WorldWideScience

Sample records for strengthened ferritic alloy

  1. Oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Asbroeck, P. van.

    1976-10-01

    The publication gives the available data on the DTO2 dispersion-strengthened ferritic alloy developed at C.E.N./S.C.K. Mol, Belgium. DTO2 is a Fe-Cr-Mo ferritic alloy, strengthened by addition of titanium oxide and of titanium leading to the formation of Chi phase. It was developed for use as canning material for fast breeder reactors. (author)

  2. Titanium oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Hendrix, W.; Vandermeulen, W.

    1980-04-01

    The available data on the DT02 and DT3911 ferritic dispersion strengthened alloys, developed at SCK/CEN, Mol, Belgium, are presented. Both alloys consist of Fe - 13% Cr - 1.5% Mo to which 2% TiO 2 and about 3.5% Ti are added (wt.%). Their main use is for the fabrication of fast breeder reactor cladding tubes but their application as turbine blade material is also envisaged for cases where high damping is important. (auth.)

  3. Plasticity of oxide dispersion strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Zakine, C.; Prioul, C.; Alamo, A.; Francois, D.

    1993-01-01

    Two 13%Cr oxide dispersion strengthened (ODS) ferritic alloys, DT and DY, exhibiting different oxide particle size distribution and a χ phase precipitation were studied. Their tensile properties have been tested from 20 to 700 C. Experimental observations during room temperature tensile tests performed in a scanning electronic microscope have shown that the main damage mechanism consists in microcracking of the χ phase precipitates on grain boundaries. These alloys are high tensile and creep resistant between 500 and 700 C. Their strongly stress-sensitive creep behaviour can be described by usual creep laws and incorporating a threshold stress below which the creep rate is negligible. (orig.)

  4. Design and screening of nanoprecipitates-strengthened advanced ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Tianyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States); He, Li [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, and thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.

  5. Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors (LMFBRS)

    International Nuclear Information System (INIS)

    Fischer, J.J.

    1978-01-01

    A dispersion-strengthened ferritic alloy is provided which has high-temperature strength and is readily fabricable at ambient temperatures, and which is useful as structural elements of liquid-metal fast breeder reactors. 4 tables

  6. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  7. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W.

    2013-01-01

    We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates

  8. Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy

    International Nuclear Information System (INIS)

    Legendre, F.; Poissonnet, S.; Bonnaillie, P.; Boulanger, L.; Forest, L.

    2009-01-01

    The goal of this study is to characterize microstructure of a friction stir welded oxide dispersion strengthened alloy. The welded material is constituted by two sheets of an yttria-dispersion-strengthened PM 2000 ferritic steel. Different areas of the friction stir welded product were analyzed using field emission gun secondary electron microscopy (FEG-SEM) and electron microprobe whereas nanoindentation was used to evaluate mechanical properties. The observed microstructural evolution, including distribution of the yttria dispersoids, after friction stir welding process is discussed and a correlation between the microstructure and the results of nanoindentation tests is established.

  9. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  10. High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K

    2017-04-07

    The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.

  11. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  12. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    Science.gov (United States)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-07-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were systematically investigated by high-resolution transmission electron microscopy. The majority of oxide nanoparticles were identified to be orthorhombic YAlO3. During hot consolidation and extrusion, they develop a coherent interface and a near cuboid-on-cube orientation relationship with the ferrite matrix in the material. After annealing at 1200 °C for 1 h, however, the orientation relationship between the oxide nanoparticles and the matrix becomes arbitrary, and their interface mostly incoherent. Annealing at 1300 °C leads to considerable coarsening of oxide nanoparticles, and a new orientation relationship of pseudo-cube-on-cube between oxide nanoparticles and ferrite matrix develops. The reason for the developing interfaces and orientation relationships between oxide nanoparticles and ferrite matrix under different conditions is discussed.

  13. Plasticity of oxide dispersion strengthened ferritic alloys; Plasticite des alliages ferritiques renforces par dispersion d`oxydes

    Energy Technology Data Exchange (ETDEWEB)

    Zakine, C

    1994-07-05

    The object of this work is to study the plasticity mechanisms of two oxide dispersion strengthened ferritic alloys, DT and DY. Microstructural characterisation has been performed on DT and DY alloys by optical, scanning and transmission electron microscopy. These materials, strengthened by an oxide dispersion, contain an intermetallic {chi} phase precipitated on grain boundaries. The {chi} phase, stable up to 900 deg, can be dissolved into the matrix by heat treatment beyond 1 000 deg. Between 20 and 700 deg, according to tensile tests, the DY alloy which is strengthened by a fine dispersion of yttria particles is more resistant and less ductile than DT alloy, strengthened by titanium oxides. Tensile tests performed at room temperature, in the chamber of a SEM, have shown that micro-cracking of the {chi} phase coincides with the first stage of the macroscopic yielding. The cavities initiated by the {chi} phase micro-cracking induce a ductile fracture of the matrix. A dynamic strain ageing mechanism has been observed around 400 deg, which is attributed to the Mo contribution. Between 20 and 700 deg, comparison of tensile properties of alloys with or without {chi} phase has shown that the intermetallic phase has a detrimental effect on the ductility, but has no influence on the mechanical strength. Creep tests have been performed between 500 and 700 deg. Thermally activated plasticity mechanisms are observed in this temperature range. The {chi} phase, which is always micro-cracked after tensile testing, is not damaged after creep testing below a critical stress. This behaviour is explained by the influence of strain rate through the competition between strain hardening and relaxation of the matrix. (author).

  14. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties

    International Nuclear Information System (INIS)

    Regle, H.

    1994-01-01

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. Technologically, cold-drawing is the only way

  15. Comparison of Ductile-to-Brittle Transition Behavior in Two Similar Ferritic Oxide Dispersion Strengthened Alloys

    Science.gov (United States)

    Chao, Jesus; Rementeria, Rosalia; Aranda, Maria; Capdevila, Carlos; Gonzalez-Carrasco, Jose Luis

    2016-01-01

    The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell–Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic. PMID:28773764

  16. Comparison of Ductile-to-Brittle Transition Behavior in Two Similar Ferritic Oxide Dispersion Strengthened Alloys.

    Science.gov (United States)

    Chao, Jesus; Rementeria, Rosalia; Aranda, Maria; Capdevila, Carlos; Gonzalez-Carrasco, Jose Luis

    2016-07-29

    The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell-Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic.

  17. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe–Cr alloys: the role of Cr segregation

    International Nuclear Information System (INIS)

    Terentyev, D; Bakaev, A

    2013-01-01

    The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe–Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2〈111〉 and 〈100〉 loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2〈111〉 and 〈100〉 loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2〈111〉 loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally ‘invisible’ nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed. (paper)

  18. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  19. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  20. Influence of scandium addition on the high-temperature grain size stabilization of oxide-dispersion-strengthened (ODS) ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu, E-mail: lli18@ncsu.edu; Xu, Weizong; Saber, Mostafa; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2015-06-11

    The influence of 1–4 at% Sc addition on the thermal stability of mechanically alloyed ODS ferritic alloy was studied in this work. Sc addition was found to significantly stabilize grain size and microhardness at high temperatures. Grain sizes of samples with 1 and 4 at% Sc was found maintained in the nanoscale range at temperatures up to 1000 °C with hardness maintained at 5.6 and 6.7 GPa, respectively. The detailed microstructure was also investigated from EDS elemental mapping, where nanofeatures [ScTiO] were observed, while nanosized [YTiO] particles were rarely seen. This is probably due to the concentration difference between Sc and Y, leading to the formation of [ScTiO] favoring that of [YTiO]. Precipitation was considered as the major source for the observed high temperature stabilization. In addition, 14YT–Sc alloys without large second phases such as Ti-oxide can exhibit better performance compared to conventional ODS materials.

  1. The influence of fabrication procedure on the void swelling of an oxide dispersion strengthened ferritic alloy in a HVEM

    International Nuclear Information System (INIS)

    Snykers, M.; Biermans, F.; Cornelis, J.

    1982-01-01

    The influence of changes in the fabrication procedure of ferritic alloys with compositions Fe-13Cr-Ti-Mo-TiO 2 on the swelling behaviour are investigated. The fabrication procedures are: casting, powder metallurgy; milling in air and powder metallurgy; milling in argon. No difference is found for the results obtained for the materials fabricated by casting and by powder metallurgy; milling in air. Slightly different results are obtained for the material fabricated by powder metallurgy; milling in argon. This material contains argon in solution in the matrix, which causes a small shift of the peak swelling temperature and of the peak swelling helium concentration for tests carried out at 450 0 C. The overall swelling of this material is the lowest due to the small grain size and to the high density of inclusions. (orig.)

  2. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Peng, E-mail: doup@tsinghua.edu.cn [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko, E-mail: kimura@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Okuda, Takanari, E-mail: okuda.takanari@kki.kobelco.com [Kobelco Research Institute, 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo 651-2271 (Japan); Inoue, Masaki, E-mail: inoue.masaki@jaea.go.jp [Advanced Nuclear System R& D Directorate, Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Ukai, Shigeharu, E-mail: s-ukai@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Ohnuki, Somei, E-mail: ohnuki@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Fujisawa, Toshiharu, E-mail: fujisawa@esi.nagoya-u.ac.jp [EcoTopia Science Institute, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8603 (Japan); Abe, Fujio, E-mail: ABE.Fujio@nims.go.jp [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Jiang, Shan, E-mail: js93518@gmail.com [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Yang, Zhigang, E-mail: zgyang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-03-15

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y{sub 2}O{sub 3}), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y{sub 2}O{sub 3}), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  3. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    International Nuclear Information System (INIS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-01-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y 2 O 3 ), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y 2 O 3 ), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  4. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  5. Microstructural examination of commercial ferritic alloys at 299 DPA

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-11-01

    Microstructures and density change measurements are reported for Martensitic commercial steels HT-9 and Modified 9Cr-lMo (T9) and oxide dispersion strengthened ferritic alloys MA956 and NU957 following irradiation in the FFTF/MOTA at 420 degrees C to 200 DPA. Swelling as determined by density change remains below 2% for all conditions. Microstructures are found to be stable except in recrystallized grains of MA957, which are fabrication artifacts, with only minor swelling in the Martensitic steels and α' precipitation in alloys with 12% or more chromium. These results further demonstrate the high swelling resistance and microstructural stability of the ferritic alloy class

  6. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y2O3

    International Nuclear Information System (INIS)

    Eiselt, Ch.Ch.; Klimenkov, M.; Lindau, R.; Moeslang, A.; Odette, G.R.; Yamamoto, T.; Gragg, D.

    2011-01-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2 O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 2 0 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  7. Synthesis and Characterization of Oxide Dispersion Strengthened Ferritic Steel via a Sol-Gel Route

    International Nuclear Information System (INIS)

    Sun Qinxing; Zhang Tao; Wang Xianping; Fang Qianfeng; Hu Jing; Liu Changsong

    2012-01-01

    Nanocrystalline oxide dispersion strengthened (ODS) ferritic steel powders with nominal composition of Fe-14Cr-3W-0.3Ti-0.4Y 2 O 3 are synthesized using sol-gel method and hydrogen reduction. At low reduction temperature the impurity phase of CrO is detected. At higher reduction temperature the impurity phase is Cr 2 O 3 which eventually disappears with increasing reduction time. A pure ODS ferritic steel phase is obtained after reducing the sol-gel resultant products at 1200°C for 3 h. The HRTEM and EDS mapping indicate that the Y 2 O 3 particles with a size of about 15 nm are homogenously dispersed in the alloy matrix. The bulk ODS ferritic steel samples prepared from such powders exhibit good mechanical performance with an ultimate tensile stress of 960 MPa.

  8. Development of oxide dispersion strengthened 9Cr ferritic-martensitic steel clad tube for fast reactor

    International Nuclear Information System (INIS)

    Laha, K.; Saroja, S.; Mathew, M.D.; Jayakumar, T.; Vijay, R.; Venugopal Reddy, A.; Lakshminarayana, B.; Kapoor, Komal; Jha, S.K.; Tonpe, S.S.

    2012-01-01

    One of the key issues in the economical operation of FBR is to achieve high burn-up of fuel (200-250 GWd/t) which considerably reduces the fuel cycle cost. This imposes stringent requirements of void swelling resistance upto 200 dpa for the core structural materials. Presently used alloy 09 (a modified austenitic stainless steel, 15Cr-15Ni-Ti) for PFBR has void swelling limit less than 150 dpa. Because of the inherent void swelling resistance, 9-12Cr steels ferritic/martensitic steels are qualified for irradiation upto 200 dpa but their low creep strength at temperatures above 600 deg C restricts their application as a clad material. Oxide dispersion strengthening is found to be promising means of extending the creep resistance of ferritic/martensitic steels beyond 650 deg C without sacrificing the inherent advantages of high thermal conductivity and low swelling of ferritic steels

  9. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  10. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-01-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y 2 O 3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained

  11. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-04-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  12. Positron annihilation characterization of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Glade, S.C.; Wirth, B.D.; Odette, G.R.; Toyama, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    Nanostructured ferritic alloys (NFAs) were produced by mechanically alloying Fe-14Cr-3W-0.4Ti and 0.25Y 2 O 3 (wt%) powders followed by hot isostatic pressing consolidation at 850, 1000 and 1150 deg. C. Positron annihilation lifetime and orbital momentum spectroscopy measurements are in qualitative agreement with small angle neutron scattering, transmission electron microscopy and atom probe tomography observations, indicating that up to 50% of the annihilations occur at high densities of Y-Ti-O enriched nm-scale features (NFs). Some annihilations may also occur in small cavities. In Y-free control alloys, that do not contain NFs, positrons primarily annihilate in the Fe-Cr matrix and at features such as dislocations, while a small fraction annihilate in large cavities or Ar bubbles.

  13. Development oxide dispersion strengthened ferritic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    Uniaxial tension creep response is reported for an oxide dispersion strengthened (ODS) steel, Fe-13.5Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) manufactured using the mechanical alloying process. Acceptable creep response is obtained at 900{degrees}C.

  14. In-situ formation of complex oxide precipitates during processing of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Jayasankar, K.; Pandey, Abhishek; Mishra, B.K.; Das, Siddhartha

    2016-01-01

    Highlights: • Use of dual drive planetary ball mill for Bench scale (>1 kg) production. • X-ray diffraction and TEM were used to study transformations during sintering. • HIPped and rolled samples with nearly 99% density successfully produced. - Abstract: In fusion and fission reactor material development, ODS alloys are the most suitable candidate materials due to its high temperature creep properties and irradiation resistance properties. This paper describes the preparation of oxide dispersion strengthened alloy powder in large quantity (>1 kg batch) in dual drive planetary ball mill using pre-alloyed ferrtic steel powder with nano sized Y_2O_3. The consolidation of the powders was carried out in hot isostatic press (HIP) followed by hot rolling. 99% of the theoretical density was achieved by this method. The vickers hardness values of pressed and rolled samples were in the range of 380 ± 2HV and 719 ± 2HV, respectively. Samples were further investigated using X-ray diffraction particle size analyzer and electron microscope. Initial increase in particle size with milling was observed showing flattening of the particle. It was found that 5 h of milling time is sufficient to reduce the particle size to achieve the desired size. Transmission electron microscopy analysis of milled ODS steel powder revealed a uniform distribution of combustion synthesized nano-Y_2O_3 in ferritic steel matrix after a milling time of 5 h. Preliminary results demonstrated suitability of dual drive planetary ball mill for mass production of alloy within a short time due to various kinds of forces acting at a time during milling process. Fine monoclinic Y_2Si_2O_7 precipitates were also observed in the steel. This study explains the particle characteristics of nano Y_2O_3 dispersed ODS powder and formation of nano clusters in ODS ferritic alloy.

  15. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties; Alliages ferritiques 14/20% de chrome renforces par dispersion d`oxydes. Effets des procedes de mise en forme sur les textures de deformation, la recristallisation et les proprietes de traction

    Energy Technology Data Exchange (ETDEWEB)

    Regle, H

    1994-12-31

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. (Abstract Truncated)

  16. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  17. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  18. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...

  19. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  20. Experimental study and modelling of the high temperature mechanical behavior of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Steckmeyer, A.

    2012-01-01

    The strength of metals, and therefore their maximum operating temperature, can be improved by oxide dispersion strengthening (ODS). Numerous research studies are carried out at the French Atomic Energy Commission (CEA) in order to develop a cladding tube material for Gen IV nuclear power reactors. Oxide dispersion strengthened steels appear to be the most promising candidates for such application, which demands a minimum operating temperature of 650 C. The present dissertation intends to improve the understanding of the mechanical properties of ODS steels, in terms of creep lifetime and mechanical anisotropy. The methodology of this work includes mechanical tests between room temperature and 900 C as well as macroscopic and polycrystalline modelling. These tests are carried out on a Fe-14Cr1W0,26Ti + 0,3 Y 2 O 3 ODS ferritic steel processed at CEA by mechanical alloying and hot extrusion. The as-received material is a bar with a circular section. The mechanical tests reveal the high mechanical strength of this steel at high temperature. A strong influence of the strain rate on the ductility and the mechanical strength is also observed. A macroscopic mechanical model has been developed on the basis of some experimental statements such as the high kinematic contribution to the flow stress. This model has a strong ability to reproduce the mechanical behaviour of the studied material. Two different polycrystalline models have also been developed in order to reproduce the mechanical anisotropy of the material. They are based on its specific grain morphology and crystallographic texture. The discrepancy between the predictions of both models and experimental results reveal the necessity to formulate alternate assumptions on the deformation mechanisms of ODS ferritic steels. (author) [fr

  1. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first

  2. Irradiation creep of dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-01-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al 2 O 3 , is very similar to the GlidCop trademark alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10 21 n/cm 2 (E>0.1 MeV), which corresponds to ∼3-5 dpa. The irradiation temperature ranged from 60-90 degrees C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of ±0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as ∼2 x 10 -9 s -1 . These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys

  3. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  4. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Odette, G.R.; Lucas, G.E.

    2002-01-01

    A study to explore approaches to optimizing nanocomposited ferritic alloys was carried out on dispersion strengthened mechanically alloyed (MA) MA957, in the form of extruded bar stock. Previous studies had indicated that this alloy manifested superior high temperature strength and radiation stability, but was extremely brittle in notch impact tests. Thus our objective was to develop a combination of tensile, fracture toughness and microstructural data to clarify the basis for this brittle behavior. To this end, tensile properties and fracture toughness were characterized as a function of temperature in various orientations relative to the grain and inclusion structures. This database along with extensive fractography suggests that brittleness is due to the presence of a large volume fraction of impurity alumina stringers. In orientations where the effects of the stringers are reduced, much higher toughness was observed. These results provide a path for alloy development approach to achieve high strength and toughness

  5. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys

    Science.gov (United States)

    Alinger, M. J.; Odette, G. R.; Lucas, G. E.

    2002-12-01

    A study to explore approaches to optimizing nanocomposited ferritic alloys was carried out on dispersion strengthened mechanically alloyed (MA) MA957, in the form of extruded bar stock. Previous studies had indicated that this alloy manifested superior high temperature strength and radiation stability, but was extremely brittle in notch impact tests. Thus our objective was to develop a combination of tensile, fracture toughness and microstructural data to clarify the basis for this brittle behavior. To this end, tensile properties and fracture toughness were characterized as a function of temperature in various orientations relative to the grain and inclusion structures. This database along with extensive fractography suggests that brittleness is due to the presence of a large volume fraction of impurity alumina stringers. In orientations where the effects of the stringers are reduced, much higher toughness was observed. These results provide a path for alloy development approach to achieve high strength and toughness.

  6. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  7. Precipitate strengthening of nanostructured aluminium alloy.

    Science.gov (United States)

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  8. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James [Univ. of Illinois, Urbana-Champaign, IL (United States); Heuser, Brent [Univ. of Illinois, Urbana-Champaign, IL (United States); Robertson, Ian [Kyushu Univ. (Japan); Sehitoglu, Huseyin [Univ. of Illinois, Urbana-Champaign, IL (United States); Sofronis, Petros [Kyushu Univ. (Japan); Gewirth, Andrew [Kyushu Univ. (Japan)

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  9. The structural changes of Y2O3 in ferritic ODS alloys during milling

    International Nuclear Information System (INIS)

    Hilger, I.; Tegel, M.; Gorley, M.J.; Grant, P.S.; Weißgärber, T.; Kieback, B.

