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the ...

  11. Rapid preparation of ceramic moulds for medium-sized superalloy castings with magnesia-phosphate-bonded bauxite-mullite investments

    Directory of Open Access Journals (Sweden)

    Li Tingzhong

    2010-11-01

    Full Text Available Phosphate-bonded investments have already been widely utilized in dental restoration and micro-casting of artistic products for its outstanding rapid setting and high strength. However, the rapid setting rate of investment slurry has up to now been a barrier to extend the use of such slurry in preparation of medium-sized ceramic moulds. This paper proposes a new process of rapid fabrication of magnesia-phosphate-bonded investment ceramic moulds for medium-sized superalloy castings utilizing bauxite and mullite as refractory aggregates. In order to determine the properties of magnesia-phosphate-bonded bauxite-mullite investments (MPBBMI, a series of experiments were conducted, including modification of the workable time of slurry by liquid(mL/powder(g(L/P ratio and addition of boric acid as retard agent and sodium tri-polyphosphate (STP as strengthening agent, and adjustment of bauxite (g/mullite(g(B/M ratio for mechanical strength. Mechanical vibration was applied to improve initial setting time and fluidity when pouring investment slurry; then an intermediate size ceramic mould for superalloy castings was manufactured by means of this rapid preparing process with MPBBMI material. The results showed that the MPBBMI slurry exhibits proper initial setting time and excellent fluidity when the L/P ratio is 0.64 and the boric acid content is 0.88wt.%. The fired specimens made from the MPBBMI material demonstrated adequate compression strength to withstand impact force of molten metal when the B/M ratio is 0.89 and the STP content is 0.92wt.%. The experimental results confirmed the feasibility of the proposed rapid fabricating process for medium-sized ceramic moulds with MPBBMI material by appropriate measures.

  12. Gamma prime precipitation modeling and strength responses in powder metallurgy superalloys

    Science.gov (United States)

    Mao, Jian

    Precipitation-hardened nickel-based superalloys have been widely used as high temperature structural materials in gas turbine engine applications for more than 50 years. Powder metallurgy (P/M) technology was introduced as an innovative manufacturing process to overcome severe segregation and poor workability of alloys with high alloying contents. The excellent mechanical properties of P/M superalloys also depend upon the characteristic microstructures, including grain size and size distribution of gamma' precipitates. Heat treatment is the most critical processing step that has ultimate influences on the microstructure, and hence, on the mechanical properties of the materials. The main objective of this research was to study the gamma ' precipitation kinetics in various cooling circumstances and also study the strength response to the cooling history in two model alloys, Rne88DT and U720LI. The research is summarized below: (1) An experimental method was developed to allow accurate simulation and control of any desired cooling profile. Two novel cooling methods were introduced: continuous cooling and interrupt cooling. Isothermal aging was also carried out. (2) The growth and coarsening kinetics of the cooling gamma' precipitates were experimentally studied under different cooling and aging conditions, and the empirical equations were established. It was found that the cooling gamma' precipitate versus the cooling rate follows a power law. The gamma' precipitate size versus aging time obeys the LSW cube law for coarsening. (3) The strengthening of the material responses to the cooling rate and the decreasing temperature during cooling was investigated in both alloys. The tensile strength increases with the cooling rate. In addition, the non-monotonic response of strength versus interrupt temperature is of great interest. (4) An energy-driven model integrated with the classic growth and coarsen theories was successfully embedded in a computer program developed to

  13. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  14. Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys

    International Nuclear Information System (INIS)

    Castro, V. de; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R.; Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L.

    2009-01-01

    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y 2 O 3 and the other Y 2 O 3 -free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes 3 C and M 23 C 6 carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M 23 C 6 carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  15. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  16. [Study on the correlation between PMI and OD changes in rat's plasma].

    Science.gov (United States)

    Li, Wei; Ke, Yong; He, Guang-she; Xu, Yong-cheng; Wang, Zhen-yuan

    2008-12-01

    We chose the UV-Vis spectrophotometry as a new way to investigate the postmortem interval (PMI). One hundred fifty Sprague-Dawley female rats (weight 260 g +/- 10 g, from Xi'an Jiaotong University Animal Center) were chosen and sacrificed by cervical dislocation. The bodies were kept in a controlled environmental chamber set at (20 +/- 2) degrees C. The plasma was harvested in course of 0 to 24 hours after death. The optical density (OD) at different wavelengths was measured with an UV-Vis spectrophotometer (type-UV250). It was shown that the OD changes of plasma at 577, 416 and 275 nm in 24 hours were dramatically related to PMI, and the R-indexes were 0.969, 0.97 and 0.898. The regression formulae of these indexes were worked out taking OD as independent variable, and PMI as variable. The quadratic equations were: PMI = 231.2270D(plasma at wavelength of 577 nm) - 501.160D(plasma at wavelength of 577 nm)2 - 3.0809(R2 = 0.945), PMI = 31.7426OD(plasma at wavelength of 416 nm) - 9.1847OD(plasma at wavelength of 416 nm)2 - 31837(R2 = 0.94), and PMI = 95.2388OD(plasma at wavelength of 275 nm) - 39.343OD(plama at wavelength of 275 nm)2 - 32.408(R2 = 0.795). It was concluded that the OD changes of rat's plasma are good and potential markers for the estimation of PMI and should be very useful in forensic practice.

  17. Strangeness photoproduction at the BGO-OD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jude, Thomas [Physikalisches Institut, Bonn University (Germany); Collaboration: BGO-OD-Collaboration

    2016-07-01

    The BGO-OD experiment at the ELSA accelerator facility uses an energy tagged bremstrahlung photon beam to investigate the internal structure of the nucleon. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. Compared to constituent quark models (CQMs), models including psuedoscalar meson-baryon interactions have had improved success in describing baryon excitation spectra. For example, the Λ(1405) appears to be dynamically generated from meson-baryon interactions at least to some extent. Vector-meson baryon interactions have also been predicted to dynamically generate states, which may have been observed in photoproduction reactions. BGO-OD is ideal for investigating low momentum transfer processes due to the acceptance and high momentum resolution at forward angles. This enables the investigation of degrees of freedom not derived from CQMs, and in particular, strangeness photoproduction where t-channel exchange mechanisms play a dominant role. With the first major data taking periods for BGO-OD complete, an extensive programme for the investigation of associated strangeness photoproduction has begun.

  18. Development of superalloys for 1700 C ultra-efficient gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hiroshi [National Institute for Materials Science, Tsukuba, Ibaraki (Japan). High Temperature Materials Center

    2010-07-01

    Mitigation of global warming is one of the most outstanding issues for the humankind. The Japanese government announced that it will reduce its greenhouse gas emissions by 25% from the 1990 level by 2020 as a medium-term goal. One of the promising approaches to achieving this is to improve the efficiency of thermal power plants emitting one-third of total CO{sub 2} gas in Japan. The key to improving the thermal efficiency is high temperature materials with excellent temperature capabilities allowing higher inlet gas temperatures. In this context, new single crystal superalloys for turbine blades and vanes, new coatings and turbine disk superalloys have been successfully developed for various gas turbine applications, typically 1700 C ultra-efficient gas turbines for next generation combine cycle power plants. (orig.)

  19. Isotope Effects in the Reactions of Chloroform Isotopologues with Cl, OH and OD

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Johnson, Matthew Stanley; Nielsen, Claus J.

    2009-01-01

    The kinetic isotope effects in the reactions of CHCl3, CDCl3, and 13CHCl3 with Cl, OH, and OD radicals have been determined in relative rate experiments at 298 ( 1 K and atmospheric pressure monitored by long path FTIR spectroscopy. The spectra were analyzed using a nonlinear least-squares spectral.......002, kCHCl3+OD/kCDCl3+OD ) 3.95 ( 0.03, and kCHCl3+OD/k13CHCl3+OD ) 1.032 ( 0.004. Larger isotope effects in the OH reactions than in the Cl reactions are opposite to the trends for CH4 and CH3Cl reported in the literature. The origin of these differences was investigated using electronic structure...

  20. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    Science.gov (United States)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-07-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were systematically investigated by high-resolution transmission electron microscopy. The majority of oxide nanoparticles were identified to be orthorhombic YAlO3. During hot consolidation and extrusion, they develop a coherent interface and a near cuboid-on-cube orientation relationship with the ferrite matrix in the material. After annealing at 1200 °C for 1 h, however, the orientation relationship between the oxide nanoparticles and the matrix becomes arbitrary, and their interface mostly incoherent. Annealing at 1300 °C leads to considerable coarsening of oxide nanoparticles, and a new orientation relationship of pseudo-cube-on-cube between oxide nanoparticles and ferrite matrix develops. The reason for the developing interfaces and orientation relationships between oxide nanoparticles and ferrite matrix under different conditions is discussed.

  1. Thermomechanical behavior of different Ni-base superalloys during cyclic loading at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Huber Daniel

    2014-01-01

    Full Text Available The material behavior of three Ni-base superalloys (Inconel® 718, Allvac® 718PlusTM and Haynes® 282® during in-phase cyclic mechanical and thermal loading was investigated. Stress controlled thermo-mechanical tests were carried out at temperatures above 700 ∘C and different levels of maximum compressive stress using a Gleeble® 3800 testing system. Microstructure investigations via light optical microscopy (LOM and field emission gun scanning electron microscopy (FEG-SEM as well as numerical precipitation kinetics simulations were performed to interpret the obtained results. For all alloys, the predominant deformation mechanism during deformation up to low plastic strains was identified as dislocation creep. The main softening mechanism causing progressive increase of plastic strain after preceding linear behavior is suggested to be recrystallization facilitated by coarsening of grain boundary precipitates. Furthermore, coarsening and partial transformation of strengthening phases was observed. At all stress levels, Haynes® 282® showed best performance which is attributable to its stable microstructure containing a high phase fraction of small, intermetallic precipitates inside grains and different carbides evenly distributed along grain boundaries.

  2. Crossed beam studies of O-+D2→OD-+D

    International Nuclear Information System (INIS)

    Johnson, S.G.; Kremer, L.N.; Metral, C.J.; Cross, R.J.

    1978-01-01

    Using the crossed-beam machine EVA we have measured the product angular and energy distributions of the reaction O - +D 2 →OD - +D in the relative energy range of 1.2-4.7 eV (5.7-23.1 eV LAB). Below 2.5 eV the product distribution is centered about the center of mass, indicating a long-lived complex. Above 2.5 eV the distribution slowly moves forward. Most of the available energy goes into internal energy of the products

  3. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    OpenAIRE

    Wan, Aoshuang; Xiong, Junjiang; Lyu, Zhiyang; Li, Kuang; Du, Yisen; Chen, Kejiao; Man, Ziyu

    2016-01-01

    A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading a...

  4. Performance-based financing with GAVI health system strengthening funding in rural Cambodia: a brief assessment of the impact.

    Science.gov (United States)

    Matsuoka, Sadatoshi; Obara, Hiromi; Nagai, Mari; Murakami, Hitoshi; Chan Lon, Rasmey

    2014-07-01

    Though Cambodia made impressive gains in immunization coverage between the years 2000 and 2005, it recognized several health system challenges to greater coverage of immunization and sustainability. The Global Alliance for Vaccines and Immunization (GAVI) opened a Health System Strengthening (HSS) funding window in 2006. To address the health system challenges, Cambodia has been receiving the GAVI HSS fund since October 2007. The major component of the support is performance-based financing (PBF) for maternal, neonatal and child health (MNCH) services. To examine the impact of the PBF scheme on MNCH services and administrative management in rural Cambodia. Quantitative and qualitative studies were conducted in Kroch Chhmar Operational District (OD), Cambodia. Quantitative analyses were conducted on the trends of the numbers of MNCH services. A brief analysis was conducted using qualitative data. After the commencement of the PBF support, the volume of MNCH services was significantly boosted. In addition, strengthened financial and operational management was observed in the study area. However, the quality of the MNCH services was not ensured. Technical assistance, rather than the PBF scheme, was perceived by stakeholders to play a vital role in increasing the quality of the services. To improve the quality of the health services provided, it is better to include indicators on the quality of care in the PBF scheme. Mutual co-operation between PBF models and technical assistance may ensure better service quality while boosting the quantity. A robust but feasible data validation mechanism should be in place, as a PBF could incentivize inaccurate reporting. The capacity for financial management should be strengthened in PBF recipient ODs. To address the broader aspects of MNCH, a balanced input of resources and strengthening of all six building blocks of a health system are necessary. Published by Oxford University Press in association with The London School of Hygiene

  5. 46 CFR 280.8 - Certain ODS agreement provisions not affected.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Certain ODS agreement provisions not affected. 280.8 Section 280.8 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING... LINER OPERATORS § 280.8 Certain ODS agreement provisions not affected. The provisions of this part are...

  6. HPLC separation of triacylglycerol positional isomers on a polymeric ODS column.

    Science.gov (United States)

    Kuroda, Ikuma; Nagai, Toshiharu; Mizobe, Hoyo; Yoshimura, Nobuhito; Gotoh, Naohiro; Wada, Shun

    2008-07-01

    A polymeric ODS column was applied to the resolution of triacylglycerol positional isomers (TAG-PI), i.e. 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), with a recycle HPLC system. To investigate the ODS column species and the column temperatures for the resolution of a TAG-PI pair, a mixture of OPO and OOP was subjected to an HPLC system equipped with a non-endcapped polymeric, endcapped monomeric, endcapped intermediate, or non-endcapped monomeric ODS column at three different column temperatures (40, 25, or 10 degrees C). Only the non-endcapped polymeric ODS column achieved the separation of OPO and OOP, and the lowest column temperature (10 degrees C) showed the best resolution for them. The other pair of TAG-PI, a mixture of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO) was also subjected to the system equipped with a non-endcapped polymeric or monomeric ODS column at five different column temperatures (40, 32, 25, 17, and 10 degrees C). Thus, POP and PPO were also separated on only the non-endcapped polymeric ODS column at 25 degrees C. However, no clear peak appeared at 10 degrees C. These results would indicate that the polymeric ODS stationary phase has an ability to recognize the structural differences between TAG-PI pairs. Also, the column temperature is a very important factor for separating the TAG-PI pair, and the optimal temperature would relate to the solubility of TAG-PI in the mobile phase. Furthermore, the recycle HPLC system provided measurements for the separation and analysis of TAG-PI pairs.

  7. The precipitation behavior of superalloy ATI Allvac 718Plus

    Energy Technology Data Exchange (ETDEWEB)

    Zickler, Gerald A.; Schnitzer, Ronald; Leitner, Harald [Department of Physical Metallurgy and Materials Testing, Christian Doppler Laboratory Early Stages of Precipitation, Montanuniversitaet Leoben (Austria); Radis, Rene [Christian Doppler Laboratory Early Stages of Precipitation, Institute of Materials Science and Technology, Vienna University of Technology (Austria); Institute for Materials Science and Welding, Graz University of Technology (Austria); Kozeschnik, Ernst [Christian Doppler Laboratory Early Stages of Precipitation, Institute of Materials Science and Technology, Vienna University of Technology (Austria); Stockinger, Martin [Boehler Schmiedetechnik GmbH and Co. KG., Kapfenberg (Austria)

    2010-03-15

    ATI Allvac 718Plus is a novel nickel-based superalloy, which was designed for heavy-duty applications in aerospace gas turbines. The precipitation kinetics of the intermetallic {delta} (Ni{sub 3}Nb) and {gamma}' (Ni{sub 3}(Al,Ti)) phases in this alloy are of scientific as well as technological interest because of their significant influence on the mechanical properties. Important parameters like grain size are controlled by coarse {delta} precipitates located at grain boundaries, whereas small {gamma}' precipitates are responsible for strengthening by precipitation hardening. In the present study, the microstructure is investigated by three-dimensional atom probe tomography and simulated by computer modeling using the thermo-kinetic software MatCalc. The results of numerical simulations and experimental data are compared and critically discussed. It is shown that the chemical compositions of the phases change during isothermal aging, and the precipitation kinetics of {delta} and {gamma}' phases interact with each other as shown in a time temperature precipitation (TTP) plot. The TTP plot shows C-shaped curves with characteristic discontinuities in the temperature range, where simultaneous and concurrent precipitation of the {delta} and {gamma}' phases occurs. This leads to a competition in the diffusion of Nb and Al, which are partly present in both phases. Thus, the present study gives important information on heat treatments for ATI Allvac 718Plus in order to achieve the desired microstructure and mechanical properties. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Effect of mechanical alloying and compaction parameters on the mechanical properties and microstructure of EUROFER 97 ODS steel

    International Nuclear Information System (INIS)

    Ramar, A.; Oksiuta, Z.; Baluc, N.; Schaeublin, R.

