WorldWideScience

Sample records for strengthened li constraint

  1. Composites Strengthened with Graphene Platelets and Formed in Semisolid State Based on α and α/β MgLiAl Alloys

    Science.gov (United States)

    Dutkiewicz, Jan; Rogal, Łukasz; Fima, Przemyslaw; Ozga, Piotr

    2018-05-01

    MgLiAl base composites strengthened with graphene platelets were prepared by semisolid processing of ball-milled alloy chips with 2% of graphene platelets. Composites strengthened with graphene platelets show higher hardness and yield stress than the cast alloys, i.e., 160 MPa as compared to 90 MPa for as-cast alloy MgLi9Al1.5. Mechanical properties for MgLiAl-based composites were similar or higher than for composites based on conventional AZ91 or WE43 alloys. The strengthening however was not only due to the presence of graphene, but also phases resulting from the reaction between carbon and lithium, i.e., Li2C2 carbide. Graphene platelets were located at globules boundaries resulting from semisolid processing for all investigated composites. Graphene platelets were in agglomerates forming continuous layers at grain boundaries in the composite based on the alloy MgLi4.5Al1.5. The shape of agglomerates was more complex and wavy in the composite based on MgLi9Al1.5 alloy most probably due to lithium-graphene reaction. Electron diffraction from the two-phase region α + β in MgLi9Al1.5 indicated that [001]α and [110]β directions are rotated about 4° from the ideal relationship [001] hex || [110] bcc phases. It showed higher lattice rotation than in earlier studies what is most probably caused by lattice slip and rotation during semisolid pressing causing substantial deformation particularly within the β phase. Raman spectroscopy studies confirmed the presence of graphene platelets within agglomerates and in addition the presence mainly of Li2C2 carbides in composites based on MgLi4.5Al1.5 and Mg9Li1.5Al alloys. From the character of Raman spectra refinement of graphene platelets was found in comparison with their initial size. The graphene areas without carbides contain graphene nanoplatelets with lateral dimension close to initial graphene sample. Electron diffraction allowed to confirm the presence of Li2C2 carbide at the surface of agglomerates found from

  2. Pre-main-sequence depletion of Li-6 and Li-7

    International Nuclear Information System (INIS)

    Proffitt, C.R.; Michaud, G.

    1989-01-01

    Depletion of Li-6 and Li-7 during premain-sequence contraction has been calculated for several evolutionary sequences. Slightly greater Li-7 depletion was found than by other recent workers. On the premain sequence, Li-6 is depleted by a factor of at least 10 in the present models for stars with T(eff) lower than 6800 K on the main sequence. Because of the shorter destruction time scale for Li-6 as compared to Li-7, the determination of the abundances of these two isotopes would place strict constraints on the structure of premain-sequence stars. 39 refs

  3. Ultralong Lifespan and Ultrafast Li Storage: Single-Crystal LiFePO4 Nanomeshes.

    Science.gov (United States)

    Zhang, Yan; Zhang, Hui Juan; Feng, Yang Yang; Fang, Ling; Wang, Yu

    2016-01-27

    A novel LiFePO4 material, in the shape of a nanomesh, has been rationally designed and synthesized based on the low crystal-mismatch strategy. The LiFePO4 nanomesh possesses several advantages in morphology and crystal structure, including a mesoporous structure, its crystal orientation that is along the [010] direction, and a shortened Li-ion diffusion path. These properties are favorable for their application as cathode in Li-ion batteries, as these will accelerate the Li-ion diffusion rate, improve the Li-ion exchange between the LiFePO4 nanomesh and the electrolyte, and reduce the Li-ion capacitive behavior during Li intercalation. So the LiFePO4 nanomesh exhibits a high specific capacity, enhanced rate capability, and strengthened cyclability. The method developed here can also be extended to other similar systems, for instance, LiMnPO4 , LiCoPO4 , and LiNiPO4 , and may find more applications in the designed synthesis of functional materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    Science.gov (United States)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  5. Li-atoms-induced structure changes of Guinier–Preston–Bagaryatsky zones in AlCuLiMg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Duan, S.Y.; Le, Z.; Chen, Z.K.; Gao, Z. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, J.H., E-mail: jhchen123@hnu.edu.cn [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Advanced Research Center, Central South University, Changsha 410083 (China); Ming, W.Q.; Li, S.Y.; Wu, C.L. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Yan, N. [Advanced Research Center, Central South University, Changsha 410083 (China)

    2016-11-15

    Guinier–Preston–Bagaryatsky (GPB) zones are the well-known strengthening precipitates of AlCuMg alloys formed upon thermal ageing. Here we report that when formed in AlCuLiMg alloys the GPB zones can change significantly in morphology and structure. It is shown that though they do still consist of Al, Cu and Mg elements fundamentally, the GPB zones in AlCuLiMg alloys have a rather different structure due to a featured Li-segregation at their interfaces with the matrix and possible Li-replacement of partial Mg atoms in the structure. As such the Li-containing GPB zones often develop from one-dimensional to quasi-two-dimensional precipitates. - Highlights: • We observe Guinier–Preston–Bagaryatsky zone variants in AlCuLiMg alloys. • We obtain atomic-resolution images of the precipitates and model their structures. • Li-atoms play a key role in modifying the structure of these precipitate variants.

  6. Modifier constraints in alkali ultraphosphate glasses

    DEFF Research Database (Denmark)

    Rodrigues, B.P.; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In applying the recently introduced concept of cationic constraint strength [J. Chem. Phys. 140, 214501 (2014)] to bond constraint theory (BCT) of binary phosphate glasses in the ultraphosphate region of xR2O-(1-x)P2O5 (with x ≤ 0.5 and R = {Li, Na, Cs}), we demonstrate that a fundamental limitat...

  7. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  8. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    Science.gov (United States)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  9. Fairness compatibility constraints and collective actions%公平相容约束与集体行动

    Institute of Scientific and Technical Information of China (English)

    皮建才

    2007-01-01

    基于公平相容约束扩展了朱宪辰和李玉连(2007)的模型,扩展后的模型更具有现实解释力.集体行动能不能实现,除了要考虑组织者和参与者的个体理性约束以外,还必须考虑组织者和参与者的公平相容约束.符合组织者的个体理性约束但不符合其公平相容约束的集体行动照样不能实现.而且,搭便车者的破坏性作用是不容小视的.%This paper extends the work of Zhu Xianchen and Li Yulian (2007) by introducing the fairness compatibility constraint. Our work strengthens the explanatory power of their model. Whether a collective action can be realized depends not only on the organizer and followers' individual rationality constraints,but also on their fairness compatibility constraints. Collective actions that meet the organizer's individual rationality constraint but do not meet his fairness compatibility constraints cannot be realized. Furthermore, free-riders play a destructive role, which should not be ignored.

  10. Constraints to strengthening public sector accountability through civil society: the case of Morocco

    NARCIS (Netherlands)

    S.I. Bergh (Sylvia)

    2009-01-01

    textabstractThis paper discusses the extent to which civil society contributes to strengthening public sector accountability in Morocco. The main argument in this paper is that despite a few recent encouraging examples, civil society’s role in strengthening public sector accountability remains

  11. Electrochemical properties of LiMn2O4 cathode material doped with an actinide

    International Nuclear Information System (INIS)

    Eftekhari, Ali; Moghaddam, Abdolmajid Bayandori; Solati-Hashjin, Mehran

    2006-01-01

    Metal substation as an efficient approach for improvement of battery performance of LiMn 2 O 4 was performed by an actinide dopant. Uranium as the last natural element and most common actinide was employed for this purpose. Cyclic voltammetric studies revealed that incorporation of uranium into LiMn 2 O 4 spinel significantly improves electrochemical performance. It also strengthens the spinel stability to exhibit better cycleability. Surprisingly, the capacity increases upon cycling of LiU 0.01 Mn 1.99 O 4 cathode. This inverse behavior is attributed to uniform distribution of dopant during insertion/extraction process. In other words, this is an electrochemical refinement of the nanostructure which is not detectable in microscale morphology, as rearrangement of dopant in nanoscale occurs and this is an unexceptional nanostructural ordering. In addition, uranium doping strengthens the Li diffusion, particularly at redox potentials

  12. Nuclear reaction rates and primordial 6Li

    International Nuclear Information System (INIS)

    Nollett, K.M.; Schramm, D.N.; Lemoine, M.; Schramm, D.N.; Lemoine, M.; Schramm, D.N.

    1997-01-01

    We examine the possibility that big-bang nucleosynthesis (BBN) may produce nontrivial amounts of 6 Li. If a primordial component of this isotope could be observed, it would provide a new fundamental test of big-bang cosmology, as well as new constraints on the baryon density of the universe. At present, however, theoretical predictions of the primordial 6 Li abundance are extremely uncertain due to difficulties in both theoretical estimates and experimental determinations of the 2 H(α,γ) 6 Li radiative capture reaction cross section. We also argue that present observational capabilities do not yet allow the detection of primeval 6 Li in very metal-poor stars of the galactic halo. However, if the critical cross section is very high in its plausible range and the baryon density is relatively low, then improvements in 6 Li detection capabilities may allow the establishment of 6 Li as another product of BBN. It is also noted that a primordial 6 Li detection could help resolve current concerns about the extragalactic D/H determination. copyright 1997 The American Physical Society

  13. Mechanical properties of ultra-fine grained structure formed in Al-Li alloys

    International Nuclear Information System (INIS)

    Adamczyk-Cieslak, B.; Lewandowska, M.; Mizera, J.; Kurzydlowski, K.J.

    2004-01-01

    This paper describes the mechanical properties (microhardness, yield stress) of two model Al-Li alloys by the Equal-Channel-Angular-Extrusion (ECAE) process. The applied ECAE process reduced the grain size from an initial value of ∼300 μm to a value of ∼0.7 μm leading to profound increase of plastic flow resistance. Such an increase is related to the grain size refinement and strengthening due to Li atoms in solid solution. Microhardness data confirm the Hall - Petch relation for grain sizes not available so far in Al-Li alloys. (author)

  14. Structure formation cosmic rays: Identifying observational constraints

    Directory of Open Access Journals (Sweden)

    Prodanović T.

    2005-01-01

    Full Text Available Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1 we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB; 2 we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs, which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in

  15. Some new characteristics of the strengthening phase in β-phase magnesium-lithium alloys containing aluminum and beryllium

    International Nuclear Information System (INIS)

    Song Guangsheng; Staiger, Mark; Kral, Milo

    2004-01-01

    Hardness, optical-microscopy and X-ray diffraction studies on the strengthening phase in β-phase magnesium-lithium alloys containing different content of aluminum were carried out to give some new characteristics of the strengthening phase affecting lattice distortion and α-Mg precipitation in the β-matrix. In the presence of the strengthening-phase precipitates, the matrix lattice undergoes substantial strain characterized by peak broadening. The peak width in the β-matrix phase pattern can provide an indication of lattice strain caused by the strengthening-phase precipitates. The origin of α-Mg precipitation resulting from the decomposition of the strengthening phase into stable AlLi compound is also explained in the present work

  16. Static and dynamic moments of the 7Li nucleus

    International Nuclear Information System (INIS)

    Barker, F.C.; Kondo, Y.; Spear, R.H.

    1989-09-01

    The data of Weller et al. (1985) on the tensor analysing powers for elastic and inelastic Coulomb scattering of aligned 7 Li ions have been reanalyzed in order to obtain information on the values of the four 7 Li moments Q, B(E2)↑, τ 11 and τ 12 . It is shown that a single set of values, chosen primarily to be consistent with the value of Q measured by molecular techniques and the values of B(E2)↑ and τ 12 . required to fit unpolarized 7 Li data, and also with the theoretical constraint τ 11 ≅-[τ 12 ], gives a good fit to the aligned 7 Li data. 19 refs., 6 figs

  17. Theoretical multi-physics approaches to solid-solution strengthening of Al

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Duancheng; Friak, Martin; Raabe, Dierk; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2009-07-01

    The strengthening of soft metallic materials has a long tradition and is an important metallurgical topic since the time when ancient smiths forged the first swords. Intense materials research revealed a combination of three mechanisms as decisive for solid-solution strengthening phenomena: (i) the size mismatch of components (Mott and Nabarro's parelastic concept), (ii) the elastic modulus mismatch of atoms (Fleischer's dielastic contribution), and (iii) the concentration of solutes (statistical concept of Friedel and Labusch). Combining density functional theory calculations and linear-elasticity theory, the key parameters that are essential for the classical strengthening theories are determined in order to test them and identify their possible validity limits. The strengthening of fcc aluminium is chosen as an example and a series of binary systems Al-X (with X=Ca,Sr,Ir,Li,Mg,Cu) was considered. Comparing our results with those obtained by applying classical theories we find clear deviations. These deviations originate from non-classical lattice distortions due to the size mismatch of solute atoms in their first coordination shells.

  18. Neutronic optimization of a LiAlO2 solid breeder blanket

    International Nuclear Information System (INIS)

    Levin, P.; Ghoniem, N.M.

    1986-02-01

    In this report, a pressurized lobular blanket configuration is neutronically optimized. Among the features of this blanket configuration are the use of beryllium and LiAlO 2 solid breeder pins in a cross-flow configuration in a helium coolant. One-dimensional neutronic optimization calculations are performed to maximize the tritium breeding ratio (TER). The procedure involves spatial allocations of Be, LiAlO 2 , 9-C (ferritic steel), and He; in such a way as to maximize the TBR subject to several material, engineering and geometrical constraints. A TBR of 1.17 is achieved for a relatively thin blanket (approx. = 43 cm depth), and consistency with all imposed constraints

  19. Li{sub 4}SiO{sub 4} based breeder ceramics with Li{sub 2}TiO{sub 3}, LiAlO{sub 2} and Li{sub X}La{sub Y}TiO{sub 3} additions, part II: Pebble properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.H.H., E-mail: Matthias.kolb@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021, Karlsruhe (Germany); Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021, Karlsruhe (Germany); Hoshino, T. [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology (QST) (Japan)

    2017-02-15

    Highlights: • The mechanical strength of Li{sub 4}SiO{sub 4}-based breeder pebbles can be improved by adding either LMT, LAO or LLTO as second phase. • The increase in strength is closely linked to a reduction of the open porosity of the pebbles. • All fabricated pebbles show a highly homogenous microstructure with mostly low closed porosity. • Adding LLTO, although it decomposes during sintering, greatly improves the strength of the pebbles. - Abstract: The pebble properties of novel two-phase Li{sub 4}SiO{sub 4} pebbles of 1 mm diameter with additions of Li{sub 2}TiO{sub 3}, LiAlO{sub 2} or Li{sub x}La{sub y}TiO{sub 3} are evaluated in this work as a function of the second phase concentration and the microstructure of the pebbles. The characterization focused on the mechanical strength, microstructure and open as well as closed porosity. Therefore crush load tests, SEM analyses as well as helium pycnometry and optical image analysis were performed, respectively. This work shows that generally additions of a second phase to Li{sub 4}SiO{sub 4} considerably improve the mechanical strength. It also shows that the fabrication processes have to be well-controlled to achieve high mechanical strengths. When Li{sub 2}TiO{sub 3} is added in different concentrations, the determinant for the crush load seems to be the open porosity of the pebbles. The strengthening effect of LiAlO{sub 2} compared to Li{sub 2}TiO{sub 3} is similar, while additions of Li{sub x}La{sub y}TiO{sub 3} increase the mechanical strength much more. Yet, Li{sub 4}SiO{sub 4} and Li{sub x}La{sub y}TiO{sub 3} react with each other to a number of different phases upon sintering. In general the pebble properties of all samples are favorable for use within a fusion breeder blanket.

  20. Exploring Organizational Barriers to Strengthening Clinical Supervision of Psychiatric Nursing Staff

    DEFF Research Database (Denmark)

    Gonge, Henrik; Buus, Niels

    2016-01-01

    This article reports findings from a longitudinal controlled intervention study of 115 psychiatric nursing staff. The twofold objective of the study was: (a) To test whether the intervention could increase clinical supervision participation and effectiveness of existing supervision practices, and...... in the experienced effectiveness of supervision. It is concluded that organizational support is an imperative for implementation of clinical supervision......., and (b) To explore organizational constraints to implementation of these strengthened practices. Questionnaire responses and registration of participation in clinical supervision were registered prior and subsequent to the intervention consisting of an action learning oriented reflection on staff......'s existing clinical supervision practices. Major organizational changes in the intervention group during the study period obstructed the implementation of strengthened clinical supervision practices, but offered an opportunity for studying the influences of organizational constraints. The main findings were...

  1. Precipitation structures and mechanical properties of Al-Li-Zr alloy containing V

    International Nuclear Information System (INIS)

    Ying, J.K.; Ohashi, T.

    1999-01-01

    It is known that Al-Li alloys possess high elastic modulus and low density, and the metastable δ' (Al 3 Li) precipitate in these alloys affords considerable strengthening effect. However, with the strengthening resulting from the precipitation of δ' which is coherent with the matrix, these alloys suffer from low ductility and fracture toughness. It seems that the loss of ductility is the slip localization which occurs as a result of slip planes during deformation in connection with the specific hardening mechanism. As a result it indicates typical intergranular fracture. On the one hand, zirconium is used in many aluminum alloys to inhibit recrystallization during alloy processing. When zirconium is present in the alloy grain refinement occurs, which consequently, is considered as a factor that reduces the slip distance, and lowers the stress concentration across grain boundaries and at grain boundary triple points. Nevertheless, if only zirconium is added in Al-Li alloy it still shows intergranular fracture. By Zedaris et al., equilibrium phase Al 3 (Zr,V) in Al-Zr alloy containing V reduces the lattice mismatch along the c-axis with Al and, the L1 2 -structure metastable precipitates Al 3 (Zr,V) in Al-Zr-V alloys are stable at elevated temperature. Therefore, it is interesting to elucidate the effect of V in Al-Li-Zr alloy at the precipitation structures and mechanical properties of these alloys

  2. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    Science.gov (United States)

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  3. Quaternary system LiF-LiCl-LiVO3-Li2MoO4

    International Nuclear Information System (INIS)

    Anipchenko, B.V.; Garkushin, I.K.

    2000-01-01

    Interactions in the LiF-LiCl-LiVO 3 -Li 2 MoO 4 system are studied by differential thermal analysis. Rate of heating/cooling of the samples comprised 15 Grad/min, mass of sample composed 0.2 g. The system was investigated in the 300-650 Deg C range. X-ray diffraction method was used for determination of purity of the reagents. Composition and temperature of quaternary component eutectics are determined: 16.5 mol. % of LiF, 47.0 mol. % of LiCl, 28.8 mol. % of LiVO 3 , 7.6 mol. % of Li 2 MoO 4 ; 387 Deg C. Mean value of melting enthalpy of quaternary eutectics mixture in the LiF-LiCl-LiVO 3 -Li 2 MoO 4 system on the results of the tests was in the range of 222 kJ/kg [ru

  4. Experimental Investigation on Strengthening of Bolted Connections in Transmission/Communication Towers

    Science.gov (United States)

    Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.

    2018-02-01

    Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.

  5. Experimental Investigation on Strengthening of Bolted Connections in Transmission/Communication Towers

    Science.gov (United States)

    Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.

    2018-06-01

    Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.

  6. Upgrading transmission lines with aerial LiDAR technology

    Energy Technology Data Exchange (ETDEWEB)

    Koop, J.E. [Manitoba Hydro, Winnipeg, MB (Canada)

    2003-04-01

    LiDAR (Light Detection and Ranging) technology is described as an example of techniques used by hydro companies to increase their capacity with existing plants, and within tight budget constraints. LiDAR was chosen by Manitoba Hydro primarily because LiDAR's data collection method offers very fast turn-around time from collection to delivery, and most importantly because of LiDAR's highly accurate ability to map terrain and wire catenary shape in every span. The article describes a case study of the 'Nip and Tuck' method of wire re-tensioning based on LiDAR data, which was used by Manitoba Hydro to create a computer model of Saskatchewan Hydro's transmission line capacity on its 138 kV transmission line between Saskatoon and North Battleford. The model was needed to analyze the existing line conditions in an effort to minimize cascading failures on the 40-year old line. Using the 'Nip and Tuck' technology in combination with LiDAR, SaskPower engineers were able to complete the required modifications to raise transmission wire operating temperatures on the 135 km long line to 66 degree C in only 36 days, and at a cost that was 80 per cent less than the cost would have been using conventional techniques ($232,000 instead of the estimated $1.25 million).

  7. Solvothermal coating LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 microspheres with nanoscale Li_2TiO_3 shell for long lifespan Li-ion battery cathode materials

    International Nuclear Information System (INIS)

    Wu, Naiteng; Wu, Hao; Liu, Heng; Zhang, Yun

    2016-01-01

    strategy is employed to strengthen surface coating. • Coating layer improves the velocity of Li"+ migration on electrode surface. • Erosion from the HF and CO_2 on electrode is greatly suppressed.

  8. Primordial lithium: New reaction rates, new abundances, new constraints

    International Nuclear Information System (INIS)

    Kawano, L.; Schramm, D.; Steigman, G.

    1986-12-01

    Newly measured nuclear reaction rates for 3 H(α,γ) 7 Li (higher than previous values) and 7 Li(p,α) 4 He (lower than previous values) are shown to increase the 7 Li yield from big bang nucleosynthesis for lower baryon to photon ratio (eta ≤ 4 x 10 -10 ); the yield for higher eta is not affected. New, independent determinations of Li abundances in extreme Pop II stars are in excellent agreement with the earlier work of the Spites and give continued confidence in the use of 7 Li in big bang baryon density determinations. The new 7 Li constraints imply a lower limit on eta of 2 x 10 -10 and an upper limit of 5 x 10 -10 . This lower limit to eta is concordant with that obtained from considerations of D + 3 He. The upper limit is consistent with, but even more restrictive than, the D bound. With the new rates, any observed primordial Li/H ratio below 10 -10 would be inexplicable by the standard big bang nucleosynthesis. A review is made of the strengths and possible weaknesses of utilizing conclusions drawn from big bang lithium considerations. An appendix discusses the null effect of a factor of 32 increase in the experimental rate for the D(d,γ) 4 He reaction. 28 refs., 1 fig

  9. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    International Nuclear Information System (INIS)

    Ma, Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2015-01-01

    We propose an approach for the computationally efficient and quantitatively accurate prediction of solid-solution strengthening. It combines the 2-D Peierls–Nabarro model and a recently developed solid-solution strengthening model. Solid-solution strengthening is examined with Al–Mg and Al–Li as representative alloy systems, demonstrating a good agreement between theory and experiments within the temperature range in which the dislocation motion is overdamped. Through a parametric study, two guideline maps of the misfit parameters against (i) the critical resolved shear stress, τ 0 , at 0 K and (ii) the energy barrier, ΔE b , against dislocation motion in a solid solution with randomly distributed solute atoms are created. With these two guideline maps, τ 0 at finite temperatures is predicted for other Al binary systems, and compared with available experiments, achieving good agreement

  10. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3.

    Science.gov (United States)

    Pearce, Paul E; Perez, Arnaud J; Rousse, Gwenaelle; Saubanère, Mathieu; Batuk, Dmitry; Foix, Dominique; McCalla, Eric; Abakumov, Artem M; Van Tendeloo, Gustaaf; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-05-01

    Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g -1 . In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li 2 IrO 3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e - per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (M n+ ) and anionic (O 2 ) n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li 2 IrO 3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir 4+ at potentials as low as 3.4 V versus Li + /Li 0 , as equivalently observed in the layered α-Li 2 IrO 3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

  11. Palatalization and glide strengthening as competing repair strategies: Evidence from Kirundi

    Directory of Open Access Journals (Sweden)

    Alexei Kochetov

    2016-07-01

    Full Text Available Alternations involving place-changing palatalization (e.g. t+j → ʧ in spirit – spiritual are very common and have been a focus of much generative phonological work since Chomsky & Halle’s (1968 ‘Sound Pattern of English’. The interest in palatalization and its mechanisms (see e.g. Sagey 1990; Chen 1996; Bateman 2007 has somewhat obscured the question of how these processes fit into a wider typology of segmental alternations. What happens when palatalization fails to apply? Do other processes take its place and apply under the same circumstances? In this paper, I argue for a close functional and formal affinity between place-changing palatalization and one such process, palatal glide strengthening (e.g. p+j → pc. As evidence I present data from Kirundi (Bantu on the realization of consonant + palatal and velar glide sequences within and across morphemes. As will be shown, palatalization and glide strengthening in Kirundi work in parallel, affecting different subsets of consonants. Specifically, palatalization targets C+j sequences with laryngeals, velars, nasal coronals, and – across morpheme boundaries – non-nasal coronals. In contrast, glide strengthening targets C+j sequences with labials and – within morphemes – non-nasal coronals. In addition, glide strengthening applies to within- and across-morpheme consonant + velar glide sequences, producing a set of outputs (e.g. m+w → mŋ similar to C+j sequences. I further present a unified Optimality Theoretic (Prince & Smolensky 1993/2004 account of these seemingly disparate phenomena as both arising from different rankings of constraints prohibiting consonant + glide sequences (parameterized by place and/or manner and various feature-specific agreement and faithfulness constraints. Finally, I explore typological predictions of this account, reviewing several remarkably similar cases of C + glide resolution patterns from other languages, and outlining questions for further

  12. Electrochemical Behavior of LiBr, LiI, and Li2Se in LiCl Molten Salt

    International Nuclear Information System (INIS)

    Choi, In Kyu; Do, Jae Bum; Hong, Sun Seok; Seo, Chung Seok

    2006-03-01

    The effect of fission products on the electrolytic reduction of uranium oxide has been studied. It has been reported that volatile fission products, such as Br, I, and Se, react with Li metal which is a reductant in the process to give LiBr, LiI, and Li 2 Se. These compounds are dissociated as corresponding anions and cations in the LiCl molten salt at 650 .deg. C. In this experiment, oxidation and reduction reaction of 3wt% of each compound in LiCl molten salt were investigated by cyclic voltammetry. For LiBr, redox reactions of cation and anion were reversible, while redox reactions of Li + and I - were irreversible. For Li 2 Se, about half of the produced Li metal was disappeared at the cathode and two anodic current curves were appeared. After the cyclic voltammetric measurements for each compound, chronopotentiometric experiment was carried out for one hour with 100 - 400 mA. After the electrolysis, no compounds gave Li metal in the porous MgO filter in which Li metal was produced at the cathode. However, LiCl salt was covered with Br 2 for LiBr electrolysis. Dark red color of Br 2 was easily removed by water. For LiI electrolysis, salt gave black color and I 2 was deposited on the Pt anode. For Li 2 Se electrolysis, black fine powders were precipitated in the salt. After the separation and dryness of the precipitates, it was analyzed with XRD and it turned out PtSe 2 . From the electrochemical experimental results, it was concluded that these compounds may affect the electrolytic reduction process of uranium oxide in the spent fuel

  13. Registration of Urban Aerial Image and LiDAR Based on Line Vectors

    Directory of Open Access Journals (Sweden)

    Qinghong Sheng

    2017-09-01

    Full Text Available In a traditional registration of a single aerial image with airborne light detection and ranging (LiDAR data using linear features that regard line direction as a control or linear features as constraints in the solution, lacking the constraint of linear position leads to the error propagation of the adjustment model. To solve this problem, this paper presents a line vector-based registration mode (LVR in which image rays and LiDAR lines are expressed by a line vector that integrates the line direction and the line position. A registration equation of line vector is set up by coplanar imaging rays and corresponding control lines. Three types of datasets consisting of synthetic, theInternational Society for Photogrammetry and Remote Sensing (ISPRS test project, and real aerial data are used. A group of progressive experiments is undertaken to evaluate the robustness of the LVR. Experimental results demonstrate that the integrated line direction and the line position contributes a great deal to the theoretical and real accuracies of the unknowns, as well as the stability of the adjustment model. This paper provides a new suggestion that, for a single image and LiDAR data, registration in urban areas can be accomplished by accommodating rich line features.

  14. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys.

    Science.gov (United States)

    Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R

    2014-09-01

    Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  15. Complexing properties of some carbamoylmethylphosphine oxides and methylenediphosphine dioxides with respect to alkali metal cations and the effect of abnormal aryl strengthening

    International Nuclear Information System (INIS)

    Evreinov, V.I.; Safronova, Z.V.; Yarkevich, A.N.; Kharitonov, A.V.; Bondarenko, N.A.; Tsvetkov, E.N.

    1999-01-01

    By the method of conductometry in anhydrous tetrahydrofuran at 25 Deg C stability constants of alkali metal (M = Li, Na, K) cation complexes with certain phosphinoxides have been determined. Abnormal aryl strengthening is first of all pronounced in the cation complexes with tetraphenyldiphosphine dioxide [ru

  16. Effects of solution heat treatment on the microstructure and hardness of Mg-5Li-3Al-2Zn-2Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiqing; An Jiangmin; Qu Zhikun [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China); Wu Ruizhi, E-mail: Ruizhiwu2006@yahoo.com [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China); Zhang Jinghuai; Zhang Milin [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China)

    2010-10-15

    The microstructure and hardness of Mg-5Li-3Al-2Zn-2Cu alloy were investigated both in the as-cast condition and after solution heat treatment at 330-390 deg. C for 5 h. The as-cast alloy contains a microstructure consisting of {alpha}-Mg matrix, AlLi phase, AlCuMg phase and Al{sub 2}Cu phase. After the solution heat treament, the AlLi phase was dissolved into the matrix, however, the AlCuMg and Al{sub 2}Cu phases were not dissolved. With the increase of solution temperature, almost all the AlLi phase was dissolved, and the effects of solution strengthening of Al and Li atoms in the alloy increase, which results in the gradual increase of the Brinell hardness of the solution-treated alloy.

  17. Hongmei Li, Advertising and Consumer Culture in China,

    OpenAIRE

    Bai, Ruoyun

    2017-01-01

    Advertising and Consumer Culture in China is an excellent survey of Chinese advertising as embedded in the context of marketisation, globalisation and authoritarianism in the market reform era. Approaching Chinese advertising “as an industry, a profession, and a discourse,” Hongmei Li examines the formation and transformation of China’s advertising industry from the late 1970s to the present, structural constraints upon the creative practices of its advertising professionals, and dominant dis...

  18. Observational constraints on the possible existence of cosmological cosmic rays

    International Nuclear Information System (INIS)

    Montmerle, T.

    1977-01-01

    The possibility that cosmological cosmic rays (''CCR'': protons and α particles) may have existed in the post recombination era of the early universe (z approximately 100) is examined. In this context, the CCR interact with the ambient gaseous medium. High energy collisions ( (>=) 1 GeV/n ) give rise to diffuse background γ-rays via π deg decay, and low energy collisions (approximately 10-100 MeV/n) give rise to light nuclei: 6 Li, 7 Li and 7 Be (via the α + α sion and ionization losses into account, a system of coupled time-dependent transport equations is solved in the case of a CCR burst. The 1-100 MeV γ-ray background spectrum and the light element abundances are then taken as observational constraints on the CCR hypothesis. It is found that, in this framework, it is possible to account simultaneously for the γ-ray background spectrum and for the otherwise unexplained 7 Li/H ratio, but there are some difficulties with the 7 Li/ 6 Li ratio. To avoid these, it is possible, because of the spread in the γ-ray data, to lower the CCR flux, so that the CCR hypothesis cannot be ruled out on this basis at present. (author)

  19. Solvothermal coating LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} microspheres with nanoscale Li{sub 2}TiO{sub 3} shell for long lifespan Li-ion battery cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Naiteng; Wu, Hao; Liu, Heng; Zhang, Yun, E-mail: y_zhang@scu.edu.cn

    2016-04-25

    materials for layer structured LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode. • Solvothermal coating strategy is employed to strengthen surface coating. • Coating layer improves the velocity of Li{sup +} migration on electrode surface. • Erosion from the HF and CO{sub 2} on electrode is greatly suppressed.

  20. Constraints in the adoption of Indigenous farming practices

    OpenAIRE

    K Kanagasabapathi; V Sakthivel

    2017-01-01

    Indigenous farming is a production system, based on renewal of ecological processes and strengthening of ecological functions of farm ecosystem to produce safe, healthy and sustainable food. Indigenous agriculture is being adopted by the farmers of Kolli Hills in centre Tamil Nadu for different reasons. However, a lot of constraints prevent the farmers in adopting indigenous farming practices, that include poor yield, poor marketing facilities, higher production cost and urbanization

  1. Technology transfer to Africa: constraints for CDM operations

    International Nuclear Information System (INIS)

    Karani, Patrick

    2002-01-01

    It is practically difficult to design, implement and manage Clean Development Mechanism (CDM) projects in Africa without a provision for capacity building that will enable the application of modern technologies and techniques. Existing institutions need strengthening, human capacity needs to be developed and new markets need to be promoted. The author outlines institutional and market constraints in relation to technology transfer (e.g renewable energy technologies) and development in Africa. (Author)

  2. Sediment Sources, Depositional Environment, and Diagenetic Alteration of the Marcellus Shale, Appalachian Basin, USA: Nd, Sr, Li and U Isotopic Constraints

    Science.gov (United States)

    Phan, T. T.; Capo, R. C.; Gardiner, J. B.; Stewart, B. W.

    2017-12-01

    The organic-rich Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, is a major target of natural gas exploration. Constraints on local and regional sediment sources, depositional environments, and post-depositional processes are essential for understanding the evolution of the basin. In this study, multiple proxies, including trace metals, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U and Li isotopes were applied to bulk rocks and authigenic fractions of the Marcellus Shale and adjacent limestone/sandstone units from two locations separated by 400 km. The range of ɛNd values (-7.8 to -6.4 at 390 Ma) is consistent with a clastic sedimentary component derived from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt. The Sm-Nd isotope system and bulk REE distributions appear to have been minimally affected by post-depositional processes, while the Rb-Sr isotope system shows evidence of limited post-depositional redistribution. While REE are primarily associated with silicate minerals (80-95%), REE patterns of sequentially extracted fractions reflect post-depositional alteration at the intergranular scale. Although the chemical index of alteration (CIA = 54 to 60) suggests the sediment source was not heavily weathered, Li isotope data are consistent with progressively increasing weathering of the source region during Marcellus Shale deposition. δ238U values in bulk shale and reduced phases (oxidizable fraction) are higher than those of modern seawater and upper crust. The isotopically heavy U accumulated in these authigenic phases can be explained by the precipitation of insoluble U in anoxic/euxinic bottom water. Unlike carbonate cement within the shale, the similarity between δ238U values and REE patterns of the limestone units and those of modern seawater indicates that the limestone formed under open ocean (oxic) conditions.

  3. Electronic Properties of LiFePO4 and Li doped LiFePO4

    International Nuclear Information System (INIS)

    Zhuang, G.V.; Allen, J.L.; Ross, P.N.; Guo, J.-H.; Jow, T.R.

    2005-01-01

    The potential use of different iron phosphates as cathode materials in lithium-ion batteries has recently been investigated.1 One of the promising candidates is LiFePO4. This compound has several advantages in comparison to the state-of-the-art cathode material in commercial rechargeable lithium batteries. Firstly, it has a high theoretical capacity (170 mAh/g). Secondly, it occurs as mineral triphylite in nature and is inexpensive, thermally stable, non-toxic and non-hygroscopic. However, its low electronic conductivity (∼10-9 S/cm) results in low power capability. There has been intense worldwide research activity to find methods to increase the electronic conductivity of LiFePO4, including supervalent ion doping,2 introducing non-carbonaceous network conduction3 and carbon coating, and the optimization of the carbon coating on LiFePO4 particle surfaces.4 Recently, the Li doped LiFePO4 (Li1+xFe1-xPO4) synthesized at ARL has yield electronic conductivity increase up to 106.5 We studied electronic structure of LiFePO4 and Li doped LiFePO4 by synchrotron based soft X-ray emission (XES) and X-ray absorption (XAS) spectroscopies. XAS probes the unoccupied partial density of states, while XES the occupied partial density of states. By combining XAS and XES measurements, we obtained information on band gap and orbital character of both LiFePO4 and Li doped LiFePO4. The occupied and unoccupied oxygen partial density of states (DOS) of LiFePO4 and 5 percent Li doped LiFePO4 are presented in Fig. 1. Our experimental results clearly indicate that LiFePO4 has wideband gap (∼ 4 eV). This value is much larger than what is predicted by DFT calculation. For 5 percent Li doped LiFePO4, a new doping state was created closer to the Fermi level, imparting p-type conductivity, consistent with thermopower measurement. Such observation substantiates the suggestion that high electronic conductivity in Li1.05Fe0.95 PO4 is due to available number of charge carriers in the material

  4. Corrosion of type 316 stainless steel in molten LiF-LiCl-LiBr

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Keiser, J.R.

    1981-01-01

    The properties of LiF-LiCl-LiBr salt make it attractive as a solvent for extracting tritium from a fusion reactor lithium blanket. Consequently, the corrosion of type 316 stainless steel by flowing (about 15 mm/s) LiF-LiCl-LiBr at a maximum temperature of 535 0 C was studied to determine whether compatibility with the structural material would be limiting in such a system. The corrosion rate was found to be low ( 0 C (approximately that of type 316 stainless steel exposed to lithium flowing at a similar velocity). At the proposed operating temperature (less than or equal to approx. 535 0 C), however, it appears that type 316 stainless steel has acceptable compatibility with the tritium-processing salt LiF-LiCl-LiBr for use with a lithium blanket

  5. Hydrogen retention in Li and Li-C-O films

    Science.gov (United States)

    Buzi, Luxherta; Nelson, Andrew O.; Yang, Yuxin; Kaita, Robert; Koel, Bruce E.

    2017-10-01

    The efficiency of Li in binding H isotopes has led to reduced recycling in magnetic fusion devices and improved plasma performance. Since elemental Li surfaces are challenging to maintain in fusion devices due to the presence of impurities, parameterizing and understanding the mechanisms for H retention in various Li compounds (Li-C-O), in addition to pure Li, is crucial for Li plasma-facing material applications. To determine H retention in Li and Li-C-O films, measurements were done under ultrahigh vacuum conditions using temperature programmed desorption (TPD). Thin Li films (20 monolayers) were deposited on a nickel single crystal substrate and irradiated with 500 eV H2+ions at surface temperatures from 90K to 520K. Initial measurements on Li and Li-O films showed that the retention was comparable and dropped exponentially with surface temperature, from 95% at 90 K to 35% at 520 K. Auger electron spectroscopy and TPD showed that H was retained as lithium hydride (LiH) in pure Li and as lithium hydroxide (LiOH) in Li2O, which decomposed to H2O and Li2O at temperatures higher than 470K. H retention in Li-C and Li-C-O films will be determined over a similar temperature range, and the sputtering rate of these layers with H ions will also be reported. This material is based upon work supported by the U.S. Department of Energy, Office of Science/Fusion Energy Sciences under Award Number DE-SC0012890.

  6. Constraints in the adoption of Indigenous farming practices

    Directory of Open Access Journals (Sweden)

    K Kanagasabapathi

    2017-09-01

    Full Text Available Indigenous farming is a production system, based on renewal of ecological processes and strengthening of ecological functions of farm ecosystem to produce safe, healthy and sustainable food. Indigenous agriculture is being adopted by the farmers of Kolli Hills in centre Tamil Nadu for different reasons. However, a lot of constraints prevent the farmers in adopting indigenous farming practices, that include poor yield, poor marketing facilities, higher production cost and urbanization

  7. Hyperenhanced Li - Li Chemonuclear Fusion

    International Nuclear Information System (INIS)

    Ikegami, Hidetsugu

    2006-01-01

    A new fusion scheme, the Li - Li chemonuclear fusion is presented, where nuclear fusion reactions are linked to atomic fusion reactions. Lithium ions are implanted on a surface of metallic Li liquid at an energy of nuclear stopping (several keV/amu). The ions collide slowly with liquid Li atoms without electronic excitation and lead to the Li - Li chemonuclear fusion through the formation of united atoms or quasi-C atoms at their turning points. Inside the quasi-atoms twin nuclei are confined within respective sub-pm scale spheres of zero-point oscillation and form themselves into ultradense intermediate nuclear complexes. Their density is million times as large as the solar interior density and close to densities of white dwarfs or white-dwarf progenitors of supernovae. This confinement of nuclear complexes is enormously prolonged towards the pycno-nuclear reactions induced by the zero-point oscillation under the presence of thermodynamic force specified by the Gibbs energy change in the quasi-atom formation in the liquid. Resulted rate enhancement of nuclear fusion by a factor of 10 48 has been anticipated. The enhancement is also argued in connection with the Bose-Einstein condensation

  8. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings

    International Nuclear Information System (INIS)

    Dong, Youzhong; Zhao, Yanming; Duan, He; Liang, Zhiyong

    2014-01-01

    By a simple wet ball-milling method, Li 3 VO 4 -coated LiMnPO 4 samples were prepared successfully for the first time. The thin Li 3 VO 4 coating layer with a three-dimensional Li + -ion transport path and high mobility of Li + -ion strongly adhered to the LiMnPO 4 material reduces Mn dissolution and increases the Li + flux through the surface of the LiMnPO 4 itself by preventing formation of phases on the surface that would normally block Li + as well as Li + -ion permeation into the surface of the LiMnPO 4 electrode and therefore improve the rate capability as well as the cycling stability of LiMnPO 4 materials. The electrochemical testing shows that the 5% Li 3 VO 4 -coated LiMnPO 4 sample shows a clear voltage plateau in the charge curves and a much higher reversible capacity at different discharge rates compared with the pristine LiMnPO 4 . EIS results also show that the surface charge transfer resistance and Warburg impedance of the Li 3 VO 4 -coated LiMnPO 4 samples significantly decreased. The surface charge transfer resistance and Warburg impedance for the pristine LiMnPO 4 are 955.1 Ω and 400.3 Ω, respectively. While, for the 5% Li 3 VO 4 -coated LiMnPO 4 , the value are only 400.2 Ω and 283.6 Ω, respectively. The surface charge transfer resistance decreases more than half. All of the improved performance will be favorable for application of the LiMnPO 4 in high-power lithium ion batteries

  9. Ternary nitrides for hydrogen storage: Li-B-N, Li-Al-N and Li-Ga-N systems

    International Nuclear Information System (INIS)

    Langmi, Henrietta W.; McGrady, G. Sean

    2008-01-01

    This paper reports an investigation of hydrogen storage performance of ternary nitrides based on lithium and the Group 13 elements boron, aluminum and gallium. These were prepared by ball milling Li 3 N together with the appropriate Group 13 nitride-BN, AlN or GaN. Powder X-ray diffraction of the products revealed that the ternary nitrides obtained are not the known Li 3 BN 2 , Li 3 AlN 2 and Li 3 GaN 2 phases. At 260 deg. C and 30 bar hydrogen pressure, the Li-Al-N ternary system initially absorbed 3.7 wt.% hydrogen, although this is not fully reversible. We observed, for the first time, hydrogen uptake by a pristine ternary nitride of Li and Al synthesized from the binary nitrides of the metals. While the Li-Ga-N ternary system also stored a significant amount of hydrogen, the storage capacity for the Li-B-N system was near zero. The hydrogenation reaction is believed to be similar to that of Li 3 N, and the enthalpies of hydrogen absorption for Li-Al-N and Li-Ga-N provide evidence that AlN and GaN, as well as the ball milling process, play a significant role in altering the thermodynamics of Li 3 N

  10. Strengthening of Shear Walls

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg

    The theory for concrete structures strengthened with fiber reinforced polymer materials has been developing for approximately two decades, and there are at the present time numerous guidelines covering strengthening of many commonly encountered structural building elements. Strengthening of in...... that describes a unit width strip of a strengthened disk. The unit width strip is named a strengthened concrete tension member and contains a single tensile crack and four debonding cracks. Analysis of the member results in closed form expressions for the load-crack opening relationship. Further analysis...... of the response, results in the ability to determine and characterize the two-way crack propagation, i.e. the relationship between tensile cracking in the concrete and interface debonding between strengthening and concrete. Using the load-crack opening relationship from the strengthened concrete tension member...

  11. Evaluation of Pb–17Li compatibility of ODS Fe-12Cr-5Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Unocic, Kinga A., E-mail: unocicka@ornl.gov; Hoelzer, David T.

    2016-10-15

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y{sub 2}O{sub 3} (125Y), (2) Y{sub 2}O{sub 3} + ZrO{sub 2} (125YZ), (3) Y{sub 2}O{sub 3} + HfO{sub 2} (125YH), and (4) Y{sub 2}O{sub 3} + TiO{sub 2} (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO{sub 2} on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO{sub 2} product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module. - Highlights: • Investigation of Pb-17Li compatibility of new ODS Fe-12Cr5Al. • Promising small mass change after static Pb-17Li exposure. • LiAlO{sub 2} formed on the surface during Pb-17Li exposure. • Oxide precipitates incorporated within the LiAlO{sub 2} product. • An inward scale growth mechanism was identified.

  12. Incremental and Enhanced Scanline-Based Segmentation Method for Surface Reconstruction of Sparse LiDAR Data

    Directory of Open Access Journals (Sweden)

    Weimin Wang

    2016-11-01

    Full Text Available The segmentation of point clouds is an important aspect of automated processing tasks such as semantic extraction. However, the sparsity and non-uniformity of the point clouds gathered by the popular 3D mobile LiDAR devices pose many challenges for existing segmentation methods. To improve the segmentation results of point clouds from mobile LiDAR devices, we propose an optimized segmentation method based on Scanline Continuity Constraint (SLCC in this work. Unlike conventional scanline-based segmentation methods, SLCC clusters scanlines using the continuity constraints in terms of the distance as well as the direction of two consecutive points. In addition, scanline clusters are agglomerated not only into primitive geometrical shapes but also irregular shapes. Another downside to existing segmentation methods is that they are not capable of incremental processing. This causes unnecessary memory and time consumption for applications that require frame-wise segmentation or when new point clouds are added. In order to address this, we propose an incremental scheme—the Incremental Recursive Segmentation (IRIS, that can be easily applied to any segmentation method. IRIS is achieved by combining the segments of newly added point clouds and the previously segmented results. Furthermore, as an example application, we construct a processing pipeline consisting of plane fitting and surface reconstruction using the segmentation results. Finally, we evaluate the proposed methods on three datasets acquired from a handheld Velodyne HDL-32E LiDAR device. The experimental results verify the efficiency of IRIS for any segmentation method and the advantages of SLCC for processing mobile LiDAR data.

  13. Separation and extension of cover inequalities for second-order conic knapsack constraints with GUBs

    DEFF Research Database (Denmark)

    Atamtürk, Alper; Muller, Laurent Flindt; Pisinger, David

    We consider the second-order conic equivalent of the classic knapsack polytope where the variables are subject to generalized upper bound constraints. We describe and compare a number of separation and extension algorithms which make use of the extra structure implied by the generalized upper bound...... constraints in order to strengthen the second-order conic equivalent of the classic cover cuts. We show that determining whether a cover can be extended with a variable is NP-hard. Computational experiments are performed comparing the proposed separation and extension algorithms. These experiments show...

  14. Superplastic properties of an Al-2.4Mg-1.8Li-0.5Sc alloy

    International Nuclear Information System (INIS)

    Bradley, E.L. III; Morris, J.W. Jr.

    1991-01-01

    This paper reports that there is a need in the aerospace industry for structural, superplastic aluminum alloys that are formable at strain-rates greater than 10 -3 s -1 in order for the economic benefits of superplastic forming to be realized. The standard, structural, superplastic aluminum alloy in the aerospace industry is 7475, which has an optimum forming strain-rate near 10 -4 s -1 . Thus, research has been focused on modifying the microstructures of wrought Al-Li alloys such as 2090 and 8090 into superplastically formable (SPF) microstructures with improved properties, but the results have not been completely successful. Superplastic alloys with high strengths have been produced from the Al-Mg-Sc system. These alloys are strengthened by thermomechanical processing which precipitates small, coherent Al 3 Sc particles and increases the dislocation density of the material. The Mg is in solid solution and improves the work hardening capability of these alloys. Because superplastic forming is carried out at relatively high temperatures, recovery processes eliminate the dislocation strengthening resulting from the rolling and overage the precipitates. Lithium provides the most promising choice since it forms the ordered coherent precipitate δ (Al 3 Li), lowers the density, and increases the stiffness of aluminum alloys

  15. Strengthening, modification and repair techniques’ prioritization for structural integrity control of ageing offshore structures

    International Nuclear Information System (INIS)

    Samarakoon, Samindi M.K.; Ratnayake, R.M. Chandima

    2015-01-01

    Structural integrity control is vital for existing ageing as well as newly built offshore and onshore structures. Structural integrity control becomes highly sensitive to interventions under a potential loss of structural integrity when it comes to offshore oil and gas production and process facilities. This is mainly due to the inherent constraints present in carrying out engineering work in the offshore atmosphere. It has been further exacerbated by the ageing offshore structures and the necessity of carrying out life extension toward the end of their design service lives. Local and international regulations demand the implementation of appropriate strengthening, modification and repair plans when significant changes in the structural integrity are revealed. In this context, strengthening, modification and repair techniques such as welding, member removal/reduction of loading, mechanical clamping and grouted repairs play a vital role. This manuscript presents an approach for prioritizing the strengthening, modification and repair techniques using a multi-criteria analysis approach. An analytic hierarchy process has been selected for the analysis via an illustrative case. It also provides a comprehensive overview of currently existing; strengthening, modification and repair techniques and their comparative pros and cons. - Highlights: • Structural integrity control (SIC) of ageing and intact offshore structures. • Strengthening, modification and/or repair (SMR) techniques have been explained. • Application of multi-criteria analysis conserving SI has been illustrated. • SMR techniques prioritization and sensitivity analysis has been performed

  16. Role of dopants in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P detectors

    International Nuclear Information System (INIS)

    Mohammadi, Kh.; Moussavi Zarandi, A.; Afarideh, H.; Shahmaleki, S.

    2013-01-01

    In this study, electronic structure of LiF crystal doped with Mg,Cu,P impurities was studied with WIEN2k code on the basis of FPLAPW+lo method. Results show that in Mg-doped LiF composition, an electronic trap was created with impurity concentration of 1.56% and 3.125%. In this condition, the electronic trap with increasing the percentage of the impurities up to 4.687% is annihilated. It was found, that by doping of Mg and Cu or P simultaneously, a hole-trap is created in valence band. It was realized that in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P, Cu impurity and Li atom, have a key role in creation of levels which lead to create electronic and hole traps. Mg impurity and F atom, only have a role in creation of electronic traps. In addition, P impurity has a main role in creation of the electronic and hole traps in LiF:Mg,Cu,P. The activation energy of electronic and hole trap in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P crystalline lattice were obtained as 0.3 and 5.5 eV, 0.92 and 3.4 eV and 0.75 and 3.1 eV, respectively. - Graphical abstract: Figure (a) and (b) shows changes in electronic structure and band gap energy of LiF crystal due to presence of Mg and Cu, Mg and P ions respectively. - Highlights: • Electronic structure of LiF, LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P materials were studied with WIEN2K code. • In LiF:Mg,Cu and LiF:Mg,Cu,P, Li atom and Cu impurity have a key role in creation of levels. • F atom and Mg impurity only have a role in creation of electronic traps. • In LiF:Mg,Cu,P, P impurity has a main role in creation of electronic and hole traps

  17. Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Song Yicheng; Zhang Junqian; Shao Xianjun; Guo Zhansheng

    2013-01-01

    This work investigates the stress-assisted diffusion of lithium ions in layered electrodes of Li-ion batteries. Decoupled diffusion governing equations are obtained. Material properties, which are characterized by a single dimensionless parameter, and mechanical constraint between a current collector and an active layer, which is characterized by the elastic modulus ratio and thickness ratio between the layers, are identified as key factors that govern the stress-assisted diffusion. For a symmetric plate electrode, stress is induced by the Li-ion concentration gradient, and stress-assisted diffusion therefore depends only on the material properties. For an asymmetric bilayer electrode, mechanical constraint plays a very important role in the diffusion via generation of bending stress. Diffusion may be facilitated, or inversely impeded, according to the constraint. By summarizing the coupling factors of common active materials and investigating the concentration variation induced by stress-assisted diffusion in various electrodes, this work provides insights on stress-assisted diffusion in a layered electrode, as well as suggestions for relevant modelling works on whether the stress-assisted diffusion should be taken into account according to the selection of material and structure. (paper)

  18. Mass of 11Li from the 1H(11Li,9Li)3H reaction

    International Nuclear Information System (INIS)

    Roger, T.; Savajols, H.; Mittig, W.; Caamano, M.; Roussel-Chomaz, P.; Tanihata, I.; Alcorta, M.; Bandyopadhyay, D.; Bieri, R.; Buchmann, L.; Davids, B.; Galinski, N.; Howell, D.; Mills, W.; Mythili, S.; Openshaw, R.; Padilla-Rodal, E.; Ruprecht, G.; Sheffer, G.; Shotter, A. C.

    2009-01-01

    The mass of 11 Li has been determined from Q-value measurements of the 1 H( 11 Li, 9 Li) 3 H reaction. The experiment was performed at TRIUMF laboratory with the GANIL active target MAYA. Energy-energy and angle-angle kinematics reconstruction give a Q value of 8.119(22) MeV for the reaction. The derived 11 Li two-neutron separation energy is S 2n =363(22) keV

  19. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6

    OpenAIRE

    Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

    2006-01-01

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 oK in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct t...

  20. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  1. Strengthening the security of radiation sources in Ghana

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.; Flecther, J.J.; Ennison, I.; Schandorf, C.