    2014-01-01

    Oxide dispersion strengthened (ODS) ferritic steels are usually fabricated via mechanical alloying and subsequent consolidation via hot extrusion or hot isostatic pressing. During the individual process steps, a complex evolution of the nanoparticle structure is taking place. Powders with different Y 2 O 3 contents were milled and examined by means of X-ray diffraction (XRD) and atom probe tomography (APT). It has been observed that the Y 2 O 3 is fragmented and becomes partially amorphous upon milling due to the grain refinement of Y 2 O 3 during the milling process. There was no compelling evidence for Y 2 O 3 dissociation and dissolution into the steel matrix

  10. The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Pinghuai [Fusion Reactor & Materials Division, Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Miao, Yinbin [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Li, Shaofu; Wang, Man [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Gong, Mengqiang [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-11-05

    In this study, a 9Cr oxide-dispersion strengthened (ODS) alloy with additional corrosion resistant element Al was fabricated by mechanical alloying (MA) and hot pressing (HP) to explore the impact of Al on the microstructure and mechanical property of a 9Cr ODS alloy. It is found that the Al completely dissolved into the Fe–Cr matrix after milling for 30 h. The minor phases in the Al-containing 9Cr ODS ferritic alloy were investigated by a high-energy X-ray, and were identified to be orthorhombic-YAlO{sub 3} (YAP), bcc-Y{sub 3}Al{sub 5}O{sub 12} (YAG), monoclinic-Al{sub 2}Y{sub 4}O{sub 9} (YAM), and hexagonal-YAlO{sub 3} (YAH). These phases were further confirmed by selected area diffraction pattern (SADP), energy dispersive spectroscopy (EDS), and high resolution transmission electron microscopy (HRTEM). In addition, their volume fractions were also calculated from the integrated intensities. According to the analysis of the particles and their formation sequences, the larger particles (greater than 100 nm) are identified as mainly YAG and Al{sub 2}O{sub 3} particles, while the particles with small size (less than 30 nm) are likely primarily YAM, YAH, and YAP particles. The yielding strength (YS) and ultimate tensile strength (UTS) at RT are 563 MPa and 744 MPa, respectively, while the YS and UTS at 700 °C are 245 MPa and 276 MPa, respectively. Although the addition Al in ODS alloys decreases the strength at RT, the values at high temperature are similar to those obtained for 9Cr ODS alloys strengthened by fine Y–Ti–O particles. - Graphical abstract: Synchrotron X-ray diffraction line profile of the 9CrAl ODS alloy; (Ferrite matrix phases, along with minor phases, orthorhombic YAlO{sub 3} (yttrium aluminum perovskite, YAP), bcc Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet, YAG), monoclinic Al{sub 2}Y{sub 4}O{sub 9} (yttrium aluminum monoclinic, YAM), and hexagonal YAlO{sub 3} (yttium aluminum hexagonal, YAH) were recognized.). - Highlights: • The

  11. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  12. Strengthening Hadfield steel welds by nitrogen alloying

    International Nuclear Information System (INIS)

    Efstathiou, C.; Sehitoglu, H.

    2009-01-01

    Strengthening Hadfield steel weld repairs by introducing nitrogen into the weld region was proven to be feasible via two welding techniques. The first technique required a pure Hadfield steel filler material to be diffusion treated in a high pressure nitrogen gas environment, and subsequently used during tungsten inert gas welding with a pure argon shielding gas. The second technique used a Hadfield steel filler material, and a 10% nitrogen containing argon shielding gas during tungsten inert gas welding. Both techniques increased the yield strength, the hardening rate, and the ultimate strength of the weld region. Using optical microscopy, scanning electron microscopy, and Auger spectroscopy, we determined that the increased strength of the weld region resulted from a combination of nitrogen alloying and microstructural refinement

  13. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Baluc, N.

    2009-01-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2 O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  14. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  15. Behavior of the elements in the mechanically alloyed and cast ferritic steels and a type 316 stainless steel in a flowing sodium environment

    International Nuclear Information System (INIS)

    Suzuki, T.; Mutoh, I.

    1988-01-01

    Sodium corrosion behavior of a mechanically alloyed ferritic steel, dispersion-strengthened with addition of Y 2 0 3 and Ti, two kinds of melted/cast ferritic steels and a Type 316 stainless steel was examined by using a non-isothermal sodium loop system, constructed of another Type 316 stainless steel, with a direct resistance electrical heater. The sodium conditions were 675 0 C, 4.0 m/s in velocity and 1-2 ppm oxygen concentration and a cumulative exposure time of the specimens was about 3000 h. The absorption of Ni and selective dissolution of Cr played an important role in the corrosion of the mechanically alloyed ferritic steel as in the case of the cast ferritic steels. However, the region of Ni absorption and Cr diminution was deeper than that of the cast ferritic steels. Peculiar finding for the mechanically alloyed ferritic steel was the corroded surface with irregularly shaped protuberance, that might be related with formation of sodium titanate, and the absorption of carbon and nitrogen to form carbide and nitride of titanium. It seems that these facts resulted in the irregular weight loss of the specimens, which depended on the downstream position and the cumulative exposure time. However, the tensile properties of the mechanically alloyed ferritic steel did not noticeably change by the sodium exposure

  16. Character evaluation of strength in dispersion strengthened ferritic steel. 5

    International Nuclear Information System (INIS)

    Yoshida, Fuyuki; Nakashima, Hideharu

    1997-03-01

    In order to clarify the high-temperature deformation behaviour and the origin of threshold stress of ODS martensite steel with Y 2 O 3 particles, the stress-strain curves were measured by compression test at 600 to 700degC and at strain rates from 2x10 -5 to 2x10 -3 s -1 , and the threshold stress was measured by stress abruptly loading test (SAL test) at 650degC. Further, the possibility of temperature dependence of threshold stress was discussed by estimating the activation energy for dislocations to detach the Y 2 O 3 particles. The results are summarized as follows. 1) The stress exponents of ODS martensite steel were 22-35. And the activation energy of high-temperature deformation was 742 kJ/mol. Those deformation behaviour of ODS martensite steel agrees with the deformation behaviour of ODS ferritic steel. 2) The Orowan stress and the void-hardening stress calculated from dispersion parameters approximately agreed with the threshold stress obtained by SAL test. It is concluded that the originating mechanism of the threshold stress in ODS martensite steel is the Srolovitz's one. 3) The calculated activation energy for a dislocation to detach the particles was very high compared to the thermal energy. Therefor, the threshold stress is almost independent of temperature. (author)

  17. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  18. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  19. Path E alloys: ferritic material development for magnetic fusion energy applications

    International Nuclear Information System (INIS)

    Holmes, J.J.

    1980-09-01

    The application of ferritic materials in irradiation environments has received greatly expanded attention in the last few years, both internationally and in the United States. Ferritic materials are found to be resistant to irradiation damage and have in many cases superior properties to those of AISI 316. It has been shown that for magnetic fusion energy applications the low thermal expansion behavior of the ferritic alloy class will result in lower thermal stresses during reactor operation, leading to significantly longer ETF operating lifetimes. The Magnetic Fusion Energy Program therefore now includes a ferritic alloy option for alloy selection and this option has been designated Path E

  20. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  1. Fracture toughness of ferritic alloys irradiated at FFTF

    International Nuclear Information System (INIS)

    Huang, F.H.

    1986-05-01

    Ferritic compact tension specimens loaded in the Material Open Test Assembly (MOTA) for irradiation during FFTF Cycle 4 were tested at temperatures ranging from room temperature to 428/degree/C. The electrical potential single specimen method was used to measure the fracture toughness of the specimens. Results showed that the fracture toughness of both HT-9 and 9Cr-1Mo decreases with increasing test temperature and that the toughness of HT-9 was about 30% higher than that of 9Cr-1Mo. In addition, increasing irradiation temperature resulted in an increase in tearing modulus for both alloys. 4 refs., 5 figs., 1 tab

  2. Development of New Heats of Advanced Ferritic/Martensitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pestovich, Kimberly Shay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-23

    The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements in low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.

  3. Strengthening of metallic alloys with nanometer-size oxide dispersions

    Science.gov (United States)

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  4. Strengthening of metallic alloys with nanometer-size oxide dispersions

    Science.gov (United States)

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  5. Microstructure and tensile properties of yttrium nitride dispersion-strengthened 14Cr–3W ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Liqing [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4067, QLD (Australia); Liu, Zuming, E-mail: lzm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Shiqi; Guo, Yang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2015-12-15

    Highlights: • Innovative nano yttrium nitride dispersion strengthened steels were fabricated. • Higher content of additives accelerate the steel-ceramic powder milling process more. • Steel with high content (3%) of YN dispersoids can obtain good performance at 500 °C. - Abstract: 14Cr–3W ferritic steel powders were mechanically milled with microscale yttrium nitride (YN) particles to fabricate particle dispersion-strengthened ferritic steels. After hot consolidation and annealing, the steel matrix was homogeneously dispersed with nano-scale YN particles. The steel containing 0.3 wt.% YN particles exhibited a yield strength of 1445 MPa at room temperature. Its total elongation was 10.3%, and the fracture surface exhibited mixed ductile and quasi-cleavage fracture morphologies. The steel with a much higher content of YN particles (3 wt.%) in its matrix was much stronger (1652 MPa) at room temperature at the cost of ductility. In particular, it exhibited a high yield strength (1350 MPa) with applicable ductility (total elongation > 10%) at 500 °C. This study has developed a new kind of reinforcement particle to fabricate high-performance ferritic steels.

  6. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    Science.gov (United States)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  7. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    International Nuclear Information System (INIS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-01-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  8. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  9. Microstructure and Mechanical Property of ODS Ferritic Steels Using Commercial Alloy Powders for High Temperature Service Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Choi, Byoung-Kwon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthening (ODS) is one of the promising ways to improve the mechanical property at high temperatures. This is mainly attributed to uniformly distributed nano-oxide particle with a high density, which is extremely stable at the high temperature and acts as effective obstacles when the dislocations are moving. In this study, as a preliminary examination to develop the advanced structural materials for high temperature service applications, ODS ferritic steels were fabricated using commercial alloy powders and their microstructural and mechanical properties were investigated. In this study, ODS ferritic steels were fabricated using commercial stainless steel 430L powder and their microstructures and mechanical properties were investigated. Morphology of micro-grains and oxide particles were significantly changed by the addition of minor alloying elements such as Ti, Zr, and Hf. The ODS ferritic steel with Zr and Hf additions showed ultra-fine grains with fine complex oxide particles. The oxide particles were uniformly located in grains and on the grain boundaries. This led to higher hardness than ODS ferritic steel with Ti addition.

  10. Development of new ferritic alloys reinforced by nano titanium nitrides

    International Nuclear Information System (INIS)

    Mathon, M.H.; Perrut, M.; Poirier, L.; Ratti, M.; Hervé, N.; Carlan, Y. de

    2015-01-01

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH 2 powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy

  11. Development of new ferritic alloys reinforced by nano titanium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  12. Effects of neutron irradiation on microstructure in experimental and commercial ferritic alloys

    International Nuclear Information System (INIS)

    Gelles, D.S.; Thomas, L.E.

    1983-05-01

    A series of microstructural studies have been undertaken on fast-reactor-irradiated specimens of experimental ferritic alloys and ferritic/martensitic commercial alloys covering a broad range of compositions and starting microstructures. It is found that voids do indeed form in ferritic alloys and that dislocation loops and tangles are created during irradiation at temperatures below 500 0 C. Swelling rates as high as 0.25% per 10 22 n/cm 2 have been measured. However, the major effect of irradiation is precipitation and precipitation can suppress void swelling completely and/or be responsible for degradation of mechanical properties

  13. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles

    International Nuclear Information System (INIS)

    Jiao, Z.B.; Luan, J.H.; Miller, M.K.; Yu, C.Y.; Liu, C.T.

    2015-01-01

    The critical role of Mn partitioning in the formation of ordered NiAl nanoparticles in ferritic steels has been examined through a combination of atom probe tomography (APT) and thermodynamic and first-principles calculations. Our APT study reveals that Mn partitions to the NiAl nanoparticles, and dramatically increases the particle number density by more than an order of magnitude, leading to a threefold enhancement in strengthening. Atomistic structural analyses reveal that Mn is energetically favored to partition to the NiAl nanoparticles by preferentially occupying the Al sublattice, which not only increases the driving force, but also reduces the strain energy for nucleation, thereby significantly decreasing the critical energy for formation of the NiAl nanoparticles in ferritic steels. In addition, the effects of Mn on the precipitation strengthening mechanisms were quantitatively evaluated in terms of chemical strengthening, coherency strengthening, modulus strengthening and order strengthening

  14. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  15. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    Science.gov (United States)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  16. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  17. G phase precipitation and strengthening in ultra-high strength ferritic steels: Towards lean ‘maraging’ metallurgy

    International Nuclear Information System (INIS)

    Sun, W.W.; Marceau, R.K.W.; Styles, M.J.; Barbier, D.; Hutchinson, C.R.

    2017-01-01

    Ultra-high strength steels are interesting materials for light-weighting applications in the transportation industries. A key requirement of these applications is weldability and consequently a low carbon content is desirable. Maraging steels are examples of ultra-high strength, low carbon steels but their disadvantage is their high cost due to the large Ni and/or Co additions required. This contribution is focussed on the development of steels with maraging-like strengths but with low solute contents (less than 10%). A series of alloy compositions were designed to exploit precipitation of the G phase in a ferritic matrix at temperatures of 450–600 °C in order to obtain yield strengths in excess of 2 GPa. The mechanical response of the materials was measured using tension and compression testing and the precipitate evolution has been characterized using atom probe tomography (APT) and in-situ small angle X-ray scattering (SAXS) at a synchrotron beamline. Precipitate number densities of 10"2"5 m"−"3 are obtained, which are amongst the highest number densities so far observed in engineering alloys. The intrinsic strength of the G phase is shown to be proportional to its size, and deviations in the chemistry of the precipitates do not significantly affect their strengthening behaviour. An important outcome is that the common temper embrittlement issues known to occur during aging of martensite in the 450–600 °C range were mitigated in one alloy by starting with a cold-rolled and partially fragmented lath martensite instead of a freshly quenched martensite.

  18. Alloys influence in ferritic steels with hydrogen attack

    International Nuclear Information System (INIS)

    Moro, L; Rey Saravia, D; Lombardich, J; Saggio, M; Juan, A; Blanco, J

    2003-01-01

    Materials exposed to a corrosive environment and high temperatures, are associated with a decrease of their mechanical properties and embitterment.At room temperatures atomic hydrogen diffuses easily through metals structure, it accumulates in lattice defects forming molecular hydrogen and generating cracking due to internal stresses.Under high temperatures the phenomenon is more complex.The steels in these conditions present different structures of precipitates, that the change under creep conditions period.In this work it is determined the influence of Cr and V alloys, the changes of ferritic steel resistance in a corrosive environment and high temperatures.1.25 Cr 1 Mo 0.25 V and 2.25Cr 1 Mo under different loads and temperatures previously attacked by hydrogen environment.The hydrogen is induced by the electrolytic technique, optimizing the choice of temperatures, current density, electrolyte, etc. In order to control an adequate cathode charge, a follow up procedure is carried out by electronic barrier microscopy.After the attack, the material is settled at room temperatures for certain period of time, to allow the hydrogen to leave and evaluate the residual damage.Creep by torsion assays, under constant load and temperature is used as an experimental technique.With the outcome data curves are drawn in order to study the secondary creep rate, with the applied load and temperature, determining the value of stress exponent n and the activation energy Q.Comparing to equal assays to the same ferritic steels but non attacked by hydrogen, these values allows the prediction of microstructure changes present during these tests

  19. Manufacturing Experience for Oxide Dispersion Strengthened Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Wendy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-22

    This report documents the results of the development and the manufacturing experience gained at the Pacific Northwest National Laboratories (PNNL) while working with the oxide dispersion strengthened (ODS) materials MA 956, 14YWT, and 9YWT. The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. ODS materials have the potential to provide improved performance for the U-Mo concept.

  20. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route

    International Nuclear Information System (INIS)

    Guo Lina; Jia Chengchang; Hu Benfu; Li Huiying

    2010-01-01

    A reduced activation oxide dispersion strengthened (ODS) ferritic steel with nominal composition of Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y 2 O 3 (designated 12Cr-ODS) was produced by using EDTA-citrate complex method to synthesize and add Y 2 O 3 particles to an argon atomized steel powder, followed by hot isostatic pressing at 1160 deg. C for 3 h under the pressure of 130 MPa, forging at 1150 deg. C, and heat treatment at 1050 deg. C for 2 h. The microstructure, tensile, and Charpy impact properties of the 12Cr-ODS steel were investigated. Transmission electron microscopy studies indicate that the 12Cr-ODS steel exhibits the characteristic ferritic structure containing few dislocations. Tensile characterization has shown that the 12Cr-ODS steel has superior tensile strength accompanied by good elongation at room temperature and 550 deg. C. The material exhibits very attractive Charpy impact properties with upper shelf energy of 22 J and a ductile-to-brittle transition temperature (DBTT) of about -15 deg. C. The formation of small, equiaxed grains and fine dispersion of oxide particles are the main reasons for the good compromise between tensile strength and impact properties.

  1. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route

    Energy Technology Data Exchange (ETDEWEB)

    Guo Lina, E-mail: guoln702@yahoo.com.cn [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jia Chengchang; Hu Benfu; Li Huiying [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-07-25

    A reduced activation oxide dispersion strengthened (ODS) ferritic steel with nominal composition of Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y{sub 2}O{sub 3} (designated 12Cr-ODS) was produced by using EDTA-citrate complex method to synthesize and add Y{sub 2}O{sub 3} particles to an argon atomized steel powder, followed by hot isostatic pressing at 1160 deg. C for 3 h under the pressure of 130 MPa, forging at 1150 deg. C, and heat treatment at 1050 deg. C for 2 h. The microstructure, tensile, and Charpy impact properties of the 12Cr-ODS steel were investigated. Transmission electron microscopy studies indicate that the 12Cr-ODS steel exhibits the characteristic ferritic structure containing few dislocations. Tensile characterization has shown that the 12Cr-ODS steel has superior tensile strength accompanied by good elongation at room temperature and 550 deg. C. The material exhibits very attractive Charpy impact properties with upper shelf energy of 22 J and a ductile-to-brittle transition temperature (DBTT) of about -15 deg. C. The formation of small, equiaxed grains and fine dispersion of oxide particles are the main reasons for the good compromise between tensile strength and impact properties.

  2. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Guo, Xianglong, E-mail: guoxianglong@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Shen, Zhao [Department of Materials Science, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Zhang, Lefu, E-mail: lfzhang@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer. - Highlights: • We evaluated the corrosion resistance of three different Cr content ODS steels at 650 °C in supercritical water. • Corrosion behavior of ODS steels is rarely reported and ODS steel may be promising material for generation IV reactors. • We found total opposite phenomenon compared to Lee's work before. Our result may be more reasonable.

  3. Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation

    International Nuclear Information System (INIS)

    Yamashita, S.; Oka, K.; Ohnuki, S.; Akasaka, N.; Ukai, S.

    2002-01-01

    Oxide dispersion-strengthened ferritic steels were irradiated by neutrons up to 21 dpa and studied by microstructural observation and microchemical analysis. The original high dislocation density did not change after neutron irradiation, indicating that the dispersed oxide particles have high stability under neutron irradiation. However, there is potential for recoil resolution of the oxide particles due to ballistic ejection at high dose. From the microchemical analysis, it was implied that some of the complex oxides have a double-layer structure, such that TiO 2 occupied the core region and Y 2 O 3 the outer layer. Such a structure may be more stable than the simple mono-oxides. Under high-temperature irradiation, Laves phase was the predominant precipitate occurring at grain boundaries α phase and χ phase were not observed in this study

  4. Enhancement of low temperature toughness of nanoprecipitates strengthened ferritic steel by delamination structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu; Xu, Songsong; Li, Junpeng; Zhang, Jian [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China); Sun, Liangwei; Chen, Liang; Sun, Guangai; Peng, Shuming [Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 621999 (China); Zhang, Zhongwu, E-mail: zwzhang@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China)

    2017-04-13

    This study investigated the effects of aging and thermomechanical treatments on the microstructure evolution and mechanical properties of a nanoprecipitates strengthened ferritic steel. The toughness of steel at various temperatures was measured carefully and correlated with microstructural features. Tensile tests show that aging can improve the mechanical strength without scarifying the ductility. With high yield strength of ~1000 MPa, excellent low temperature Charpy impact energy more than 300 J at −80 °C can be obtained. The ductile brittle transition temperature (DBTT) is lower than −80 °C. The high strength can be contributed by the nanocluster precipitation as determined by small angle neutron scattering and transmission electron microscopy. The excellent low temperature toughness is attributed to the delamination structure of the steel, which blunts the cracks and restrains the crack propagation.