    2006-01-01

    Oxide dispersion strengthened (ODS) ferritic / martensitic (F/M) steels appear to be promising candidates for the future fusion reactor. Their inherent properties, good thermal conductivity, swelling resistance and low radiation damage accumulation, deriving from the base material EUROFER 97, are further enhanced by the presence of the fine dispersion of oxide particles. They would allow in principle for a higher operating temperature of the fusion reactor, which improves its thermal efficiency. In effect, their strength remains higher than the base material with increasing temperature. Their creep properties are also improved relatively to the base material. It is the pinning of dislocations at dispersed oxide particles that helps to improve the high temperature mechanical properties. EUROFER97 is a reduced activation F/M steel, whose chemical composition is 8.9 wt. % Cr, 1.1 wt. % W, 0.47 wt. % Mn, 0.2 wt. % V, 0.14 wt. % Ta and 0.11 wt. % C and Fe for the balance. A new ODS F/M steel based on EUROFER 97 is developed with the strengthening material as Y 2 O 3 maintained at 0.3wt% based on our past experience. The ODS powder is produced by a different powder metallurgy route. The Eurofer 97 atomized powder with particle sizes around 45 μm is ball milled in argon atmosphere in a planetary ball mill together with Yttria particles with sizes about 10 to 30 nm. The milled powders are now canned in a steel container. They are degassed at 450 o C for 3 hours under a vacuum of 10-5 mbar. The canned sample is sealed in vacuum and finally compacted by hot isostatic pressing (HIP) in argon atmosphere under a pressure of 180 MPa at 1000 o C for 1 hour. Electron microscopy and X-ray diffraction observations are done at regular intervals during ball milling to identify changes in the particle and crystallite size and in particular with the solubility of Yttria in the matrix. Further, The microstructure and mechanical properties of final compacted material is assessed. The

  9. Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials

    Energy Technology Data Exchange (ETDEWEB)

    Ribis, J., E-mail: joel.ribis@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Thual, M.A. [LLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette (France); Guilbert, T.; Carlan, Y. de [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legris, A. [UMET, CNRS/UMR 8207, Bât. C6, Univ. Lille 1, 59655 Villeneuve d’Ascq (France)

    2017-02-15

    ODS steels are a promising class of structural materials for sodium cooled fast reactor application. The ultra-high density of the strengthening nanoclusters dispersed within the ferritic matrix is responsible of the excellent creep properties of the alloy. Fine characterization of the nanoclusters has been conducted on a Fe-14Cr-0.3Ti-0.3Y{sub 2}O{sub 3} ODS material using High Resolution and Energy Filtered Transmission Electron Microscopy. The nanoclusters exhibit a cubic symmetry possibly identified as f.c.c and display a non-equilibrium YTiCrO chemical composition thought to be stabilized by a vacancy supersaturation. These nanoclusters undergo relaxation towards the Y{sub 2}Ti{sub 2}O{sub 7}-like state as they grow. A Cr shell is observed around the relaxed nano-oxides, this size-dependent shell may form after the release of Cr by the particles. The relaxation energy barrier appears to be higher for the smaller particles probably owing to a volume/surface ratio effect in reason to the full coherency of the nanoclusters. - Highlights: • The nanoclusters display a f.c.c. cubic symmetry and a non-equilibrium YTiCrO chemical composition. • During thermal annealing the coherent nanocluster transform into semi-coherent pyrochlore particles. • A Cr ring is observed around the relaxed pyrochlore type particles.

  10. [Development and integration of the Oncological Documentation System ODS].

    Science.gov (United States)

    Raab, G; van Den Bergh, M

    2001-08-01

    To simplify clinical routine and to improve medical quality without exceeding the existing resources. Intensifying communication and cooperation between all institutions of patients' health care. The huge amount of documentation work of physicians can no longer be done without modern tools of paperless data processing. The development of ODS was a tight cooperation between physician and technician which resulted in a mutual understanding and led to a high level of user convenience. - At present all cases of gynecology, especially gynecologic oncology can be documented and processed by ODS. Users easily will adopt the system as data entry within different program areas follows the same rules. In addition users can choose between an individual input of data and assistants guiding them through highly specific areas of documentation. ODS is a modern, modular structured and very fast multiuser database environment for in- and outpatient documentation. It automatically generates a lot of reports for clinical day to day business. Statistical routines will help the user reflecting his work and its quality. Documentation of clinical trials according to the GCP guidelines can be done by ODS using the internet or offline datasharing. As ODS is the synthesis of a computer based patient administration system and an oncological documentation database, it represents the basis for the construction of the electronical patient chart as well as the digital documentation of clinical trials. The introduction of this new technology to physicians and nurses has to be done slowly and carefully, in order to increase motivation and to improve the results.

  11. Corrosion of oxide dispersion strengthened iron–chromium steels and tantalum in fluoride salt coolant: An in situ compatibility study for fusion and fusion–fission hybrid reactor concepts

    International Nuclear Information System (INIS)

    El-Dasher, Bassem; Farmer, Joseph; Ferreira, James; Serrano de Caro, Magdalena; Rubenchik, Alexander; Kimura, Akihiko

    2011-01-01

    Highlights: ► ODS steel corrosion in molten fluoride salts was studied in situ using electrochemical impedance spectroscopy. ► Steel/coolant interfacial resistance increases from 600 to 800 °C due to an aluminum enriched layer forming at the surface. ► The addition of tungsten to ODS steels increases corrosion resistance measurably at 600 °C. - Abstract: Primary candidate classes of materials for future nuclear power plants, whether they be fission, fusion or hybrids, include oxide dispersion strengthened (ODS) ferritic steels which rely on a dispersion of nano-oxide particles in the matrix for both mechanical strength and swelling resistance, or tantalum alloys which have an inherent neutron-induced swelling resistance and high temperature strength. For high temperature operation, eutectic molten lithium containing fluoride salts are attractive because of their breeding capability as well as their relatively high thermal capacity, which allow for a higher average operating temperature that increases power production. In this paper we test the compatibility of Flinak (LiF–NaF–KF) salts on ODS steels, comparing the performance of current generation ODS steels developed at Kyoto University with the commercial alloy MA956. Pure tantalum was also tested for comparative purposes. In situ data was obtained for temperatures ranging from 600 to 900 °C using a custom-built high temperature electrochemical impedance spectroscopy cell. Results for ODS steels show that steel/coolant interfacial resistance increases from 600 to 800 °C due to an aluminum enriched layer forming at the surface, however an increase in temperature to 900 °C causes this layer to break up and aggressive attack to occur. Performance of current generation ODS steels surpassed that of the MA956 ODS steel, with an in situ impedance behavior similar or better than that of pure tantalum.

  12. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  13. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  14. Vitamin C deficiency exerts paradoxical cardiovascular effects in osteogenic disorder Shionogi (ODS) rats.

    Science.gov (United States)

    Vergely, Catherine; Goirand, Françoise; Ecarnot-Laubriet, Aline; Renard, Céline; Moreau, Daniel; Guilland, Jean-Claude; Dumas, Monique; Rochette, Luc

    2004-04-01

    Vitamin C is considered to be a very efficient water-soluble antioxidant, for which several new cardiovascular properties were recently described. The aim of this study was to determine in vivo the effects of a severe depletion of vitamin C on cardiac and vascular variables and reperfusion arrhythmias. For this purpose, we used a mutant strain of Wistar rats, osteogenic disorder Shionogi (ODS). After 15 d of consuming a vitamin C-deficient diet, ODS rats had a 90% decrease in plasma and tissue levels of ascorbate compared with ODS vitamin C-supplemented rats and normal Wistar rats. However, plasma antioxidant capacity, proteins, alpha-tocopherol, urate, catecholamines, lipids, and nitrate were not influenced by the vitamin C deficiency in ODS rats. Moreover, there was no difference between ODS vitamin C-deficient and -supplemented rats in heart rate and arterial pressure. After 5 min of an in vivo regional myocardial ischemia, various severe arrhythmias were observed, but their intensities were not modified by vitamin C in vitamin C-deficient ODS rats. The vascular reactivity, measured in vitro on thoracic arteries, was not altered by ascorbate deficiency in ODS rats. These unexpected results suggest that unidentified compensatory mechanisms play a role in maintaining normal cardiac function and vascular reactivity in vitamin C-deficient rats.

  15. In-situ formation of complex oxide precipitates during processing of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Jayasankar, K.; Pandey, Abhishek; Mishra, B.K.; Das, Siddhartha

    2016-01-01

    Highlights: • Use of dual drive planetary ball mill for Bench scale (>1 kg) production. • X-ray diffraction and TEM were used to study transformations during sintering. • HIPped and rolled samples with nearly 99% density successfully produced. - Abstract: In fusion and fission reactor material development, ODS alloys are the most suitable candidate materials due to its high temperature creep properties and irradiation resistance properties. This paper describes the preparation of oxide dispersion strengthened alloy powder in large quantity (>1 kg batch) in dual drive planetary ball mill using pre-alloyed ferrtic steel powder with nano sized Y_2O_3. The consolidation of the powders was carried out in hot isostatic press (HIP) followed by hot rolling. 99% of the theoretical density was achieved by this method. The vickers hardness values of pressed and rolled samples were in the range of 380 ± 2HV and 719 ± 2HV, respectively. Samples were further investigated using X-ray diffraction particle size analyzer and electron microscope. Initial increase in particle size with milling was observed showing flattening of the particle. It was found that 5 h of milling time is sufficient to reduce the particle size to achieve the desired size. Transmission electron microscopy analysis of milled ODS steel powder revealed a uniform distribution of combustion synthesized nano-Y_2O_3 in ferritic steel matrix after a milling time of 5 h. Preliminary results demonstrated suitability of dual drive planetary ball mill for mass production of alloy within a short time due to various kinds of forces acting at a time during milling process. Fine monoclinic Y_2Si_2O_7 precipitates were also observed in the steel. This study explains the particle characteristics of nano Y_2O_3 dispersed ODS powder and formation of nano clusters in ODS ferritic alloy.

  16. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  17. A comparative study of the corrosion resistance of incoloy MA 956 and PM 2000 superalloys

    Directory of Open Access Journals (Sweden)

    Maysa Terada

    2010-12-01

    Full Text Available Austenitic stainless steels, titanium and cobalt alloys are widely used as biomaterials. However, new medical devices require innovative materials with specific properties, depending on their application. The magnetic properties are among the properties of interest for some biomedical applications. However, due to the interaction of magnetic materials with Magnetic Resonance Image equipments they might used only as not fixed implants or for medical devices. The ferromagnetic superalloys, Incoloy MA 956 and PM 2000, produced by mechanical alloying, have similar chemical composition, high corrosion resistance and are used in high temperature applications. In this study, the corrosion resistance of these two ferritic superalloys was compared in a phosphate buffer solution. The electrochemical results showed that both superalloys are passive in this solution and the PM 2000 present a more protective passive film on it associated to higher impedances than the MA 956.

  18. The role of yttrium and titanium during the development of ODS ferritic steels obtained through the STARS route: TEM and XAS study

    Science.gov (United States)

    Ordás, Nerea; Gil, Emma; Cintins, Arturs; de Castro, Vanessa; Leguey, Teresa; Iturriza, Iñigo; Purans, Juris; Anspoks, Andris; Kuzmin, Alexei; Kalinko, Alexandr

    2018-06-01

    Oxide Dispersion Strengthened Ferritic Steels (ODS FS) are candidate materials for structural components in future fusion reactors. Their high strength and creep resistance at elevated temperatures and their good resistance to neutron radiation damage is obtained through extremely fine microstructures containing a high density of nanometric precipitates, generally yttrium and titanium oxides. This work shows transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) characterization of Fe-14Cr-2W-0.3Ti-0.24Y ODS FS obtained by the STARS route (Surface Treatment of gas Atomized powder followed by Reactive Synthesis), an alternative method to obtain ODS alloys that avoids the mechanical alloying to introduce Y2O3 powder particles. In this route, FS powders already containing Ti and Y, precursors of the nanometric oxides, are obtained by gas atomization. Then, a metastable Cr- and Fe-rich oxide layer is formed on the surface of the powder particles. During consolidation by HIP at elevated temperatures, and post-HIP heat treatments above the HIP temperature, this oxide layer at Prior Particle Boundaries (PPBs) dissociates, the oxygen diffuses, and Y-Ti-O nano-oxides precipitate in the ferritic matrix. TEM characterization combined with XAFS and XANES analyses have proven to be suitable tools to follow the evolution of the nature of the different oxides present in the material during the whole processing route and select appropriate HIP and post-HIP parameters to promote profuse and fine Y-Ti-O nanometric precipitates.

  19. Inhibitory effect of PTD-OD-HA fusion protein on Bcr-Abl in K562 cells

    Directory of Open Access Journals (Sweden)

    Miao GAO

    2012-10-01

    Full Text Available Objective To study the transduction dynamics, location of PTD-OD-HA fusion protein and its interaction with Bcr-Abl oncoprotein in K562 cell lines, and explore the influence of PTD-OD-HA fusion protein on oligomerization and tyrosine kinase activity of Bcr-Abl. Methods PTD-OD-HA fusion protein was labeled with FITC and co-cultured with K562 cells. The transduction efficiency of labeled PTD-OD-HA at different doses and time intervals was observed under fluorescence microscope. The location of labeled PTD-OD-HA fusion protein in K562 cells was detected by confocal microscopy. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was confirmed by coimmunoprecipitation. The phosphorylation of Bcr-Abl oncoprotein was detected by Western blotting. Results PTD-OD-HA fusion protein labeled with FITC was transduced into K562 cells in a dose- and time-dependent manner. PTD-OD-HA fusion protein was located in the cytoplasm of K562 cells and was consistent with the location of Bcr-Abl oncoprotein. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was proved in K562 cells. This interaction could interrupt the homologous oligomerization of Bcr-Abl oncoprotein and reduce the phosphorylation of Bcr-Abl oncoprotein. Conclusion PTD-OD-HA fusion protein could be transduced into K562 cells efficiently, inhibit the oligomerization and reduce the phosphorylation of Bcr-Abl oncoprotein.

  20. Investigation of microstructure changes in ODS-EUROFER after hydrogen loading

    International Nuclear Information System (INIS)

    Emelyanova, O.V.; Ganchenkova, M.G.; Malitskii, E.; Yagodzinskyy, Y.N.; Klimenkov, M.; Borodin, V.A.; Vladimirov, P.V.; Lindau, R.; Möslang, A.; Hänninen, H.