    1998-01-01

    Legislative instrument LI 1559 of 1993 established the Radiation Protection Board (RPB) as the National Competent Authority (NCA) on radiation matters in Ghana. The Board advises Government through the Ghana Atomic Energy Commission on matters relating to radiation safety, security of sources, sales, import and export, contamination in food and environment, among others. It has wide ranging regulatory power and works in association with country authorities. The regulations in place for controlling the movement and use of radioactive materials in Ghana are discussed. Accountability for radioactive materials especially for those which were brought in before the establishment of the RPB have been the focus of our discussion. The need to for intensify educational programs for the public on matters relating to effect of radiation on man and environment is recommended. Strengthening of regulatory control of sources and intensifying efforts against smuggling, unauthorised use and systems for notification on radioactive transport accidents are noted. (author)

  2. Multicomponent diffusion in molten salt LiF-BeF{sub 2}: Dynamical correlations and Maxwell–Stefan diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Brahmananda, E-mail: brahma@barc.gov.in; Ramaniah, Lavanya M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2015-06-24

    Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.

  3. Kinetic Monte Carlo Study of Li Intercalation in LiFePO4.

    Science.gov (United States)

    Xiao, Penghao; Henkelman, Graeme

    2018-01-23

    Even as a commercial cathode material, LiFePO 4 remains of tremendous research interest for understanding Li intercalation dynamics. The partially lithiated material spontaneously separates into Li-poor and Li-rich phases at equilibrium. Phase segregation is a surprising property of LiFePO 4 given its high measured rate capability. Previous theoretical studies, aiming to describe Li intercalation in LiFePO 4 , include both atomic-scale density functional theory (DFT) calculations of static Li distributions and entire-particle-scale phase field models, based upon empirical parameters, studying the dynamics of the phase separation. Little effort has been made to bridge the gap between these two scales. In this work, DFT calculations are used to fit a cluster expansion for the basis of kinetic Monte Carlo calculations, which enables long time scale simulations with accurate atomic interactions. This atomistic model shows how the phases evolve in Li x FePO 4 without parameters from experiments. Our simulations reveal that an ordered Li 0.5 FePO4 phase with alternating Li-rich and Li-poor planes along the ac direction forms between the LiFePO 4 and FePO 4 phases, which is consistent with recent X-ray diffraction experiments showing peaks associated with an intermediate-Li phase. The calculations also help to explain a recent puzzling experiment showing that LiFePO 4 particles with high aspect ratios that are narrower along the [100] direction, perpendicular to the [010] Li diffusion channels, actually have better rate capabilities. Our calculations show that lateral surfaces parallel to the Li diffusion channels, as well as other preexisting sites that bind Li weakly, are important for phase nucleation and rapid cycling performance.

  4. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6

    Science.gov (United States)

    Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.

    The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  5. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    Science.gov (United States)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  6. Water vapor concentration dependence and temperature dependence of Li mass loss from Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shimozori, Motoki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Ushida, Hiroki; Yamamoto, Ryotaro; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-10-15

    Highlights: • Li mass loss from Li{sub 2.11}TiO{sub 3} increased proportionally to water vapor pressure. • Li mass loss from Li{sub 2.11}TiO{sub 3} at 600 °C was significantly smaller than expected. • Differences of Li mass loss behavior from Li{sub 2.11}TiO{sub 3} and Li{sub 4}SiO{sub 4} were shown. - Abstract: In this study, weight reduction of Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4} at elevated temperatures under hydrogen atmosphere or water vapor atmosphere was investigated. The Li mass loss for the Li{sub 2}TiO{sub 3} at 900 °C was 0.4 wt% under 1000 Pa H{sub 2} atmosphere and 1.5 wt% under 50 Pa H{sub 2}O atmosphere. The Li mass loss for the Li{sub 2}TiO{sub 3} increased proportionally to the water vapor pressure in the range from 50 to 200 Pa at 900 °C and increased with increasing temperature from 700 to 900 °C although Li mass loss at 600 °C was significantly smaller than expected. It was found that water vapor concentration dependence and temperature dependence of Li mass loss for the Li{sub 2}TiO{sub 3} and the Li{sub 4}SiO{sub 4} used in this work were quite different. Water vapor is released from the ceramic breeder materials into the purge gas due to desorption of adsorbed water and water formation reaction. The released water vapor possibly promotes Li mass loss with the formation of LiOH on the surface.

  7. Characteristic Model-Based Robust Model Predictive Control for Hypersonic Vehicles with Constraints

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-06-01

    Full Text Available Designing robust control for hypersonic vehicles in reentry is difficult, due to the features of the vehicles including strong coupling, non-linearity, and multiple constraints. This paper proposed a characteristic model-based robust model predictive control (MPC for hypersonic vehicles with reentry constraints. First, the hypersonic vehicle is modeled by a characteristic model composed of a linear time-varying system and a lumped disturbance. Then, the identification data are regenerated by the accumulative sum idea in the gray theory, which weakens effects of the random noises and strengthens regularity of the identification data. Based on the regenerated data, the time-varying parameters and the disturbance are online estimated according to the gray identification. At last, the mixed H2/H∞ robust predictive control law is proposed based on linear matrix inequalities (LMIs and receding horizon optimization techniques. Using active tackling system constraints of MPC, the input and state constraints are satisfied in the closed-loop control system. The validity of the proposed control is verified theoretically according to Lyapunov theory and illustrated by simulation results.

  8. Recovery of Li from alloys of Al- Li and Li- Al using engineered scavenger compounds

    Science.gov (United States)

    Riley, W. D.; Jong, B. W.; Collins, W. K.; Gerdemann, S. J.

    1994-01-01

    A method of producing lithium of high purity from lithium aluminum alloys using an engineered scavenger compound, comprising: I) preparing an engineered scavenger compound by: a) mixing and heating compounds of TiO2 and Li2CO3 at a temperature sufficient to dry the compounds and convert Li.sub.2 CO.sub.3 to Li.sub.2 O; and b) mixing and heating the compounds at a temperature sufficient to produce a scavenger Li.sub.2 O.3TiO.sub.2 compound; II) loading the scavenger into one of two electrode baskets in a three electrode cell reactor and placing an Al-Li alloy in a second electrode basket of the three electrode cell reactor; III) heating the cell to a temperature sufficient to enable a mixture of KCl-LiCl contained in a crucible in the cell to reach its melting point and become a molten bath; IV) immersing the baskets in the bath until an electrical connection is made between the baskets to charge the scavenger compound with Li until there is an initial current and voltage followed by a fall off ending current and voltage; and V) making a connection between the basket electrode containing engineered scavenger compound and a steel rod electrode disposed between the basket electrodes and applying a current to cause Li to leave the scavenger compound and become electrodeposited on the steel rod electrode.

  9. EPR experiments in LiTbF4, LiHoF4, and LiErF4 at submillimeter frequencies

    DEFF Research Database (Denmark)

    Magariño, J.; Tuchendler, J.; Beauvillain, P.

    1980-01-01

    Electron-paramagnetic-resonance experiments in LiTbF4, LiHoF4, and LiErF4 have been performed at frequencies between 70 and 600 GHz, in magnetic fields up to 60 kG and in the temperature range 1.4......Electron-paramagnetic-resonance experiments in LiTbF4, LiHoF4, and LiErF4 have been performed at frequencies between 70 and 600 GHz, in magnetic fields up to 60 kG and in the temperature range 1.4...

  10. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  11. Maxwell–Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India)

    2016-05-23

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green–Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF–KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, Đ{sub Li-K} which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2{sup nd} law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.

  12. Strategy for Strengthening Farmer Groups by Institutional Strengthening

    Directory of Open Access Journals (Sweden)

    Purbayu Budi Santoso

    2015-08-01

    Full Text Available Agriculture sector becomes a spotlight because this sector will be full of potential but the welfare of farmers who become the leading actor is not guaranteed and has a poor tendency. The purpose of this study is to formulate strategies to strengthen farmers' groups in order to create the marketing of the agricultural sector that benefit farmers. The method used to achieve this goal is to use a qualitative approach and Analytical Network Process. In addition to the secondary data obtained from several agencies, this study also uses primary data obtained by in-depth interviews and observations. This research results a priority of aspects of the institutional strengthening of farmer groups as well as priority issues and priorities of the solution of each aspect. In addition, the priority of alternative strategies resulted based on the problems and solutions that have been analyzed in order to solve the problems in the institutional strengthening of farmer groups in Demak.

  13. Mechanism transition of cell-impedance-controlled lithium transport through Li1-δMn2O4 composite electrode caused by surface-modification and temperature variation

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2007-01-01

    The mechanism transition of lithium transport through a Li 1-δ Mn 2 O 4 composite electrode caused by the surface-modification and temperature variation was investigated using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and the potentiostatic current transient technique. From the analyses of the ac-impedance spectra, experimentally measured from unmodified Li 1-δ Mn 2 O 4 and surface-modified Li 1-δ Mn 2 O 4 with MgO composite electrodes, the internal cell resistance of the MgO-modified Li 1-δ Mn 2 O 4 electrode was determined to be much smaller in value than that of the unmodified electrode over the whole potential range. Moreover, from the analysis of the anodic current transients measured on the MgO-modified Li 1-δ Mn 2 O 4 electrode, it was found that the cell-impedance-controlled constraint at the electrode surface is changed to a diffusion-controlled constraint, which is characterised by a large potential step and simultaneously by a small amount of lithium transferred during lithium transport. This strongly suggests that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport through the MgO-modified Li 1-δ Mn 2 O 4 electrode. Furthermore, from the temperature dependence of the internal cell resistance and diffusion resistance in the unmodified Li 1-δ Mn 2 O 4 composite electrode measured by GITT and EIS, it was concluded that which mechanism of lithium transport will be operative strongly depends on the diffusion resistance as well as on the internal cell resistance

  14. Structure and properties of Al-Mg-Li-Zr system alloys

    International Nuclear Information System (INIS)

    Fridlyander, I.N.; Dolzhanskij, Yu.M.; Sandler, V.S.; Tyurin, .V.; Nikol'skaya, T.I.

    1977-01-01

    Studied were the structure and mechanical properties of the Al-Mg-Li-Zr alloy system (including 01420 alloy) containing 1.6-5.3%Li and 1.0-8.8%Mg). Electron microscopic studies of 01420 alloy conducted after heating at 450 deg C for 4 hours revealed non-uniformly distributed precipitations of a metastable phase ZrAl 3 , having spherical and needle-like configurations. These precipitations, together with zirconium contained in the solid solution, retard recrystallization. The introduction of 0.1-0.2% Zr decreases the limiting solubility of magnesium and lithium in the aluminium solid solution and leads to the formation of disperse equilibrium (S and, possibly, γ) phases with the size of 0.1-0.5 mcm. These phases were observed in the alloys containing (>=) 4% Mg and 1.9-3.5% Li. The method of planned experiment was used to study the principles governing the variation of the mechanical properties of the alloys subjected to water hardening and after aging at 170 deg C for 16 hours. It was established that the strength properties of the hardened alloys become higher, and the relative elongation decreases with the content of lithium and especially magnesium. It would be more proper to assess strengthening in the course of aging according to variation in the yield point and hardness. The effect of aging determined by the yield point depends on the content of lithium and is practically independent of the concentration of magnesium

  15. Synthesis and electrochemistry of cubic rocksalt Li-Ni-Ti-O compounds in the phase diagram of LiNiO{sub 2}-LiTiO{sub 2}-Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianqi; Noguchi, Hideyuki; Li, Decheng; Muta, Takahisa; Wang, Xiaoqing; Yoshio, Masaki [Department of Applied Chemistry, Saga University, Saga 840-8052 (Japan); Taniguchi, Izumi [Department of Chemical Engineering, Tokyo Institute of Technology, 12-1, Ookayama-2, Meguro-ku, Tokyo 152-8552 (Japan)

    2008-10-15

    On the basis of extreme similarity between the triangle phase diagrams of LiNiO{sub 2}-LiTiO{sub 2}-Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2} and LiNiO{sub 2}-LiMnO{sub 2}-Li[Li{sub 1/3}Mn{sub 2/3}]O{sub 2}, new Li-Ni-Ti-O series with a nominal composition of Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} (0 {<=} z {<=} 0.5) was designed and attempted to prepare via a spray-drying method. XRD identified that new Li-Ni-Ti-O compounds had cubic rocksalt structure, in which Li, Ni and Ti were evenly distributed on the octahedral sites in cubic closely packed lattice of oxygen ions. They can be considered as the solid solution between cubic LiNi{sub 1/2}Ti{sub 1/2}O{sub 2} and Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2} (high temperature form). Charge-discharge tests showed that Li-Ni-Ti-O compounds with appropriate compositions could display a considerable capacity (more than 80 mAh g{sup -1} for 0.2 {<=} z {<=} 0.27) at room temperature in the voltage range of 4.5-2.5 V and good electrochemical properties within respect to capacity (more than 150 mAh g{sup -1} for 0 {<=} z {<=} 0.27), cycleability and rate capability at an elevated temperature of 50 C. These suggest that the disordered cubic structure in some cases may function as a good host structure for intercalation/deintercalation of Li{sup +}. A preliminary electrochemical comparison between Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} (0 {<=} z {<=} 0.5) and Li{sub 6/5}Ni{sub 2/5}Ti{sub 2/5}O{sub 2} indicated that charge-discharge mechanism based on Ni redox at the voltage of >3.0 V behaved somewhat differently, that is, Ni could be reduced to +2 in Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} while +3 in Li{sub 6/5}Ni{sub 2/5}Ti{sub 2/5}O{sub 2}. Reduction of Ti{sup 4+} at a plateau of around 2.3 V could be clearly detected in Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} with 0.27 {<=} z {<=} 0.5 at 50 C after a deep charge associated with charge compensation from oxygen ion during initial cycle

  16. The linear collider alignment and survey (LiCAS) project

    International Nuclear Information System (INIS)

    Bingham, Richard; Botcherby, Edward; Coe, Paul; Grzelak, Grzegorz; Mitra, Ankush; Reichold, Armin; Prenting, Johannes

    2003-01-01

    For the next generation of Linear Colliders (LC) the precision alignment of accelerator components will be critical. The DESY applied geodesy group has developed the concept of an automated 'survey train'. The train runs along the accelerator wall measuring the 3D position of a set of equispaced reference markers. This reference structure is then used to align the accelerator components. The LiCAS group is developing a measurement system for the survey train. It will use a combination of Laser Straightness Monitors (SM) and Frequency Scanning Interferometry (FSI). FSI is an interferometric length measurement technique originally developed for the online alignment of the ATLAS Inner Detector. This novel combination of optical techniques is expected to overcome the limitations of traditional open air survey. The authors describe the LiCAS project, the measurement systems and their integration into the survey train. The technical parameters and constraints will be mentioned. There will also be brief discussion of the second phase of the project to allow on-line monitoring of the LC alignment. (author)

  17. Uniform second Li ion intercalation in solid state ϵ-LiVOPO4

    International Nuclear Information System (INIS)

    Wangoh, Linda W.; Quackenbush, Nicholas F.; Sallis, Shawn; Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W.; Lin, Yuh-Chieh; Ong, Shyue Ping; Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley; Guo, Jinghua; Lee, Tien-Lin; Schlueter, Christoph; Piper, Louis F. J.

    2016-01-01

    Full, reversible intercalation of two Li + has not yet been achieved in promising VOPO 4 electrodes. A pronounced Li + gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO 4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li + gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li + intercalation is a prerequisite for the formation of intermediate phases Li 1.50 VOPO 4 and Li 1.75 VOPO 4 . The evolution from LiVOPO 4 to Li 2 VOPO 4 via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  18. The superbubble model for Li, Be and B production and Galactic evolution

    OpenAIRE

    Parizot, Etienne; Drury, Luke

    2000-01-01

    We show that the available constraints relating to $^{6}$LiBeB Galactic evolution can be accounted for by the so-called superbubble model, according to which particles are efficiently accelerated inside superbubbles out of a mixture of supernova ejecta and ambient interstellar medium. The corresponding energy spectrum is required to be flat at low energy (in E^-1 below 500 MeV/n, say), as expected from Bykov's acceleration mechanism. The only free parameter is also found to have the value exp...

  19. Electrochemical behavior of Li/LiV3O8 secondary cells

    Science.gov (United States)

    Bak, Hyo Rim; Lee, Jae Ha; Kim, Bok Ki; Yoon, Woo Young

    2013-03-01

    Li/LiV3O8 secondary cells with Li-foil and Li-powder anodes were fabricated, and their electrical properties were compared. Using the powder anode, a cell with an initial discharge capacity of 260 mAh g-1 that could be operated for over 100 cycles was obtained. The porous Li-powder electrode was safely synthesized by pressing an emulsion droplet onto an SUS mesh. A threefold increase in the electrical conductivity of the LiV3O8 cathode was achieved by the addition of carbon using a vibration pot mill. Using the powder anode resulted in 80% capacity retention at the 100th cycle, while that using the foil electrode was 46%; the 1.0 Crate/ 0.1 C-rate capacity ratio also increased from 44% to 60%. A cell employing the LiV3O8-carbon composite cathode showed better electrical performance, a capacity retention of 90% after 50 cycles, and an increase in rate capacity ratio. The crystal structure and morphology of the LiV3O8-C composite were investigated by x-ray diffraction and scanning electron microscopy.

  20. Improved Cycling Stability of Cobalt-free Li-rich Oxides with a Stable Interface by Dual Doping

    International Nuclear Information System (INIS)

    Xie, Dongjiu; Li, Guangshe; Li, Qi; Fu, Chaochao; Fan, Jianming; Li, Liping

    2016-01-01

    Highlights: • Cobalt-free Na_xLi_1_._2_-_xMn_0_._6_-_xAl_xNi_0_._2O_2 oxides are prepared by a sol-gel method. • Dual-doping strengthens the covalence of Mn-O bonds and suppresses the side reactions between cathode and electrolyte. • Doped cathode has a capacity retention over 92.2% after 100 cycles at a high temperature of 55 °C. - Abstract: Li-rich cobalt-free oxides, popularly used as a cathode with high capacity in lithium ion battery, always suffer from poor cycling stability between 2.0 and 4.8 V vs Li"+/Li, especially when cycled at high temperatures (>50 °C). To overcome this issue, Na"+ and Al"3"+ dual-doped Na_xLi_1_._2_-_xMn_0_._6_-_xAl_xNi_0_._2O_2 Li-rich cathode is prepared in this study. It is shown that the side reactions between cathode and electrolyte during cycling are suppressed. The improved cycling performance is observed for all of the doped samples, among which the sample with x = 0.03 exhibits the highest capacity retention of 86.1% after 200 cycles between 2.0 and 4.8 V at 2C (1C = 200 mA g"−"1) and shows a remarkable cycling stability, even at a high temperature of 55 °C (a capacity retention of 92.2% after 100 cycles). Moreover, the average voltage of the sample with x = 0.03 after 100 cycles at 0.5C remains at 3.11 V with a retention ratio of 86.6%. This work provides a new strategy to develop Li-rich cobalt-free cathodes with excellent cycling stability for lithium ion batteries at high temperatures.

  1. A cost constraint alone has adverse effects on food selection and nutrient density: an analysis of human diets by linear programming.

    Science.gov (United States)

    Darmon, Nicole; Ferguson, Elaine L; Briend, André

    2002-12-01

    Economic constraints may contribute to the unhealthy food choices observed among low socioeconomic groups in industrialized countries. The objective of the present study was to predict the food choices a rational individual would make to reduce his or her food budget, while retaining a diet as close as possible to the average population diet. Isoenergetic diets were modeled by linear programming. To ensure these diets were consistent with habitual food consumption patterns, departure from the average French diet was minimized and constraints that limited portion size and the amount of energy from food groups were introduced into the models. A cost constraint was introduced and progressively strengthened to assess the effect of cost on the selection of foods by the program. Strengthening the cost constraint reduced the proportion of energy contributed by fruits and vegetables, meat and dairy products and increased the proportion from cereals, sweets and added fats, a pattern similar to that observed among low socioeconomic groups. This decreased the nutritional quality of modeled diets, notably the lowest cost linear programming diets had lower vitamin C and beta-carotene densities than the mean French adult diet (i.e., cost constraint can decrease the nutrient densities of diets and influence food selection in ways that reproduce the food intake patterns observed among low socioeconomic groups. They suggest that economic measures will be needed to effectively improve the nutritional quality of diets consumed by these populations.

  2. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  3. The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al–Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hailong [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Hua, E-mail: hua.zhang@twi.co.uk [The Welding Institute, Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom); Wu, Huiqiang [Beijing Institute of Astronautical Systems Engineering, Beijing 100076 (China)

    2015-02-25

    Precipitate and microstructure evolution in friction stir welding of 2195-T8 aluminum alloy was characterized by transmission electron microscopy. The results show that precipitations in the base metal primarily consist of T{sub 1} (Al{sub 2}CuLi) platelets and small amounts of θ′ (Al{sub 2}Cu) and τ{sub 2} (Al{sub 7}Cu{sub 2}Fe) phase. In the heat affected zone (HAZ), these precipitations dissolve during welding, allowing the re-precipitation of δ′ (Al{sub 3}Li) and β′ (Al{sub 3}Zr) during cooling. δ′ and β′ phase are the major strengthening phase in the weld nugget zone (WNZ), which results in the observed lower microhardness of the nugget region. Differential scanning calorimetry (DSC) curve is used to confirm and interpret the results provided by the microscopy.

  4. Characteristics of new LiF preparations and sensitised LiF

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, C M.H.; O' Hagan, J B; Mundy, S J; Todd, C D; McWhan, A F; Dodson, J

    1986-01-01

    The patent governing the preparation and production of lithium fluoride (LiF) awarded to the Harshaw Chemical Co. has expired. Other companies have become interested in developing additional preparations of this material. Two of these preparations include LiF:Mg,Ti manufactured by Vinten Instruments plc and high sensitivity LiF:Mg, Cu,P distributed by them. The properties of these materials, including sensitivity, dose threshold, photon energy response, reusability and storage characteristics, are presented in this paper and compared with those of Harshaw TLD-100 and with those of sensitised LiF.

  5. Experimental investigation of highly excited states of the 5,6He and 5,6Li nuclei in the (6Li, 7Be) and (6Li, 7Li) one-nucleon-pick-up reactions

    International Nuclear Information System (INIS)

    Sakuta, S.B.; Novatskij, B.G.; Stepanov, D.N.; Aleksandrov, D.V.; Glukhov, Yu.A.; Nikol'skij, E.Yu.

    2002-01-01

    ( 6 Li, 7 Be) and ( 6 Li, 7 Li) reactions on the 6 Li, 7 Li nuclei have been investigated in the angular range of 0-20 deg in laboratory system at the 93-MeV 6 Li energy. Besides low-lying states of 5,6 He and 5,6 Li nuclei, broad structures have been observed in the measured spectra close to the t( 3 He) + d and t( 3 He) + t threshold at excitation energies of 16.75 (3/2 + ) and ∼ 20 MeV ( 5 He), 16.66 (3/2 + ) and ∼ 20 MeV ( 5 Li), 14.0 and 25 MeV ( 6 He), and ∼ 20 MeV ( 6 Li). Angular distributions, which have been measured for transitions to the ground (0 + ) and exited states at E x =1.8 MeV (2 + ) and 14.0 MeV of the 6 He nucleus in the 7 Li( 6 Li, 7 Be) 6 He reaction, have been analyzed in the framework of the finite-range distorted-waves method assuming the 1p- and 1s-proton pick-up mechanism. It has been shown that ( 6 Li, 7 Be) and ( 6 Li, 7 Li) reactions predominately proceed by one-step pick-up mechanism and broad structures which are observed at high excitation energies should be considered as quasimolecular states of the t( 3 He) + d and t( 3 He) + t type [ru

  6. The Interstellar 7Li/6Li Ratio in the Diffuse Gas Near IC 443

    Science.gov (United States)

    Ritchey, A. M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.

    2010-11-01

    Supernova remnants are believed to be the primary acceleration sites of Galactic cosmic rays (GCR), which are essential to gas-phase interstellar chemistry since they are a major source of ionization in both diffuse and dense environments. The interaction of accelerated particles with interstellar gas will also synthesize isotopes of the light elements Li, Be, and B through the spallation of CNO nuclei (producing all stable LiBeB isotopes) and through α+α fusion (yielding 6Li and 7Li, only). Type II supernovae may provide an additional source of 7Li and 11B during core collapse through neutrino-induced spallation in the He and C shells of the progenitor star (the ν-process). However, direct observational evidence for light element synthesis resulting from cosmic-ray or neutrino-induced spallation is rare. Here, we examine 7Li/6Li isotope ratios along four lines of sight through the supernova remnant IC 443 using observations of the Li I λ6707 doublet made with the Hobby-Eberly Telescope (HET) at McDonald Observatory. The 7Li/6Li ratio in the general interstellar medium is expected to be similar to the ratio of ~12 that characterizes solar system material. A local enhancement in the cosmic-ray flux will act to lower 7Li/6Li, yielding a ratio of ~2 when cosmic rays dominate Li synthesis. Gamma-ray emission from IC 443 provides strong evidence for the interaction of cosmic rays accelerated by the remnant with the ambient atomic and molecular gas. Yet this material has also been contaminated by the ejecta of a Type II supernova, which should be enriched in 7Li. We are seeking 7Li/6Li ratios that are either higher than the solar system ratio as a result of the ν-process or lower due to cosmic-ray spallation. Since the fine structure separation of the Li I doublet is comparable to the isotope shift (~7 km s-1) and each fine structure line is further split into hyperfine components, the velocity structure along the line of sight must be carefully constrained if

  7. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O{sub 2} battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Liu, Zigeng; Kim, Gunwoo; Grey, Clare P. [Department of Chemistry, University of Cambridge (United Kingdom); Frith, James T.; Garcia-Araez, Nuria [Department of Chemistry, University of Southampton (United Kingdom)

    2017-12-11

    Non-aqueous Li-O{sub 2} batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li{sub 2}O{sub 2}, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e{sup -} oxygen reduction reaction, the H in LiOH coming solely from added H{sub 2}O and the O from both O{sub 2} and H{sub 2}O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li{sub 2}O{sub 2}, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Modeling Li-ion conductivity in LiLa(PO3)4 powder

    International Nuclear Information System (INIS)

    Mounir, Ferhi; Karima, Horchani-Naifer; Khaled, Ben Saad; Mokhtar, Férid

    2012-01-01

    Polycrystalline powder and single-crystal of LiLa(PO 3 ) 4 are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO 3 ) 4 powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO 3 ) 4 are characterized by single-crystal X-ray diffraction. The LiLa(PO 3 ) 4 structure was found to be isotypic with LiNd(PO 3 ) 4 . It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) Å, b=7.130(3) Å, c=9.913(3) Å, β=126.37(4)°, V=946.72(6) Å 3 and Z=4. The LiLa(PO 3 ) 4 structure was described as an alternation between spiraling chains (PO 3 ) n and (La 3+ , Li + ) cations along the b direction. The small Li + ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO 8 polyhedra and the polyphosphate chains. The jumping of Li + through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO 3 ) 4 and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  9. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  10. Li-ion conduction in the LiBH4:LiI system from Density Functional Theory calculations and Quasi-Elastic Neutron Scattering

    DEFF Research Database (Denmark)

    Myrdal, Jon Steinar Gardarsson; Blanchard, Didier; Sveinbjörnsson, Dadi Þorsteinn

    2013-01-01

    The hexagonal high-temperature polymorph of LiBH4 is stabilized by solid solution with LiI to exhibit superionic Li+ ionic conductivity at room temperature. Herein, the mechanisms for the Li+ diffusion are investigated for the first time by density functional theory (DFT) calculations coupled...

  11. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability

    Science.gov (United States)

    Li, Faqiang; Gong, Yan; Jia, Guofeng; Wang, Qinglei; Peng, Zhengjun; Fan, Wei; Bai, Bing

    2015-11-01

    The strong corrosion behavior at the Al current collector restricts the application range of lithium bis (trifluoromethanesulfonylimide) (LiTFSI), despite its high stability against water and thermal. SEM, LSV and Tafel curves proved that adding LiODFB into LiTFSI-based electrolytes could suppress aluminum corrosion caused by LiTFSI-based electrolytes. The cycling stability and rate capability of LiFePO4-based batteries using LiTFSI0.6-LiODFB0.4-based electrolytes is excellent as compared to LiFePO4-based batteries using LiPF6-based electrolytes.

  12. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Science.gov (United States)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  13. Expanded Study on the accumulation effect of tourism under the constraint of structure

    Science.gov (United States)

    Wang, Qiang; Yang, Zhenzhi; Huang, Lu

    2017-05-01

    There is a mutual influence between departmental structure and accumulation and growth. Therefore, the accumulation and growth of the tourism industry will be subject to certain restrictions on the industrial structure, and, conversely, it will have an impact on the existing industrial structure. Li Jingyi reported special research in the paper called "Research on tourism growth based on structural constraints" about the relationship between the growth of tourism and the existing industrial structure. It pointed out the specific interdependence between tourism and other economic sectors in terms of accumulation and growth. However, the research of Li Jingyi is based on the trichotomy of social product value. It is too abstract, while the study is understandable in theory. In practice, it is difficult to use the model of the paper to deal with specific problems. Therefore, how to improve the industry association model in the paper of Li and make it more in line with the actual situation becomes our concern. In this paper, the author hopes to improve the model of Li's paper by simplifying the decomposition of social product value. At the same time, it makes a further study on accumulation elasticity and growth elasticity. On this basis, some suggestions are put forward to guide the development of other industries based on the tourism industry.

  14. Creep mechanisms of U720Li disc superalloy at intermediate temperature

    International Nuclear Information System (INIS)

    Yuan, Y.; Gu, Y.F.; Cui, C.Y.; Osada, T.; Tetsui, T.; Yokokawa, T.; Harada, H.

    2011-01-01

    Highlights: → Crept microstructures of U720Li at 725 deg. C/630 MPa have been investigated by TEM. → Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. → Grain boundary sliding occurred at last creep stage. → Three methods were suggested to improve the creep property at relatively high temperature. - Abstract: The microstructures of U720Li disc superalloy have been investigated by transmission electron microscopy (TEM) before and after creep test at 725 deg. C/630 MPa. The evolution of the crept microstructures was marked as three different stages (I, II and III) corresponding to gradually increased strain 0.1%, 5% and 27%, respectively. At stage I, dislocations bypassed secondary γ' via Orowan loops. At stage II, partial dislocations started to shear secondary γ', leaving stacking fault (SF) behind and microtwins formed in part of grains. At stage III, grain boundary sliding occurred due to very large strain and increased effective stress. The results indicated that the creep mechanisms of U720Li at 725 deg. C/630 MPa evolved with gradually increased strain. Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. It is suggested that decreasing the interparticle spacing of secondary γ', strengthening secondary γ' and decreasing stacking fault energy (SFE) of γ matrix may be effective methods to improve the creep property at relatively higher temperatures.

  15. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio.

    Science.gov (United States)

    Xiao, Jie; Chernova, Natasha A; Upreti, Shailesh; Chen, Xilin; Li, Zheng; Deng, Zhiqun; Choi, Daiwon; Xu, Wu; Nie, Zimin; Graff, Gordon L; Liu, Jun; Whittingham, M Stanley; Zhang, Ji-Guang

    2011-10-28

    In this paper, the influences of the lithium content in the starting materials on the final performances of as-prepared Li(x)MnPO(4) (x hereafter represents the starting Li content in the synthesis step which does not necessarily mean that Li(x)MnPO(4) is a single phase solid solution in this work.) are systematically investigated. It has been revealed that Mn(2)P(2)O(7) is the main impurity when Li Li(3)PO(4) begins to form once x > 1.0. The interactions between Mn(2)P(2)O(7) or Li(3)PO(4) impurities and LiMnPO(4) are studied in terms of the structural, electrochemical, and magnetic properties. At a slow rate of C/50, the reversible capacity of both Li(0.5)MnPO(4) and Li(0.8)MnPO(4) increases with cycling. This indicates a gradual activation of more sites to accommodate a reversible diffusion of Li(+) ions that may be related to the interaction between Mn(2)P(2)O(7) and LiMnPO(4) nanoparticles. Among all of the different compositions, Li(1.1)MnPO(4) exhibits the most stable cycling ability probably because of the existence of a trace amount of Li(3)PO(4) impurity that functions as a solid-state electrolyte on the surface. The magnetic properties and X-ray absorption spectroscopy (XAS) of the MnPO(4)·H(2)O precursor, pure and carbon-coated Li(x)MnPO(4) are also investigated to identify the key steps involved in preparing a high-performance LiMnPO(4). This journal is © the Owner Societies 2011

  16. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lu, XJ; Wu, G; Howard, JW; Chen, AP; Zhao, YS; Daemen, LL; Jia, QX

    2014-08-13

    Anti-perovskite solid electrolyte films were prepared by pulsed laser deposition, and their room-temperature ionic conductivity can be improved by more than an order of magnitude in comparison with its bulk counterpart. The cyclability of Li3OCl films in contact with lithium was evaluated using a Li/Li3OCl/Li symmetric cell, showing self-stabilization during cycling test.

  17. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Ma, Kaka; Wen, Haiming; Hu, Tao; Topping, Troy D.; Isheim, Dieter; Seidman, David N.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-01-01

    To provide insight into the relationships between precipitation phenomena, grain size and mechanical behavior in a complex precipitation-strengthened alloy system, Al 7075 alloy, a commonly used aluminum alloy, was selected as a model system in the present study. Ultrafine-grained (UFG) bulk materials were fabricated through cryomilling, degassing, hot isostatic pressing and extrusion, followed by a subsequent heat treatment. The mechanical behavior and microstructure of the materials were analyzed and compared directly to the coarse-grained (CG) counterpart. Three-dimensional atom-probe tomography was utilized to investigate the intermetallic precipitates and oxide dispersoids formed in the as-extruded UFG material. UFG 7075 exhibits higher strength than the CG 7075 alloy for each equivalent condition. After a T6 temper, the yield strength (YS) and ultimate tensile strength (UTS) of UFG 7075 achieved 734 and 774 MPa, respectively, which are ∼120 MPa higher than those of the CG equivalent. The strength of as-extruded UFG 7075 (YS: 583 MPa, UTS: 631 MPa) is even higher than that of commercial 7075-T6. More importantly, the strengthening mechanisms in each material were established quantitatively for the first time for this complex precipitation-strengthened system, accounting for grain-boundary, dislocation, solid-solution, precipitation and oxide dispersoid strengthening contributions. Grain-boundary strengthening was the predominant mechanism in as-extruded UFG 7075, contributing a strength increment estimated to be 242 MPa, whereas Orowan precipitation strengthening was predominant in the as-extruded CG 7075 (∼102 MPa) and in the T6-tempered materials, and was estimated to contribute 472 and 414 MPa for CG-T6 and UFG-T6, respectively

  18. Sedimentary input into the source of Martinique lavas: a Li perspective

    Science.gov (United States)

    Tang, M.; Chauvel, C.; Rudnick, R. L.

    2013-12-01

    The Lesser Antilles arc is known for the prominent continental crustal signatures in its lavas. It thus provides an ideal target for studying crustal recycling in subduction zones. Martinique Island, located in the middle of the Lesser Antilles arc, has been well characterized for its elemental and radiogenic isotope geochemistry (Labanieh et al., 2012). We measured Li isotopes in the Martinique lavas as well as sediments cored at the southern (Site 144) and northern part (Site 543) of the subducting slab. The sediments show a large isotopic variation (δ7Li ~ -4.2‰ to +3.2‰) but the average δ7Li of -1.1 × 2.4‰ (1 σ, n = 15) is significantly lower than that of N-MORB (δ7Li = + 3.4 × 0.7‰, 1 σ, Tomascak et al., 2008), reflecting the influence of chemical weathering in the continental provenance. Although the subducting sediments display marked mineralogical and chemical shifts from south to north due to different deposition distances to the continental platform (Carpentier et al., 2009), their average Li isotopic compositions are indiscernible from each other. With a few exceptions, the Li isotopic compositions of the Martinique lavas are systematically lighter than MORB, giving an average δ7Li of 1.6 × 1.4‰ (1 σ, n = 25, 4 exceptions excluded). The δ7Li values show no correlation with any radiogenic isotope ratios (206Pb/204Pb, 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf), Li/Y ratio, La/Sm ratio and SiO2 content. Therefore, the light Li isotopic composition likely reflects the source characteristics rather than contamination within the arc crust. Incorporation of the isotopically light sediments from Site 144 and 543 in the source may explain the depletion of 7Li in the Martinique lavas. A two-end-member mixing model requires 2-5% addition of the sediments into the depleted mantle source, compared with 1-10% sediments constrained by radiogenic isotopes (Carpentier et al., 2008). References Carpentier, M., Chauvel, C., & Mattielli, N., 2008. Pb

  19. Li plating as unwanted side reaction in commercial Li-ion cells - A review

    Science.gov (United States)

    Waldmann, Thomas; Hogg, Björn-Ingo; Wohlfahrt-Mehrens, Margret

    2018-04-01

    Deposition of Lithium metal on anodes contributes significantly to ageing of Li-ion cells. Lithium deposition is connected not only to a drastic limitation of life-time, but also to fast-charging capability and safety issues. Lithium deposition in commercial Li-ion cells is not limited to operation conditions at low temperatures. In recent publications various types of commercial cells were investigated using complimentary analysis methods. Five cell types studied in literature (18650, 26650, pouch) serve as a basis for comparison when and why Li deposition happens in commercial Li-ion cells. In the present paper, we reviewed literature on (i) causes, (ii) hints and evidences for Li deposition, (iii) macroscopic morphology of Li deposition/plating, (iv) ageing mechanisms and shapes of capacity fade curves involving Li deposition, and (v) influences of Li deposition on safety. Although often discussed, safety issues regarding Li deposition are not only limited to dendrite growth and internal short circuits, but also to exothermic reactions in the presence of Lithium metal. Furthermore, we tried to connect knowledge from different length scales including the macroscopic level (Li-ion cells, operating conditions, gradients in cells, electrochemical tests, safety tests), the microscopic level (electrodes, particles, microstructure), and the atomic level (atoms, ions, molecules, energy barriers).

  20. Atomic simulations for configurations and solid-liquid interface of Li-Fe and Li-Cu icosahedra

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianyu, E-mail: hnieyjy@aliyun.com [Hunan Institute of Engineering (China); Hu, Wangyu [Hunan University, College of Materials Science and Engineering (China); Dai, Xiongying [Hunan Institute of Engineering, College of Science (China)

    2017-04-15

    The melting point of Li is lower than that of Fe (or Cu); thus, solid-liquid interfaces can be easily formed on Li-Fe and Li-Cu nanoalloys. In this work, the configurations and solid-liquid interfaces of Li-Fe and Li-Cu icosahedra are studied using Monte Carlo and molecular dynamics methods. The atomic interactions are described by the analytic embedded-atom method. The dependence of composition, temperature, and nanoparticle size on the configurations and thermal stabilities of nanoalloys is discussed. The behavior of the Li-Fe and Li-Cu nanoalloys in segregation, configuration, and thermal stability is investigated. A different behavior of surface segregation of Li atoms is observed for the two types of nanoalloys. The interface between the Li and Fe atoms is clear. Mixing of Li with Cu at larger nanoparticle sizes is found because of low heat of formation in the system. The configurations of the Li-Fe and Li-Cu nanoalloys are related to the competition between surface segregation and alloying. The thermal stability of Li in the two types of nanoalloys is enhanced by the support of the Fe (or Cu) solid substrate.

  1. Spectroscopic analysis of LiHoF4 and LiErF4

    DEFF Research Database (Denmark)

    Christensen, H.P.

    1979-01-01

    The polarized absorption spectra for Ho3+ and Er3+ in LiHoF4 and LiErF4, respectively, have been recorded in the spectral interval 4000-26 000 cm-1 at 2 K. Parts of the spectra were examined at higher temperatures. The experimental levels for Ho3+ and Er3+ in LiRF4 were close to those found in Li...

  2. Mechanistic insights of Li+ diffusion within doped LiFePO4 from Muon Spectroscopy.

    Science.gov (United States)

    Johnson, Ian D; Ashton, Thomas E; Blagovidova, Ekaterina; Smales, Glen J; Lübke, Mechthild; Baker, Peter J; Corr, Serena A; Darr, Jawwad A

    2018-03-07

    The Li + ion diffusion characteristics of V- and Nb-doped LiFePO 4 were examined with respect to undoped LiFePO 4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering D Li values in the range 1.8-2.3 × 10 -10  cm 2 s -1 , this implied the improvement in electrochemical performance observed within doped LiFePO 4 was not a result of increased local Li + diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li + self-diffusion within LiFePO 4 , and therefore negated the effect of the LiFePO 4 two-phase delithiation mechanism, which has previously prevented accurate Li + diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.

  3. Uniform second Li ion intercalation in solid state ϵ-LiVOPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wangoh, Linda W.; Quackenbush, Nicholas F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Sallis, Shawn [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lin, Yuh-Chieh; Ong, Shyue Ping [Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive 0448, La Jolla, California 92093 (United States); Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley [NECCES, Binghamton University, Binghamton, New York 13902 (United States); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lee, Tien-Lin; Schlueter, Christoph [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Piper, Louis F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2016-08-01

    Full, reversible intercalation of two Li{sup +} has not yet been achieved in promising VOPO{sub 4} electrodes. A pronounced Li{sup +} gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO{sub 4} cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li{sup +} gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li{sup +} intercalation is a prerequisite for the formation of intermediate phases Li{sub 1.50}VOPO{sub 4} and Li{sub 1.75}VOPO{sub 4}. The evolution from LiVOPO{sub 4} to Li{sub 2}VOPO{sub 4} via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  4. Ab initio identification of the Li-rich phase in LiFePO4.

    Science.gov (United States)

    Zeng, Hua; Gu, Yue; Teng, Gaofeng; Liu, Yimeng; Zheng, Jiaxin; Pan, Feng

    2018-06-27

    A recent discovery of anionic redox activity in Li-rich layered compounds opens a new direction for the design of high-capacity cathode materials for lithium-ion batteries. Here using extensive ab initio calculations, the thermodynamic existence of the Li-rich phase in LiFePO4 to form Li1+xFe1-xPO4 with x not exceeding 12.5% has been proved. Anionic redox activity and structural stability during delithiation are further investigated. Interestingly, it is found that Li1+xFe1-xPO4 cannot be delithiated completely and thus cannot achieve extra capacity by anionic redox activity, because the local oxygen-ion redox will cause the fracture of the rigid framework formed by phosphate tetrahedral polyanions. Although an extra capacity cannot be realized, the excess Li-ions at Fe sites can enhance the Li-ion diffusivity along the adjacent [010] channel and contribute to the shift from 1D to 2D/3D diffusion. This study provides a fresh perspective on olivine-type LiFePO4 and offers some important clues on designing Li-rich cathode materials with high energy density.

  5. Dipolar Antiferromagnetism and Quantum Criticality in LiErF4

    International Nuclear Information System (INIS)

    Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik

    2012-01-01

    Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.

  6. Li vaporization property of two-phase material of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} for tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Masuko, Yuki; Kato, Hirokazu; Yuyama, Hayato; Sakai, Yutaro [Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Mukai, Keisuke [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656 (Japan); Hosino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Course of Mechanical Engineering and Aeronautics and Astronautics, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2015-10-15

    Highlights: • We synthesized two phase materials based on Li{sub 2}SiO{sub 3} and Li{sub 2}TiO{sub 3}. • We investigated the Li vaporization property of the two-phase materials. • Li vaporization occurs significantly from only Li{sub 2}SiO{sub 3} grains in the vicinity of the surface of the pellets. • The Li vaporization is remarkable only for an early short time for the vaporization from Li{sub 2}SiO{sub 3} grains at the vicinity of the surface. • The second stable phase added functions effectively for inhibition of the Li vaporization. - Abstract: Li vaporization property of two-phase materials of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} in a working condition for the solid tritium breeder used in the demonstration power plant of fusion reactor was investigated, and the suppression mechanism of the vaporization was considered. The Li vaporization rate from the specimen pellet was measured by gravimetric method, and the change of Li concentration distribution in the pellet was analyzed by time-of-flight secondary ion mass spectrometer. Li was vaporized only from the Li{sub 2}SiO{sub 3} at the vicinity of the surface of the pellet. The remarkable vaporization of Li arose only in an early short time. The inhibition of the vaporization from the Li{sub 2}SiO{sub 3} was successful by adding the small amount of the stable secondary phase of Li{sub 2}TiO{sub 3}.

  7. Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials

    Science.gov (United States)

    Al-Qawasmeh, Ahmad; Holzwarth, N. A. W.

    2017-10-01

    Two lithium oxonitridophosphate materials are computationally examined and found to be promising solid electrolytes for possible use in all solid-state batteries having metallic Li anodes - Li14P2O3N6 and Li7PN4. The first principles simulations are in good agreement with the structural analyses reported in the literature for these materials and the computed total energies indicate that both materials are stable with respect to decomposition into binary and ternary products. The computational results suggest that both materials are likely to form metastable interfaces with Li metal. The simulations also find both materials to have Li ion migration activation energies comparable or smaller than those of related Li ion electrolyte materials. Specifically, for Li7PN4, the experimentally measured activation energy can be explained by the migration of a Li ion vacancy stabilized by a small number of O2- ions substituting for N3- ions. For Li14P2O3N6, the activation energy for Li ion migration has not yet been experimentally measured, but simulations predict it to be smaller than that measured for Li7PN4.

  8. Annihilation of antiferromagnetic order in LiCoO2 by excess Li

    International Nuclear Information System (INIS)

    Sugiyama, Jun; Ikedo, Yutaka; Nozaki, Hiroshi; Mukai, Kazuhiko; Andreica, Daniel; Amato, Alex; Menetrier, Michel; Carlier, Dany; Delmas, Claude

    2009-01-01

    In order to elucidate the origin of antiferromagnetic (AF) order below 30 K in LiCoO 2 , in which all the Co 3+ ions are in a low-spin state with S=0, the magnetic nature of the Li-excess sample Li 1.04 Co 0.96 O 1.96 was studied by muon-spin spectroscopy in the temperature range between 1.8 and 100 K. Although disordered localized moments appeared below 25 K, static AF order was not detected even at 1.8 K. Moreover, a small amount of excess Li ions (4%) and oxygen vacancies (2%) was found to change ∼50% of the sample into a magnetically disordered phase at 1.8 K. The stoichiometric LiCoO 2 , which was prepared from the same starting materials to those for the Li-excess sample, showed an AF transition at 30 K, while the volume fraction of the AF phase was 10% even at 1.8 K. This therefore excludes the possible role of the excess Li + on the formation of static AF order.

  9. LiFePO4/polymer/natural graphite: low cost Li-ion batteries

    International Nuclear Information System (INIS)

    Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier, M

    2004-01-01

    The aging and performance of natural graphite/PEO-based gel electrolyte/LiFePO 4 cells are reported. The gel polymer electrolytes were produced by electron-beam irradiation and then soaked in a liquid electrolyte. The natural graphite anode in gel electrolyte containing LiBF4-EC/GBL exhibited high reversible capacity (345 mAh/g) and high coulombic efficiency (91%). The LiFePO 4 cathode in the same gel-polymer exhibited a reversible capacity of 160 mAh/g and 93% coulombic efficiency. Better performance was obtained at high-rate discharge with 6% carbon additive in the cathode, however the graphite anode performance suffers at high rate. The Li-ion gel polymer battery shows a capacity fade of 13% after 180 cycles and has poor performance at low temperature due to low diffusion of the lithium to the graphite in the GBL system. The LiFePO 4 /gel/Li system has an excellent rate capacity. LiFePO 4 cathode material is suitable for HEV application

  10. Preloading Effect on Strengthening Efficiency of RC Beams Strengthened with Non- and Pretensioned NSM Strips

    Directory of Open Access Journals (Sweden)

    Renata Kotynia

    2018-02-01

    Full Text Available The near surface mounted (NSM technique has been shown to be one of the most promising methods for upgrading reinforced concrete (RC structures. Many tests carried out on RC members strengthened in flexure with NSM fiber-reinforced polymer (FRP systems have demonstrated greater strengthening efficiency than the use of externally-bonded (EB FRP laminates. Strengthening with simultaneous pretensioning of the FRP results in improvements in the serviceability limit state (SLS conditions, including the increased cracking moment and decreased deflections. The objective of the reported experimental program, which consisted of two series of RC beams strengthened in flexure with NSM CFRP strips, was to investigate the influence of a number of parameters on the strengthening efficiency. The test program focused on an analysis of the effects of preloading on the strengthening efficiency which has been investigated very rarely despite being one of the most important parameters to be taken into account in strengthening design. Two preloading levels were considered: the beam self-weight only, which corresponded to stresses on the internal longitudinal reinforcement of 25% and 14% of the yield stress (depending on a steel reinforcement ratio, and the self-weight with the additional superimposed load, corresponding to 60% of the yield strength of the unstrengthened beam and a deflection equal to the allowable deflection at the SLS. The influence of the longitudinal steel reinforcement ratio was also considered in this study. To reflect the variability seen in existing structures, test specimens were varied by using different steel bar diameters. Finally, the impact of the composite reinforcement ratio and the number of pretensioned FRP strips was considered. Specimens were divided into two series based on their strengthening configuration: series “A” were strengthened with one pretensioned and two non-pretensioned carbon FRP (CFRP strips, while series

  11. Distillation of LiCl from the LiCl-Li2O molten salt of the electrolytic reduction process

    International Nuclear Information System (INIS)

    Kim, I.S.; Oh, S.C.; Im, H.S.; Hur, J.M.; Lee, H.S.

    2013-01-01

    Electrolytic reduction of the uranium oxide in LiCl-Li 2 O molten salt for the treatment of spent nuclear fuel requires the separation of the residual salt from the reduced metal product, which contains about 20 wt% salt. In order to separate the residual salt and reuse it in the electrolytic reduction, a vacuum distillation process was developed. Lab-scale distillation equipment was designed and installed in an argon atmosphere glove box. The equipment consisted of an evaporator in which the reduced metal product was contained and exposed to a high temperature and reduced pressure; a receiver; and a vertically oriented condenser that operated at a temperature below the melting point of lithium chloride. We performed experiments with LiCl-Li 2 O salt to evaluate the evaporation rate of LiCl salt and varied the operating temperature to discern its effect on the behavior of salt evaporation. Complete removal of the LiCl salt from the evaporator was accomplished by reducing the internal pressure to <100 mTorr and heating to 900 deg C. We achieved evaporation efficiency as high as 100 %. (author)

  12. Bridging gaps: On the performance of airborne LiDAR to model wood mouse-habitat structure relationships in pine forests.

    Science.gov (United States)

    Jaime-González, Carlos; Acebes, Pablo; Mateos, Ana; Mezquida, Eduardo T

    2017-01-01

    LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse's habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse's preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest

  13. Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

    Science.gov (United States)

    Wang, Yan; Hao, Chun-Mei; Huang, Hong-Mei; Li, Yan-Ling

    2018-04-01

    The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2 g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

  14. Age-hardening of an Al-Li-Cu-Mg alloy (2091) processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungwon, E-mail: chominamlsw@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Horita, Zenji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Hirosawa, Shoichi [Department of Mechanical Engineering and Materials Science, Yokohama National University, Yokohama 240-8501 (Japan); Matsuda, Kenji [Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan)

    2012-06-01

    This research presents the successful strengthening of an Al-Li-Cu-Mg alloy (2091) through the simultaneous use of grain refinement and age hardening. Following solid-solution treatment, the alloy was processed by high-pressure torsion (HPT) at room temperature and the grain size was refined to {approx}140 nm. The Vickers microhardness increased with increasing strain, and saturated to a constant level of 225 Hv. A further increase in the hardness to {approx}275 Hv was achieved by aging the HPT-processed alloy at 100 Degree-Sign C and 150 Degree-Sign C. Bending tests for the samples treated using the peak aging conditions demonstrated that the stress was significantly increased while considerable ductility was retained. Transmission electron microscopy revealed that the small grains are well retained even after prolonged aging, and the precipitation of fine {delta} Prime particles occurred within the small grains, which confirms that simultaneous strengthening from grain refinement and age hardening is feasible in this alloy.

  15. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    Science.gov (United States)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  16. Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, D.W.; Zhang, S.Q.; Jin, Y.; Yi, T.H.; Xie, S.; Chen, C.H.

    2006-01-01

    As a possible high-capacity Li-ion battery anode material, Li 2 SnO 3 was prepared via a solid-state reaction route and a sol-gel route, separately. Its electrochemical performance was tested in coin-type cells with metallic Li as the counter electrode. The results show that the sol-gel derived Li 2 SnO 3 has uniform nano-sized particles (200-300 nm) and can deliver a better reversible capacity (380 mAh/g after 50 cycles in the voltage window of 0-1 V) than that from the solid-state reaction route. The characterizations by means of galvanostatic cycling, cyclic voltammetry and ex situ X-ray diffraction indicate that the electrochemical process of the Li 2 SnO 3 lithiation proceeds with an initial structural reduction of the composite oxide into Sn-metal and Li 2 O followed by a reversible Li-Sn alloy formation in the Li 2 O matrix. Due to the buffer role of the Li 2 O matrix, the reversibility of the secondary Li-Sn alloy electrode is largely secured

  17. Li-rich layer-structured cathode materials for high energy Li-ion batteries

    Science.gov (United States)

    Li, Liu; Lee, Kim Seng; Lu, Li

    2014-08-01

    Li-rich layer-structured xLi2MnO3 ṡ (1 - x)LiMO2 (M = Mn, Ni, Co, etc.) materials have attracted much attention due to their extraordinarily high reversible capacity as the cathode material in Li-ion batteries. To better understand the nature of this type of materials, this paper reviews history of development of the Li-rich cathode materials, and provides in-depth study on complicated crystal structures and reaction mechanisms during electrochemical charge/discharge cycling. Despite the fabulous capability at low rate, several drawbacks still gap this type of high-capacity cathode materials from practical applications, for instance the large irreversible capacity loss at first cycle, poor rate capability, severe voltage decay and capacity fade during electrochemical charge/discharge cycling. This review will also address mechanisms for these inferior properties and propose various possible solutions to solve above issues for future utilization of these cathode materials in commercial Li-ion batteries.