  5. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Ma, Kaka; Wen, Haiming; Hu, Tao; Topping, Troy D.; Isheim, Dieter; Seidman, David N.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-01-01

    To provide insight into the relationships between precipitation phenomena, grain size and mechanical behavior in a complex precipitation-strengthened alloy system, Al 7075 alloy, a commonly used aluminum alloy, was selected as a model system in the present study. Ultrafine-grained (UFG) bulk materials were fabricated through cryomilling, degassing, hot isostatic pressing and extrusion, followed by a subsequent heat treatment. The mechanical behavior and microstructure of the materials were analyzed and compared directly to the coarse-grained (CG) counterpart. Three-dimensional atom-probe tomography was utilized to investigate the intermetallic precipitates and oxide dispersoids formed in the as-extruded UFG material. UFG 7075 exhibits higher strength than the CG 7075 alloy for each equivalent condition. After a T6 temper, the yield strength (YS) and ultimate tensile strength (UTS) of UFG 7075 achieved 734 and 774 MPa, respectively, which are ∼120 MPa higher than those of the CG equivalent. The strength of as-extruded UFG 7075 (YS: 583 MPa, UTS: 631 MPa) is even higher than that of commercial 7075-T6. More importantly, the strengthening mechanisms in each material were established quantitatively for the first time for this complex precipitation-strengthened system, accounting for grain-boundary, dislocation, solid-solution, precipitation and oxide dispersoid strengthening contributions. Grain-boundary strengthening was the predominant mechanism in as-extruded UFG 7075, contributing a strength increment estimated to be 242 MPa, whereas Orowan precipitation strengthening was predominant in the as-extruded CG 7075 (∼102 MPa) and in the T6-tempered materials, and was estimated to contribute 472 and 414 MPa for CG-T6 and UFG-T6, respectively

  6. TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2018-04-01

    The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.

  7. Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Miao, P.; Odette, G.R.; Yamamoto, T.; Alinger, M.; Hoelzer, D.; Gragg, D.

    2007-01-01

    Fully consolidated nanostructured ferritic alloys (NFAs) were prepared by attritor milling pre-alloyed Fe-14Cr-3W-0.4Ti and 0.3 wt% Y 2 O 3 powders, followed by hot isostatic pressing (HIPing) at 1000 o C or 1150 o C at 200 MPa for 4 h. Transmission electron microscopy (TEM) revealed similar bimodal distributions of fine and coarse ferrite grains in both cases. However, as expected, the alloy microhardness decreased with increasing in HIPing temperature. Three point bend tests on single edge notched specimens, with a nominal root radius ρ = 0.15 mm, were used to measure the notch fracture toughness, K ρ , as a function of test temperature. The K ρ curves were found to be similar for both processing conditions. It appears that the coarser ferrite grains control cleavage fracture, in a way that is independent of alloy strength and HIPing temperature

  8. Effects of nickel and cobalt addition on creep strength and microstructure of the precipitation-strengthened 15Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Masachika; Toda, Yoshiaki; Sawada, Kota; Kushima, Hideaki; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength of 15Cr ferritic steel with ferrite matrix was increased by precipitation strengthening of intermetallic compounds. It was higher than those of 9-12Cr ferritic steels with a tempered martensitic microstructure strengthened by carbide and carbonitride. Addition of nickel was confirmed to improve Charpy impact toughness of the 15Cr steels, however, creep strength was slightly reduced by the addition of nickel. Microstructure of the 15Cr steel changes from ferrite single phase to dual phases of ferrite and martensite with the addition of nickel which is an austenite stabilizing element. The 15Cr steels investigated in the previous study, contain 3mass% of cobalt which is also an austenite stabilizing element, therefore, the influence of nickel and cobalt combination on mechanical properties and microstructure of the 15Cr-1Mo-6W-V-Nb steel is investigated in this study. Creep strength, Charpy impact toughness and microstructure of the steel were strongly influenced by the composition of nickel and cobalt. Design guideline of the 15Cr steel is discussed with respect to a role of microstructure and combination of nickel and cobalt addition. (orig.)

  9. Effects of irradiation on ferritic alloys and implications for fusion reactor applications

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1986-07-01

    This paper reviews the ADIP irradiation effects data base on ferritic (martensitic) alloys to provide reactor teams with an understanding of how such alloys will behave for fusion reactor first wall applications. Irradiation affects dimensional stability, strength and toughness. Dimensional stability is altered by precipitation and void swelling. Swelling as high as 25% may occur in some ferritic alloys at 500 dpa. Irradiation alters strength both during and following irradiation. Irradiation at low temperatures leads to hardening whereas at higher temperatures and high exposures, precipitate coarsening can result in softening. Toughness can also be adversely affected by irradiation. Failure can occur in ferritic in a brittle manner and irradiation induced hardening causes brittle failure at higher temperatures. Even at high test temperatures, toughness is reduced due to reduced failure initiation stresses. 39 refs

  10. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    Science.gov (United States)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  11. High-throughput computational search for strengthening precipitates in alloys

    International Nuclear Information System (INIS)

    Kirklin, S.; Saal, James E.; Hegde, Vinay I.; Wolverton, C.

    2016-01-01

    The search for high-strength alloys and precipitation hardened systems has largely been accomplished through Edisonian trial and error experimentation. Here, we present a novel strategy using high-throughput computational approaches to search for promising precipitate/alloy systems. We perform density functional theory (DFT) calculations of an extremely large space of ∼200,000 potential compounds in search of effective strengthening precipitates for a variety of different alloy matrices, e.g., Fe, Al, Mg, Ni, Co, and Ti. Our search strategy involves screening phases that are likely to produce coherent precipitates (based on small lattice mismatch) and are composed of relatively common alloying elements. When combined with the Open Quantum Materials Database (OQMD), we can computationally screen for precipitates that either have a stable two-phase equilibrium with the host matrix, or are likely to precipitate as metastable phases. Our search produces (for the structure types considered) nearly all currently known high-strength precipitates in a variety of fcc, bcc, and hcp matrices, thus giving us confidence in the strategy. In addition, we predict a number of new, currently-unknown precipitate systems that should be explored experimentally as promising high-strength alloy chemistries.

  12. Hot mechanical behaviour of dispersion strengthened Cu alloys

    International Nuclear Information System (INIS)

    Garcia G, Jose; Espinoza G, Rodrigo; Palma H, Rodrigo; Sepulveda O, Aquiles

    2003-01-01

    This work is part of a research project which objective is the improvement of the high-temperature mechanical properties of copper, without an important decrease of the electrical or thermal conduction properties. The general hypothesis is that this will be done by the incorporation of nanometric ceramic dispersoids for hindering the dislocation and grain boundaries movement. In this context, the object of the present work is the study of the resistance to hot deformation of dispersion-strengthened copper alloys which have prepared by reactive milling. Two different alloys, Cu-2,39wt.%Ti-0.56wt.%C and Cu-1.18wt.%Al, were prepared so as obtain a copper matrix reinforced with nanometric TiC y Al 2 O 3 particles with a nominal total amount of 5 vol.%. The particles were developed by an in-situ formation process during milling. The materials were prepared in an attritor mill, and consolidated by extrusion at 750 o C, with an area reduction rate of 10:1. The resistance to hot deformation was evaluated by hot compression tests at 500 and 850 o C, at initial strain rates of 10 -3 and 10 -4 s-1. To evaluate the material softening due temperature, annealing at 400, 650 y 900 o C during 1h were applied; after that, hardness was measured at room temperature. Both studies alloys presented a higher resistance to hot deformation than pure copper, with or without milling. Moreover, the Cu-Ti-C alloy presented a mechanical resistance higher than that of the Cu-Al one. Both alloys presented strain-stress compression curves with a typical hot-work shape: an initial maximum followed by a stationary plateau. The Cu-Ti-C alloy had a higher hardness and did not present a hardness decay even after annealings at the higher temperature imposed (900 o C), while the Cu-Al alloy did exhibit a strong decay of hardness after the annealing at 900 o C. The best behaviour exhibited by the Cu-Ti C alloy, was attributed to the formation of a major quantity of dispersoids that in the Cu-Al alloy. In

  13. Microstructure evolution of the oxide dispersion strengthened CLAM steel during mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Liangliang [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Mao, Xiaodong [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • A nano-sized oxides dispersed ODS-CLAM steel was obtained by MA and HIP. • A minimum saturated grain size of down to 30 nm was achieved by varying the milling time from 0 to 100 h. • Solution of W in the MA powder could be significantly improved by increasing MA rotation speed. - Abstracts: Oxide dispersion strengthened Ferritic/Martensitic steel is considered as one of the most potential structural material for future fusion reactor, owing to its high mechanical properties and good irradiation resistance. The oxide dispersion strengthened China Low Activation Martensitic (ODS-CLAM) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The microstructural evolutions during the process of ball milling and subsequent consolidation were investigated by SEM, XRD and TEM. The results showed that increasing the milling time during the first 36 h milling could effectively decrease the grain size to a value of around 30 nm, over which grain sized remained nearly constant. Increasing the rotation speed promoted the solution of tungsten (W) element obviously and decreased the grain size to a certain degree. Observation on the consolidated and further heat-treated ODS-CLAM steel samples indicated that a martensite microstructure with a high density of nano-particles was achieved.

  14. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang, E-mail: thaksang.byun@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hoelzer, David T. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, Jeoung Han [Hanbat National University, Daejeon 305-719 (Korea, Republic of); Maloy, Stuart A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-15

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The K{sub JQ} versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  15. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    International Nuclear Information System (INIS)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-01-01

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, αprime precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9 at

  16. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  17. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  18. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  19. Stress corrosion cracking studies on ferritic low alloy pressure vessel steel - water chemistry and modelling aspects

    International Nuclear Information System (INIS)

    Tipping, P.; Ineichen, U.; Cripps, R.

    1994-01-01

    The susceptibility of low alloy ferritic pressure vessel steels (A533-B type) to stress corrosion cracking (SCC) degradation has been examined using various BWR type coolant chemistries. Fatigue pre-cracked wedge-loaded double cantilever beams and also constantly loaded 25 mm thick compact tension specimens have shown classical SCC attack. The influence of parameters such as dissolved oxygen content, water impurity level and conductivity, material chemical composition (sulphur content) and stress intensity level are discussed. The relevance of SCC as a life-limiting degradation mechanism for low alloy ferritic nuclear power plant PV steel is examined. Some parameters, thought to be relevant for modelling SCC processes in low alloy steels in simulated BWR-type coolant, are discussed. 8 refs., 1 fig., 4 tabs

  20. The creep properties of a low alloy ferritic steel containing an intermetallic precipitate dispersion

    International Nuclear Information System (INIS)

    Batte, A.D.; Murphy, M.C.; Edmonds, D.V.

    1976-01-01

    A good combination of creep rupture ductility and strength together with excellent long term thermal stability, has been obtained from a dispersion of intermetallic Laves phase precipitate in a non-transforming ferritic low alloy steel. The steel is without many of the problems currently associated with the heat affected zone microstructures of low alloy transformable ferritic steels, and can be used as a weld metal. Following suitable development to optimize the composition and heat treatment, such alloys may provide a useful range of weldable creep resistant steels for steam turbine and other high temperature applications. They would offer the unique possibility of easily achievable microstructural uniformity, giving good long term strength and ductility across the entire welded joint

  1. The Effect of H and He on Irradiation Performance of Fe and Ferritic Alloys

    International Nuclear Information System (INIS)

    Stubbins, James F.

    2010-01-01

    This research program was designed to look at basic radiation damage and effects and mechanical properties in Fe and ferritic alloys. The program scope included a number of materials ranging from pure single crystal Fe to more complex Fe-Cr-C alloys. The range of materials was designed to examine materials response and performance on ideal/model systems and gradually move to more complex systems. The experimental program was coordinated with a modeling effort. The use of pure and model alloys also facilitated the ability to develop and employ atomistic-scale modeling techniques to understand the inherent physics underlying materials performance.

  2. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  3. Quantitative prediction of solute strengthening in aluminium alloys.

    Science.gov (United States)

    Leyson, Gerard Paul M; Curtin, William A; Hector, Louis G; Woodward, Christopher F

    2010-09-01

    Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78 K are made for Al-X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

  4. Influence of initial thermomechanical treatment on high temperature properties of laves phase strengthened ferritic steels

    International Nuclear Information System (INIS)

    Talik, Michal

    2016-01-01

    The aim of this work was to design 17 wt%Cr Laves phase strengthened HiperFer (High performance Ferrite) steels and evaluate their properties. This class of steel is supposed to be used in Advanced Ultra Super Critical power plants. Such cycles exhibit higher efficiency and are environmentally friendly, but improved materials with high resistance to reside/steam oxidation and sufficient creep strength are required. The work focused on the characterization of creep properties of 17Cr2.5W0.5Nb0.25Si heat resistant steel. Small batches of steels with nominal compositions of 17Cr3W0.5Nb0.25Si and 17Cr3W0.9Nb0.25Si were used to analyze the influence of chemical composition on the precipitation behaviour in comparison to 17Cr2.5W0.5Nb0.25Si steel. Creep strength of HiperFer steels is ensured by ne dispersion of thermodynamically stable Laves phase particles, while maintaining high corrosion resistance by a relatively high chromium content. Design of HiperFer steels was accomplished by thermodynamic modeling (Thermocalc) with the main tasks of elimination of the unwelcome brittle (Fe,Cr)-σ phase and maximization of the content of the strengthening C14 Fe_2Nb type Laves phase particles. Long term annealing experiments of all HiperFer steels were performed at 650 C in order to evaluate the role of chemical composition and initial thermo-mechanical treatment state on precipitation behaviour. Laves phase particles formed quickly after few hours and the size of precipitates did not change significantly within 1,000 hours. The observed development of Laves phase particles was compared with thermodynamical calculations (TC-Prisma). The creep properties of 17Cr2.5W0.5Nb0.25Si steel in different initial thermo-mechanical treatment states were tested at 650 C. The influence of different cold rolling procedures, and heat treatments was investigated. Increased cold rolling deformation had a positive effect resulting not only from work hardening, but from the acceleration of Laves

  5. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  6. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    London, A.J., E-mail: andrew.london@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lozano-Perez, S.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Amirthapandian, S.; Panigrahi, B.K.; Sundar, C.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Grovenor, C.R.M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471–503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174–1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe–0.3Y{sub 2}O{sub 3}, Fe–0.2Ti–0.3Y{sub 2}O{sub 3} and Fe–14Cr–0.2Ti–0.3Y{sub 2}O{sub 3}. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors.

  7. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys.

    Science.gov (United States)

    London, A J; Lozano-Perez, S; Moody, M P; Amirthapandian, S; Panigrahi, B K; Sundar, C S; Grovenor, C R M

    2015-12-01

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471-503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174-1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe-0.3Y2O3, Fe-0.2Ti-0.3Y2O3 and Fe-14Cr-0.2Ti-0.3Y2O3. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, B., E-mail: mazumderb@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Parish, C.M.; Bei, H. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Miller, M.K. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-15

    Nanostructured ferritic alloys have outstanding high temperature creep properties and enhanced tolerance to radiation damage over conventional ferritic alloys. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of α-Fe, high number densities of Ti–Y–O-vacancy-enriched nanoclusters, and coarse Y{sub 2}Ti{sub 2}O{sub 7} and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of α-Fe with 50–100 μm irregularly-shaped Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore precipitates with smaller embedded precipitates with the Y{sub 3}Al{sub 5}O{sub 12} (yttrium–aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These variances can be explained by the microstructural differences and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms that retard diffusion. - Highlights: • Mechanical alloying produces nanostructured ferritic alloy with excellent properties. • Short milling time wastes solutes in low number densities of coarse precipitates. • Milling for 40 h yields UFG alloy with optimum distribution of ultrafine precipitates. • Longer milling times increase cost and increases impurities from attritor mill. • Casting produces undesirable course grain microstructure of α-Fe, YAG and pyrochlore.

  9. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  10. Corrosion studies on Cu-Ni alloys and ferritic steel in salt water for desalination service

    International Nuclear Information System (INIS)

    Shibad, P.R.; Balachandra, J.

    1975-01-01

    Corrosion studies on In 838 and In 848 alloys in 3% NaCl solution, synthetic sea water and in 3% NaCl at pH3 and pH10 indicate that the latter alloy is more corrosion resistant than the former at room (28 0 C), and boiling temperature (101 0 C) and at 125 0 C. Ferritic steel is unaffected in boiling synthetic sea water. In boiling 3% NaCl solution at pH3 and pH10, (the pH values adjusted at room temperature) increase in the rate of corrosion of ferritic steel compared to that at room temperature has been observed. A fair correlation between polarization characteristics and dissolution rates in these solutions is seen for all these materials. (author)

  11. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-01-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved

  12. Effects of irradiation on low-activation ferritic alloys to 45 dpa

    International Nuclear Information System (INIS)

    Gelles, D.S.; Hamilton, M.L.

    1986-06-01

    Nine low activation ferritic alloys covering the range 2 to 12Cr with alloying additions of tungsten and/or vanadium have been irradiated to intermediate fluences of 30 to 45 dpa and tensile tested or examined by transmission electron microscopy in order to determine the effect of increasing neutron dose on properties and microstructure. Changes in properties and microstructure are for the most part completed within 10 dpa but swelling and dislocation evolution continue with increasing dose at 420/degree/C and subgrain coarsening occurs at 600/degree/C. 9 refs., 7 figs., 2 tabs

  13. Effect of Mechanical Alloying Atmospheres and Oxygen Concentration on Mechanical Properties of ODS Ferritic Steels

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Choi, Byoungkwon; Han, Changhee; Kim, Kibaik; Kang, Sukhoon; Chun, Youngbum; Kim, Taekyu

    2013-01-01

    Finely dispersed nano-oxide particles with a high number density in the homogeneous grain matrix are essential to achieve superior mechanical properties at high temperatures, and these unique microstructures can be obtained through the mechanical alloying (MA) and hot consolidation process. The microstructure and mechanical property of ODS steel significantly depends on its powder property and the purity after the MA process. These contents should be carefully controlled to improve the mechanical property at elevated temperature. In particular, appropriate the control of oxygen concentration improves the mechanical property of ODS steel at high temperature. An effective method is to control the mechanical alloying atmosphere by high purity inert gas. In the present study, the effects of mechanical alloying atmospheres and oxygen concentration on the mechanical property of ODS steel were investigated. ODS ferritic alloys were fabricated in various atmospheres, and the HIP process was used to investigate the effects of MA atmospheres and oxygen concentration on the microstructure and mechanical property. ODS ferritic alloys milled in an Ar-H 2 mixture, and He is effective to reduce the excess oxygen concentration. The YH 2 addition made an extremely reduced oxygen concentration by the internal oxygen reduction reaction and resulted in a homogeneous microstructure and superior creep strength

  14. Irradiation performance of oxide dispersion strengthened copper alloys to 150 dpa at 415 degree C

    International Nuclear Information System (INIS)

    Edwards, D.J.; Kumar, A.S.; Anderson, K.R.; Stubbins, J.F.; Garner, F.A.; Hamilton, M.L.

    1991-11-01

    Results have been obtained on the post-irradiation properties of various oxide dispersion strengthened copper alloys irradiated from 34 to 150 dpa at 415 degrees C in the Fast Flux Test Facility. The GlidCop alloys strengthened by Al 2 O 3 continue to outperform other alloys with respect to swelling resistance, and retention of both electrical conductivity and yield strength. Several castable ODS alloys and a Cr 2 O 3 -strengthened alloy show increasingly poor resistance to radiation, especially in their swelling behavior. A HfO 2 -strengthened alloy retains most of its strength and its electrical conductivity reaches a constant level after 50 dpa, but it exhibits a higher residual radioactivity

  15. Processing and microstructure characterisation of oxide dispersion strengthened Fe–14Cr–0.4Ti–0.25Y2O3 ferritic steels fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Zhang, Hongtao; Huang, Yina; Ning, Huanpo; Williams, Ceri A.; London, Andrew J.; Dawson, Karl; Hong, Zuliang; Gorley, Michael J.; Grovenor, Chris R.M.; Tatlock, Gordon J.; Roberts, Steve G.; Reece, Michael J.; Yan, Haixue; Grant, Patrick S.

    2015-01-01

    Highlights: • Nanostructured ODS steels were successfully produced by SPS. • Presence of Y 2 Ti 2 O 7 nanoclusters was confirmed by synchrotron XRD and microscopy. • The chemistry of nanoclusters tested by ATP indicated they are Y–Ti–O oxides. - Abstract: Ferritic steels strengthened with Ti–Y–O nanoclusters are leading candidates for fission and fusion reactor components. A Fe–14Cr–0.4Ti + 0.25Y 2 O 3 (14YT) alloy was fabricated by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS). The densification of the 14YT alloys significantly improved with an increase in the sintering temperature. Scanning electron microscopy and electron backscatter diffraction revealed that 14YT SPS-sintered at 1150 °C under 50 MPa for 5 min had a high density (99.6%), a random grain orientation and a bimodal grain size distribution (<500 nm and 1–20 μm). Synchrotron X-ray diffraction patterns showed bcc ferrite, Y 2 Ti 2 O 7 , FeO, and chromium carbides, while transmission electron microscopy and atom probe tomography showed uniformly dispersed Y 2 Ti 2 O 7 nanoclusters of <5 nm diameter and number density of 1.04 × 10 23 m −3 . Due to the very much shorter consolidation times and lower pressures used in SPS compared with the more usual hot isostatic pressing routes, SPS is shown to be a cost-effective technique for oxide dispersion strengthened (ODS) alloy manufacturing with microstructural features consistent with the best-performing ODS alloys

  16. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K., E-mail: millermk@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6139 (United States); Reinhard, D., E-mail: David.Reinhard@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States); Larson, D.J., E-mail: David.Larson@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-07-15

    Highlights: • Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency. • Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP. • High densities, 1.8 × 10{sup 24} m{sup −3}, of solute clusters were detected in as-milled flakes of 14YWT. • Lower densities, 1.2 × 10{sup 24} m{sup −3}, were detected in the stir zone of a FSW. • Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. - Abstract: A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 10{sup 24} m{sup −3} and 1.2 × 10{sup 24} m{sup −3}, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  17. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Gelles, D.S.; Gardner, P.L.