    2016-01-01

    The effect of hydrogen on the microstructure of mechanically tested ODS-EUROFER steel was investigated by means of transmission electron microscopy, thermal desorption spectroscopy, and atomistic simulations. The presence of yttrium oxide particles notably increases hydrogen uptake in ODS-EUROFER steel as compared to ODS-free EUROFER 97. Under tensile loading, hydrogen accumulation promotes the loss of cohesion at the oxide particle interfaces. First-principles molecular dynamics simulations indicate that hydrogen can be trapped at nanoparticle/matrix interface, creating OH-groups. The accumulation of hydrogen atoms at the oxide particle surface can be the reason for the observed hydrogen-induced oxide/matrix interface weakening and de-cohesion under the action of external tensile stress.

  1. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking faults Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  2. Hot isostatic pressing of single-crystal nickel-base superalloys: Mechanism of pore closure and effect on Mechanical properties

    Directory of Open Access Journals (Sweden)

    Epishin Alexander I.

    2014-01-01

    Full Text Available Pore annihilation was investigated in the single-crystal nickel-base superalloy CMSX-4. HIP tests at 1288 °C/103 MPa were interrupted at different times, then the specimens were investigated by TEM, metallography and density measurements. The kinetics of pore annihilation was determined. The pore closure mechanism was identified as plastic deformation on the octahedral slip systems. A model describing the kinetics of pore closure has been developed on the base of crystal plasticity and large strain theory. Mechanical tests with the superalloy CMSX-4 and the Ru-containing superalloy VGM4 showed, that HIP significantly increases the fatigue life at low temperatures but has no effect on creep strength.

  3. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718

    International Nuclear Information System (INIS)

    Wang, Y.; Shao, W.Z.; Zhen, L.; Zhang, X.M.

    2008-01-01

    Microstructure evolution during dynamic recrystallization (DRX) of superalloy 718 was studied by optical microscope and electron backscatter diffraction (EBSD) technique. Compression tests were performed at different strains at temperatures from 950 deg. C to 1120 deg. C with a strain rate of 10 -1 s -1 . Microstructure observations show that the recrystallized grain size as well as the fraction of new grains increases with the increasing temperature. A power exponent relationship is obtained between the dynamically recrystallized grain size and the peak stress. It is found that different nucleation mechanisms for DRX are operated in hot deformed superalloy 718, which is closely related to deformation temperatures. DRX nucleation and development are discussed in consideration of subgrain rotation or twinning taking place near the original grain boundaries. Particular attention is also paid to the role of continuous dynamic recrystallization (CDRX) at both higher and lower temperatures

  4. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398 ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  5. Advanced Scale Bridging Microstructure Analysis of Single Crystal Ni-Base Superalloys

    Czech Academy of Sciences Publication Activity Database

    Parsa, A. B.; Wollgramm, P.; Buck, H.; Somsen, C.; Kostka, A.; Povstugar, I.; Choi, P.-P.; Raabe, D.; Dlouhý, Antonín; Müller, J.; Spiecker, E.; Demtroder, K.; Schreuer, J.; Neuking, K.; Eggeler, G.

    2015-01-01

    Roč. 17, č. 2 (2015), s. 216-230 ISSN 1438-1656 Institutional support: RVO:68081723 Keywords : High temperature materials * Nickel based superalloys * EPMA * HRTEM Subject RIV: JG - Metallurgy Impact factor: 1.817, year: 2015

  6. A continuum model for the anisotropic creep of single crystal nickel-based superalloys

    International Nuclear Information System (INIS)

    Prasad, Sharat C.; Rajagopal, K.R.; Rao, I.J.

    2006-01-01

    In this paper, we extend the constitutive theory developed by Prasad et al. [Prasad SC, Rao IJ, Rajagopal KR. A continuum model for the creep of single crystal nickel-base superalloys. Acta Mater 2005;53(3):669-79], to describe the creep anisotropy associated with crystallographic orientation in single crystal nickel-based superalloys. The constitutive theory is cast within a general thermodynamic framework that has been developed to describe the response of materials capable of existing in multiple stress free configurations ('natural configurations'). Central to the theory is the prescription of the forms for the stored energy and rate of dissipation functions. The stored energy reflects the fact that the elastic response exhibits cubic symmetry. The model takes into account the fact that the symmetry of single crystals does not change with inelastic deformation. The rate of dissipation function is also chosen to be anisotropic, in that it reflects invariance to transformations that belong to the cubic symmetry group. The model is used to simulate uniaxial creep of single crystal nickel-based superalloy CMSX-4 for loading along the , and orientations. The predictions of the theory agree well with the experimental data

  7. Effect of transient liquid phase (TLP) bonding on the ductility of a Ni-base single crystal superalloy in a stress rupture test

    International Nuclear Information System (INIS)

    Liu, J.D.; Jin, T.; Zhao, N.R.; Wang, Z.H.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.

    2008-01-01

    A Ni-base single crystal superalloy was transient liquid phase (TLP) bonded using a Ni-Cr-B amorphous foil at 1230 deg. C for 8 h. Stress rupture tests of the TLP joint and a matrix sample were carried out at 982 deg. C/248 MPa and 1010 deg. C/248 MPa. The microstructures and fracture surfaces were studied using scanning electron microscopy (SEM). Transmission electron microscopy (TEM) investigations were performed after creep rupture testing to examine the deformation substructures. The results show that the stress rupture ductility of TLP joints is significantly decreased compared to the matrix sample. This reduction of the ductility of TLP joints can be attributed to solid solution strengthening by boron atoms, subgrain boundaries formed in the bonding zone and the concentration of creep cavities formed during the last stage of the stress rupture test

  8. Microstructural and mechanical characterization of injection molded 718 superalloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Özgün, Özgür [Bingol University, Faculty of Engineering and Architecture, Mechanical Eng. Dep., 12000 Bingol (Turkey); Gülsoy, H. Özkan, E-mail: ogulsoy@marmara.edu.tr [Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dep., 34722 Istanbul (Turkey); Yılmaz, Ramazan [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); Fındık, Fehim [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey) and International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina)

    2013-11-05

    Highlights: •Microstructural and mechanical properties of injection molded Nickel 718 superalloy were studied. •The maximum sintered density achieved this study was 97.3% at 1290 °C for 3 hours. •Tensile strength of 1022 MPa and elongation of 5.3% were achieved for sintered-heat treated samples. -- Abstract: This study concerns with the determination of optimum production parameters for injection molding 718 superalloy parts. And at the same time, microstructural and mechanical characterization of these produced parts was also carried out. At the initial stage, 718 superalloy powders were mixed with a multi-component binder system for preparing feedstock. Then the prepared feedstock was granulated and shaped by injection molding. Following this operation, the shaped samples were subjected to the debinding process. These samples were sintered at different temperatures for various times. Samples sintered under the condition that gave way to the highest relative density (3 h at 1290 °C) were solution treated and aged respectively. Sintered, solution treated and aged samples were separately subjected to microstructural and mechanical characterization. Microstructural characterization operations such as X-ray diffraction, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis showed that using polymeric binder system led to plentiful carbide precipitates to be occurred in the injection molded samples. It is also observed that the volume fractions of the intermetallic phases (γ′ and γ″) obtained by aging treatment were decreased due to the plentiful carbide precipitation in the samples. Mechanical characterization was performed by hardness measurements and tensile tests.

  9. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel

    Energy Technology Data Exchange (ETDEWEB)

    Boegelein, Thomas, E-mail: t.boegelein@liv.ac.uk; Louvis, Eleftherios; Dawson, Karl; Tatlock, Gordon J.; Jones, Andy R.

    2016-02-15

    Oxide dispersion strengthened (ODS) alloys exhibit superior mechanical and physical properties due to the presence of nanoscopic Y(Al, Ti) oxide precipitates, but their manufacturing process is complex. The present study is aimed at further investigation of the application of an alternative, Additive Manufacturing (AM) technique, Selective Laser Melting (SLM), to the production of consolidated ODS alloy components. Mechanically alloyed PM2000 (ODS-FeCrAl) powders have been consolidated and a fine dispersion of Y-containing precipitates were observed in an as built thin-walled component, but these particles were typically poly-crystalline and contained a variety of elements including O, Al, Ti, Cr and Fe. Application of post-build heat treatments resulted in the modification of particle structures and compositions; in the annealed condition most precipitates were transformed to single crystal yttrium aluminium oxides. During the annealing treatment, precipitate distributions homogenised and localised variations in number density were diminished. The resulting volume fractions of those precipitates were 25–40% lower than have been reported in conventionally processed PM2000, which was attributed to Y-rich slag-like surface features and inclusions formed during SLM. - Highlights: • A wall structure was grown from ODS steel powder using selective laser melting. • A fine dispersion of nano-precipitates was apparent in as-build material. • Precipitates were multi-phased containing several elements, e.g. O, Ti, Al, Fe, Cr, Y. • Post-build annealing changed those into typically single-crystalline Y–Al–O. • The anneal also reduced and stabilised the volume fraction of precipitates to ~ 0.006.

  10. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  11. Multiscale modelling of single crystal superalloys for gas turbine blades

    NARCIS (Netherlands)

    Tinga, T.

    2009-01-01

    Gas turbines are extensively used for power generation and for the propulsion of aircraft and vessels. Their most severely loaded parts, the turbine rotor blades, are manufactured from single crystal nickel-base superalloys. The superior high temperature behaviour of these materials is attributed to

  12. Efficient real time OD matrix estimation based on principal component analysis

    NARCIS (Netherlands)

    Djukic, T.; Flötteröd, G.; Van Lint, H.; Hoogendoorn, S.P.

    2012-01-01

    In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy.

  13. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  14. Oxide-assisted crack growth in hold-time low-cycle-fatigue of single-crystal superalloys

    Directory of Open Access Journals (Sweden)

    Suzuki Akane

    2014-01-01

    Full Text Available Compressive hold-time low-cycle fatigue is one of the important damage modes in Ni-based superalloy hot-gas path components. In strain controlled LCF, the compressive hold typically degrades fatigue life significantly due to creep relaxation and the resultant generation of tensile stress upon returning to zero strain. Crack initiation typically occurs on the surface, and therefore, the cracks are covered with layers of oxides. Recent finite element modeling based on experimental observations has indicated that the in-plane compressive stress in the alumina layer formed on the surface of the bond coat assists rumpling and, eventually, leads to initiation of cracks. The stress in the oxide layer continues to assist crack extension by pushing the alumina layer along the crack front during the compressive hold. In-situ measurements of the growth strains of alumina were performed using high energy synchrotron X-rays at Argonne National Lab. Specimens of single-crystal superalloys with and without aluminide coatings were statically pre-oxidized to form a layer of alumina at 1093 and 982 ∘C. For the in-situ synchrotron measurements, the specimens were heated up to the pre-oxidation temperatures with a heater. The alumina layers on both bare and coated specimens show compressive in-plane strains at both temperatures. The oxide strains on the superalloys showed dependency on temperature; on the other hand, the oxide strains in the aluminide coatings were insensitive to temperature. The magnitude of the compressive strains was larger on the superalloys than the ones on the aluminide coatings.

  15. OD (order-disorder) character of the crystal structure of godlevskite Ni9S8

    DEFF Research Database (Denmark)

    Merlino, Stefano; Makovicky, Emil

    2009-01-01

    Godlevskite Ni9S8 has been found to be an OD (order-disorder) structure consisting of two kinds of OD layers in strict alternation; these layers display stacking disorder. They have layer symmetries P( )2m and P212(2), respectively (symmetry elements in parentheses are perpendicular to OD layers......). Two structures with maximum degree of order (MDO polytypes), with space-group symmetries A222 and I4122, respectively, exist, together with more complex polytypes or disordered sequences. The OD character is in keeping with the frequent twinning of godlevskite....

  16. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    Science.gov (United States)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  17. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    Science.gov (United States)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  18. Thermodynamic assessment of liquid composition change during solidification and its effect on freckle formation in superalloys

    International Nuclear Information System (INIS)

    Long Zhengdong; Liu Xingbo; Yang Wanhong; Chang, K.-M.; Barbero, Ever

    2004-01-01

    The solidification macrosegregation, i.e. freckle, becomes more and more concerned with ever increasing demand for the large ingot size of superalloys. The evaluation of freckle formation is very difficult because of the less understanding of freckle formation mechanism and complex solidification behaviors of multi-component superalloys. The macrostructure of typical Nb-bearing and Ti-bearing superalloys in horizontally directional solidification and vacuum arc remelting (VAR) ingots were investigated to clarify the freckle formation mechanism. The thermodynamic approach was proposed to simulate the solidification behaviors. The relative Ra numbers, a reliable criterion, of freckle formation for some alloys were obtained based on the results of thermodynamic calculations. This thermodynamic approach was evaluated through comparison of the calculations from semi-experimental results. The Ra numbers obtained by thermodynamic approach are in good agreement with the ingot size capability of the industry melting shops, which is limited mainly by freckle defects

  19. Reactions of Three Lactones with Cl, OD, and O3

    DEFF Research Database (Denmark)

    Ausmeel, Stina; Andersen, C.; Nielsen, Ole John

    2017-01-01

    -methyl-γ-crotonolactone (3M-2(5H)-F) with Cl, OD, and O3 were investigated in a static chamber at 700 Torr and 298 ± 2 K. The relative rate method was used to determine kGVL+Cl = (4.56 ± 0.51) × 10-11, kGVL+OD = (2.94 ± 0.41) × 10-11, k2(5H)-F+Cl = (2.94 ± 0.41) × 10-11, k2(5H)-F+OD = (4.06 ± 0.073) × 10-12, k3M-2(5H......)-F+Cl = (16.1 ± 1.8) × 10-11, and k3M-2(5H)-F+OD = (12.6 ± 0.52) × 10-12, all rate coefficients in units of cm3 molecule-1 s-1. An absolute rate method was used to determine k2(5H)-F+O3 = (6.73 ± 0.18) × 10-20 and k3M-2(5H)-F+O3 = (5.42 ± 1.23) × 10-19 in units of cm3 molecule-1 s-1. Products were identified...

  20. Recovery of creep properties of the nickel-base superalloy nimonic 105

    CSIR Research Space (South Africa)

    Girdwood, RB

    1996-01-01

    Full Text Available Uniaxial constant stress creep tests were performed on the wrought nickel-base superalloy Nimonic 105. Entire creep curves were recorded and curve shapes analysed using the Theta Projection Concept. Rejuventive procedures were applied to pre...

  1. Processing and microstructure characterisation of oxide dispersion strengthened Fe–14Cr–0.4Ti–0.25Y2O3 ferritic steels fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Zhang, Hongtao; Huang, Yina; Ning, Huanpo; Williams, Ceri A.; London, Andrew J.; Dawson, Karl; Hong, Zuliang; Gorley, Michael J.; Grovenor, Chris R.M.; Tatlock, Gordon J.; Roberts, Steve G.; Reece, Michael J.; Yan, Haixue; Grant, Patrick S.