  18. Scintillation properties of LiF–SrF2 and LiF–CaF2 eutectic

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira

    2013-01-01

    Dopant free eutectic scintillators 6 LiF–SrF 2 and 6 LiF–CaF 2 were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF 2 was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF 2 layers. When the samples were irradiated with 252 Cf neutrons, 6 LiF–SrF 2 and 6 LiF–CaF 2 exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of 6 LiF–SrF 2 and 6 LiF–CaF 2 were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF 2 and LiF–SrF 2 eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF 2 sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF 2 and LiF–SrF 2 were 250 and 90 ns, respectively

  19. Dielectric properties of Li doped Li-Nb-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Perentzis, G.; Horopanitis, E.E.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Durman, V.; Saly, V.; Packa, J. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava (Slovakia)

    2007-03-15

    Lithium niobate LiNbO{sub 3} was prepared as a thin film layered structure deposited on stainless steel substrate using e-gun evaporation. The Li doping was provided for by the formation of Li-Nb-O/Li/LiNb-O sandwich structure and annealing at about 250 C. AC impedance spectroscopy measurements were performed on the samples at temperatures from the interval between 28 and 165 C and in a frequency range of 10{sup -3} to 10{sup 6} Hz. Using the values Z' and Z'' at different frequencies, the dielectric parameters - parts of the complex permittivity {epsilon}' and {epsilon}'' and loss tangent tan {delta} were calculated. The results prove validity of the proposed equivalent circuit containing parallel RC elements connected in series where the first RC element represents the bulk of material and the second RC element belongs to the double layer at the metal interface. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Weixue Li

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Weixue Li. Articles written in Bulletin of Materials Science. Volume 29 Issue 3 June 2006 pp 313-316 Composites. Anisotropic properties of aligned SWNT modified poly (methyl methacrylate) nanocomposites · Weixue Li Qing Wang Jianfeng Dai · More Details Abstract Fulltext ...

  1. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    Science.gov (United States)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  2. Enhanced electrochemical properties of LiNiO{sub 2}-based cathode materials by nanoscale manganese carbonate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junkai; Wang, Zhixing, E-mail: zxwang.csu@hotmail.com; Guo, Huajun; Li, Xinhai

    2017-05-01

    Highlights: • Li residuals are consumed during the process of modification. • MnO{sub 2} coating layer can protect bulk material from the erosion of electrolyte. • The electrochemical performance is enhanced by the nanosacle MnCO{sub 3} treatment. • The enhancement of coating can be strengthened by the removal of lithium impurities. - Abstract: LiNiO{sub 2}-based layered oxides are of great importance as cathode materials for rechargeable batteries. In this paper, illustrating LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} as an example, the effect of nanoscale MnCO{sub 3} treatment on LiNiO{sub 2}-based materials is investigated for the first time. The structures of materials and the properties about the object surface are characterized by XRD, SEM, TEM, EDAX and XPS. The results demonstrate that a part of MnCO{sub 3} is able to react with lithium impurities to form nonstoichiometric Li{sub x}Mn{sub y}O{sub 4} and the rest of MnCO{sub 3} is converted to MnO{sub 2} coating on the surface of the material in situ. After 100 repeated cycles at 1C, the modified material exhibits a capacity retention rate of 91.2%, while the bare material only remains 84.8%. And the modified material exhibits more significantly improved cycling stability when cycling at 60 °C, maintaining 85.7% of its initial capacity at 1C after 100th cycles. The consumption of Li impurities can decelerate the decomposition of electrolyte during cycling, thus result in less resistive byproducts. Moreover, the obtained MnO{sub 2} coating layer acts as an isolating layer to suppress the drastic reaction between active material and electrolyte. This synergistic effect is responsible for the excellent properties of MnCO{sub 3}-modified material.

  3. Computational design of precipitation-strengthened titanium-nickel-based shape memory alloys

    Science.gov (United States)

    Bender, Matthew D.

    composition. Biocompatibility is likely improved as Pd substitution of Ni alleviates concerns of Ni toxicity in TiNi alloys. The B2/L21 interphase misfit was calculated to facilitate the design of optimized alloys with low-misfit coherent precipitation strengthening, desired transformation temperatures and enhanced radiopacity absorption, within constraints of practical processing temperatures. Enhanced cyclic and thermal stability in this alloy was demonstrated through differential scanning calorimetry and compression testing, respectively, as indication of improved cyclic fatigue life. A proposed Ni20Pd30Ti46Al4 alloy with a 950°C solution treatment for 20 h and a 600°C aging for 4 h is predicted to provide high strength, a low 0.71% misfit, an A f transformation temperature of 10°C for desired superelastic behavior at body temperature, and a radiopacity absorption 142% greater than current TiNi alloys.

  4. Li interactions with the B40 fullerene and its application in Li-ion batteries: DFT studies

    Science.gov (United States)

    Moradi, Morteza; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    The interaction of Li and Li+ with a B40 all-boron fullerene was theoretically investigated at the B3LYP, and Minnesota 2006 levels of theory. It was found that, unexpectedly, the interaction Li+ cation with the electron deficient B40 fullerene is stronger than the Li atom. It indicates that the B40 fullerene does not act as a conventional Lewis acid because of its highly correlated structure. Frontier molecular orbitals, partial density of states, and natural bond orbital analyses were used to discuss this unusual behavior. Our calculations indicate that this behavior makes the B40 fullerene more appropriate for application in the Li-ion batteries as anode material. The calculated cell voltage is about 530 mV. Also, it was found that Hartree Fock (HF) exchange percentage of density functionals has a reverse effect on the adsorption energies of Li and Li+. This energy is increased and decreased, respectively, for Li+ and Li adsorptions by increasing %HF exchange. Finally, a potential energy surface for Li and Li+ penetration into B40 fullerene was predicted.

  5. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    Science.gov (United States)

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2 - x LiF (0 ≤ x ≤ 2) binary system

    Science.gov (United States)

    Takeda, Nanami; Hoshino, Satoshi; Xie, Lixin; Chen, Shuo; Ikeuchi, Issei; Natsui, Ryuichi; Nakura, Kensuke; Yabuuchi, Naoaki

    2017-11-01

    A binary system of LiMoO2 - x LiF (0 ≤ x ≤ 2), Li1+xMoO2Fx, is systematically studied as potential positive electrode materials for rechargeable Li batteries. Single phase and nanosized samples on this binary system are successfully prepared by using a mechanical milling route. Crystal structures and Li storage properties on the binary system are also examined. Li2MoO2F (x = 1), which is classified as a cation-/anion-disordered rocksalt-type structure and is a thermodynamically metastable phase, delivers a large reversible capacity of over 300 mAh g-1 in Li cells with good reversibility. Highly reversible Li storage is realized for Li2MoO2F consisting of nanosized particles based on Mo3+/Mo5+ two-electron redox as evidenced by ex-situ X-ray absorption spectroscopy coupled with ex-situ X-ray diffractometry. Moreover, the presence of the most electronegative element in the framework structure effectively increases the electrode potential of Mo redox through an inductive effect. From these results, potential of nanosized lithium molybdenum oxyfluorides for high-capacity positive electrode materials of rechargeable Li batteries are discussed.

  7. Irradiation cryostat for LiH and LiD polarized solid targets

    International Nuclear Information System (INIS)

    Goertz, S.

    1991-01-01

    Scattering experiments with polarized nucleon targets are an important tool to understand the nuclear spin structure. Pion photoproduction experiments on polarized protrons and neutrons as well as measurements of the neutron and deuteron formfactors will be performed at ELSA. 7 LiH and 6 LiD seem to be attractive target materials for these experiments, because they offer high proton and deuteron polarisation, respectively. Expecially 6 LiD has further very important advantages compared to the common deuteron target materials as d-Butanol and ND 3 . This work describes the mechanism of DNP (Dynamic Nuclear Polarization) in LiH and LiD and gives a view on the nature of the so-called paramagnetic impurities in these materials. In order to maximize the nuclear polarization, the production of these radicals have to take place under well defined temperature conditions. Therefore the first version of an irradiation cryostat was built and tested in regard to its cooling power and temperature adjustment. (orig.)

  8. Li-ion batteries: Phase transition

    International Nuclear Information System (INIS)

    Hou Peiyu; Zhang Yantao; Zhang Lianqi; Chu Geng; Gao Jian

    2016-01-01

    Progress in the research on phase transitions during Li + extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li + insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties. (topical review)

  9. Complex Diffusion Mechanisms for Li in Feldspar: Re-thinking Li-in-Plag Geospeedometry

    Science.gov (United States)

    Holycross, M.; Watson, E. B.

    2017-12-01

    In recent years, the lithium isotope system has been applied to model processes in a wide variety of terrestrial environments. In igneous settings, Li diffusion gradients have been frequently used to time heating episodes. Lithium partitioning behavior during decompression or cooling events drives Li transfer between phases, but the extent of Li exchange may be limited by its diffusion rate in geologic materials. Lithium is an exceptionally fast diffuser in silicate media, making it uniquely suited to record short-lived volcanic phenomena. The Li-in-plagioclase geospeedometer is often used to time explosive eruptions by applying laboratory-calibrated Li diffusion coefficients to model concentration profiles in magmatic feldspar samples. To quantify Li transport in natural scenarios, experimental measurements are needed that account for changing temperature and oxygen fugacity as well as different feldspar compositions and crystallographic orientation. Ambient pressure experiments were run at RPI to diffuse Li from a powdered spodumene source into polished sanidine, albite, oligoclase or anorthite crystals over the temperature range 500-950 ºC. The resulting 7Li concentration gradients developed in the mineral specimens were evaluated using laser ablation ICP-MS. The new data show that Li diffusion in all feldspar compositions simultaneously operates by both a "fast" and "slow" diffusion mechanism. Fast path diffusivities are similar to those found by Giletti and Shanahan [1997] for Li diffusion in plagioclase and are typically 10 to 20 times greater than slow path diffusivities. Lithium concentration gradients in the feldspar experiments plot in the shape of two superimposed error function curves with the slow diffusion regime in the near-surface of the crystal. Lithium diffusion is most sluggish in sanidine and is significantly faster in the plagioclase feldspars. It is still unclear what diffusion mechanism operates in nature, but the new measurements may impact

  10. Modeling Li-ion conductivity in LiLa(PO{sub 3}){sub 4} powder

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, Ferhi, E-mail: ferhi.mounir@gmail.com [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Karima, Horchani-Naifer [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Khaled, Ben Saad [Laboratoire de Photovoltaieque, Centre des Recherches et des Technologies de l' Energie, Technopole Borj Cedria, BP No. 95, 2050 Hammam Lif (Tunisia); Mokhtar, Ferid [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia)

    2012-07-01

    Polycrystalline powder and single-crystal of LiLa(PO{sub 3}){sub 4} are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO{sub 3}){sub 4} powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO{sub 3}){sub 4} are characterized by single-crystal X-ray diffraction. The LiLa(PO{sub 3}){sub 4} structure was found to be isotypic with LiNd(PO{sub 3}){sub 4}. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) A, b=7.130(3) A, c=9.913(3) A, {beta}=126.37(4) Degree-Sign , V=946.72(6) A{sup 3} and Z=4. The LiLa(PO{sub 3}){sub 4} structure was described as an alternation between spiraling chains (PO{sub 3}){sub n} and (La{sup 3+}, Li{sup +}) cations along the b direction. The small Li{sup +} ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO{sub 8} polyhedra and the polyphosphate chains. The jumping of Li{sup +} through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO{sub 3}){sub 4} and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  11. Calcium cation enhanced cathode/electrolyte interface property of Li2FeSiO4/C cathode for lithium-ion batteries with long-cycling life

    Science.gov (United States)

    Qu, Long; Li, Mingtao; Tian, Xiaolu; Liu, Pei; Yi, Yikun; Yang, Bolun

    2018-03-01

    Currently, the cycle performance at low rate is one of the most critical factor for realizing practical applications of Li2FeSiO4/C as a cathode of the lithium-ion batteries. To meet this challenge, calcium (Ca)-doped Li2FeSiO4/C is prepared by using the sol-gel method with soluble Li, Fe, Si and Ca sources. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy measurements are carried out to determine the crystal structures, morphologies, particle sizes and chemical valence states of the resulting products. Rietveld refinement confirms that Ca-doped Li2FeSiO4 has a monoclinic P21/n structure and that a Ca cation occupies the Fe site in the Li2FeSiO4 lattice. The grain size of Ca-doped Li2FeSiO4 is approximately 20 nm and the nanoparticles are interconnected tightly with amorphous carbon layer. As a cathode material for the lithium-ion batteries, Li2Fe0.97Ca0.03SiO4/C delivers a high discharge capacity of 186 mAh g-1 at a 0.5 C rate. Its capacity retention after the 100th cycle reaches 87%, which increases by 25 percentage points compared with Li2FeSiO4/C. The Li2Fe0.97Ca0.03SiO4/C cathode exhibits good rate performance, with corresponding discharge capacities of 170, 157, 144 and 117 mAh g-1 at 1 C, 2 C, 5 C and 10 C rates, respectively. In summary, the improvement of the electrochemical performance can be attributed to a coefficient of the strengthened crystal structure stability during Li+ deintercalation-intercalation and restrained side reactions between electrode and electrolyte.

  12. THE NEW DETECTIONS OF 7Li/6Li ISOTOPIC RATIO IN THE INTERSTELLAR MEDIA

    International Nuclear Information System (INIS)

    Kawanomoto, S.; Kajino, T.; Aoki, W.; Ando, H.; Noguchi, K.; Tanaka, W.; Bessell, M.; Suzuki, T. K.; Honda, S.; Izumiura, H.; Kambe, E.; Okita, K.; Watanabe, E.; Yoshida, M.; Sadakane, K.; Sato, B.; Tajitsu, A.; Takada-Hidai, M.

    2009-01-01

    We have determined the isotopic abundance ratio of 7 Li/ 6 Li in the interstellar media (ISMs) along lines of sight to HD169454 and HD250290 using the High-Dispersion Spectrograph on the Subaru Telescope. We also observed ζ Oph for comparison with previous data. The observed abundance ratios were 7 Li/ 6 Li = 8.1 +3.6 -1.8 and 6.3 +3.0 -1.7 for HD169454 and HD250290, respectively. These values are in reasonable agreement with those observed previously in the solar neighborhood ISMs within ±2σ error bars and are also consistent with our measurement of 7 Li/ 6 Li = 7.1 +2.9 -1.6 for a cloud along the line of sight to ζ Oph. This is good evidence for homogeneous mixing and instantaneous recycling of the gas component in the Galactic disk. We also discuss several source compositions of 7 Li, Galactic cosmic-ray interactions, stellar nucleosynthesis, and big bang nucleosynthesis.

  13. Electrochemical behaviors of wax-coated Li powder/Li 4Ti 5O 12 cells

    Science.gov (United States)

    Park, Han Eol; Seong, Il Won; Yoon, Woo Young

    The wax-coated Li powder specimen was effectively synthesized using the drop emulsion technique (DET). The wax layer on the powder was verified by SEM, Focused Ion Beam (FIB), EDX and XPS. The porosity of a sintered wax-coated Li electrode was measured by linear sweep voltammetry (LSV) and compared with that of a bare, i.e., un-coated Li electrode. The electrochemical behavior of the wax-coated Li powder anode cell was examined by the impedance analysis and cyclic testing methods. The cyclic behavior of the wax-coated Li powder anode with the Li 4Ti 5O 12 (LTO) cathode cell was examined at a constant current density of 0.35 mA cm -2 with the cut-off voltages of 1.2-2.0 V at 25 °C. Over 90% of the initial capacity of the cell remained even after the 300th cycle. The wax-coated Li powder was confirmed to be a stable anode material.

  14. Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Fedorkova, Andrea; Nacher-Alejos, Ana; Gomez-Romero, Pedro; Orinakova, Renata; Kaniansky, Dusan

    2010-01-01

    A simple chemical oxidative polymerization of pyrrole (Py) directly onto the surface of LiFePO 4 particles was applied to the synthesis of polypyrrole-LiFePO 4 (PPy-LiFePO 4 ) powder. The LiFePO 4 sample without carbon coating was synthesized by a solvothermal method. The polyethylene glycol (PEG) was used as additive during Py polymerization for increasing the PPy-LiFePO 4 conductivity. Properties of resulting LiFePO 4 , PPy-LiFePO 4 and PPy/PEG-LiFePO 4 samples were characterized by XRD, SEM, TGA and galvanostatic charge-discharge measurements. These methods confirmed the presence of polypyrrole on LiFePO 4 particles and its homogeneous distribution in the resulting powder material. The PPy/PEG-LiFePO 4 composites show higher discharge capacity than pure LiFePO 4 , as PPy/PEG network improves the electron conductivity. It presents specific discharge capacity of 153 mAh/g at C/5 rate.

  15. Residual salt separation from simulated spent nuclear fuel reduced in a LiCl-Li2O salt

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Hong, Sun-Seok; Seo, Chung-Seok

    2006-01-01

    The electrochemical reduction of spent nuclear fuel in LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel Atomic Energy Society of Japan, Tokyo, Japan, All rights reservedopyriprocess. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of the LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below the temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950degC were measured as follows: LiCl-8 wt% Li 2 O>LiCl>LiCl-8 wt% SrCl 2 >SrCl 2 . (author)

  16. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-01

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li 2 O > LiCl > LiCl-8 wt% SrCl 2 > SrCl 2

  17. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    Science.gov (United States)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  18. Configuring PSx tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte

    Directory of Open Access Journals (Sweden)

    Wo Dum Jung

    2018-04-01

    Full Text Available We demonstrate that the Li-ion conductivity can be improved by adding a certain amount of Li (x = 0.25–0.5 as a charge carrier to the composition of glass-ceramic Li7+xP3S11. Structural analysis clarified that the structural changes caused by the ratio of ortho-thiophosphate tetrahedra PS43− and pyro-thiophosphate ditetrahedra P2S74− affect the Li-ion conductivity. The ratio of PS43− and P2S74− varies depending on x and the highest Li-ion conductivity (2.5 × 10−3 S cm−1 at x = 0.25. All-solid-state LiNi0.8Co0.15Al0.05O2/Li7.25P3S11/In-metal cell exhibits the discharge capacity of 106.2 mAh g−1. This ion conduction enhancement from excess Li is expected to contribute to the future design of sulfide-type electrolytes.

  19. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    Science.gov (United States)

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  20. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-01-01

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al 2 O 3 substrates indicated polycrystalline films with a LiAlO 2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  1. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  2. Ionic debye screening in dense liquid plasmas observed for Li+p, d reactions with liquid Li target

    International Nuclear Information System (INIS)

    Kasagi, J.; Yonemura, H.; Toriyabe, Y.; Nakagawa, A.; Sugawara, T.; Wang Tieshan

    2009-01-01

    Thick target yields of α particles emitted in the 6 Li(d,α) 4 He and 7 Li(p,α) 4 He reactions were measured for Li target in the solid and liquid phase. Observed reaction rates for the liquid Li are always larger than those for the solid. This suggests that the stopping power of hydrogen ion in the liquid Li metal might be smaller than in the solid. Using the empirically obtained stopping power for the liquid Li, we have deduced the screening potentials of the Li+p and Li+d reactions in both phases. The deduced screening potential for the liquid Li is about 500 eV larger than for the solid. This difference is attributed to the effect of liquefied Li + ions. It is concluded that the ionic screening is much stronger than the electronic screening in a low-temperature dense plasmas. (authors)

  3. Ionic Debye Screening in Dense Liquid Plasmas Observed for Li+p,d Reactions with Liquid Li Target

    Institute of Scientific and Technical Information of China (English)

    J.Kasagi; H.Yonemura; Y.Toriyabe; A.Nakagawa; T.Sugawara; WANG Tie-shan

    2009-01-01

    Thick target yields of a particles emitted in the ~6Li(d,a)~4 He and ~7Li(p,a)~4 He reactions were measured for Li target in the solid and liquid phase.Observed reaction rates for the liquid Li are always larger than those for the solid.This suggests that the stopping power of hydrogen ion in the liquid Li metal might be smaller than in the solid.Using the empirically obtained stopping power for the liquid Li,we have deduced the screening potentials of the Li+p and Li+d reactions in both phases.The deduced screening potential for the liquid Li is about 500 eV larger than for the solid.This difference is attributed to the effect of liquefied Li~+ ions.It is concluded that the ionic screening is much stronger than the electronic screening in a low-temperature dense plasmas.

  4. Investigation of the $^{8}$Li($^{2}$H,p)$^{9}$Li Reaction at REX-ISOLDE

    CERN Multimedia

    2002-01-01

    We propose to investigate the $^{8}$Li($^{2}$H,p )$^{9}$Li reaction at REX-ISOLDE. The main aim is to test a recently found discrepancy in extracted spectroscopic factors for this reaction. As a byproduct we will obtain improved data relevant for predictions of the $^{8}$Li(n,$\\gamma$)$^{9}$Li rate in inhomogeneous nucleosynthesis. For the full experiment including beam tuning and background measurements we ask for 13 shifts.

  5. Constraint Differentiation

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca

    2010-01-01

    We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...... results show that constraint differentiation substantially reduces search and considerably improves the performance of OFMC, enabling its application to a wider class of problems....

  6. Phase transition and piezoelectric properties of K0.48Na0.52NbO3-LiTa0.5Nb0.5O3-NaNbO3 lead-free ceramics

    International Nuclear Information System (INIS)

    Gao Feng; Liu Liangliang; Xu Bei; Cao Xiao; Deng Zhenqi; Tian Changsheng

    2011-01-01

    Highlights: → The evolution of the crystal structure for the new phase K 3 Li 2 Nb 5 O 15 was described. → The dielectric relaxor behavior would be strengthened by increasing plate-like NN. → k p and d 33 decrease with increasing amount of plate-like NN. → 0.01-0.03 mol of plate-like NN is a proper content for texturing ceramics by RTGG. - Abstract: Plate-like NaNbO 3 (NN) particles were used as the raw material to fabricate (1 - x)[0.93 K 0.48 Na 0.52 Nb O 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 ]-xNaNbO 3 lead-free piezoelectric ceramics using a conventional ceramic process. The effects of NN on the crystal structure and piezoelectric properties of the ceramics were investigated. The results of X-ray diffraction suggest that the perovskite phase coexists with the K 3 Li 2 Nb 5 O 15 phase, and the tilting of the oxygen octahedron is probably responsible for the evolution of the tungsten-bronze-typed K 3 Li 2 Nb 5 O 15 phase. The Curie temperature (T C ) is shifted to lower temperature with increasing NN content. (1 - x)[0.93 K 0.48 Na 0.52 NbO 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 ]-xNaNbO 3 ceramics show obvious dielectric relaxor characteristics for x > 0.03, and the relaxor behavior of ceramics is strengthened by increasing NN content. Both the electromechanical coupling factor (k p ) and the piezoelectric constant (d 33 ) decrease with increasing amounts of NN. 0.01-0.03 mol of plate-like NaNbO 3 in 0.93 K 0.48 Na 0.52 NbO 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 gives the optimum content for preparing textured ceramics by the RTGG method.

  7. Relaxation-Induced Memory Effect of LiFePO4 Electrodes in Li-Ion Batteries.

    Science.gov (United States)

    Jia, Jianfeng; Tan, Chuhao; Liu, Mengchuang; Li, De; Chen, Yong

    2017-07-26

    In Li-ion batteries, memory effect has been found in several commercial two-phase materials as a voltage bump and a step in the (dis)charging plateau, which delays the two-phase transition and influences the estimation of the state of charge. Although memory effect has been first discovered in olivine LiFePO 4 , the origination and dependence are still not clear and are critical for regulating the memory effect of LiFePO 4 . Herein, LiFePO 4 has been synthesized by a home-built spray drying instrument, of which the memory effect has been investigated in Li-ion batteries. For as-synthesized LiFePO 4 , the memory effect is significantly dependent on the relaxation time after phase transition. Besides, the voltage bump of memory effect is actually a delayed voltage overshooting that is overlaid at the edge of stepped (dis)charging plateau. Furthermore, we studied the kinetics of LiFePO 4 electrode with electrochemical impedance spectroscopy (EIS), which shows that the memory effect is related to the electrochemical kinetics. Thereby, the underlying mechanism has been revealed in memory effect, which would guide us to optimize two-phase electrode materials and improve Li-ion battery management systems.

  8. Preparation and Characterisation of LiFePO4/CNT Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Rushanah Mohamed

    2011-01-01

    Full Text Available Li-ion battery cathode materials were synthesised via a mechanical activation and thermal treatment process and systematically studied. LiFePO4/CNT composite cathode materials were successfully prepared from LiFePO4 material. The synthesis technique involved growth of carbon nanotubes onto the LiFePO4 using a novel spray pyrolysis-modified CVD technique. The technique yielded LiFePO4/CNT composite cathode material displaying good electrochemical activity. The composite cathode exhibited excellent electrochemical performances with 163 mAh/g discharge capacity with 94% cycle efficiency at a 0.1 C discharge rate in the first cycle, with a capacity fade of approximately 10% after 30 cycles. The results indicate that carbon nanotube addition can enable LiFePO4 to display a higher discharge capacity at a fast rate with high efficiency. The research is of potential interest for the application of carbon nanotubes as a new conducting additive in cathode preparation and for the development of high-power Li-ion batteries for hybrid electric vehicles.

  9. Solid state opto-impedance of LiNiVO4 and LiMn2O4

    International Nuclear Information System (INIS)

    Kalyani, P; Sivasubramanian, S; Prabhu, S Naveen; Ragavendran, K; Kalaiselvi, N; Ranganathan, N G; Madhu, S; SundaraRaj, A; Manoharan, S P; Jagannathan, R

    2005-01-01

    Spinel type LiMn 2 O 4 and inverse spinel LiNiVO 4 systems serve as standard cathode materials or potential cathode systems for application in high energy density lithium-ion batteries. Upon photo-excitation using UV radiation of energy ∼5 eV, the LiNiVO 4 system shows significant modification in the solid state impedance pattern while the LiMn 2 O 4 system does not. This study has revealed a significant difference in the opto-impedance pattern for LiNiVO 4 with respect to LiMn 2 O 4 , which may be due to the different electronic processes involved. An attempt has been made to study this behaviour from the solid-state viewpoint

  10. Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.).

    Science.gov (United States)

    Olsen, K M; Sutherland, B L; Small, L L

    2007-10-01

    White clover (Trifolium repens) is naturally polymorphic for cyanogenesis (hydrogen cyanide release following tissue damage). The ecological factors favouring cyanogenic and acyanogenic plants have been examined in numerous studies over the last half century, making this one of the best-documented examples of an adaptive polymorphism in plants. White clover cyanogenesis is controlled by two, independently segregating Mendelian genes: Ac/ac controls the presence/absence of cyanogenic glucosides; and Li/li controls the presence/absence of their hydrolysing enzyme, linamarase. In this study, we examine the molecular evolution and population genetics of Li as it relates to the cyanogenesis polymorphism. We report here that Li exists as a single-copy gene in plants possessing linamarase activity, and that the absence of enzyme activity in li/li plants is correlated with the absence of much or all of the gene from the white clover genome. Consistent with this finding, we confirm by reverse transcription-polymerase chain reaction that Li gene expression is absent in plants lacking enzyme activity. In a molecular population genetic analysis of Li and three unlinked genes using a worldwide sample of clover plants, we find an absence of nucleotide variation and statistically significant deviations from neutrality at Li; these findings are consistent with recent positive directional selection at this cyanogenesis locus.

  11. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    Science.gov (United States)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  12. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries

    Directory of Open Access Journals (Sweden)

    Meng Qin

    2017-06-01

    Full Text Available This work reports on the synthesis of rare earth-doped Li4Ti5O12 nanosheets with high electrochemical performance as anode material both in Li half and Li4Ti5O12/LiFePO4 full cell batteries. Through the combination of decreasing the particle size and doping by rare earth atoms (Ce and La, Ce and La doped Li4Ti5O12 nanosheets show the excellent electrochemical performance in terms of high specific capacity, good cycling stability and excellent rate performance in half cells. Notably, the Ce-doped Li4Ti5O12 shows good electrochemical performance as anode in a full cell which LiFePO4 was used as cathode. The superior electrochemical performance can be attributed to doping as well as the nanosized particle, which facilitates transportation of the lithium ion and electron transportation. This research shows that the rare earth doped Li4Ti5O12 nanosheets can be suitable as a high rate performance anode material in lithium-ion batteries.

  13. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries

    Science.gov (United States)

    Qin, Meng; Li, Yueming; Lv, Xiao-Jun

    2017-01-01

    This work reports on the synthesis of rare earth-doped Li4Ti5O12 nanosheets with high electrochemical performance as anode material both in Li half and Li4Ti5O12/LiFePO4 full cell batteries. Through the combination of decreasing the particle size and doping by rare earth atoms (Ce and La), Ce and La doped Li4Ti5O12 nanosheets show the excellent electrochemical performance in terms of high specific capacity, good cycling stability and excellent rate performance in half cells. Notably, the Ce-doped Li4Ti5O12 shows good electrochemical performance as anode in a full cell which LiFePO4 was used as cathode. The superior electrochemical performance can be attributed to doping as well as the nanosized particle, which facilitates transportation of the lithium ion and electron transportation. This research shows that the rare earth doped Li4Ti5O12 nanosheets can be suitable as a high rate performance anode material in lithium-ion batteries. PMID:28632167

  14. Constraint-based scheduling applying constraint programming to scheduling problems

    CERN Document Server

    Baptiste, Philippe; Nuijten, Wim

    2001-01-01

    Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...

  15. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4)...

  16. Electrochemical studies on electrospun Li(Li1/3Ti5/3)O4 grains as an anode for Li-ion batteries

    International Nuclear Information System (INIS)

    Wu Yongzhi; Reddy, M.V.; Chowdari, B.V.R.; Ramakrishna, S.

    2012-01-01

    Highlights: ► We report (Li(Li 1/3 Ti 5/3 )O 4 ) (LTO) obtained via electrospinning and followed by heat treatment. ► Electrochemical studies on nano-LTO showed a reversible capacity of 165(±3) mAh g −1 and 78(±3) mAh g −1 at a current rate of 0.2 C and 10 C, respectively. ► Electrode kinetics studies of LTO were carried out the end of 380 cycle using GITT and EIS techniques. - Abstract: Li(Li 1/3 Ti 5/3 )O 4 or (Li 4 Ti 5 O 12 ) (LTO) grains are prepared via electrospinning a solution containing lithium acetate, titanium tetra(IV)-isopropoxide, polyvinyl acetate and acetic acid in N,N-dimethyl-formamide, followed by a subsequent sintering process. The structures and morphology were characterized by X-ray diffraction, scanning and transmission microscopy. Coin-type cells were assembled to test the electrochemical performance was evaluated using galvanostatic cycling at room temperature, in the cycling range, 1.0–2.8 V. The Li-cycling results showed characteristic discharge-charge plateaus at 1.55 and 1.8 V vs. Li/Li + , respectively. Electrospun LTO showed a reversible capacity of 165(±3) mAh g −1 at the end of 10th cycle at a current rate of 0.2 C. The later studies on rate capacities and cycling performance of LTO grains demonstrate good rate performance and long term cycling stability. Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) studied were carried out at end of 381st and 382nd cycle to understand the electrode kinetics.

  17. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Nooksack

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data on a...

  18. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Entiat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the...

  19. Enhanced Li-Ion Battery

    Directory of Open Access Journals (Sweden)

    Natasha Ross

    2015-01-01

    Full Text Available Au with Pd nanoparticles were synthesized and coated onto the spinel LiMn2O4 via a coprecipitation calcination method with the objective to improve the microstructure, conductivity, and electrochemical activities of pristine LiMn2O4. The novel LiPdAuxMn2-xO4 composite cathode had high phase purity, well crystallized particles, and more regular morphological structures with narrow size distributions. At enlarged cycling potential ranges the LiPdAuxMn2-xO4 sample delivered 90 mAh g−1 discharge capacity compared to LiMn2O4 (45 mAh g−1. It was concluded that even a small amount of the Pd and Au enhanced both the lithium diffusivity and electrochemical conductivity of the host sample due to the beneficial properties of their synergy.

  20. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  1. Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells.

    Science.gov (United States)

    Liu, Qi; He, Hao; Li, Zhe-Fei; Liu, Yadong; Ren, Yang; Lu, Wenquan; Lu, Jun; Stach, Eric A; Xie, Jian

    2014-03-12

    We have performed operando synchrotron high-energy X-ray diffraction (XRD) to obtain nonintrusive, real-time monitoring of the dynamic chemical and structural changes in commercial 18650 LiFePO4/C cells under realistic cycling conditions. The results indicate a nonequilibrium lithium insertion and extraction in the LiFePO4 cathode, with neither the LiFePO4 phase nor the FePO4 phase maintaining a static composition during lithium insertion/extraction. On the basis of our observations, we propose that the LiFePO4 cathode simultaneously experiences both a two-phase reaction mechanism and a dual-phase solid-solution reaction mechanism over the entire range of the flat voltage plateau, with this dual-phase solid-solution behavior being strongly dependent on charge/discharge rates. The proposed dual-phase solid-solution mechanism may explain the remarkable rate capability of LiFePO4 in commercial cells.

  2. Impact of a cost constraint on nutritionally adequate food choices for French women: an analysis by linear programming.

    Science.gov (United States)

    Darmon, Nicole; Ferguson, Elaine L; Briend, André

    2006-01-01

    To predict, for French women, the impact of a cost constraint on the food choices required to provide a nutritionally adequate diet. Isocaloric daily diets fulfilling both palatability and nutritional constraints were modeled in linear programming, using different cost constraint levels. For each modeled diet, total departure from an observed French population's average food group pattern ("mean observed diet") was minimized. To achieve the nutritional recommendations without a cost constraint, the modeled diet provided more energy from fish, fresh fruits and green vegetables and less energy from animal fats and cheese than the "mean observed diet." Introducing and strengthening a cost constraint decreased the energy provided by meat, fresh vegetables, fresh fruits, vegetable fat, and yogurts and increased the energy from processed meat, eggs, offal, and milk. For the lowest cost diet (ie, 3.18 euros/d), marked changes from the "mean observed diet" were required, including a marked reduction in the amount of energy from fresh fruits (-85%) and green vegetables (-70%), and an increase in the amount of energy from nuts, dried fruits, roots, legumes, and fruit juices. Nutrition education for low-income French women must emphasize these affordable food choices.

  3. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    Science.gov (United States)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  4. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li{sub 2}O Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-15

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li{sub 2}O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U{sub 3}O{sub 8} powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li{sub 2}O, Y{sub 2}O{sub 3} and SrCl{sub 2} were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} was achieved below temperatures which could make the uranium metal oxidation by Li{sub 2}O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li{sub 2}O > LiCl > LiCl-8 wt% SrCl{sub 2} > SrCl{sub 2}.

  5. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  6. Design and operation of thermal-convection loops for corrosion measurements in LiF--LiCl--LiBr

    International Nuclear Information System (INIS)

    Keiser, J.R.; DeVan, J.H.

    1979-01-01

    Using a most sophisticated design of a thermal-convection loop to study the corrosion behavior of type 316 stainless steel and the salt mixture LiF--LiCl--LiBr is reported. The corrosion rate is being determined as a function of time and temperature through weight change measurements. The maximum corrosion rate measured is about 20 μm/year on removable corrosion specimens. Controlled potential voltammetry has been found to be satisfactory and is being used to monitor the oxidation potential of the salt. Measurements demonstrate the effect on the oxidation potential of impurities introduced during specimen insertion, and techniques should show the effect of a lithium addition on the oxidation potential

  7. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Scintillation properties of LiF–SrF{sub 2} and LiF–CaF{sub 2} eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Fukuda, Kentaro [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira [Quantum Science and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-12-15

    Dopant free eutectic scintillators {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF{sub 2} was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF{sub 2} layers. When the samples were irradiated with {sup 252}Cf neutrons, {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF{sub 2} and LiF–SrF{sub 2} eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF{sub 2} sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF{sub 2} and LiF–SrF{sub 2} were 250 and 90 ns, respectively.

  9. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries

    Science.gov (United States)

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.

    2013-01-01

    Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817

  10. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material

    International Nuclear Information System (INIS)

    Wang, Dan; Huang, Yan; Huo, Zhenqing; Chen, Li

    2013-01-01

    Highlights: • Layered Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 (2x = 0, 0.01, 0.02, 0.05) were synthetized. • Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 exhibit enhanced electrochemical properties. • The improved performance is attributed to enhanced structure stability. -- Abstract: Mg-doped Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 as a Li-rich cathode material of lithium-ion batteries were prepared by co-precipitation method and ball-milling treatment using Mg(OH) 2 as a dopant. Scanning electron microscopy (SEM), ex situ X-ray powder diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvantatic charge/discharge were used to investigate the effect of Mg doping on structure and electrochemical performance. Compared with the bare material, Mg-doped materials exhibit better cycle stabilities and superior rate capabilities. Li[Li 0.2 Ni 0.195 Mn 0.595 Mg 0.01 ]O 2 displays a high reversible capacity of 226.5 mAh g −1 after 60 cycles at 0.1 C. The excellent cycle performance can be attributed to the improvement in structure stability, which is verified by XRD tests before and after 60 cycles. EIS results show that Mg doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance

  11. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes.

    Science.gov (United States)

    Chen, Lin; Dilena, Enrico; Paolella, Andrea; Bertoni, Giovanni; Ansaldo, Alberto; Colombo, Massimo; Marras, Sergio; Scrosati, Bruno; Manna, Liberato; Monaco, Simone

    2016-02-17

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g(-1)) and working voltage (4.1 V vs Li(+)/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g(-1) at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g(-1). The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times.

  12. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S

    2016-04-20

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  13. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S; Anjum, Dalaver H.; Ullah, Shafiq; Ahmed, Bilal; Habib, Amir; Karim, Altaf; Hasanain, Syed Khurshid

    2016-01-01

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  14. DFT+U study of polaronic conduction in Li2O2 and Li2CO3

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Myrdal, J.S.G.; Christensen, Rune

    2013-01-01

    The main discharge products formed at the cathode of nonaqueous Li-air batteries are known to be Li2O2 and residual Li2CO3. Recent experiments indicate that the charge transport through these materials is the main limiting factor for the battery performance. It has been also shown...... that the performance of the battery decreases drastically when the amount of Li2CO3 at the cathode increases with respect to Li2O2. In this work, we study the formation and transport of hole and electron polarons in Li2O2 and Li2CO3 using density functional theory (DFT) within the PBE+U approximation. For both...... materials, we find that the formation of polarons (both hole and electron) is stabilized with respect to the delocalized states for all physically relevant values of U. We find a much higher mobility for hole polarons than for the electron polarons, and we show that the poor charge transport in Li2CO3...

  15. Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions

    International Nuclear Information System (INIS)

    Liu, X.H.; Yi, X.Q.; Jiang, Y.

    2011-01-01

    Mass transfer performance of two commonly used liquid desiccants, LiBr aqueous solution and LiCl aqueous solution, is compared in this paper on the basis of the same solution temperature and surface vapor pressure. According to the analysis of the analytical solutions of heat and mass transfer processes, the key performance influencing factors are heat capacity ratio of air to desiccant m * and mass transfer unit NTU m . The heat capacities of the two liquid desiccants are about the same at same volumetric flow rate, and LiBr solution has higher density and smaller specific heat capacity. The variance of mass transfer unit with different operating conditions and liquid desiccants are derived based on the experimental results. In the condition of the same desiccant mass flow rate, the dehumidification performance of LiCl solution is better, and the regeneration performance of LiBr solution is a little better or almost the same as that of LiCl solution. In the condition of the same desiccant volumetric flow rate, the dehumidification performance of LiCl solution is a little better or about the same compared with LiBr solution, and the regeneration performance of LiBr solution is better. The COPs of the liquid desiccant systems using these two desiccants are similar; while LiCl solution costs 18% lower than LiBr solution at current Chinese price.

  16. [100]-Oriented LiFePO4 Nanoflakes toward High Rate Li-Ion Battery Cathode.

    Science.gov (United States)

    Li, Zhaojin; Peng, Zhenzhen; Zhang, Hui; Hu, Tao; Hu, Minmin; Zhu, Kongjun; Wang, Xiaohui

    2016-01-13

    [100] is believed to be a tough diffusion direction for Li(+) in LiFePO4, leading to the belief that the rate performance of [100]-oriented LiFePO4 is poor. Here we report the fabrication of 12 nm-thick [100]-oriented LiFePO4 nanoflakes by a simple one-pot solvothermal method. The nanoflakes exhibit unexpectedly excellent electrochemical performance, in stark contrast to what was previously believed. Such an exceptional result is attributed to a decreased thermodynamic transformation barrier height (Δμb) associated with increased active population.

  17. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  18. Direct Rehydrogenation of LiBH4 from H-Deficient Li2B12H12−x

    Directory of Open Access Journals (Sweden)

    Yigang Yan

    2018-03-01

    Full Text Available Li2B12H12 is commonly considered as a boron sink hindering the reversible hydrogen sorption of LiBH4. Recently, in the dehydrogenation process of LiBH4 an amorphous H-deficient Li2B12H12−x phase was observed. In the present study, we investigate the rehydrogenation properties of Li2B12H12−x to form LiBH4. With addition of nanostructured cobalt boride in a 1:1 mass ratio, the rehydrogenation properties of Li2B12H12−x are improved, where LiBH4 forms under milder conditions (e.g., 400 °C, 100 bar H2 with a yield of 68%. The active catalytic species in the reversible sorption reaction is suggested to be nonmetallic CoxB (x = 1 based on 11B MAS NMR experiments and its role has been discussed.

  19. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  20. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    GharibDoust, Seyed Hosein Payandeh; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4...... with increasing lattice parameter, that is, increasing size of the halide ion in the structure. Thus, we conclude that the sizes of both windows are important for the lithium ion conduction in LiLa(BH4)3X compounds. The lithium ion conductivity is measured over one to three heating cycles and with different...

  1. Formation and reduction behaviors of zirconium oxide compounds in LiCl–Li{sub 2}O melt at 923 K

    Energy Technology Data Exchange (ETDEWEB)

    Sakamura, Yoshiharu, E-mail: sakamura@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwadokita, Komae-shi, Tokyo 201-8511 (Japan); Iizuka, Masatoshi [Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwadokita, Komae-shi, Tokyo 201-8511 (Japan); Kitawaki, Shinichi; Nakayoshi, Akira; Kofuji, Hirohide [International Research Institute for Nuclear Decommissioning (IRID), 2-23-1 Nishi-shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Japan Atomic Energy Agency (JAEA), 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2015-11-15

    The reduction behaviors of ZrO{sub 2}, Li{sub 2}ZrO{sub 3} and (U,Pu,Zr)O{sub 2} in a LiCl–Li{sub 2}O salt bath at 923 K were investigated. This study was conducted as part of a feasibility study on the pyrochemical treatment of damaged fuel debris generated by severe accidents at light water reactors. It was demonstrated in electrolytic reduction tests that the uranium in synthetic corium specimens of (U,Pu,Zr)O{sub 2} with various ZrO{sub 2} contents could be reduced to the metallic form and that part of the zirconium was converted to Li{sub 2}ZrO{sub 3}. Zirconium metal and Li{sub 2}ZrO{sub 3} were obtained by the reduction of ZrO{sub 2}. The reduction of Li{sub 2}ZrO{sub 3} did not proceed even in LiCl containing no Li{sub 2}O. Moreover, the stable chemical forms of the ZrO{sub 2}–Li{sub 2}O complex oxide were investigated as a function of the Li{sub 2}O concentration in LiCl. ZrO{sub 2} was converted to Li{sub 2}ZrO{sub 3} at a Li{sub 2}O concentration of 0.018 wt%. As the Li{sub 2}O concentration was increased, Li{sub 2}ZrO{sub 3} was converted to Li{sub 6}Zr{sub 2}O{sub 7} and then to Li{sub 8}ZrO{sub 6}. It is suggested that the removal of Li{sub 2}ZrO{sub 3} from the reduction product is a key point in the pyrochemical treatment of corium. - Highlights: • The uranium in (U,Pu,Zr)O{sub 2} could be reduced to the metallic form in LiCl–Li{sub 2}O. • Part of the zirconium was converted to Li{sub 2}ZrO{sub 3} during electrolytic reduction. • Li{sub 6}Zr{sub 2}O{sub 7} and Li{sub 8}ZrO{sub 6} formed at high Li{sub 2}O concentrations in LiCl.

  2. Measurements of the fundamental thermodynamic parameters of Li/BCX and Li/SOCl2 cells

    Science.gov (United States)

    Kalu, E. E.; White, R. E.; Darcy, E. C.

    1992-01-01

    Two experimental techniques - equilibrium or reversible cell discharge and measurement of open circuit potential as a function of temperature - are used to determine the thermodynamic data needed to estimate the heat generation characteristics of Li/BCX and Li/SOCl2 cells. The results obtained showed that the reversible cell potential, the temperature dependence of the reversible cell potential, and the thermoneutral potential of the BCX cell were 3.74 V, -0.857 +/- 0.198 mV/K, and 3.994 +/- 0.0603 V, respectively. The respective values obtained for the Li/SOCl2 cell were 3.67 V, -0.776 +/- 0.255 mV/K, and 3.893 +/- 0.0776 V. The difference between the thermoneutral potential of Li/BCX and Li/SCl2 cells is attributable to the difference in their electroactive components.

  3. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  4. Foot muscles strengthener

    Directory of Open Access Journals (Sweden)

    Boris T. Glavač

    2012-04-01

    Full Text Available Previous experience in the correction of flat feet consisted of the use of insoles for shoes and exercises with toys, balls, rollers, inclined planes, etc. A device for strengthening foot muscles is designed for the correction of flat feet in children and, as its name suggests, for strengthening foot muscles in adults. The device is made of wood and metal, with a mechanism and technical solutions, enabling the implementation of specific exercises to activate muscles responsible for the formation of the foot arch. It is suitable for home use with controlled load quantities since it has calibrated springs. The device is patented with the Intellectual Property Office, Republic of Serbia, as a petty patent.

  5. 7Li(d,p)8Li transfer reaction in the NCSM/RGM approach

    Science.gov (United States)

    Raimondi, F.; Hupin, G.; Navrátil, P.; Quaglioni, S.

    2018-03-01

    Recently, we applied an ab initio method, the no-core shell model combined with the resonating group method, to the transfer reactions with light p-shell nuclei as targets and deuteron as the projectile. In particular, we studied the elastic scattering of deuterium on 7Li and the 7Li(d,p)8Li transfer reaction starting from a realistic two-nucleon interaction. In this contribution, we review of our main results on the 7Li(d,p)8Li transfer reaction, and we extend the study of the relevant reaction channels, by showing the dominant resonant phase shifts of the scattering matrix. We assess also the impact of the polarization effects of the deuteron below the breakup on the positive-parity resonant states in the reaction. For this purpose, we perform an analysis of the convergence trend of the phase and eigenphase shifts, with respect to the number of deuteron pseudostates included in the model space.

  6. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries.

    Science.gov (United States)

    Zhao, Yu; Peng, Lele; Liu, Borui; Yu, Guihua

    2014-05-14

    The lithiation/delithiation in LiFePO4 is highly anisotropic with lithium-ion diffusion being mainly confined to channels along the b-axis. Controlling the orientation of LiFePO4 crystals therefore plays an important role for efficient mass transport within this material. We report here the preparation of single crystalline LiFePO4 nanosheets with a large percentage of highly oriented {010} facets, which provide the highest pore density for lithium-ion insertion/extraction. The LiFePO4 nanosheets show a high specific capacity at low charge/discharge rates and retain significant capacities at high C-rates, which may benefit the development of lithium batteries with both favorable energy and power density.

  7. Reoxidation of uranium metal immersed in a Li{sub 2}O-LiCl molten salt after electrolytic reduction of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Jeong [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Sung-Jai [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-03-15

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO{sub 2}) in a Li{sub 2}O–LiCl salt can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li{sub 2}O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li{sub 2}O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal. - Highlights: • Uranium (U) metal can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. • The degree of reoxidation increases with the Li{sub 2}O concentration in LiCl. • The presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  8. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  9. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  10. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  11. Effect of [Li]/[Nb] ratio on composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals

    Science.gov (United States)

    Liu, Chunrui; Dai, Li; Wang, Luping; Shao, Yu; Yan, Zhehua; Xu, Yuheng

    2018-04-01

    Zr:Yb:Tm:LiNbO3 crystals with various [Li]/[Nb] ratios (0.946, 1.05, 1.20 and 1.38) were grown by the Czochralski technique. Distribution coefficients of Zr4+, Yb3+ and Tm3+ ions were analyzed by the inductively coupled plasma-atomic emission spectrometer (ICP-AES). The influence of [Li]/[Nb] ratio on the composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals was investigated by X-ray diffraction and IR transmission spectrum. The results show that as the [Li]/[Nb] ratio increases in the melt, the distribution coefficients of Yb3+ and Tm3+ ions both increase while that of Zr4+ ion deceases. When the [Li]/[Nb] ratio increases to 1.20 in the melt, Zr:Yb:Tm:LiNbO3 crystal is nearly stoichiometric. In addition, when the [Li]/[Nb] ratio reaches up to 1.38, NbLi4+ are completely replaced and Li+ starts to impel the Zr4+, Yb3+ and Tm3+ into the normal Li sites.

  12. Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy

    Science.gov (United States)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1990-01-01

    The structure and properties of the strengthening phases formed during aging in an Al-Cu-Li-Ag-Mg alloy (Weldalite 049) were elulcidated, by following the development of the microstructure by means of TEM. The results of observations showed that the Weldalite 049 alloy has a series of unusual and technologically useful combinations of mechanical properties in different aging conditions, such as natural aging without prior cold work to produce high strengths, a reversion temper of lower yield strength and unusually high ductility, a room temperature reaging of the reversion temper eventually leading to the original T4 hardness, and ultrahigh-strength T6 properties.

  13. Oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Asbroeck, P. van.

    1976-10-01

    The publication gives the available data on the DTO2 dispersion-strengthened ferritic alloy developed at C.E.N./S.C.K. Mol, Belgium. DTO2 is a Fe-Cr-Mo ferritic alloy, strengthened by addition of titanium oxide and of titanium leading to the formation of Chi phase. It was developed for use as canning material for fast breeder reactors. (author)

  14. Nuclear charge radius of 11Li

    International Nuclear Information System (INIS)

    Sanchez, Rodolfo; Noertershaeuser, Wilfried; Dax, Andreas; Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas; Wojtaszek, Agnieszka; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan Zongchao; Zimmermann, Claus; Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D.

    2006-01-01

    We have determined the nuclear charge radius of 11 Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the 7 Li- 11 Li isotope shift (IS) was measured in the 2s → 3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10 -5 . The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from 6 Li to 9 Li, and then increase with 11 Li about 11% larger than 9 Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of 11 Li; thus, the results are compared with a number of nuclear structure models.

  15. Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics

    Science.gov (United States)

    Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian

    2018-05-01

    Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.

  16. Simplified PCR protocols for INNO-LiPA HBV Genotyping and INNO-LiPA HBV PreCore assays

    NARCIS (Netherlands)

    Qutub, Mohammed O.; Germer, Jeffrey J.; Rebers, Sjoerd P. H.; Mandrekar, Jayawant N.; Beld, Marcel G. H. M.; Yao, Joseph D. C.

    2006-01-01

    INNO-LiPA HBV Genotyping (LiPA HBV GT) and INNO-LiPA HBV PreCore (LiPA HBV PC) are commercially available assays for hepatitis B virus (HBV) characterization. These assays are labor-intensive and may be prone to exogenous DNA contamination due to their use of nested PCR amplification procedures and

  17. Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel

    Science.gov (United States)

    Mullabaev, Albert; Tkacheva, Olga; Shishkin, Vladimir; Kovrov, Vadim; Zaikov, Yuriy; Sukhanov, Leonid; Mochalov, Yuriy

    2018-03-01

    Crystallization temperatures (liquidus and solidus) in the LiCl-Li2O and (LiCl-KCl)-Li2O systems with the KCl content of 10 and 20 mol.% were obtained with independent methods of thermal analysis using cooling curves, isothermal saturation, and differential scanning calorimetry. The linear sweep voltammetry was applied to control the time of the equilibrium establishment in the molten system after the Li2O addition, which depended on the composition of the base melt and the concentration of Li2O. The fragments of the binary LiCl-Li2O and quazi-binary [LiCl-KCl(10 mol.%)]-Li2O and [LiCl-KCl(20 mol.%)]-Li2O phase diagrams in the Li2O concentration range from 0 to 12 mol.% were obtained. The KCl presence in the LiCl-KCl-Li2O molten mixture in the amount of 10 and 20 mol.% reduces the liquidus temperature by 30 and 80°, respectively, but the region of the homogeneous molten state of the system is considerably narrowed, which complicates its practical application. The Li2O solubility in the molten LiCl, LiCl-KCl(10 mol.%) and LiCl-KCl(20 mol.%) decreases with increasing the KCl content and is equal to 11.5, 7.7 and 3.9 mol.% at 650°С, respectively. The LiCl-KCl melt with 10 mol.% KCl can be recommended for practical use as a medium for the SNF pyro-chemical reprocessing at temperature below 700 °C.