    1992-06-01

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  18. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  19. Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature

    Science.gov (United States)

    Kun, Ma; Tingting, Liu; Ya, Liu; Xuping, Su; Jianhua, Wang

    2018-01-01

    The tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.

  20. Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying

    Science.gov (United States)

    Zhao, Ziqian; Xiao, Zhu; Li, Zhou; Zhu, Mengnan; Yang, Ziqi

    2017-11-01

    Cu-3.6 vol.% Al2O3 dispersion strengthened alloy was prepared by mechanical alloying (MA) of internal oxidation Cu-Al powders. The lattice parameter of Cu matrix decreased with milling time for powders milled in argon, while the abnormal increase of lattice parameter occurred in the air resulting from mechanochemical reactions. With a quantitative analysis, the combined method makes residual aluminum oxidized completely within 10-20 h while mechanical alloying method alone needs longer than 40 h. Lamellar structure formed and the thickness of lamellar structure decreased with milling time. The size of Al2O3 particles decreased from 46 to 22 nm after 40 h milling. After reduction, core-shell structure was found in MAed powders milled in the air. The compacted alloy produced by MAed powders milled in the argon had an average hardness and electrical conductivity of 172.2 HV and 82.1% IACS while the unmilled alloy's were 119.8 HV and 74.1% IACS due to the Al2O3 particles refinement and residual aluminum in situ oxidization.

  1. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    International Nuclear Information System (INIS)

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken

  2. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B., E-mail: mychailo.toloczko@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States); Voyevodin, V.N.; Bryk, V.V.; Borodin, O.V.; Mel’nychenko, V.V.; Kalchenko, A.S. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2014-10-15

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr{sup +} ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  3. Assessment of consolidation of oxide dispersion strengthened ferritic steels by spark plasma sintering: from laboratory scale to industrial products

    International Nuclear Information System (INIS)

    Boulnat, X.; Fabregue, D.; Perez, M.; Urvoy, S.; Hamon, D.; Carlan, Y. de

    2014-01-01

    Oxide dispersion strengthened steels are new generation alloys that are usually processed by hot isostatic pressing (HIP). In this study, spark plasma sintering (SPS) was studied as an alternative consolidation technique. The influence of the processing parameters on the microstructure was quantified. The homogeneity of the SPSed materials was characterised by electron microprobe and microhardness. A combination of limited grain growth and minimised porosity can be achieved on semi-industrial compact. Excellent tensile properties were obtained compared to the literature. (authors)

  4. Effect of Yttrium Addition on the Microstructure and Mechanical Properties of Cu-Rich Nano-phase Strengthened Ferritic Steel

    Science.gov (United States)

    Liu, Hongyu; He, Jibai; Luan, Guoqing; Ke, Mingpeng; Fang, Haoyan; Lu, Jianduo

    2018-03-01

    Due to the brittle problem of Cu-rich nano-phase strengthened ferritic steel (CNSFS) after air aging, the effect of Y addition in CNSFS was systemically investigated in the present work. The microstructure, tensile fracture morphology and oxide layer of the steels were surveyed by optical microscope and scanning electron microscope. Transmission electron microscope with the combination of energy-dispersive x-ray spectroscopy and selected area electron diffraction was used to analyze the morphology, size, number density, chemical compositions and crystal structure for nano-crystalline precipitates. Microstructural examinations of the nano-crystalline precipitates show that Cu-rich precipitates and Y compounds in the range of 2-10 and 50-100 nm, respectively, form in the Y-containing steel; meanwhile, the average size of nano-crystalline precipitates in Y-containing steel is larger, but the number density is lower, and the ferritic grains are refined. Furthermore, the tensile strength and ductility of Y-containing steel after air aging are improved, whereas the tensile strength is enhanced and the ductility decreased after vacuum aging. The drag effect of Y makes the oxide layer thinner and be compacted. Tensile properties of CNSFS after air aging are improved due to the refined grains, antioxidation and purification by the addition of Y.

  5. Solution strengthened ferritic ductile iron ISO 1083/JS/500-10 provides superior consistent properties in hydraulic rotators

    Directory of Open Access Journals (Sweden)

    Dr. Richard Larker

    2009-11-01

    Full Text Available Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts. In the production of hydraulic rotators, dimensional tolerances are typically 20 μm to obtain designated performance. For castings where intermediate strength and ductility is required, it is common knowledge that conventional ferritic-pearlitic ductile irons such as ISO 1083/500-7 show large hardness variations. These are mainly caused by the notoriously varying pearlite content, both at different locations within a part and between parts in the same or different batches. Cooling rate variations due to different wall thickness and position in the molding box, as well as varying amounts of pearlite-stabilizing elements, all contribute to detrimental hardness variations. The obvious remedy is to avoid pearlite formation, and instead obtain the necessary mechanical properties by solution strengthening of the ferritic matrix by increasing silicon content to 3.7wt% –3.8wt%. The Swedish development in this fi eld 1998 resulted in a national standardization as SS 140725, followed in 2004 by ISO 1083/JS/500-10. Indexator AB decided 2005 to specify JS/500-10 for all new ductile iron parts and to convert all existing parts. Improvements include reduction by 75% in hardness variations and increase by 30% in cutting tool life, combined with consistently better mechanical properties.

  6. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  7. Microstructural examination of several commercial ferritic alloys irradiated to high fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1981-01-01

    Microstructural observations are reported for a series of five commercial ferritic alloys, 2 1/4 Cr-1 Mo, H-11, EM-12, 416, and 430F, covering the composition range 2.25 to 17% chromium, following EBR-II irradiation over the temperature range 400 to 650 0 C and to a maximum fluence of 17.6 x 10 22 n/cm 2 (E > 0.1 MeV). These materials were confirmed to be low void swelling with maximum swelling of 0.63% measured in EM-12 following irradiation at 400 0 C to 14.0 x 10 22 n/cm 2 . A wide range of precipitation response was found both as a function of alloy and irradiation temperature. Precipitates observed included M 6 C, Mo 2 C, Chi, Laves, M 23 C 6 , α' and a low temperature phase as yet unidentified. It is predicted, based on these results, that the major impact of irradiation on the ferritic alloy class will be changes in postirradiation mechanical properties due to precipitation

  8. Microstructural examination of several commercial ferritic alloys irradiated to high fluence

    Science.gov (United States)

    Gelles, D. S.

    Microstructural observations are reported for a series of five commercial ferritic alloys, 2 {1}/{4}Cr-1Mo , H-11, EM-12, 416, and 430F, covering the composition range 2.25 to 17% chromium, following EBR-II irradiation over the temperature range 400 to 650°C and to a maximum fluence of 1.76 × 10 23 n/cm 2 (E >0.1 MeV). These materials were confirmed to be low void swelling with maximum swelling of 0.63% measured in EM-12 following irradiation at 400°C to 1.40 × 10 23 n/cm 2. A wide range of precipitation response was found both as a function of alloy and irradiation temperature. Precipitates observed included M 6C, Mo 2C, Chi, Laves, M 23C 6, α' and a low temperature phase as yet unidentified. It is predicted, based on these results, that the major impact of irradiation on the ferritic alloy class will be changes in postirradiation mechanical properties due to precipitation.

  9. Multi-scale modeling of interaction between vacancies and alloying elements in ferritic alloys

    International Nuclear Information System (INIS)

    Barouh, Caroline

    2015-01-01

    This PhD thesis is devoted to the study of interaction between vacancies and alloying elements in Oxide Dispersion Strengthened (ODS) steels, which are promising candidate materials for future nuclear reactors. This work is based on multi-scale modeling of a simplified system composed by oxygen, yttrium and titanium atoms and vacancies in an α-iron lattice. We particularly focused on the role of vacancies which are created in excess during the fabrication of these steels. The stability and mobility of vacancy-solute clusters have been examined using ab initio calculations for oxygen, on one hand, which has been systematically compared to carbon and nitrogen, interstitial solutes frequently present in iron-based materials, and, on the other hand, for substitutional solutes: titanium and yttrium. The three interstitial solutes show very similar energetic and kinetic behaviors. The impact of small mobile vacancy-solute clusters has been verified using a cluster dynamics model based on our ab initio results. It has been thus demonstrated that with over-saturation of vacancies, diffusion of interstitial solutes may be accelerated, while substitutional solutes do not become necessarily faster. These conclusions are consistent with existing experimental observations. All these results have been then used to complete our understanding of nano-clusters formation mechanisms. It appeared that the relative mobility of yttrium and titanium, as well as the number of potential nuclei to form nanoparticles strongly depend on the total vacancy concentration in the system. (author) [fr

  10. Radiation damage simulation studies of selected austenitic and ferritic/martensitic alloys for fusion reactor structural applications

    International Nuclear Information System (INIS)

    Mazey, D.J.; Walters, G.P.; Buckley, S.N.; Bullough, R.; Hanks, W.; Bolster, D.E.J.; Sowden, B.C.; Lurcook, D.; Murphy, S.M.

    1985-03-01

    Results are given of an investigation of the radiation damage stability of selected austenitic and ferritic alloys following ion bombardment in the Harwell VEC to simulate fusion-reactor exposures up to 110 dpa at temperatures from 425 deg to 625 deg C. Gas production rates appropriate to CTR conditions were simulated using a mixed beam of (4 MeV He + 2 MeV H 2 ) in the ratio 1:4 He:H. A beam of 46 MeV Ni or 20 MeV Cr ions was used in sequence with the mixed gas beam to provide a gas/damage ratio of 13 appm He/dpa at a damage rate of approx. 1 dpa/hr. The materials were investigated using TEM and comprised three austenitic alloys: European reference 316L, 316-Ti, 316-Nb; four high-nickel alloys: Fe/25 Ni/8Cr, Inconel 625, Inconel 706 and Nimonic PE16, and four ferritic/martensitic alloys: FV 448, FV 607, CRM 12 and FI. Some data were obtained for a non-magnetic structural alloy Nonmagne-30. The swelling behaviour is reported. The overall results of the study indicate that on a comparative basis the ferritic alloys are the most swelling-resistant, whilst the high-nickel alloys have an acceptable low swelling response up to 110 dpa. The 316 alloys tested have shown an unfavourable swelling response. (author)

  11. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Eiholzer, C.R. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  12. The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: An ab initio study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharat; Sundar, C.S.; Raj, Baldev

    2010-01-01

    Nanostructured ferritic alloys derive their strength from the dispersion of oxide nanoclusters in the ferritic matrix. We have explored the relative role of minor alloying elements like Ti and Zr on the stability of nanoclusters of vacancy-Y-Ti-O by density functional theory calculations and shown that the binding energy of these clusters increases when we replace Ti with Zr. This could imply faster nucleation of the nanoclusters which, in turn, may lead to finer dispersion of nanoclusters resulting in improved performance of ferritic alloys. Further, we show a core/shell structure for these nanoclusters in which the core is enriched in Y, O, Ti while the shell is enriched in Cr.

  13. Change in mechanical properties of low-alloyed molybdenum alloys at two-stage strengthening during aging

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Arbuzov, V.K.

    1977-01-01

    Change in mechanical properties of hardened low-alloyed molybdenum alloys (Mo-Zr-C and Mo-Zr-Nb-C) at two-stage strengthening during ageing at 1400 deg C is studied. The initial strengthening maximum following ageing for 5 hr is caused by separation of dispersed ZrC particles and is accompanied by worsened plasticity, a development characteristic of precipitation hardening processes. The second increase in strength after a 10-hr ageing is not accompanied by reduced plasticity, this being characteristic of strengthening as a result of reconstruction of the dislocation structure. Niobium (0.16 wt.%) added to Mo-Zr-C alloys simultaneously increases their plastic and strength properties. The said effect is caused by prevention of premature decomposition of alloys on account of increased low-temperature plasticity, which permits to obtain high resistance to plastic deformation

  14. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    Science.gov (United States)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  15. Optimization of mechanical alloying parameters in 12YWT ferritic steel nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanifard, R., E-mail: rahmanifrd@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Materials Group, School of Materials Research, NSTRC, P.O. Box 31585-4395 Karaj (Iran, Islamic Republic of); Farhangi, H. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Novinrooz, A.J. [Advanced Materials Group, School of Materials Research, NSTRC, P.O. Box 31585-4395 Karaj (Iran, Islamic Republic of)

    2010-10-15

    Research highlights: {yields} Detailed studies of microstructural properties of ODS steels. {yields} Investigation of effects of different mechanical alloying parameters such as milling time; milling speed; ball-to-powder weight ratio and ball diameter on the microstructural characteristics. {yields} Interpretation of the experimental data using theoretical model by X-ray diffraction line profile analysis. - Abstract: The effects of different mechanical alloying parameters on the microstructural characteristics and morphology of ODS-ferritic steel nanocomposite powders were investigated. The steady state between the welding and fracturing of the particles was obtained within about 30 h using 8 mm ball diameter and 420 rpm milling speed with the ball-to-powder weight ratio of 10:1. However, for perfect dissolution of the used alloying elements, the mechanical alloying process must be continued up to 80 h of milling. Evaluation of the microstructural characteristics calculated by X-ray diffraction profile analysis revealed that although the average crystallite size reduced more sharply at the initial milling stages under the above conditions, with further milling, it eventually reached nearly the same value in all specimens. The distribution changes of crystallite size also showed a similar behavior of crystallite size. Among the investigated mechanical alloying parameters, milling speed had a considerable effect on the dislocation density so that it was reduced by about one order of magnitude when the milling speed decreased from 420 to 300 rpm.

  16. TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Kishimoto, H.; Alinger, M.J.; Odette, G.R.; Yamamoto, T.

    2004-01-01

    A transmission electron microscopy (TEM) study was carried out on the co-evolution of the coarser-scale microstructural features in mechanically alloyed (MA) powders and hot isostatic press (HIP) consolidated Fe-14Cr-3W-0 and 0.4Ti-0.25Y 2 O 3 nanostructured ferritic alloys (NFAs). The pancake shaped nanoscale grains in the as-MA powders are textured and elongated parallel to the particle surface. Powder annealing results in re-crystallization at 850 deg. C and grain growth at 1150 deg. C. The grains also recrystallize and may grow in the alloys HIPed at 850 deg. C, but appear to retain a polygonized sub-grain structure. The grains are larger and more distinct in the alloys HIPed at 1000 and 1150 deg. C. However, annealing resulted in bi-modal grain size distribution. Finer grains retained a significant dislocation density and populations of small precipitates with crystal structures distinct form the matrix. The grains and precipitates were much larger in alloys without Ti

  17. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  18. The role of solid-solution strengthening in the development of alloys for HTR applications

    International Nuclear Information System (INIS)

    Dean, A.V.

    1978-09-01

    In this paper the fundamental factors (lattice distortion, stacking fault energy and diffusion rates) which contribute to solid-solution strengthening are examined and used as a basis for indicating the composition of alloys likely to posses the highest strength at elevated temperatures. Alloys based on Ni-Cr-W-Mo should possess the best properties but alloys based on Ni-Cr-Nb-Ti are also recommended for further study. The effect of alloy composition on corrosion resistance has been excluded from this examination but it should be possible to adjust alloy composition in order to optimise corrosion resistance. (orig./IHOE) [de

  19. Past research and fabrication conducted at SCK•CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    Science.gov (United States)

    De Bremaecker, Anne

    2012-09-01

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK•CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 °C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al2O3, MgO, ZrO2, TiO2, ZrSiO4) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 °C, solution annealing at 1050 °C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 °C, final annealing at 1050 °C, straightening and final aging at 800 °C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO2 were loaded in the Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial and final reduction rates, temperature, duration, atmosphere and furnace). Specific non

  20. Strengthening and elongation mechanism of Lanthanum-doped Titanium-Zirconium-Molybdenum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ping, E-mail: huping1985@126.com [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Hu, Bo-liang; Wang, Kuai-she; Song, Rui; Yang, Fan [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Yu, Zhi-tao [Ruifulai Tungsten & Molybdenum Co., Ltd., Xi’an 721914 (China); Tan, Jiang-fei [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Cao, Wei-cheng; Liu, Dong-xin; An, Geng [Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Guo, Lei [Ruifulai Tungsten & Molybdenum Co., Ltd., Xi’an 721914 (China); Yu, Hai-liang [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-12-15

    The microstructural contributes to understand the strengthening and elongation mechanism in Lanthanum-doped Titanium-Zirconium-Molybdenum alloy. Lanthanum oxide particles not only act as heterogeneous nucleation core, but also act as the second phase to hinder the grain growth during sintering crystallization. The molybdenum substrate formed sub-grain under the effect of second phase when the alloy rolled to plate.

  1. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases.

    Science.gov (United States)

    Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert

    2018-05-01

    In the present study a stainless, high strength, ferritic (non-martensitic) steel was analysed regarding microstructure and particle evolution. The preceding hot-rolling process of the steel results in the formation of sub-grain structures, which disappear over time at high temperature. Besides that the formation of particle-free zones was observed. The pronounced formation of these zones preferentially appears close to high angle grain boundaries and is considered to be responsible for long-term material failure under creep conditions. The reasons for this are lacking particle hardening and thus a concentration and accumulation of deformation in the particle free areas close to the grain boundaries. Accordingly in-depth investigations were performed by electron microscopy to analyse dislocation behaviour and its possible effect on the mechanical response of these weak areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The response of dispersion-strengthened copper alloys to high fluence neutron irradiation at 415 degrees C

    International Nuclear Information System (INIS)

    Edwards, D.J.; Newkirk, J.W.; Garner, F.A.; Hamilton, M.L.; Nadkarni, A.; Samal, P.

    1993-01-01

    Various oxide-dispersion-strengthened copper alloys have been irradiated to 150 dpa at 415 degrees C in the Fast Flux Test Facility (FFTF). The Al 2 O 3 -strengthened GlidCop TM alloys, followed closely by a HfO 2 -strengthened alloy, displayed the best swelling resistance, electrical conductivity, and tensile properties. The conductivity of the HfO 2 -strengthened alloy reached a plateau at the higher levels of irradiation, instead of exhibiting the steady decrease in conductivity observed in the other alloys. A high initial oxygen content results in significantly higher swelling for a series of castable oxide-dispersion-strengthened alloys, while a Cr 2 O 3 -strengthened alloy showed poor resistance to radiation

  3. Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K

    Energy Technology Data Exchange (ETDEWEB)

    Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

    2010-04-30

    The objective of the proposed research is to utilize modern computational tools, integrated with focused experiments, to design innovative ferritic NiAl-strengthened superalloys for fossil-energy applications at temperatures up to 1,033 K. Specifically, the computational alloy design aims toward (1) a steady-state creep rate of approximately 3 x 10{sup -11} s{sup -1} at a temperature of 1,033 K and a stress level of 35 MPa, (2) a ductility of 10% at room temperature, and (3) good oxidation and corrosion resistance at 1,033 K. The research yielded many outstanding research results, including (1) impurity-diffusion coefficients in {alpha} Fe have been calculated by first principles for a variety of solute species; (2) the precipitates were characterized by the transmission-electron microscopy (TEM) and analytical-electron microscopy (AEM), and the elemental partitioning has been determined; (3) a bending ductility of more than 5% has been achieved in the unrolled materials; and (4) optimal compositions with minimal secondary creep rates at 973 K have been determined. Impurity diffusivities in {alpha} Fe have been calculated within the formalisms of a harmonic transition-state theory and Le Claire nine-frequency model for vacancy-mediated diffusion. Calculated diffusion coefficients for Mo and W impurities are comparable to or larger than that for Fe self-diffusion. Calculated activation energies for Ta and Hf impurities suggest that these solutes should display impurity-diffusion coefficients larger than that for self-diffusion in the body-centered cubic Fe. Preliminary mechanical-property studies identified the alloy Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B (FBB-8) in weight percent (wt.%) for detailed investigations. This alloy shows precipitation of NiAl particles with an average diameter of 130 nm. In conjunction with the computational alloy design, selected experiments are performed to investigate the effect of the Al content on the ductility and creep of

  4. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hee Joon [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Edwards, Dan J., E-mail: dan.edwards@pnnl.gov [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Kurtz, Richard J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Yamamoto, Takuya; Wu, Yuan [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106 (United States); Odette, G. Robert [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106 (United States); Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2017-02-15

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron {sup 58}Ni(n{sub th},γ) {sup 59}Ni(n{sub th},α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al{sub 2}YO{sub 3} oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  5. Response of solute and precipitation-strengthened copper alloys at high neutron exposure

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Shikama, T.; Edwards, D.J.; Newkirk, J.W.