    2015-01-01

    Highlights: • Nanostructured ODS steels were successfully produced by SPS. • Presence of Y 2 Ti 2 O 7 nanoclusters was confirmed by synchrotron XRD and microscopy. • The chemistry of nanoclusters tested by ATP indicated they are Y–Ti–O oxides. - Abstract: Ferritic steels strengthened with Ti–Y–O nanoclusters are leading candidates for fission and fusion reactor components. A Fe–14Cr–0.4Ti + 0.25Y 2 O 3 (14YT) alloy was fabricated by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS). The densification of the 14YT alloys significantly improved with an increase in the sintering temperature. Scanning electron microscopy and electron backscatter diffraction revealed that 14YT SPS-sintered at 1150 °C under 50 MPa for 5 min had a high density (99.6%), a random grain orientation and a bimodal grain size distribution (<500 nm and 1–20 μm). Synchrotron X-ray diffraction patterns showed bcc ferrite, Y 2 Ti 2 O 7 , FeO, and chromium carbides, while transmission electron microscopy and atom probe tomography showed uniformly dispersed Y 2 Ti 2 O 7 nanoclusters of <5 nm diameter and number density of 1.04 × 10 23 m −3 . Due to the very much shorter consolidation times and lower pressures used in SPS compared with the more usual hot isostatic pressing routes, SPS is shown to be a cost-effective technique for oxide dispersion strengthened (ODS) alloy manufacturing with microstructural features consistent with the best-performing ODS alloys

  2. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Science.gov (United States)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  3. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    International Nuclear Information System (INIS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; Carlan, Y. de; Legris, A.

    2015-01-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe–Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  4. Refractory metal superalloys: Design of yttrium aluminum garnet passivating niobium alloys

    Science.gov (United States)

    Bryan, David

    A systems-based approach, integrating computational modeling with experimental techniques to approach engineering problems in a time and cost efficient manner, was employed to design a Nb-based refractory superalloy for use at 1300°C. Ashby-type selection criteria for both thermodynamic and kinetic parameters were employed to identify a suitable protective oxide for Nb alloys. Yttrium aluminum garnet (YAG) was selected as the most promising candidate for its excellent combination of desirable properties. The alloy microstructural concept was based upon the gamma - gamma' nickel-based superalloys in which the multifunctional gamma' phase serves as both a creep strengthening dispersion and a source of reactive elements for oxide passivation. Candidate ternary Pd-Y-Al and Pt-Y-Al compounds were fabricated and characterized by XRD and DTA. Of the intermetallics studied, only PtYAl had a high enough melting point (1580°C) for use in an alloy operating at 1300°C. The alloy matrix design was based upon Wahl's extension of Wagner's criterion for protective oxidation, requiring a reduction of the product N ODO/DAl by 5 orders of magnitude relative to binary Nb-Al. A thermodynamic and kinetic analysis identified elements with large oxygen affinities as the most beneficial for reducing the magnitude of the quantity NOD O. Construction of a combined thermodynamic and mobility database identified increased Al solubility as the best approach for increasing D Al. Utilizing the thermodynamic and mobility databases, obtained from a combination of model alloys, oxidation experiments, and first principles calculations, theoretical designs predicted the large changes in solubility and transport parameters were achievable. Several prototype alloys were then fabricated and evaluated via oxidation tests at both 1300°C and 1100°C. YAG formation was demonstrated as part of multicomponent oxide scales in the alloys that exhibited the greatest reduction in oxidation rates. The oxidation

  5. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-01-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y 2 O 3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained

  6. Long-range activation of Sox9 in Odd Sex (Ods) mice.

    Science.gov (United States)

    Qin, Yangjun; Kong, Ling-kun; Poirier, Christophe; Truong, Cavatina; Overbeek, Paul A; Bishop, Colin E

    2004-06-15

    The Odd Sex mouse mutation arose in a transgenic line of mice carrying a tyrosinase minigene driven by the dopachrome tautomerase (Dct) promoter region. The minigene integrated 0.98 Mb upstream of Sox9 and was accompanied by a deletion of 134 kb. This mutation causes female to male sex reversal in XX Ods/+ mice, and a characteristic eye phenotype of microphthalmia with cataracts in all mice carrying the transgene. Ods causes sex reversal in the absence of Sry by upregulating Sox9 expression and maintaining a male pattern of Sox9 expression in XX Ods/+ embryonic gonads. This expression, which begins at E11.5, triggers downstream events leading to the formation of a testis. We report here that the 134 kb deletion, in itself, is insufficient to cause sex reversal. We demonstrate that in Ods, the Dct promoter is capable of acting over a distance of 1 Mb to induce inappropriate expression of Sox9 in the retinal pigmented epithelium of the eye, causing the observed microphthalmia. In addition, it induces Sox9 expression in the melanocytes where it causes pigmentation defects. We propose that Ods sex reversal is due to the Dct promoter element interacting with gonad-specific enhancer elements to produce the observed male pattern expression of Sox9 in the embryonic gonads.

  7. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.

    Science.gov (United States)

    Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2013-01-01

    Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.

  8. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy.

    Science.gov (United States)

    Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang

    2018-02-24

    The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains.

  9. STS-74 view of ODS from Payload Changout Room

    Science.gov (United States)

    1995-01-01

    Workers at Launch Pad 39A are preparing to close the payload bay doors on the Space Shuttle Atlantis for its upcoming launch on Mission STS-74 and the second docking with the Russian Space Station Mir. Uppermost in the payload bay is the Orbiter Docking System (ODS), which also flew on the first docking flight between the Space Shuttle and MIR. Lowermost is the primary payload of STS-74, the Russian-built Docking Module. During the mission, the Docking Module will first be attached to ODS and then to Mir. It will be left attached to Mir to become a permanent extension that will afford adequate clearance between the orbiter and the station during future dockings. At left in the payload bay, looking like a very long pole, is the Canadian-built Remote Manipulator System arm that will be used by the crew to hoist the Docking Module and attach it to the ODS.

  10. Evaluation of Pb–17Li compatibility of ODS Fe-12Cr-5Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Unocic, Kinga A., E-mail: unocicka@ornl.gov; Hoelzer, David T.

    2016-10-15

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y{sub 2}O{sub 3} (125Y), (2) Y{sub 2}O{sub 3} + ZrO{sub 2} (125YZ), (3) Y{sub 2}O{sub 3} + HfO{sub 2} (125YH), and (4) Y{sub 2}O{sub 3} + TiO{sub 2} (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO{sub 2} on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO{sub 2} product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module. - Highlights: • Investigation of Pb-17Li compatibility of new ODS Fe-12Cr5Al. • Promising small mass change after static Pb-17Li exposure. • LiAlO{sub 2} formed on the surface during Pb-17Li exposure. • Oxide precipitates incorporated within the LiAlO{sub 2} product. • An inward scale growth mechanism was identified.

  11. Improvement of creep-rupture properties by serrated grain boundaries in high-tungsten cobalt-base superalloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The improvement of creep-rupture properties by serrated grain boundaries was investigated using cobalt-base superalloys containing about 14 to 20 wt.% tungsten at 1089 and 1311 K. Serrated grain boundaries improved both the rupture life and the ductility, especially under lower stresses at 1089 K. The increase in rupture life was larger in the alloys containing a larger amount of W. Ductile grain boundary fracture surfaces, which involved dimple patterns and grain boundary ledges, were observed in the specimens with serrated grain boundaries whereas brittle grain boundary facets were observed in the specimens with normal straight grain boundaries ruptured at 1089 K. The strengthening by serrated grain boundaries was also effective at 1311 K, but there was little difference in rupture life between the specimens with serrated grain boundaries and those with straight grain boundaries under lower stresses, since serrated grain boundaries developed also in the specimens with straight grain boundaries according to grain boundary precipitates forming during creep at 1311 K. The increase in W content of the alloys led to the increase in rupture life of the specimens with serrated grain boundaries at 1089 and 1311 K. (orig.) [de

  12. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy

    International Nuclear Information System (INIS)

    Lu, G.X.; Liu, J.D.; Qiao, H.C.; Zhou, Y.Z.; Jin, T.; Zhao, J.B.; Sun, X.F.; Hu, Z.Q.

    2017-01-01

    This investigation focused on the tensile deformation behavior of a single crystal nickel-base superalloy, both in virgin condition and after laser shock processing (LSP) with varied technology parameters. Nanoindention tests were carried out on the sectioned specimens after LSP treatment to characterize the surface strengthening effect. Stress strain curves of tensile specimens were analyzed, and microstructural observations of the fracture surface and the longitudinal cross-sections of ruptured specimens were performed via scanning electron microscope (SEM), in an effort to clarify the fracture mechanisms. The results show that a surface hardening layer with the thickness of about 0.3–0.6 mm was gained by the experimental alloys after LSP treatment, but the formation of surface hardening layer had not affected the yield strength. Furthermore, fundamental differences in the plastic responses at different temperatures due to LSP treatment had been discovered. At 700 °C, the slip deformation was held back when it extended to the surface hardening layer and the ensuing slip steps improved the plasticity; however, at 1000 °C, surface hardening layer hindered the macro necking, which resulted in the relatively lower plasticity.

  13. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, G.X. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Liu, J.D., E-mail: jdliu@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiao, H.C. [Shenyang Institute of Automation, Chinese Academy of Sciences, 114 Nanta Road, Shenyang 110016 (China); Zhou, Y.Z. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Jin, T., E-mail: tjin@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhao, J.B. [Shenyang Institute of Automation, Chinese Academy of Sciences, 114 Nanta Road, Shenyang 110016 (China); Sun, X.F.; Hu, Z.Q. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2017-02-16

    This investigation focused on the tensile deformation behavior of a single crystal nickel-base superalloy, both in virgin condition and after laser shock processing (LSP) with varied technology parameters. Nanoindention tests were carried out on the sectioned specimens after LSP treatment to characterize the surface strengthening effect. Stress strain curves of tensile specimens were analyzed, and microstructural observations of the fracture surface and the longitudinal cross-sections of ruptured specimens were performed via scanning electron microscope (SEM), in an effort to clarify the fracture mechanisms. The results show that a surface hardening layer with the thickness of about 0.3–0.6 mm was gained by the experimental alloys after LSP treatment, but the formation of surface hardening layer had not affected the yield strength. Furthermore, fundamental differences in the plastic responses at different temperatures due to LSP treatment had been discovered. At 700 °C, the slip deformation was held back when it extended to the surface hardening layer and the ensuing slip steps improved the plasticity; however, at 1000 °C, surface hardening layer hindered the macro necking, which resulted in the relatively lower plasticity.

  14. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  15. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  16. Photodissociation of the OD radical at 226 and 243 nm

    International Nuclear Information System (INIS)

    Radenovic, Dragana C.; Roij, Andre J.A. van; Chestakov, Dmitri A.; Eppink, Andre T.J.B.; Meulen, J.J. ter; Parker, David H.; Loo, Mark P.J. van der; Groenenboom, Gerrit C.; Greenslade, Margaret E.; Lester, Marsha I.

    2003-01-01

    The photodissociation dynamics of state selected OD radicals has been examined at 243 and 226 nm using velocity map imaging to probe the angle-speed distributions of the D( 2 S) and O( 3 P 2 ) products. Both experiment and complementary first principle calculations demonstrate that photodissociation occurs by promotion of OD from high vibrational levels of the ground X 2 Π state to the repulsive 1 2 Σ - state

  17. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.

  18. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.

    2010-01-01

    Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.

  19. Rasch-built Overall Disability Scale (R-ODS) for immune-mediated peripheral neuropathies.

    Science.gov (United States)

    van Nes, S I; Vanhoutte, E K; van Doorn, P A; Hermans, M; Bakkers, M; Kuitwaard, K; Faber, C G; Merkies, I S J

    2011-01-25

    To develop a patient-based, linearly weighted scale that captures activity and social participation limitations in patients with Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), and gammopathy-related polyneuropathy (MGUSP). A preliminary Rasch-built Overall Disability Scale (R-ODS) containing 146 activity and participation items was constructed, based on the WHO International Classification of Functioning, Disability and Health, literature search, and patient interviews. The preliminary R-ODS was assessed twice (interval: 2-4 weeks; test-retest reliability studies) in 294 patients who experienced GBS in the past (n = 174) or currently have stable CIDP (n = 80) or MGUSP (n = 40). Data were analyzed using the Rasch unidimensional measurement model (RUMM2020). The preliminary R-ODS did not meet the Rasch model expectations. Based on disordered thresholds, misfit statistics, item bias, and local dependency, items were systematically removed to improve the model fit, regularly controlling the class intervals and model statistics. Finally, we succeeded in constructing a 24-item scale that fulfilled all Rasch requirements. "Reading a newspaper/book" and "eating" were the 2 easiest items; "standing for hours" and "running" were the most difficult ones. Good validity and reliability were obtained. The R-ODS is a linearly weighted scale that specifically captures activity and social participation limitations in patients with GBS, CIDP, and MGUSP. Compared to the Overall Disability Sum Score, the R-ODS represents a wider range of item difficulties, thereby better targeting patients with different ability levels. If responsive, the R-ODS will be valuable for future clinical trials and follow-up studies in these conditions.

  20. Nanosize boride particles in heat-treated nickel base superalloys

    International Nuclear Information System (INIS)

    Zhang, H.R.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    Grain boundary microconstituents in aged nickel-based superalloys were studied by transmission electron microscopy techniques. A nanosized M 5 B 3 boride phase, possibly formed by intergranular solute desegregation-induced precipitation, was positively identified. The presence of these intergranular nanoborides provides reasonable clarification of a previously reported reduction of grain boundary liquation temperature during the weld heat affected zone thermal cycle

  1. OD structures in crystallography - basic concepts

    Czech Academy of Sciences Publication Activity Database

    Ďurovič, S.; Hybler, Jiří

    2006-01-01

    Roč. 221, - (2006), s. 63-76 ISSN 0044-2968 R&D Projects: GA ČR GA205/03/0439 Institutional research plan: CEZ:AV0Z10100521 Keywords : OD structures * polytypism * cronstedtite * kermesite * Fourier synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.897, year: 2006

  2. The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications

    International Nuclear Information System (INIS)

    Zheng, Liang; Zhang, Guoqing; Lee, Tung L.; Gorley, Michael J.; Wang, Yue; Xiao, Chengbo; Li, Zhou

    2014-01-01

    Highlights: • An equiaxed superalloy has high rupture life equivalent to single crystal alloy DD3. • Low Cr and high W superalloys possess good microstructrual stability at 850–1100 °C. • Tantalum promotes, strengthens and stabilizes the eutectic γ′ and MC carbides. • Excessive Ta leads to form harmful abnormal primary α and plate-like M 6 C phases. • Proper Ta can improve the stress rupture life at intermediate and high temperatures. - Abstract: A novel polycrystalline Ni-base superalloy was developed for land-based high temperature applications, such as isothermal forging dies and industrial gas turbines. The alloy possessed surprisingly high stress rupture life of 52 h at 1100 °C/118 MPa which is comparable to the first generation single crystal (SC) superalloy and exhibited good microstructural stability. The effects of Ta addition on the phase change, stress rupture properties and microstructural stability of the alloy were investigated. The results indicated that Ta is a γ′-former and promotes the formation of eutectic γ′. The alloys with ∼7 vol.% eutectic γ′ possess higher stress rupture life at 1100 °C/118 MPa than the alloys with higher ∼20 vol.% eutectic. However, ∼20 vol.% excessive eutectic phases will enhance the stress rupture life at intermediate temperature of 760 °C for 686 MPa but weaken high temperature stress rupture properties. The (Al + Ta) content over 14.4 at.% led to the formation of large amounts of eutectic γ′ and exceeded the solubility of W and Mo in the residue liquid pool, which then promoted the precipitation of primary α-(W,Mo) and M 6 C phases. Tantalum was also found as a strong MC carbides forming element. The order of ability to form monocarbide decreased from NbC to TaC to TiC. 6Al–0Ta (wt.%) alloys possessed good microstructural stability with no harmful topologically close-packed (TCP) phases being observed after thermal exposure at 850 °C/3000 h, 900 °C/1000 h. Only trace amounts of

  3. Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition

    International Nuclear Information System (INIS)

    Mahesh, R.A.; Jayaganthan, R.; Prakash, S.