  18. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  19. Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.

    Science.gov (United States)

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

  20. Xiao Qing Li

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. Xiao Qing Li. Articles written in Pramana – Journal of Physics. Volume 78 Issue 3 March 2012 pp 439-449 Research Articles. Modulation instability of an intense laser beam in an unmagnetized electron–positron–ion plasma · San Qiu Liu Wei Tang Xiao Qing Li · More Details ...

  1. Ab initio study of isomerism of Li2AB2 molecules and Li2AB2+ ions with 16 valent electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; MakKi, M.L.

    2000-01-01

    In the framework of MP2(6-31*//HF/6-31G + ZPE(HF/6-31G*) and MP4SDTQ/6-31G*//MP2/6-31G* + ZPE(MP2/6-31G*) approximations ab initio calculations of surfaces of potential energy of molecules of lithium salts of Li 2 AB 2 (Li 2 BeO 2 , L 2 MgO 2 , Li 2 BeS 2 , Li 2 MgS 2 , Li 2 CN 2 , Li 2 SiN 2 , Li 2 CP 2 ) type and ions of Li 2 AB 2 + (Li 2 BO 2 + , Li 2 AlO 2 + , Li 2 BS 2 + , Li 2 AlS 2 + , Li 2 N 3 + , Li 2 PN 2 + , Li 2 P 3 + ) type with 16 valent electrons are done. For oxide and nitride systems global minimum corresponds to symmetric linear structure D ∞h and for their sulfide and phosphorus analogues curved plane or unplane (C 2 ) structure with bond angle φ(LBA)=90-110 Deg are preferable. Equilibrium geometric parameters, relative energies and energies of isomer decomposition, frequencies and IR-intensities of normal vibrations are determined [ru

  2. Synthesis of LiFePO4/Li2SiO3/reduced Graphene Oxide (rGO) Composite via Hydrothermal Method

    Science.gov (United States)

    Arifin, M.; Iskandar, F.; Aimon, A. H.; Munir, M. M.; Nuryadin, B. W.

    2016-08-01

    LiFePO4 is a type of cathode active material used for lithium ion batteries. It has a high electrochemical performance. However, it suffers from certain disadvantages such as a very low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to increase the conductivity of LiFePO4. We have investigated the addition of Li2SiO3 and reduced graphene oxide (rGO) to LiFePO4. The objective of this research was to synthesize LiFePO4/Li2SiO3/rGO via hydrothermal method. Fourier transform infrared spectroscopy (FTIR) measurement showed that the peaks corresponded to the vibration of LiFePO4/Li2SiO3. Further, X-ray diffraction (XRD) measurement confirmed a single phase of LiFePO4. Finally, scanning electron microscopy (SEM) images showed that rGO was distributed on the LiFePO4/Li2SiO3 structure.

  3. Synthesis of LiFePO4/Li2SiO3/reduced Graphene Oxide (rGO) Composite via Hydrothermal Method

    International Nuclear Information System (INIS)

    Arifin, M; Iskandar, F; Aimon, A H; Munir, M M; Nuryadin, B W

    2016-01-01

    LiFePO 4 is a type of cathode active material used for lithium ion batteries. It has a high electrochemical performance. However, it suffers from certain disadvantages such as a very low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to increase the conductivity of LiFePO4. We have investigated the addition of Li2SiO3 and reduced graphene oxide (rGO) to LiFePO4. The objective of this research was to synthesize LiFePO 4 /Li 2 SiO 3 /rGO via hydrothermal method. Fourier transform infrared spectroscopy (FTIR) measurement showed that the peaks corresponded to the vibration of LiFePO 4 /Li 2 SiO 3 . Further, X-ray diffraction (XRD) measurement confirmed a single phase of LiFePO4. Finally, scanning electron microscopy (SEM) images showed that rGO was distributed on the LiFePO 4 /Li 2 SiO 3 structure. (paper)

  4. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Qi [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Donghui [Unifrax Corporation, Niagara Falls, NY 14305 (United States); Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, Zhaofeng; Sun, Luyi [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Chen, Jianding [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  5. HIV communication capacity strengthening: a critical review.

    Science.gov (United States)

    Lettenmaier, Cheryl; Kraft, Joan Marie; Raisanen, Keris; Serlemitsos, Elizabeth

    2014-08-15

    HIV communication is most effective and sustainable when it is designed and implemented locally and tailored to the local context. This requires capacity strengthening at national, subnational, and community levels. Through a review of the published and selected "grey" literature, we examine HIV communication capacity strengthening: definitions, measurements, implementation, and effects. We found limited documentation of HIV communication capacity needs or systematic approaches to address them. Most HIV communication capacity strengthening to date has focused on building individual competencies to design and manage social and behavior change communication programs through training courses, often coupled with networking opportunities for participants, post-training mentoring, and technical assistance. A few of these efforts have been evaluated through pre- and post-training tests and qualitative interviews with participants and have shown potential for improvement in individual skills and knowledge. Health communication capacity assessment tools that measure individual and organizational competencies exist, but they have most often been used to identify capacity building needs, not for evaluating capacity strengthening efforts. A new definition of capacity strengthening, grown out of recent efforts to improve effectiveness of international health and development programs, focuses on improving organizational and societal systems that support performance and individual competencies. We propose a holistic model for HIV communication capacity strengthening and call for rigorous documentation and evaluation to determine and scale-up optimal capacity building interventions for strengthening social and behavior change communication for HIV prevention, care, and treatment in developing countries.

  6. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates

    Directory of Open Access Journals (Sweden)

    Dengsheng Lu

    2012-01-01

    Full Text Available Landsat Thematic mapper (TM image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonstrates the forest biomass estimation methods and uncertainty analysis. Results indicate that Landsat TM data can provide adequate biomass estimates for secondary succession but are not suitable for mature forest biomass estimates due to data saturation problems. LiDAR can overcome TM’s shortcoming providing better biomass estimation performance but has not been extensively applied in practice due to data availability constraints. The uncertainty analysis indicates that various sources affect the performance of forest biomass/carbon estimation. With that said, the clear dominate sources of uncertainty are the variation of input sample plot data and data saturation problem related to optical sensors. A possible solution to increasing the confidence in forest biomass estimates is to integrate the strengths of multisensor data.

  7. The interstellar lithium abundance and the 7Li/6Li ratio

    International Nuclear Information System (INIS)

    Ferlet, R.; Dennefeld, M.

    1985-01-01

    The λ 6708 doublet of interstellar Li I has been observed at high spectral resolution (3.km s -1 ) and very good signal to noise ratio (∼ 4000) towards δ Sco and ζ Oph. Using a profile fitting method, we derive for the first time outside the solar system a 7 Li/ 6 Li ratio of 38 for a diffuse cloud in front of ζ Oph. Even the lower limit of the error bar is incompatible with the ratio measured in meteorites and is not explained by recent models of galactic evolution. The existence of a local inhomogeneity is suggested. Finally, as for other alkalis, lithium is depleted on to dust grains in the diffuse interstellar medium [fr

  8. XPS study of Li/Nb ratio in LiNbO{sub 3} crystals. Effect of polarity and mechanical processing on LiNbO{sub 3} surface chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Skryleva, E.A., E-mail: easkryleva@gmail.com; Kubasov, I.V., E-mail: kubasov.ilya@gmail.com; Kiryukhantsev-Korneev, Ph.V., E-mail: kiruhancev-korneev@yandex.ru; Senatulin, B.R., E-mail: borisrs@yandex.ru; Zhukov, R.N., E-mail: rom_zhuk@mail.ru; Zakutailov, K.V., E-mail: zakkonst@gmail.com; Malinkovich, M.D., E-mail: malinkovich@yandex.ru; Parkhomenko, Yu.N., E-mail: parkh@rambler.ru

    2016-12-15

    Highlights: • XPS Li/Nb ratio measurement uncertainty in LNbO3 specimens was obtained. • The effect of polarization on surface chemistry was observed only on cleaves. • Li/Nb ratio on positive cleave surface is higher than on negative one. • The positive cleave surface adsorbs fluorine more efficiently than negative one. • Mechanical processing of crystals reduces surface Li/Nb. - Abstract: Different sections of congruent lithium niobate (CLN) crystals have been studied using X-ray photoelectron spectroscopy (XPS). We have developed a method for measuring the lithium-to-niobium atomic ratio Li/Nb from the ratio of the Li1s and Nb4s spectral integral intensities with an overall error of within 8 %. Polarity and mechanical processing affect the Li/Nb ratio on CLN crystal surfaces. The Li/Nb ratio is within the tolerance (0.946 ± 0.074) on the negative cleave surface Z, and there is excess lithium (Li/Nb = 1.25 ± 0.10) on the positive surface. The positive surfaces of the 128° Y cut plates after long exposure to air exhibit LiOH formation indications (obvious lithium excess, higher Li1s spectral binding energy and a wide additional peak in the O1s spectrum produced by nonstructural oxygen). XPS and glow discharge optical electron spectroscopy showed that mechanical processing of differently oriented crystals (X, Z and 128° Y) and different polarities dramatically reduces the Li/Nb ratio. In situ fluorine adsorption experiments revealed the following regularities: fluorine adsorption only occurred on crystal cleaves and was not observed for mechanically processed specimens. Positive cleave surfaces have substantially higher fluorine adsorption capacity compared to negative ones.

  9. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  10. Density functional theory study of lithium diffusion at the interface between olivine-type LiFePO4 and LiMnPO4

    Science.gov (United States)

    Shi, Jianjian; Wang, Zhiguo; Qing Fu, Yong

    2016-12-01

    Coating LiMnPO4 with a thin layer of LiFePO4 shows a better electrochemical performance than the pure LiFePO4 and LiMnPO4, thus it is critical to understand Li diffusion at their interfaces to improve the performance of electrode materials. Li diffusion at the (1 0 0)\\text{LiFeP{{\\text{O}}4}} //(1 0 0)\\text{LiMnP{{\\text{O}}4}} , (0 1 0)\\text{LiFeP{{\\text{O}}4}} //(0 1 0)\\text{LiMnP{{\\text{O}}4}} , and (0 0 1)\\text{LiFeP{{\\text{O}}4}} //(0 0 1)\\text{LiMnP{{\\text{O}}4}} interfaces between LiFePO4 and LiMnPO4 was investigated using density functional theory. The calculated diffusion energy barriers are 0.55 eV for Li to diffuse along the (0 0 1) interface, 0.44 and 0.49 eV for the Li diffusion inside the LiMnPO4 and along the (1 0 0) interface, respectively. When Li diffuses from the LiFePO4 to LiMnPO4 by passing through the (0 1 0) interfaces, the diffusion barriers are 0.45 and 0.60 eV for the Li diffusions in both sides. The diffusion barriers for Li to diffuse in LiMnPO4 near the interfaces decrease compared with those in the pure LiMnPO4. The calculated diffusion coefficient of Li along the (1 0 0) interface is in the range of 3.65  ×  10-11-5.28  ×  10-12 cm2 s-1, which is larger than that in the pure LiMnPO4 with a value of 7.5  ×  10-14 cm2 s-1. Therefore, the charging/discharging rate performance of the LiMnPO4 can be improved by surface coating with the LiFePO4.

  11. An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes.

    Science.gov (United States)

    Chen, Bingbing; Ju, Jiangwei; Ma, Jun; Zhang, Jianjun; Xiao, Ruijuan; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Density functional theory simulations and experimental studies were performed to investigate the interfacial properties, including lithium ion migration kinetics, between lithium metal anode and solid electrolyte Li 10 GeP 2 S 12 (LGPS). The LGPS[001] plane was chosen as the studied surface because the easiest Li + migration pathway is along this direction. The electronic structure of the surface states indicated that the electrochemical stability was reduced at both the PS 4 - and GeS 4 -teminated surfaces. For the interface cases, the equilibrium interfacial structures of lithium metal against the PS 4 -terminated LGPS[001] surface (Li/PS 4 -LGPS) and the GeS 4 -terminated LGPS[001] surface (Li/GeS 4 -LGPS) were revealed based on the structural relaxation and adhesion energy analysis. Solid electrolyte interphases were expected to be formed at both Li/PS 4 -LGPS and Li/GeS 4 -LGPS interfaces, resulting in an unstable state of interface and large interfacial resistance, which was verified by the EIS results of the Li/LGPS/Li cell. In addition, the simulations of the migration kinetics show that the energy barriers for Li + crossing the Li/GeS 4 -LGPS interface were relatively low compared with the Li/PS 4 -LGPS interface. This may contribute to the formation of Ge-rich phases at the Li/LGPS interface, which can tune the interfacial structures to improve the ionic conductivity for future all-solid-state batteries. This work will offer a thorough understanding of the Li/LGPS interface, including local structures, electronic states and Li + diffusion behaviors in all-solid-state batteries.

  12. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    Science.gov (United States)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  13. Relaxation-phenomena in LiAl/FeS-cells

    Science.gov (United States)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  14. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  15. Probing the failure mechanism of nanoscale LiFePO4 for Li-ion batteries

    International Nuclear Information System (INIS)

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-01-01

    LiFePO 4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO 4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO 4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO 4 cathode for high-energy and high-power rechargeable battery for electric transportation

  16. Graphical constraints: a graphical user interface for constraint problems

    OpenAIRE

    Vieira, Nelson Manuel Marques

    2015-01-01

    A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embrace...

  17. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  18. Application of the exergetic cost theory to the LiBr/H2O vapour absorption system

    International Nuclear Information System (INIS)

    Misra, R.D.; Sahoo, P.K.; Gupta, A.

    2002-01-01

    Optimization of thermal systems is generally based on thermodynamic analysis. However, the systems so optimized often are not viable due to economic constraints. The Theory of Exergetic Cost, a thermoeconomic optimization technique, combines the thermodynamic analysis with that of economic constraints to obtain an optimum configuration of a thermal system. In this paper, this technique is applied to optimize a LiBr/H 2 O vapour absorption refrigeration system run by pressurized hot water for air-conditioning applications. The mathematical and numerical techniques-based optimization of thermal systems is not always possible due to plant complexities. Hence, a simplified cost minimization methodology, based on 'Theory of Exergetic Cost', is applied to evaluate the economic costs of all the internal flows and products of the system under consideration. As shown in this paper, once these costs are determined, an approximately optimum design configuration can be obtained

  19. Evaluation of Li3N accumulation in a fused LiCl/Li salt matrix

    International Nuclear Information System (INIS)

    Eberle, C. S.

    1998-01-01

    Pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL), and ongoing research in this area includes the demonstration of this process on spent oxide fuel. In conjunction with this research a pilot scale of the preprocessing stage is being designed by ANL-W to demonstrate the in situ hot cell capability of the chemical reduction stage. An impurity evaluation was completed for a Li/LiCl salt matrix in the presence of spent LWR uranium oxide fuel. A simple analysis was performed in which the sources of impurities in the salt matrix were only from the cell atmosphere. Only reactions with the lithium were considered. The levels of impurities were shown to be highly sensitive system conditions. A predominance diagram for the Li-O-N system was constructed for the device, and the general oxidation, nitridation and combined reactions were calculated as a function of oxygen and nitrogen partial pressure. These calculations and hotcell atmosphere data were used to determine the total number and type of impurities expected in the salt matrix and the mass rate for the device was determined

  20. Protons scattering on Li isotopes at intermediate energies

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.

    2003-01-01

    The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form

  1. Composited reduced graphene oxide into LiFePO4/Li2SiO3 and its electrochemical impedance spectroscopy properties

    Science.gov (United States)

    Arifin, M.; Rus, Y. B.; Aimon, A. H.; Iskandar, F.; Winata, T.; Abdullah, M.; Khairurrijal, K.

    2017-03-01

    LiFePO4 is commonly used as cathode material for Li-ion batteries due to its stable operational voltage and high specific capacity. However, it suffers from certain disadvantages such as low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to analyse the effect of reduced graphene oxide (rGO) on the electrochemical properties of LiFePO4/Li2SiO3 composite. This composite was synthesized by a hydrothermal method. Fourier transform infrared spectroscopy measurement identified the O-P-O, Fe-O, P-O, and O-Si-O- bands in the LiFePO4/Li2SiO3 composite. X-ray diffraction measurement confirmed the formation of LiFePO4. Meanwhile, Raman spectroscopy confirmed the number of rGO layers. Further, scanning electron microscopy images showed that rGO was distributed around the LiFePO4/Li2SiO3 particles. Finally, the electrochemical impedance spectroscopy results showed that the addition of 1 wt% of rGO to the LiFePO4/Li2SiO3 composite reduced charge transfer resistance. It may be concluded that the addition of 1 wt% rGO to LiFePO4/Li2SiO3 composite can enhance its electrochemical performance as a cathode material.

  2. Improved Dehydrogenation Properties of 2LiNH2-MgH2 by Doping with Li3AlH6

    Directory of Open Access Journals (Sweden)

    Shujun Qiu

    2017-01-01

    Full Text Available Doping with additives in a Li-Mg-N-H system has been regarded as one of the most effective methods of improving hydrogen storage properties. In this paper, we prepared Li3AlH6 and evaluated its effect on the dehydrogenation properties of 2LiNH2-MgH2. Our studies show that doping with Li3AlH6 could effectively lower the dehydrogenation temperatures and increase the hydrogen content of 2LiNH2-MgH2. For example, 2LiNH2-MgH2-0.1Li3AlH6 can desorb 6.43 wt % of hydrogen upon heating to 300 °C, with the onset dehydrogenation temperature at 78 °C. Isothermal dehydrogenation testing indicated that 2LiNH2-MgH2-0.1Li3AlH6 had superior dehydrogenation kinetics at low temperature. Moreover, the release of byproduct NH3 was successfully suppressed. Measurement of the thermal diffusivity suggests that the enhanced dehydrogenation properties may be ascribed to the fact that doping with Li3AlH6 could improve the heat transfer for solid–solid reaction.

  3. In situ synthesized Li2S@porous carbon cathode for graphite/Li2S full cells using ether-based electrolyte

    International Nuclear Information System (INIS)

    Wang, Ning; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2017-01-01

    Graphical abstract: A facile method is proposed to prepare lithium sulfide@porous carbon composites (Li 2 S@PC) by in-situ reaction of lithium sulfate (Li 2 SO 4 ) and the pyrolytic carbon from glucose. We assembled graphite-Li 2 S@PC full-cells using the obtained Li 2 S@PC composites as the cathode, graphite as the anode and DOL/DME with LiNO 3 additive as the electrolyte. Display Omitted -- Highlights: •A simple synthesis method was proposed to form Li 2 S@porous carbon composites. •Graphite-Li 2 S full-cells were constructed in DME-based electrolyte. •A novel method was proposed to activate the full cells. -- Abstract: Lithium-sulfur (Li-S) batteries have been recognized as one of the promising next-generation energy storage devices owing to their high energy density, low cost and eco-friendliness. As for cathode’s performance, the main challenges for developing highly-efficient and long-life Li-S batteries are to retard the polysulfides diffusion into electrolyte and the reaction with metallic lithium (Li). Especially, the safety issues, derived from metallic Li in anode, must be overcome. Herein, we fabricated lithium sulfide@porous carbon composites (Li 2 S@PC) by an in-situ reaction between the lithium sulfate (Li 2 SO 4 ) and the pyrolytic carbon from glucose. The nanosized Li 2 S particles were uniformly distributed in the carbon matrix, which not only significantly improve electronic conductivity of the electrode but also effectively trap the dissolved polysulfides. Furthermore, on the basis of the graphite’s electrochemical features in ether-based electrolyte, we assembled graphite-Li 2 S@PC full cells using the obtained Li 2 S@PC composites as the cathode, graphite as the anode and the DOL/DME with LiNO 3 additive as the electrolyte. A unique strategy was proposed to activate the full-cells in descending order using constant voltage and current to charge the cut-off voltage. This Li-S full cell exhibits stable cycling performance at 0.5 C over

  4. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    Science.gov (United States)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.

  5. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2012-01-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young's modulus suggests that Li

  6. Should We Stop Developing Heuristics and Only Rely on Mixed Integer Programming Solvers in Automated Test Assembly? A Rejoinder to van der Linden and Li (2016).

    Science.gov (United States)

    Chen, Pei-Hua

    2017-05-01

    This rejoinder responds to the commentary by van der Linden and Li entiled "Comment on Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" on the article "Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" by Chen. Van der Linden and Li made a strong statement calling for the cessation of test assembly heuristics development, and instead encouraged embracing mixed integer programming (MIP). This article points out the nondeterministic polynomial (NP)-hard nature of MIP problems and how solutions found using heuristics could be useful in an MIP context. Although van der Linden and Li provided several practical examples of test assembly supporting their view, the examples ignore the cases in which a slight change of constraints or item pool data might mean it would not be possible to obtain solutions as quickly as before. The article illustrates the use of heuristic solutions to improve both the performance of MIP solvers and the quality of solutions. Additional responses to the commentary by van der Linden and Li are included.

  7. Investigation of interfacial resistance between LiCoO{sub 2} cathode and LiPON electrolyte in the thin film battery

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Eunkyung; Hong, Chan; Tak, Yongsug [Department of Chemical Engineering, Inha University, Inchon 402-751 (Korea, Republic of); Nam, Sang Cheol [Nuricell Inc., Jungrang-Ku, Seoul 131-220 (Korea, Republic of); Cho, Sungbaek [Agency for Defense Development, P.O. Box 35, Daejeon (Korea, Republic of)

    2006-09-13

    All solid-state thin film battery was prepared with conventional sputtering technologies. Low conductivity of lithium phosphorus oxynitride (LiPON) electrolyte and higher resistance at the interface of LiCoO{sub 2}/LiPON was crucial for the development of thin film battery. Presence of thermally treated Al{sub 2}O{sub 3} thin film at the interface of LiCoO{sub 2}/LiPON decreased the interfacial resistance and increased the discharge capacity with the better cycling behaviors. Surface analysis and electrochemical impedance measurement indicate the formation of solid solution LiCo{sub 1-y}Al{sub y}O{sub 2} at the interface of LiCoO{sub 2}/LiPON. (author)

  8. Capturing and Processing Soil GHG Fluxes Using the LI-COR LI-8100A

    Science.gov (United States)

    Xu, Liukang; McDermitt, Dayle; Hupp, Jason; Johnson, Mark; Madsen, Rod

    2015-04-01

    The LI-COR LI-8100A Automated Soil CO2 Flux System is designed to measure soil CO2 efflux using automated chambers and a non-steady state measurement protocol. While CO2 is an important gas in many contexts, it is not the only gas of interest for many research applications. With some simple plumbing modifications, many third party analyzers capable of measuring other trace gases, e.g. N2O, CH4, or 13CO2 etc., can be interfaced with the LI-8100A System, and LI-COR's data processing software (SoilFluxPro™) can be used to compute fluxes for these additional gases. In this paper we describe considerations for selecting an appropriate third party analyzer to interface with the system, how to integrate data into the system, and the procedure used to compute fluxes of additional gases in SoilFluxPro™. A case study is presented to demonstrate methane flux measurements using an Ultra-Portable Greenhouse Gas Analyzer (Ultra-Portable GGA, model 915-0011), manufactured by Los Gatos Research and integrated into the LI-8100A System. Laboratory and field test results show that the soil CO2 efflux based on the time series of CO2 data measured either with the LI-8100A System or with the Ultra-Portable GGA are essentially the same. This suggests that soil GHG fluxes measured with both systems are reliable.

  9. Microstructure Analysis of Synthesized LiBOB

    Directory of Open Access Journals (Sweden)

    Etty Marti Wigayati

    2015-11-01

    Full Text Available Lithium bis (oxalate borate or LiBOB is an active material used as the electrolyte for lithium battery application. LiBOB (LiB(C2O42 powder was prepared from LiOH, H2C2O4 and H3BO3. The employed method was solid state reaction. LiBOB powder produced from the reaction was then observed using SEM and TEM. Surface area was analyzed using Quantachrome Nova 4200e. From the analysis analyzed using XRD to identify the resulting phases, crystal structure, and crystallite size. The functional groups were analyzed using FT-IR. The particle morphology was result, it was seen that the resulted phases were C4LiBO8 and LiB(C2O42.H2O, the crystal structure was orthorhombic with space group Pbca and Pnma. From the particle morphology observation it was shown that micro pores were created irregularly. When the observation was deepened, nanopores with elongated round shape were seen within the micropores. The pore size was approximately 50–100 nm. The surface area, total pore volume, and average pore diameter of LiBOB powder was 88.556 m2/g, 0.4252 cm3/g, and 19.2 nm respectively.

  10. Strengthening CRTD-A's Organizational and Program Capacity ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Strengthening CRTD-A's Organizational and Program Capacity (Lebanon) ... Women's Rights and Citizenship framework; to strengthen and rationalize its institutional ... IDRC “unpacks women's empowerment” at McGill University Conference.

  11. Li4SiO4-Based Artificial Passivation Thin Film for Improving Interfacial Stability of Li Metal Anodes.

    Science.gov (United States)

    Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee

    2018-03-14

    An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.

  12. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries

    International Nuclear Information System (INIS)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Jadhav, Arvind H.; Seo, Jeong Gil

    2016-01-01

    Highlights: • LiPON thin film deposited by RF-sputtering technique. • The effect of deposition temperature on ionic conductivity was investigated. • The LiPON/B-LAGP composite was successfully employed in Li-O 2 battery. • LiPON interlayer enhances stability of B-LAGP in contact with Li-metal. - Abstract: Lithium ion conducting membranes are barely studied, although they are essentially indispensable for building Li-air batteries composed of aqueous and non-aqueous electrolytes for long-term operation. Lithium phosphorous oxynitride (LiPON) thin films were deposited by RF-sputtering technique on B 2 O 3 -added lithium aluminum germanium phosphate (B-LAGP). Compact thin amorphous LiPON layer could act as a protective interlayer for B-LAGP by separating it from Li metal electrode and mitigate the reaction between them. Large electrochemical stability window (0–5 V) of LiPON/B-LAGP solid electrolyte shows promising feasibility for applications in all lithium based batteries. The aprotic Li-O 2 cell with protected lithium electrode configuration employing LiPON/B-LAGP solid electrolyte has exhibited reasonable cycling stability with long-life of 52 cycles at a limited capacity of 1000 mA h g −1 .

  13. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Meng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Shi, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environmental Directorate; Beijing Jiaotong University (China). School of Electrical Engineering, National Active Distribution Network Technology Research Center; Zheng, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environmental Directorate; Yan, Pengfei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Zhang, Ji-guang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environmental Directorate; Wang, Chongmin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  14. The effect of Li2CO3 substitution on synthesis of LiBOB compounds as salt of electrolyte battery lithium ion

    Science.gov (United States)

    Lestariningsih, Titik; Wigayati, Etty Marty; Sabrina, Qolby; Prihandoko, Bambang; Priyono, Slamet

    2018-04-01

    Development of the synthesis of LiB(C2O4)2 compounds continues to evolve along with the need for electrolyte salts to support the research of the manufacture of lithium ion batteries. A study had been conducted on the effect of Li2CO3 substitution on the synthesis of LiB(C2O4)2 or LiBOB compounds. LiBOB was a major candidate to replace LiPF6 as a highly toxic lithium battery electrolyte and harmful to human health. Synthesis of Lithium bis(oxalato) borate used powder metallurgy method. The raw materials used are H2C2O4.2H2O, Li2CO3 or LiOH and H2BO3 from Merck Germany products. The materials are mixed with 2: 1: 1 mol ratio until homogeneous. The synthesis of LiBOB refers to previous research, where the heating process was done gradually. The first stage heating is carried out at 120°C for 4 hours, then the next stage heating is carried out at 240°C for 7 hours. The sample variation in this study was to distinguish the lithium source from Li2CO3 and LiOH. Characterization was done by XRD to know the phase formed, FTIR to confirm that functional group of LiB(C2O4)2 compound, SEM to know the morphological structure, and TG/DTA to know the thermal properties. The results of the analysis shows that LiBOB synthesis using Lithium source from Li2CO3 has succeeded to form LiBOB compound with more LiBOB phase composition is 59.1% and 40.9% LiBOB hydrate phase, SEM morphology shows powder consist of elongated round particle porous and similar to LiBOB commercial and show higher thermal stability.

  15. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    Science.gov (United States)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + fiber texture, similar to rolled product, in the Skin regions and alpha + fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  16. Optimal Power Flow Using Gbest-Guided Cuckoo Search Algorithm with Feedback Control Strategy and Constraint Domination Rule

    Directory of Open Access Journals (Sweden)

    Gonggui Chen

    2017-01-01

    Full Text Available The optimal power flow (OPF is well-known as a significant optimization tool for the security and economic operation of power system, and OPF problem is a complex nonlinear, nondifferentiable programming problem. Thus this paper proposes a Gbest-guided cuckoo search algorithm with the feedback control strategy and constraint domination rule which is named as FCGCS algorithm for solving OPF problem and getting optimal solution. This FCGCS algorithm is guided by the global best solution for strengthening exploitation ability. Feedback control strategy is devised to dynamically regulate the control parameters according to actual and specific feedback value in the simulation process. And the constraint domination rule can efficiently handle inequality constraints on state variables, which is superior to traditional penalty function method. The performance of FCGCS algorithm is tested and validated on the IEEE 30-bus and IEEE 57-bus example systems, and simulation results are compared with different methods obtained from other literatures recently. The comparison results indicate that FCGCS algorithm can provide high-quality feasible solutions for different OPF problems.

  17. Li{sub 4}SiO{sub 4} based breeder ceramics with Li{sub 2}TiO{sub 3}, LiAlO{sub 2} and Li{sub X}La{sub Y}TiO{sub 3} additions, part I: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.H.H., E-mail: Matthias.kolb@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021 Karlsruhe (Germany); Mukai, K.; Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021 Karlsruhe (Germany); Hoshino, T. [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology (QST) (Japan)

    2017-02-15

    Highlights: • This study shows that the emulsion method can easily be adapted to add different phases into Li4SiO4 breeder pebbles. • Slurries with various compositions to form LOS + LMT, LOS + LAO and LOS + LLTO were processed.The calculated activation behavior shows that samples with added LAO or LLTO qualify as low activation material. • Yet, the long-term activation of the LAO containing samples is problematic as hands-on level activity is not reached quickly. - Abstract: Wet-chemical fabrication processes are highly adaptable to a wide range of raw materials and are therefore well suited for evaluating new material compositions. Here the established emulsion method was modified to fabricate novel two-phase Li{sub 4}SiO{sub 4} pebbles of 1 mm diameter with additions of Li{sub 2}TiO{sub 3}, LiAlO{sub 2} or Li{sub x}La{sub y}TiO{sub 3}. As the lithium density of the latter two compounds is relatively low, only moderate contents were added. The Li{sub 2}TiO{sub 3} additions, however, cover the full compositional range. The fabrication process was characterized with regard to its constancy and aptness for the anticipated pebble compositions by optical pebble size measurements. Also the phase content and the elemental composition of the fabricated pebbles were analyzed by XRD and ICP-OES combined with XRF, respectively. This work shows that the emulsion method is an appropriate method to produce pebbles with the anticipated Li{sub 2}TiO{sub 3} and LiAlO{sub 2} concentrations in a Li{sub 4}SiO{sub 4} matrix. However, Li{sub 4}SiO{sub 4} and Li{sub x}La{sub y}TiO{sub 3} react with each other to a number of different phases. To evaluate the activation properties of the pebbles, FISPACT calculations with a DEMO relevant neutron source are applied as well. The addition of aluminum seems to be unfavorable for a fusion application, but moderate concentrations of lanthanum can be tolerated.

  18. Li{sub 2}MnSiO{sub 4} as a potential Li-battery cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Dominko, R.; Bele, M.; Gaberscek, M.; Jamnik, J. [National Institute of Chemistry, P.O.B. 660, SI-1001 Ljubljana (Slovenia); Kokalj, A. [Institute Jozef Stefan, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2007-12-06

    Recently we synthesized and preliminary characterized a new material for potential use in Li-battery cathodes: Li{sub 2}MnSiO{sub 4}. Although its theoretical capacity is about 330 mAh g{sup -1}, the actual measurements showed a much smaller value (about 120 mAh g{sup -1}). One of the reasons for the poor performance could be the poor electronic conductivity (<10{sup -14} S cm{sup -1} at RT) causing a huge polarization during charge-discharge. However, in the present paper we show that reducing the particle size down to the range of 20-50 nm and additional particle embedment into a carbon phase does not significantly improve the electrochemistry of Li{sub 2}MnSiO{sub 4}. Observations of structural changes during the first charge shows a complete loss of peaks when reaching the nominal composition of ca. Li{sub 1}MnSiO{sub 4}. The peaks are not recovered during subsequent cycling. It is supposed that extraction of Li causes significant structural changes so that the resulting material is only able to reversibly exchange a limited amount of Li. (author)

  19. Strengthening of RC bridge slabs using CFRP sheets

    Directory of Open Access Journals (Sweden)

    Fahmy A. Fathelbab

    2014-12-01

    Full Text Available Many old structures became structurally insufficient to carry the new loading conditions requirements. Moreover, they suffer from structural degradation, reinforcement steel bars corrosion, bad weather conditions…etc. Many official authorities in several countries had recognized many old bridges and buildings as structurally deficient by today’s standards. Due to these reasons, structural strengthening became an essential requirement and different strengthening techniques appeared in market. Fiber Reinforced Polymer (FRP strengthening techniques established a good position among all other techniques, giving excellent structural results, low time required and moderate cost compared with the other techniques. The main purpose of this research is to study analytically the strengthening of a reinforced concrete bridge slabs due to excessive loads, using externally bonded FRP sheets technique. A commercial finite element program ANSYS was used to perform a structural linear and non-linear analysis for strengthened slab models using several schemes of FRP sheets. A parametric study was performed to evaluate analytically the effect of changing both FRP stiffness and FRP schemes in strengthening RC slabs. Comparing the results with control slab (reinforced concrete slab without strengthening it is obvious that attaching FRP sheets to the RC slab increases its capacity and enhances the ductility/toughness.

  20. Neutron flux measurement with 6Li and 7Li dual glass scintillators by γ compensation method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1996-01-01

    Based on the characteristics of 6 Li glass scintillator which is sensitive to both neutron and gamma rays, and 7 Li glass scintillator which is sensitive to gamma rays only, a new method of detecting weak neutron flux under interference of strong gamma radiation has been investigated by means of 6 Li- 7 Li pair glass scintillator gamma compensation method. The result of neutron flux measurement by above-mentioned method with an error of about 1% when the gamma ray interference is up to 18.7% has been obtained

  1. Neutron flux measurement with 6Li and 7Li dual glass scintillators by γ compensation method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1998-01-01

    Based on the characteristics of 6 Li glass scintillator which is sensitive to both neutron and gamma rays, and 7 Li glass scintillator which is sensitive to gamma rays only, a new method of detecting weak neutron flux under interference of strong gamma radiation has been investigated by mans of 6 Li- 7 Li dual glass scintillator gamma compensation method. The result of neutron flux measurement by above-mentioned method with an error of about 1% when the gamma ray interference is up to 18.7% has been obtained

  2. Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites

    DEFF Research Database (Denmark)

    Hansen, P. E.; Johansson, Torben; Nevald, Rolf

    1975-01-01

    Single crystals of LiErF4 and LiHoF4 have been grown and their magnetic properties measured from 1.3 K to 300 K. LiHoF4 turned out to be a nearly ideal Ising ferromagnet with TC=1.30±0.05 K and a saturation magnetization along the crystalline c axis of (6.98±0.02)μB. In LiErF4 no ordering...... was observed, but extrapolation indicates that below 0.5 K it will be ferromagnetic with the magnetic moments in the crytalline ab plane. From the susceptibilities the crystal-field parameters Bnm with (n, m)=(2, 0), (4, 0), (4, 4), (6, 0), (6, 4) have been extracted giving for Er3+ in LiErF4: 430., -985......., 1185., -5., 740.+i135. (cm-1) and for Ho3+ in LiHoF4: 470., -825., 1050., -10., 760.+i150 (cm-1). The exchange constants were found to be small compared to the dipole interactions. Furthermore the 7Li NMR spectra have been obtained in these materials as well as in LiTbF4 thereby determining the second...

  3. Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries

    Science.gov (United States)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-04-01

    A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.

  4. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    Science.gov (United States)

    2006-10-04

    range of applications.1 Presently, these molecules are of particular interest in non-linear optics, as liquid crystals, as Langmuir - Blodgett films, for...cathode material in non-aqueous liquid electrolyte medium Since Li2Pc is a mixed ionic and electronic conductor, and some metal phthalocyanines are...14. ABSTRACT Dilithium phthalocyanine (Li2Pc) possesses mixed electronic- ionic conductivity due to overlap of - orbitals (electronic

  5. The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems.

    Science.gov (United States)

    Meini, Stefano; Elazari, Ran; Rosenman, Ariel; Garsuch, Arnd; Aurbach, Doron

    2014-03-06

    The development of Li2S electrodes is a crucial step toward industrial manufacturing of Li-S batteries, a promising alternative to Li-ion batteries due to their projected two times higher specific capacity. However, the high voltages needed to activate Li2S electrodes, and the consequent electrolyte solution degradation, represent the main challenge. We present a novel concept that could make feasible the widespread application of Li2S electrodes for Li-S cell assembly. In this concept, the addition of redox mediators as additives to the standard electrolyte solution allows us to recover most of Li2S theoretical capacity in the activation cycle at potentials as low as 2.9 VLi, substantially lower than the typical potentials >4 VLi needed with standard electrolyte solution. Those novel additives permit us to preserve the electrolyte solution from being degraded, allowing us to achieve capacity as high as 500 mAhg(-1)Li2S after 150 cycles with no major structural optimization of the electrodes.

  6. Numerical Investigation of Masonry Strengthened with Composites

    Directory of Open Access Journals (Sweden)

    Giancarlo Ramaglia

    2018-03-01

    Full Text Available In this work, two main fiber strengthening systems typically applied in masonry structures have been investigated: composites made of basalt and hemp fibers, coupled with inorganic matrix. Starting from the experimental results on composites, the out-of-plane behavior of the strengthened masonry was assessed according to several numerical analyses. In a first step, the ultimate behavior was assessed in terms of P (axial load-M (bending moment domain (i.e., failure surface, changing several mechanical parameters. In order to assess the ductility capacity of the strengthened masonry elements, the P-M domain was estimated starting from the bending moment-curvature diagrams. Key information about the impact of several mechanical parameters on both the capacity and the ductility was considered. Furthermore, the numerical analyses allow the assessment of the efficiency of the strengthening system, changing the main mechanical properties. Basalt fibers had lower efficiency when applied to weak masonry. In this case, the elastic properties of the masonry did not influence the structural behavior under a no tension assumption for the masonry. Conversely, their impact became non-negligible, especially for higher values of the compressive strength of the masonry. The stress-strain curve used to model the composite impacted the flexural strength. Natural fibers provided similar outcomes, but a first difference regards the higher mechanical compatibility of the strengthening system with the substrate. In this case, the ultimate condition is due to the failure mode of the composite. The stress-strain curves used to model the strengthening system are crucial in the ductility estimation of the strengthened masonry. However, the behavior of the composite strongly influences the curvature ductility in the case of higher compressive strength for masonry. The numerical results discussed in this paper provide the base to develop normalized capacity models able to

  7. Performance of LiAlloy/Ag(2)CrO(4) Couples in Molten CsBr-LiBr-KBr Eutectic

    International Nuclear Information System (INIS)

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.

    1999-01-01

    The performance of Li-alloy/CsBr-LiBr-KBr/Ag(sub 2)CrO(sub 4) systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm(sup 2) using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag(sub 2)CrO(sub 4) system exhibited thermal runaway. Thermal analytical tests showed that the Ag(sub 2)CrO(sub 4) cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications

  8. A study on the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Su, J. S.; Hu, J. M.; Hong, S. S.; Jang, D. S.; Park, S. W.

    2003-01-01

    New electrolytic reduction technology was proposed that is based on the integration of metallization of uranium oxide and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  9. Searching for “LiCrIIPO4”

    International Nuclear Information System (INIS)

    Mosymow, E.; Glaum, R.; Kremer, R.K.

    2014-01-01

    The two new phosphates LiCr II 4 (PO 4 ) 3 and Li 5 Cr II 2 Cr III (PO 4 ) 4 are discovered as equilibrium phases (ϑ=800 °C) in the quarternary system Li/Cr/P/O. Their crystal structures have been determined from single-crystal X-ray diffraction data (LiCr II 4 (PO 4 ) 3 : violet-blue, Pnma (no. 62), Z=4, a=6.175(1) Å, b=14.316(3) Å, c=10.277(2) Å, 100 parameters, R 1 =0.028, wR 2 =0.08, 2060 unique reflections with F o >4σ(F o ); Li 5 Cr II 2 Cr III (PO 4 ) 4 : greyish-green, P1 ¯ (no. 2), Z=1, a=4.9379(7) Å, b=7.917(2) Å, c=8.426(2) Å, α=109.98(2)°, β=90.71(1)°, γ=104.91(1)°, 131 parameters, R 1 =0.022, wR 2 =0.067, 1594 unique reflections with F o >4σ(F o )). Li 5 Cr II 2 Cr III (PO 4 ) 4 adopts an hitherto unknown structure type. The crystal structure of LiCr II 4 (PO 4 ) 3 is isotypic to that of NaCd II 4 (PO 4 ) 3 and related to that of the mineral silicocarnotite Ca 5 (PO 4 ) 2 (SiO 4 ). Significant disorder between Li + and Cr 2+ is observed for both crystal structures. The oxidation states assigned to chromium in these two phosphates are in agreement with UV/vis/NIR absorption spectra and magnetic susceptibility data recorded for both compounds. Instead of “LiCr II PO 4 ” mixtures of LiCr II 4 (PO 4 ) 3 , Li 5 Cr II 2 Cr III (PO 4 ) 4 , Cr 2 O 3 , and CrP are observed at equilibrium. Instead of “Li 2 Cr II P 2 O 7 ” four-phase mixtures consisting of Li 9 Cr III 3 (P 2 O 7 ) 3 (PO 4 ) 2 , Li 3 Cr III 2 (PO 4 ) 3 , LiCrP 2 O 7 , and CrP were obtained. - Graphical abstract: Investigations on the equilibrium relations in the system Li/Cr/P/O revealed the two hitherto unknown phosphates Li 5 Cr II 2 Cr III (PO 4 ) 4 and LiCr II 4 (PO 4 ) 3 . They form instead of “LiCr II PO 4 ”. The crystal structures, magnetic behavior and optical spectra of these phosphates are reported. - Highlights: • The two new phosphates Li 5 Cr II 2 Cr III (PO 4 ) 4 and LiCr II 4 (PO 4 ) 3 have been characterized. • Optical spectra and paramagnetism of

  10. Ionic conductivity and Raman spectra of Na--Li, K--Li, and K--Sn β-Al2O3

    International Nuclear Information System (INIS)

    Kaneda, T.; Bates, J.B.; Wang, J.C.; Engstrom, H.

    1979-01-01

    The ionic conductivity and Raman spectra of Na, Na--Li, K, K--Li, and K--Sn β-Al 2 O 3 were measured in order to understand the mechanisms of mixed-ion conduction. It was observed that at 300 0 K, for example, the conductivity of a crystal with composition Na 0 . 82 Li 0 . 18 β-Al 2 O 3 was about one-fifth that of pure Na cyrstals, while the conductivity of K 0 . 80 Li 0 . 20 β-Al 2 O 3 was more than three orders of magnitude lower than that of pure K compounds. The results of a model calculation indicated that the Li + ions are the main carrier species in the Na--Li and K--Li mixed compounds. Features observed in the Raman spectra were attributed to paired- and single-ion vibrations. It is concluded that the K + ions which contribute to a band at 69 cm -1 in K β-Al 2 O 3 are the effective carriers for conduction

  11. Sleep On It: How Snoozing Strengthens Memories

    Science.gov (United States)

    ... Special Issues Subscribe April 2013 Print this issue Sleep On It How Snoozing Strengthens Memories Send us ... the best way to remember it is to sleep on it. That’s because sleeping helps strengthen memories ...

  12. Electrochemical performance of high specific capacity of lithium-ion cell LiV3O8//LiMn2O4 with LiNO3 aqueous solution electrolyte

    International Nuclear Information System (INIS)

    Zhao Mingshu; Zheng Qingyang; Wang Fei; Dai Weimin; Song Xiaoping

    2011-01-01

    Research highlights: → In this paper, the electrochemical performance of aqueous rechargeable lithium battery with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. → The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. → In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries. - Abstract: The electrochemical performance of aqueous rechargeable lithium battery (ARLB) with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. The results indicate that these two electrode materials are stable in the aqueous solution and no hydrogen or oxygen produced, moreover, intercalation/de-intercalation of lithium ions occurred within the range of electrochemical stability of water. The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries.

  13. The sup 8 Li(n,. gamma. ) sup 9 Li reaction and primordial nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Z Q; Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics

    1991-01-01

    Shell-model calculations, using both p-shell and spd-shell interactions, have been used to predict the spectroscopic properties of low-lying states in {sup 9}Li. From this information, we have obtained new estimates for the rate of the {sup 8}Li(n,{gamma}){sup 9}Li reaction, which may act to limit the production of heavy elements during an inhomogeneous big bang. The two calculations produce reaction rates which differ by about a factor of 2 at the temperatures of interest, demonstrating the uncertainties in this approach. However, the spd calculation appears to be the more reliable of the two. (orig.).

  14. Measurement of concentration profile during charging of Li battery anode materials in LiClO4-PC electrolyte

    International Nuclear Information System (INIS)

    Nishikawa, K.; Fukunaka, Y.; Sakka, T.; Ogata, Y.H.; Selman, J.R.

    2007-01-01

    Li metal was galvanostatically electrodeposited on a horizontally positioned, downward-facing Li metal cathode in 0.5 M LiClO 4 -PC electrolyte. The refractive index profile corresponding to the transient Li + ion concentration profile formed in the electrolyte solution upon applying a current step was measured in-situ by holographic interferometry. The configuration of the electrolytic cell was such that mass transfer was governed only by transient diffusion and migration, in the absence of convection. Between the moment of closing the current circuit and the time at which the interference fringes started to shift, an incubation period was observed. Such an incubation period had earlier been observed in lithium electrodeposition at a vertical planar Li metal cathode. The incubation period for the horizontal Li cathode was roughly half that for a vertical one. To study the effect of the electrode material on the incubation period, interferometry measurements were also made at an electrodeposited Ni-Sn alloy electrode. The concentration profile formed near the Ni-Sn alloy electrode during lithiation (alloying or intercalation of Li + into the electrode) agrees well with predictions made by means of the one-dimensional diffusion equation. Only very short incubation period was detected, but the magnitude was negligibly smaller than that of Li metal electrodeposition. The incubation period therefore appears to be characteristic for Li metal electrode only

  15. Reversible Li-insertion in nanoscaffolds: A promising strategy to alter the hydrogen sorption properties of Li-based complex hydrides

    NARCIS (Netherlands)

    Ngene, Peter; Verkuijlen, Margriet H. W.; Barre, Charlotte; Kentgens, Arno P. M.; de Jongh, Petra E.

    Intercalation and de-intercalation of lithium into graphene layers is a well-established phenomenon in Li-ion battery technology. Here we show how this phenomenon can be exploited to destabilize, and alter the hydrogen sorption behaviour of Li-based metal hydrides (LiBH4 and LiAlH4), thereby

  16. Using 13X, LiX, and LiPdAgX zeolites for CO_2 capture from post-combustion flue gas

    International Nuclear Information System (INIS)

    Chen, S.J.; Zhu, M.; Fu, Y.; Huang, Y.X.; Tao, Z.C.; Li, W.L.

    2017-01-01

    Highlights: • We synthesized a novel adsorbent named LiPdAgX zeolite. • CCS was proposed from microstructure, selectivity and separation factor of zeolite. • The static and flowing adsorption using CO_2/N_2 mixture on X zeolites were studied. • LiPdAgX zeolite required less energy for regeneration compared to 13X and MEA. • LiPdAgX zeolite can effectively capture CO_2 from post-combustion flue gas. - Abstract: This work investigates the application of X zeolites for capturing CO_2 from post-combustion flue gas. LiX and LiPdAgX zeolites were prepared by an ion-exchange method using 13X zeolite. X-ray diffraction analysis showed that all samples exhibited characteristic peaks of X zeolites, where the peak intensities increased in the order: LiPdAgX > LiX > 13X. The enhanced intensity of the diffraction peaks can increase the activity of the X zeolites and improve their adsorption performance. Scanning electron microscopy imaging showed that the intergranular pore canals of LiPdAgX zeolite were more concentrated. Pore structure analysis indicated that addition of Li"+ to the 13X zeolite enhanced the specific surface areas and pore volumes of the zeolites. Among the 13X, LiX, and LiPdAgX zeolites, LiPdAgX showed the highest CO_2/N_2selectivity, where the difference in the CO_2 adsorption capacity was due to differences in the number of adsorption sites and thermal conductivities of the X zeolites. The CO_2 breakthrough time increased in succession for the 13X, LiX, and LiPdAgX zeolites. The CO_2/N_2 separation factor of the LiPdAgX zeolite was twice that of the 13X zeolite at a CO_2 concentration of 20 vol.%. The temperature variations during the adsorption process were used to determine the regeneration energy and adsorption capacity of the X zeolites. LiPdAgX zeolite required less energy for regeneration than 13X zeolite and MEA. After regeneration, the separation factor of LiPdAgX zeolite remained at 6.38 for 20 vol.% CO_2 in the flue gas. Therefore, Li

  17. Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr-Nd-Pb-Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains

    Czech Academy of Sciences Publication Activity Database

    Krmíček, Lukáš; Romer, R. L.; Ulrych, Jaromír; Glodny, J.; Prelevič, D.

    2016-01-01

    Roč. 35, 1 July (2016), s. 198-216 ISSN 1342-937X Institutional support: RVO:67985831 Keywords : Silica-rich lamproites * Sr-Nb-Pb-Li isotopes * mantle metasomatism * Variscides Subject RIV: DB - Geology ; Mineralogy Impact factor: 6.959, year: 2016

  18. The cosmic 6Li and 7Li problems and BBN with long-lived charged massive particles

    International Nuclear Information System (INIS)

    Karsten, Jedamzik

    2007-01-01

    Charged massive particles (CHAMPs), when present during the Big Bang nucleosynthesis (BBN) era, may significantly alter the synthesis of light elements when compared to a standard BBN scenario. This is due to the formation of bound states with nuclei. This paper presents a detailed numerical and analytical analysis of such CHAMP BBN. All reactions important for predicting light-element yields are calculated within the Born approximation. Three prior neglected effects are treated in detail: (a) photo destruction of bound states due to electromagnetic cascades induced by the CHAMP decay, (b) late-time efficient destruction/production of H 2 , Li 6 , and Li 7 due to reactions on charge Z = 1 nuclei bound to CHAMPs, and (c) CHAMP exchange between nuclei. Each of these effects may induce orders-of-magnitude changes in the final abundance yields. The study focusses on the impact of CHAMPs on a possible simultaneous solution of the Li 6 and Li 7 problems. It is shown that a prior suggested simultaneous solution of the Li 6 and Li 7 problems for a relic decaying at τ x ∼ 1000 s is only very weakly dependent on the relic being neutral or charged, unless its hadronic branching ratio is B h -4 very small. By use of a Monte-Carlo analysis it is shown that within CHAMP BBN the existence of further parameter space for a simultaneous solution of the Li 6 and Li 7 problem for long decay times τ x ≥ 10 6 s seems possible but fairly unlikely. (author)

  19. A Stable, Magnetic, and Metallic Li3O4 Compound as a Discharge Product in a Li-Air Battery.

    Science.gov (United States)

    Yang, Guochun; Wang, Yanchao; Ma, Yanming

    2014-08-07

    The Li-air battery with the specific energy exceeding that of a Li ion battery has been aimed as the next-generation battery. The improvement of the performance of the Li-air battery needs a full resolution of the actual discharge products. Li2O2 has been long recognized as the main discharge product, with which, however, there are obvious failures on the understanding of various experimental observations (e.g., magnetism, oxygen K-edge spectrum, etc.) on discharge products. There is a possibility of the existence of other Li-O compounds unknown thus far. Here, a hitherto unknown Li3O4 compound as a discharge product of the Li-air battery was predicted through first-principles swarm structure searching calculations. The new compound has a unique structure featuring the mixture of superoxide O2(-) and peroxide O2(2-), the first such example in the Li-O system. The existence of superoxide O2(-) creates magnetism and hole-doped metallicity. Findings of Li3O4 gave rise to direct explanations of the unresolved experimental magnetism, triple peaks of oxygen K-edge spectra, and the Raman peak at 1125 cm(-1) of the discharge products. Our work enables an opportunity for the performance of capacity, charge overpotential, and round-trip efficiency of the Li-air battery.