    1991-11-01

    A variety of solute and precipitation strengthened copper base alloys have been irradiated to neutron-induced displacement levels of 34 to 150 dpa at 415 degrees C and 32 dpa at 529 degrees C in the Fast Flux Test Facility to assess their potential for high heat flux applications in fusion reactors. Several MZC-type alloys appear to offer the most promise for further study. For low fluence applications CuBeNi and spinodally strengthened CuNiTi alloys may also be suitable. Although Cu-2Be resists swelling, it is not recommended for fusion reactor applications because of its low conductivity

  6. Response of solute and precipitation-strengthened copper alloys at high neutron exposure

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Shikama, T. [Tohoku Univ., Oarai Branch (Japan); Edwards, D.J.; Newkirk, J.W. [Missouri Univ., Rolla, MO (United States)

    1991-11-01

    A variety of solute and precipitation strengthened copper base alloys have been irradiated to neutron-induced displacement levels of 34 to 150 dpa at 415{degrees}C and 32 dpa at 529{degrees}C in the Fast Flux Test Facility to assess their potential for high heat flux applications in fusion reactors. Several MZC-type alloys appear to offer the most promise for further study. For low fluence applications CuBeNi and spinodally strengthened CuNiTi alloys may also be suitable. Although Cu-2Be resists swelling, it is not recommended for fusion reactor applications because of its low conductivity.

  7. Simulation of precipitation and strengthening in MG-RE alloys

    OpenAIRE

    Liu, Hong

    2017-01-01

    Magnesium - rare earth (Mg-RE) alloys have received considerable attention in the past decades for wider applications in the aerospace industry due to their relatively high strength and excellent creep resistance. Most rare-earth containing magnesium alloys, such as Mg-Y, Mg-Gd, and Mg-Y-Nd, are precipitation hardenable. A technical barrier to the wider applications of such alloys is the lack of a sufficiently large age hardening response. To further improve this response, an improved underst...

  8. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    Science.gov (United States)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  9. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    Energy Technology Data Exchange (ETDEWEB)

    Boutard, J.-L., E-mail: jean-louis.boutard@cea.fr [Cabinet du Haut-Commissaire, CEA/Saclay, 91191 Gif sur Yvette Cedex (France); Badjeck, V. [LPS, UMR CNRS 8502, Building 510, Université Paris-Sud 11, 91405 Orsay Cedex (France); Barguet, L. [LAUM, UMR CNRS 6613, Building IAM – UFR Sciences, Avenue O. Messiaen, 72085 Le Mans Cedex 9 (France); Barouh, C. [DMN/SRMP, CEA/Saclay, Building 520, 91191 Gif sur Yvette Cedex (France); Bhattacharya, A. [DMN/SRMP, CEA/Saclay, Building 520, 91191 Gif sur Yvette Cedex (France); CSNSM, UMR CNRS 8609, Université Paris-Sud 11, Buildings 104 and 108, 91405 Orsay Campus (France); Colignon, Y. [IM2NP, UMR CNRS 7334, Case 142, Faculté des Sciences, Campus de Saint Jérôme, Aix Marseille Université, 13397 Marseille Cedex 20 (France); Hatzoglou, C. [GPM, UMR CNRS 6634, Technopôle du Madrillet, Avenue de l’Université, BP12, 76801 Saint Etienne du Rouvray Cedex (France); Loyer-Prost, M. [DMN/SRMP, CEA/Saclay, Building 520, 91191 Gif sur Yvette Cedex (France); Rouffié, A.L. [DMN/SRMA, CEA/Saclay, Building 455, 91191 Gif sur Yvette Cedex (France); Sallez, N. [SIMAP, UMR CNRS 5266, INPG, Domaine Universitaire, 1130 rue de la Piscine, BP75, 38402 Saint Martin d’Hères Cedex (France); Salmon-Legagneur, H. [DMN/SRMA, CEA/Saclay, Building 455, 91191 Gif sur Yvette Cedex (France); Schuler, T. [DMN/SRMP, CEA/Saclay, Building 520, 91191 Gif sur Yvette Cedex (France)

    2014-12-15

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9–14% Cr ferritic–martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical–chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α′ unmixing.

  10. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    International Nuclear Information System (INIS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A.L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-01-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9–14% Cr ferritic–martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical–chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α′ unmixing

  11. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1996-01-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of 60 Ni which produces no helium, 59 Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ( Nat Ni) which provides an intermediate level of helium due to delayed development of 59 Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to ∼7 dpa at 300 and 400 degrees C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400 degrees C than at 300 degrees C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from 59 Ni and Nat Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400 degrees C. At 300 degrees C, it appeared that high densities of bubbles formed whereas at 400 degrees C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces

  12. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  13. Study of behaviour during a quench treatment of ferrite delta of binary and pseudo-binary alloys

    International Nuclear Information System (INIS)

    Champin, B.

    1970-01-01

    Focusing of Fe-Cr and Fe-Mo alloys (and extending results to different binary alloys like Fe-W, Fe-Al and Fe-Si, and even to some ternary systems such as Fe-Cr-Ni and Fe-Mo-Ni), and after having recalled some previous results and presented experimental materials and processes, this research thesis describes the behaviour of the considered alloys, reports a detailed study of Fe-Mo alloys (influence of carbon content), a bibliographical study of the gamma-to-delta transformation, the study of hybrid alloys (behaviour, partial transformations, diffusion), the study of other types of alloys (hyper-quench of delta ferrite of Fe-Mo alloys, adsorption and diffusion). It discusses the case of two-phase structures, and the mechanism and kinetics of the delta-to-gamma transformation

  14. Radiation damage simulation studies in the Harwell VEC of selected austenitic and ferritic alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Mazey, D J; Walters, G P; Buckley, S N; Hanks, W; Bolster, D E.J.; Murphy, S M

    1988-07-01

    Three austenitic (316 L, 316-Ti, 316-Nb); four high-nickel (IN 625, IN 706, PE 16, Fe-25Ni-8Cr) and four ferritic (CRM 12, FV 448, FV 607, FI) alloys have been irradiated with 46 MeV Ni or 20 MeV Cr ions in the Harwell VEC to simulated fusion-reactor doses up to 110 dpa (proportional to 10 MW-yr m/sup -2/) at temperatures from 425 to 625/sup 0/C. Gas production rates appropriate to fusion were obtained from a mixed beam of He+H/sub 2/ in the ratio 1:4 He:H with gas/dpa ratios of 13 appm He/dpa and 52 appm H/dpa. The 316 alloys showed irradiation-induced precipitation and swelling as high as 40% in ST 316-Ti after 110 dpa at 625/sup 0/C. Low swelling (e.g. <2% at 110 dpa) was observed in the high-nickel alloys. The ferritic/martensitic alloys showed negligible swelling (e.g. <0.2% in FV 607 after 100 dpa at 475/sup 0/C). The results demonstrate the high swelling behaviour of 316 alloys and the better swelling resistance of high-nickel and ferritic alloys under simulated fusion conditions.

  15. The potential for using high chromium ferritic alloys for hydroprocessing reactors

    International Nuclear Information System (INIS)

    Antalffy, Leslie P.; Chaku, Pran N.; Canonico, Domenic A.; Pfeifer, Jeff A.; Alcorn, Douglas G.

    2002-01-01

    This paper outlines the development of hydroprocessing reactors and the parallel development of applicable steels for their high temperature and high pressure process environments. Trends in the development of newer processes for severe hydroprocessing applications have been increasing in operating hydrogen partial pressures and operating temperatures that require the development of new alloys to meet these more severe process environments. The paper outlines the properties of conventional hydroprocessing reactor materials and discusses the advantages of the advanced high chromium ferritic steel alloy Grade 91 (9Cr-1Mo-V) for high temperature hydroprocessing applications. Additionally, the alloys permitted for ASME Section I and Section VIII Division I construction, Grade 92 (Code Case 2179), and what will probably be called Grade 122 (Code Case 2180) are briefly introduced as possible future choices for hydroprocessing reactor construction. These three alloys contain 9-12% Cr and have time independent allowable stress values above 566 deg. C. These high, time independent, strength values provide materials that will in some cases permit extending hydroprocessing temperature limits by 112 deg. C. The paper provides room temperature and elevated temperature mechanical and toughness properties for the low chrome and Grade 91 materials and discusses the effects of hydrogen attack, and hydrogen and isothermal embrittlement. Fabrication aspects, including forming and welding are addressed. The paper discusses the environmental resistance of these alloys and investigates the possibility of utilizing excess wall metal thickness in these materials in less severe applications in lieu of the deposition of a higher chromium alloy weld overlay to overcome the corrosive effects of the process environment

  16. Overview of welding of oxide dispersion strengthened (ODS) alloys for advanced nuclear reactor applications

    International Nuclear Information System (INIS)

    Kalvala, Prasad Rao; Raja, K.S.; Misra, Manoranjan; Tache, Ricard A.

    2009-01-01

    Oxide dispersion strengthened (ODS) alloys are very promising materials for Generation IV reactors with a potential to be used at elevated temperatures under severe neutron exposure environment. Welding of the ODS alloys is an understudied problem. In this paper, an overview of welding of the ODS alloys useful for advanced nuclear reactor applications is presented. The microstructural changes and the resultant mechanical properties obtained by various solid state welding processes are reviewed. Based on our results on PM2000, an approach for future work on welding of the ODS alloys is suggested. (author)

  17. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    International Nuclear Information System (INIS)

    Rebak, Raul B.

    2014-01-01

    provide hermetic seal. The replacement of a zirconium alloy using a ferritic material containing chromium and aluminum appears to be the most near term implementation for accident tolerant nuclear fuels.

  18. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, Raul B. [General Electric Global Research, Schnectady, NY (United States)

    2014-09-30

    provide hermetic seal. The replacement of a zirconium alloy using a ferritic material containing chromium and aluminum appears to be the most near term implementation for accident tolerant nuclear fuels.

  19. Comparison of ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel

    International Nuclear Information System (INIS)

    Fattah, M.; Mahboubi, F.

    2010-01-01

    This paper compares the ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel carried out to improve the surface corrosion resistance. The gas composition for plasma nitriding was 85% N 2 -15% H 2 and that for plasma nitrocarburizing was 85% N 2 -12% H 2 -3% CO 2 . Both treatments were performed for 5 h, for different process temperatures of 570 and 620 o C for ferritic and austenitic plasma treatment, respectively. Optical microscopy, X-ray diffraction and potentiodynamic polarization technique in 3.5% NaCl solution, were used to study the treated surfaces. The results of X-ray analysis revealed that with increasing the treatment temperature from 570 to 620 o C for both treatments, the amount of ε phase decreased and γ' phase increased. Nitrocarburizing treatment resulted in formation of a more amount of ε phase with respect to nitriding treatment. However, the highest amount of ε phase was observed in the ferritic nitrocarburized sample at 570 o C. The sample nitrided at 620 o C exhibited the thickest layer. The potentiodynamic polarization results revealed that after plasma nitriding and nitrocarburizing at 570 o C, corrosion potential increased with respect to the untreated sample due to the noble nitride and carbonitride phases formed on the surface. After increasing the treatment temperature from 570 to 620 o C, corrosion potential decreased due to the less ε phase development in the compound layer and more porous compound layer formed at 620 o C with respect to the treated samples at 570 o C.

  20. Previsions of the microstructural evolution of ferritic alloys under irradiation by numerical atomic scale simulations

    International Nuclear Information System (INIS)

    Ngayam Happy, R.

    2010-01-01

    In this work, we have improved a diffusion model for point defects (vacancies and self-interstitials) by introducing hetero-interstitials. The model has been used to simulate by Kinetic Monte Carlo (KMC) the formation of solute rich clusters that are observed experimentally in irradiated ferritic model alloys of type Fe - CuMnNiSiP - C.Electronic structure calculations have been used to characterize the interactions between self-interstitials and all solute atoms, and also carbon. P interacts with vacancies and strongly with self-interstitials. Mn also interacts with self-interstitials to form mixed dumbbells. C, with occupies octahedral sites, interacts strongly with vacancies and less with self-interstitials. Binding and migration energies, as well as others atomic scale properties, obtained by ab initio calculations, have been used as parameters for the KMC code. Firstly, these parameters have been optimized over isochronal annealing experiments, in the literature, of binary alloys that have been electron-irradiated. Isochronal annealing simulations, by reproducing experimental results, have allowed us to link each mechanism to a single evolution of the resistivity during annealing. Moreover, solubility limits of all the elements have been determined by Metropolis Monte Carlo. Secondly, we have simulated the evolution at 300 C of the microstructure under irradiation of different alloys of increasing complexity: pure Fe, binary alloys, ternaries, quaternaries, and finally complex alloys which compositions are close to those of pressure vessel steels. The results show that the model globally reproduces all the experimental tendencies, what has led us to propose mechanisms to explain the behaviours observed. (author)

  1. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9

    International Nuclear Information System (INIS)

    Gupta, G.; Ampornrat, P.; Ren, X.; Sridharan, K.; Allen, T.R.; Was, G.S.

    2007-01-01

    This paper focuses on the role of grain boundary engineering (GBE) in stress corrosion cracking (SCC) of ferritic-martensitic (F-M) alloy HT-9 in supercritical water (SCW) at 400 deg. C and 500 deg. C. Constant extension rate tensile (CERT) tests were conducted on HT-9 in as-received (AR) and coincident site lattice enhanced (CSLE) condition. Both unirradiated and irradiated specimens (irradiated with 2 MeV protons at 400 deg. C and 500 deg. C to a dose of 7 dpa) were tested. Ferritic-martensitic steel HT-9 exhibited intergranular stress corrosion cracking when subjected to CERT tests in an environment of supercritical water at 400 deg. C and 500 deg. C and also in an inert environment of argon at 500 deg. C. CSL-enhancement reduces grain boundary carbide coarsening and cracking susceptibility in both the unirradiated and irradiated condition. Irradiation enhanced coarsening of grain boundary carbides and cracking susceptibility of HT-9 for both the AR and CSLE conditions. Intergranular (IG) cracking of HT-9 results likely from fracture of IG carbides and seems consistent with the mechanism that coarser carbides worsen cracking susceptibility. Oxidation in combination with wedging stresses is the likely cause of the observed environmental enhancement of high temperature IG cracking in HT-9

  2. Computational design of precipitation-strengthened titanium-nickel-based shape memory alloys

    Science.gov (United States)

    Bender, Matthew D.

    Motivated by performance requirements of future medical stent applications, experimental research addresses the design of novel TiNi-based, superelastic shape-memory alloys employing nanoscale precipitation strengthening to minimize accommodation slip for cyclic stability and to increase output stress capability for smaller devices. Using a thermodynamic database describing the B2 and L21 phases in the Al-Ni-Ti-Zr system, Thermo-Calc software was used to assist modeling the evolution of phase composition during 600°C isothermal evolution of coherent L21 Heusler phase precipitation from supersaturated TiNi-based B2 phase matrix in an alloy experimentally characterized by atomic-scale Local Electrode Atom Probe (LEAP) microanalysis. Based on measured evolution of the alloy hardness (under conditions stable against martensitic transformation) a model for the combined effects of solid solution strengthening and precipitation strengthening was calibrated, and the optimum particle size for efficient strengthening was identified. Thermodynamic modeling of the evolution of measured phase fractions and compositions identified the interfacial capillary energy enabling thermodynamic design of alloy microstructure with the optimal strengthening particle size. Extension of alloy designs to incorporate Pt and Pd for reducing Ni content, enhancing radiopacity, and improving manufacturability were considered using measured Pt and Pd B2/L2 1 partitioning coefficients. After determining that Pt partitioning greatly increases interphase misfit, full attention was devoted to Pd alloy designs. A quantitative approach to radiopacity was employed using mass attenuation as a metric. Radiopacity improvements were also qualitatively observed using x-ray fluoroscopy. Transformation temperatures were experimentally measured as a function of Al and Pd content. Redlich-Kister polynomial modeling was utilized for the dependence of transformation reversion Af temperature on B2 matrix phase

  3. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  4. Radiation-induced segregation and phase stability in ferritic-martensitic alloy T 91

    Energy Technology Data Exchange (ETDEWEB)

    Wharry, Janelle P.; Jiao Zhijie; Shankar, Vani [University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109-2104 (United States); Busby, Jeremy T. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831 (United States); Was, Gary S., E-mail: gsw@umich.edu [University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109-2104 (United States)

    2011-10-01

    Radiation-induced segregation in ferritic-martensitic alloy T 91 was studied to understand the behavior of solutes as a function of dose and temperature. Irradiations were conducted using 2 MeV protons to doses of 1, 3, 7 and 10 dpa at 400 deg. C. Radiation-induced segregation at prior austenite grain boundaries was measured, and various features of the irradiated microstructure were characterized, including grain boundary carbide coverage, the dislocation microstructure, radiation-induced precipitation and irradiation hardening. Results showed that Cr, Ni and Si segregate to prior austenite grain boundaries at low dose, but segregation ceases and redistribution occurs above 3 dpa. Grain boundary carbide coverage mirrors radiation-induced segregation. Irradiation induces formation of Ni-Si-Mn and Cu-rich precipitates that account for the majority of irradiation hardening. Radiation-induced segregation behavior is likely linked to the evolution of the precipitate and dislocation microstructures.

  5. Carburization of austenitic and ferritic alloys in hydrocarbon environments at high temperature

    Directory of Open Access Journals (Sweden)

    Serna, A.

    2003-12-01

    Full Text Available The technical and industrial aspects of high temperature corrosion of materials exposed to a variety of aggressive environments have significant importance. These environments include combustion product gases and hydrocarbon gases with low oxygen potentials and high carbon potentials. In the refinery and petrochemical industries, austenitic and ferritic alloys are usually used for tubes in fired furnaces. The temperature range for exposure of austenitic alloys is 800-1100 °C, and for ferritic alloys 500-700 °C, with carbon activities ac > 1 in many cases. In both applications, the carburization process involves carbon (coke deposition on the inner diameter, carbon absorption at the metal surface, diffusion of carbon inside the alloy, and precipitation and transformation of carbides to a depth increasing with service. The overall kinetics of the internal carburization are approximately parabolic, controlled by carbon diffusion and carbide precipitation. Ferritic alloys exhibit gross but uniform carburization while non-uniform intragranular and grain-boundary carburization is observed in austenitic alloys.

    La corrosión a alta temperatura, tal como la carburación de materiales expuestos a una amplia variedad de ambientes agresivos, tiene especial importancia desde el punto de vista técnico e industrial. Estos ambientes incluyen productos de combustión, gases e hidrocarburos con bajo potencial de oxígeno y alto potencial de carbono. En las industrias de refinación y petroquímica, las aleaciones austeníticas y ferríticas se utilizan en tuberías de hornos. El rango de temperatura de exposición para aleaciones austeníticas está entre 800-1.100°C y para aleaciones ferríticas está entre 500-700°C, con actividades de carbono ac>1 en algunos casos. En tuberías con ambas aleaciones, el proceso de carburación incluye deposición de carbón (coque en el diámetro interno, absorción de carbono en la superficie

  6. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels.

    Science.gov (United States)

    Zaefferer, S; Romano, P; Friedel, F

    2008-06-01

    Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them.

  7. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    International Nuclear Information System (INIS)

    Lacaze, J.; Sertucha, J.; Larranaga, P.; Suarez, R.

    2016-01-01

    There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content. (Author)

  8. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, J.; Sertucha, J.; Larranaga, P.; Suarez, R.

    2016-10-01

    There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content. (Author)

  9. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel

    Energy Technology Data Exchange (ETDEWEB)

    Boegelein, Thomas, E-mail: t.boegelein@liv.ac.uk; Louvis, Eleftherios; Dawson, Karl; Tatlock, Gordon J.; Jones, Andy R.