    2008-01-01

    Ni-5Al coating was obtained on three superalloy substrates viz. Superni 76, Superni 750 and Superfer 800 using high velocity oxy-fuel (HVOF) spray process. Oxidation studies were carried out on both bare and coated superalloy substrates in air at 900 deg. C for 100 cycles. The weight change was measured at the end of each cycle and observed that the weight gain was high in Superni 750 alloy when compared to Superni 76 and Superfer 800. A nearly parabolic oxidation behavior was observed for Ni-5Al coated Superni 750 and Superfer 800 alloys but a Ni-5Al coated Superni 76 substrate showed a slight deviation. The scale was analysed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and electron probe microanalysis (EPMA). The coating increased the oxidation resistance for all the alloy substrates at 900 deg. C. Among the three-coated superalloys, Superfer 800 substrate has shown the best resistance to oxidation. The protective nature of the Ni-5Al coated superalloys was due to the formation of protective oxide scales such as NiO, Al 2 O 3 and Cr 2 O 3

  4. Response to Discussion of "Investigation of Oxide Bifilms in Investment Cast Superalloy IN100 Part I and II"

    Science.gov (United States)

    Kaplan, M. A.; Fuchs, G. E.

    2017-10-01

    In his most recent letter (Campbell in Met Trans A, 2017), Professor Campbell provides additional comments on Kaplan and Fuchs papers "Oxides Bifilms in Superalloy: IN100, Parts I and II (Met Trans A 47A:2346-2361, 2016; Met Trans A 47A:2362-2375, 2016) and on their response to his initial comments (Met Trans A 47A:3806-3809, 2016). In this recent submission, Campbell provides some very interesting thoughts on why bifilms were not observed by Kaplan and Fuchs and creates a new theory for the formation of defects referred to as bifilms. However, Campbell again provides no evidence to substantiate the presence of bifilms in Ni-base superalloys or his newly theorized mechanism. The vast majority of Campbell's comments are based solely on the re-interpretation of the photomicrographs and the data reported in the literature, including those presented by Kaplan and Fuchs (Met Trans A 47A:2346-2361, 2016; Met Trans A 47A:2362-2375, 2016). Campbell claims that bifilms are present throughout Ni-base superalloys, even though no one else has reported the presence of bifilms in Ni-base superalloys. In re-interpreting the data and images, Campbell ignores the extensive surface characterization results reported by Kaplan and Fuchs (Met Trans A 47A:2346-2361, 2016; Met Trans A 47A:2362-2375, 2016) that clearly indicate that there are no oxide films or bifilms on the fracture surfaces examined. Please note that this discussion of Campbell's most recent letter will be limited to Ni-base superalloys, since that is the subject of the research reported by Kaplan and Fuchs.

  5. Fracture Resistance of 14Cr ODS Steel Exposed to a High Temperature Gas

    Directory of Open Access Journals (Sweden)

    Anna Hojna

    2017-12-01

    Full Text Available This paper studies the impact fracture behavior of the 14%Cr Oxide Dispersion Strengthened (ODS steel (ODM401 after high temperature exposures in helium and air in comparison to the as-received state. A steel bar was produced by mechanical alloying and hot-extrusion at 1150 °C. Further, it was cut into small specimens, which were consequently exposed to air or 99.9% helium in a furnace at 720 °C for 500 h. Impact energy transition curves are shifted towards higher temperatures after the gas exposures. The transition temperatures of the exposed states significantly increase in comparison to the as-received steel by about 40 °C in He and 60 °C in the air. Differences are discussed in terms of microstructure, surface and subsurface Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM observations. The embrittlement was explained as temperature and environmental effects resulting in a decrease of dislocation level, slight change of the particle composition and interface/grain boundary segregations, which consequently affected the nucleation of voids leading to the ductile fracture.

  6. Estimating Bus Loads and OD Flows Using Location-Stamped Farebox and Wi-Fi Signal Data

    Directory of Open Access Journals (Sweden)

    Yuxiong Ji

    2017-01-01

    Full Text Available Electronic fareboxes integrated with Automatic Vehicle Location (AVL systems can provide location-stamped records to infer passenger boarding at individual stops. However, bus loads and Origin-Destination (OD flows, which are useful for route planning, design, and real-time controls, cannot be derived directly from farebox data. Recently, Wi-Fi sensors have been used to collect passenger OD flow information. But the data are insufficient to capture the variation of passenger demand across bus trips. In this study, we propose a hierarchical Bayesian model to estimate trip-level OD flow matrices and a period-level OD flow matrix using sampled OD flow data collected by Wi-Fi sensors and boarding data provided by fareboxes. Bus loads on each bus trip are derived directly from the estimated trip-level OD flow matrices. The proposed method is evaluated empirically on an operational bus route and the results demonstrate that it provides good and detailed transit route-level passenger demand information by combining farebox and Wi-Fi signal data.

  7. Creep mechanisms of U720Li disc superalloy at intermediate temperature

    International Nuclear Information System (INIS)

    Yuan, Y.; Gu, Y.F.; Cui, C.Y.; Osada, T.; Tetsui, T.; Yokokawa, T.; Harada, H.

    2011-01-01

    Highlights: → Crept microstructures of U720Li at 725 deg. C/630 MPa have been investigated by TEM. → Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. → Grain boundary sliding occurred at last creep stage. → Three methods were suggested to improve the creep property at relatively high temperature. - Abstract: The microstructures of U720Li disc superalloy have been investigated by transmission electron microscopy (TEM) before and after creep test at 725 deg. C/630 MPa. The evolution of the crept microstructures was marked as three different stages (I, II and III) corresponding to gradually increased strain 0.1%, 5% and 27%, respectively. At stage I, dislocations bypassed secondary γ' via Orowan loops. At stage II, partial dislocations started to shear secondary γ', leaving stacking fault (SF) behind and microtwins formed in part of grains. At stage III, grain boundary sliding occurred due to very large strain and increased effective stress. The results indicated that the creep mechanisms of U720Li at 725 deg. C/630 MPa evolved with gradually increased strain. Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. It is suggested that decreasing the interparticle spacing of secondary γ', strengthening secondary γ' and decreasing stacking fault energy (SFE) of γ matrix may be effective methods to improve the creep property at relatively higher temperatures.

  8. Preparation and testing of corrosion and spallation-resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Cavalli, Matthew N. [Univ. of North Dakota, Grand Forks, ND (United States)

    2016-06-30

    The goal of this project was to take a recently developed method of bonding oxide dispersion-strengthened (ODS) FeCrAl plating to nickel superalloys closer to commercial use in syngas-fired turbines. The project was designed to better understand and develop the bonding process and to determine if plating APMT®, a specific highly oxidation-resistant ODS FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The superalloys investigated for protection were CM247LC and Rene® 80, both alumina scale-forming alloys. The method for bonding the APMT plate to the superalloys is called evaporative metal bonding, which involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces, creating a bond between the APMT and the superalloy that is stronger than the APMT itself. Testing showed that the diffusivity of zinc in both APMT and CM247LC is quite similar at 700°C but 15 times higher in the APMT at 1214°C. Coefficients of thermal expansion were determined for each of the alloys as a function of temperature. This information was entered into a finite-element model using ANSYS, which was used to design a clamping jig for pressing the APMT to the superalloys at the bonding temperature. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding Unfortunately, the analyses also showed some small pieces of broken aluminum oxide scale near the bond lines, indicating that its scale was not sufficiently removed during prebonding cleaning. Samples from each of the bonded blocks were sent to Siemens for

  9. CLASSICAL AREAS OF PHENOMENOLOGY: First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Science.gov (United States)

    Wang, Yun-Jiang; Wang, Chong-Yu

    2009-10-01

    A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.

  10. Sol-gel open tubular ODS columns with reversed electroosmotic flow for capillary electrochromatography.

    Science.gov (United States)

    Hayes, J D; Malik, A

    2001-03-01

    Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.

  11. Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.

    Science.gov (United States)

    Djordjevic, N M; Fitzpatrick, F; Houdiere, F

    2001-04-01

    The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.

  12. Refractory porcelain enamel passive-thermal-control coating for high-temperature superalloys

    Science.gov (United States)

    Levin, H.; Auker, B. H.; Gardos, M. N.

    1973-01-01

    Study was conducted to match thermal expansion coefficients thereby preventing enamels from cracking. Report discusses various enamel coatings that are applied to two different high-temperature superalloys. Study may be of interest to manufacturers of chemical equipment, furnaces, and metal components intended for high-temperature applications.

  13. Microstrain evolution during creep of a high volume fraction superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, S. [Materials Department, New Mexico Tech, Socorro, NM 87801 (United States); Brown, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Daymond, M.R. [Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Majumdar, B.S. [Materials Department, New Mexico Tech, Socorro, NM 87801 (United States)]. E-mail: majumdar@nmt.edu

    2005-06-15

    The creep of superalloys containing a high volume fraction of {gamma}' phase is significantly influenced by initial misfit and by the evolution of internal stresses. An in situ neutron diffraction technique was used to monitor elastic microstrains in a polycrystalline superalloy, CM247 LC. The misfit was nearly zero at room temperature and it increased to -0.17% at 900 deg. C. These values are rationalized in terms of thermal mismatch using an eigenstrain formulation and a simple formula is derived to relate the thermal mismatch to the misfit strain. During creep at 425 MPa at 900 deg. C, the material exhibited primarily tertiary behavior. For grains with [0 0 1] axis close to the loading direction, the elastic microstrain in the loading direction increased with creep time for the {gamma}' phase, whereas the opposite occurred for the {gamma} phase. These results are explained in terms of constrained deformation in the narrow {gamma} channels and by an interface dislocation buildup. TEM analysis of the crept microstructure provides evidence of the interface dislocation network.

  14. Evaluation of Ion Irradiation Behavior of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Sung; Kim, Min Chul; Hong, Jun Hwa; Han, Chang Hee; Chang, Young Mun; Bae, Chang Soo; Bae, Yoon Young; Chang, Moon Hee

    2006-08-15

    FM steel (Grade 92) and ODS alloy(MA956) specimens were ion irradiated with 122 MeV Ne ions. Irradiation temperatures were about 450 and 550 .deg. C and the peak dose was 1, 5, and 10 dpa. Cross-sectional TEM samples were prepared by the electrolytic Ni-plating after pre-treatment of the irradiated specimens. Irradiation cavities in FM steel and ODS alloy specimens were not much different in size; about 20 nm in diameter in both specimens irradiated at around 450 .deg. C. However, the size distribution of cavities in FM steel specimens was broader than that in ODS alloy specimen, indicating that the cavity growth probably via coalescence). It was noticeable that the location and the preferential growth of the cavities in FM steel specimens: cavities on the PAGB (prior austenite grain boundary) was significantly larger than those within the grains. This could be an important issue for the mechanical properties, especially high temperature creep, fracture toughness, and so on. The dependency of the dose threshold and swelling on the ratio of the inert gas concentration/dpa was analysed for the various irradiation source, including He, Ne, Fe/He, and fast neutron, and the empirical correlation was established.

  15. Evaluation of Ion Irradiation Behavior of ODS Alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Kim, Min Chul; Hong, Jun Hwa; Han, Chang Hee; Chang, Young Mun; Bae, Chang Soo; Bae, Yoon Young; Chang, Moon Hee

    2006-08-01

    FM steel (Grade 92) and ODS alloy(MA956) specimens were ion irradiated with 122 MeV Ne ions. Irradiation temperatures were about 450 and 550 .deg. C and the peak dose was 1, 5, and 10 dpa. Cross-sectional TEM samples were prepared by the electrolytic Ni-plating after pre-treatment of the irradiated specimens. Irradiation cavities in FM steel and ODS alloy specimens were not much different in size; about 20 nm in diameter in both specimens irradiated at around 450 .deg. C. However, the size distribution of cavities in FM steel specimens was broader than that in ODS alloy specimen, indicating that the cavity growth probably via coalescence). It was noticeable that the location and the preferential growth of the cavities in FM steel specimens: cavities on the PAGB (prior austenite grain boundary) was significantly larger than those within the grains. This could be an important issue for the mechanical properties, especially high temperature creep, fracture toughness, and so on. The dependency of the dose threshold and swelling on the ratio of the inert gas concentration/dpa was analysed for the various irradiation source, including He, Ne, Fe/He, and fast neutron, and the empirical correlation was established

  16. Castability of Traditionally Wrought Ni-Based Superalloys for USC Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P D; Cowen, C J; Hawk, J A; Evens, N; Maziasz, P

    2011-02-27

    The high temperature components within conventional coal fired power plants are manufactured from ferritic/martensitic steels. In order to reduce greenhouse gas emissions the efficiency of pulverized coal steam power plants must be increased. The proposed steam temperature in the Advanced Ultra Supercritical (A-USC) power plant is high enough (760°C) that ferritic/martensitic steels will not work due to temperature limitations of this class of materials; thus Ni-based superalloys are being considered. The full size castings are quite substantial: ~4in thick, several feet in diameter and weigh 5-10,000lb each half. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled in order to produce relevant microstructures. A multi-step homogenization heat treatment was developed in order to better deploy the alloy constituents. The castability of two traditionally wrought Ni-based superalloys to which minor alloy adjustments have been made in order to improve foundry performance is further explored.

  17. Fabrication and characterization of reference 9Cr and 12Cr-ODS low activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Muroga, T., E-mail: muroga@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Nagasaka, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Li, Y.; Abe, H. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Ukai, S. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Okuda, T. [Kobelco Research Institute, 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo 651-2271 (Japan)

    2014-10-15

    For the purpose of arranging reference alloys available for various characterization efforts by Japanese fusion research groups, fabrication of reference 9Cr and 12Cr-ODS steels have been carried out with similar manufacturing processes followed by various characterizations. The fabrication proceeded with powder mixing, MA, encapsulation into mild steel cases, hot extrusion and hot forging, followed by final heat treatments. Each alloy was extruded into three bars. The characterization included chemical composition analysis, SEM and TEM microstructural observations, hardness tests, tensile tests at RT and 973 K, and relatively short-term thermal creep tests at 973 K. Room temperature hardness for 9Cr-ODS was larger than 12Cr-ODS, the former showing large increase when annealing temperature exceeded 1200 K and the latter showing no significant change with annealing temperature. Tensile strength of 9Cr-ODS was significantly larger than that of 12Cr-ODS at RT but comparable at 973 K. 9Cr-ODS showed longer and shorter creep rupture time than 12Cr-ODS at high and low stress levels, respectively. The mechanism of the difference in creep properties of the two alloys was discussed.

  18. Phase Transformations in Nickel base Superalloy Inconel 718 during Cyclic Loading at High Temperature

    Directory of Open Access Journals (Sweden)

    Michal Jambor

    2017-06-01

    Full Text Available Nickel base superalloys are hi-tech materials intended for high temperature applications. This property owns a complex microstructure formed by matrix of Ni and variety of precipitates. The type, form and the amount of these phases significantly affect the resulting properties of these alloys. At sufficiently long exposure to high temperatures, the transformation phase can occur, which can lead to degradation of properties of these alloys. A cyclic plastic deformation can accelerate these changes, and they could occur at significantly lower temperatures or in shorter time of exposure. The aim of this study is to describe phase transformation, which can occur by a cyclic plastic deformation at high temperatures in nickel base superalloy Inconel 718.