  20. Glucose assisted synthesis of hollow spindle LiMnPO_4/C nanocomposites for high performance Li-ion batteries

    International Nuclear Information System (INIS)

    Fu, Xiaoning; Chang, Zhaorong; Chang, Kun; Li, Bao; Tang, Hongwei; Shangguan, Enbo; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Graphical abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure exhibits a high specific capacity and cycling performance. - Highlights: • A pure and well-crystallized LiMnPO_4 are synthesized via a solution-phase method. • The LiMnPO_4/C composite constitutes highly and uniformly distributed hollow spindles. • The LiMnPO_4/C composite exhibits a high specific capacity and cycling performance. • The growth process of the hollow spindle LiMnPO_4 particles is revealed. - Abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure was synthesized with the assistance of glucose in dimethyl sulfoxide (DMSO)/H_2O under ambient pressure and 108 °C. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiMnPO_4 particles consist of hollow spindles with a mean width of 200 nm, length of 500-700 nm, and wall thickness of about 30-60 nm. The LiMnPO_4/C nanocomposite was obtained by sintering nano-sized LiMnPO_4 with glucose at 650 °C under an inert atmosphere for 4 h. With a coated carbon thickness of about 10 nm, the obtained composite maintained the morphology and size of the hollow spindle. The electrochemical tests show the specific capacity of LiMnPO_4/C nanocomposite is 161.8 mAh g"−"1 at 0.05C, 137.7 mAh g"−"1 at 0.1C and 110.8 mAh g"−"1 at 0.2 C. The retention of discharge capacity maintains 92% after 100 cycles at 0.2 C. After different rate cycles the high capacity of the LiMnPO_4/C nanocomposite can be recovered. This high performance is attributed to the composite material's hollow spindle structure, which facilitates the electrolyte infiltration, resulting in an increased solid-liquid interface. The carbon layer covering the hollow spindle also contributes to the high performance of the LiMnPO_4/C material as the carbon layer improves its electronic conductivity and the nano-scaled wall thickness decreases the paths of Li

  1. Influence of Li/Nb ratios on defect structure and photorefractive properties of Zn: In: Fe: LiNbO 3 crystals

    Science.gov (United States)

    Dai, Li; Su, Yan-Qing; Wu, Shi-Ping; Guo, Jing-Jie; Xu, Chao; Xu, Yu-Heng

    2011-04-01

    A series of Zn: In: Fe: LiNbO3 crystals are grown by the Czochralski technique with various ratios of Li/Nb = 0.94, 1.05, 1.20 and 1.38 in the melt. The Zn, In, Fe, Nb and Li concentrations in the crystals are analyzed by inductively coupled plasma (ICP) spectrometry. The results indicate that with increasing the [Li]/[Nb] ratio in melt, [Li]/[Nb] ratio increases and goes up continuously in the crystal, the segregation coefficients of both Zn and In ions decrease. The absorption spectra measurement and two-wave coupling experiment are employed to study the effect of [Li]/[Nb] ratio on photorefractive properties of Zn: In: Fe: LiNbO3 crystals. It is found that the [Li]/[Nb] ratio increases, the write time is shortened and the photorefractive sensitivity is improved.

  2. Role of LiNO3 in rechargeable lithium/sulfur battery

    International Nuclear Information System (INIS)

    Zhang, Sheng S.

    2012-01-01

    Highlights: ► Effect of LiNO 3 on the Li anode and cathode of Li/S battery is studied, respectively. ► LiNO 3 participates in the formation of a stable passivation film on the Li anode surface. ► LiNO 3 may be reduced irreversibly on the cathode, affecting Li/S battery performance. ► Discharge mechanism of Li/S battery is explained from the viewpoint of phase transition. - Abstract: In this work we study the effect of LiNO 3 on the Li anode and sulfur cathode, respectively, of Li/S battery by using a Li/Li symmetric cell and a liquid Li/Li 2 S 9 cell. On the Li anode, LiNO 3 participates in the formation of a stable passivation film, and the resulting passivation film grows infinitely with the consumption of LiNO 3 . The passivation film formed with LiNO 3 is known to effectively suppress the redox shuttle of the dissolved lithium polysulfides on Li anode. On the cathode, LiNO 3 undergoes a large and irreversible reduction starting at 1.6 V in the first discharge, and the irreversible reduction disappears in the subsequent cycles. Moreover, the insoluble reduction products of LiNO 3 on the cathode adversely affect the redox reversibility of sulfur cathode. These results indicate that both the Li anode and sulfur cathode consume LiNO 3 , and that the best benefit of LiNO 3 to Li/S battery occurs at the potentials higher than 1.6 V. By limiting the irreversible reduction of LiNO 3 on the cathode, we have shown that the Li/S cell with a 0.2 m LiNO 3 as the co-salt can provide a stable capacity of ∼500 mAh g −1 .

  3. Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study.

    Science.gov (United States)

    Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H; Zaghib, Karim

    2015-08-26

    The atomic and electronic structures of the LiFePO4 (LFP) surface, both bare and reconstructed upon possible oxygenation, are theoretically studied by ab initio methods. On the basis of total energy calculations, the atomic structure of the oxygenated surface is proposed, and the effect of surface reconstruction on the electronic properties of the surface is clarified. While bare LFP(010) surface is insulating, adsorption of oxygen leads to the emergence of semimetallic behavior by inducing the conducting states in the band gap of the system. The physical origin of these conducting states is investigated. We further demonstrate that deposition of Li2S layers on top of oxygenated LFP(010) surface leads to the formation of additional conducting hole states in the first layer of Li2S surface because of the charge transfer from sulfur p-states to the gap states of LFP surface. This demonstrates that oxygenated LFP surface not only provides conducting layers itself, but also induces conducting channels in the top layer of Li2S. These results help to achieve further understanding of potential role of LFP particles in improving the performance of Li-S batteries through emergent interface conductivity.

  4. Strengthening of defected beam–column joints using CFRP

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mahmoud

    2014-01-01

    Full Text Available This paper presents an experimental study for the structural performance of reinforced concrete (RC exterior beam–column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP. The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam–column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  5. Strengthening of defected beam-column joints using CFRP.

    Science.gov (United States)

    Mahmoud, Mohamed H; Afefy, Hamdy M; Kassem, Nesreen M; Fawzy, Tarek M

    2014-01-01

    This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam-column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam-column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  6. Solid state opto-impedance of LiNiVO{sub 4} and LiMn{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kalyani, P; Sivasubramanian, S; Prabhu, S Naveen; Ragavendran, K; Kalaiselvi, N; Ranganathan, N G; Madhu, S; SundaraRaj, A; Manoharan, S P; Jagannathan, R [Central Electrochemical Research Institute, Karaikudi-630006, Tamil Nadu (India)

    2005-04-07

    Spinel type LiMn{sub 2}O{sub 4} and inverse spinel LiNiVO{sub 4} systems serve as standard cathode materials or potential cathode systems for application in high energy density lithium-ion batteries. Upon photo-excitation using UV radiation of energy {approx}5 eV, the LiNiVO{sub 4} system shows significant modification in the solid state impedance pattern while the LiMn{sub 2}O{sub 4} system does not. This study has revealed a significant difference in the opto-impedance pattern for LiNiVO{sub 4} with respect to LiMn{sub 2}O{sub 4}, which may be due to the different electronic processes involved. An attempt has been made to study this behaviour from the solid-state viewpoint.

  7. Study of the 6Li(p,π+)7Li reaction at 600 MeV

    International Nuclear Information System (INIS)

    Bauer, T.; Beurtey, R.; Boudard, A.; Bruge, G.; Chaumeaux, A.; Couvert, P.; Duhm, H.H.; Garreta, D.; Matoba, M.; Terrein, Y.; Aslanides, E.; Bertini, R.; Brochard, F.; Gorodetzky, Ph.; Hibou, F.; Bimbot, L.; Le Bornec, Y.; Tatischeff, B.; Dillig, M.

    1977-01-01

    The positive pion production through the 6 Li(p,π + ) reaction at 600 MeV has been studied using the high-resolution magnetic spectrometer SPES I. Differential cross sections have been measured from 5 0 to 35 0 sub(lab). The 6 Li(p,π + ) reaction feeds preferentially the 4.63 MeV 7/2 - level of 7 Li. The results of a calculation based on two- and three-nucleon diagrams with π and rho exchange between the projectile and a bound nucleon are also presented. (Auth.)

  8. Formation and control of zinc nitride in a molten LiCl-KCl-Li3N system

    International Nuclear Information System (INIS)

    Goto, Takuya; Toyoura, Kazuaki; Tsujimura, Hiroyuki; Ito, Yasuhiko

    2004-01-01

    We investigated a possibility of electrochemical formation and control of zinc nitride in a molten LiCl-KCl-Li 3 N system at 673 K. Zinc nitride films were obtained by means of potentiostatic electrolysis of zinc electrodes in the melt. From XRD analysis, it was confirmed that obtained films consisted of Zn 3 N 2 and LiZnN and that the composition of each film was effected by the applied potential value. In the potential range from 0.75 to 1.6 V (versus Li + /Li), the ratio of Zn 3 N 2 increased as the applied potential was more positive. Based on the result, we achieved the formation of Zn 3 N 2 film (3-5 μm) in anti-scandium oxide structure (a = 0.977 nm) by means of potentiostatic electrolysis at 1.6 V for 3 h

  9. Dehydriding and rehydriding reactions of LiBH4

    International Nuclear Information System (INIS)

    Orimo, S.; Nakamori, Y.; Kitahara, G.; Miwa, K.; Ohba, N.; Towata, S.; Zuettel, A.

    2005-01-01

    Structural differences in LiBH 4 before and after the melting reaction at approximately 550-bar K were investigated to clarify the experimental method for the confirmation of reversible dehydriding and rehydriding reactions. Since the long-range order of LiBH 4 begins to disappear after the melting reaction was achieved, investigation of the atomistic vibrations of the [BH 4 ]-anion in LiBH 4 was found to be effective for the confirmation of the reversibility. In the present study, LiBH 4 was successively dehydrided (decomposed) into LiH and B under 1-bar MPa of hydrogen at 873-bar K, and then rehydrided (recombined) into LiBH 4 under 35-bar MPa of hydrogen at the same temperature (873-bar K). The temperatures at the beginning and ending of the dehydriding reaction are lowered, by approximately 30-bar K, for LiBH 4 substituted (or mixed) with Mg (atomic ratio of Li:Mg=9:1) as compared to those for LiBH 4 alone. This is similar to the tendency exhibited by LiNH 2

  10. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  11. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  12. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  13. On the reduction of generalized polylogarithms to Li_n and Li_2_,_2 and on the evaluation thereof

    International Nuclear Information System (INIS)

    Frellesvig, Hjalte; Tommasini, Damiano; Wever, Christopher

    2016-01-01

    We give expressions for all generalized polylogarithms up to weight four in terms of the functions log, Li_n, and Li_2_,_2, valid for arbitrary complex variables. Furthermore we provide algorithms for manipulation and numerical evaluation of Li_n and Li_2_,_2, and add codes in Mathematica and C++ implementing the results. With these results we calculate a number of previously unknown integrals, which we add in appendix C.

  14. Controllable synthesis of porous LiFePO4 for tunable electrochemical Li-insertion performance

    International Nuclear Information System (INIS)

    Tian, Xiaohui; Zhou, Yingke; Wu, Guan; Wang, Pengcheng; Chen, Jian

    2017-01-01

    Highlights: • A templated freeze-drying method is developed to prepare the porous LiFePO 4 . • The pore size and porosity can be controlled by adjusting the conditions. • The effects of the porous properties on the Li-insertion performances are studied. • The optimized composite presents excellent specific capacity and rate capability. - Abstract: A templated freeze-drying method is developed to prepare the porous LiFePO 4 materials with the controlled pore size and porosity, by conveniently adjusting the size and content of the template in the precursor solution. The morphology and structure of the porous LiFePO 4 materials are characterized and the relavant electrochemical lithium-insertion performances are systematically studied. It’s found that the porous characteristics play a critical role in the lithium-ion intercalation processes and significantly affect the power capability of LiFePO 4 . The optimized porous LiFePO 4 material presents remarkable specific capacity (167 mAh g −1 at 0.1 C), rate capability (151 mAh g −1 at 1 C and 110 mAh g −1 at 10 C) and cycling stability (99.3% retention after 300 cycles at 1 C). These findings demonstrate that the electrochemical performance of the electrode material can be purposely tuned and remarkably improved by the rational design and introduction of the suitable pores, which open up new strategies for the synthesis of advanced porous materials for the lithium-ion power battery applications.

  15. Homotopy Algorithm for Optimal Control Problems with a Second-order State Constraint

    International Nuclear Information System (INIS)

    Hermant, Audrey

    2010-01-01

    This paper deals with optimal control problems with a regular second-order state constraint and a scalar control, satisfying the strengthened Legendre-Clebsch condition. We study the stability of structure of stationary points. It is shown that under a uniform strict complementarity assumption, boundary arcs are stable under sufficiently smooth perturbations of the data. On the contrary, nonreducible touch points are not stable under perturbations. We show that under some reasonable conditions, either a boundary arc or a second touch point may appear. Those results allow us to design an homotopy algorithm which automatically detects the structure of the trajectory and initializes the shooting parameters associated with boundary arcs and touch points.

  16. Preparation and characterization of the Li(17)Pb(83) eutectic alloy and the LiPb intermetallic compound

    International Nuclear Information System (INIS)

    Jauch, U.; Karcher, V.; Schulz, B.

    1986-01-01

    Li(17)Pb(83) and LiPb were prepared from the pure elements in amounts of several hundred grams. The resolidified samples were characterized by melting points (eutectic temperature), chemical analysis and metallography. Using differential thermal analysis the heats of fusion were determined and the behaviour of the intermetallic phase LiPb in vacuum and high purified He was studied. The results from these investigations were applied to characterize Li(17)Pb(83) prepared in high amounts for technical application as a potential liquid breeder material. (orig.)

  17. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  18. Study of Moessbauer effect on LiFe5-x Alx O8, LiFe 5-x Gax O8 and LiGa5-x Fex O8 systems

    International Nuclear Information System (INIS)

    Barthem, V.M.T.S.

    1982-01-01

    The measures obtained by Moessbauer spectroscopy from LiFe 5-x Ga x O 8 and LiFe 5-x Al x O 8 systems are presented. A comparative study of the influences of dopant diamagnetic ions on magnetic structures of lithium ferrite was performed. The LiGa 5-x Fe x O 8 systems were analysed based on the existing data from LiAl 5-x Fe x O 8 systems, otaining informations about the iron ion behaviour in both matrices. (M.C.K.) [pt

  19. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO{sub 4} cell

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, V.; Vickraman, P. [Gandhigram Rural University, Department of Physics, Gandhigram (India); Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. [Central Electrochemical Research Institute, Electrochemical Energy Systems Division, Karaikudi (India)

    2009-12-15

    Polyvinylidenefluoride-hexafluoropropylene-based (PVdF-HFP-based) gel and composite microporous membranes (GPMs and CPMs) were prepared by phase-inversion technique in the presence 10 wt% of AlO(OH){sub n} nanoparticles. The prepared membranes were gelled with 0.5-M LiPF{sub 3}(CF{sub 2}CF{sub 3}){sub 3} (lithium fluoroalkylphosphate, LiFAP) in EC:DEC (1:1 v/v) and subjected to various characterizations; the AC impedance study shows that CPMs exhibit higher conductivity than GPMs. Mechanical stability measurements on these systems reveal that CPMs exhibit Young's modulus higher than that of bare and GPMs and addition of nanoparticles drastically improves the elongation break was also noted. Transition of the host from {alpha} to {beta} phase after the loading of nanosized filler was confirmed by XRD and Raman studies. Physico-chemical properties, like liquid uptake, porosity, surface area, and activation energy, of the membranes were calculated and results are summarized. Cycling performance of Li/CPM/LiFePO{sub 4} coin cell was fabricated and evaluated at C/10 rate and delivered a discharge capacity of 157 and 148 mAh g {sup -1} respectively for first and tenth cycles. (orig.)

  20. The optical potential for 6Li-6Li elastic scattering at 156 MeV

    International Nuclear Information System (INIS)

    Micek, S.; Majka, Z.; Klewe-Nebenius, H.; Rebel, H.; Gils, H.J.

    1984-10-01

    Elastic scattering of 6 Li from 6 Li has been studied for the beam energy of 156 MeV. The experimental differential cross section has been analysed on the basis of the optical model using various phenomenological forms. The spin-orbit interaction proves to be less significant. A semi-microscopic double-folding cluster model which generates the real part of the optical potential by an antisymmetrized d-α cluster wave function of 6 Li and α-α, d-d and d-α interactions is well able to describe the experimental data. (orig.) [de

  1. Synthesis and characterization of PVA blended LiClO4 as electrolyte material for battery Li-ion

    Science.gov (United States)

    Gunawan, I.; Deswita; Sugeng, B.; Sudaryanto

    2017-07-01

    It have been synthesized the materials for Li ion battery electrolytes, namely PVA with the addition of LiClO4 salt were varied 0, 5, 10, 15 and 20% by weight respectively. The objective of this study is to control the ionic conductivity in traditional polymer electrolytes, to improve ionic conductivity with the addition of lithium perchlorat (LiClO4). These electrolyte materials prepared by PVA powder was dissolved into distilled water and added LiClO4 salt were varied. After drying the solution, PVA sheet blended LiClO4 salt as electrolyte material for Li ion battery obtained. PVA blended LiClO4 salt crystallite form was confirmed using X-Ray Difraction (XRD) equipment. Observation of the morphology done by using Scanning Electron Microscope (SEM). While the electrical conductivity of the material is measured using LCR meter. The results of XRD pattern of LiClO4 shows intense peaks at angles 2θ = 23.2, 32.99, and 36.58°, which represent the crystalline nature of the salt. Particles morphology of the sample revealed by scanning electron microscopy are irregular in shape and agglomerated, with mean size 200-300 nm. It can be concluded that polycrystalline particles are composed of large number of crystallites. The study of conductivity by using LCR meter shows that all the graphs represent the DC and AC conductivity phenomena.

  2. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    Science.gov (United States)

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  3. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Meng; Yan, Pengfei; Wang, Chongmin, E-mail: chongmin.wang@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Shi, Wei [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352 (United States); National Active Distribution Network Technology Research Center, School of Electrical Engineering, Beijing Jiaotong University, 3 Shangyuancun Street, Haidian District, Beijing 100044 (China); Zheng, Jianming; Zhang, Ji-guang [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352 (United States)

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  4. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  5. Li2S/Carbon Nanocomposite Strips from a Low-Temperature Conversion of Li2SO4 as High-Performance Lithium-Sulfur Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fangmin; Noh, Hyungjun; Lee, Jin Hong; Lee, Hongkyung; Kim, Hee-Tak

    2018-03-12

    Carbothermal conversion of Li2SO4 provides a cost-effective strategy to fabricate high-capacity Li2S cathodes, however, Li2S cathodes derived from Li2SO4 at high temperatures (> 800 oC), having high crystallinity and large crystal size, result in a low utilization of Li2S. Here, we report a Li2SO4/poly(vinyl alcohol)-derived Li2S/Carbon nanocomposite (Li2S@C) strips at a record low temperature of 635 oC. These Li2S@C nanocomposite strips as a cathode shows a low initial activation potential (2.63 V), a high initial discharge capacity (805 mAh g-1 Li2S) and a high cycling stability (0.2 C and 1 C). These improvedresults could be ascribed to the nano-sized Li2S particles as well as their low crystallinity due to the PVA-induced carbon network and the low conversion temperature, respectively. An XPS analysis reveals that the C=C and C=O bonds derived from the carbonization of PVA can promote the conversion of Li2SO4 at the low temperature.

  6. Evaluating the performance of skewed prestressed concrete bridge after strengthening

    Science.gov (United States)

    Naser, Ali Fadhil; Zonglin, Wang

    2013-06-01

    The objectives of this paper are to explain the application of repairing and strengthening methods on the damaged members of the bridge structure, to analyze the static and dynamic structural response under static and dynamic loads after strengthening, and to evaluate the structural performance after application of strengthening method. The repairing and strengthening methods which are used in this study include treatment of the cracks, thickening the web of box girder along the bridge length and adding internal pre-stressing tendons in the thickening web, and construct reinforced concrete cross beams (diaphragms) between two box girders. The results of theoretical analysis of static and dynamic structural responses after strengthening show that the tensile stresses are decreased and become less than the allowable limit values in the codes. The values of vertical deflection are decreased after strengthening. The values of natural frequencies after strengthening are increased, indicating that the strengthening method is effective to reduce the vibration of the bridge structure. Therefore, the strengthening methods are effective to improve the bearing capacity and elastic working state of the bridge structure and to increase the service life of the bridge structure.

  7. Nuclear charge radius of {sup 11}Li

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Rodolfo, E-mail: R.Sanchez@GSI.de; Noertershaeuser, Wilfried [Gesellschaft fuer Schwerionenforschung (Germany); Dax, Andreas [CERN(Switzerland); Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas [Gesellschaft fuer Schwerionenforschung (Germany); Wojtaszek, Agnieszka [Swietokrzyska Academy, Institute of Physics (Poland); Bushaw, Bruce A. [Pacific Northwest National Laboratory (United States); Drake, Gordon W. F. [University of Windsor, Department of Physics (Canada); Yan Zongchao [University of New Brunswick, Department of Physics (Canada); Zimmermann, Claus [Physikalisches Institut, Eberhard Karls Universitaet Tuebingen (Germany); Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D. [Tri-University Meson Facility (Canada)

    2006-07-15

    We have determined the nuclear charge radius of {sup 11}Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the {sup 7}Li-{sup 11}Li isotope shift (IS) was measured in the 2s{yields}3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10{sup -5}. The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from {sup 6}Li to {sup 9}Li, and then increase with {sup 11}Li about 11% larger than {sup 9}Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of {sup 11}Li; thus, the results are compared with a number of nuclear structure models.

  8. A study of integrated cathode assembly for electrolytic reduction of uranium oxide in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Jung Seok; Kang, Dae Seung; Kwon, Sun Kil; Park, Seong Won

    2004-01-01

    Interest of electrolytic reduction of uranium oxide is increasing in treatment of spent metal fuels. Argonne National Laboratory (ANL) has reported the experimental results of electrochemical reduction of uranium oxide fuel in bench-scale apparatus with cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. From the cyclic voltammograms, the mechanism of electrolytic reduction of metal oxides is analyzed. The uranium oxide in LiCl-Li 2 O is converted to uranium metal according to the two mechanism; direct and indirect electrolytic reduction. In this study, cyclic voltammograms for LiCl-3wt% Li 2 O system and U 3 O 8 -LiCl-3wt% Li 2 O system using the 325-mesh stainless steel screen in cathode assembly have been obtained. Direct electrolytic reduction of uranium oxide in LiCl-3wt% Li 2 O molten salt has been conducted

  9. Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Ma, Rui; Shao, Lianyi; Wu, Kaiqiang; Shui, Miao; Wang, Dongjie; Pan, Jianguo; Long, Nengbing; Ren, Yuanlong; Shu, Jie

    2013-09-11

    In this paper, we reported on a comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries. Combined with powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, galvanostatic discharge/charge tests and in situ X-ray diffraction technologies, we explore and compare the insertion/extraction mechanisms of LiVPO4F based on the V3+/V2+/V+ redox couples and Li4Ti5O12 based on the Ti4+/Ti3+ redox couple cycled in 1.0-3.0 V and 0.0-3.0 V. The electrochemical results indicate that both LiVPO4F and Li4Ti5O12 are solid electrolyte interphase free materials in 1.0-3.0 V. The insertion/extraction mechanisms of LiVPO4F and Li4Ti5O12 are similar with each other in 1.0-3.0 V as proved by in situ X-ray diffraction. It also demonstrates that both samples possess stable structure in 0.0-3.0 V. Additionally, the electrochemical performance tests of LiVPO4F and Li4Ti5O12 indicate that both samples cycled in 0.0-3.0 V exhibit much higher capacities than those cycled in 1.0-3.0 V but display worse cycle performance. The rate performance of Li4Ti5O12 far exceeds that of LiVPO4F in the same electrochemical potential window. In particular, the capacity retention of Li4Ti5O12 cycled in 1.0-3.0 V is as high as 98.2% after 20 cycles. By contrast, Li4Ti5O12 is expected to be a candidate anode material considering its high working potential, structural zero-strain property, and excellent cycle stability and rate performance.

  10. Revision of the Li13Si4 structure.

    Science.gov (United States)

    Zeilinger, Michael; Fässler, Thomas F

    2013-11-06

    Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li-Si system is the phase Li13Si4 (trideca-lithium tetra-silicide), the structure of which has been determined previously [Frank et al. (1975 ▶). Z. Naturforsch. Teil B, 30, 10-13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si-Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si-Si dumbbells at z = 0.5.

  11. A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Hur, Jin Mok; Seo, Chung Seok; Park, Seong Won

    2003-01-01

    This study proposed a new electrolytic reduction technology that is based on the integration of simultaneous uranium oxide metallization and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt increase of metallization yield, and simplification of process.

  12. Core TuLiP

    NARCIS (Netherlands)

    Czenko, M.R.; Etalle, Sandro

    2007-01-01

    We propose CoreTuLiP - the core of a trust management language based on Logic Programming. CoreTuLiP is based on a subset of moded logic programming, but enjoys the features of TM languages such as RT; in particular clauses are issued by different authorities and stored in a distributed manner. We

  13. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.

    Science.gov (United States)

    Fan, Xiaofeng; Zheng, W T; Kuo, Jer-Lai; Singh, David J

    2013-08-28

    We analyzed the adsorption of Li on graphene in the context of anodes for lithium-ion batteries (LIBs) using first-principles methods including van der Waals interactions. We found that although Li can reside on the surface of defect-free graphene under favorable conditions, the binding is much weaker than to graphite and the concentration on a graphene surface is not higher than in graphite. At low concentration, Li ions spread out on graphene because of Coulomb repulsion. With increased Li content, we found that small Li clusters can be formed on graphene. Although this result suggests that graphene nanosheets can conceivably have a higher ultimate Li capacity than graphite, it should be noted that such nanoclusters can potentially nucleate Li dendrites, leading to failure. The implications for nanostructured carbon anodes in batteries are discussed.

  14. The "7Li(d, p)"8Li reaction in inverse kinematics at 5.44 MeV/u

    International Nuclear Information System (INIS)

    Pakou, A.; Aslanoglou, X.; Sgouros, O.; Soukeras, V.; Keeley, N.; Cappuzzello, F.; Acosta, L.; Agodi, C.; Calabrese, S.; Carbone, D.; Cavallaro, M.; Foti, A.; Marquinez-Duran, G.; Martel, I.; Mazzocco, M.; Strano, E.; Parascandolo, C.; Pierroutsakou, D.; Rusek, K.; Zagatto, V.A.B.

    2017-01-01

    New data are presented for the "7Li(d, p)"8Li stripping reaction which, together with previously reported elastic scattering data taken in the same experiment, provide a coherent set. These data, plus existing measurements of the elastic scattering and stripping at 6 MeV/u were analysed within the same coupled reaction channels scheme. Good descriptions of the stripping data to the 0.0 MeV 2"+ and 0.98 MeV 1"+ states of "8Li were obtained using a set of left angle "8Li vertical stroke "7Li + n right angle overlaps taken from the literature, provided that the elastic scattering was also well described. Multi-step reaction paths made significant contributions to the description of the larger angle data. The asymptotic normalisation coefficients are compared with previous determinations. (orig.)

  15. Üliõpilasteatrid - teistmoodi teater / Kalev Kudu

    Index Scriptorium Estoniae

    Kudu, Kalev, 1961-

    2007-01-01

    Üliõpilasteatrite VI maailmakongressist 21. - 26. juulini Urbinos Itaalias. Autor oma ettekandest teemal "Üliõpilasteater kui mäss. Üliõpilasteatrite eriline missioon globaliseeruvas maailmas". Lühiintervjuu Liege'i ülikooli professori, üliõpilasteatri kunstilise juhi ja Rahvusvahelise Üliõpilasteatrite Liidu (AITU) esimehe Robert Germayga. Etendustest: "Shahrazad - neitsi Bagdadist" (Bologna ülikool, Itaalia"), "Mbomo-mvet" (Yaounde ülikool, Kamerun), "The Believed Dead" (Brescia Katoliiklik Ülikool, Itaalia), "Teenrid" (Teatro Verga, Milano ülikool, Itaalia), "Antigone" (Ateena ülikool, Kreeka), "Tilt!" (Teatro Aenigma, Urbino ülikool, Itaalia), "Paroodia" (Milano ja Urbino ülikoolide üliõpilased), "Erose tiivad" (Saloniki ülikool, Kreeka), "Kolmas laps" (Long Islandi ülikool, USA), "Lee-Oki lugu" (Hoseo ülikool, Lõuna-Korea), "Ülikond" (Vilniuse Tehnikaülikool, Leedu)

  16. Timber Elements: Traditional and Modern Strengthening Techniques

    Directory of Open Access Journals (Sweden)

    Raluca Hohan

    2010-01-01

    Full Text Available The main idea of this paper is to analyse the means for the rehabilitation of our cultural heritage timber structures. Several methods together with their application techniques are described, and also, the reasons for what these strengthening operations become imminent at a point. First of all, the necessity of the timber structural elements strengthening is explained through a short presentation of the factors which are degrading the material. Then, certain precautions and strengthening procedures are presented, all involving the usage of traditional materials like wood, metal, or concrete, and of modern materials like fiber reinforced polymeric composite.

  17. Constraint-based reachability

    Directory of Open Access Journals (Sweden)

    Arnaud Gotlieb

    2013-02-01

    Full Text Available Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.

  18. A Li+-conductive microporous carbon–sulfur composite for Li-S batteries

    International Nuclear Information System (INIS)

    Zhang, Wenhua; Qiao, Dan; Pan, Jiaxin; Cao, Yuliang; Yang, Hanxi; Ai, Xinping

    2013-01-01

    Highlights: ► A carbon–sulfur composite was prepared by vaporizing sulfur into the nanopores of Li + -conductive carbon microspheres. ► The redox reaction of S 8 molecules embedded in the nanopores of carbon microspheres proceeds through a solid–solid mechanism at the S/C interfaces. ► The carbon–sulfur composite exhibits a stable cycling performance and a superior high coulombic efficiency of 100%. - Abstract: In this paper, we propose a new strategy to develop high performance sulfur electrode by impregnating sulfur into the micropores of a Li + -insertable carbon matrix with the simultaneous use of a carbonate electrolyte, which does not dissolve polysulfides, to restrain the solution of the reaction intermediates of sulfur. To proof this concept, we prepared a Li + -insertable microporous carbon–sulfur composite by vaporizing sulfur into the micropores of the nanofiber-wired carbon microspheres. The experimental results demonstrate that, in the carbonate electrolyte of 1 M LiPF 6 /PC-EC-DEC, such S/C composite electrode exhibits not only stable cycling performance with a reversible capacity of 720 mAh g −1 after 100 cycles, but also superior high coulombic efficiency of ∼100% upon extended cycling (except the first three cycles). The structural and electrochemical analysis indicates that the improved electrochemical behaviors of the S/C composite arise from a new reaction mechanism, in which Li + ions and electrons transport through the carbon matrix into the interior of the cathode and then react with the embedded sulfur in the S/C solid–solid interfaces, avoiding the solution of the intermediates into the bulk electrolyte. More significantly, the structural design and working mechanism of such a sulfur cathode could be extended to a variety of poorly conductive and easily soluble redox-active materials for battery applications.

  19. Measurement of Li target thickness in the EVEDA Li Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura.takuji@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Hoashi, Eiji; Yoshihashi, Sachiko; Horiike, Hiroshi [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Wakai, Eiichi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-10-15

    Highlights: • The objective is to validate stability of the IFMIF liquid Li target flowing at 15 m/s. • Design requirement of target thickness fluctuation is ±1 mm. • Mean and maximum wave amplitude are 0.26 and 1.46 mm, respectively. • Average thickness can be well predicted with developed analytical model. • Li target was adequately stable and satisfied design requirement. - Abstract: A high-speed (nominal: 15 m/s, range: 10–16 m/s) liquid lithium wall jet is planned to serve as the target for two 40 MeV and 125 mA deuteron beams in the International Fusion Materials Irradiation Facility (IFMIF). The design requirement of target thickness stability is 25 ± 1 mm under a vacuum of 10{sup −3} Pa. This paper presents the results of the target thickness measurement conducted in the EVEDA Li Test Loop under a wide range of conditions including the IFMIF condition (target speed of 10, 15, and 20 m/s; vacuum pressure of 10{sup −3} Pa; and Li temperature of 250 °C). For measurement, we use a laser probe method that we developed in advance; this method generates statistical measurements method using a laser distance meter. The measurement results obtained under the IFMIF nominal condition (15 m/s, 10{sup −3} Pa, 250 °C) at the IFMIF beam center are as follows: average target thickness = 26.08 ± 0.09 mm (2σ), mean wave amplitude = 0.26 ± 0.01 mm (2σ), and maximum wave amplitude = 1.46 ± 0.25 mm (2σ). Of the total wave components, 99.7% are within the design requirement. The analytically predicted target thickness is in excellent agreement with the experimental data, resulting in successful characterization of the Li target thickness.

  20. Microstructural Evolution and Mechanical Properties in Superlight Mg-Li Alloy Processed by High-Pressure Torsion

    Directory of Open Access Journals (Sweden)

    Qian Su

    2018-04-01

    Full Text Available Microstructural evolution and mechanical properties of LZ91 Mg-Li alloy processed by high-pressure torsion (HPT at an ambient temperature were researched in this paper. The microstructure analysis demonstrated that significant grain refinement was achieved after HPT processing with an average grain size reducing from 30 μm (the as-received condition to approximately 230 nm through 10 turns. X-ray diffraction analysis revealed LZ91 alloy was consisted of α phase (hexagonal close-packed structure, hcp and β phase (body-centered cubic structure, bcc before and after HPT processing. The mean value of microhardness increased with the increasing number of HPT turns. This significantly increased hardness of specimens can be explained by Hall-Petch strengthening. Simultaneously, the distribution of microhardness along the specimens was different from other materials after HPT processing due to the different mechanical properties of two different phases. The mechanical properties of LZ91 alloy processed by HPT were assessed by the micro-tensile testing at 298, 373, 423, and 473 K. The results demonstrate that the ultra-fine grain LZ91 Mg-Li alloy exhibits excellent mechanical properties: tensile elongation is approximately 400% at 473 K with an initial strain rate of 1 × 10−2 s−1.

  1. Are lithium niobate (LiNbO{sub 3}) and lithium tantalate (LiTaO{sub 3}) ferroelectrics bioactive?

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Paula Maria, E-mail: paula.vilarinho@ua.pt; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO{sub 3} and LiTaO{sub 3} is reported. The formation of apatite-like structures on the surface of LiNbO{sub 3} and LiTaO{sub 3} powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed. - Highlights: • LiNbO{sub 3} and LiTaO{sub 3} are bioactive ferroelectrics. • Cauliflower apatite type structures indicative of in-vitro bioactivity of LiNbO{sub 3} and LiTaO{sub 3.} • Negative surface charges anchor Ca{sup 2+} to which PO{sub 4}{sup 3−} attracts forming apatite structure nuclei. • Use of ferroelectrics as platforms for tissue growth in situ or ex situ is new and holds great promise.

  2. Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.; Overman, Nicole R.; Zhu, Zihua; Price, Lloyd; Gigax, Jonathan; Castanon, Elizabeth; Shao, Lin; Senor, David J.

    2017-10-01

    In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pellets during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.

  3. The basis for the strengthening of safeguards

    International Nuclear Information System (INIS)

    Goldschmidt, P.

    1999-01-01

    For the past 30 years, the International Atomic Energy Agency's safeguards system has contributed to the international non-proliferation regime, by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons programme in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. This paper will summarize the evolution of the safeguards system, describe strengthened safeguards, report on the status of implementing the strengthening measures, and outline plans for integrating all available safeguards measures. (author)

  4. Strengthening quitter self-identity: An experimental study.

    Science.gov (United States)

    Meijer, Eline; Gebhardt, Winifred A; van Laar, Colette; van den Putte, Bas; Evers, Andrea W M

    2018-06-10

    Smoking-related self-identity processes are important for smoking cessation. We examined whether quitter self-identity (i.e. identification with quitting smoking) could be strengthened through a writing exercise, and whether expected social support for quitting, manipulated through vignettes, could facilitate identification with quitting. Participants (N = 339 daily smokers) were randomly assigned to a 2 (identity: strengthened quitter self-identity vs. control) × 3 (social support: present vs. absent vs. neutral control) between-participants design. The main outcome was post-test quitter self-identity. Post-test quitter self-identity was not strengthened successfully. Only a small and marginally significant intervention effect was found on quitter self-identity, which did not generalise to positively influence quit-intention or behaviour. The social support manipulation did not facilitate quitter self-identity. Secondary content analyses showed that quitter self-identity was strengthened among participants who linked quitting smoking to their lifestyle, wanted to become quitters for health reasons, and whose reasons for becoming quitters included approach of positive aspects of quitting, but not among participants who linked quitter self-identity to their self-perceptions. Results provide insight into the content of smokers' self-conceptualizations as quitters. Writing exercises should be improved and tested to eventually successfully strengthen quitter identities.

  5. Constraint-Muse: A Soft-Constraint Based System for Music Therapy

    Science.gov (United States)

    Hölzl, Matthias; Denker, Grit; Meier, Max; Wirsing, Martin

    Monoidal soft constraints are a versatile formalism for specifying and solving multi-criteria optimization problems with dynamically changing user preferences. We have developed a prototype tool for interactive music creation, called Constraint Muse, that uses monoidal soft constraints to ensure that a dynamically generated melody harmonizes with input from other sources. Constraint Muse provides an easy to use interface based on Nintendo Wii controllers and is intended to be used in music therapy for people with Parkinson’s disease and for children with high-functioning autism or Asperger’s syndrome.

  6. Electrochemical formation of AlN in molten LiCl-KCl-Li{sub 3}N systems

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Takuya [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)]. E-mail: goto@energy.kyoto-u.ac.jp; Iwaki, Takayuki [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo, Kyoto 606-8501 (Japan); Ito, Yasuhiko [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

    2005-01-30

    Electrochemical formation of aluminum nitride was investigated in molten LiCl-KCl-Li{sub 3}N systems at 723 K. When Al was anodically polarized at 1.0 V (versus Li{sup +}/Li), oxidation of nitride ions proceeded to form adsorbed nitrogen atoms, which reacted with the surface to form AlN film. The obtained nitrided film had a thickness of sub-micron order. The obtained nitrided layer consisted of two regions; the outer layer involving AlN and aluminum oxynitride and the inner layer involving metallic Al and AlN. When Al electrode was anodically polarized at 2.0 V, anodic dissolution of Al electrode occurred to give aluminum ions, which reacted with nitride ions in the melt to produce AlN particles (1-5 {mu}m of diameter) of wurtzite structure.

  7. Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets

    Directory of Open Access Journals (Sweden)

    L. Dhivya

    2013-08-01

    Full Text Available Lithium garnet Li7La3Zr2O12 (LLZ sintered at 1230 °C has received considerable importance in recent times as result of its high total (bulk + grain boundary ionic conductivity of 5 × 10−4 S cm−1 at room temperature. In this work we report Li+ transport process of Li7−2xLa3Zr2−xWxO12 (x = 0.3, 0.5 cubic lithium garnets. Among the investigated compounds, Li6.4La3Zr1.7W0.3O12 sintered relatively at lower temperature 1100 °C exhibits highest room temperature (30 °C total (bulk + grain boundary ionic conductivity of 7.89 × 10−4 S cm−1. The temperature dependencies of the bulk conductivity and relaxation frequency in the bulk are governed by the same activation energy. Scaling the conductivity spectra for both Li6.4La3Zr1.7W0.3O12 and Li6La3Zr1.5W0.5O12 sample at different temperatures merges on a single curve, which implies that the relaxation dynamics of charge carriers is independent of temperature. The shape of the imaginary part of the modulus spectra suggests that the relaxation processes are non-Debye in nature. The present studies supports the prediction of optimum Li+ concentration required for the highest room temperature Li+ conductivity in LixLa3M2O12 is around x = 6.4 ± 0.1.

  8. Li-ion batteries from LiFePO{sub 4} cathode and anatase/graphene composite anode for stationary energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon; Wang, Donghai; Viswanathan, Vish V.; Wang, Wei; Nie, Zimin; Zhang, Ji-Guang; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352 (United States); Bae, In-Tae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Duong, Tien [US Departments of Energy, 1000 Independence Ave., Washington, DC 20858 (United States)

    2010-03-15

    Li-ion batteries made from LiFePO{sub 4} cathode and anatase TiO{sub 2}/graphene composite anode were investigated for potential application in stationary energy storage. Fine-structured LiFePO{sub 4} was synthesized by a novel molten surfactant approach whereas anatase TiO{sub 2}/graphene nanocomposite was prepared via self-assembly method. The full cell that operated at 1.6 V demonstrated negligible fade even after more than 700 cycles at measured 1 C rate. While with relative lower energy density than traditional Li-ion chemistries interested for vehicle applications, the Li-ion batteries based on LiFePO{sub 4}/TiO{sub 2} combination potentially offers long life and low cost, along with safety, all which are critical to the stationary applications. (author)

  9. Cable strengthened arches

    NARCIS (Netherlands)

    Kamerling, M.W.

    2013-01-01

    The structural efficiency of arches, subjected to several variable loads, can be increased by strengthening these arches with cables. For these structures it can be necessary, especially in case the permanent load is small, to post-tension the cables to avoid any compression acting on the cables. A

  10. Developing New Electrolytes for Advanced Li-ion Batteries

    Science.gov (United States)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  11. Aligned Li+ Tunnels in Core-Shell Li(NixMnyCoz)O2@LiFePO4 Enhances Its High Voltage Cycling Stability as Li-ion Battery Cathode.

    Science.gov (United States)

    Wu, Zhongzhen; Ji, Shunping; Liu, Tongchao; Duan, Yandong; Xiao, Shu; Lin, Yuan; Xu, Kang; Pan, Feng

    2016-10-12

    Layered transition-metal oxides (Li[Ni x Mn y Co z ]O 2 , NMC, or NMCxyz) due to their poor stability when cycled at a high operating voltage (>4.5 V) have limited their practical applications in industry. Earlier researches have identified Mn(II)-dissolution and some parasitic reactions between NMC surface and electrolyte, especially when NMC is charged to a high potential, as primarily factors responsible for the fading. In our previous work, we have achieved a capacity of NMC active material close to theoretical value and optimized its cycling performance by a depolarized carbon nanotubes (CNTs) network and an unique "pre-lithiation process" that generates an in situ organic coating (∼40 nm) to prevent Mn(II) dissolution and minimize the parasitic reactions. Unfortunately, this organic coating is not durable enough during a long-term cycling when the cathode operates at a high potential (>4.5 V). This work attempts to improve the surface protection of the NMC532 particles by applying an active inorganic coating consisting of nanosized- and crystal-orientated LiFePO 4 (LFP) (about 50 nm, exposed (010) face) to generate a core-shell nanostructure of Li(Ni x Mn y Co z )O 2 @LiFePO 4 . Transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy have confirmed an intimate contact coating (about 50 nm) between the original structure of NMC and LFP single-particle with atomic interdiffusion at the core-shell interface, and an array of interconnected aligned Li + tunnels are observed at the interface by cross-sectional high-resolution TEM, which were formed by ball-milling and then strictly controlling the temperature below 100 °C. Batteries based on this modified NMC cathode material show a high reversible capacity when cycled between 3.0 and 4.6 V during a long-term cycling.

  12. Modeling of crack propagation in strengthened concrete disks

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik

    2013-01-01

    Crack propagation in strengthened concrete disks is a problem that has not yet been addressed properly. To investigate it, a cracked half-infinite disk of concrete is strengthened with a linear elastic material bonded to the surface, and analyzed using two different finite element modeling...... instead of 3D calculations to predict the response of a structure and that it opens up for simpler evaluation of strengthened concrete structures using the finite element method....

  13. Transfer of 6Li break-up fragments at 6Li projectile energies far above the coulomb barrier

    International Nuclear Information System (INIS)

    Neumann, B.; Buschmann, J.; Rebel, H.; Gils, H.J.; Klewe-Nebenius, H.

    1979-05-01

    Transfer of beam-velocity fragments has been experimentally investigated in 6 Li induced reactions on 208 Pb and 209 Bi in the energy range Esub(Li) = 60-156 MeV. The experimental techniques involve the observation of the target residues and measurements of the recoil ranges of heavy residual nuclei produced by charged particle bombardment. The determination of the recoil energy enables the discrimination of different reaction paths leading to the same residual nuclei. ( 6 Li, xn+p) excitation functions prove to be very similar to (α,(x-1)n) reactions at Esub(α) approximately 2/3 x Esub(Li). The results present experimental evidence for a particular reaction type indicated in previous experiments: Dissociation of the 6 Li projectile with capture of the beam-velocity alpha particle indicating an (α,xn) reaction ('internal break-up'). (orig.) [de

  14. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO4 by sulfur surface modification

    International Nuclear Information System (INIS)

    Xu, Guigui; Zhong, Kehua; Zhang, Jian-Min; Huang, Zhigao

    2014-01-01

    We present a first-principles calculation for the electronic and Li-ion diffusion properties of the LiFePO 4 (010) surface modified by sulfur. The calculated formation energy indicates that the sulfur adsorption on the (010) surface of the LiFePO 4 is energetically favored. Sulfur is found to form Fe-S bond with iron. A much narrower band gap (0.67 eV) of the sulfur surface-modified LiFePO 4 [S-LiFePO 4 (010)] is obtained, indicating the better electronic conductive properties. By the nudged elastic band method, our calculations show that the activation energy of Li ions diffusion along the one-dimensional channel on the surface can be effectively reduced by sulfur surface modification. In addition, the surface diffusion coefficient of S-LiFePO 4 (010) is estimated to be about 10 −11 (cm 2 /s) at room temperature, which implies that sulfur modification will give rise to a higher Li ion carrier mobility and enhanced electrochemical performance

  15. Compaction of LiBH4-LiAlH4 nanoconfined in activated carbon nanofibers: Dehydrogenation kinetics, reversibility, and mechanical stability during cycling

    DEFF Research Database (Denmark)

    Plerdsranoy, Praohatsorn; Javadian-Deylami, Seyd Payam; Jensen, Nicholai Daugaard

    2017-01-01

    To enhance volumetric hydrogen capacity for on-board fuel cells, compaction of LiAlH4-LiBH4 nanoconfined in activated carbon nanofibers (ACNF) is for the first time proposed. Loose powders of milled and nanoconfined LiAlH4-LiBH4 samples are compacted under 976 MPa to obtain the pellet samples...... with thickness and diameter of ∼1.20–1.30 and 8.0 mm, respectively. Dehydrogenation temperature of milled LiAlH4-LiBH4 increases from 415 to 434 °C due to compaction, while those of both compacted and loose powder samples of nanoconfined LiAlH4-LiBH4 are lower at comparable temperature of 330–335 °C. Hydrogen...

  16. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  17. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  18. Revision of the Li13Si4 structure

    Directory of Open Access Journals (Sweden)

    Thomas F. Fässler

    2013-12-01

    Full Text Available Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (tridecalithium tetrasilicide, the structure of which has been determined previously [Frank et al. (1975. Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i the introduction of a split position for one Li site [occupancy ratio 0.838 (7:0.162 (7], (ii the anisotropic refinement of atomic displacement parameters for all atoms, and (iii a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5.

  19. Saginaw Bay, MI LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Saginaw Bay, MI LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01254 Woolpert Order...

  20. Structural and thermodynamic similarities of phases in the Li-Tt (Tt = Si, Ge) systems: redetermination of the lithium-rich side of the Li-Ge phase diagram and crystal structures of Li17Si4.0-xGex for x = 2.3, 3.1, 3.5, and 4 as well as Li4.1Ge.

    Science.gov (United States)

    Zeilinger, Michael; Fässler, Thomas F

    2014-10-28

    A reinvestigation of the lithium-rich section of the Li-Ge phase diagram reveals the existence of two new phases, Li17Ge4 and Li4.10Ge (Li16.38Ge4). Their structures are determined by X-ray diffraction experiments of large single crystals obtained from equilibrated melts with compositions Li95Ge5 and Li85Ge15. Excess melt is subsequently removed through isothermal centrifugation at 400 °C and 530 °C, respectively. Li17Ge4 crystallizes in the space group F4[combining macron]3m (a = 18.8521(3) Å, V = 6700.1(2) Å(3), Z = 20, T = 298 K) and Li4.10Ge (Li16.38Ge4) in Cmcm (a = 4.5511(2) Å, b = 22.0862(7) Å, c = 13.2751(4) Å, V = 1334.37(8) Å(3), Z = 16, T = 123 K). Both phases are isotypic with their Si counterparts and are further representative of the Li17Pb4 and Li4.11Si structure types. Additionally, the solid solutions Li17Si4-xGex follows Vegard's law. A comparison of the GeLin coordination polyhedra shows that isolated Ge atoms are 13- and 14-coordinated in Li17Ge4, whereas in Li16.38Ge4 the Ge atoms possess coordination numbers 12 and 13. Regarding the thermodynamic stability, Li16.38Ge4 is assigned a high-temperature phase existing between ∼400 °C and 627 °C, whereas Li17Ge4 decomposes peritectically at 520-522 °C. Additionally, the decomposition of Li16.38Ge4 below ∼400 °C was found to be very sluggish. These findings are manifested by differential scanning calorimetry, long-term annealing experiments and the results from melt equilibration experiments. Interestingly, the thermodynamic properties of the lithium-rich tetrelides Li17Tt4 and Li4.1Tt (Li16.4Tt4) are very similar (Tt = Si, Ge). Besides Li15Tt4, Li14Tt6, Li12Tt7, and LiTt, the title compounds are further examples of isotypic tetrelides in the systems Li-Tt.

  1. Li+-Permeable Film on Lithium Anode for Lithium Sulfur Battery.

    Science.gov (United States)

    Yang, Yan-Bo; Liu, Yun-Xia; Song, Zhiping; Zhou, Yun-Hong; Zhan, Hui

    2017-11-08

    Lithium-sulfur (Li-S) battery is an important candidate for next-generation energy storage. However, the reaction between polysulfide and lithium (Li) anode brings poor cycling stability, low Coulombic efficiency, and Li corrosion. Herein, we report a Li protection technology. Li metal was treated in crown ether containing electrolyte, and thus, treated Li was further used as the anode in Li-S cell. Due to the coordination between Li + and crown ether, a Li + -permeable film can be formed on Li, and the film is proved to be able to block the detrimental reaction between Li anode and polysulfide. By using the Li anode pretreated in 2 wt % B15C5-containing electrolyte, Li-S cell exhibits significantly improved cycling stability, such as∼900 mAh g -1 after 100 cycles, and high Coulombic efficiency of>93%. In addition, such effect is also notable when high S loading condition is applied.

  2. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Shu, J.; Yue, Cai-Bo; Zhu, Xiao-Dong; Zhou, An-Na; Zhu, Yan-Rong; Zhu, Rong-Sun

    2010-01-01

    The effect of Li 4 Ti 5 O 12 (LTO) coating amount on the electrochemical cycling behavior of the LiCoO 2 cathode was investigated at the high upper voltage limit of 4.5 V. Li 4 Ti 5 O 12 (≤5 wt.%) is not incorporated into the host structure and leads to formation of uniform coating. The cycling performance of LiCoO 2 cathode is related with the amount of Li 4 Ti 5 O 12 coating. The initial capacity of the LTO-coated LiCoO 2 decreased with increasing Li 4 Ti 5 O 12 coating amount but showed enhanced cycling properties, compared to those of pristine material. The 3 wt.% LTO-coated LiCoO 2 has the best electrochemical performance, showing capacity retention of 97.3% between 2.5 V and 4.3 V and 85.1% between 2.5 V and 4.5 V after 40 cycles. The coulomb efficiency shows that the surface coating of Li 4 Ti 5 O 12 is beneficial to the reversible intercalation/de-intercalation of Li + . LTO-coated LiCoO 2 provides good prospects for practical application of lithium secondary batteries free from safety issues.

  3. Application of ICT in strengthening health information systems in developing countries in the wake of globalisation.

    Science.gov (United States)

    Simba, Daudi O; Mwangu, Mughwira

    2004-12-01

    Information Communication Technology (ICT) revolution brought opportunities and challenges to developing countries in their efforts to strengthen the Health Management Information Systems (HMIS). In the wake of globalisation, developing countries have no choice but to take advantage of the opportunities and face the challenges. The last decades saw developing countries taking action to strengthen and modernise their HMIS using the existing ICT. Due to poor economic and communication infrastructure, the process has been limited to national and provincial/region levels leaving behind majority of health workers living in remote/rural areas. Even those with access do not get maximum benefit from ICT advancements due to inadequacies in data quality and lack of data utilisation. Therefore, developing countries need to make deliberate efforts to address constraints threatening to increase technology gap between urban minority and rural majority by setting up favourable policies and appropriate strategies. Concurrently, strategies to improve data quality and utilisation should be instituted to ensure that HMIS has positive impact on people's health. Potential strength from private sector and opportunities for sharing experiences among developing countries should be utilised. Short of this, advancement in ICT will continue to marginalise health workers in developing countries especially those living in remote areas.