    2016-02-15

    Oxide dispersion strengthened (ODS) alloys exhibit superior mechanical and physical properties due to the presence of nanoscopic Y(Al, Ti) oxide precipitates, but their manufacturing process is complex. The present study is aimed at further investigation of the application of an alternative, Additive Manufacturing (AM) technique, Selective Laser Melting (SLM), to the production of consolidated ODS alloy components. Mechanically alloyed PM2000 (ODS-FeCrAl) powders have been consolidated and a fine dispersion of Y-containing precipitates were observed in an as built thin-walled component, but these particles were typically poly-crystalline and contained a variety of elements including O, Al, Ti, Cr and Fe. Application of post-build heat treatments resulted in the modification of particle structures and compositions; in the annealed condition most precipitates were transformed to single crystal yttrium aluminium oxides. During the annealing treatment, precipitate distributions homogenised and localised variations in number density were diminished. The resulting volume fractions of those precipitates were 25–40% lower than have been reported in conventionally processed PM2000, which was attributed to Y-rich slag-like surface features and inclusions formed during SLM. - Highlights: • A wall structure was grown from ODS steel powder using selective laser melting. • A fine dispersion of nano-precipitates was apparent in as-build material. • Precipitates were multi-phased containing several elements, e.g. O, Ti, Al, Fe, Cr, Y. • Post-build annealing changed those into typically single-crystalline Y–Al–O. • The anneal also reduced and stabilised the volume fraction of precipitates to ~ 0.006.

  10. Method of thermally processing superplastically formed aluminum-lithium alloys to obtain optimum strengthening

    Science.gov (United States)

    Anton, Claire E. (Inventor)

    1993-01-01

    Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.

  11. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy

    Science.gov (United States)

    Ferguson, J. B.; Schultz, Benjamin F.; Venugopalan, Dev; Lopez, Hugo F.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo

    2014-03-01

    Yield strength improvement in dispersion strengthened alloys and nano particle-reinforced composites by well-known strengthening mechanisms such as solid solution, grain refinement, coherent and incoherent dispersed particles, and increased dislocation density resulting from work-hardening can all be described individually. However, there is no agreed upon description of how these mechanisms combine to determine the yield strength. In this work, we propose an analytical yield strength prediction model combining arithmetic and quadratic addition approaches based on the consideration of two types of yielding mechanisms; stress-activated and energy-activated. Using data available in the literature for materials of differing grain sizes, we consider the cases of solid solutions and coherent precipitates to show that they follow stress-activated behavior. Then, we applied our model with some empirical parameters to precipitationhardenable materials of various grain sizes in both coherent and incoherent precipitate conditions, which demonstrated that grain boundary and Orowan-strengthening can be treated as energy-activated mechanisms.

  12. Structure and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles derived from controlled crystallization of Nb-rich clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lei [College of Materials and Chemical Engineering, Three Gorges University, Yichang 443002 (China); Guo, Qianying [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Liu, Yongchang, E-mail: licmtju@163.com [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Yu, Liming; Li, Huijun [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China)

    2016-09-30

    This article describes the microstructural evolution and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles. According to the results obtained from X-ray diffraction and transmission electron microscope with Energy Dispersive Spectrometer, the bcc ultrafine grains and the disordered phase of Nb-rich nano-clusters were observed in the milled powders. The hot pressing (HP) resulted in a nearly equiaxed ferritic grains and dispersed nano-scale NbC (~8 nm) particles. The microstructure studies reveal that the formation of NbC nanoparticles is composed of nucleation and growth of the Nb-rich nano-clusters involving diffusion of their component. At room temperature the material exhibits an ultimate tensile strength of 700 MPa, yield strength of 650 MPa, and total elongation of 11.7 pct. The fracture surface studies reveal that a typical ductile fracture mode has occurred during tensile test.

  13. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Martinez, J.; Savoini, B.; Monge, M.A.; Munoz, A.; Pareja, R.

    2011-01-01

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La 2 O 3 or Y 2 O 3 as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  14. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Savoini, B.; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Munoz, A., E-mail: angel.munoz@uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2011-10-15

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La{sub 2}O{sub 3} or Y{sub 2}O{sub 3} as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  15. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  16. Plasticity of alloys strengthened with nano-precipitation

    International Nuclear Information System (INIS)

    Praud, M.

    2012-01-01

    As part of the development of the new generation of nuclear power plant, especially sodium-cooled fast reactors (SFR), oxide dispersion strengthened (ODS) steels are considered as potential candidates for cladding materials. Their main advantages are their excellent dimensional stability under irradiation, thanks to their body centered cubic structure, and their high thermal creep resistance due to the nano-particles. The aim of this work is to understand the plasticity of such materials through a multiscale approach. First, the microstructure of 9% and 14% Cr ODS steels has been finely characterized. Then, their mechanical behavior has been studied through tensile tests and creep tests. In addition, in situ Transmission Electron Microscopy straining experiments have been carried out to observe the dynamic behavior at a finer scale. This work emphasizes an evolution of the deformation and damage mechanisms with temperature. At room temperature, a mechanism with a strong intragranular contribution is noticed. At high temperature, an increase in the intergranular component has been pointed out. Consequently, it leads to more severe damage. Finally, the hardening role of the precipitates on the mechanical properties and the plasticity has been evaluated thanks to a 'model' material, without precipitate. (author) [fr

  17. Alloy development for cladding and duct applications

    International Nuclear Information System (INIS)

    Straalsund, J.L.; Johnson, G.D.

    1981-01-01

    Three general classes of materials under development for cladding and ducts are listed. Solid solution strengthened, or austenitic, alloys are Type 316 stainless steel and D9. Precipitation hardened (also austenitic) alloys consist of D21, D66 and D68. These alloys are similar to such commercial alloys as M-813, Inconel 706, Inconel 718 and Nimonic PE-16. The third general class of alloys is composed of ferritic alloys, with current emphasis being placed on HT-9, a tempered martensitic alloy, and D67, a delta-ferritic steel. The program is comprised of three parallel paths. The current reference, or first generation alloy, is 20% cold worked Type 316 stainless steel. Second generation alloys for near-term applications include D9 and HT-9. Third generation materials consist of the precipitation strengthened steels and ferritic alloys, and are being considered for implementation at a later time than the first and second generation alloys. The development of second and third generation materials was initiated in 1974 with the selection of 35 alloys. This program has proceeded to today where there are six advanced alloys being evaluated. These alloys are the developmental alloys D9, D21, D57, D66 and D68, together with the commerical alloy, HT-9. The status of development of these alloys is summarized

  18. Investigation of alloying effects in aluminum dispersion strengthened with Al2O3

    International Nuclear Information System (INIS)

    Copeland, G.L.

    1975-10-01

    Two types of alloying elements were investigated to determine if the room-temperature strength could be improved and if, through lowering the oxide content, the high-temperature ductility could be improved. Mg was investigated for its solid solution strengthening in one type alloy. The other type alloy involved further dispersion strengthening through adding Fe, Mo, Zr, Cr, V, and Ti which form highly stable intermetallic compounds with Al. Fabrication techniques were developed which produced uniform and reproducible rods for testing. Prealloyed powders were produced by atomizing the molten alloys and collecting the powders in water. This procedure produced uniform powders with a very fine distribution of the intermetallic compounds. Fabrication into rods then included ball-milling, vacuum hot pressing, vacuum heat treating, and hot extrusion. Mg additions improved strengths up to 200 0 C with little effect above that temperature. Room-temperature tensile strengths up to 77,000 psi were obtained which are comparable to the strengths obtained in conventional aluminum alloys. The additional dispersion strengthening of the intermetallic compounds is additive to that of the oxide from room temperature to 450 0 C. No significant improvements in ductility are obtained by reducing the oxide content since even at very low ball-milling times (i.e., low oxide contents) the uniform elongation at 450 0 C is typically 0.5 percent. Good combinations of strength and ductility at 450 0 C were obtained in some of the alloys containing intermetallic compounds with no ball-milling. Typical properties at this temperature were tensile strengths of 7,000 psi, uniform elongation of 3 percent, and total elongation of 35 percent. (21 tables, 33 fig, 43 references) (auth)

  19. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-01-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe–9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (K JQ ) at represented temperatures: 240–280 MPa √m at room temperature and 160–220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic–martensitic steels such as HT9 and NF616

  20. Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II

    2017-01-01

    In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.

  1. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    International Nuclear Information System (INIS)

    Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin

    2013-01-01

    We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation. (paper)

  2. Interdiffusion behavior of Al-rich oxidation resistant coatings on ferritic-martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Velraj, S.; Zhang, Y.; Hawkins, E.W. [Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN 38505-0001 (United States); Pint, B.A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6156 (United States)

    2012-10-15

    Interdiffusion of thin Al-rich coatings synthesized by chemical vapor deposition (CVD) and pack cementation on 9Cr ferritic-martensitic alloys was investigated in the temperature range of 650-700 C. The compositional changes after long-term exposures in laboratory air and air + 10 vol% H{sub 2}O were examined experimentally. Interdiffusion was modeled by a modified coating oxidation and substrate interdiffusion model (COSIM) program. The modification enabled the program to directly input the concentration profiles of the as-deposited coating determined by electron probe microanalysis (EPMA). Reasonable agreement was achieved between the simulated and experimental Al profiles after exposures. The model was also applied to predict coating lifetime at 650-700 C based on a minimum Al content (C{sub b}) required at the coating surface to re-form protective oxide scale. In addition to a C{sub b} value established from the failure of a thin CVD coating at 700 C, values reported for slurry aluminide coatings were also included in lifetime predictions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M.E., E-mail: alam@engineering.ucsb.edu [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Pal, S.; Fields, K. [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoelzer, D.T. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Odette, G.R. [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2016-10-15

    A new larger heat of a 14YWT nanostructured ferritic alloy (NFA), FCRD NFA-1, was synthesized by ball milling FeO and argon atomized Fe-14Cr-3W-0.4Ti-0.2Y (wt%) powders, followed by hot extrusion, annealing and cross rolling to produce an ≈10 mm-thick plate. NFA-1 contains a bimodal size distribution of pancake-shaped, mostly very fine scale, grains. The as-processed plate also contains a large population of microcracks running parallel to its broad surfaces. The small grains and large concentration of Y–Ti–O nano-oxides (NOs) result in high strength up to 800 °C. The uniform and total elongations range from ≈1–8%, and ≈10–24%, respectively. The strength decreases more rapidly above ≈400 °C and deformation transitions to largely viscoplastic creep by ≈600 °C. While the local fracture mechanism is generally ductile-dimple microvoid nucleation, growth and coalescence, perhaps the most notable feature of tensile deformation behavior of NFA-1 is the occurrence of periodic delamination, manifested as fissures on the fracture surfaces.

  4. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    International Nuclear Information System (INIS)

    Mazumder, B.; Yu, X.; Edmondson, P.D.; Parish, C.M.; Miller, M.K.; Meyer, H.M.; Feng, Z.

    2016-01-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  5. Effects of alloying elements on sticking occurring during hot rolling of ferritic stainless steels

    International Nuclear Information System (INIS)

    Ha, Dae Jin; Kim, Yong Jin; Lee, Yong Deuk; Lee, Sung Hak; Lee, Jong Seog

    2008-01-01

    In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content

  6. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, B., E-mail: mazumderb@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Yu, X.; Edmondson, P.D.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Miller, M.K. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Meyer, H.M.; Feng, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-02-15

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  7. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    Science.gov (United States)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  8. Microstructural comparison of effects of hafnium and titanium additions in spark-plasma-sintered Fe-based oxide-dispersion strengthened alloys

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yina, E-mail: huangyina1981@hotmail.com [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Hongtao [Department of Materials, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Auger, Maria A.; Hong, Zuliang [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Ning, Huanpo [School of Engineering of Materials Science, Queen Mary University of London, London, E1 4NS (United Kingdom); Nanoforce Technology Ltd, London, E1 4NS (United Kingdom); Gorley, Michael J. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Grant, Patrick S. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Reece, Michael J.; Yan, Haixue [School of Engineering of Materials Science, Queen Mary University of London, London, E1 4NS (United Kingdom); Nanoforce Technology Ltd, London, E1 4NS (United Kingdom); Roberts, Steve G. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2017-04-15

    Two oxide dispersion strengthened alloys: 14Cr-0.25Y{sub 2}O{sub 3}-0.22Hf (wt.%) and Fe-14Cr-0.25Y{sub 2}O{sub 3}-0.4Ti (wt.%) were fabricated by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS). Electron backscatter diffraction showed grain sizes in the range 0.5–15 μm in both alloys. Transmission electron microscopy and scanning transmission electron microscopy showed a homogeneous distribution of nano-oxides precipitated during SPS. Using high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography, several different oxide phases were found in both alloys, but the majority of dispersoids were Y-Hf-O type in Fe-14Cr-0.25Y{sub 2}O{sub 3}-0.22Hf and Y-Ti-O type in Fe-14Cr-0.25Y{sub 2}O{sub 3}-0.4Ti. There were a variety of orientation relationships between the different dispersoids and the ferritic matrix. Both alloys had dispersoid densities of ∼10{sup 23}/m{sup 3}, with average diameters of 4.3 nm and 3.5 nm in the 0.22Hf and 0.4Ti containing alloys, respectively. Per atom added, Hf (0.07 at.%) is suggested to be more potent than Ti (0.46 at.%) in refining the nano-oxides.

  9. Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels

    Science.gov (United States)

    2012-03-01

    stainless steel and ferritic/ martensitic steel can vary from structural and support components in the reactor core to reactor fuel...of ferritic/ martensitic steels compared to type 316 stainless steel after irradiation in Experimental Breeder Reactor-II at 420 ºC to ~80dpa (From...ferritic martensitic steel at Sandia National Laboratories. The 316 stainless steel had a certified composition of:

  10. First-principles investigations of solid solution strengthening in Al alloys

    OpenAIRE

    Ma, Duancheng

    2012-01-01

    Any material properties, in principle, can be reproduced or predicted by performing firstprinciples calculations. Nowadays, however, we are dealing with complex alloy compositions and processes. The complexities cannot be fully described by first-principles, because of the limited computational power. The primary objective of this study is to investigate an important engineering problem, solid solution strengthening, in a simplified manner. The simplified scheme should allow fast and reliable...

  11. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  12. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430 degrees C to 67 dpa

    International Nuclear Information System (INIS)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-01-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430 degrees C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430 degrees C to ∼67 dpa and at 370 degrees C to ∼15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430 degrees C to ∼67 dpa than after irradiation at 370 degrees C to ∼15 dpa

  13. Effect of sulphur on the strengthening of a Zr-Nb alloy

    International Nuclear Information System (INIS)

    Chang, K.I.; Hong, S.I.

    2008-01-01

    The effect of sulphur on the strengthening and the thermally activated deformation of cold-worked Zr-1 Nb alloy was investigated. In the present study, the sulphur strengthening was observed even at room temperature unlike the previous study of Ferrer et al. The flow stress increased by 65 MPa at room temperature with the addition of sulphur as little as 20 ppm. With further increase of sulphur content up to 300 ppm, negligible change of the flow stress was observed. The additive strengthening behavior in which the entire stress-strain curve shift upward by the friction stress due to the addition of sulphur was observed in the Zr-Nb alloy of the present study. The activation volume decreased slightly (from 110b 3 to 80b 3 ) with the addition of 300 ppm sulphur at room temperature. The rate-controlling mechanism of the deformation can best be explained by the dislocation interaction mechanism in which the segregation of alloying elements such as oxygen and sulphur atoms affects the activation length of dislocations

  14. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, V.N.; Karpov, S.A.; Kopanets, I.E.; Ruzhytskyi, V.V. [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA (United States)

    2016-01-15

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D({sup 3}He,p){sup 4}He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  15. Grinding as an approach to the production of high-strength, dispersion-strengthened nickel-base alloys

    Science.gov (United States)

    Orth, N. W.; Quatinetz, M.; Weeton, J. W.

    1970-01-01

    Mechanical process produces dispersion-strengthened metal alloys. Power surface contamination during milling is removed by a cleaning method that involves heating thin shapes or partially-compacted milled powder blends in hydrogen to carefully controlled temperature schedules.

  16. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  17. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  18. Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kurmanaeva, Lilia, E-mail: lkurmanaeva@ucdavis.com [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Topping, Troy D. [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); California State University, Sacramento, 6000 J Street, Sacramento, CA 95819 (United States); Wen, Haiming; Sugahara, Haruka; Yang, Hanry; Zhang, Dalong; Schoenung, Julie M.; Lavernia, Enrique J. [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2015-05-25

    Highlights: • Ultra-fine and coarse grained Al–Cu–Mg–Ag alloy samples were processed by methods of powder metallurgy. • Despite thermal exposure during consolidation,cryomilled materials retain an ultra-fine grained structure due to the presence of nano-dispersoids at grain boundaries. • Cryomilling results in a change in precipitation kinetics, due to the depletion of Mg atoms at the grain interiors and segregation of Mg, Cu and Ag atoms at grain boundaries. • Dominant deformation mechanisms in cryomilled samples were grain boundary strengthening and dispersion strengthening from oxides and nitrides. - Abstract: In the last decade, the commercially available heat-treatable aluminum alloy (AA) 2139 (Al–Cu–Mg–Ag) has generated interest within the aerospace and defense communities because of its high strength and damage tolerance as compared to those of other AA 2XXX alloys. In this work we investigate the possibility of enhancing the performance of AA 2139 via a nanostructuring approach involving the consolidation of cryomilled powders. For comparison purposes, two types of feedstock powders (cryomilled and unmilled, gas-atomized powder), were consolidated via dual mode dynamic forging. Our results show that, following heat treatment (HT), the strength of the cryomilled material increases in the range of ∼25% to ∼200% relative to that of the unmilled counterparts, depending on specific processing parameters. We present microstructural data, including grain size and precipitate chemistry, to provide insight into the underlying strengthening mechanisms. Vickers microhardess tests are used to evaluate peak heat treatments, and tensile testing is performed to characterize mechanical behavior. The kinetics of precipitation, strengthening mechanisms and deformation behavior are discussed. It is proposed that the combination of elemental segregation with the presence of oxides along grain boundaries, both facilitated by enhanced diffusion paths, are

  19. High-temperature deformation of dispersion-strengthened Cu-Zr-Ti-C alloys

    International Nuclear Information System (INIS)

    Palma, Rodrigo H.; Sepulveda, Aquiles; Espinoza, Rodrigo; Dianez, M. Jesus; Criado, Jose M.; Sayagues, M. Jesus

    2005-01-01

    The hot mechanical behaviour and microstructure of Cu-5 vol.% TiC, Cu-5 vol.% ZrO 2 and Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 alloys prepared by reaction milling were studied. After a test of 1 h annealing at 1173 K, the Cu-5 vol.% ZrO 2 alloy presented the lower softening resistance to annealing, while the other two ones kept their initial room-temperature hardness (about 2 GPa). Hot-compression tests at 773 and 1123 K, at initial true strain rates of 0.85 x 10 -3 and 0.85 x 10 -4 s -1 were performed. The Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 and the Cu-5 vol.% ZrO 2 alloys were the strongest and softest materials, respectively. Moreover, by electron microscopy, nanometric TiC and micrometric particles were detected in the Cu-5 vol.% TiC and Cu-5 vol.% ZrO 2 alloys, respectively. A possible explanation for the observed behaviour of these materials is proposed. In the compression tests, it was also found that strain rate has a low effect on flow stress, as it has been previously observed by various authors in dispersion-strengthened alloys deformed at high temperatures

  20. Study of microstructure evolution and strengthening mechanisms in novel TiZrAlB alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.G.; Feng, Z.H.; Xia, C.Q.; Zhang, Z.G.; Zhang, X.; Zhang, X.Y., E-mail: xyzhang@ysu.edu.cn; Ma, M.Z.; Liu, R.P., E-mail: riping@ysu.edu.cn

    2017-04-24

    In this paper, the microstructural evolution and mechanical properties of the as-cast Ti-χZr-4Al-0.005B (TχZAB and χ=0, 10, 20, 30, 40 wt%) alloys were systematically investigated. Only the α phase was detected from the X-ray diffraction patterns of the as-cast TχZAB quaternary alloy series. As the Zr content increased, the average size and length-diameter ratio of the α grains were decreased from 69.8 μm to 17.1 µm and 37.5 to 8.4, respectively. The analysis of the results from the tensile and microhardness tests demonstrated that both the strength and hardness increased significantly as the Zr content increased (from 0 wt% to 40 wt%). Nevertheless, the ductility exhibited an opposite trend. The fracture mode of the ductile-brittle transfer was consistent with the ductility alteration. The as-cast Ti-40Zr-4Al-0.005B alloys demonstrated the highest tensile strength (σ{sub b}=1134 MPa), which increased by 53% compared to the Ti-4Al-0.005B alloys, whereas the lowest elongation-to-failure was of 6.77%. The mechanical properties of the TχZAB alloy series were discussed based on the microstructural evolution and the solid solution strengthening mechanisms.