  19. A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy

    International Nuclear Information System (INIS)

    Lin, Y.C.; Chen, Xiao-Min; Chen, Ming-Song; Wen, Dong-Xu; Zhou, Ying; He, Dao-Guang

    2016-01-01

    The metadynamic recrystallization (MDRX) behaviors of a typical nickel-based superalloy are investigated by two-pass hot compression tests and four conventional stress-based conventional approaches (offset stress method, back-extrapolation stress method, peak stress method, and mean stress method). It is found that the conventional stress-based methods are not suitable to evaluate the MDRX softening fractions for the studied superalloy. Therefore, a new approach, 'maximum stress method', is proposed to evaluate the MDRX softening fraction. Based on the proposed method, the effects of deformation temperature, strain rate, initial average grain size, and interpass time on MDRX behaviors are discussed in detail. Results show that MDRX softening fraction is sensitive to deformation parameters. The MDRX softening fraction rapidly increases with the increase of deformation temperature, strain rate, and interpass time. The MDRX softening fraction in the coarse-grain material is lower than that in the fine-grain material. Moreover, the observed microstructures indicate that the initial coarse grains can be effectively refined by MDRX. Based on the experimental results, the kinetics equations are established and validated to describe the MDRX behaviors of the studied superalloy. (orig.)

  20. Implementation of a structural dependent model for the superalloy IN738LC in ABAQUS-code

    International Nuclear Information System (INIS)

    Wolters, J.; Betten, J.; Penkalla, H.J.

    1994-05-01

    Superalloys, mainly consisting of nickel, are used for applications in aerospace as well as in stationary gas turbines. In the temperature range above 800 C the blades, which are manufactured of these superalloys, are subjected to high centrifugal forces and thermal induced loads. For computer based analysis of the thermo-mechanical behaviour of the blades models for the stress-strain behaviour are necessary. These models have to give a reliable description of the stress-strain behaviour, with emphasis on inelastic affects. The implementation of the model in finite element codes requires a numerical treatment of the constitutive equations with respect to the given interface of the used code. In this paper constitutive equations for the superalloy IN738LC are presented and the implementation in the finite element code ABAQUS with the numerical preparation of the model is described. In order to validate the model calculations were performed for simple uniaxial loading conditions as well as for a complete cross section of a turbine blade under combined thermal and mechanical loading. The achieved results were compared with those of additional calculations by using ABAQUS, including Norton's law, which was already implemented in this code. (orig.) [de

  1. Resistance welding of ODS cladding fuel a nuclear reactor of the fourth generation

    International Nuclear Information System (INIS)

    Corpace, F.

    2011-01-01

    ODS steels (Oxide Dispersion Strengthened) are candidate materials for fuel cladding in Sodium Fast Reactors (SFR), one of the studied concepts for the fourth generation of nuclear power plants. These materials possess good mechanical properties at high temperatures due to a dispersion of nano-meter-sized oxides into the matrix. Previous studies have shown that melting can induce a decrease in mechanical properties at high temperatures due to modifications of the nano-meter-sized oxide dispersion. Therefore the fusion welding techniques are not recommended and the solid state bonding has to be evaluated. This study is focused on resistance upset welding. Welding experiments and numerical simulations of the process are coupled in this thesis. All laboratory tests (experimental and numerical) are built using the experimental design method to evaluate the effects of the process parameters on the welding and on the weld. A 20Cr ODS steel is used for the experimental protocol. The first part is dedicated to the study of the influence of the process parameters on the welding process. The numerical simulations show that the welding steps can be divided in three stages. First, the contact temperature between the faying surfaces increases. The process is then driven in the second stage by the pieces geometry and especially the current constriction due to the thinness of the clad compared to the massive plug. Therefore, the heat generation is mainly located in the clad part out of the electrode leading to its collapse which is the third stage of the welding step. The evaluation of the process parameters influence on the physical phenomena (thermal, mechanical...) occurring during the welding step, allows adjusting them in order to influence thermal and mechanical solicitations undergone by the pieces during the welding process. The second part consists in studying the influence of physical phenomena on the welds. In the process parameter range, some welds exhibit compactness

  2. Comparison of Thermodynamic Predictions and Experimental Observations on B Additions in Powder-Processed Ni-Based Superalloys Containing Elevated Concentrations of Nb

    Science.gov (United States)

    Antonov, Stoichko; Huo, Jiajie; Feng, Qiang; Isheim, Dieter; Seidman, David N.; Sun, Eugene; Tin, Sammy

    2018-03-01

    Boron additions to Ni-based superalloys are considered to be beneficial to the creep properties of the alloy, as boron has often been reported to increase grain boundary cohesion, increase ductility, and promote the formation of stable boride phases. Despite the importance, it is not well understood whether these improvements are associated with the presence of elemental boron or stable borides along the grain boundaries. In this investigation, two experimental powder-processed Ni-based superalloys containing elevated levels of Nb were found to exhibit increased solubility for B in the γ matrix when compared to similar commercial Ni-based superalloys. This resulted in an overall lower B concentration at grain boundaries that suppressed boride formation. As the predictive capability of CALPHAD database models for Ni-based superalloys have improved over the years, some discrepancies may still persist around compositionally heterogeneous features such as grain boundaries. Improved quantification of the characteristic partitioning of B as a function of the bulk alloy composition is required for understanding and predicting the stability of borides.

  3. Power metallurgy approaches to high temperature components for gas turbine engines

    Science.gov (United States)

    Probst, H. B.

    1974-01-01

    Work conducted by NASA and NASA contractors on prealloyed superalloy powders and materials strengthened by oxide dispersion is reviewed. Fabrication, tensile strength, superplasticity, grain growth control, stress rupture life, and grain-size and dispersion-level effects are covered. Distinct strength advantages of powder metallurgy superalloys over conventional wrought alloys are noted.

  4. A major locus on mouse chromosome 18 controls XX sex reversal in Odd Sex (Ods) mice.

    Science.gov (United States)

    Qin, Yangjun; Poirier, Christophe; Truong, Cavatina; Schumacher, Armin; Agoulnik, Alexander I; Bishop, Colin E

    2003-03-01

    We have previously reported a dominant mouse mutant, Odd sex (Ods), in which XX Ods/+ mice on the FVB/N background show complete sex reversal, associated with expression of Sox9 in the fetal gonads. Remarkably, when crossed to the A/J strain approximately 95% of the (AXFVB) F(1) XX Ods/+ mice developed as fully fertile, phenotypic females, the remainder developing as males or hermaphrodites. Using a (AXFVB) F(2) population, we conducted a genome-wide linkage scan to identify the number and chromosomal location of potential Ods modifier genes. A single major locus termed Odsm1 was mapped to chromosome 18, tightly linked to D18Mit189 and D18Mit210. Segregation at this locus could account for the presence of sex reversal in 100% of XX Ods/+ mice which develop as males, for the absence of sex reversal in approximately 92% of XX Ods/+ mice which develop as females, and for the mixed sexual phenotype in approximately 72% of XX Ods/+ mice that develop with ambiguous genitalia. We propose that homozygosity for the FVB-derived allele strongly favors Ods sex reversal, whereas homozygosity for the A/J-derived allele inhibits it. In mice heterozygous at Odsm1, the phenotypic outcome, male, female or hermaphrodite, is determined by a complex interaction of several minor modifying loci. The close proximity of Smad2, Smad7 and Smad4 to D18Mit189/210 provides a potential mechanism through which Odsm1 might act.

  5. Failure mechanisms of superhard materials when cutting superalloys

    International Nuclear Information System (INIS)

    Focke, A.E.; Westermann, F.E.; Ermi, A.; Yavelak, J.; Hoch, M.

    1975-01-01

    The present research studies the reasons for the failure of tungsten carbide tools while cutting superalloys. There is a continuous layer of the superalloy in the bottom of the crater which from time to time is torn away locally, taking tungsten carbide crystal with it. Under recommended cutting conditions a plateau (unworn cutting surface) separates the crater from the cutting edge of the tool when cutting AISI 4340. This plateau is totally absent in all cutting of Inconel 718, even in short, two-minute tests. The crater intersects the cutting edge--only a thin wedge of carbide is left which either breaks off or deforms and wears very rapidly. Temperature measurements carried out by use of an infrared detector aimed on the corner of the tungsten carbide indicate at recommended speeds a sharp rise of the temperature at the beginning of the cutting operation, then a steady-state very slow increase as the cutting continues, and finally just before tool failure a very rapid increase in the temperature again. Scanning and replica electron microscopy through the crater and flank face shows that both under the crater and in the back of the cutting edge a fairly deep layer of ''disturbed metal'' exists in which the tungsten carbide grains are much smaller and have much more rounded edges than in the original material. 10 figures, 4 tables

  6. The Hungarian model project: Strengthening training for operational safety at Paks nuclear power plant

    International Nuclear Information System (INIS)

    Mautner Markhof, F.

    1998-01-01

    The Hungarian Model project (HMP) reflects the commitment to constant increase of safety and reliability of the NPP Paks, the Government of Hungary and the IAEA. It includes some of the most important nuclear power objectives of Paks NPP, namely the strengthening of NPP personnel training and competence through the application of international best practice, the systematic approach to training (SAT), for training operation and maintenance personnel; setting up a state of-the-art maintenance training center (MTC) at Paks and enhancing safety culture at Paks NPP. The IAEA supported implementation of the HMP through fellowships and scientific visits, expert missions, provision of hardware and software for SAT application, and supply od major new uncontaminated items of actual WWER equipment for the MTC

  7. Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages

    Science.gov (United States)

    Mo, Fangjie; Wu, Erdong; Zhang, Changsheng; Wang, Hong; Zhong, Zhengye; Zhang, Jian; Chen, Bo; Hofmann, Michael; Gan, Weimin; Sun, Guangai

    2018-03-01

    The present work attempts to reveal the correlation between the microstructural defects and residual stress in the single crystal nickel-based superalloy, both of which play the significant role on properties and performance. Neutron diffraction was employed to investigate the microstructural defects and residual stresses in a single crystal (SC) nickel-based superalloy, which was subjected to creeping under 220 MPa and 1000 °C for different times. The measured superlattice and fundamental lattice reflections confirm that the mismatch and tetragonal distortions with c/a > 1 exist in the SC superalloy. At the initially unstrained state, there exists the angular distortion between γ and γ' phases with small triaxial compressive stresses, ensuring the structural stability of the superalloy. After creeping, the tetragonal distortion for the γ phase is larger than that for the γ' phase. With increasing the creeping time, the mismatch between γ and γ' phases increases to the maximum, then decreases gradually and finally remains unchanged. The macroscopic residual stress shows a similar behavior with the mismatch, indicating the correlation between them. Based on the model of shear and dislocations, the evolution of microstructural defects and residual stress are reasonably explained. The effect of shear is dominant at the primary creep stage, which greatly enlarges the mismatch and the residual stress. The dislocations weaken the effect of shear for the further creep stage, resulting in the decrease of the mismatch and relaxation of the residual stress. Those findings add some helpful understanding into the microstructure-performance relationship in the SC nickel-based superalloy, which might provide the insight to materials design and applications.

  8. High-temperature and low-stress creep anisotropy of single-crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Jacome, L. A.; Nortershauser, P.; Heyer, J. K.; Lahni, A.; Frenzel, J.; Dlouhý, Antonín; Somsen, C.; Eggeler, G.

    2013-01-01

    Roč. 61, č. 8 (2013), s. 2926-2943 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA202/09/2073 Institutional support: RVO:68081723 Keywords : superalloy single crystals * creep anisotropy * rafting * dislocations * deformation mechanisms Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013

  9. Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Chen

    2018-05-01

    Full Text Available The main scope of this study investigated the occurrence of liquation cracking in the heat-affected zone (HAZ of IN738 superalloy weld, IN738 is widely used in gas turbine blades in land-based power plants. Microstructural examinations showed considerable amounts of γ’ uniformly precipitated in the γ matrix. Electron probe microanalysis (EPMA maps showed the γ-γ’ colonies were rich in Al and Ti, but lean in other alloy elements. Moreover, the metal carbides (MC, fine borides (M3B2 and M5B3, η-Ni3Ti, σ (Cr-Co and lamellar Ni7Zr2 intermetallic compounds could be found at the interdendritic boundaries. The fracture morphologies and the corresponding EPMA maps confirmed that the liquation cracking in the HAZ of the IN738 superalloy weld resulted from the presence of complex microconstituents at the interdendritic boundaries.

  10. The effects of Re addition to the nanostructure of a Ni-Cr-Al model superalloy

    International Nuclear Information System (INIS)

    Yoon, K.E.; Seidman, D.N.; Noebe, R.D.

    2004-01-01

    Full text: The refractory elements, such as W, Mo, Ta, and Re, have been at the center of focus since the late 1970s for the development of single-crystal turbine-blades, and they have improved significantly the high-temperature properties of Ni-based superalloys. The optimum mechanical properties and operating temperature of single-crystal blades are achieved by increasing the total amounts of refractory elements. In spite of the improvement of mechanical properties of Ni-based superalloys utilizing the addition of refractory elements, their effects on the microstructure of superalloys are mostly unidentified at the subnano- to nanoscale. Rhenium (2 at.%) was added to a model ternary Ni-8.5 at.% Cr-10 at.% Al superalloy to study its effects on the temporal evolution. The temporal evolution of γ' (L1 2 ) precipitates in a Ni-Cr-AI-Re FCC alloy, aged at 1073 K from 0.25 to 264 h, is investigated by transmission-electron and three-dimensional atom-probe (3DAP) microscopies. The coarsening kinetics of γ' precipitates is investigated by measuring the mean radius, number density of precipitates and matrix supersaturation, and compared with Umantsev-Olson's (UO) coarsening theory for multicomponent alloys. The coarsening experiments do not agree with the time dependencies prediction of UO theory. The cluster-diffusion-coagulation mechanism is involved in coarsening, as well as evaporation-condenzation mechanism, and is suggested to generate discrepancy between the experiments and theory. The addition of Re reduces the lattices parameter misfit between the matrix and precipitates. Therefore, unlike other Ni-based superalloys, this Ni-Cr-AI-Re alloy does not undergo the sphere-to-cube morphological transition and maintains the spheroidal morphology of the γ' precipitates for extended aging times. In addition, the γ' precipitates do not align along [100] direction, even at the longest aging time of 264 h. Contrary to a commercial superalloy Rene N6, significant Re

  11. Macroscopic and microscopic determinations of residual stresses in thin oxide dispersion strengthened steel tubes

    International Nuclear Information System (INIS)

    Bechade, J.L.; Toualbi, L.; Bosonnet, S.; Carlan, Y. de; Castelnau, O.

    2014-01-01

    To improve the efficiency of components operating at high temperatures, many efforts are deployed to develop new materials. Oxide Dispersion Strengthened (ODS) materials could be used for heat exchangers or cladding tubes for the new GENIV nuclear reactors. This type of materials are composed with a metallic matrix (usually iron base alloy for nuclear applications or nickel base alloy for heat exchangers) reinforced by a distribution of nano-oxides. They are obtained by powder metallurgy and mechanical alloying. The creep resistance of these materials is excellent, and they usually exhibit a high tensile strength at room temperature. Depending on the cold working and/or the heat treatments, several types of microstructure can be obtained: recrystallised, stress relieved. One of the key challenges is to transform ODS materials into thin tubes (up to 500 microns thick) within a robust fabrication route while keeping the excellent mechanical properties. To prevent cracking during the process or to obtain a final product with low residual stresses, it is important to quantify the effect of the heat treatments on the release of internal stresses. The aim of this study is to show how residual stresses can be determined on different thin tubes using two complementary approaches: (i) macroscopic stresses determination in the tube using beam theory (small cuts along the longitudinal and circumferential directions and measurements of the deflection), (ii) stress determination from x-ray diffraction analyses (surface analyses, using 'sin"2ψ' method with different hypothesis). Depending on the material and the heat treatment, residual stresses vary dramatically and can reach 800 MPa which is not far from the yield stress; comparisons between both methods are performed and suggestions are given in order to optimize the thermo-mechanical treatment of thin ODS tubes. (authors)

  12. Role of enterocele in the obstructed defecation syndrome (ODS): a new radiological point of view.

    Science.gov (United States)

    Morandi, C; Martellucci, J; Talento, P; Carriero, A

    2010-08-01

    The aim of this study was to understand the role of enterocele in the pathogenesis of the obstructed defecation syndrome (ODS) a new defecographic classification based on function. A total of 597 patients (551 women, 46 men) who underwent cinedefecography between November 2001 and November 2005 were studied. A total of 567 (95%) underwent cinedefecography as they had symptoms of ODS. Enterocele was classified into three types. Enterocele was found in 127 (23%) female and one (2.2%) male patients. Thirty-eight (6.9%) patients had type A, 38(6.9%) type B, and 27(4.9%) type C enterocele. A total of 24 patients (4.35%) had sigmoidocele. In patients with type C enterocele, the finding of a radiological pattern of ODS was higher (26/27) than that in the other groups (A + B + Sigmoidocele) (23/100) (P ODS and usually presents as an isolated condition. Type B is less frequently associated with ODS and is more frequently accompanied by other pathological conditions.