  4. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    International Nuclear Information System (INIS)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-01-01

    The recently developed Cs 2 LiYCl 6 :Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the 6 Li(n,α)t reaction while for the fast neutrons the 35 Cl(n,p) 35 S and 35 Cl(n,α) 32 P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9–3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35 Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7 LiF target. We tested a CLYC detector 6 Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7 Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  5. Ion exchange for glass strengthening

    International Nuclear Information System (INIS)

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  6. Hydrogen storage properties of rare earth (RE) borohydrides (RE = La, Er) in composite mixtures with LiBH{sub 4} and LiH

    Energy Technology Data Exchange (ETDEWEB)

    Frommen, Christoph; Heere, Michael [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); Riktor, Marit D. [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); SINTEF Materials and Chemistry, Forskningsveien 1, NO-0314 Oslo (Norway); Sørby, Magnus H. [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); Hauback, Bjørn C., E-mail: bjorn.hauback@ife.no [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway)

    2015-10-05

    Highlights: • 6LiBH{sub 4}–RECl{sub 3}–3LiH composites (RE = La, Er) studied for the first time. • Drastically reduced decomposition temperature (300 {sup o}C) compared to LiBH{sub 4} (>400 °C). • Partial reversibility for 6LiBH{sub 4}–LaCl{sub 3}–3LiH: (19% at 340 °C, 10 MPa). • Excellent reversibility for 6LiBH{sub 4}–ErCl{sub 3}–3LiH: (80% at 340 °C, 10 MPa). • Reversibility comparable to that obtained for pure LiBH{sub 4} (76% at 600 °C and 15.5 MPa). - Abstract: Mixtures of 6LiBH{sub 4}–RECl{sub 3}–3LiH (RE = La, Er) have been produced by mechanochemical milling and their structure, thermal decomposition and reversibility have been studied. Hydrogen desorption starts around 300 °C in both composites. Heating to 400 °C yields LaB{sub 6}, ErB{sub 4} and REH{sub 2+δ} as major decomposition products. LiBH{sub 4} is destabilized by REH{sub 2+δ} formed through decomposition of the parent borohydrides LiLa(BH{sub 4}){sub 3}Cl and Er(BH{sub 4}){sub 3}, respectively, and its hydrogen release temperature is reduced by 100 °C as compared to pure ball-milled LiBH{sub 4}. The lanthanum-containing composite releases 4.2 wt.% H between 300 and 350 °C and shows a limited reversibility of ∼20% (340 °C, 10 MPa) probably due to hydrogen uptake by some amorphous boron-containing phases. For 6LiBH{sub 4}–ErCl{sub 3}–3LiH about 3 wt.% H is evolved up to 400 °C. Desorption against 0.5 MPa backpressure results in an increased reversibility (∼80%) as compared to vacuum (∼66%). Rehydrogenation (340 °C, 10 MPa) shows the formation of ErH{sub 3} and LiBH{sub 4} at drastically reduced conditions compared to pure LiBH{sub 4} (>400 °C, >10 MPa)

  7. Formation and control of zinc nitride in a molten LiCl-KCl-Li{sub 3}N system

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Takuya; Toyoura, Kazuaki; Tsujimura, Hiroyuki; Ito, Yasuhiko

    2004-08-25

    We investigated a possibility of electrochemical formation and control of zinc nitride in a molten LiCl-KCl-Li{sub 3}N system at 673 K. Zinc nitride films were obtained by means of potentiostatic electrolysis of zinc electrodes in the melt. From XRD analysis, it was confirmed that obtained films consisted of Zn{sub 3}N{sub 2} and LiZnN and that the composition of each film was effected by the applied potential value. In the potential range from 0.75 to 1.6 V (versus Li{sup +}/Li), the ratio of Zn{sub 3}N{sub 2} increased as the applied potential was more positive. Based on the result, we achieved the formation of Zn{sub 3}N{sub 2} film (3-5 {mu}m) in anti-scandium oxide structure (a = 0.977 nm) by means of potentiostatic electrolysis at 1.6 V for 3 h.

  8. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats.

    Science.gov (United States)

    Lv, Long-Xian; Hu, Xin-Jun; Qian, Gui-Rong; Zhang, Hua; Lu, Hai-Feng; Zheng, Bei-Wen; Jiang, Li; Li, Lan-Juan

    2014-06-01

    This work investigated the effect of the intragastric administration of five lactic acid bacteria from healthy people on acute liver failure in rats. Sprague-Dawley rats were given intragastric supplements of Lactobacillus salivarius LI01, Lactobacillus salivarius LI02, Lactobacillus paracasei LI03, Lactobacillus plantarum LI04, or Pediococcus pentosaceus LI05 for 8 days. Acute liver injury was induced on the eighth day by intraperitoneal injection of 1.1 g/kg body weight D-galactosamine (D-GalN). After 24 h, samples were collected to determine the level of liver enzymes, liver function, histology of the terminal ileum and liver, serum levels of inflammatory cytokines, bacterial translocation, and composition of the gut microbiome. The results indicated that pretreatment with L. salivarius LI01 or P. pentosaceus LI05 significantly reduced elevated alanine aminotransferase and aspartate aminotransferase levels, prevented the increase in total bilirubin, reduced the histological abnormalities of both the liver and the terminal ileum, decreased bacterial translocation, increased the serum level of interleukin 10 and/or interferon-γ, and resulted in a cecal microbiome that differed from that of the liver injury control. Pretreatment with L. plantarum LI04 or L. salivarius LI02 demonstrated no significant effects during this process, and pretreatment with L. paracasei LI03 aggravated liver injury. To the best of our knowledge, the effects of the three species-L. paracasei, L. salivarius, and P. pentosaceus-on D-GalN-induced liver injury have not been previously studied. The excellent characteristics of L. salivarius LI01 and P. pentosaceus LI05 enable them to serve as potential probiotics in the prevention or treatment of acute liver failure.

  9. PEMODELAN KONDUKTIVITAS ION DALAM STRUKTUR Li2Sc3(PO43 (Modeling Ionic Conductivity in Li2Sc3(PO43 Structure

    Directory of Open Access Journals (Sweden)

    Akram La Kilo

    2011-11-01

    Full Text Available ABSTRAK Fasa Li2Sc3(PO43 merupakan material konduktor superionik yang dapat diaplikasikan sebagai baterai yang dapat diisi ulang (rechargeable. Ion Li+ dalam struktur Li2Sc3(PO4 dapat mengalami migrasi dari posisi terisi ke posisi kosong. Penelitian ini telah memodelkan migrasi ion Li+ dalam struktur Li2Sc3(PO4 dengan menggunakan metode bond valence sum (BVS. Metode ini dapat memprediksi bilangan oksidasi suatu atom berdasarkan jarak dengan atom-atom tetangga. Source code berbasis BVS yang digunakan adalah JUMPITER yang mensimulasi efek gaya listrik eksternal yang bertindak pada ion litium sehingga nilai BVS litium dapat dipetakan terhadap jarak. Hasil simulasi menunjukkan bahwa konduksi ion Li+ dapat terjadi pada arah [010], [101], dan [120]. Namun, lintasan konduksi ion Li+ lebih mudah terjadi pada arah [120] atau bidang ab dengan nilai maksimum BVS adalah 0,982. ABSTRACT g-phase of Li2Sc3(PO43 is a lithium super ionic conductor which can be applied as a rechargeable lithium battery. Lithium ions of g-Li2Sc3(PO43 can migrate from occupied site to vacant site. In this research, simulation of Li+ ions migration in the structure of g-Li2Sc3(PO43 carried out using bond valence sum (BVS to predict the oxidation state of Li+ion based on the distance of the ion to neighboring atoms. BVS-based code used JUMPITER to simulate the effect of external electrical force acting on the lithium ions to produce the lithium BVS value which can be mapped to the distance. The simulation results shows that Li+ ion conduction can be occurred on [010], [101], and [120] directions. However, the Li ion conduction pathway occur more easily in the direction of [120] or ab plane with the BVS maximum value is 0.982.

  10. Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries

    International Nuclear Information System (INIS)

    Zou, Hongli; Zhang, Guanghui; Shen, Pei Kang

    2010-01-01

    An intermittent microwave heating method was used to synthesize spherical LiFePO 4 /C in the presence of glucose as reductive agent and carbon source without the use of the inert gas in the oven processes. The FePO 4 was used as iron precursor to reduce the cost and three lithium salts of Li 2 CO 3 , LiOH and CH 3 COOLi were chosen for comparison of the resulting materials. The materials can be alternatively heated by this method at a temperature controllable mode for crystallization and phase transformation and to provide relaxation time for protecting particles growth. The X-ray diffraction and scanning electron microscope measurements confirmed that the LiFePO 4 /C is olivine structured with the average particle size of 50-100 nm. The spherical LiFePO 4 /C as cathode material showed better electrochemical performance in terms of the specific capacity and the cycling stability, which might be attributed to the highly crystallized phase, small particle distribution and improved conductivity by carbon connection.

  11. Summary of mechanical properties data and correlations for Li2O, Li4SiO4, LiAlO2, and Be

    International Nuclear Information System (INIS)

    Billone, M.C.; Grayhack, W.T.

    1988-04-01

    The data base for thermal expansion, elastic constants, compressive and tensile failure strengths and secondary thermal creep of leading solid-breeder (Li 2 O, Li 4 SiO 4 , and LiAlO 2 ) and multiplier (Be) materials is reviewed, porosity, grain size, and stress (for thermal creep). Because the data base is rather sparse in some areas, general properties of ceramics and metals are used to help guide the formulation of the correlations. The primary purpose of the data base summary and correlation development is to pave the way for stress analysis sensitivity studies. These studies will help determine which properties are important enough to structural lifetime and deformation assessments to require more data. 18 refs., 5 figs., 20 tabs

  12. Reduction of Constraints: Applicability of the Homogeneity Constraint for Macrobatch 3

    International Nuclear Information System (INIS)

    Peeler, D.K.

    2001-01-01

    The Product Composition Control System (PCCS) is used to determine the acceptability of each batch of Defense Waste Processing Facility (DWPF) melter feed in the Slurry Mix Evaporator (SME). This control system imposes several constraints on the composition of the contents of the SME to define acceptability. These constraints relate process or product properties to composition via prediction models. A SME batch is deemed acceptable if its sample composition measurements lead to acceptable property predictions after accounting for modeling, measurement and analytic uncertainties. The baseline document guiding the use of these data and models is ''SME Acceptability Determination for DWPF Process Control (U)'' by Brown and Postles [1996]. A minimum of three PCCS constraints support the prediction of the glass durability from a given SME batch. The Savannah River Technology Center (SRTC) is reviewing all of the PCCS constraints associated with durability. The purpose of this review is to revisit these constraints in light of the additional knowledge gained since the beginning of radioactive operations at DWPF and to identify any supplemental studies needed to amplify this knowledge so that redundant or overly conservative constraints can be eliminated or replaced by more appropriate constraints

  13. Electrochemical probings of Li1+xVS2

    International Nuclear Information System (INIS)

    Gupta, Asha; Mullins, C. Buddie; Goodenough, John B.

    2012-01-01

    Re-investigation of Li insertion into the layers of Li 1+x V 1−y M y S 2 (M = Cr, Ni and y = 0 and 0.1, x ≤ 0.8) reveals that the transformation of Li from octahedral to tetrahedral sites in Li 1+x VS 2 leads to a 1.0 V stabilization V(III)/V(II) plateau at 0.1C rate. Substitution of 10 mol% Ni for V to form Li 1+x V 0.9 Ni 0.1 S 2 increases the voltage on Li insertion by 0.1–0.2 V compared to nominal LiVS 2 , but it leads to an overall decrease in the capacity. An irreversible capacity loss on the initial charge/discharge cycle is the result of formation of an SEI layer at and below 1 V versus lithium. 10 mol% substitution of Cr for V (i.e. Li 1+x V 0.9 Cr 0.1 S 2 ) has no effect on the voltage, but it increases the capacity fade as the discharge/charge cycles progress.

  14. Creep of Li2O

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Liu, Y.Y.; Arthur, B.

    1984-11-01

    The tritium breeding material with the highest lithium atom density, Li 2 O has been observed to incur significant swelling (>4%) under fast reactor irradiation. Such swelling, if unrestrained leads to either unacceptable, induced-strains in adjacent structural material or undesirable design compromises. Fortunately, however, Li 2 O deforms at low temperatures so that swelling strains may be internally accommodated. Laboratory dilational creep experiments were conducted on unirradiated Li 2 O between 500 and 700 0 C in order to provide data for structural analysis of in-reactor experiments and blanket design studies. A densification model agreed with most of the available data

  15. Outstanding Li-storage performance of LiFePO4@MWCNTs cathode material with 3D network structure for lithium-ion batteries

    Science.gov (United States)

    Sun, Xiaodong; Zhang, Le

    2018-05-01

    In this work, the MWCNTs-decorated LiFePO4 microspheres (LiFePO4@MWCNTs) with a 3D network structure have been synthesized by a facile and efficient spray-drying approach followed by solid-state reaction in a reduction atmosphere. In the as-prepared composite, the MWCNTs around LiFePO4 nanoparticles can provide 3D conductive networks which greatly facilitate the transport of Li+-ion and electron during the electrochemical reaction. Compared to the pure LiFePO4 material, the LiFePO4@MWCNTs composite as cathode for lithium-ion batteries exhibits significantly improved Li-storage performance in terms of rate capability and cyclic stability. Therefore, we can speculate that the spray-drying approach is a promising route to prepare the high-performance electrode materials with 3D network structure for electrochemical energy storage.

  16. Mechanochemical transformations in Li(Na)AlH4-Li(Na)NH2 systems

    International Nuclear Information System (INIS)

    Dolotko, Oleksandr; Zhang Haiqiao; Ugurlu, Ozan; Wiench, Jerzy W.; Pruski, Marek; Scott Chumbley, L.; Pecharsky, Vitalij

    2007-01-01

    Mechanochemical transformations of tetrahydroaluminates and amides of lithium and sodium have been investigated using gas volumetric analysis, X-ray powder diffraction, solid-state nuclear magnetic resonance (NMR) and transmission electron microscopy. In a transformation of LiAlH 4 and LiNH 2 taken in an 1:1 molar ratio, the amount of released hydrogen (6.6 wt.% after 30 min ball milling) was higher than in any known one pot mechanochemical process involving a hydrogen-containing solid. A total of 4.3 wt.% of hydrogen is released by the NaAlH 4 -NaNH 2 system after 60 min ball milling; and 5.2 wt.% H 2 is released when LiAlH 4 and NaNH 2 or NaAlH 4 and LiNH 2 are ball milled for 90 min and 120 min, respectively. All transformations proceed at room temperature. The mechanism of the overall transformation MAlH 4 (s) + MNH 2 (s) → 2MH(s) + AlN(s) + 2H 2 (g) was identified based on detailed spectroscopic analysis of the intermediate (M 3 AlH 6 ) and final products of the ball milling process

  17. Thermophysical properties of LiCoO₂-LiMn₂O₄ blended electrode materials for Li-ion batteries.

    Science.gov (United States)

    Gotcu, Petronela; Seifert, Hans J

    2016-04-21

    Thermophysical properties of two cathode types for lithium-ion batteries were measured by dependence on temperature. The cathode materials are commercial composite thick films containing LiCoO2 and LiMn2O4 blended active materials, mixed with additives (binder and carbon black) deposited on aluminium current collector foils. The thermal diffusivities of the cathode samples were measured by laser flash analysis up to 673 K. The specific heat data was determined based on measured composite specific heat, aluminium specific heat data and their corresponding measured mass fractions. The composite specific heat data was measured using two differential scanning calorimeters over the temperature range from 298 to 573 K. For a comprehensive understanding of the blended composite thermal behaviour, measurements of the heat capacity of an additional LiMn2O4 sample were performed, and are the first experimental data up to 700 K. Thermal conductivity of each cathode type and their corresponding blended composite layers were estimated from the measured thermal diffusivity, the specific heat capacity and the estimated density based on metallographic methods and structural investigations. Such data are highly relevant for simulation studies of thermal management and thermal runaway in lithium-ion batteries, in which the bulk properties are assumed, as a common approach, to be temperature independent.

  18. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars

    Science.gov (United States)

    Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; de Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; Ulbricht, A.

    2017-11-01

    The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.

  19. Simple preparation of LiF:Mg,Ti phosphor

    International Nuclear Information System (INIS)

    Moharil, S.V.; Shahare, D.I.; Upaded, S.V.; Deshmukh, B.T.

    1993-01-01

    LiF-TLD 100 is a low-impedance (Z eff = 8.2) tissue equivalent material which is widely used in thermoluminescence (TL) dosimetry of ionizing radiations and personnel monitoring. Mg and Ti have been found to be the major impurities which impart the Tl characteristics. Recipes for the preparation of this phosphor, have not been found to be satisfactory for routine manufacture; there have always been problems associated with reproducibility and even with batch homogeneity. One of the reasons for this is that most procedures start either from readily available LiF or by melting the synthesized LiF, or both. The background impurities in the starting LiF powder can mask the intentional impurities, particularly Ti which has to be doped in rather small concentrations (10 p.p.m.). Melting LiF can again be tricky, as the LiF melt is volatile and highly corrosive. In this letter we report the preparation of LiF: Mg, Ti. The impurities were incorporated during the synthesis of LiF. The phosphor was prepared by heat treatments in ambient air without melting the compound. The characteristics of the prepared phosphors were studied and compared with those of LiF-TLD 100. (author)

  20. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes.

    Science.gov (United States)

    Ma, Zhipeng; Fan, Yuqian; Shao, Guangjie; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2015-02-04

    The low electronic conductivity and one-dimensional diffusion channel along the b axis for Li ions are two major obstacles to achieving high power density of LiFePO4 material. Coating carbon with excellent conductivity on the tailored LiFePO4 nanoparticles therefore plays an important role for efficient charge and mass transport within this material. We report here the in situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates with highly oriented (010) facets by introducing ferrocene as a catalyst during thermal treatment. The as-obtained material exhibits superior performances for Li-ion batteries at high rate (100 C) and low temperature (-20 °C), mainly because of fast electron transport through the graphitic carbon layer and efficient Li(+)-ion diffusion through the thin nanoplates.

  1. Optimal cost for strengthening or destroying a given network

    Science.gov (United States)

    Patron, Amikam; Cohen, Reuven; Li, Daqing; Havlin, Shlomo

    2017-05-01

    Strengthening or destroying a network is a very important issue in designing resilient networks or in planning attacks against networks, including planning strategies to immunize a network against diseases, viruses, etc. Here we develop a method for strengthening or destroying a random network with a minimum cost. We assume a correlation between the cost required to strengthen or destroy a node and the degree of the node. Accordingly, we define a cost function c (k ) , which is the cost of strengthening or destroying a node with degree k . Using the degrees k in a network and the cost function c (k ) , we develop a method for defining a list of priorities of degrees and for choosing the right group of degrees to be strengthened or destroyed that minimizes the total price of strengthening or destroying the entire network. We find that the list of priorities of degrees is universal and independent of the network's degree distribution, for all kinds of random networks. The list of priorities is the same for both strengthening a network and for destroying a network with minimum cost. However, in spite of this similarity, there is a difference between their pc, the critical fraction of nodes that has to be functional to guarantee the existence of a giant component in the network.

  2. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    Science.gov (United States)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  3. (Cu,C)Ba2Ca3Cu4Ox (LiF)y: addition of LiF—an effective way to synthesize overdoped superconductor

    Science.gov (United States)

    Badica, P.; Iyo, A.; Aldica, G.; Kito, H.; Crisan, A.; Tanaka, Y.

    2004-03-01

    (Cu,C)Ba2Ca3Cu4Ox superconductor with addition of y mol LiF has been synthesized by a high-pressure method. For the same synthesis conditions it was found that (almost) single-phase Cu, C-1234 samples can be synthesized for yLiF = 0-0.1 if the amount of z mol AgO oxidizer is increased linearly from zAgO = 0.45 to 0.73 and for yLiF = 0.1-0.2 if zAgO = 0.73 = constant. Transport measurements (rgr(T) and room-temperature Seebeck coefficient) have shown that these samples are overdoped: LiF is an effective addition for synthesis of overdoped Cu, C-1234 with a controlled level of carriers. LiF addition continuously decreases Tc. The critical point at yLiF = 0.1 is discussed as the solubility limit of LiF and/or the point where the doping mechanism changes. It is proposed that the reason is the reaction of extra Li with C and O to form Li2CO3, inducing a lower concentration of C in Cu, C-1234/LiF crystals, and at the same time a possible substitution of Li not only for the Cu site but also for the Ca site, resulting in formation of a higher amount of residual Ca0.828CuO2 (for yLiF>0.1). LiF induces the formation of a liquid phase and acts as a flux promoting the formation of Cu,C-12 (n-1)n with n \\ge 4 . LiF modifies to some degree the grain growth from a 3D to a 2D type (thinner platelike grains have been observed in the LiF added samples).

  4. (Cu,C)Ba2Ca3Cu4Ox-(LiF)y: addition of LiF-an effective way to synthesize overdoped superconductor

    International Nuclear Information System (INIS)

    Badica, P; Iyo, A; Aldica, G; Kito, H; Crisan, A; Tanaka, Y

    2004-01-01

    (Cu,C)Ba 2 Ca 3 Cu 4 O x superconductor with addition of y mol LiF has been synthesized by a high-pressure method. For the same synthesis conditions it was found that (almost) single-phase Cu, C-1234 samples can be synthesized for y LiF = 0-0.1 if the amount of z mol AgO oxidizer is increased linearly from z AgO = 0.45 to 0.73 and for y LiF 0.1-0.2 if z AgO = 0.73 constant. Transport measurements (ρ(T) and room-temperature Seebeck coefficient) have shown that these samples are overdoped: LiF is an effective addition for synthesis of overdoped Cu, C-1234 with a controlled level of carriers. LiF addition continuously decreases T c . The critical point at y LiF = 0.1 is discussed as the solubility limit of LiF and/or the point where the doping mechanism changes. It is proposed that the reason is the reaction of extra Li with C and O to form Li 2 CO 3 , inducing a lower concentration of C in Cu, C-1234/LiF crystals, and at the same time a possible substitution of Li not only for the Cu site but also for the Ca site, resulting in formation of a higher amount of residual Ca 0.828 CuO 2 (for y LiF >0.1). LiF induces the formation of a liquid phase and acts as a flux promoting the formation of Cu,C-12 (n-1)n with n ≥ 4. LiF modifies to some degree the grain growth from a 3D to a 2D type (thinner platelike grains have been observed in the LiF added samples)

  5. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.

    2015-01-01

    The formation and oxidation of the main discharge product in nonaqueous secondary Li−O2 batteries, that is, Li2O2, has been studied intensively, but less attention has been given to the formation of cathode−electrolyte interfaces, which can significantly influence the performance of the Li−O2...... battery. Here we apply density functional theory with the Hubbard U correction (DFT+U) and nonequilibrium Green’s function (NEGF) methods to investigate the role of Li2O2@Li2CO3 interface layers on the ionic and electronic transport properties at the oxygen electrode. We show that, for example, lithium...... vacancies accumulate at the peroxide part of the interface during charge, reducing the coherent electron transport by two to three orders of magnitude compared with pristine Li2O2. During discharge, Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron...

  6. The Technology of LiFi: A Brief Introduction

    Science.gov (United States)

    Ramadhani, E.; Mahardika, G. P.

    2018-03-01

    Light Fidelity (LiFi) is a Visible Light Communication (VLC) based technology that making a light as a media of communication replacing the cable wire communication. LiFi is evolve to overcome the rate speed in WiFi, while using LiFi the rate speed can reach until 14 Gbps. This paper presents an introduction of the LiFi technology including the architecture, modulation, performance, and the challenges. The result of this paper can be used as a reference and knowledge to develop some of the LiFi technology.

  7. Strengthening Mechanisms in Microtruss Metals

    Science.gov (United States)

    Ng, Evelyn K.

    Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing

  8. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault watershed survey area for the Puget Sound LiDAR Consortium. This...

  9. Calculation of the πsup(+)sup(7)Li → pesup(+)esup(-)sup(6)Li

    International Nuclear Information System (INIS)

    Avakov, G.V.; Blokhintsev, L.D.; Blokhintseva, T.D.

    1985-01-01

    The π +7 Li → p e + e -6 Li reaction have been considered in the framework of the nucleon cluster model and of the shell model. The cross section of this reaction have been calculated at the pion kinetic energy 380 MeV. The comparison with the available experimental data has been carried out

  10. Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries.

    Science.gov (United States)

    Peng, Lele; Zhao, Yu; Ding, Yu; Yu, Guihua

    2014-08-28

    Controlling the dimensions in the nanometer scale of olivine-type LiFePO4 has been regarded as one of the most effective strategies to improve its electrochemical performance for Li-ion batteries. In this communication, we demonstrate a novel LiFePO4 nanoarchitecture, which is composed of self-assembled single-crystalline nanowires and exhibits good rate capability with a reversible capacity of ∼110 mA h g(-1) at a current rate of 30 C, and a stable capacity retention of ∼86% after 1000 cycles at a current rate of 10 C.

  11. Structural and Electrochemical Characterization of Pure LiFePO4 and Nanocomposite C-LiFePO4 Cathodes for Lithium Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2009-01-01

    Full Text Available Pure lithium iron phosphate (LiFePO4 and carbon-coated LiFePO4 (C-LiFePO4 cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on LiFePO4 particles. Ex situ Raman spectrum of C-LiFePO4 at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of LiFePO4 and C-LiFePO4 showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for LiFePO4 where as in case of C-LiFePO4 that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure LiFePO4 was 69% after 25 cycles where as that of C-LiFePO4 was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.

  12. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries.

    Science.gov (United States)

    Viswanathan, V; Thygesen, K S; Hummelshøj, J S; Nørskov, J K; Girishkumar, G; McCloskey, B D; Luntz, A C

    2011-12-07

    Non-aqueous Li-air or Li-O(2) cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden death arises from limited charge transport through the growing Li(2)O(2) film to the Li(2)O(2)-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li(2)O(2)-electrolyte interface. We report both electrochemical experiments using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li(2)O(2) films produced during Li-O(2) discharge. Both experiment and theory show a "sudden death" in charge transport when film thickness is ~5 to 10 nm. The theoretical model shows that this occurs when the tunneling current through the film can no longer support the electrochemical current. Thus, engineering charge transport through Li(2)O(2) is a serious challenge if Li-O(2) batteries are ever to reach their potential. © 2011 American Institute of Physics

  13. Electrochemical performance of Li-rich oxide composite material coated with Li0.75La0.42TiO3 ionic conductor

    International Nuclear Information System (INIS)

    Yang, Chun-Chen; Liao, Pin-Ci; Wu, Yi-Shiuan; Lue, Shingjiang Jessie

    2017-01-01

    Graphical abstract: Schematic diagram for Li-rich oxide (Li 1.2 Ni 0.2 Mn 0.60 O 2 ) coated with Li 0.75 La 0.42 TiO 3 (LLTO) solid ionic conductor. - Highlights: • Li 1.2 Ni 0.2 Mn 0.60 O 2 /C composite material was prepared by one-pot solid-state method. • 1D a-MnO 2 nanowires and microsphere hollow b-Ni(OH) 2 were prepared by a hydrothermal method. • 1 wt.%LLTO-coated composite showed the best performance among samples. • LLTO layer not only improves the ionic transport of Li-rich oxide material, but also prevent Li-rich material corrosion. - Abstract: Li-rich (spray-dried (SP)-Li 1.2 Ni 0.2 Mn 0.60 O 2 ) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO 2 , β-Ni(OH) 2 raw materials. Two raw materials of α-MnO 2 nanowires and microsphere β-Ni(OH) 2 were synthesized by a hydrothermal process. In addition, Li 0.75 La 0.42 TiO3 (LLTO) fast ionic conductor was coated on SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composite via a sol–gel method. The properties of the LLTO-coated SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composites were 256, 250, 231, 200, 158, and 114 mAh g −1 at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0–4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g −1 in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g −1 was obtained, which showed the capacity retention of 95.4%.

  14. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  15. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Yan, Pengfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kim, Sun Tai [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Engelhard, Mark H. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Sun, Xiuliang [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Cho, Jaephil [Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Wang, Chong-Min [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2017-03-08

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.

  16. A novel type heterojunction photodiodes formed junctions of Au/LiZnSnO and LiZnSnO/p-Si in series

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, H. [Department of Metallurgical and Materials Science, Faculty of Engineering, Tunceli University, Tunceli (Turkey); Tataroğlu, A. [Department of Physics, Faculty of Science, Gazi University, Ankara (Turkey); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhanoglu@firat.edu.tr [Department of Metallurgical and Materials Science, Faculty of Engineering, Tunceli University, Tunceli (Turkey); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Farooq, W.A. [Physics and Astronomy Department, College of Science, King Saud University, Riyadh (Saudi Arabia)

    2015-03-15

    Highlights: • Lithium–zinc–tin–oxide thin films were prepared by sol gel method. • The Au/LiZnSnO/p-Si/Al photodiodes were fabricated using a LZTO layer grown on p-Si. • The photodiodes with Li-doped ZTO interfacial layer exhibited a better device performance. - Abstract: Lithium–zinc–tin–oxide thin films were prepared by sol gel method. The structural and optical properties of the films were investigated. The optical band gaps of the LiZnSnO films were found to be 3.78 eV for 0 at.% Li, 3.77 eV for 1 at.% Li, 3.87 eV for 3 at.% Li and 3.85 eV for 5 at.% Li, respectively. Au/LiZnSnO/p-Si/Al photodiodes were fabricated using a lithium–zinc–tin–oxide (LZTO, Li–Zn–Sn–O) layer grown on p-Si semiconductor. The electrical characteristics of the photodiodes were analyzed by current–voltage, capacitance–voltage and conductance–voltage measurements. The reverse current of the diodes increases with both the increasing illumination intensity and Li content. It was found that the Li-doped ZTO photodiodes exhibited a better device performance than those with an undoped ZTO.

  17. Influence of different substrates on the ionic conduction in LiCoO{sub 2}/LiNbO{sub 3} thin-film bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Horopanitis, E.E.; Perentzis, G.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, Section of Solid State Physics, Thessaloniki (Greece)

    2008-07-01

    LiNbO{sub 3} thin films, deposited by e-gun evaporation, show lithium deficiency, which is cured by ''Li doping''. The ''Li doping'' of the films was achieved by preparing a structure of Li-Nb-O/Li/Li-Nb-O, which after annealing forms a homogenized LiNbO{sub 3} layer because of diffusion of Li in the two Li-Nb-O layers. The LiCoO{sub 2}/LiNbO{sub 3} bi-layers were prepared either on Stainless Steel/TiN or on Al{sub 2}O{sub 3}/Co/Pt substrates/ohmic-contacts by depositing first either the cathode LiCoO{sub 2} or the electrolyte LiNbO{sub 3}. The Nyquist plots of the AC impedance measurements of all structures showed that the interfaces prepared on Stainless-Steel/TiN consisted of two semicircles. The structures deposited on Al{sub 2}O{sub 3}/Co/Pt showed a third semicircle, which is probably due to the roughness of the substrate. It is important that the ionic properties of the bi-layers with the cathode material deposited first, a usual structure in a microbattery, are improved compared to the other structures. The quality of the LiNbO{sub 3} layer depends very much on the substrate. It can be evaluated from Arrhenius plots that the activation energy of this layer is considerably lower when the whole structure is deposited on Stainless Steel/TiN. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Coincidence in the two-photon spectra of Li and Li2 at 735 nm

    International Nuclear Information System (INIS)

    DeGraffenreid, W; Sansonetti, Craig J

    2005-01-01

    A coincidence between the 2 2 S 1/2 -3 2 S 1/2 two-photon transition in the atomic spectrum of 6 Li and the X 1 Σ + g → E 1 Σ + g two-photon ro-vibrational series of 7 Li 2 was observed near 735 nm in a heat pipe oven using a tunable laser and thermionic diode detection scheme. The molecular transition obscures one component of the 6 Li atomic transition. Selective detection of the atomic transition was obtained by adding an intensity-modulated laser that drives atoms from the 3S to 16P state. The coincident molecular transition and four nearby molecular lines were identified using previously determined Dunham coefficients

  19. Mössbauer spectra obtained using β - γ coincidence method after 57Mn implantation into LiH and LiD

    Science.gov (United States)

    Sato, Y.; Kobayashi, Y.; Yamada, Y.; Kubo, M. K.; Mihara, M.; Nagatomo, T.; Sato, W.; Miyazaki, J.; Tanigawa, S.; Natori, D.; Sato, S.; Kitagawa, A.

    2016-12-01

    Highly energetic 57Mn ( T 1/2 = 1.45 m) was generated by nuclear projectile fragmentation in a heavy-ion accelerator, and implanted into lithium hydride (LiH) and lithium deuteride (LiD) at 578 K. Mössbauer spectroscopy with β - γ coincidence detection was then carried out on the 57Fe obtained from β -decay of the 57Mn to study the time dependence of the site distributions and coordination environments of dilute Fe atoms implanted in the LiH and LiD. The results suggest that the Fe atoms can substitute for either the Li and H or D atoms within 100 ns. Additionally, the displacement behavior of the substitutional 57Fe atoms on the lattice sites is discussed.

  20. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.

    Science.gov (United States)

    Schroeder, Marshall A; Kumar, Nitin; Pearse, Alexander J; Liu, Chanyuan; Lee, Sang Bok; Rubloff, Gary W; Leung, Kevin; Noked, Malachi

    2015-06-03

    One of the greatest obstacles for the realization of the nonaqueous Li-O2 battery is finding a solvent that is chemically and electrochemically stable under cell operating conditions. Dimethyl sulfoxide (DMSO) is an attractive candidate for rechargeable Li-O2 battery studies; however, there is still significant controversy regarding its stability on the Li-O2 cathode surface. We performed multiple experiments (in situ XPS, FTIR, Raman, and XRD) which assess the stability of the DMSO-Li2O2 interface and report perspectives on previously published studies. Our electrochemical experiments show long-term stable cycling of a DMSO-based operating Li-O2 cell with a platinum@carbon nanotube core-shell cathode fabricated via atomic layer deposition, specifically with >45 cycles of 40 h of discharge per cycle. This work is complemented by density functional theory calculations of DMSO degradation pathways on Li2O2. Both experimental and theoretical evidence strongly suggests that DMSO is chemically and electrochemically stable on the surface of Li2O2 under the reported operating conditions.

  1. Preparation, characteristics and electrochemical properties of surface-modified LiMn2O4 by doped LiNi0.05Mn1.95O4

    International Nuclear Information System (INIS)

    Yuan, Y.F.; Wu, H.M.; Guo, S.Y.; Wu, J.B.; Yang, J.L.; Wang, X.L.; Tu, J.P.

    2008-01-01

    The surface-modified spinel LiMn 2 O 4 by doped LiNi 0.05 Mn 1.95 O 4 was prepared by a tartaric acid gel method. Transmission electron microscope (TEM) images indicated that some small particles with 100-200 nm in diameter modified the surface of large particle LiMn 2 O 4 . Energy dispersive spectrometry (EDS) showed that the particles were LiNi 0.05 Mn 1.95 O 4 . Electrochemical properties of LiNi 0.05 Mn 1.95 O 4 -modified spinel LiMn 2 O 4 were intensively investigated by the galvanostatic charge-discharge tests, cyclic voltammetry (CV) and AC impedance measurements. The doped LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 cathode delivered the same initial discharge capacity as the unmodified LiMn 2 O 4 , but its cyclic stability was evidently improved, the capacity retention ratio reached 96% after 20 cycles, being higher than 89% of the unmodified LiMn 2 O 4 . Cyclic voltammograms of the LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 did not markedly change while the semicircle diameter of AC impedance spectra evidently decreased after 20 cycles, which showed that the surface modification with LiNi 0.05 Mn 1.95 O 4 improved the electrochemical activity and cycling stability of LiMn 2 O 4 .

  2. An electrochemical study of the systems Li1+-xV2O4 and Li1-xVO2 (0≤x≤1)

    International Nuclear Information System (INIS)

    De Picciotto, L.A.; Thackeray, M.M.; Pistoia, G.

    1988-01-01

    Electrochemical properties of the systems Li 1±x V 2 O 4 (0≤x≤1), Li 1-x VO 2 (0≤x 2 O 4 is reversible, which confirms that lithium may be cycled, topotactically, in and out of the Li 1+x V 2 O 4 spinel structure. Delithiation of the LiV 2 O 4 spinel is irreversible; during this process the vanadium ions migrate through the oxide layers. This results in a defect rocksalt phase, which can, in turn, be relithiated by a different mechanism. Lithium extraction for the layered compound LiVO 2 yields a structure similar to the delithiated LiV 2 O 4 product. The spinel-derived compounds Li 1 +-x/V 2 O 4 (0 -3 Ω -1 cm -1 at x=0 and 10 -6 Ω -1 cm -1 at x=1. Lithium diffusion rates in Li 1±x V 2 O 4 samples increase with lithiation from D=4x10 -10 cm 2 /s in LiV 2 O 4 to D=6x10 -8 cm 2 /s in Li 2 V 2 O 4 . Intermediate values of D are obtained in the delithiated compound Li 0.28 V 2 O 4 and in the layered oxide LiVO 2 ; significantly lower values of D, viz. 1x10 -11 cm 2 /s and 4x10 -11 cm 2 /s , are found in the spinels LiMn 2 O 4 and Fe 3 O 4 respectively. 28 refs.; 5 figs.; 1 table

  3. The astrophysical reaction 8Li(n,gamma)9Li from measurements by reverse kinematics

    OpenAIRE

    Bertulani, Carlos A.

    1998-01-01

    We study the breakup of 9Li projectiles in high energy (28.5 MeV/u) collisions with heavy nuclear targets (208Pb). The wave functions are calculated using a single-particle model for 9Li, and a simple optical potential model for the scattering part. A good agreement with measured data is obtained with insignificant E2 contribution.

  4. Mechanisms of emission of particles charged in 6Li + 6Li and 6Li + 10B reactions at low energies

    International Nuclear Information System (INIS)

    Quebert, Jean

    1964-01-01

    The lithium 6 nucleus is a projectile of interest to study nuclear reactions at low energy due to the possibility to obtain high heats of reaction, and to its structure which can play an important role in the projectile-target interaction. This research thesis focused on the study of two low-energy reactions provoked by lithium projectiles. These reactions are studied within the framework of the theoretical model of aggregates. The first part presents the experimental conditions of both reactions, reports the development and analysis of nuclear plates, and the transformation of a given type of particle histogram into a spectrum in the mass centre system. The next parts report the study of the 6 Li + 6 Li reaction (previous results, kinematic analysis, spectrum of secondary particles, theoretical analysis of results) and of the 6 Li + 10 B reaction (previous results, experimental results, study of the continuous spectrum of alpha particle, reaction mechanisms)

  5. Cretaceous to present paleothermal gradients, central Negev, Israel: constraints from fission track dating

    International Nuclear Information System (INIS)

    Kohn, B.P.; Feinstein, S.; Eyal, M.

    1990-01-01

    Apatite and zircon fission track ages (FTA), vitrinite reflectance (VR) data and burial history curves were integrated for reconstruction of Early Cretaceous to present maximum thermal gradients in four deep boreholes in the central Negev, Isreal. The most complete data set is available from the Ramon 1 borehole. Supplementary data were obtained from Hameishar 1, Makhtesh Qatan 2, and Kurnub 1 boreholes. Between ca. 122-90 Ma the constraints on thermal gradient obtained from apatite FTA overlap with those derived from zircon FT and VR data, restricting them to 0 C km -l . Apatite FTA between 90 and 80 Ma in Ramon 1 and Hameishar 1 suggest rapid cooling at the time recorded or earlier. Constraints on thermal gradient history derived from these ages are considerably strengthened over a short time span. From 80 Ma to the present, FTA data indicate that gradients had probably decayed to present-day regional levels (ca. 20 0 C km -1 ) by Early Tertiary time. Thermal constraints derived from apatite FTA and VR data in Makhtesh Qatan 2 and Kurnub 1 boreholes are consistent with those obtained post-56 Ma for Ramon 1. For pre-56 Ma, only VR data are available and these indicate considerably lower maximum gradients than those obtained for the same time period from Ramon 1. This dichotomy reflects different Early Cretaceous-Early Tertiary thermal regimes between the northern and southern parts of the study area. (author)

  6. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    Science.gov (United States)

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the T g and T m are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO 4 /15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g -1 @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g -1 @0.2 C at 30 °C after 150 cycles).

  7. Behavior of pellet injected Li ions into heliotron E plasmas

    International Nuclear Information System (INIS)

    Kondo, K.; Christou, C.; Ida, K.

    1996-07-01

    Li pellet injection has provided a complex plasma with a large fraction of Li ions, which is characterized by intense emissions from Li I and III. The spatial profiles of the fully ionized Li 3+ ions are measured by charge exchange recombination spectroscopy with a resolution of 13 mm, and the local decay time of the injected Li ion has been estimated. The spectral profile of the charge exchange recombination line of Li 2+ from n=5 to n=4 shows a complicated structure, which depends of Li 3+ density. The effects on other intrinsic impurities and recycled Li are also discussed. (author)

  8. The cosmic {sup 6}Li and {sup 7}Li problems and BBN with long-lived charged massive particles

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, Jedamzik [Montpellier-2 Univ., Lab. de Physique Mathemathique et Theorique, C.N.R.S., 34 - Montpellier (France)

    2007-07-01

    Charged massive particles (CHAMPs), when present during the Big Bang nucleosynthesis (BBN) era, may significantly alter the synthesis of light elements when compared to a standard BBN scenario. This is due to the formation of bound states with nuclei. This paper presents a detailed numerical and analytical analysis of such CHAMP BBN. All reactions important for predicting light-element yields are calculated within the Born approximation. Three prior neglected effects are treated in detail: (a) photo destruction of bound states due to electromagnetic cascades induced by the CHAMP decay, (b) late-time efficient destruction/production of H{sup 2}, Li{sup 6}, and Li{sup 7} due to reactions on charge Z = 1 nuclei bound to CHAMPs, and (c) CHAMP exchange between nuclei. Each of these effects may induce orders-of-magnitude changes in the final abundance yields. The study focusses on the impact of CHAMPs on a possible simultaneous solution of the Li{sup 6} and Li{sup 7} problems. It is shown that a prior suggested simultaneous solution of the Li{sup 6} and Li{sup 7} problems for a relic decaying at {tau}{sub x} {approx} 1000 s is only very weakly dependent on the relic being neutral or charged, unless its hadronic branching ratio is B{sub h} << 10{sup -4} very small. By use of a Monte-Carlo analysis it is shown that within CHAMP BBN the existence of further parameter space for a simultaneous solution of the Li{sup 6} and Li{sup 7} problem for long decay times {tau}{sub x} {>=} 10{sup 6} s seems possible but fairly unlikely. (author)

  9. Location of rare-earth dopants on LiCAF and LiSAF laser hosts via XRD, EXAFS and computer modeling technique

    International Nuclear Information System (INIS)

    Valerio, Mario Ernesto Giroldo; Amaral, Jomar Batista de; Baldochi, Sonia Licia Vera; Mazzocchi, L.; Sasaki, Jose Marcos; Jackson, Robert A.

    2004-01-01

    Full text: Cr-doped LiCaAlF 6 (LiCAF) and LiSrAlF 6 (LiSAF) were used as laser operating in the near infrared region. Ce-doped LiCAF and LiSAF have been reported as leading candidates for tunable all-solid-state lasers in the UV region. Spectroscopic properties of LiCaAlF 6 : Nd suggest that this crystal can be used as selective optical filter and refractive element for 157 nm photolithography. The question of whether the RE dopant will prefer the Li + , the M 2+ site or the Al 3+ site is not yet known. Nevertheless most of the optical properties of these hosts including their laser action depend on the local symmetry, charge compensation mechanism and possible deformation of the lattice. In the present work, Powder X-ray Diffraction (XRD), X-ray Absorption Spectroscopy (XAS), Spectro fluorimetry, combined with computer modeling, were used to study the local structure around the dopant and determine the site occupied by them and also the distance and nature of the co-ordinating atoms. The compounds were prepared from commercially available CaF2 and SrF2 powders of high purity; LiF previously purified by the zone melting method, and AlF3 and RE dopants obtained from the hydro fluorination of commercial Al 2 O 3 . The synthesis of 2 mol % RE doped LiCAF and LiSAF samples were performed in a platinum reactor. The compositions were 2 mol % LiF and AlF3 enriched to compensate for their high vaporization. Powder XRD measurements were performed at room temperature in a Rigaku DMAX diffractometer in step scan mode using Cu K radiation. The Rietveld method (DBWS-9807a software) was employed in the analysis of the patterns. It was found that in the doped samples the concentration of the LiCAF or LiSAF phases are 84-95% and a small amount of AlF 3 and α - Li 3 AlF 6 were formed. The XAS experiments were performed on and above the L III absorption edge of the Er, Ho and Nd ions in fluorescence and transmission mode at room temperature in the XAS station at the LNLS, Campinas

  10. Writing Strengthens Orthography and Alphabetic-Coding Strengthens Phonology in Learning to Read Chinese

    NARCIS (Netherlands)

    Guan, C.Q.; Liu, Y.; Chan, D.H.L.; Ye, F.F.; Perfetti, C.A.

    2011-01-01

    Learning to write words may strengthen orthographic representations and thus support word-specific recognition processes. This hypothesis applies especially to Chinese because its writing system encourages character-specific recognition that depends on accurate representation of orthographic form.

  11. Facile Solution Route to Synthesize Nanostructure Li4Ti5O12 for High Rate Li-Ion Battery

    Directory of Open Access Journals (Sweden)

    M. V. Tran

    2016-01-01

    Full Text Available High rate Li-ion batteries have been given great attention during the last decade as a power source for hybrid electric vehicles (HEVs, EVs, etc. due to the highest energy and power density. These lithium batteries required a new design of material structure as well as innovative electrode materials. Among the promising candidates, spinel Li4Ti5O12 has been proposed as a high rate anode to replace graphite anode because of high capacity and a negligible structure change during intercalation of lithium. In this work, we synthesized a spinel Li4Ti5O12 in nanosize by a solution route using LiOH and Ti(OBu4 as precursor. An evaluation of structure and morphology by XRD and SEM exhibited pure spinel phase Li4Ti5O12 and homogenous nanoparticles around 100 nm. In the charge-discharge test, nanospinel Li4Ti5O12 presents excellent discharge capacity 160 mAh/g at rate C/10, as well as good specific capacities of 120, 110, and 100 mAh/g at high rates C, 5C and 10C, respectively.

  12. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries

    DEFF Research Database (Denmark)

    Viswanathan, V.; Thygesen, Kristian Sommer; Hummelshøj, J.S.

    2011-01-01

    Non-aqueous Li-air or Li-O2 cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden...... death arises from limited charge transport through the growing Li 2O2 film to the Li2O2-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li2O 2-electrolyte interface. We report both electrochemical experiments...... using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li2O2 films produced during Li-O 2 discharge. Both experiment and theory show a sudden death in charge transport when film thickness is ∼5 to 10 nm...

  13. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly.

    Science.gov (United States)

    Dwyer, John M; Laughlin, Daniel C

    2017-07-01

    Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes. © 2017 John Wiley & Sons Ltd/CNRS.

  14. Hot cracks formation nature in welds Al-Mg-Li and Al-Cu-Li alloy systems

    International Nuclear Information System (INIS)

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Mechanism of cleavage formation in alloy systems Al-Mg-Li and Al-Cu-Li welds at thermal test is proposed. This mechanism is connected with stitching spacing and stretching in direction of main deformation of intermetallic compounds inclusions and with active gases movement into the liquid phase [ru

  15. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li3PS4

    International Nuclear Information System (INIS)

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.; Rondinone, Adam J.; Ganesh, P.

    2016-01-01

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3 PS 4 and Li 10 GeP 2 S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice, maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3 PS 4 . In addition, for β-Li 3 PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in

  16. Surface Modification of LiMn2O4 for Lithium Batteries by Nanostructured LiFePO4 Phosphate

    Directory of Open Access Journals (Sweden)

    B. Sadeghi

    2012-01-01

    Full Text Available LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles was modified by nanostructured LiFePO4 via sol gel dip coating method. Synthesized products were characterized by thermally analyzed thermogravimetric and differential thermal analysis (TG/DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and energy dispersive X-ray spectroscopy (EDX. The results of electrochemical tests showed that the charge/discharge capacities improved and charge retention of battery enhanced. This improved electrochemical performance is caused by LiFePO4 phosphate layer on surfaces of LiMn2O4 cathode particles.

  17. The reaction d(α,γ)6Li at low energies and the primordial nucleosynthesis of 6Li

    International Nuclear Information System (INIS)

    Cecil, F.E.; Yan, J.; Galovich, C.S.

    1996-01-01

    We have searched for the reaction d(α,γ) 6 Li at an α-d center-of-mass energy of 53 keV. An upper limit on the reaction S factor is 2.0x10 -7 MeVb at the 90% confidence level, corresponding to a limit on the synthesis of 6 Li from a standard big bang of 0.9% of the present abundance for a total baryon-to-photon ratio 2.86 10 6 Li-to- 7 Li isotopic abundance ratio immediately after a standard big bang is constrained to be less than 0.85%, considerably less than a recent measurement of this ratio in a metal-poor, Population II halo star. copyright 1996 The American Physical Society

  18. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  19. Benchmark Linelists and Radiative Cooling Functions for LiH Isotopologues

    Science.gov (United States)

    Diniz, Leonardo G.; Alijah, Alexander; Mohallem, José R.

    2018-04-01

    Linelists and radiative cooling functions in the local thermodynamic equilibrium limit have been computed for the six most important isotopologues of lithium hydride, 7LiH, 6LiH, 7LiD, 6LiD, 7LiT, and 6LiT. The data are based on the most accurate dipole moment and potential energy curves presently available, the latter including adiabatic and leading relativistic corrections. Distance-dependent reduced vibrational masses are used to account for non-adiabatic corrections of the rovibrational energy levels. Even for 7LiH, for which linelists have been reported previously, the present linelist is more accurate. Among all isotopologues, 7LiH and 6LiH are the best coolants, as shown by the radiative cooling functions.

  20. Diffusion of Li+ ion on graphene: A DFT study

    International Nuclear Information System (INIS)

    Zheng Jiming; Ren Zhaoyu; Guo Ping; Fang Li; Fan Jun

    2011-01-01

    Density functional theory investigations show that the Li + ion is stabilized at Center of hexagonal carbon ring with the distance of 1.84 Å from graphene surface. The potential barrier of Li + ion diffusion on the graphene surface, about 0.32 eV, is much lower than that of Li + ion penetrating the carbon ring which is 10.68 eV. When a vacancy of graphene exists, potential barrier about 10.25 eV for Li + ion penetrating the defect is still high, and the ability of the vacancy to sizing the Li + ion is also observed. Electronic densities of states show that the formation of a localized bond between Li atom and edge carbon of vacancy is the main reason for high potential barrier when Li + ion penetrate a vacancy. While Coulomb repulsion is the control factor for high potential barrier in case of Li + ion penetrating a carbon ring.

  1. LiDAR utility for natural resource managers

    Science.gov (United States)

    Andrew Thomas Hudak; Jeffrey Scott Evans; Alistair Mattthew Stuart. Smith

    2009-01-01

    Applications of LiDAR remote sensing are exploding, while moving from the research to the operational realm. Increasingly, natural resource managers are recognizing the tremendous utility of LiDAR-derived information to make improved decisions. This review provides a cross-section of studies, many recent, that demonstrate the relevance of LiDAR across a suite of...

  2. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  3. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes.

    Science.gov (United States)

    Dogan, Fulya; Long, Brandon R; Croy, Jason R; Gallagher, Kevin G; Iddir, Hakim; Russell, John T; Balasubramanian, Mahalingam; Key, Baris

    2015-02-18

    Direct observations of structure-electrochemical activity relationships continue to be a key challenge in secondary battery research. (6)Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can quantitatively characterize local lithium environments on the subnanometer scale that dominates the free energy for site occupation in lithium-ion (Li-ion) intercalation materials. In the present study, we use this local probe to gain new insights into the complex electrochemical behavior of activated 0.5(6)Li2MnO3·0.5(6)LiMn(0.5)Ni(0.5)O2, lithium- and manganese-rich transition-metal (TM) oxide intercalation electrodes. We show direct evidence of path-dependent lithium site occupation, correlated to structural reorganization of the metal oxide and the electrochemical hysteresis, during lithium insertion and extraction. We report new (6)Li resonances centered at ∼1600 ppm that are assigned to LiMn6-TM(tet) sites, specifically, a hyperfine shift related to a small fraction of re-entrant tetrahedral TMs (Mn(tet)), located above or below lithium layers, coordinated to LiMn6 units. The intensity of the TM layer lithium sites correlated with tetrahedral TMs loses intensity after cycling, indicating limited reversibility of TM migrations upon cycling. These findings reveal that defect sites, even in dilute concentrations, can have a profound effect on the overall electrochemical behavior.

  4. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries

    Science.gov (United States)

    Zaghib, K.; Dubé, J.; Dallaire, A.; Galoustov, K.; Guerfi, A.; Ramanathan, M.; Benmayza, A.; Prakash, J.; Mauger, A.; Julien, C. M.

    2012-12-01

    The carbon-coated LiFePO4 Li-ion oxide cathode was studied for its electrochemical, thermal, and safety performance. This electrode exhibited a reversible capacity corresponding to more than 89% of the theoretical capacity when cycled between 2.5 and 4.0 V. Cylindrical 18,650 cells with carbon-coated LiFePO4 also showed good capacity retention at higher discharge rates up to 5C rate with 99.3% coulombic efficiency, implying that the carbon coating improves the electronic conductivity. Hybrid Pulse Power Characterization (HPPC) test performed on LiFePO4 18,650 cell indicated the suitability of this carbon-coated LiFePO4 for high power HEV applications. The heat generation during charge and discharge at 0.5C rate, studied using an Isothermal Microcalorimeter (IMC), indicated cell temperature is maintained in near ambient conditions in the absence of external cooling. Thermal studies were also investigated by Differential Scanning Calorimeter (DSC) and Accelerating Rate Calorimeter (ARC), which showed that LiFePO4 is safer, upon thermal and electrochemical abuse, than the commonly used lithium metal oxide cathodes with layered and spinel structures. Safety tests, such as nail penetration and crush test, were performed on LiFePO4 and LiCoO2 cathode based cells, to investigate on the safety hazards of the cells upon severe physical abuse and damage.