  1. B2-ordered iron-aluminium alloys strengthening. Influence of additions (Ni and B) and microstructure

    International Nuclear Information System (INIS)

    Colas, David

    2004-01-01

    We study the effects of additions (Ni and B) and microstructure on the mechanical behaviour of 40 at. % Al iron-aluminium alloys. From a macroscopic point of view, we show that nickel reinforces FeAl alloys over the whole temperature range, but that it simultaneously leads to emphasize the room temperature brittleness of these alloys through a cleavage stress decrease. We confirm powder metallurgy grain refining interest to enhance yield stress as well as fracture resistance. We show that nickel-induced yield stress effect is additive to 'Hall-Petch' one. Also, we point out that the strengthening phenomena (nickel or grain size) cause the yield stress anomaly, which these alloys usually present, to be hidden. Through a dislocation structures analysis of deformed materials we precise that low temperature nickel-induced solid solution hardening (SSH) cannot be explained on the basis of classical SSH theories but more probably through nickel influence upon the Peierls stress. Moreover, we show that the APB tubes dragging model may be compatible with our microscopic and macroscopic results about the anomaly. Eventually, we put into relation a dynamic super-dislocations multiplication process observation (in situ transmission microscopy) with the nickel-containing alloys tendency to cleavage. (author) [fr

  2. Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy

    International Nuclear Information System (INIS)

    Shi, Guodong; Chen, Xiaohua; Jiang, Han; Wang, Zidong; Tang, Hao; Fan, Yongquan

    2015-01-01

    A single crystal Cu–Fe alloy with finely dispersed precipitate Fe nanoparticles was fabricated in this study. The interface relationship of iron nanoparticle and copper matrix was analyzed with a high-resolution transmission electron microscope (HRTEM), and the effect of Fe nanoparticles on mechanical properties of single crystal Cu–Fe alloy was discussed. Results show that, the finely dispersed Fe nanoparticles can be obtained under the directional solidification condition, with the size of 5–50 nm and the coherent interface between the iron nanoparticle and the copper matrix. Single crystal Cu–Fe alloy possesses improved tensile strength of 194.64 MPa, and total elongation of 44.72%, respectively, at room temperature, in contrast to pure Cu sample. Nanoparticles which have coherent interface with matrix can improve the dislocation motion state. Some dislocations can slip through the nanoparticle along the coherent interface and some dislocations can enter into the nanoparticles. Thus to improve the tensile strength of single crystal Cu–Fe alloy without sacrificing the ductility simultaneously. Based on the above analyses, strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy was described

  3. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  4. Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics

    Science.gov (United States)

    Aagesen, L. K.; Miao, J.; Allison, J. E.; Aubry, S.; Arsenlis, A.

    2018-03-01

    Dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg17Al12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa for the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. The predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.

  5. Enhanced Age Strengthening of Mg-Nd-Zn-Zr Alloy via Pre-Stretching

    Directory of Open Access Journals (Sweden)

    Erjun Guo

    2016-08-01

    Full Text Available Pre-stretching was carried out to modify the microstructure of Mg-Nd-Zn-Zr alloy to enhance its age strengthening. The results indicated that more heterogeneous nucleation sites can be provided by the high density of dislocations caused by the plastic pre-stretching deformation, as well as speeding up the growth rate of precipitates. Comparison of microstructure in non-pre-stretched specimens after artificial aging showed that pre-stretched specimens exhibited a higher number density of precipitates. The fine and coarse plate-shaped precipitates were found in the matrix. Due to an increase in the number density of precipitates, the dislocation slipping during the deformation process is effectively hindered, and the matrix is strengthened. The yield strength stabilizes at 4% pre-stretching condition, and then the evolution is stable within the error bars. The 8% pre-stretched specimens can achieve an ultimate tensile strength of 297 MPa. However, further pre-stretching strains after 8% cannot supply any increase in strength. Tensile fracture surfaces of specimens subjected to pre-stretching strain mainly exhibit a trans-granular cleavage fracture. This work indicated that a small amount of pre-stretching strain can further increase strength of alloy and also effectively enhance the formation of precipitates, which can expand the application fields of this alloy.

  6. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  7. Past research and fabrication conducted at SCK-CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    De Bremaecker, Anne, E-mail: adbremae@sckcen.be [Studiecentrum voor Kernenergie-Centre d' Etude de l' Energie Nucleaire (SCK-CEN), NMS, Mol (Belgium)

    2012-09-15

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK-CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 Degree-Sign C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al{sub 2}O{sub 3}, MgO, ZrO{sub 2}, TiO{sub 2}, ZrSiO{sub 4}) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 Degree-Sign C, solution annealing at 1050 Degree-Sign C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 Degree-Sign C, final annealing at 1050 Degree-Sign C, straightening and final aging at 800 Degree-Sign C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO{sub 2} were loaded in Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial

  8. Microstructure of oxide dispersion strengthened Eurofer and iron-chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heintze, C. [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Bergner, F., E-mail: f.bergner@fzd.de [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Ulbricht, A. [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Hernandez-Mayoral, M. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Keiderling, U. [Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Lindau, R. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Weissgaerber, T. [Fraunhofer Institute IFAM-Dresden, Winterbergstr. 28, 01277 Dresden (Germany)

    2011-09-01

    Oxide dispersion strengthening of ferritic/martensitic chromium steels is a promising route for the extension of the range of operation temperatures for nuclear applications. The investigation of dedicated model alloys is an important means in order to separate individual effects contributing to the mechanical behaviour under irradiation and to improve mechanistic understanding. A powder metallurgy route based on spark plasma sintering was applied to fabricate oxide dispersion strengthened (ODS) Fe9Cr model materials. These materials along with Eurofer97 and ODS-Eurofer were investigated by means of small-angle neutron scattering (SANS) and TEM. For Fe9Cr-0.6 wt.%Y{sub 2}O{sub 3}, TEM results indicate a peak radius of the size distribution of Y{sub 2}O{sub 3} particles of 4.2 nm with radii ranging up to 15 nm, and a volume fraction of 0.7%, whereas SANS indicates a peak radius of 3.8 nm and a volume fraction of 0.6%. It was found that the non-ODS Fe9Cr and Eurofer97 are suitable reference materials for ODS-Fe9Cr and ODS-Eurofer, respectively, and that the ODS-Fe9Cr variants are suitable model materials for the separated investigation of irradiation-Y{sub 2}O{sub 3} particle interaction effects.

  9. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.

    Science.gov (United States)

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-12

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.

  10. Ductility and microstructure of precipitation-strengthened alloys irradiated in HFIR

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Hamilton, M.L.

    1983-08-01

    Six γ' and γ'/γ'' strengthened Ni-base alloys have shown near-zero ductility after irradiation at 300 to 600 0 C in HFIR to a peak exposure of 9 dpa. Microstructural examination of the irradiated specimens showed that the loss of ductility in these alloys arises from the simultaneous existence of a strong matrix and weak grain boundaries. The strong matrix is attributed to the irradiation-induced γ' and γ'/γ'' precipitates, the faulted loops and a high density of fine helium bubbles. The weak grain boundaries are attributed to the formation of an unfavorable precipitate, such as eta-plates, recrystallized grains, a thin layer of γ' and helium bubbles

  11. Effect of alumina strengthening particles on brazed joints of GlidCop Al-15 copper alloy

    International Nuclear Information System (INIS)

    Chen, S.; Liu, J.Y.; Chin, B.A.

    1994-01-01

    Brazed joints of the alumina dispersion-strengthened copper alloy were developed using resistance heating brazing with BCuP-3 braze alloy. Experimental results show that tensile strength and fatigue properties are a function of the brazing process temperature cycle. Maximum tensile and fatigue properties can be obtained by choice of an optimal braze time and temperature. However, in both tensile and fatigue tests the brazed joints exhibited low ductility. Metallography of the fractured tensile and fatigue samples showed that cracks always initiated in and propagated along the interface between the transition layer and the braze metal. EDS analysis across the joint showed that P diffused very quickly into base metal along grain boundaries. A strong Al peak (associated with the detection of Al 2 O 3 ) was found that corresponded with the transition layer. Fractography showed an intergranular fracture pattern across this transition zone indicating that the observed segregation of alumina particles reduces the ductility of this region. ((orig.))

  12. Complementary AES and AEM of grain boundary regions in irradiated γ'-strengthened alloys

    International Nuclear Information System (INIS)

    Farrell, K.; Kishimoto, N.; Clausing, R.E.; Heatherly, L.; Lehman, G.L.

    1986-01-01

    Two microchemical analysis techniques are used to measure solute segregation at grain boundaries in two γ'-strengthened, fcc Fe-Ni-Cr alloys that display radiation-induced intergranular fracture. Scanning Auger electron spectroscopy (AES) of grain boundary fracture surfaces and analytical electron microscopy (AEM) of intact grain boundaries using energy-dispersive x-ray spectroscopy show good agreement on the nature and extent of segregation. The elements Ni, Si, Ti, and Mo are found to accumulate in G, Laves and γ' phases on the grain boundaries. Segregation of P is detected by AES. The complementary features of the two analytical techniques are discussed briefly

  13. Tribological properties of Al 7075 alloy based composites strengthened with Al2O3 fibres

    Directory of Open Access Journals (Sweden)

    K. Naplocha

    2011-04-01

    Full Text Available Wear resistance of 7075 aluminium alloy based composite materials reinforced with Al2O3 Saffil fibres was investigated. The measurementsof wear were performed applying the pin-on-disc method at dry friction conditions with the gray iron counterpart. The effects ofpressure of composite samples on the counterpart made of gray iron and the orientation of fibers in relation to the friction surface on wear rate were determined. The materials were produced by squeeze casting method where 80-90% porous ceramic preform were infiltrated.After T6 heat treatment hardness increased about 50-60% both for unreinforced alloy and composites containing strengthening Saffilfibres. Wear resistance of composite materials in relation to the unreinforced 7075 alloy was slightly worse at lower pressure of 0.8 MPa. Under higher pressure of 1.2 MPa wear resistance of unreinforced 7075 alloy was even better whereas no effect of orientation of fibers on wear in composite materials was observed. Additionally, significant wear of counterface in the presence of debris with fragmented Al2O3 fibres as abrasives was observed. Wear resistance improvement of composite materials was obtained when with alumina Saffil fibres Carbon C fibres in the preforms were applied.

  14. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  15. Analysis of Strengthening Mechanisms in an Artificially Aged Ultrafine Grain 6061 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Rezaei

    2017-12-01

    Full Text Available The current study adopted a quantitative approach to investigating the mechanical properties, and their relationship to the microstructural features, of precipitation-strengthened 6061 aluminum alloy processed through accumulative roll bonding (ARB and aging heat treatment.  To serve this purpose, the contributions of different strengthening mechanisms including grain refinement, precipitation, dislocation and solid-solution strengthening to the yield strength of five-cycle ARB samples processed under pre-aged (ARBed and aged (ARBed+Aged conditions were examined and compared. Microstructural characterizations were performed on the samples through the transmission electron microscope (TEM and X-ray diffraction (XRD. Also, the mechanical properties of the samples were investigated through the tensile test. The obtained results showed that an equiaxed ultrafine grain structure with nano-sized precipitates was created in the both ARBed and ARBed+Aged samples. The grain refinement was the predominant strengthening mechanism which was estimated to contribute 151 and 226 MPa to the ARBed and ARBed+Aged samples, respectively, while the dislocation and Orowan strengthening mechanisms were ranked second with regard to their contributions to the ARBed and ARBed+Aged samples, respectively. The overall yield strength, calculated through the root mean square summation method, was found to be in good agreement with the experimentally determined yield strength. It was also found that the presence of non-shearable precipitates, which interfered with the movement of the dislocations, would be effective for the simultaneous improvement of the strength and ductility of the ARBed+Agedsample .

  16. Fatigue and creep–fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    International Nuclear Information System (INIS)

    Carroll, M.C.; Carroll, L.J.

    2012-01-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep–fatigue response of an HT-UPS alloy have been investigated at 650 °C and 1.0% total strain, with an R-ratio of −1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep–fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep–fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  17. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.C., E-mail: Mark.Carroll@INL.gov [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States); Carroll, L.J. [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States)

    2012-10-30

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep-fatigue response of an HT-UPS alloy have been investigated at 650 Degree-Sign C and 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep-fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  18. A comparison between different oxide dispersion strengthened ferritic steel ongoing in situ oxide dissolution in High Voltage Electron Microscope

    International Nuclear Information System (INIS)

    Monnet, I.; Van den Berghe, T.; Dubuisson, Ph.

    2012-01-01

    ODS materials are considered for nuclear applications but previous experimental studies have shown a partial dissolution of some oxides under neutron irradiation. In this work, electron irradiations were used to evaluate the stability of the oxides depending on the chemical composition of the oxide dispersion. Four ferritic steels based on EM10 (Fe–9Cr–1Mo) and reinforced respectively by Al 2 O 3 , MgO, MgAl 2 O 4 and Y 2 O 3 , were studied. These materials were irradiated with 1 MeV or 1.2 MeV electrons in a High Voltage Electron Microscope. This technique allows to follow one single oxide and to determine the evolution of its size during the irradiation. In situ HVEM observations indicate that the dissolution rate depends on the chemical composition of the oxide, on the temperature and on the irradiation dose.

  19. Characterization of dispersion strengthened copper with 3wt%Al2O3 by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rajković Višeslava

    2004-01-01

    Full Text Available The copper matrix has been dispersion strengthened with 3wt.%Al2O3 by mechanical alloying. Commercial alumina powder with an average particle size of 0.75mm was used for alloying. The mechanical alloying process was performed in a planetary ball mill up to 20h in air. After milling all powders were treated in H2 at 4000C for 1h, and finally hot pressing was used for compaction (800oC, 3h, Ar. Structure observations revealed a lamellar structure (Al2O3 particles largely restricted to interlamellar planes between adjacent copper lamellae accompanied also by structure refinement. These structural changes were mostly completed in the early stage of milling, and retained after compaction. Micro hardness was found to progressively increase with milling time. So, after 5h of milling the micro hardness of the Cu+3twt%Al2O3 compact was 1540MPa, i.e. 2.5 times greater than for the as-received electrolytic copper powder (638MPa compacted under identical conditions, while after 20h of milling it was 2370 MPa. However after exposing the tested compact at 800oC up to 5h, the achieved hardening effect vanished.

  20. Post irradiation fracture properties of precipitation-strengthened alloy D21

    International Nuclear Information System (INIS)

    Huang, F.H.

    1986-03-01

    The precipitation strengthened alloys have the potential for use in fuel cladding and duct applications for liquid metal reactors due to their high strength and low swelling rate. Unfortunately, these high strength alloys tend to exhibit poor fracture toughness, and the effects of neutron irradiation on the fracture properties of the material are of concern. Compact tension specimens of alloy D21 were irradiated in the Experimental Breeder Reactor II to a fluence of 2.7 x 10 22 n/cm 2 (E > 0.1 MeV) at 425, 500, 550 and 600 0 C. Fracture toughness tests on these specimens wre performed using electric potential techniques at temperatures ranging from 205 to 425 C. The material exhibited low postirradiation fracture toughness which increased with either increasing test or irradiation temperature. The tearing modulus, however, increased with increasing irradiation temperature but decreased with increasing test temperature. Results wre analyzed using the J-integral approach. The fracture toughness of irradiated D21 was evaluated essentially following the procedure recommended in ASTM Test Method E813. It was found that the data elimination limits illustrated in E813 were too large for the specimens tested, although the thickness criterion was satisfied. The precautions needed to determine J/sub 1c/ based on a reduced data qualification range were disussed

  1. Strengthening of Cu–Ni–Si alloy using high-pressure torsion and aging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungwon, E-mail: chominamlsw@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Matsunaga, Hirotaka [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Sauvage, Xavier [University of Rouen, CNRS UMR 6634, Groupe de Physique des Matériaux, Faculté des Sciences, BP 12, 76801 Saint-Etienne du Rouvray (France); Horita, Zenji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)

    2014-04-01

    An age-hardenable Cu–2.9%Ni–0.6%Si alloy was subjected to high-pressure torsion. Aging behavior was investigated in terms of hardness, electrical conductivity and microstructural features. Transmission electron microscopy showed that the grain size is refined to ∼ 150 nm and the Vickers microhardness was significantly increased through the HPT processing. Aging treatment of the HPT-processed alloy led to a further increase in the hardness. Electrical conductivity is also improved with the aging treatment. It was confirmed that the simultaneous strengthening by grain refinement and fine precipitation is achieved while maintaining high electrical conductivity. Three dimensional atom probe analysis including high-resolution transmission electron microscopy revealed that nanosized precipitates having compositions of a metastable Cu{sub 3}Ni{sub 5}Si{sub 2} phase and a stable NiSi phase were formed in the Cu matrix by aging of the HPT-processed samples and these particles are responsible for the additional increase in strength after the HPT processing. - Highlights: • Grain refinement is achieved in Corson alloy the size of ∼150nm by HPT. • Aging at 300°C after HPT leads to further increase in the mechanical property. • Electrical conductivity reaches 40% IACS after aging for 100 h. • 3D-APT revealed the formation of nanosized-precipitates during aging treatment. • Simultaneous hardening in both grain refinement and precipitation is achieved.

  2. Nanosized-Particle Dispersion-Strengthened Al Matrix Composites Fabricated by the Double Mechanical Alloying Process.

    Science.gov (United States)

    Kim, Chungseok

    2018-03-01

    The objective of this study was to fabricate an Al metal matrix composite strengthened by nanosized Al3Ti particles via double mechanical alloying process. Several Al-xTi alloys were fabricated, including Al-12%Ti, Al-15%Ti, and Al-12%Ti-1%Y2O3. The lattice parameter of as-milled state was calculated to be 4.0485 Å; after a milling time of 540 min, it was 4.0401 Å. This decrease was induced by Ti solutionizing into the Al matrix. The equivalent size of a coarse Al3Ti particle was 200-500 nm after the heat treatment; however, the particles were uniformly distributed and were refined through the MA2 process. The particle size of a Al3Ti phase was 30 nm or less, and the particles were uniformly distributed. These particles remained in a fine state in the matrix without growth and coarsening, even after the hot extrusion process. The microstructure of hot extruded alloys consisted of a uniform distribution of Al3Ti particles and other dispersoids in the Al matrix.

  3. Evaluation of mechanical properties in stainless alloy ferritic with 5 % molybdenum; Avaliacao das propriedades mecanicas em ligas inoxidaveis ferriticas com 5% de molibdenio

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, V.X.; Gomes, F.H.F.; Guimaraes, R.F.; Saboia, F.H.C.; Abreu, H.F.G. de [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara (IFCE). Campus Maracanau, CE (Brazil)], e-mail: venceslau@ifce.edu.br

    2010-07-01

    The deterioration of equipment in the oil industry is caused by high aggressiveness in processing the same. One solution to this problem would increase the content of molybdenum (Mo) alloys, since this improves the corrosion resistance. As the increase of Mo content causes changes in mechanical properties, we sought to evaluate the mechanical properties of alloys with 5% Mo and different levels of chromium (Cr). Were performed metallography and hardness measurement of the alloys in the annealed condition. Subsequent tests were performed tensile and Charpy-V, both at room temperature. The results showed that 2% difference in the content of Cr did not significantly alter the mechanical properties of alloys. The alloys studied had higher values in measured properties when compared to commercial ferritic alloys with similar percentages of Cr. The high content of Mo resulted in a brittle at room temperature but ductile at temperatures above 70 degree C. (author)

  4. Preparation of Si and O co-solution strengthened Ti alloys by using rice husks as SiO2 resource and quantitative descriptions on their strengthening effects

    Science.gov (United States)

    Jia, Lei; Chen, Jiang-xian; Lu, Zhen-lin; Li, Shu-feng; Umeda, Junko; Kondoh, Katsuyoshi

    2018-04-01

    Ti alloys strengthened by both Si and O solutes were prepared by powder metallurgy method from pure Ti and amorphous SiO2 powder obtained by combusting rice husks. At the same time, Ti alloys singly strengthened by Si or O were also prepared for studying the strengthening effect of Si and O solutes. Results showed that amorphous SiO2 powder originated from rice husks could almost fully dissolve into pure Ti matrix when the content was not higher than 1.0 wt%, while higher content of SiO2 addition resulted in the formation of Ti5Si3 intermetallics. Si and O elements leaded to negative and positive distortion of Ti lattice, and the influencing degrees were ‑0.02 and +0.014 Å/wt% for lattice constant a, while ‑0.05 and +0.046 Å/wt% for constant c, respectively. Solid solution of Si and O would also result in the increase of hardness, which was 98.5 and 209.43 HV/wt%, respectively. When Si and O were co-exsited in Ti matrix, the negative and positive distortion cancelled each other, while the strengthening effect did not cancel but enhance each other.

  5. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  6. Overload effects on a ferritic-baintic steel and a cast aluminium alloy: two very different behaviours

    Energy Technology Data Exchange (ETDEWEB)

    Saintier, N. [Arts et Metiers Paris Tech, I2M, UMR CNRS, Universite Bordeaux 1, Talene Cedex (France); El Dsoki, C.; Kaufmann, H.; Sonsino, C.M. [Fraunhofer-Institute for Structural Durability and System Reliability LBF, Darmstadt (Germany); Dumas, C. [RENAULT, Technocentre, Guyancourt Cedex (France); Voellmecke, F.J. [BORBET GmbH, Hallenberg-Hesborn (Germany); Palin-Luc, T.; Bidonard, H.