  13. The Effectiveness of a NiCrY-Coating on a Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Miller, Robert A.; Nesbitt, James A.; Draper, Susan L.; Rogers, Richard B.; Telesman, Jack

    2018-01-01

    Protective ductile coatings could be necessary to mitigate oxidation and corrosion attack on superalloy disks in some turbine engine applications. However, the effects of coatings on fatigue life of the disk during service are an important concern. The objective of this study was to investigate how such a coating could perform after varied post-coating processing. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, preparation treated, exposed, and then subjected to fatigue at high temperature. The effects of varied shot peening, preparation treatment, and exposures on fatigue life with and without the coating were compared. Each of these variables and several of their interactions significantly influenced fatigue life.

  14. Microstructural characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)], E-mail: vanessa.decastro@materials.ox.ac.uk; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2009-04-30

    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3}-free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes <10 nm were also observed. Both alloys also contained M{sub 3}C and M{sub 23}C{sub 6} carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M{sub 23}C{sub 6} carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  15. Interdiffusion between Ni-based superalloy and MCrAlY coating

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John; Horsewell, Andy

    2006-01-01

    Interdiffusion at the interface between a Co-36.5Ni-17.5Cr-8Al-0.5Y, MCrAlY coating and the underlying IN738 superalloy was studied in a large matrix of specimens isothermally heat treated for up to 12,000 hours at temperatures 875oC, 925oC or 950oC. Modelled results using the finite difference...

  16. Optimization of production and properties of the nanoscaled ferritic ODS-alloy 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2} and characterization of structure and property correlations; Eigenschaftsoptimierung der nanoskaligen ferritischen ODS-Legierung 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}, metallkundliche Charakterisierung und Bestimmung von Struktur-Eigenschaftskorrelationen

    Energy Technology Data Exchange (ETDEWEB)

    Eiselt, Charles Christopher

    2010-01-15

    Fusion power reactors next to renewable energy sources shall form an important basis for a future energy scenario avoiding damaging emissions due to the lack of fossil primary energy carriers. An efficient operation of such reactors necessitate temperatures >700 C, which require new kinds of structural materials. Today only reduced activated oxide dispersion-strengthened (ODS-) materials based on iron, which have high strengths at elevated temperatures, offer the possibility to meet those criterias, which are developed in internationally coordinated programs. Therefore a nearly industrial production process based on the powdermetallurgical route is iteratively and systematically optimized to produce the ferritic ODS-alloy 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}. Through TEM elemental analyses of mechanically alloyed steel powder it is confirmed, that the additives Y{sub 2}O{sub 3} and TiH{sub 2} dissolve completely in the powder and form the ODS-particles during the HIP-cycle. Detailed studies of powder contamination during mechanical alloying reveal correlations between the contamination behaviour of certain elements and the milling parameters. A specially designed procedure of powder encapsulation and sealing leads to a successful powder compaction to the ODS-material 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}. Detailed TEM studies show a bimodal grain size distribution within the material at first. The alloy's recrystallization behaviour is the main reason for this phenomenon and is therefore discussed in detail. A high dispersion of ODS-particles as the decisive material's component with particle sizes von 3-5nm within grains and 12-36nm at the grain boundaries is successfully reached and verified by numerous TEM-Elemental Mappings. By applying hot rolling as an additional step during production a more even grain structure by equally maintaining the fine nanoskaled particle dispersion is set up. The microstructure is highly stable, since no grain- or

  17. Creep deformation and microstructural examination of a prior thermally exposed nickel base superalloy

    Czech Academy of Sciences Publication Activity Database

    Zrník, J.; Strunz, Pavel; Vrchovinský, V.; Muránsky, O.; Horňák, P.; Wiedenmann, A.

    2004-01-01

    Roč. 274 (2004), s. 925-930 ISSN 1013-9826 R&D Projects: GA AV ČR KSK1010104 Keywords : superalloy * thermal exposition * creep Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.278, year: 2004

  18. High Temperature Degradation of Powder-processed Ni-based Superalloy

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2015-05-01

    Full Text Available The aim of present work is to study the high temperature degradation of the powder-processed polycrystalline superalloy Ni-15Cr-18Co-4Al-3.5Ti-5Mo. This superalloy has been applied as material for grips of a creep machine. The material was exposed at 1100 °C for about 10 days at 10 MPa stress. During the creep test occurred unacceptable creep deformation of grips as well as severe surface oxidation with scales peeling off. Three types of the microstructure were observed in the studied alloy: (i unexposed state; (ii heat treated (annealing - 10 min/1200 °C and (iii after using as a part of the equipment of the creep machine during the creep test. It is shown that the microstructure degradation resulting from the revealed γ´ phase fcc Ni3(Al,Ti particles preferentially created at the grain boundaries of the samples after performing creep tests affects mechanical properties of the alloy and represents a significant contribution to all degradation processes affecting performance and service life of the creep machine grips. Based on investigation and obtained results, the given material is not recommended to be used for grips of creep machine at temperatures above 1000 °C.

  19. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  20. Isotope effects in the photofragmentation of symmetric molecules: The branching ratio of OD/OH in water

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard; Engel, Volker

    2005-01-01

    With HOD initially in its vibrational ground state, we present a new detailed interpretation of the OD/OH branching ratio (similar to 3) in the photoinduced process D+OH H+OD, in the first absorption band. Using semiclassical arguments, we show that the branching ratio has little to do...... with the initial distribution of configurations, but the initial momentum distribution plays a key role in determination of the branching ratio. The formation of D+OH arises from initial situations where OD is stretching, and it stretches faster than OH, whereas all other motions lead to H+OD. This picture...

  1. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    Science.gov (United States)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  2. Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K

    Energy Technology Data Exchange (ETDEWEB)

    Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

    2010-04-30

    The objective of the proposed research is to utilize modern computational tools, integrated with focused experiments, to design innovative ferritic NiAl-strengthened superalloys for fossil-energy applications at temperatures up to 1,033 K. Specifically, the computational alloy design aims toward (1) a steady-state creep rate of approximately 3 x 10{sup -11} s{sup -1} at a temperature of 1,033 K and a stress level of 35 MPa, (2) a ductility of 10% at room temperature, and (3) good oxidation and corrosion resistance at 1,033 K. The research yielded many outstanding research results, including (1) impurity-diffusion coefficients in {alpha} Fe have been calculated by first principles for a variety of solute species; (2) the precipitates were characterized by the transmission-electron microscopy (TEM) and analytical-electron microscopy (AEM), and the elemental partitioning has been determined; (3) a bending ductility of more than 5% has been achieved in the unrolled materials; and (4) optimal compositions with minimal secondary creep rates at 973 K have been determined. Impurity diffusivities in {alpha} Fe have been calculated within the formalisms of a harmonic transition-state theory and Le Claire nine-frequency model for vacancy-mediated diffusion. Calculated diffusion coefficients for Mo and W impurities are comparable to or larger than that for Fe self-diffusion. Calculated activation energies for Ta and Hf impurities suggest that these solutes should display impurity-diffusion coefficients larger than that for self-diffusion in the body-centered cubic Fe. Preliminary mechanical-property studies identified the alloy Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B (FBB-8) in weight percent (wt.%) for detailed investigations. This alloy shows precipitation of NiAl particles with an average diameter of 130 nm. In conjunction with the computational alloy design, selected experiments are performed to investigate the effect of the Al content on the ductility and creep of

  3. Anisotropic constitutive equations for the viscoplastic behaviour of the single crystal superalloy CMSX-4

    International Nuclear Information System (INIS)

    Fleury, G.; Schubert, F.

    1997-09-01

    Nickel-base superalloy blades of the first rotor stage in a gas turbine have to withstand extremely severe thermomechanical loading conditions. Single crystal blades exhibit a highly anisotropic deformation behaviour and are subjected to triaxial stress fields induced by complex cooling systems. Consequently the prediction of their deformation behaviour requires constitutive equations based on multiaxial formulations. The microstructural evolution of γ/γ' superalloys during the service time modifies the material properties and has therefore to be taken into account in the constitutive equations. For the modelling of the anisotropic, viscoplastic behaviour of single crystal blades taking into account the evolution of the microstructure, a microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of the γ'-particles, is applied. The prediction was validated by investigating the deformation behaviour of the superalloy CMSX-4 in the range of temperatures [750 C-950 C]. If the shape of γ'-particles remain cubic, for example, in creep testing at low temperatures (up to about 850 C), the microstructure-dependent potential leads to the cubic version of the Hills potential. The prediction is in good agreement with creep results for left angle 001 right angle - and left angle 111 right angle - orientated specimens but overestimates the creep resistance of left angle 011 right angle - orientated specimens. (orig.)

  4. Molecular dynamics simulation of edge dislocation piled at cuboidal precipitate in Ni-based superalloy

    International Nuclear Information System (INIS)

    Yashiro, Kisaragi; Naito, Masato; Tomita, Yoshihiro

    2003-01-01

    In order to clarify the fundamental mechanism of dislocations in the γ/γ' microstructure of Ni-based superalloy, three molecular dynamics simulations are conducted on the behavior of edge dislocations nucleated from a free surface and proceeding in the pure Ni matrix (γ) toward cuboidal Ni 3 Al precipitates (γ') under shear force. One involves dislocations near the apices of two precipitates adjoining each other with the distance of 0.04 μm, as large as the width of the γ channel in real superalloys. Others simulate dislocations piled at the precipitates as well, however, the scale of the microstructure is smaller than that in real superalloys by one order of magnitude, and one of them have precipitates with atomistically sharp edge. Dislocations are pinned at precipitates and bowed-out in the γ channel, then they begin to penetrate into the precipitate at the edge in both the real-scale and smaller microstructures when the precipitates have blunt edges. On the other hand, an edge dislocation splits into a superpartial in the γ' precipitate and a misfit screw dislocation bridging between two adjacent precipitates at the atomistically sharp edge of γ' precipitates. It is also observed that two superpartials glide in the precipitate as a superdislocation with anti-phase boundary (APB), of which the width is evaluated to be about 4 nm. (author)

  5. Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel

    Science.gov (United States)

    Klimenkov, M.; Lindau, R.; Jäntsch, U.; Möslang, A.

    2017-09-01

    The EUROFER-ODS alloy with 0.5% Y2O3 was neutron irradiated with doses up to 16.2 dpa at 250 °C, 350 °C and 450 °C. The radiation induced changes in the microstructure (e.g. dislocation loops and voids) were investigated using transmission electron microscopy (TEM). The number density of radiation induced defects was found to be significantly lower than in EUROFER 97 irradiated at the same conditions. It was found that the appearance and extent of radiation damage strongly depend not only on the irradiation temperature but also on the local number density and size distribution of ODS particles. The higher number density of dislocation loops and voids was found in the local areas with low number density of ODS particles. The interstitial loops with Burgers vector of both ½ and types were detected by imaging using different diffraction conditions.

  6. Abnormal flow behavior and necklace microstructure of powder metallurgy superalloys with previous particle boundaries (PPBs)

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Zhou, Cong; Liang, Houquan [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2016-01-15

    Powder metallurgy (P/M) has been introduced as an innovative process to manufacture high performance components with fine, homogenous and segregation-free microstructure. Unfortunately, previous particle boundary (PPB) precipitated during the powder metallurgy process. Since undesirable PPB is detrimental to mechanical properties, hot extrusion or/and isothermal forging are needed. In present research, isothermal compression tests were conducted on P/M FGH4096 superalloys with typical PPBs. Abnormal flow behavior during high-speed deformation has been quantitatively investigated. Caused by the competition mechanism between work-hardening and dynamic-softening, abnormal flow behaves typical four stages (viz., work-hardening, stable, softening and steady). Microstructure observation for hardening or/and softening mechanism has been investigated. Meanwhile, necklace microstructure was observed by scanning electron microscope, and the grain fraction analysis was performed by using electron backscatter diffraction. Transmission electron microscopy was used for characterizing the boundary structure. Necklace microstructural mechanism for processing P/M superalloys has been developed, and the dynamic recrystallization model has also been conducted. Bulge–corrugation model is the primary nucleation mechanism for P/M superalloys with PPBs. When PPB is entirely covered with new grains, necklace microstructure has formed. Bulge–corrugation mechanism can repeatedly take place in the following necklace DRX.

  7. Influences of process parameters and microstructure on the fracture mechanisms of ODS steels

    International Nuclear Information System (INIS)

    Rouffié, A.L.; Wident, P.; Ziolek, L.; Delabrouille, F.; Tanguy, B.; Crépin, J.; Pineau, A.; Garat, V.; Fournier, B.

    2013-01-01

    The present work investigates the impact response of three ODS steels containing 9%Cr and 14%Cr. These steels were produced by hot extrusion in the shapes of a rod and a plate. The 9%Cr ODS steel has a quasi-isotropic microstructure and is given as a reference material. In comparison, the 14%Cr ODS steel has a strong morphological and crystallographic texture given by the process route. The impact behaviour is anisotropic and the fracture energies are higher when the material is tested in the longitudinal direction compared to the transverse direction. Moreover, the 14%Cr ODS steel has a better impact behaviour when it is extruded in the shape of a rod rather than in the shape of a plate. This work focuses on the fracture mechanisms involved in the ductile to brittle transition regime and in the brittle regime of these materials. In the case of the 14%Cr ODS steel, the cleavage facets observed at very low temperature are much larger than the actual size of the grains. Packets of grains with less than 15° of internal misorientation were defined as effective grains for cleavage. In the transition range, the texture enhances intergranular delamination on the 14%Cr rod material. The occurrence of delamination consumes a lot of energy and tends to enhance scattering in impact energies

  8. Influences of process parameters and microstructure on the fracture mechanisms of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Rouffié, A.L., E-mail: anne-laure.rouffie@cea.fr [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Wident, P.; Ziolek, L. [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Delabrouille, F. [EDF – EDF R and D, Département MMC groupe Métallurgie, 77818 Moret sur Loing (France); Tanguy, B. [CEA, DEN, DANS, DMN, SEMI, Bât 625, F-91191 Gif-sur-Yvette (France); Crépin, J.; Pineau, A. [Mines ParisTech, Centre des Matériaux PM Fourt, UMR CNRS 7633, BP 87, 91003 Evry (France); Garat, V. [AREVA NP, 10 rue J. Récamier, 69006 Lyon (France); Fournier, B. [Manoir Industries, Metallurgy Dept., 12 rue des Ardennes, BP 8401 Pîtres, 27108 Val de Reuil Cedex (France)

    2013-02-15

    The present work investigates the impact response of three ODS steels containing 9%Cr and 14%Cr. These steels were produced by hot extrusion in the shapes of a rod and a plate. The 9%Cr ODS steel has a quasi-isotropic microstructure and is given as a reference material. In comparison, the 14%Cr ODS steel has a strong morphological and crystallographic texture given by the process route. The impact behaviour is anisotropic and the fracture energies are higher when the material is tested in the longitudinal direction compared to the transverse direction. Moreover, the 14%Cr ODS steel has a better impact behaviour when it is extruded in the shape of a rod rather than in the shape of a plate. This work focuses on the fracture mechanisms involved in the ductile to brittle transition regime and in the brittle regime of these materials. In the case of the 14%Cr ODS steel, the cleavage facets observed at very low temperature are much larger than the actual size of the grains. Packets of grains with less than 15° of internal misorientation were defined as effective grains for cleavage. In the transition range, the texture enhances intergranular delamination on the 14%Cr rod material. The occurrence of delamination consumes a lot of energy and tends to enhance scattering in impact energies.