  5. Dendrite short-circuit and fuse effect on Li/polymer/Li cells

    International Nuclear Information System (INIS)

    Rosso, Michel; Brissot, Claire; Teyssot, Anna; Dolle, Mickael; Sannier, Lucas; Tarascon, Jean-Marie; Bouchet, Renaud; Lascaud, Stephane

    2006-01-01

    We report on experimental and theoretical studies of dendritic growth in Li/polymer/Li symmetric cells. Potential evolution with time, impedance and in situ microscopy experiments enable to characterise the onset and evolution of dendrites. In particular we observe that dendrites may burn when a high enough current goes through them, a thermo-fusible effect predicted in a previous paper and confirmed by SEM experiments. We present a calculation that gives a quantitative description of this effect: our results enable to understand a series of experimental data published in the literature concerning impedance variations observed while cycling lithium-polymer cells

  6. Condition assessment and strengthening of residential units

    Directory of Open Access Journals (Sweden)

    Tatheer Zahra

    2014-01-01

    Full Text Available About 40, ground plus one (G+1 residential units were designed using a hybrid structural framing system (RC frame and load bearing walls. A few months after the completion of the ground floor of the residential units, cracks appeared at several locations in the structure. Field and Laboratory testing was conducted to ascertain the in situ strength of concrete and steel reinforcement. The results of the experimental work were used in the analytical ETABS model for the structural stability calculations. The results indicated that residential units were marginally safe in the existing condition (completed ground floor, but the anticipated construction of the floor above the ground floor (G+1 could not be carried out as the strength of the structural system was inadequate. To increase the safety of existing ground floor and to provide the option of the construction of one floor above, rehabilitation and strengthening design was performed. The proposed strengthening design made use of welded wire fabric (WWF and carbon fibre reinforced polymer (CFRP laminates/sheets for the strengthening of walls, columns and slabs. The residential units will be strengthened in the near future.

  7. Lithium ion mobility in lithium phosphidosilicates: Crystal structure, {sup 7}Li, {sup 29}Si, and {sup 31}P MAS NMR spectroscopy, and impedance spectroscopy of Li{sub 8}SiP{sub 4} and Li{sub 2}SiP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Toffoletti, Lorenzo; Landesfeind, Johannes; Klein, Wilhelm; Gasteiger, Hubert A.; Faessler, Thomas F. [Department of Chemistry, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747, Garching bei Muenchen (Germany); Kirchhain, Holger; Wuellen, Leo van [Department of Physics, University of Augsburg, Universitaetsstrasse 1, 86159, Augsburg (Germany)

    2016-12-05

    The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li{sub 8}SiP{sub 4} and Li{sub 2}SiP{sub 2}, are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7) x 10{sup -6} Scm{sup -1} at 0 C to 1.2(2) x 10{sup -4} Scm{sup -1} at 75 C (Li{sub 8}SiP{sub 4}) and from 6.1(7) x 10{sup -8} Scm{sup -1} at 0 C to 6(1) x 10{sup -6} Scm{sup -1} at 75 C (Li{sub 2}SiP{sub 2}), as determined by impedance measurements. Temperature-dependent solid-state {sup 7}Li NMR spectroscopy revealed low activation energies of about 36 kJ mol{sup -1} for Li{sub 8}SiP{sub 4} and about 47 kJ mol{sup -1} for Li{sub 2}SiP{sub 2}. Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by {sup 7}Li, {sup 29}Si, and {sup 31}P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP{sub 4} anions and Li counterions. Li{sub 8}SiP{sub 4} contains isolated SiP{sub 4} units surrounded by Li atoms, while Li{sub 2}SiP{sub 2} comprises a three-dimensional network based on corner-sharing SiP{sub 4} tetrahedra, with the Li ions located in cavities and channels. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Hydrogen isotope behavior on Li2TiO3

    International Nuclear Information System (INIS)

    Olivares, Ryan; Oda, Takuji; Tanaka, Satoru; Oya, Yasuhisa; Tsuchiya, Kunihiko

    2004-01-01

    The surface nature of Li 2 TiO 3 and the adsorption behavior of water on Li 2 TiO 3 surface were studied by XPS/UPS and FT/IR. Preliminary experiments by Ar ion sputtering, heating and water exposure were conducted, and the following results were obtained. (1) By Ar sputtering, Li deficient surface was made, and Ti was reduced from Ti 4+ to Ti 3+ . (2) By heating sputtered samples over 573-673 K, Li emerged on the surface and Ti was re-oxidized to Ti 4+ . The surface -OH was removed. The valence band of Li 2 TiO 3 became similar to that of TiO 2 . (3) By water exposure at 623 K, H 2 O could be adsorbed dissociatively on the surface. LiOH was not formed. (4) The nature of Li 2 TiO 3 surface resembles that of TiO 2 , rather than Li 2 O. (author)

  9. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.

    Science.gov (United States)

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2015-09-23

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  10. Self-flowing mortar for ferrocement in strengthening applications

    Directory of Open Access Journals (Sweden)

    Shamir Sakir

    2016-09-01

    Full Text Available Ferrocement technology is becoming more and more important nowadays for strengthening and retrofitting of concrete structures mainly due to its inherent strength properties. However, its labour intensive nature makes it undesirable for rapid strengthening works. In narrow spaces, strengthening with conventional ferrocement is very critical and also time consuming. Self-flowing mortar (SFM could be used with this technology to overcome these limitations. This article discusses the applicability of SFM in ferrocement technology. The aim of this study is to summarize available knowledge on SFM to make it feasible for optimization in different industrial applications.

  11. Electrochemical activity of Li{sub 2}FeTiO{sub 4} and Li{sub 2}MnTiO{sub 4} as potential active materials for Li ion batteries: A comparison with Li{sub 2}NiTiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kuezma, Mirjana; Dominko, Robert; Bele, Marjan; Jamnik, Janko [National Institute of Chemistry, Ljubljana (Slovenia); Meden, Anton [Faculty of Chemistry and Chemical Technology, University of Ljubljana (Slovenia); Makovec, Darko [Jozef Stefan Institute, Ljubljana (Slovenia); Gaberscek, Miran [National Institute of Chemistry, Ljubljana (Slovenia); Faculty of Chemistry and Chemical Technology, University of Ljubljana (Slovenia)

    2009-04-01

    We demonstrate, for the first time, a considerable electrochemical activity of two members of lithium transition element titanates: Li{sub 2}FeTiO{sub 4} and Li{sub 2}MnTiO{sub 4}. Both materials consist of 10-20 nm particles embedded in a conductive carbon coating. We show that not the coating but the small particle size is decisive for materials' activity. Li{sub 2}FeTiO{sub 4} shows a stable reversible capacity of up to 123 mA hg{sup -1} at C/20 and 60 C which is 83% of the theoretical value for exchange of 1 electron (148 mA hg{sup -1}). Li{sub 2}MnTiO{sub 4} could only be prepared in a nanosized form that contained about 30% of impurities. The capacity of the whole material (including impurities) is comparable to that of Li{sub 2}FeTiO{sub 4} but the cycling stability is much poorer. In contrast to the Fe and Mn analogues, the third member of the titanate family, Li{sub 2}NiTiO{sub 4}, shows a good electrochemistry even when the particle size is much larger (about 100 nm). During initial cycles at C/10 and 60 C, exchange of more than 1 electron per compound formula has been observed. The cycling stability at high temperatures, however, is poor. (author)

  12. Estudio de las soluciones de los ferroeléctricos LiNbO3 y LiTaO3

    Directory of Open Access Journals (Sweden)

    Villafuerte Castrejón, M. E.

    2002-06-01

    Full Text Available Ceramic compounds LiNbO3 and LiTaO3 have been widely studied in the last years due to their interesting optical and electrical properties (piezoelectricity, piroelectricity, ferroelectricity. For this reason these materials are regarded excellent candidates for technological applications. An important characteristic of these compounds is the facility to form solid solution series, a large number of cations can be accommodated in the lattice and thus different optical and electrical properties have been obtained. In this work a review of LiNbO3 and LiTaO3 solid solutions is presented, the formation mechanisms, cation sites in the unitcell and some of the most representative properties are also included.Los compuestos cerámicos LiNbO3 y LiTaO3 han sido estudiados considerablemente en los últimos años, debido a las interesantes propiedades ópticas y eléctricas (piezoelectricidad, piroelectricidad, ferroelectricidad que presentan. Por estas razones estos materiales se consideran excelentes candidatos para un gran número de aplicaciones tecnológicas. Una característica importante de estos compuestos, es la facilidad con la que forman series de soluciones sólidas, incorporando diferentes cationes en sus redes. Se han obtenido series de soluciones sólidas con cationes de diferente tamaño y diferente carga con la consiguiente variación de las propiedades eléctricas y ópticas. En este trabajo se presenta un resumen de los estudios de las soluciones sólidas de LiNbO3 y LiTaO3, los mecanismos de formación y los sitios que ocupan los cationes en la celda unidad, así como algunas de sus propiedades físicas más representativas.

  13. A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles

    Science.gov (United States)

    Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng

    2018-03-01

    As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.

  14. Fragmentation properties of 6Li

    International Nuclear Information System (INIS)

    Lovas, R.G.; Kruppa, A.T.; Beck, R.; Dickmann, F.

    1987-01-01

    The α+d and t+τ cluster structure of 6 Li is described in a microscopic α+d cluster model through quantities that enter into the description of cluster fragmentation processes. The states of the separate clusters α, d, t and τ are described as superpositions of Os Slater determinants belonging to different potential size parameters. To describe both the 6 Li and fragment state realistically, nucleon-nucleon forces optimized for the used model state spaces were constructed. The fragmentation properties predicted by them slightly differ from those calculated with some forces of common use provided the latter are modified so as to reproduce the α, d and 6 Li energies. (author) 61 refs.; 9 figs

  15. Effect of horizontal reinforcement in strengthening of masonry members

    International Nuclear Information System (INIS)

    Farooq, S.H.; Ilyas, M.; Ggaffar, A.

    2008-01-01

    An experimental research program was undertaken to ascertain the effectiveness of a new technique for strengthening masonry wall panels using steel strips on compressive and shear strength enhancement. The experimental work includes eight wall panels, four each for compressive and shear strength evaluation. This work was the phase I of extensive research project which include testing of strengthened masonry wall panels under monotonic load (Phase-I), static cyclic load (Phase-2) and dynamic load (Phase-3). The wall panels were strengthened with different steel strip arrangements, which consist of single/double face application of coarse and fine steel strip mesh with reduced spacing of horizontal strips. This paper investigates only the effectiveness of horizontal steel strips on strength enhancement. Four masonry wall panels are considered in two groups and in each group, one wall was retrofitted with coarse steel mesh on single face and on second wall fine steel mesh was applied on one side. Furthermore, test results of strengthened specimens are also compared with the un-strengthened specimen (REFE). The mechanisms by which load was carried were observed, varying from the initial, uncracked state, and the final, fully cracked state. The results demonstrate a quite significant increase in the compressive and shear capacity of strengthened panels as compared to REFE-panel. However, increase in the compressive strength of fine mesh above that of coarse mesh is negligible. The technique/approach is found quite viable for strengthening of masonry walls, for rehabilitation of old deteriorated buildings and unreinforced masonry structures in seismic zones. (author)

  16. The {sup 7}Li(d, p){sup 8}Li reaction in inverse kinematics at 5.44 MeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Pakou, A.; Aslanoglou, X.; Sgouros, O.; Soukeras, V. [The University of Ioannina, Department of Physics and HINP, Ioannina (Greece); Keeley, N. [National Centre for Nuclear Research, Otwock (Poland); Cappuzzello, F. [INFN Laboratori Nazionali del Sud, Catania (Italy); Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Acosta, L. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico City (Mexico); INFN Sezione di Catania, Catania (Italy); Agodi, C.; Calabrese, S.; Carbone, D.; Cavallaro, M. [INFN Laboratori Nazionali del Sud, Catania (Italy); Foti, A. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN Sezione di Catania, Catania (Italy); Marquinez-Duran, G.; Martel, I. [Universidad de Huelva, Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Campus de El Carmen, Huelva (Spain); Mazzocco, M.; Strano, E. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN Sezione di Padova, Padova (Italy); Parascandolo, C.; Pierroutsakou, D. [INFN Sezione di Napoli, Napoli (Italy); Rusek, K. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Zagatto, V.A.B. [Instituto de Fisica da Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2017-08-15

    New data are presented for the {sup 7}Li(d, p){sup 8}Li stripping reaction which, together with previously reported elastic scattering data taken in the same experiment, provide a coherent set. These data, plus existing measurements of the elastic scattering and stripping at 6 MeV/u were analysed within the same coupled reaction channels scheme. Good descriptions of the stripping data to the 0.0 MeV 2{sup +} and 0.98 MeV 1{sup +} states of {sup 8}Li were obtained using a set of left angle {sup 8}Li vertical stroke {sup 7}Li + n right angle overlaps taken from the literature, provided that the elastic scattering was also well described. Multi-step reaction paths made significant contributions to the description of the larger angle data. The asymptotic normalisation coefficients are compared with previous determinations. (orig.)

  17. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li2S/TiO2-Impregnated Hollow Carbon Nanofiber Cathodes.

    Science.gov (United States)

    Wang, Xinran; Bi, Xuanxuan; Wang, Shaona; Zhang, Yi; Du, Hao; Lu, Jun

    2018-05-16

    The high theoretical energy density of lithium-sulfur (Li-S) batteries makes them an alternative battery technology to lithium ion batteries. However, Li-S batteries suffer from low sulfur loading, poor charge transport, and dissolution of lithium polysulfide. In our study, we use the lithiated S, Li 2 S, as the cathode material, coupled with electrospun TiO 2 -impregnated hollow carbon nanofibers (TiO 2 -HCFs), which serve as the conductive agent and protective barrier for Li 2 S in Li-S batteries. TiO 2 -HCFs provide much improved electron/ionic conductivity and serve as a physical barrier, which prevents the dissolution of lithium polysulfides. The Li 2 S/TiO 2 -HCF composite delivers a discharge capacity of 851 mA h g Li 2 S -1 at 0.1C and the bilayer TiO 2 -HCFs/Li 2 S/TiO 2 -HCF composite delivers a high specific capacity of 400 mA h g Li 2 S -1 at 5C.

  18. Strengthening from Nb-rich clusters in a Nb-microalloyed steel

    International Nuclear Information System (INIS)

    Xie, Kelvin Y.; Zheng, Tianxiao; Cairney, Julie M.; Kaul, Harold; Williams, James G.; Barbaro, Frank J.; Killmore, Chris R.; Ringer, Simon P.

    2012-01-01

    We demonstrate that a Nb-microalloyed ultra-thin cast strip steel can be strengthened substantially without compromising ductility by performing a simple heat treatment at 700 °C for 4 min. The strengthening was attributed to a fine dispersion of Nb-rich solute atom clusters. These clusters had an average size of ∼60 atoms at peak hardness and resembled Guinier–Preston zones in Al–Cu alloys. The application of the Ashby–Orowan equation indicates that these clusters are potent strengthening agents when compared to conventional Nb(C,N) precipitation strengthening.

  19. Structural Evolution and Electrochemical Performance of Li2MnSiO4/C Nanocomposite as Cathode Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Min Wang

    2014-01-01

    Full Text Available High capacity Li2MnSiO4/C nanocomposite with good rate performance was prepared via a facile sol-gel method using ascorbic acid as carbon source. It had a uniform distribution on particle size of approximately 20 nm and a thin outlayer of carbon. The galvanostatic charge-discharge measurement showed that the Li2MnSiO4/C electrode could deliver an initial discharge capacity of 257.1 mA h g−1 (corresponding to 1.56 Li+ at a current density of 10 mA g−1 at 30°C, while the Li2MnSiO4 electrode possessed a low capacity of 25.6 mA h g−1. Structural amorphization resulting from excessive extraction of Li+ during the first charge was the main reason for the drastic capacity fading. Controlling extraction of Li+ could inhibit the amorphization of Li2MnSiO4/C during the delithiation, contributing to a reversible structural change and good cycling performance.

  20. Cellular gauge symmetry and the Li organization principle: General considerations.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F; Navarro, Jorge; Kun, Wu; Lin, Bi; Marijuán, Pedro C

    2017-12-01

    Based on novel topological considerations, we postulate a gauge symmetry for living cells and proceed to interpret it from a consistent Eastern perspective: the li organization principle. In our framework, the reference system is the living cell, equipped with general symmetries and energetic constraints standing for the intertwined biochemical, metabolic and signaling pathways that allow the global homeostasis of the system. Environmental stimuli stand for forces able to locally break the symmetry of metabolic/signaling pathways, while the species-specific DNA is the gauge field that restores the global homeostasis after external perturbations. We apply the Borsuk-Ulam Theorem (BUT) to operationalize a methodology in terms of topology/gauge fields and subsequently inquire about the evolution from inorganic to organic structures and to the prokaryotic and eukaryotic modes of organization. We converge on the strategic role that second messengers have played regarding the emergence of a unitary gauge field with profound evolutionary implications. A new avenue for a deeper investigation of biological complexity looms. Philosophically, we might be reminded of the duality between two essential concepts proposed by the great Chinese synthesizer Zhu Xi (in the XIII Century). On the one side the li organization principle, equivalent to the dynamic interplay between symmetry and information; and on the other side the qi principle, equivalent to the energy participating in the process-both always interlinked with each other. In contemporary terms, it would mean the required interconnection between information and energy, and the necessity to revise essential principles of information philosophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Improving the engineering strength of heat strengthened glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, YM

    2016-01-01

    Although glass is increasingly used as a structural material, glass is not produced to strength standards, like steel and concrete. Of the three types of glass: annealed, heat strengthened and fully tempered, only heat strengthened glass has the properties to function as a safe structural material.

  2. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    Science.gov (United States)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  3. New concept of critical infrastructure strengthening

    International Nuclear Information System (INIS)

    Gazizov, Talgat R.; Orlov, Pavel E.; Zabolotsky, Alexander M.; Kuksenko, Sergey P.

    2016-01-01

    Strengthening of critical infrastructure is considered. Modal reservation of electronics is proposed as a new concept of the strengthening. The concept combines a widely used cold backup and a recently proposed modal filtration. It makes electronics reliable as well as protected against electromagnetic interference, especially the ultra-wide band pulses. New printed circuit board structure is suggested for implementation of the proposed concept. Results of simulation in time and frequency domains are presented for the suggested structures. Considerable attenuation of dangerous excitations shows that the new concept and structure are promising.

  4. New concept of critical infrastructure strengthening

    Energy Technology Data Exchange (ETDEWEB)

    Gazizov, Talgat R.; Orlov, Pavel E.; Zabolotsky, Alexander M.; Kuksenko, Sergey P. [Tomsk State University of Control Systems and Radioelectronics, 634050, Lenin Ave., Tomsk (Russian Federation)

    2016-06-08

    Strengthening of critical infrastructure is considered. Modal reservation of electronics is proposed as a new concept of the strengthening. The concept combines a widely used cold backup and a recently proposed modal filtration. It makes electronics reliable as well as protected against electromagnetic interference, especially the ultra-wide band pulses. New printed circuit board structure is suggested for implementation of the proposed concept. Results of simulation in time and frequency domains are presented for the suggested structures. Considerable attenuation of dangerous excitations shows that the new concept and structure are promising.

  5. Big-Bang Nucleosynthesis with Negatively-Charged Massive Particles as a Cosmological Solution to the 6Li and 7Li Problems

    International Nuclear Information System (INIS)

    Kusakabe, Motohiko; Kajino, Toshitaka; Boyd, Richard N.; Yoshida, Takashi; Mathews, Grant J.

    2008-01-01

    Observations of metal poor halo stars exhibit a possible plateau of 6 Li abundance as a function of metallicity similar to that for 7 Li, suggesting a big bang origin. However, the inferred primordial abundance of 6 Li is ∼1000 times larger than that predicted by standard big bang nucleosynthesis (BBN) for the baryon-to-photon ratio inferred from the WMAP data. On the other hand, the inferred 7 Li primordial abundance is about 3 times smaller than the prediction. We study a possible simultaneous solution to both the problems of underproduction of 6 Li and overproduction of 7 Li in BBN. This solution involves a hypothetical massive, negatively-charged leptonic particle that would bind to the light nuclei produced in BBN, but would decay long before it could be detected. Because the particle gets bound to the existing nuclei after the cessation of the usual big bang nuclear reactions, a second longer epoch of nucleosynthesis can occur among X-nuclei which have reduced Coulomb barriers. We numerically carry out a fully dynamical BBN calculation, simultaneously solving the recombination and ionization processes of negatively-charged particles by normal and X-nuclei as well as many possible nuclear reactions among them. We confirm that a reaction in which the hypothetical particle is transferred can occur that greatly enhance the production of 6 Li while a reaction through an atomic excited state of X-nucleus depletes 7 Li. It is confirmed that BBN in the presence of these hypothetical particles, together with or without an event of stellar burning process, can simultaneously solve the two Li abundance problems

  6. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  7. Strengthening Masonry Arches with Lime-Based Mortar Composite

    Directory of Open Access Journals (Sweden)

    Valerio Alecci

    2017-06-01

    Full Text Available In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs. These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load

  8. Taking into account of dismantling constraints in the design of nuclear facilities

    International Nuclear Information System (INIS)

    Gouhier, E.; Moitrier, C.; Girones, P.; Pitrou, Y.; Poncet, P.; O'Sullivan, P.

    2014-01-01

    The taking into account of dismantling constraints in the design of nuclear facilities allows the reduction of the dosimetry during the dismantling operations, the reduction of the amount of wastes to manage and the saving of time and money by foreseeing an adequate and simple solution for each component. It is to notice that the strategy of life-extension strengthens that of dismantling because life-extension implies the possibility for any component of the reactor except the pressure vessel to be replaced. The feedback experience capitalized on various types of nuclear facilities have enabled IAEA and OECD to publish recommendations to facilitate dismantling. For instance, pipes and ventilation ducts must be designed to minimize the deposit of dust and residues, the natural porosity of concrete must be limited through the use of polishing products or a metal liner, the type and concentrations of impurities present in the structure materials must be controlled to limit radioactivation, the documentation describing the facility must be kept up to date, or the history of contamination events must be recorded all along the life of the facility. The integration of the dismantling constraints in the design stage is illustrated with 3 examples: the Georges Besse 2 enrichment fuel plant, new reactors (EPR, ASTRID and RJH), and ITER. (A.C.)

  9. Thermal conductivity and tritium retention in Li2O and Li2ZrO3

    International Nuclear Information System (INIS)

    Billone, M.C.

    1997-01-01

    Lithium oxide (Li 2 O) and lithium zirconate (Li 2 ZrO 3 ) are promising ceramic breeder materials for fusion reactor blankets. The thermal and tritium transport databases for these materials are reviewed. Algorithms are presented for predicting both the temperature distribution and the retained tritium profile across sintered-product and pebble-bed regions. Sample design calculations are also performed to demonstrate the relative advantages of each breeder ceramic. For Li 2 O, the thermal conductivity of sintered-product material has been measured over a wide range of temperatures and densities. Data are also available for the effective thermal conductivity of a pebble bed (in atmospheric helium) with 55% packing fraction for the 5-mm-diameter/75%-dense pebbles. Similar results are available for sintered-product and pebble-bed (60% packing fraction for 1.2-mm-diameter/80%-dense pebbles in atmospheric He) Li 2 ZrO 3 . Hall and Martin model predictions are in reasonable agreement with both sets of pebble bed data. Thus, the databases and calculational algorithms are well established for performing thermal analyses. 15 refs., 5 figs

  10. Strengthening of metallic alloys with nanometer-size oxide dispersions

    Science.gov (United States)

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  11. Practical approaches to implementing facility wide equipment strengthening programs

    International Nuclear Information System (INIS)

    Kincaid, R.H.; Smietana, E.A.

    1989-01-01

    Equipment strengthening programs typically focus on components required to ensure operability of safety related equipment or to prevent the release of toxic substances. Survival of non-safety related equipment may also be crucial to ensure rapid recovery and minimize business interruption losses. Implementing a strengthening program for non-safety related equipment can be difficult due to the large amounts of equipment involved and limited budget availability. EQE has successfully implemented comprehensive equipment strengthening programs for a number of California corporations. Many of the lessons learned from these projects are applicable to DOE facilities. These include techniques for prioritizing equipment and three general methodologies for anchoring equipment. Pros and cons of each anchorage approach are presented along with typical equipment strengthening costs

  12. Strengthening of metallic alloys with nanometer-size oxide dispersions

    Science.gov (United States)

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  13. A study on the electrolytic reduction of U3O8 to uranium metal in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Heo, J. M.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    New electrolytic reduction technology was proposed that is based on the intregration of metallization of U 3 O 8 and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxide to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, materials for cathode and anode electrode, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  14. Polycrystalline strengthening

    DEFF Research Database (Denmark)

    Hansen, Niels

    1985-01-01

    for the understanding of polycrystalline strengthening is obtained mainly from surface relief patterns and from bulk structures observed by transmission electron microscopy of thin foils. The results obtained by these methods are discussed and correlations are proposed. A number of features characterizing the deformed...... structure are summarized and the behavior of a number of metals and alloys is reviewed with emphasis on the structural changes in the interior of the grains and in the vicinity of the grain boundaries. The models for strain accommodation during deformation are discussed on the basis of the microstructures...

  15. Synthesis and characterization of Li2FeP2O7/C nanocomposites as cathode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Du, Juan; Jiao, Lifang; Wu, Qiong; Liu, Yongchang; Zhao, Yanping; Guo, Lijing; Wang, Yijing; Yuan, Huatang

    2013-01-01

    Highlights: • Li 2 FeP 2 O 7 /C were prepared by a simple solid-state reaction. • Carbon coating and reducing particle size are adopted to improve the discharge capacity. • The detailed study about the electrochemical properties of Li 2 FeP 2 O 7 is scarce. • Li 2 FeP 2 O 7 /C show superior electrochemical properties. -- Abstract: The pristine Li 2 FeP 2 O 7 and Li 2 FeP 2 O 7 /C nanocomposites with different content of carbon have been successfully synthesized via a simple solid-state reaction, using cheap glucose as carbon source. XRD and EDS patterns demonstrate the high purity of the products. SEM images exhibit that the size of the particles is about 50–500 nm. Electrochemical measurements reveal that carbon coating and reducing particle size significantly enhance the electrochemical performances of Li 2 FeP 2 O 7 . Particularly, the Li 2 FeP 2 O 7 /C sample with a carbon content of 4.88 wt.% displays the best performance with a specific discharge capacity of 103.1 mAh g −1 at 0.1 C, which is 93.7% of its one-electron theoretical capacity, meaning 110 mAh g −1 . Meanwhile, it shows favorable cycling stability and excellent rate performance, indicating its potential applicability in Li-ion batteries in the long term

  16. Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH{sub 4}){sub 3} and LiAlH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Leo Hudson, M. Sterlin; Raghubanshi, Himanshu; Pukazhselvan, D.; Srivastava, O.N. [Hydrogen Energy Center, Department of Physics, Banaras Hindu University, Varanasi-221005 (India)

    2010-03-15

    The present paper reports the effect of graphitic nanofibres (GNFs) for improving the desorption kinetics of LiMg(AlH{sub 4}){sub 3} and LiAlH{sub 4}. LiMg(AlH{sub 4}){sub 3} has been synthesized by mechano-chemical metathesis reaction involving LiAlH{sub 4} and MgCl{sub 2}. The enhancement in dehydrogenation characteristics of LiMg(AlH{sub 4}){sub 3} has been shown to be higher when graphitic nanofibres (GNFs) were used as catalyst. Out of two different types of nanofibres namely planar graphitic nanofibre (PGNF) and helical graphitic nanofibre (HGNF), the latter has been found to act as better catalyst. We observed that helical morphology of fibres improves the desorption kinetics and decreases the desorption temperature of both LiMg(AlH{sub 4}){sub 3} and LiAlH{sub 4}. The desorption temperature for 8 mol% HGNF admixed LiAlH{sub 4} gets lowered from 159 C to 128 C with significantly faster kinetics. In 8 mol% HGNF admixed LiMg(AlH{sub 4}){sub 3} sample, the desorption temperature gets lowered from 105 C to {proportional_to}70 C. The activation energy calculated for the first step decomposition of LiAlH{sub 4} admixed with 8 mol% HGNF is {proportional_to}68 kJ/mol, where as that for pristine LiAlH{sub 4} it is 107 kJ/mol. The activation energy calculated for as synthesized LiMg(AlH{sub 4}){sub 3} is {proportional_to}66 kJ/mol. Since the first step decomposition of LiMg(AlH{sub 4}){sub 3} occurs during GNF admixing, the activation energy for initial step decomposition of GNF admixed LiMg(AlH{sub 4}){sub 3} could not be estimated. (author)

  17. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Science.gov (United States)

    Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-01

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.

  18. RC T beams strengthened to shear with carbon fiber composites

    Directory of Open Access Journals (Sweden)

    L. A. Spagnolo JR

    Full Text Available This paper presents the experimental data of the behavior of reinforced concrete beams strengthened to shear with carbon fiber composites. The tests were composed of eight T beams, b w=15 cm, h=40 cm, flange width 40 cm, flange height 8 cm, and length 300 cm, divided into two series with the same longitudinal steel reinforcement and a reference beam without strengthening in each series. The beams had two types of arrangement of internal steel stirrups. The test variables were the internal and external geometric ratio of the transverse reinforcement and the mechanical ratio of carbon fiber composites stirrups. All the beams were loaded at two points. The strengthened beams were submitted to a preloading and the strengthening was applied to the cracked beam. All the beams were designed in order to guarantee shear failure, and the ultimate load of the strengthened beams was 36% to 54% greater than the reference beams. The Cracking Sliding Model applied to the strengthened beams was evaluated and showed good agreement with the experimental results.

  19. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives

    International Nuclear Information System (INIS)

    Eshetu, Gebrekidan Gebresilassie; Grugeon, Sylvie; Gachot, Grégory; Mathiron, David; Armand, Michel; Laruelle, Stephane

    2013-01-01

    Lithium bis(fluorosulfonyl) imide (LiFSI) is regarded as an alternative to the classical LiPF 6 salt in today's LiFePO 4 /graphite-based Li-ion batteries electrolyte owing to its slightly higher conductivity and lower fluorine content. In an attempt to better evaluate the safety issues, here we report the comparative study of the LiFSI and LiPF 6 based electrolyte/lithiated graphite interface thermal behavior. DSC measurements with LiFSI-based electrolyte reveal a sharp exotherm with large heat release though at higher onset and peak temperatures compared to LiPF 6 -based electrolyte. With the help of GC/MS, 19 F NMR and ESI-HRMS analyses, we assume that this highly energetic peak around 200 °C, which is dependant upon the lithium content, is mainly related to electrochemical reduction of FSI − anion. In a strategy to limit the probability and damage of thermal runaway event, electrolyte additives such as vinylene carbonate (VC), fluoro ethylene carbonate (FEC), di-isocyanato hexane (DIH) and toluene di-isocyanate (TDI) have been investigated and shown to significantly lower the energy associated with the exothermic phenomenon

  20. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Luciano T., E-mail: ltcosta@id.uff.br [Instituto de Química-Departamento de Físico-Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n CEP, 24020-150 Niterói, Rio de Janeiro (Brazil); Sun, Bing; Jeschull, Fabian; Brandell, Daniel [Department of Chemistry—Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala (Sweden)

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li{sup +} coordination and transportation were studied in the ternary electrolyte system, i.e., PEO{sub 16}LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  1. A miscibility gap in LiF-BeF₂ and LiF-BeF₂-ThF₄

    NARCIS (Netherlands)

    Meer, J.P.M. van der; Konings, R.J.M.; Jacobs, M.H.G.; Oonk, H.A.J.

    2005-01-01

    LiF BeF₂ and LiF BeF₂ ThF₄ are key systems for Molten Salt Reactor fuel. The liquid phase of these systems has been assessed using Redlich Kister polynomials. The result shows a miscibility gap on the BeF₂-rich side. This has never been proven experimentally. Nevertheless, evidence for a two liquids

  2. Li ion transport in sputter deposited LiCoO{sub 2} thin films and glassy borate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stockhoff, Tobias; Gallasch, Tobias; Schmitz, Guido [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Materialphysik, Muenster (Germany)

    2010-07-01

    LiCoO{sub 2} membranes are key components of current battery technology. We investigate sputter-deposited thin films of these materials aiming at the application in all-solid-state thin film batteries. For this, LiCoO{sub 2} films (10-200 nm) were deposited onto ITO-coated glass substrates by ion beam sputtering. In addition, a part of these films are coated by an ion-conductive membrane of Li{sub 2}O-B{sub 2}O{sub 3} glasses in the thickness range of 50 to 300 nm. Structural, chemical and electrical properties of the layers are studied by means of TEM(EELS) and various electrical methods (cyclic voltammetry, chrono-amperometry/-potentiometry). Since the color of the LiCoO{sub 2} films changes from red-brown to grey during de-intercalation of Li and the substrate as well as the glassy membrane deposited on top are optical transparent, reversible Li de- and intercalation can be directly demonstrated and quantified by a measurement of light transmission through the layered system. Samples coated with an ion-conductive membrane reveal a characteristic delay in switching optical transparency which is due to the slower transport across the membrane. Varying the thickness of the glassy membrane, the d.c. ion-conductivity and permeation through the membrane is determined quantitatively. Using thin membranes in the range of a few tens of nanometers the critical current densities are way sufficient for battery applications.

  3. Charging a Li-O₂ battery using a redox mediator.

    Science.gov (United States)

    Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G

    2013-06-01

    The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

  4. Object Classification Using Airborne Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    PAN Suoyan

    2018-02-01

    Full Text Available Airborne multispectral LiDAR system,which obtains surface geometry and spectral data of objects,simultaneously,has become a fast effective,large-scale spatial data acquisition method.Multispectral LiDAR data are characteristics of completeness and consistency of spectrum and spatial geometric information.Support vector machine (SVM,a machine learning method,is capable of classifying objects based on small samples.Therefore,by means of SVM,this paper performs land cover classification using multispectral LiDAR data. First,all independent point cloud with different wavelengths are merged into a single point cloud,where each pixel contains the three-wavelength spectral information.Next,the merged point cloud is converted into range and intensity images.Finally,land-cover classification is performed by means of SVM.All experiments were conducted on the Optech Titan multispectral LiDAR data,containing three individual point cloud collected by 532 nm,1024 nm,and 1550 nm laser beams.Experimental results demonstrate that ①compared to traditional single-wavelength LiDAR data,multispectral LiDAR data provide a promising solution to land use and land cover applications;②SVM is a feasible method for land cover classification of multispectral LiDAR data.

  5. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery

    International Nuclear Information System (INIS)

    Yu Lihong; Qiu Xinping; Xi Jingyu; Zhu Wentao; Chen Liquan

    2006-01-01

    The surface of spinel LiMn 2 O 4 was modified with TiO 2 by a simple sol-gel method to improve its electrochemical performance at elevated temperatures and higher working potentials. Compared with pristine LiMn 2 O 4 , surface-modification improved the cycling stability of the material. The capacity retention of TiO 2 -modified LiMn 2 O 4 was more than 85% after 60 cycles at high potential cycles between 3.0 and 4.8 V at room temperature and near to 90% after 30 cycles at elevated temperature of 55 deg. C at 1C charge-discharge rate. SEM studies shows that the surface morphology of TiO 2 -modified LiMn 2 O 4 was different from that of pristine LiMn 2 O 4 . Powder X-ray diffraction indicated that spinel was the only detected phase in TiO 2 -modified LiMn 2 O 4 . Introduction of Ti into LiMn 2 O 4 changed the electronic structures of the particle surface. Therefore a surface solid compound of LiTi x Mn 2-x O 4 may be formed on LiMn 2 O 4 . The improved electrochemical performance of surface-modified LiMn 2 O 4 was attributed to the improved stability of crystalline structure and the higher Li + conductivity

  6. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  7. Study on the complex Li-N-H hydrogen storage system

    International Nuclear Information System (INIS)

    Du, Linnan

    2014-01-01

    Nowadays the developments of clean energy technologies become more and more necessary and important. Hydrogen-powered vehicles are a promising alternative to the current fossil fuel based vehicle infrastructure. However, so far there is still no hydrogen storage material which can fit the standards for an on-board hydrogen storage system. On this background, this work deals with the development of a hydrogen storage material. The focus is put on the Lithium amide + Lithium hydride (LiNH 2 +LiH) hydrogen storage system because of its high theoretical capacity and relatively low desorption temperature. Moreover, Lithium amide + Magnesium hydride (LiNH 2 +MgH 2 ) as an alternative system was also briefly studied. The aims of this work are to achieve a deeper understanding of the reaction mechanism with the help of microstructural and thermodynamic studies, building a model to describe the sorption process and then to improve the system properties. As the desorption from LiNH 2 particles is the first step of the desorption process of the LiNH 2 +LiH system, the properties and sorption behavior of LiNH 2 sample materials were studied separately first. So the work in this thesis can be mainly divided into two parts: LiNH 2 samples and LiNH 2 +LiH samples. In order to activate the sample materials, both dry ball milling and wet ball milling (with tetrahydrofuran) methods were used. Boron nitride was mainly applied as catalyst. Furthermore, titanium tetrachloride was also used as an alternative additive. The sorption behaviors were studied with the help of a volumetric and a gravimetric system. Further investigation methods include X-ray Diffraction (XRD) method, Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) method, Differential Thermal Analysis (DTA)/ Thermo Gravimetric Analysis (TGA)/ Mass Spectrometry (MS), and others. The results obtained in this work show that no obvious microstructure differences have been found between the wet ball milled and dry

  8. Solid state synthesis of stoichiometric LiCoO2 from mechanically activated Co-Li2CO3 mixtures

    International Nuclear Information System (INIS)

    Berbenni, Vittorio; Milanese, Chiara; Bruni, Giovanna; Marini, Amedeo

    2006-01-01

    Stoichiometric lithium cobalt oxide (LiCoO 2 ) has been synthesized by solid state reaction of mixtures of the system Co-0.5Li 2 CO 3 after mechanical activation by high energy milling. The differences in the reaction mechanism and in product stoichiometry with respect to what happens when starting from the non activated (physical) system have been brought into evidence by TG analysis. Furthermore it has been shown that stoichiometric LiCoO 2 is obtained by a 200 h annealing of the activated mixture at temperatures as low as 400 deg. C. Finally, it has been revealed that longer activation times (150 h) result in Co oxidation to Co 3 O 4 that, in turn, hampers the formation of stoichiometric LiCoO 2

  9. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Montag, Benjamin W., E-mail: bmontag@ksu.edu; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-11

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled {sup 3}He and {sup 10}BF{sub 3} detectors. The {sup 6}Li(n,t){sup 4}He reaction yields a total Q-value of 4.78 MeV, larger than {sup 10}B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% {sup 6}Li) or enriched {sup 6}Li (usually 95% {sup 6}Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10{sup −6} Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I–V curve measurements, ranging from 10{sup 6}–10{sup 11} Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed. - Highlights: • Devices were fabricated from in-house synthesized and purified LiZnAs and LiZnP. • Devices ranged in bulk resistivity from 10{sup 6}–10{sup 11} Ω cm. • Devices showed sensitivity to 5.48 MeV alpha particles. • Devices were characterized with a 337 nm laser light. • Devices were evaluated

  10. Effects of the LiFePO4 content and the preparation method on the properties of (LiFePO4+AC/Li4Ti5O12 hybrid battery–capacitors

    Directory of Open Access Journals (Sweden)

    XUE BU HU

    2010-09-01

    Full Text Available Two composite cathode materials containing LiFePO4 and activated carbon (AC were synthesized by an in-situ method and a direct mixing technique, which are abbreviated as LAC and DMLAC, respectively. Hybrid battery–capacitors LAC/Li4Ti5O12 and DMLAC/Li4Ti5O12 were then assembled. The effects of the content of LiFePO4 and the preparation method on the cyclic voltammograms, the rate of charge–discharge and the cycle performance of the hybrid battery–capacitors were investigated. The results showed the overall electrochemical performance of the hybrid battery–capacitors was the best when the content of LiFePO4 in the composite cathode materials was in the range from 11.8 to 28.5 wt. %, while the preparation method had almost no impact on the electrochemical performance of the composite cathodes and hybrid battery–capacitors. Moreover, the hybrid battery–capacitor devices had a good cycle life performance at high rates. After 1000 cycles, the capacity loss of the DMLAC/Li4Ti5O12 hybrid battery–capacitor device at 4C was no more than 4.8 %. Moreover, the capacity loss would be no more than 9.6 % after 2000 cycles at 8C.

  11. The tin-rich copper lithium stannides: Li{sub 3}Cu{sub 6}Sn{sub 4} and Li{sub 2}CuSn{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Vienna Univ. (Austria). Inst. of Inorganic Chemistry (Materials Chemisrty); Effenberger, Herta S. [Vienna Univ. (Austria). Inst. of Mineralogy and Crystallography

    2015-05-01

    The Sn rich ternary intermetallic compounds Li{sub 3}Cu{sub 6}Sn{sub 4} (CSD-427097) and Li{sub 2}CuSn{sub 2} (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li{sub 3}Cu{sub 6}Sn{sub 4} crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe{sub 6}Ge{sub 6} (a = 5.095(2) Aa, c = 9.524(3) Aa; wR{sub 2} = 0.059; 239 unique F{sup 2}-values, 17 free variables). Li{sub 3}Cu{sub 6}Sn{sub 4} is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li{sub 2}CuSn{sub 2} (space group I4{sub 1}/amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR{sub 2} = 0.033; 213 unique F{sup 2}-values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  12. Study of Li atom diffusion in amorphous Li3PO4 with neural network potential

    Science.gov (United States)

    Li, Wenwen; Ando, Yasunobu; Minamitani, Emi; Watanabe, Satoshi

    2017-12-01

    To clarify atomic diffusion in amorphous materials, which is important in novel information and energy devices, theoretical methods having both reliability and computational speed are eagerly anticipated. In the present study, we applied neural network (NN) potentials, a recently developed machine learning technique, to the study of atom diffusion in amorphous materials, using Li3PO4 as a benchmark material. The NN potential was used together with the nudged elastic band, kinetic Monte Carlo, and molecular dynamics methods to characterize Li vacancy diffusion behavior in the amorphous Li3PO4 model. By comparing these results with corresponding DFT calculations, we found that the average error of the NN potential is 0.048 eV in calculating energy barriers of diffusion paths, and 0.041 eV in diffusion activation energy. Moreover, the diffusion coefficients obtained from molecular dynamics are always consistent with those from ab initio molecular dynamics simulation, while the computation speed of the NN potential is 3-4 orders of magnitude faster than DFT. Lastly, the structure of amorphous Li3PO4 and the ion transport properties in it were studied with the NN potential using a large supercell model containing more than 1000 atoms. The formation of P2O7 units was observed, which is consistent with the experimental characterization. The Li diffusion activation energy was estimated to be 0.55 eV, which agrees well with the experimental measurements.

  13. Structural improvement of strengthened deck panels with externally bonded plates

    International Nuclear Information System (INIS)

    Sim, Jongsung; Oh, Hongseob

    2005-01-01

    Concrete bridge decks require eventual replacement and rehabilitation due to decreasing load-carrying capacity. This paper compares different strengthening design procedures that improve the usability and structural performance of bridge decks. The failure characteristics of bridge decks strengthened with various materials such as carbon fiber sheet, glass fiber sheet, steel plate, and grid CFRP and GFRP are analyzed, and the theoretical load-carrying capacities are evaluated using traditional beam and yield line theory, and punching shear analysis. The strengthening materials increase the punching shear strength of the deck and change the failure mode of the strengthened panel

  14. Nuclear Magnetic Resonance Imaging of Li-ion Battery

    Directory of Open Access Journals (Sweden)

    D. Ohno

    2010-12-01

    Full Text Available Nuclear magnetic resonance (NMR imaging has high sensitivity to proton (1H and lithium (7Li. It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4 showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR, it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process.

  15. Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells

    International Nuclear Information System (INIS)

    Waldmann, Thomas; Wohlfahrt-Mehrens, Margret

    2017-01-01

    During charging at low temperatures, metallic Lithium can be deposited on the surface of graphite anodes of Li-ion cells. This Li plating does not only lead to fast capacity fade, it can also impair the safety behavior. The present study observes the effect of rest periods between Li plating and subsequent accelerated rate calorimetry (ARC) tests. As an example, commercial 3.25 Ah 18650-type cells with graphite anodes and NCA cathodes are cycled at 0 °C to provoke Li plating. It is found that the rest period at 25 °C between Li plating and the ARC tests has a significant influence on the onset temperature of exothermic reactions (T SH ), the onset temperature of thermal runaway (T TR ), the maximum temperature, the self-heating rate, and on damage patterns of 18650 cells. The results are discussed in terms of chemical intercalation of Li plating into adjacent graphite particles during the rest period. The exponential increase of capacity recovery and T SH as a function of time suggests a reaction of 1st order for the relaxation process.

  16. Üliõpilasteatrid peavad Itaalias kongressi

    Index Scriptorium Estoniae

    2006-01-01

    Itaalia väikelinnas Urbinos lõpeb 27. juulil sealse ülikooli teatri Teatro Aenigma ja Rahvusvahelise Üliõpilasteatrite Assotsiatsiooni koostöös kuues tudengiteatrite maailmakongress. Eestist osaleb ja peab ettekande lavastaja ja Tartu Üliõpilasteatri kunstiline juht Kalev Kudu

  17. Infrastructure Investment Protection with LiDAR

    Science.gov (United States)

    2012-10-15

    The primary goal of this research effort was to explore the wide variety of uses of LiDAR technology and to evaluate their : applicability to NCDOT practices. NCDOT can use this information about LiDAR in determining how and when the : technology can...

  18. Pebble fabrication of super advanced tritium breeders using a solid solution of Li2+xTiO3+y with Li2ZrO3

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hoshino

    2016-12-01

    Full Text Available Lithium titanate with excess lithium (Li2+xTiO3+y is one of the most promising candidates among advanced tritium breeders for demonstration power plant reactors because of its good tritium release characteristics. However, the tritium breeding ratio (TBR of Li2+xTiO3+y is smaller than that of e.g., Li2O or Li8TiO6 because of its lower Li density. Therefore, new Li-containing ceramic composites with both high stability and high Li density have been developed. Thus, this study focused on the development of a solid solution with a new characteristic. The solid-solution pebbles of Li2+xTiO3+y with Li2ZrO3 (Li2+x(Ti,ZrO3+y, designated as LTZO, were fabricated by an emulsion method. The X-ray diffraction patterns of sintered LTZO pebbles are approximately the same as those of Li2+xTiO3+y pebbles, and no peaks attributable to Li2ZrO3 are observed. These results demonstrate that LTZO pebbles are not a two-phase material but rather a solid solution. Furthermore, LTZO pebbles were easily sintered under air. Thus, the LTZO solid solution is a candidate breeder material for super advanced (SA tritium breeders.

  19. Electron-microscopic investigations of dispersion-strengthened superalloys

    International Nuclear Information System (INIS)

    Schroeder, J.H.; Arzt, E.

    1988-01-01

    Oxide dispersion strengthened (ODS) superalloys possess a high creep strength up to temperatures above 1000 0 C. This is due to a fine dispersion of incoherent Y 2 O 3 particles in connection with a highly elongated grain structure. To investigate the production and properties of ODS alloys, the grain structure was studied and the shape and distribution of dispersoids were characterized after each of the various production steps. Because the interactions between lattice dislocations and dispersoids control the deformation behaviour at high temperatures, the dislocation-dispersoid configurations in crept specimens have been studied by a TEM stereo technique and under weak-beam conditions. It was possible to detect strain fields around the dispersoids using TEM. The results lead to an improved understanding of dispersion strengthening at high temperatures and provide guidelines for the optimum use of this strengthening mechanism. (orig.) [de

  20. Quantum-Chemical Approach to NMR Chemical Shifts in Paramagnetic Solids Applied to LiFePO4 and LiCoPO4.

    Science.gov (United States)

    Mondal, Arobendo; Kaupp, Martin

    2018-04-05

    A novel protocol to compute and analyze NMR chemical shifts for extended paramagnetic solids, accounting comprehensively for Fermi-contact (FC), pseudocontact (PC), and orbital shifts, is reported and applied to the important lithium ion battery cathode materials LiFePO 4 and LiCoPO 4 . Using an EPR-parameter-based ansatz, the approach combines periodic (hybrid) DFT computation of hyperfine and orbital-shielding tensors with an incremental cluster model for g- and zero-field-splitting (ZFS) D-tensors. The cluster model allows the use of advanced multireference wave function methods (such as CASSCF or NEVPT2). Application of this protocol shows that the 7 Li shifts in the high-voltage cathode material LiCoPO 4 are dominated by spin-orbit-induced PC contributions, in contrast with previous assumptions, fundamentally changing interpretations of the shifts in terms of covalency. PC contributions are smaller for the 7 Li shifts of the related LiFePO 4 , where FC and orbital shifts dominate. The 31 P shifts of both materials finally are almost pure FC shifts. Nevertheless, large ZFS contributions can give rise to non-Curie temperature dependences for both 7 Li and 31 P shifts.

  1. Kahel teemal lahkuva üliõpilasesindusega / Merle Erits

    Index Scriptorium Estoniae

    Erits, Merle

    2000-01-01

    Tallinna Pedagoogikaülikooli peagi ametist lahkuv üliõpilasesindus korraldab 16. okt. koostöös Tartu Ülikooli ja Tallinna Tehnikaülikooliga üliõpilaste ja õppejõudude konverentsi "Kvaliteet kõrghariduses". Asutus Elamu nõukogus, mis tegeleb ühiselemuprobleemidega, esindavad üliõpilaskonda kolm liiget

  2. Study for electrochemical behavior of uranium oxide in a molten LiCl-Li2O system

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Jung, Ki Jung; Park, Seong Won

    2005-01-01

    Interest in the electrolytic reduction of uranium oxide is increasing in the treatment of spent fuel oxides. With complicated and expensive procedures many reactive metals can be prepared in a pure metal form, the electrochemical reduction of a metal oxide has been recently proposed in metallurgy. The electrochemical reduction process is simple and rapid when compared to the conventional processes. The process can reduce the production costs and be applicable to a wide range of metal oxides. Chen et al. proposed the direct electrochemical reduction of titanium dioxide to titanium in a molten calcium chloride. Argonne National Laboratory (ANL) has reported the experimental results of an electrochemical reduction of the uranium oxide fuel in a bench-scale apparatus with a cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. Gourishankar et al. classified the mechanisms of the electrolytic reduction of the metal oxides in a LiCl-Li 2 O molten salt system into two types; the simultaneous reduction and the direct electrochemical reduction. The uranium oxide in LiCl-Li 2 O molten salt was converted to uranium metal according to two mechanisms. Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology in handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. In this work, cyclic voltammograms for a LiCl-3 wt% Li 2 O system and an U 3 O 8 -LiCl-3 wt% Li 2 O system with the integrated cathode assembly have been obtained. From the cyclic

  3. Characterization of Li4Ti5O12 and LiMn2O4 spinel materials treated with aqueous acidic solutions

    NARCIS (Netherlands)

    Simon, D.R.

    2007-01-01

    In this thesis an investigation of two spinel materials, Li4Ti5O12 and LiMn2O4 used for Li-ion battery applications is performed interms of formation and reactivity towards acidic solutions. Subsequent characterizations such as structural, magnetic, chemical, and electrochemical characterizations

  4. Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics

    Science.gov (United States)

    Dai, Xiongping; Tang, Xinjia

    2017-11-01

    Let π : T × X → X, written T↷π X, be a topological semiflow/flow on a uniform space X with T a multiplicative topological semigroup/group not necessarily discrete. We then prove: If T↷π X is non-minimal topologically transitive with dense almost periodic points, then it is sensitive to initial conditions. As a result of this, Devaney chaos ⇒ Sensitivity to initial conditions, for this very general setting. Let R+↷π X be a C0-semiflow on a Polish space; then we show: If R+↷π X is topologically transitive with at least one periodic point p and there is a dense orbit with no nonempty interior, then it is multi-dimensional Li-Yorke chaotic; that is, there is a uncountable set Θ ⊆ X such that for any k ≥ 2 and any distinct points x1 , … ,xk ∈ Θ, one can find two time sequences sn → ∞ ,tn → ∞ with Moreover, let X be a non-singleton Polish space; then we prove: Any weakly-mixing C0-semiflow R+↷π X is densely multi-dimensional Li-Yorke chaotic. Any minimal weakly-mixing topological flow T↷π X with T abelian is densely multi-dimensional Li-Yorke chaotic. Any weakly-mixing topological flow T↷π X is densely Li-Yorke chaotic. We in addition construct a completely Li-Yorke chaotic minimal SL (2 , R)-acting flow on the compact metric space R ∪ { ∞ }. Our various chaotic dynamics are sensitive to the choices of the topology of the phase semigroup/group T.

  5. Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.

    Science.gov (United States)

    Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred

    2011-10-10

    We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).