  9. Cyclic Oxidation and Hot Corrosion Behavior of Nickel-Iron-Based Superalloy

    Science.gov (United States)

    Chellaganesh, D.; Adam Khan, M.; Winowlin Jappes, J. T.; Sathiyanarayanan, S.

    2018-01-01

    The high temperature oxidation and hot corrosion behavior of nickel-iron-based superalloy are studied at 900 ° and 1000 °C. The significant role of alloying elements with respect to the exposed medium is studied in detail. The mass change per unit area was catastrophic for the samples exposed at 1000 °C and gradual increase in mass change was observed at 900 °C for both the environments. The exposed samples were further investigated with SEM, EDS and XRD analysis to study the metallurgical characteristics. The surface morphology has expressed the in situ nature of the alloy and its affinity toward the environment. The EDS and XRD analysis has evidently proved the presence of protective oxides formation on prolonged exposure at elevated temperature. The predominant oxide formed during the exposure at high temperature has a major contribution toward the protection of the samples. The nickel-iron-based superalloy is less prone to oxidation and hot corrosion when compared to the existing alloy in gas turbine engine simulating marine environment.

  10. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Sato, Atsushi; Harada, Hiroshi; Yokokawa, Tadaharu; Murakumo, Takao; Koizumi, Yutaka; Kobayashi, Toshiharu; Imai, Hachiro

    2006-01-01

    The formation of topologically close-packed (TCP) phases in nickel-base single crystal superalloys causes considerable degradation of the mechanical properties. It has recently been found that platinum-group metals can be effective in controlling the precipitation of such phases, and this extent of precipitation control requires further investigation. This study compares Ru-containing and non-Ru-containing single crystal superalloys. Scanning electron microscopy microstructural observations showed that the rate of TCP phase precipitations decreased through Ru addition. Transmission electron microscopy microstructural observations showed that the P phase, one of the TCP phases, was eliminated through the addition of Ru. The occurrence of this phenomenon will be discussed

  11. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Huang, Ming; Zhuo, Longchao; Liu, Zhanli; Lu, Xiaogang; Shi, Zhenxue; Li, Jiarong; Zhu, Jing

    2015-01-01

    The mechanical properties of nickel-based single crystal superalloys deteriorate with increasing misorientation, thus the finished product rate of the casting of single crystal turbine airfoils may be reduced due to the formation of grain boundaries especially when the misorientation angle exceeds to some extent. To this day, evolution of the microstructures at the grain boundaries with misorientation and the relationship between the microstructures and the mechanical properties are still unclear. In this work a detailed characterization of the misorientation related microstructure at the grain boundary in DD6 single crystal superalloy has been carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques; the elemental distribution at the grain boundaries has been analyzed by energy dispersive (EDS) X-ray mapping; and the effect of precipitation of μ phases at the grain boundary on the mechanical property has been evaluated by finite element calculation. It is shown that the proportion of γ phase at the grain boundaries decreases, while the proportion of γ′ phase at the grain boundaries increases with increasing misorientation; the μ phase is precipitated at the grain boundaries when the misorientation angle exceeds about 10° and thus it could lead to a dramatic deterioration of the mechanical properties, as well as that the enrichment of Re and W gradually disappears as the misorientation angle increases. All these factors may result in the degradation of the mechanical properties at the grain boundaries as the misorientation increases. Furthermore, the finite element calculation confirms that precipitation of μ phases at the grain boundary is responsible for the significant deterioration of the mechanical properties when the misorientation exceeds about 10°. This work provides a physical imaging of the microstructure for understanding the relationship between the mechanical properties and the misorientation

  12. Rapid solidification and dynamic compaction of Ni-base superalloy powders

    Science.gov (United States)

    Field, R. D.; Hales, S. J.; Powers, W. O.; Fraser, H. L.

    1984-01-01

    A Ni-base superalloy containing 13Al-9Mo-2Ta (in at. percent) has been characterized in both the rapidly solidified condition and after dynamic compaction. Dynamically compacted specimens were examined in the as-compacted condition and observations related to current theories of interparticle bonding. In addition, the recrystallization behavior of the compacted material at relatively low temperature (about 0.5-0.75 Tm) was investigated.

  13. Comparison of a polymeric pseudostationary phase in EKC with ODS stationary phase in RP-HPLC.

    Science.gov (United States)

    Ni, Xinjiong; Zhang, Min; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2018-01-01

    Poly(stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) was induced as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). The n-octadecyl groups in SMA were the same as that in octadecylsilane (ODS) C18 column. Thus, the present work focused on the comparison of selectivity between polymeric PSP and ODS stationary phase (SP), and the effect of organic modifiers on the selectivity of polymeric PSP and ODS SP. 1-butanol could directly interacted with PSP as a Class I modifier, and improved both of the methylene selectivity and polar group selectivity. When the analysis times were similar, the polymeric PSP exhibited better methylene selectivity and polar group selectivity. Although the hydrophobic groups were similar, the substituted benzenes elution order was different between polymeric PSP and ODS SP. Linear solvation energy relationships (LSER) model analysis found that polymeric PSP and ODS SP exhibited two same key factors in selectivity: hydrophobic interaction and hydrogen bonding acidity. But polymeric PSP exhibited relatively strong n- and π-electrons interaction to the analytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Relationship of heat treatment-mechanical properties of nickel base superalloys

    International Nuclear Information System (INIS)

    Zamora R, L.

    1997-01-01

    The nickel-base superalloys have high strength, excellent corrosion resistant, and good creep and fatigue resistance. These alloy improved properties at high temperature derive their mechanical and creep behavior on γ precipitate morphology, and the evolution of such morphology during different heat treatment conditions. The main microstructural variable of Nickel-based superalloys, responsible for the mechanical properties are: a) amount and morphology of precipitates; b) size and shape of grains; and c) carbide distribution. In this work, a Nickel-base superalloy Nimonic 80A, modified little with Zr prepared by melting and casting practices of materials electrolytic in vacuum-induction melting (VIM) type Balzers, to obtain five alloys different and ingots of 2 Kg and 1 Kg, with composition in weight % of Nimonic 80-A is: Ni = bal (76.66), C = 0.01, Cr = 19.83, Fe = 2.4, Mn = 0.17, Si 0.47, Al = 0.19, Zr = 0.4. The solidification process is made in a steel mold. After having realized four thermal treatments, the most representative microstructures there were obtained. The results from tensile tests performed on Instron Servohydraulic testing systems at uniaxial dynamic testing, at constant speeds to ,0.2 cm/min, were: the yield strength, the ultimate strength value, percentage elongation and area reduction. Creep tests were performed at in stress of 90 and 129 MPa, at a temperature of 600 and 680 Centigrades at different times and width of specimen of 1 mm. The alloys were analyzed by MEB(JEOL 35CF) at different magnifications. The nucleation and growth of intergranular cavities during creep of alloy Nimonic M3, were investigated. One sample was deformed in creep at 129 MPa and 680 Centigrades during 110 hs. Creep samples were annealing heat treated at 800 Centigrades, during 7 days. After a careful sample preparation procedure, 3100 of cavities were measured in the sample . The cavity size distributions in the sample were obtained. The cavity growth rate, was

  15. Effect of particle morphology and microstructure on strength, work-hardening and ductility behaviour of ODS-(7-13)Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2004-01-01

    The effect of particle morphology and grain refinement to the nanometer scale on strength, work-hardening and tensile ductility of reduced activation ODS-(7-13)Cr steels has been modelled with a dependence on deformation temperature (T=RT-700 deg. C) and a superimposed irradiation hardening. The Orowan model predictions describe as the upper limit the observed particle strengthening of various ODS-(7-13)Cr-(≤0.5 wt% yttria) steels. An optimum particle size d p * congruent with 7-22 nm (f v =0.004-0.05) and strength, together with a lower limiting ultra-fine grain size d K,c ≥90 nm result in maximum uniform ductility increase by grain refinement and dispersion hardening (DIGD). Optimum size d p * increases with increasing particle volume fraction f v and deformation temperature and decreases with irradiation hardening and grain refinement. The region of DIGD is limited to achieve a critical strength σ L corresponding to a critical particle volume fraction f v,c and grain size d K,c , above which uniform strain becomes limited by the strong drop of fracture strain. Grain refinement and irradiation hardening decrease σ L , f v,c and increase d K,c . In accordance with experimental results of ODS-Eurofer, nominal uniform strain increases with increasing f v by about ε u,n =B e +A e lnf v , most strongly around 300 deg. C, but weakly at the 600 deg. C minimum. The strong ductility increase above 600 deg. C results from a reduction of dislocation annihilation and structural recovery of strength. At T K,c for lower f v toward a saturation value which increases with increasing ratio of shear modulus to Hall-Petch constant. The enhanced uniform ductility at T≥300 deg. C is otherwise strongly decreased by grain refinement, more pronounced at lower f v and for strengths above σ L

  16. Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Athiroj, Athittaya; Wangyao, Panyawat; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2018-03-01

    GTD-111 precipitation-strengthened nickel-based superalloy is widely used in blades of gas turbine engines which operate at high temperature and in a hot localized corrosion atmosphere. After long-term exposure to high temperature, γ' precipitate is known to exhibit catastrophic changes in size and distribution which cause deterioration of its properties and failure of the component. In this study, a damaged blade removed from a land-based gas turbine generator was subjected to nonpre-heat-treated GTAW and laser welding repair with various welding powers in the range of 135 to 295 J x mm{sup -1}, followed by post-weld heat treatment (PWHT) at 1473 K for 7200 s and strain aging at 1118 K for 86 400 s. Results show no significant relationship between welding powers, size and area fraction of the γ' precipitate in the fcc γ matrix in both GTAW and laser-welded specimens. The final γ' precipitate size and distribution depend mainly on PWHT parameters as γ' precipitates in all GTAW and laser welded specimens showed similar size and area fraction independently of the heat input from welding. Unmixed zones are observed in all laser welding specimens which may cause preferential weld corrosion during service. Microcrack occurrence due to welding and PWHT processes is also discussed.

  17. Commissioning and initial experimental program of the BGO-OD experiment at ELSA

    Science.gov (United States)

    Alef, S.; Bauer, P.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Böse, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Görtz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Knaust, J.; Kohl, K.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.; Zimmermann, T.

    2016-11-01

    BGO-OD is a new meson photoproduction experiment at the ELSA facility of Bonn University. It aims at the investigation of non strange and strange baryon excitations, and is especially designed to be able to detect weekly bound meson-baryon type structures. The setup for the BGO-OD experiment is presented, the characteristics of the photon beam and the detector performances are shown and the initial experimental program is discussed.

  18. STUDY OF THE MECHANICAL PROPERTIES OF INCONEL 718 SUPERALLOY AFTER HOT TENSILE TESTS

    Directory of Open Access Journals (Sweden)

    Tarcila Sugahara

    2014-10-01

    Full Text Available This research work investigated some important mechanical properties of Inconel 718 superalloy using hot tensile tests like conventional yield strength to 0.2% strain (σe , ultimate strength (σr , and specific elongation (εu . Samples were strained to failure at temperatures of 600°C, 650°C, 700°C, 750°C, 800°C and 850°C and strain rate of 0.5 mm/min (2 × 10–4 s–1 according to ASTM E-8. The results showed higher values σe of yield strength at 700°C, this anomalous behavior can be attributed to the presence of hardening precipitates as observed in the TTT diagram of superalloy Inconel 718. Examination of the sample’s surfaces tensile fracture showed that with increasing temperature test the actuating mechanism changes from intergranular fracture to coalescence of the microcavities.

  19. Atomic force microscopy imaging to measure precipitate volume fraction in nickel-based superalloys

    International Nuclear Information System (INIS)

    Bourhettar, A.; Troyon, M.; Hazotte, A.

    1995-01-01

    In nickel-based superalloys, quantitative analysis of scanning electron microscopy images fails in providing accurate microstructural data, whereas more efficient techniques are very time-consuming. As an alternative approach, the authors propose to perform quantitative analysis of atomic force microscopy images of polished/etched surfaces (quantitative microprofilometry). This permits the measurement of microstructural parameters and the depth of etching, which is the main source of measurement bias. Thus, nonbiased estimations can be obtained by extrapolation of the measurements up to zero etching depth. In this article, the authors used this approach to estimate the volume fraction of γ' precipitates in a nickel-based superalloy single crystal. Atomic force microscopy images of samples etched for different times show definition, homogeneity, and contrast high enough to perform image analysis. The result after extrapolation is in very good agreement with volume fraction values available from published reports

  20. Creation of Y2Ti2O7 nanoprecipitates to strengthen the Fe-14Cr-3Al-2W steels by adding Ti hydride and Y2O3 nanoparticles

    International Nuclear Information System (INIS)

    Wang, Linbo; Bai, Zhonglian; Shen, Hailong; Wang, Chenxi; Liu, Tong

    2017-01-01

    In order to prohibit the formation of large Y-Al-O precipitates, Ti hydride nanoparticles (NPs) were prepared and used to replace Ti as raw particles to fabricate the oxide dispersion strengthened (ODS) Fe-14Cr-3Al-2W-0.35Y 2 O 3 steels by mechanical alloying (MA) and hot isostatic pressing (HIP). As the content of Ti hydride increases from 0.1 to 0.5 and 1.0 wt%, the oxide nanoprecipitates in the ODS steels changes from Y 3 Al 5 O 12 phase to Y 2 Ti 2 O 7 phase (semicoherent with the matrix), and the particle size is successfully reduced. The tensile strength of the ODS steel increases remarkably with increasing Ti hydride content. The sample with 1.0 wt% Ti hydride exhibits a high strength of 1049 MPa at 25 °C and 278 MPa at 700 °C. The creation of Y 2 Ti 2 O 7 nanoprecipitates by adding Ti hydride NPs opens a new way to control the structure and size of the oxide precipitates in the ODS steels. - Graphical abstract: The creation of Y 2 Ti 2 O 7 nanoprecipitates by adding Ti hydride nanoparticles remarkably increases the mechanical properties of the Al-containing ODS steels. - Highlights: •TiH 1.971 reacts with Y 2 O 3 to form Y 2 Ti 2 O 7 in the Al-containing ODS steel. •Addition of TiH 1.971 nanoparticles can prevent the formation of Y-Al-O phases. •Y 2 Ti 2 O 7 nanoparticles share semicoherent interface with the ferrite matrix. •The mean size of oxide dispersion is reduced to 11.2 ± 7.1 nm with 1.0 wt% TiH 1.971 . •The tensile strength of the ODS steel enlarges with increasing TiH 1.971 content.