  6. New generation Li+ NASICON glass-ceramics for solid state Li+ ion battery applications

    Science.gov (United States)

    Sharma, Neelakshi; Dalvi, Anshuman

    2018-04-01

    Lithiumion conducting NASICON glass-ceramics have been prepared by a novel planetary ball milling assisted synthesis route. Structural, thermal and electrical investigations have been carried out on the novel composites composed of LiTi(PO4)3 (LTP) and 50[Li2SO4]-50[Li2O-P2O5] ionic glass reveal interesting results. Composites were prepared keeping the concentration of the ionic glass fixed at 20 wt%. X-ray diffraction and diffe rential thermal analysis confirm the glass-ceramic formation. Moreover, the structure of LTP remains intact during the glass -ceramic formation. Electrical conductivity of the glass-ceramic composite is found to be higher than that of the pristine glass (50LSLP) and LTP. The bulk and grain boundary conductivities of LTP exhibit improvement in composite. Owing to high ionic conductivity and thermal stability, novel glass -ceramic seems to be a promising candidate for all solid-state battery applications.

  7. Fluoro-Carbonate Solvents for Li-Ion Cells

    International Nuclear Information System (INIS)

    NAGASUBRAMANIAN, GANESAN

    1999-01-01

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF(sub 6) was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF(sub 6) electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to and lt;5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature

  8. ON THE RELATIVE ABUNDANCE OF LiH AND LiH+ MOLECULES IN THE EARLY UNIVERSE: NEW RESULTS FROM QUANTUM REACTIONS

    International Nuclear Information System (INIS)

    Bovino, Stefano; Tacconi, Mario; Gianturco, Franco A.; Galli, Daniele; Palla, Francesco

    2011-01-01

    The relative efficiencies of the chemical pathways that can lead to the destruction of LiH and LiH + molecules, conjectured to be present in the primordial gas and to control molecular cooling processes in the gravitational collapse of the post-recombination era, are revisited by using accurate quantum calculations for the several reactions involved. The new rates are employed to survey the behavior of the relative abundance of these molecules at redshifts of interest for early universe conditions. We find significant differences with respect to previous calculations, the present ones yielding LiH abundances higher than LiH + at all redshifts.

  9. Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS

    Science.gov (United States)

    Bell, D. R.; Hervig, R. L.; Buseck, P. R.

    2005-01-01

    Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.

  10. Deposition of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films on the lithium-ion conductor of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xian Ming, E-mail: xianmingwu@163.com [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China); Xiangxi Minerals and New Materials Research and Service Center, Jishou Hunan 416000 (China); Chen, Shang [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China); Xiangxi Minerals and New Materials Research and Service Center, Jishou Hunan 416000 (China); He, Ze Qiang; Chen, Shou Bin; Li, Run Xiu [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China)

    2015-08-31

    LiMn{sub 2}O{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12} films were deposited on the lithium-ion conductor of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet by spray technique. The effect of annealing temperature, annealing time, Li:Ti and Li:Mn molar ratio on the phase and crystallization of the films were investigated with X-ray diffraction. The LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3}/Li{sub 4}Ti{sub 5}O{sub 12} thin-film lithium-ion battery using Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet as both electrolyte and substrate was also studied. The results show that the effect of annealing temperature, annealing time, Li:Ti and Li:Mn molar ratio has great effect on the phase and crystallization of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films deposited on the Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet. The optimal Li:Ti and Li:Mn molar ratio for the deposition of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet are 7.2:5 and 1.05:2, respectively. The optimal annealing temperature and time for the deposition of LiMn{sub 2}O{sub 4} film on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet are 650 °C and 10 min. While those for Li{sub 4}Ti{sub 5}O{sub 12} film are 700 °C and 10 min. The LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3}/Li{sub 4}Ti{sub 5}O{sub 12} thin-film battery offers a working voltage about 2.25 V and can be easily cycled. - Highlights: • LiMn{sub 2}O{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12} films spray deposited on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet • Film crystal phase depends on the spray solution composition and annealing conditions. • Prepared thin-film lithium-ion battery employs sintered pellet as electrolyte and substrate. • LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1

  11. Core-shell Li2S@Li3PS4 nanoparticles incorporated into graphene aerogel for lithium-sulfur batteries with low potential barrier and overpotential

    Science.gov (United States)

    Jiao, Zheng; Chen, Lu; Si, Jian; Xu, Chuxiong; Jiang, Yong; Zhu, Ying; Yang, Yaqing; Zhao, Bing

    2017-06-01

    Lithium sulfide as a promising cathode material not only have a high theoretical specific capacity, but also can be paired with Li-free anode material to avoid potential safety issues. However, how to prepare high electrochemical performance material is still challenge. Herein, we present a facile way to obtain high crystal quality Li2S nanomaterials with average particle size of about 55 nm and coated with Li3PS4 to form the nano-scaled core-shell Li2S@Li3PS4 composite. Then nano-Li2S@Li3PS4/graphene aerogel is prepared by a simple liquid infiltration-evaporation coating process and used directly as a composite cathode without metal substrate for lithium-sulfur batteries. Electrochemical tests demonstrate that the composite delivers a high discharge capacity of 934.4 mAh g-1 in the initial cycle and retains 485.5 mAh g-1 after 100 cycles at 0.1 C rate. In addition, the composite exhibits much lower potential barrier (∼2.40 V) and overpotential compared with previous reports, indicating that Li2S needs only a little energy to be activated. The excellent electrochemical performances could be attributed to the tiny particle size of Li2S and the superionic conducting Li3PS4 coating layer, which can shorten Li-ion and electron diffusion paths, improve the ionic conductivity, as well as retarding polysulfides dissolution into the electrolyte to some extent.

  12. Study on the complex Li-N-H hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Du, Linnan

    2014-07-01

    Nowadays the developments of clean energy technologies become more and more necessary and important. Hydrogen-powered vehicles are a promising alternative to the current fossil fuel based vehicle infrastructure. However, so far there is still no hydrogen storage material which can fit the standards for an on-board hydrogen storage system. On this background, this work deals with the development of a hydrogen storage material. The focus is put on the Lithium amide + Lithium hydride (LiNH{sub 2}+LiH) hydrogen storage system because of its high theoretical capacity and relatively low desorption temperature. Moreover, Lithium amide + Magnesium hydride (LiNH{sub 2}+MgH{sub 2}) as an alternative system was also briefly studied. The aims of this work are to achieve a deeper understanding of the reaction mechanism with the help of microstructural and thermodynamic studies, building a model to describe the sorption process and then to improve the system properties. As the desorption from LiNH{sub 2} particles is the first step of the desorption process of the LiNH{sub 2}+LiH system, the properties and sorption behavior of LiNH{sub 2} sample materials were studied separately first. So the work in this thesis can be mainly divided into two parts: LiNH{sub 2} samples and LiNH{sub 2}+LiH samples. In order to activate the sample materials, both dry ball milling and wet ball milling (with tetrahydrofuran) methods were used. Boron nitride was mainly applied as catalyst. Furthermore, titanium tetrachloride was also used as an alternative additive. The sorption behaviors were studied with the help of a volumetric and a gravimetric system. Further investigation methods include X-ray Diffraction (XRD) method, Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) method, Differential Thermal Analysis (DTA)/ Thermo Gravimetric Analysis (TGA)/ Mass Spectrometry (MS), and others. The results obtained in this work show that no obvious microstructure differences have been found

  13. Uncommon potential hysteresis in the Li/Li2xVO(H2-xPO4)2 (0 ≤ x ≤ 2) system

    International Nuclear Information System (INIS)

    Dubarry, M.; Gaubicher, J.; Guyomard, D.; Wallez, G.; Quarton, M.; Baehtz, C.

    2008-01-01

    Physical and electrochemical investigations of vanadium phosphates, Li 2x VO(H 2-x PO 4 ) 2 (0 + /Li + ionic exchange from VO(H 2 PO 4 ) 2 to Li 2 VO(HPO 4 ) 2 leads to grain decrepitation. Further ionic exchange toward formation of Li 4 VO(PO 4 ) 2 lowers the symmetry. As inferred from potentiodynamic cycling correlated to ex situ and in situ X-ray diffraction (XRD), the system Li/Li 4 VO(PO 4 ) 2 shows several phase transformations that are associated with thermodynamical potential hysteresis that span from roughly 15 mV to more than 1.8 V. Small hysteresis are associated with topotactic reactions and with V V /V IV and V III /V II redox couples. Large potential hysteresis values (>1 V) were observed when oxidation of V III to V IV is involved

  14. Sol–gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhong Shengkui; Wu Ling; Liu Jiequn

    2012-01-01

    Highlights: ► Nano-sized 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C powders are prepared by a sol–gel method. ► Mutual doping in 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C can improve its electronic conductivity. ► The addition of Li 3 V 2 (PO 4 ) 3 can improve the ionic diffusivity of LiFePO 4 . ► LiFePO 4 , Li 3 V 2 (PO 4 ) 3 and LiFePO 4 –Li 3 V 2 (PO 4 ) 3 unit cells coexist in the composite. - Abstract: 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C composite cathode material is prepared by a sol–gel method, using ferric citrate, V 2 O 5 , Li 2 CO 3 , NH 4 H 2 PO 4 and citric acid as raw materials. The composite material is composed of the olivine LiFePO 4 and monoclinic Li 3 V 2 (PO 4 ) 3 phases. XRD results indicate that most of the iron and vanadium in the raw materials tend to form the LiFePO 4 and Li 3 V 2 (PO 4 ) 3 phases, and only small amounts of Fe and V as the dopants enter into the lattice of Li 3 V 2 (PO 4 ) 3 and LiFePO 4 , respectively. The electronic conductivity and Li + diffusion coefficient of 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C are 6.615 × 10 −3 S cm −1 and ∼10 −10 cm 2 s −1 , which are three orders of magnitude and one order of magnitude larger than those of the LiFePO 4 /C, respectively. The composite material shows a first discharge specific capacity of 131.3 mAh g −1 and capacity retention of 95.1% after 200 cycles at 10 C rate. Compared with the LiFePO 4 /C, its rate capability and cycle performance are both remarkably improved.

  15. Controllable synthesis, morphology evolution and electrochemical properties of LiFePO4 cathode materials for Li-ion batteries.

    Science.gov (United States)

    Song, Jianjun; Wang, Lin; Shao, Guangjie; Shi, Meiwu; Ma, Zhipeng; Wang, Guiling; Song, Wei; Liu, Shuang; Wang, Caixia

    2014-05-07

    Monodispersed LiFePO4 nanocrystals with diverse morphologies were successfully synthesized via a mild and controllable solvothermal approach with a mixture of ethylene glycol and oleic acid as the solvent. Morphology evolution of LiFePO4 nanoparticles from nanoplates to nanorods can be simply realized by varying the volume ratio of oleic acid to ethylene glycol. Moreover, the mechanism of competitive adsorption between ethylene glycol and oleic acid was proposed for the formation of different morphologies. Electrochemical measurements show that the LiFePO4/C nanorods have an initial discharge capacity of 155 mA h g(-1) at 0.5 C with a capacity retention of 80% at a high rate of 5 C, which confirms that LiFePO4/C nanorods exhibit excellent rate capability and cycling stability.

  16. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  17. Detection of sub micro Gray dose levels using OSL phosphor LiMgPO_4:Tb,B

    International Nuclear Information System (INIS)

    Rawat, N.S.; Dhabekar, Bhushan; Muthe, K.P.; Koul, D.K.; Datta, D.

    2017-01-01

    Highlights: • LiMgPO4:Tb,B has been studied and shown to possesses minimum measurable dose (MMD) in sub micro Gray region. • MMD as low as 0.49 µGy in readout time of less than 1 s at stimulation intensity of 32 mW/cm"2 has been achieved. • The OSL measurements for low doses has strengthened and validated this claim. • OSL spectrum shows several emission peaks and the prominent peak around 380 nm. - Abstract: Detection of sub micro Gray doses finds application in personnel and environmental monitoring, and nuclear forensics. Recently developed LiMgPO_4:Tb,B (LMP) is highly sensitive Optically Stimulated Luminescence (OSL) phosphor with excellent dosimetric properties. The OSL emission spectrum of LMP consists of several peaks attributed to characteristic Tb"3"+ emission. The OSL emission peak at 380 nm is favorable for bi-alkali PMT used in RISO reader system. It is demonstrated that significant improvement in dose detection threshold can be realized for LMP by optimization of continuous wave (CW–) OSL parameters like stimulation intensity and readout time. The minimum measurable dose (MMD) as low as 0.49 µGy in readout time of less than 1 s at stimulation intensity of 32 mW/cm"2 has been achieved using this phosphor. The recommendations for choice of parameters for personnel and environmental monitoring are also discussed.

  18. Stationary Flowing Liquid Lithium (SFLiLi) systems for tokamaks

    Science.gov (United States)

    Zakharov, Leonid; Gentile, Charles; Roquemore, Lane

    2013-10-01

    The present approach to magnetic fusion which relies on high recycling plasma-wall interaction has exhausted itself at the level of TFTR, JET, JT-60 devices with no realistic path to the burning plasma. Instead, magnetic fusion needs a return to its original idea of insulation of the plasma from the wall, which was the dominant approach in the 1970s and upon implementations has a clear path to the DEMO device with PDT ~= 100 MW and Qelectric > 1 . The SFLiLi systems of this talk is the technology tool for implementation of the guiding idea of magnetic fusion. It utilizes the unique properties of flowing LiLi to pump plasma particles and, thus, insulate plasma from the walls. The necessary flow rate, ~= 1 g3/s, is very small, thus, making the use of lithium practical and consistent with safety requirements. The talk describes how chemical activity of LiLi, which is the major technology challenge of using LiLi in tokamaks, is addressed by SFLiLi systems at the level of already performed (HT-7) experiment, and in ongoing implementations for a prototype of SFLiLi for tokamak divertors and the mid-plane limiter for EAST tokamak (to be tested in the next experimental campaign). This work is supported by US DoE contract No. DE-AC02-09-CH11466.

  19. Production of LiF films for dosimetric thermoluminescence application; Producao de filmes de LiF para aplicacao em dosimetria termoluminescente

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, Claudia Lucia de Pinho

    2000-12-01

    This work studies the LiF monolayer and multilayer polycrystalline film's dosimetric properties. The films were produced by electron beam evaporation technique in aluminium and stainless steel substrates maintained at several temperatures. As dosimetric variable, the intensity of the thermoluminescent (TL) glow curve of the films was used. effects of the substrate type and temperature; of the addition of layers of Mg F{sub 2} NaF and Cu F{sub 2} to the LiF films; and of thermal treatments in the TL response of the produced films were studied. The microstructural characterization of the films was accomplished through measures of scanning electronic microscopy and grazing incidence X-rays diffraction analysis. The dosimetric characterization was made of gamma radiation exposure in a {sup 60} Co source, with kerma from 0,1 to 500 Gy. Studies of reproducibility, homogeneity, stability and other environmental effects were also made. LiF and Cu F{sub 2}: LiF; Mg F{sub 2} films were the only ones that presented mechanical stability and reproducibility of the TL emission. There is a strong indication of some correlation between the residual tension fields inside the films and the intensity of its TL emission peaks. LiF monolayer films present supralinear behaviour from 0,2 to 100 Gy. These films present a main TL glow peak around 150 deg C, whose half-time is about 30 days. Its volumetric sensitivity can reach about 60 times that of LiF powder and about 0,25 that of TLD100 (LiF:Mg, Ti commercial dosimeter from Harshaw Chemical Co.) The homogeneity and reproducibility inside a same film batch is better than 12% for 95% confidence level. Cu F{sub 2} : LiF: Mg F{sub 2} films present linear behaviour from 3 to 500 Gy and its main TL glow peak around 200 deg C did not present any fading for a a period of 30 days, in laboratory conditions. This glow peak is characteristic of the Mg doping of LiF, which confirms the diffusion of Mg ions from the Mg F{sub 2} layer to the Li

  20. Processing LiDAR Data to Predict Natural Hazards

    Science.gov (United States)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  1. Electrochemical investigation of Li-Al anodes in oligo(ethylene glycol) dimethyl ether/LiPF6

    International Nuclear Information System (INIS)

    Zhou, Y.; Wang, X.; Lee, H.; Nam, K.; Haas, O.

    2011-01-01

    LiPF 6 dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight 5 g mol -1 was investigated as a new electrolyte (OEGDME5, 1 M LiPF 6 ) for metal deposition and battery applications. At 25 C a conductivity of .48 x 1 -3 S cm -1 was obtained and at 85 C, 3.78 x 1 -3 S cm -1 . The apparent activation barrier for ionic transport was evaluated to be 3.7 kJ mol -1 . OEGDME5, 1 M LiPF 6 allows operating temperature above 1 C with very attractive conductivity. The electrolyte shows excellent performance at negative and positive potentials. With this investigation, we report experimental results obtained with aluminum electrodes using this electrolyte. At low current densities lithium ion reduction and re-oxidation can be achieved on aluminum electrodes at potentials about 28 mV more positive than on lithium electrodes. In situ X-ray diffraction measurements collected during electrochemical lithium deposition on aluminum electrodes show that the shift to positive potentials is due to the negative Gibbs free energy change of the Li-Al alloy formation reaction.

  2. Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode

    Science.gov (United States)

    Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang

    2016-04-01

    In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.

  3. Reaction of LiD with moisture by temperature programmed reaction (TPR)

    International Nuclear Information System (INIS)

    Dinh, L N; Balooch, M; Cecala, C M; Leckey, J H

    2000-01-01

    The temperature programmed reaction technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process has an activation energy barrier of 30 to 33.1 kcal/mol. The LiOH structure is stable at 320 K for 100 years. However, LiOH structures formed on the surface of LiD during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 30 kcal/mol. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of dangling bonds, cracks, and other long range disorders in the LiOH structures formed at low levels of moisture exposure. These defective LiOH structures may decompose significantly over the next 100 years of storage even at room temperature. At high moisture exposure levels, LiOH.H 2 O formation is observed. The release of H 2 O molecules from LiOH.H 2 O structure has small activation energy barriers in the range of 13.8 kcal/mol to 16.0 kcal/mol. The loosely bonded H 2 O molecules in the LiOH.H 2 O structure can be easily pumped away at room temperature in a reasonable amount of time. Our experiments also suggest that handling LiD single crystals at an elevated temperature of 340 K or more reduces the growth of LiOH and LiOH.H 2 O significantly

  4. Crack-tip constraint analyses and constraint-dependent LBB curves for circumferential through-wall cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.

    2015-04-15

    Highlights: • Solution of constraint parameter τ* for through-wall cracked pipes has been obtained. • Constraint increases with increasing crack length and radius–thickness ratio of pipes. • Constraint-dependent LBB curve for through-wall cracked pipes has been constructed. • For increasing accuracy of LBB assessments, constraint effect should be considered. - Abstract: The leak-before-break (LBB) concept has been widely applied in the structural integrity assessments of pressured pipes in nuclear power plants. However, the crack-tip constraint effects in LBB analyses and designs cannot be incorporated. In this paper, by using three-dimensional finite element calculations, the modified load-independent T-stress constraint parameter τ* for circumferential through-wall cracked pipes with different geometries and crack sizes has been analyzed under different loading conditions, and the solutions of the crack-tip constraint parameter τ* have been obtained. Based on the τ* solutions and constraint-dependent J–R curves of a steel, the constraint-dependent LBB (leak-before-break) curves have been constructed. The results show that the constraint τ* increases with increasing crack length θ, mean radius R{sub m} and radius–thickness ratio R{sub m}/t of the pipes. In LBB analyses, the critical crack length calculated by the J–R curve of the standard high constraint specimen for pipes with shorter cracks is over-conservative, and the degree of conservatism increases with decreasing crack length θ, R{sub m} and R{sub m}/t. Therefore, the constraint-dependent LBB curves should be constructed to modify the over-conservatism and increase accuracy of LBB assessments.

  5. Ion production from LiF-coated field emitter tips

    International Nuclear Information System (INIS)

    Pregenzer, A.L.; Bieg, K.W.; Olson, R.E.; Panitz, J.A.

    1990-01-01

    Ion emission has been obtained from a LiF-coated tungsten field-emitter tip. Ion formation is thought to be caused by the high electric field experienced by the LiF. At the time of emission the electric field at the surface of the LiF is calculated to be on the order of 100 MV/cm. Inside the LiF the field is on the order of 10 MV/cm. These fields exceed the value needed to produce bulk dielectric breakdown in LiF. The surface field is of sufficient magnitude to produce ion emission by field evaporation from the crystal surface. Even prior to dielectric breakdown, precursor processes can lead to ion formation. Electric-field-stress fragmentation of the LiF layer is thought to occur, followed by ionization of the fragments

  6. Mechanism of serrated flow in binary Al-Li alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Pink, E. [Austrian Academy of Sciences, Leoben (Austria). Erich-Schmid-Inst. of Solid State Physics; Krol, J. [Polish Academy of Sciences, Krakow (Poland). Alexander-Krupkowski-Inst. of Metallurgy and Materials Science

    1996-09-15

    The work on serrated flow in Al-Li alloys has given rise to a controversy--whether serrations in these alloys are caused by lithium atoms in solid solution or by {delta}{prime}(Al{sub 3}Li)-precipitates. This controversy calls for further work to clarify the mechanism of serrated flow in the Al-Li alloys. Kumar and McShane have shown that in an Al-2.5Li-2Mg-0.14Zr alloy, non-shearable {delta}{prime}-precipitates, which are obtained in the under-aged and peak-aged conditions, might directly initiate serrated flow. However, the latter result was ambiguous because of the presence of other alloying elements, and the need to work on a binary Al-Li alloy was emphasized. The present work discusses the results from the binary Al-Li alloys.

  7. Structural Parameters and Strengthening Mechanisms in Cold-Drawn Pearlitic Steel Wires

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andy; Huang, Xiaoxu

    2012-01-01

    Pearlitic steel wires have a nanoscale structure and a strength which can reach 5 GPa. In order to investigate strengthening mechanisms, structural parameters including interlamellar spacing, dislocation density and cementite decomposition, have been analyzed by transmission electron microscopy...... and high resolution electron microscopy in wires cold drawn up to a strain of 3.7. Three strengthening mechanisms, namely boundary strengthening, dislocation strengthening and solid solution hardening have been analyzed and good agreement has been found between the measured flow stress and the value...

  8. Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle

    Science.gov (United States)

    Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.

    2017-12-01

    Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).

  9. Initial Semantics for Strengthened Signatures

    Directory of Open Access Journals (Sweden)

    André Hirschowitz

    2012-02-01

    Full Text Available We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax. Our strengthened arities admit colimits, which allows the treatment of the λ-calculus with explicit substitution.

  10. Implications of the formation of small polarons in Li2O2 for Li-air batteries

    Science.gov (United States)

    Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.

    2012-01-01

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  11. Bare astrophysical S(E)-factor for the 6Li(d, α)4He and 7Li(p, α)4He reactions at astrophysical energies

    International Nuclear Information System (INIS)

    Pizzone, R.G.; Spitaleri, C.; Lattuada, M.; Musumarra, A.; Pellegriti, M.G.; Romano, S.; Tumino, A.; Cherubini, S.; Figuera, P.; Miljanic, D.; Rolfs, C.; Typel, S.; Wolter, H.H.; Castellani, V.; Degl'Innocenti, S.; Imperio, A.

    2003-01-01

    The Trojan Horse Method has been applied to study the 7 Li(p, α) 4 He and 6 (Li(d, α) 4 He reactions through the 7 Li(d, αα)n and 6 Li( 6 Li, αα) 4 He three body processes, respectively. The electron screening potential deduced from these experiments is much larger than the adiabatic approximation prediction for both cases; the systematic discrepancy between data and theoretical predictions is thus confirmed. Astrophysical implications of these measurements are also discussed

  12. Depth profiling Li in electrode materials of lithium ion battery by {sup 7}Li(p,γ){sup 8}Be and {sup 7}Li(p,α){sup 4}He nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sunitha, Y., E-mail: sunibarc@gmail.com; Kumar, Sanjiv

    2017-06-01

    A proton induced γ-ray emission method based on {sup 7}Li(p,γ){sup 8}Be proton capture reaction and a nuclear reaction analysis method involving {sup 7}Li(p,α){sup 4}He reaction are described for depth profiling Li in the electrode materials, graphite and lithium cobalt oxide for example, of a Li-ion battery. Depth profiling by {sup 7}Li(p,γ){sup 8}Be reaction is accomplished by the resonance at 441 keV and involves the measurement of 14.6 and 17.6 MeV γ-rays, characteristic of the reaction, by a NaI(Tl) detector. The method has a detection sensitivity of ∼0.2 at% and enables profiling up to a depth ≥20 µm with a resolution of ≥150 nm. The profiling to a fairly large depth is facilitated by the absence of any other resonance up to 1800 keV proton energy. The reaction has substantial off-resonance cross-sections. A procedure is outlined for evaluating the off-resonance yields. Interferences from fluorine and aluminium are major limitation of this depth profiling methodology. The depth profile measurement by {sup 7}Li(p,α){sup 4}He reaction, on the other hand, utilises 2–3 MeV protons and entails the detection of α-particles at 90° or 150° angles. The reaction exhibits inverse kinematics at 150°. This method, too, suffers interference from fluorine due to the simultaneous occurrence of {sup 19}F(p,α){sup 16}O reaction. Kinematical considerations show that the interference is minimal at 90° and thus is the recommended angle of detection. The method is endowed with a detection sensitivity of ∼0.1 at%, a depth resolution of ∼100 nm and a probing depth of about 30 µm in the absence and 5–8 µm in the presence of fluorine in the material. Both methods yielded comparable depth profiles of Li in the cathode (lithium cobalt oxide) and the anode (graphite) of a Li-ion battery.

  13. Review—Multifunctional Materials for Enhanced Li-Ion Batteries Durability: A Brief Review of Practical Options

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M.; Luski, Shalom; Aurbach, Doron; Halalay, Ion C.

    2017-01-01

    Transition metal (TM) ions dissolution from positive electrodes, migration to and deposition on negative electrodes, followed by Mn-catalyzed reactions of solvents and anions, with loss of Li+ ions, is a major degradation (DMDCR) mechanism in Li-ion batteries (LIBs) with spinel positive electrode materials. While the details of the DMDCR mechanism are still under debate, it is clear that HF and other acid species’ attack is the main cause in solutions with LiPF6 electrolyte. We first review the work on various mitigation measures for the DMDCR mechanism, now spanning more than two decades. We then discuss recent progress on our understanding of Mn species in electrolyte solutions and the extension of a mitigation measure first proposed by Tarascon and coworkers in 1999, namely chelation of TM cations, to Mn cation trapping, HF scavenging, and alkali metal ions dispensing multi-functional materials. We focus on practicable, drop-in technical solutions, based on placing such materials in the inter-electrode space, with significant benefits for LIBs performance: increased capacity retention during operation at room and above-ambient temperatures as well as robust (both maximally ionically conducting and electronically insulating) solid-electrolyte interfaces, having reduced charge transfer and film resistances at both negative and positive electrodes. We illustrate the multifunctional materials approach with both new and previously published data. We also discuss and offer our evaluation regarding the merits and drawbacks of the various mitigation measures, with an eye for practically relevant technical solutions capable to meet both the performance requirements and cost constraints for commercial LIBs, and end with recommendations for future work.

  14. Magnetic field selective enhancement of Li I lines comparing Li II line in laser ablated lithium plasma at 10- 2 mbar air ambient gas

    Science.gov (United States)

    Liu, Ping; Wu, Ding; Sun, Liying; Hai, Ran; Liu, Jiamin; Ding, Hongbin

    2017-11-01

    In this paper, the effect of magnetic field (1.1 T) on the atomic and ionic spectral emission of a laser produced lithium plasma at low pressure has been investigated. The experimental results indicate that magnetic field enhances the intensities of Li I spectral lines but reduces the Li II spectral lines intensities. In this study, two narrowband filters were placed before the ICCD camera to observe the evolution feature of Li II spectral line (548.39 nm, 2p3P2,1,0 → 2s3S1) and Li I spectral line (610.30 nm, 3d2P3/2, 5/2 → 2p2P1/2, 3/2), respectively. The plasma dynamic images show that with the magnetic field, the number density of luminous Li atoms is higher, while the number density of luminous Li ions is lower in comparison to the field-free case. The reduced Li II spectral intensities indicate that the quenching rate of Li ions in the excited state is greater than that without the magnetic field. The enhanced impact frequency of recombination indicates that magnetic field increases the recombination process of electron and Li ions. All of these observations strongly suggest that magnetic confinement increases the recombination process of the electrons with Li ions in the plasma, which results in the decrease in the intensity of Li II line. The results are useful for applying laser-induced breakdown spectroscopy (LIBS) to in-situ diagnose the processes of lithium wall conditioning in EAST tokamak.

  15. Etched colloidal LiFePO4 nanoplatelets toward high-rate capable Li-ion battery electrodes.

    Science.gov (United States)

    Paolella, Andrea; Bertoni, Giovanni; Marras, Sergio; Dilena, Enrico; Colombo, Massimo; Prato, Mirko; Riedinger, Andreas; Povia, Mauro; Ansaldo, Alberto; Zaghib, Karim; Manna, Liberato; George, Chandramohan

    2014-12-10

    LiFePO4 has been intensively investigated as a cathode material in Li-ion batteries, as it can in principle enable the development of high power electrodes. LiFePO4, on the other hand, is inherently "plagued" by poor electronic and ionic conductivity. While the problems with low electron conductivity are partially solved by carbon coating and further by doping or by downsizing the active particles to nanoscale dimensions, poor ionic conductivity is still an issue. To develop colloidally synthesized LiFePO4 nanocrystals (NCs) optimized for high rate applications, we propose here a surface treatment of the NCs. The particles as delivered from the synthesis have a surface passivated with long chain organic surfactants, and therefore can be dispersed only in aprotic solvents such as chloroform or toluene. Glucose that is commonly used as carbon source for carbon-coating procedure is not soluble in these solvents, but it can be dissolved in water. In order to make the NCs hydrophilic, we treated them with lithium hexafluorophosphate (LiPF6), which removes the surfactant ligand shell while preserving the structural and morphological properties of the NCs. Only a roughening of the edges of NCs was observed due to a partial etching of their surface. Electrodes prepared from these platelet NCs (after carbon coating) delivered a capacity of ∼ 155 mAh/g, ∼ 135 mAh/g, and ∼ 125 mAh/g, at 1 C, 5 C, and 10 C, respectively, with significant capacity retention and remarkable rate capability. For example, at 61 C (10.3 A/g), a capacity of ∼ 70 mAh/g was obtained, and at 122 C (20.7 A/g), the capacity was ∼ 30 mAh/g. The rate capability and the ease of scalability in the preparation of these surface-treated nanoplatelets make them highly suitable as electrodes in Li-ion batteries.

  16. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method

    International Nuclear Information System (INIS)

    Zhao, Meng-Yao; Ji, Zhi-Yong; Zhang, Yong-Guang; Guo, Zhi-Yuan; Zhao, Ying-Ying; Liu, Jie; Yuan, Jun-Sheng

    2017-01-01

    Highlights: •A recovery system with LiMn 2 O 4 /Li 1-x Mn 2 O 4 as electrodes was used to extract lithium. •The influence sequence of coexisting ions on lithium extraction was Mg 2+ > Na + > Ca 2+ > K + . •The values of α Li-Na , α Li-Mg and α Li-Ca were more than 300, 70 and 110, respectively. •The specific energy consumption was between 18 and 19 W h·mol −1 . -- Abstract: Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn 2 O 4 positive electrode, a Li 1-x Mn 2 O 4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li + reached 34.31 mg· (1 g LiMn 2 O 4 ) −1 at 1.2 V. With higher reaction rate and lower energy consumption, 25 °C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li + even in the presence of impurity ions (K + , Na + , Mg 2+ , Ca 2+ ). With simulated brine and concentrated seawater as source solutions, the concentrations of Na + , Mg 2+ and Ca 2+ were reduced more than 300, 70 and 100 times, consuming 18–19 W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li + and Me n+ (Na + , Mg 2+ , Ca 2+ ) after five cycles although a slight drop was existing.

  17. South-South cooperation as a mechanism to strengthen public ...

    African Journals Online (AJOL)

    South-South cooperation as a mechanism to strengthen public health services in Africa: ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Implementation of new models of development cooperation have been on the increase ... health system strengthening, aid effectiveness, sustainable development goals, Africa ...

  18. ESTIMATION OF SUBGRADE STRENGTHENING INFLUENCE USING SOILCEMENT ELEMENTS

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2016-08-01

    Full Text Available Purpose. The aim of this work is to identify dependencies and options to strengthen the roadbed and a weak base by grouting piles. Analysis of software package SCAD to assess the effect of the selected option of strengthening the construction of spatial subgrade models. Methodology. In this paper the method of calculation of the soil mass in the software package SCAD is considered, which is a universal accounting system of finite-element analysis of structures and is focused on solving problems of designing buildings and structures rather complex structure. The finite element method is among the most modern and effective methods for the calculation of structures for various purposes. In the simulation, we get a complete picture of the stress-strain state of the study area, as well as the value of the limit load, rainfall, and so on. The spatial model based on the finite element volume, to better address the real characteristics of the soil mass, meets all the geometric characteristics of size and natural subgrade and the top structure the path that has been adopted in Ukraine. Findings. It was found that the most effective option to strengthen the roadbed, when applying grouting piles at the base of the subgrade and body, is to strengthen the five piles. At the same time there is even strengthen the soil mass at the level of 25 … 30% of the entire depth. However, even with the strengthening of the only two piles at the base of the effect of the strengthening of 14.1%. Established equation is linear and describes the decrease in strain. Taking into account the results of the research can be concluded that the consolidation is proportional to the depth with any number of piles. The dependence of the strain on the number of piles adheres to a polynomial function. Strengthening the bases of the subgrade and body depth also occurs in proportion with any number of piles. Originality. Design scheme generation algorithm for the calculation of the

  19. Misconceptions and constraints

    International Nuclear Information System (INIS)

    Whitten, M.; Mahon, R.

    2005-01-01

    In theory, the sterile insect technique (SIT) is applicable to a wide variety of invertebrate pests. However, in practice, the approach has been successfully applied to only a few major pests. Chapters in this volume address possible reasons for this discrepancy, e.g. Klassen, Lance and McInnis, and Robinson and Hendrichs. The shortfall between theory and practice is partly due to the persistence of some common misconceptions, but it is mainly due to one constraint, or a combination of constraints, that are biological, financial, social or political in nature. This chapter's goal is to dispel some major misconceptions, and view the constraints as challenges to overcome, seeing them as opportunities to exploit. Some of the common misconceptions include: (1) released insects retain residual radiation, (2) females must be monogamous, (3) released males must be fully sterile, (4) eradication is the only goal, (5) the SIT is too sophisticated for developing countries, and (6) the SIT is not a component of an area-wide integrated pest management (AW-IPM) strategy. The more obvious constraints are the perceived high costs of the SIT, and the low competitiveness of released sterile males. The perceived high up-front costs of the SIT, their visibility, and the lack of private investment (compared with alternative suppression measures) emerge as serious constraints. Failure to appreciate the true nature of genetic approaches, such as the SIT, may pose a significant constraint to the wider adoption of the SIT and other genetically-based tactics, e.g. transgenic genetically modified organisms (GMOs). Lack of support for the necessary underpinning strategic research also appears to be an important constraint. Hence the case for extensive strategic research in ecology, population dynamics, genetics, and insect behaviour and nutrition is a compelling one. Raising the competitiveness of released sterile males remains the major research objective of the SIT. (author)

  20. Behavior of masonry strengthened infilled reinforced concrete frames under in-plane load

    Directory of Open Access Journals (Sweden)

    Lila M. Abdel-Hafez

    2015-08-01

    The ductility of infilled frame strengthened with ferrocement was the best of all strengthened frames, while strengthening with GFRP increases its ultimate load carrying capacity but reduces its ductility.

  1. Volume production of Li- in a multicusp ion source

    International Nuclear Information System (INIS)

    Walther, S.R.; Leung, K.N.; Kunkel, W.B.

    1987-07-01

    A neutral 100kev Li beam has been used as a diagnostic tool for determining current, plasma density, and magnetic pitch angle on the Texas EXperimental Tokamak. Scale up of this diagnostic for the Tokomak Fusion Test Reactor would require use of a Li - beam because of the inefficiency of neutralizing Li + at the high energies required. This paper discusses effects to generate Li - beams from a plasma discharge. 8 refs

  2. Mössbauer spectra obtained using β − γ coincidence method after {sup 57}Mn implantation into LiH and LiD

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communication, Graduate School of Engineering and Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Kubo, M. K. [International Christian University, Division of Arts Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Nagatomo, T. [RIKEN, Nishina Center Accelerator Based Science (Japan); Sato, W. [Kanazawa University, Department of Chemistry (Japan); Miyazaki, J. [Tokyo University Agri. Technology, Department of Chemistry and Engineering (Japan); Tanigawa, S.; Natori, D. [University of Electro-Communication, Graduate School of Engineering and Science (Japan); Sato, S.; Kitagawa, A. [National Institute Radiological Sciences (NIRS) (Japan)

    2016-12-15

    Highly energetic {sup 57}Mn (T{sub 1/2} = 1.45 m) was generated by nuclear projectile fragmentation in a heavy-ion accelerator, and implanted into lithium hydride (LiH) and lithium deuteride (LiD) at 578 K. Mössbauer spectroscopy with β − γ coincidence detection was then carried out on the {sup 57}Fe obtained from β{sup −}decay of the {sup 57}Mn to study the time dependence of the site distributions and coordination environments of dilute Fe atoms implanted in the LiH and LiD. The results suggest that the Fe atoms can substitute for either the Li and H or D atoms within 100 ns. Additionally, the displacement behavior of the substitutional {sup 57}Fe atoms on the lattice sites is discussed.

  3. Solution based synthesis of mixed-phase materials in the Li{sub 2}TiO{sub 3}–Li{sub 4}SiO{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Hanaor, Dorian A.H., E-mail: dorian.hanaor@sydney.edu.au [School of Civil Engineering, University of Sydney, NSW 2006 (Australia); Kolb, Matthias H.H. [Institute for Applied Materials, Karlsruhe Institute of Technology, 76021 (Germany); Gan, Yixiang [School of Civil Engineering, University of Sydney, NSW 2006 (Australia); Kamlah, Marc; Knitter, Regina [Institute for Applied Materials, Karlsruhe Institute of Technology, 76021 (Germany)

    2015-01-15

    Highlights: • Investigation of phase stability in the quasi-binary Li{sub 2}TiO{sub 3}–Li{sub 4}SiO{sub 4} system. • Sol-based syntheses of mixed phase materials from organometallic precursors. • LiCl based synthesis results in greater lithium deficiency than LiOH synthesis. • The Li{sub 2}TiO{sub 3}–Li{sub 4}SiO{sub 4} quasi binary system appears to exhibit monotectic behaviour. • Mixed phase materials show liquid formation from melting of silicate material at 1100 °C. - Abstract: As candidate tritium breeder materials for use in the ITER helium cooled pebble bed, ceramic multiphasic compounds lying in the region of the quasi-binary lithium metatitanate–lithium orthosilicate system may exhibit mechanical and physical advantages relative to single phase materials. Here we present an organometallic solution-based synthesis procedure for the low-temperature fabrication of compounds in the Li{sub 2}TiO{sub 3}–Li{sub 4}SiO{sub 4} region and investigate phase stability and transformations through temperature varied X-ray diffraction and scanning calorimetry. Results demonstrate that the metatitanate and metasilicate phases Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} readily crystallise in nanocrystalline form at temperatures below 180 °C. Lithium deficiency in the region of 5% results from Li sublimation from Li{sub 4}SiO{sub 4} and/or from excess Li incorporation in the metatitanate phase and brings about a stoichiometry shift, with product compounds exhibiting mixed lithium orthosilicate/metasilicate content towards the Si rich region and predominantly Li{sub 2}TiO{sub 3} content towards the Ti rich region. Above 1150 °C the transformation of monoclinic to cubic γ-Li{sub 2}TiO{sub 3} disordered solid-solution occurs while the melting of silicate phases indicates a likely monotectic type system with a solidus line in the region 1050–1100 °C. Synthesis procedures involving a lithium chloride precursor are not likely to be a viable option for

  4. Shipborne LiDAR system for coastal change monitoring

    Science.gov (United States)

    Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong

    2016-04-01

    Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

  5. The Li–Si–(O)–N system revisited: Structural characterization of Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O

    Energy Technology Data Exchange (ETDEWEB)

    Casas-Cabanas, M. [CIC energiGUNE, Parque Tecnológico de Álava, Albert Einstein 48, ED.CIC, 01510 Miñano (Spain); Santner, H. [Institut de Ciència de Materials de Barcelona (CSIC) Campus UAB, 08193 Bellaterra, Catalonia (Spain); Palacín, M.R., E-mail: rosa.palacin@icmab.es [Institut de Ciència de Materials de Barcelona (CSIC) Campus UAB, 08193 Bellaterra, Catalonia (Spain)

    2014-05-01

    A systematic study of the Li–Si–(O)–N system is presented. The synthetic conditions to prepare Li{sub 2}SiN{sub 2}, Li{sub 5}SiN{sub 3}, Li{sub 18}Si{sub 3}N{sub 10}, Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are described and the structure of the last two compounds has been solved for the first time. While Li{sub 21}Si{sub 3}N{sub 11} crystallizes as a superstructure of the anti-fluorite structure with Li and Si ordering, Li{sub 7}SiN{sub 3}O exhibits the anti-fluorite structure with both anion and cation disorder. - Graphical abstract: A systematic study of the Li–Si–(O)–N system is presented. Li{sub 21}Si{sub 3}N{sub 11} crystallizes as a superstructure of the anti-fluorite structure with Li and Si ordering, Li{sub 7}SiN{sub 3}O exhibits the anti-fluorite structure with both anion and cation disorder. - Highlights: • Li{sub 2}SiN{sub 2}, Li{sub 5}SiN{sub 3}, Li{sub 18}Si{sub 3}N{sub 10}, Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are prepared. • The structures of Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are presented. • Li{sub 21}Si{sub 3}N{sub 11} exhibits an anti-fluorite superstructure with Li and Si ordering.

  6. Research on feature extraction techniques of Hainan Li brocade pattern

    Science.gov (United States)

    Zhou, Yuping; Chen, Fuqiang; Zhou, Yuhua

    2016-03-01

    Hainan Li brocade skills has been listed as world non-material cultural heritage preservation, therefore, the research on Hainan Li brocade patterns plays an important role in Li brocade culture inheritance. The meaning of Li brocade patterns was analyzed and the shape feature extraction techniques to original Li brocade patterns were advanced in this paper, based on the contour tracking algorithm. First, edge detection was made on the design patterns, and then the morphological closing operation was used to smooth the image, and finally contour tracking was used to extract the outer contours of Li brocade patterns. The extracted contour features were processed by means of morphology, and digital characteristics of contours are obtained by invariant moments. At last, different patterns of Li brocade design are briefly analyzed according to the digital characteristics. The results showed that the pattern extraction method to Li brocade pattern shapes is feasible and effective according to above method.

  7. Insights into the potentiometric response behaviour vs. Li+ of LiFePO4 thin films in aqueous medium

    International Nuclear Information System (INIS)

    Sauvage, F.; Tarascon, J.-M.; Baudrin, E.

    2008-01-01

    The potentiometric response of PLD-made LiFePO 4 thin films versus Li + ions in aqueous solutions has been investigated, and a sensitivity of 54 mV dec -1 has been observed in a Li + concentration range of 1-10 -4 M. Physical and electrochemical measurements of electrodes aged in aqueous medium show a slight surface oxidation with formation of heterosite-FePO 4 that we show to be responsible for the stable potential response measured. Cyclic voltamperometry measurements operated in different Li + concentration clearly highlight the key relation between the material lithium ion insertion/de-insertion capability and its potentiometric sensing response implying a faradaic-governed sensing mechanism. Based on such a finding, selection criteria (enlisting among others the potential of the redox couple, the nature of the insertion process) are herein underlined in the search for new sensitive materials

  8. In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteries

    DEFF Research Database (Denmark)

    Christiansen, Ane Sælland; Johnsen, Rune E.; Norby, Poul

    2015-01-01

    In commercial Fe-based batteries the Fe2+/Fe3+ oxidation states are used, however by also utilizing the Fe4+ oxidation state, intercalation of up to two Li ions per Fe ion could be possible. In this study, we investigate whether Fe4+ can be formed and stabilized in β-Li3Fe2(PO4)3. The work includes...... of Fe4+ formation. Oxidation of the organic electrolyte is inevitable at 4.5 V but this alone cannot explain the volume change. Instead, a reversible oxygen redox process (O2− → O−) could possibly explain and charge compensate for the reversible extraction of lithium ions from β-Li3Fe2(PO4)3....... in situ synchrotron X-ray powder diffraction studies (XRPD) during charging of β-Li3Fe2(PO4)3 up to 5.0 V vs. Li/Li+. A novel capillary-based micro battery cell for in situ XRPD has been designed for this. During charge, a plateau at 4.5 V was found and a small contraction in volume was observed...

  9. Nb-based MXenes for Li-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2015-11-16

    Li-ion batteries depend critically on the stability and capacity of the electrodes. In this respect the recently synthesized two-dimensional MXenes are promising materials, as they combine an excellent Li-ion capacity with very high charging rates. We employ density functional theory to investigate the impact of Li adsorption on the structural and electronic properties of monolayer Nb2C and Nb2CX2. The Li ions are predicted to migrate easily on the pristine MXene due to a diffusion barrier of only 36 meV, whereas larger diffusion barriers are obtained for the functionalized MXenes.

  10. LiFePO4 mesocrystals for lithium-ion batteries.

    Science.gov (United States)

    Popovic, Jelena; Demir-Cakan, Rezan; Tornow, Julian; Morcrette, Mathieu; Su, Dang Sheng; Schlögl, Robert; Antonietti, Markus; Titirici, Maria-Magdalena

    2011-04-18

    Olivine LiFePO(4) is considered one of the most promising cathode materials for Li-ion batteries. A simple one-step, template-free, low-temperature solvothermal method is developed for the synthesis of urchinlike hierarchical mesocrystals of pristine LiFePO(4) as well as carbon-coated LiFePO(4) composites. Each urchinlike mesocrystal consists of LiFePO(4) sheets self-assembled via a dipolar field in spheres during a solvothermal process under the influence of Cl(-) anions. The obtained primary sheets of LiFePO(4) are single crystalline in nature and can be coated in situ with an amorphous nitrogen-doped carbonaceous layer several nanometers in thickness. To increase the conductivity of the carbon coating, the materials are subjected to further temperature treatment (700 °C) under an inert atmosphere. The lithium storage performance of the pure LiFePO(4) is compared with that of its carbon-coated counterparts. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Investigation of Various LiCl Waste Salt Purification Technologies

    International Nuclear Information System (INIS)

    Yung-Zun Cho; Hee-Chul Yang; Han-Soo Lee; In-Tae Kim

    2008-01-01

    Various purification research of LiCl waste molten salt generated from electroreduction process were tested. The purification of the LiCl waste salt very important in a various aspects, where the purification means separation of cesium and strontium form LiCl salt melts. In this study, for the separation of cesium and strontium from LiCl salt melts, precipitant agent addition techniques such as sulfate and carbonate addition method and, as a new attempt, zone freezing technique for concentration of cesium and strontium elements was investigated. As a results of this research, only strontium was carbonated by reaction with Li 2 CO 3 (cesium did not react with Li 2 CO 3 ). In case of sulfate addition method, both cesium and strontium were converted into their sulfate that is Cs 2 S 2 O 6 and SrSO 4 and maximum sulfate efficiency of cesium and strontium were about 72% and 95%, respectively. Cesium and strontium involved in LiCl molten salt could be concentrated in the molten salt by using zone freezing method. (authors)

  12. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan

    2014-10-13

    Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    Science.gov (United States)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  14. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.

    Science.gov (United States)

    Wang, Hong; Yang, Chi; Liu, Shu-Xin

    2014-09-01

    Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).

  15. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep

    2012-05-24

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  16. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep; Kucukayan-Dogu, Gokce; Sen, H. Sener; Boothroyd, Chris; Gulseren, Oguz; Bengu, Erman

    2012-01-01

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  17. Synthesis and electrochemical properties of spinel Li(Li{sub 0.05}Cu{sub 0.05}Mn{sub 1.90})O{sub 4} by a flameless combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiabin; Bai, Hongli; Liu, Jintao; Yang, Fangli; Li, Qiling; Su, Changwei [Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Yunnan Minzu University, Kunming 650500 (China); Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Yunnan Minzu University, Kunming 650500 (China); Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500 (China); Guo, Junming, E-mail: guojunming@tsinghua.org.cn [Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Yunnan Minzu University, Kunming 650500 (China); Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Yunnan Minzu University, Kunming 650500 (China); Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500 (China)

    2016-05-25

    A (Li, Cu)-co-doped cathode material Li(Li{sub 0.05}Cu{sub 0.05}Mn{sub 1.90})O{sub 4} was prepared by a flameless combustion synthesis at 500 °C for 3 h and then two-stage calcination at 700 °C for 6 h. Physical and electrochemical performances were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), galvanostatic charge–discharge cycling test, cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS) to investigate the influence of Li and Cu substitution on the lithium ion batteries. Li(Li{sub 0.05}Cu{sub 0.05}Mn{sub 1.90})O{sub 4} not only exhibited the initial discharge capacity of 106.9 mAh g{sup −1} with a high retention of 89.2% after 500 cycles at 1.0 C but also retained 63.5% capacity after 1500 cycles at 5.0 C. Besides, a good rate capability at different current densities from 0.5 C to 5.0 C can be acquired. The (Li, Cu)-co-doped sample had excellent cycling stability in comparison with the LiMn{sub 2}O{sub 4} cathode. - Highlights: • A (Li, Cu)-co-doped Li(Li{sub 0.05}Cu{sub 0.05}Mn{sub 1.90})O{sub 4} was synthesized by a flameless combustion method. • The (Li, Cu)-co-doped Li(Li{sub 0.05}Cu{sub 0.05}Mn{sub 1.90})O{sub 4} has higher crystallinity. • Low level of Li and Cu doping exhibits better rate capability and cycling performance.

  18. An assessment of energy efficiency based on environmental constraints and its influencing factors in China.

    Science.gov (United States)

    Chen, Yao; Xu, Jing-Ting

    2018-05-03

    The super-efficiency directional distance function (DDF) with data envelopment analysis (DEA) model (SEDDF-DEA) is more facilitative than to increase traditional method as a rise of energy efficiency in China, which is currently important energy development from Asia-pacific region countries. SEDDF-DEA is promoted as sustained total-factor energy efficiency (TFEE), value added outputs, and Malmquist-Luenberger productivity index (MLPI) to otherwise thorny environmental energy productivity problems with environmental constraint to concrete the means of regression model. This paper assesses the energy efficiency under environmental constraints using panel data covering the years of 2000-2015 in China. Considering the environmental constraints, the results showed that the average TFEE of the whole country followed an upward trend after 2006. The average MLPI score for the whole country increased by 10.57% during 2005-2010, which was mainly due to the progress made in developing and applying environmental technologies. The TFEE of the whole nation was promoted by the accumulation of capital stock, while it was suppressed by excessive production in secondary industries and foreign investment. The primary challenge for the northeast of China is to strengthen industrial transformation and upgrade traditional industries, as well as adjusting the economy and energy structure. The eastern and central regions of the country need to exploit clean- or low-energy industry to improve inefficiencies due to excessive consumption. The western region of China needs to implement renewable energy strategies to promote regional development.

  19. Characteristics and properties of nano-LiCoO2 synthesized by pre-organized single source precursors: Li-ion diffusivity, electrochemistry and biological assessment.

    Science.gov (United States)

    Brog, Jean-Pierre; Crochet, Aurélien; Seydoux, Joël; Clift, Martin J D; Baichette, Benoît; Maharajan, Sivarajakumar; Barosova, Hana; Brodard, Pierre; Spodaryk, Mariana; Züttel, Andreas; Rothen-Rutishauser, Barbara; Kwon, Nam Hee; Fromm, Katharina M

    2017-08-22

    LiCoO 2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 °C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO 2 (HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li + ) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. Several new single source precursors containing lithium (Li + ) and cobalt (Co 2+ ) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 °C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our LiCoO 2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO 2 have faster kinetics for Li + insertion/extraction compared to microparticles. Overall, nano-sized LiCoO 2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles.

  20. Triple carbon coated LiFePO4 composite with hierarchical conductive architecture as high-performance cathode for Li-ion batteries

    International Nuclear Information System (INIS)

    Mei, Riguo; Yang, Yanfeng; Song, Xiaorui; An, Zhenguo; Zhang, Jingjie

    2015-01-01

    Triple carbon coated LiFePO 4 composite is prepared by spray drying-carbothermal reduction (SD-CTR) method. The triple carbon sources (viz. graphene oxide, thermoplastic phenolic resin and water-solubility starch) play different roles in constructing the hierarchical conductive architecture. The structure, component and morphology of the as-obtained LiFePO 4 composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The results indicate that, compared with double carbon coated LiFePO 4 counterparts, the triple carbon coated LiFePO 4 composite possesses smaller crystallite and high-efficiency of carbon coating such as more complete coating, lower I D /I G ratio, and better conductive architecture. Benefited from the above mentioned superiority, the triple carbon coated LiFePO 4 composite exhibits outstanding electrochemical performance, especially for high-rate capability, which reaches up to 120 mA h g −1 at 10 C