    2011-10-15

    Load controlled fatigue tests were performed up to 10{sup 7} cycles on flat notched specimens (K{sub t} = 2.5) under constant amplitude and variable amplitude loadings with and without periodical overloads. Two materials are studied: a ferritic-bainitic steel (HE400M steel) and a cast aluminium alloy (AlSi7Mg0.3). These materials have a very different cyclic behaviour: the steel exhibits cyclic strain softening whereas the Al alloy shows cyclic strain hardening. The fatigue tests show that, for the steel, periodical overload applications reduce significantly the fatigue life for fully reversed load ratio (R{sub {sigma}} = -1), while they have no influence under pulsating loading (R{sub {sigma}} = 0). For the Al alloy overloads have an effect (fatigue life decreasing) only for variable amplitude loadings. The detrimental effect of overloads on the steel is due to ratcheting at the notch root which evolution is overload's dependent. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Suvi Papula

    2017-06-01

    Full Text Available Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility.

  8. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    International Nuclear Information System (INIS)

    Cabibbo, Marcello; Spigarelli, Stefano

    2011-01-01

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K were carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: → TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. → The evaluation has been extended to different compression temperature conditions. → Linear and Quadratic sum has been proposed and validated. → Hall-Petch was found to be the most prominent strengthening contributions.

  9. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    International Nuclear Information System (INIS)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K.

    1995-01-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress

  10. Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe-12Cr alloy

    International Nuclear Information System (INIS)

    Castro, V. de; Marquis, E.A.; Lozano-Perez, S.; Pareja, R.; Jenkins, M.L.

    2011-01-01

    Transmission electron microscopy and atom-probe tomography were used to characterize on a near-atomic scale the microstructure and oxide and carbide phases that form during thermo-mechanical treatments of a model oxide dispersion strengthened Fe-12 wt.% Cr-0.4 wt.% Y 2 O 3 alloy. It was found that some of the Y-rich nanoparticles retained their initial crystallographic structure but developed a Cr-enriched shell, while others evolved into ternary oxide phases during the initial processing. The Y- and Cr-rich oxide phases formed remained stable after annealing at 1023 K for 96 h. However, the number of Cr-rich carbides appeared to increase, inducing Cr depletion in the matrix.

  11. Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe-12Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. de, E-mail: vanessa.decastro@uc3m.es [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Marquis, E.A.; Lozano-Perez, S. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid (Spain); Jenkins, M.L. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2011-06-15

    Transmission electron microscopy and atom-probe tomography were used to characterize on a near-atomic scale the microstructure and oxide and carbide phases that form during thermo-mechanical treatments of a model oxide dispersion strengthened Fe-12 wt.% Cr-0.4 wt.% Y{sub 2}O{sub 3} alloy. It was found that some of the Y-rich nanoparticles retained their initial crystallographic structure but developed a Cr-enriched shell, while others evolved into ternary oxide phases during the initial processing. The Y- and Cr-rich oxide phases formed remained stable after annealing at 1023 K for 96 h. However, the number of Cr-rich carbides appeared to increase, inducing Cr depletion in the matrix.

  12. Some new characteristics of the strengthening phase in β-phase magnesium-lithium alloys containing aluminum and beryllium

    International Nuclear Information System (INIS)

    Song Guangsheng; Staiger, Mark; Kral, Milo

    2004-01-01

    Hardness, optical-microscopy and X-ray diffraction studies on the strengthening phase in β-phase magnesium-lithium alloys containing different content of aluminum were carried out to give some new characteristics of the strengthening phase affecting lattice distortion and α-Mg precipitation in the β-matrix. In the presence of the strengthening-phase precipitates, the matrix lattice undergoes substantial strain characterized by peak broadening. The peak width in the β-matrix phase pattern can provide an indication of lattice strain caused by the strengthening-phase precipitates. The origin of α-Mg precipitation resulting from the decomposition of the strengthening phase into stable AlLi compound is also explained in the present work

  13. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  14. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    Science.gov (United States)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  15. Development and Testing of Dispersion-Strengthened Tungsten Alloys via Spark Plasma Sinterin

    Science.gov (United States)

    Lang, Eric; Madden, Nathan; Smith, Charles; Krogstad, Jessica; Allain, Jean Paul

    2017-10-01

    Tungsten (W) is a common plasma-facing component (PFC) material in the divertor region of tokamak fusion devices due to its high melting point and high sputter threshold. However, W is intrinsically brittle and is further embrittled under neutron irradiation, and the low recrystallization temperature pose complications in fusion environments. More ductile W alloys, such as dispersion-strengthened tungsten are being developed. In this work, W samples are processed via spark plasma sintering (SPS) with TiC, ZrC, and TaC dispersoids alloyed from 0.5 to 10 weight %. SPS is a powder compaction technique that provides high pressure and heating rates via electrical current, allowing for a lower final temperature and hold time for compaction. Initial testing of material properties, smicrostructure, and composition of specimens will be presented. Deuterium and helium irradiations have been performed in IGNIS, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. High-flux, low-energy exposures at the Magnum-PSI facility at DIFFER exposed samples to a D fluence of 1×1026 cm-2 and He fluence of 1x1025-1x1026 cm-2 at temperatures of 300-1000 C. In-situ chemistry changes via XPS and ex-situ morphology changes via SEM will be studied. Work supported by US DOE Contract DE-SC0014267.

  16. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    Science.gov (United States)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  17. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  18. Evaluating Strengthening and Impact Toughness Mechanisms for Ferritic and Bainitic Microstructures in Nb, Nb-Mo and Ti-Mo Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    Gorka Larzabal

    2017-02-01

    Full Text Available Low carbon microalloyed steels show interesting commercial possibilities by combining different “micro”-alloying elements when high strength and low temperature toughness properties are required. Depending on the elements chosen for the chemistry design, the mechanisms controlling the strengths and toughness may differ. In this paper, a detailed characterization of the microstructural features of three different microalloyed steels, Nb, Nb-Mo and Ti-Mo, is described using mainly the electron backscattered diffraction technique (EBSD as well as transmission electron microscopy (TEM. The contribution of different strengthening mechanisms to yield strength and impact toughness is evaluated, and its relative weight is computed for different coiling temperatures. Grain refinement is shown to be the most effective mechanism for controlling both mechanical properties. As yield strength increases, the relative contribution of precipitation strengthening increases, and this factor is especially important in the Ti-Mo microalloyed steel where different combinations of interphase and random precipitation are detected depending on the coiling temperature. In addition to average grain size values, microstructural heterogeneity is considered in order to propose a new equation for predicting ductile–brittle transition temperature (DBTT. This equation considers the wide range of microstructures analyzed as well as the increase in the transition temperature related to precipitation strengthening.

  19. Creep rupture properties of laves phase strengthened Fe--Ta--Cr--W and Fe--Ta--Cr--W--Mo alloys

    International Nuclear Information System (INIS)

    Singh, S.

    1975-12-01

    A small addition of tungsten (0.5 at. percent) was shown to have an effect similar to that of molybdenum on the phase transformation characteristics of alloy Ta7Cr (with a nominal composition of 1 at. percent Ta, 7 at. percent Cr, balance Fe). The existence of time-temperature dependent transformation behavior in alloy Ta7Cr0.5W was confirmed. The effect of spheroidization time and temperature on creep strength was determined. In addition, effect of mechanical processing prior to aging, on creep strength was also determined. It was also shown that by suitable modifications of composition, the grain boundary film can be broken during the aging treatment without the use of spheroidization treatment. Microhardness, tensile and creep properties have been determined. Optical metallography and scanning electron microscopy have been used to follow the microstructural changes and mode of fracture. The creep rupture strength of alloy Ta7CrW alloy was found to be superior to many of the best commercially available ferritic alloys at 1200 0 F. (21 fig., 8 tables)

  20. Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-02-06

    The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.

  1. Evolution of Microstructure and Mechanical Properties of Oxide Dispersion Strengthened Steels Made from Water-Atomized Ferritic Powder

    Science.gov (United States)

    Arkhurst, Barton Mensah; Kim, Jeoung Han

    2018-05-01

    Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.

  2. Development of Fe-Ni and Ni-base alloys without {gamma}' strengthening for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Igarashi, Masaaki; Hirata, Hiroyuki [Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo (Japan). Corporate Research and Development Labs.; Yoshizawa, Mitsuru [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Steel Tube Works

    2010-07-01

    An Fe-Ni base alloy, 23Cr-45Ni-7W alloy (HR6W) strengthened by Fe{sub 2}W-type Laves phase is one of the candidate materials for the piping application. Stability of long-term creep strength and superior creep rupture ductility have been proved by creep rupture tests up to 60000h at 650-800 C. The 10{sup 5}h extrapolated creep rupture strength at 700 C approved by TUV is 85MPa. It has also been confirmed that HR6W has excellent microstructural stability by means of microstructural observations after term creep tests and aging. A thick wall pipe of HR6W, which is 457mm in diameter and 60mm in wall thickness, has successfully been manufactured by the Erhart Push Bench press method. This trial production has shown that hot workability of HR6W is sufficient for manufacturing thick wall piping for A-USC plants. A new Ni-base alloy, 30r-50Ni-4W alloy (HR35) has been proposed for piping application having comparable creep rupture strength with Alloy 617 at 700 C. This alloy is not strengthened by {gamma}' phase but mainly by {alpha}-Cr phase. The 10{sup 5}h extrapolated creep rupture strength is estimated to be 114 MPa at 700 C. It has sufficient creep rupture ductility compared with Alloy 617. A thick wall pipe of HR35 has also been successfully manufactured. Capability of HR6W and HR35 as structural materials for A-USC plants has been examined in detail. They have high resistance to relaxation cracking after welding. It is, therefore, concluded that both the alloys are promising candidates especially for thick wall piping in A-USC power plants. (orig.)

  3. Enhanced age-strengthening by two-step progressive solution treatment in an Mg–Zn–Al–Re alloy

    International Nuclear Information System (INIS)

    Zhang, Jing; Yuan, Fuqing; Du, Yong

    2013-01-01

    Highlights: • A two-step progressive solution treatment schedule was proposed. • The treatment enhanced dissolution of ternary eutectic phases in Mg–Zn–Al alloy. • Solution temperature could break the limit of the ternary eutectic temperature. • There was no microstructural over-heating defect during the progressive heating. • The τ precipitates have a remarkable dispersion strengthening effect. - Abstract: A two-step progressive solution treatment was designed and performed on an as-extruded Mg–7Zn–3Al–0.7Er alloy. The resultant microstructure and mechanical properties were examined by means of scanning electron microscopy, X-ray diffractometer, differential scanning calorimetry and hardness testing. The results showed that the two-step progressive solution treatment could enhance the dissolution of the ternary eutectic phases in the Mg–Zn–Al system without the formation of microstructure over-heating defects. After homogenization for 50 h at 325 °C, the volume fraction of the undissolved particles in the Mg–7Zn–3Al–0.7Er alloy ingot was ∼4.1%. Two-step progressive solution treatment performed on the as-extruded alloy could further dissolve the particles. Only 1.5% undissolved particles remained after the treatment. The supersaturated degree of both the dissolved solute atoms and vacancies in the α-Mg matrix was expected to be increased, resulting in an enhanced age-strengthening, compared with normal solution and aging treatments. Moreover, the processed alloy exhibited a homogenous and stable fine grain structure. Remarkable dispersion strengthening effect of ternary τ (Mg 32 (Al,Zn) 49 ) precipitates occurred in Mg–Zn–Al alloy was also identified

  4. Microstructure strengthening mechanisms in an Al–Mg–Si–Sc–Zr equal channel angular pressed aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it [Dipartimento di Ingegneria Meccanica e Scienze Matematiche (DIISM), Università Politecnica delle Marche, 60131 Ancona (Italy)

    2013-09-15

    Microstructure dislocation strengthening mechanisms in severely deformed aluminium strongly depend on the different boundary evolutions. Thereafter, models of proof stress determination should take into account the different nature of the boundaries that form during severe plastic deformation. In the last few decades, Hall–Petch modified relationship and other proof stress modelling were extensively discussed. This paper deals with further insights into the Hansen's and other authors approach to the modelling of aluminium poof stress after equal channel angular pressing. The present model is based on a detailed transmission electron microscopy microstructure characterization of the different strengthening contributions in an age-hardened Al–Mg–Si–Sc–Zr alloy.

  5. Microstructure strengthening mechanisms in an Al–Mg–Si–Sc–Zr equal channel angular pressed aluminium alloy

    International Nuclear Information System (INIS)

    Cabibbo, Marcello

    2013-01-01

    Microstructure dislocation strengthening mechanisms in severely deformed aluminium strongly depend on the different boundary evolutions. Thereafter, models of proof stress determination should take into account the different nature of the boundaries that form during severe plastic deformation. In the last few decades, Hall–Petch modified relationship and other proof stress modelling were extensively discussed. This paper deals with further insights into the Hansen's and other authors approach to the modelling of aluminium poof stress after equal channel angular pressing. The present model is based on a detailed transmission electron microscopy microstructure characterization of the different strengthening contributions in an age-hardened Al–Mg–Si–Sc–Zr alloy.

  6. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  7. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K.H., E-mail: kaylayano@u.boisestate.edu [Boise State University, 1910 University Drive, Boise, ID, 83725 (United States); Swenson, M.J. [Boise State University, 1910 University Drive, Boise, ID, 83725 (United States); Wu, Y. [Boise State University, 1910 University Drive, Boise, ID, 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID, 83401 (United States); Wharry, J.P. [Boise State University, 1910 University Drive, Boise, ID, 83725 (United States); Purdue University, 400 Central Drive, West Lafayette, IN 47907 (United States)

    2017-01-15

    The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe{sup 2+} ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.

  8. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys

    International Nuclear Information System (INIS)

    Mueller, A.J.; Bianco, R.; Buckman, R.W. Jr.

    1999-01-01

    Oxide dispersion strengthened (ODS) molybdenum alloys being developed for high temperature applications possess excellent high temperature strength and creep resistance. In addition they exhibit a ductile-to-brittle transition temperature (DBIT) in the worked and stress-relieved condition under longitudinal tensile load well below room temperature. However, in the recrystallized condition, the DBTT maybe near or above room temperature, depending on the volume fraction of oxide dispersion and the amount of prior work. Dilute rhenium additions (7 and 14 wt.%) to ODS molybdenum were evaluated to determine their effect on low temperature ductility. The addition of 7 wt.% rhenium to the ODS molybdenum did not significantly enhance the mechanical properties. However, the addition of 14 wt.% rhenium to the ODS molybdenum resulted in a DBTT well below room temperature in both the stress-relieved and recrystallized condition. Additionally, the tensile strength of ODS Mo-14Re is greater than the base ODS molybdenum at 1,000 to 1,250 C

  9. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Mechanical strength properties of sodium exposed and Nickel diffused materials. Interim report

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2004-02-01

    An oxide dispersion strengthened (ODS) ferritic steel have excellent resistance to swelling and superior creep strength, they are expected to be used as a long-life cladding material in future advanced fast reactor. In this study, sodium environmental effects on the ODS steel developed by JNC were clarified through tensile test after sodium exposure for maximum 10,000hrs and creep-rupture test in sodium at elevated temperature. The exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperatures were 923 K and 973 K, the oxygen concentration in sodium was below 2ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/s. Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The results showed excellent sodium-resistance up to a high temperature of about 973 K in stagnant sodium conditions, and its considered that the effects of sodium environment of tensile properties were negligible. In case of stagnant sodium condition, creep-rupture strength in sodium was equal to the in argon gas, and no sodium environmental effect was observed. The same is true for the creep-rupture ductility. (2) The tensile properties of nickel diffused test specimens at high temperatures simulating microstructure change were equal to that of the thermal aging process specimens. These tensile tests suggest that sodium environmental effects can be ignored. However, the effect of nickel diffusion on creep strength are not clear at present and experimental investigation are being conducted. (3) The coefficient of nickel diffusion in the ODS steel can be estimated based on the results of nickel concentration measurement. This value is larger than that of the diffusion coefficient for typical α-Fe steel at temperature below 973 K

  10. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Tensile properties of sodium exposed and nickel diffused materials

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2002-12-01

    An oxide dispersion strengthened (ODS) ferritic steel is candidate for a long-life core materials of future FBR, because of good swelling resistance and high creep strength. In this study, tensile tests were carried out the long-term extrapolation of sodium environmental effects on the mechanical properties of ODS steels. The tested heats of materials are M93, M11 and F95. The specimens were pre-exposed to sodium for 1,000 and 3,000 hours under non-stress conditions. The pre-exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperature was 650 and 700degC, the oxygen concentration in sodium was about 1 ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/seconds (nearly static). Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The tensile strength and the fracture elongation after sodium exposure (maximum 3,000 hours) were same as that of as-received materials. If was considered that the sodium environmental effect is negligible under the condition of this study. (2) Tensile properties of nickel diffused specimens were slightly lower than that of the as-received specimens, but it remains equal to that of thermal aging specimens. (3) The change in microstructure such as a degraded layer was observed on the surface of nickel diffused specimen. In the region of the degraded layer, phase transformations from the α-phase to the γ-phase were recognized. But, the microscopic oxide particles were observed same as that of α-phase base metal. (author)

  11. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    Science.gov (United States)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  12. Charpy impact test results of ferritic alloys at a fluence of 6 x 1022n/cm2

    International Nuclear Information System (INIS)

    Hu, W.L.

    1985-01-01

    Charpy impact tests on specimens in the AD-2 reconstitution experiment were completed. One hundred ten specimens made of HT-9 base metal, 9Cr-1Mo base metal and 9Cr-1Mo weldment at various heat treatment conditions were tested in temperature range from -73 0 C to 260 0 C. The specimens were irradiated from 390 0 C to 550 0 C and the fluence of the specimens reached 6 x 10 22 n/cm 2 . This is the first time that the transition behavior of ferritic alloys at high fluence was obtained. This is also the first time that comprehensive results on the irradiated 9Cr-1Mo weldment are available. The test results show a small additional shift in transition temperature for HT-9 base metal irradiated at 390 0 C and 450 0 C as the fluence was raised to 6 x 10 22 n/cm 2 . At higher irradiation temperatures, however, the shift in transition temperature is less conclusive. Further reduction in USE was observed at higher fluence for all the irradiation temperatures. There is no apparent fluence effect for 9Cr-1Mo base metal at all the irradiation temperatures studied. Contrary to the previous finding on HT-9 base metal and weldment, the 9Cr-1Mo weldment shows a higher transition temperature ( + 60 0 C) and a higher USE ( + 100%) as compared to the 9Cr-1MO base metal for the same irradiation conditions. 6 references, 7 figures, 7 tables

  13. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  14. Strengthening mechanisms in ultrafine grained Al-Mg-Si alloy processed by hydrostatic extrusion – Influence of ageing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chrominski, Witold, E-mail: wichr@inmat.pw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Wenner, Sigurd [Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Marioara, Calin D. [SINTEF Materials and Chemistry, 7465 Trondheim (Norway); Holmestad, Randi [Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Lewandowska, Malgorzata [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2016-07-04

    Microstructure of hydrostatically extruded Al-Mg-Si alloy was studied by the combination of electron backscattered diffraction and transmission electron microscopy. Three different grain types which feature various defects arrangements were detected. Post deformation ageing at two temperatures caused different precipitation phenomena which were strongly dependent on type of grain boundaries in the considered grain types. Thus, a combination of plastic deformation and ageing resulted in a material with complex microstructure. Based on transmission electron microscopy observations, contributions of different strengthening mechanisms were estimated and compared to experimental results. A good agreement between obtained data points confirmed that depending on grain type, different strengthening mechanisms are operative and the overall strength is a sum of hardening given by each of them. Ageing of ultrafine grain structure results in efficient precipitation strengthening. On the other hand ageing causes annihilation of low and high angle grains boundaries in which leads to softening of investigated material. This effect cannot be compensated by precipitation hardening.

  15. Numerical atomic scale simulations of the microstructural evolution of ferritic alloys under irradiation

    International Nuclear Information System (INIS)

    Vincent, E.

    2006-12-01

    In this work, we have developed a model of point defect (vacancies and interstitials) diffusion whose aim is to simulate by kinetic Monte Carlo (KMC) the formation of solute rich clusters observed experimentally in irradiated FeCuNiMnSi model alloys and in pressure vessel steels. Electronic structure calculations have been used to characterize the interactions between point defects and the different solute atoms. Each of these solute atoms establishes an attractive bond with the vacancy. As for Mn, which is the element which has the weakest bond with the vacancy, it establishes more favourable bonds with interstitials. Binding energies, migration energies as well as other atomic scale properties, determined by ab initio calculations, have led to a parameter set for the KMC code. Firstly, these parameters have been optimised on thermal ageing experiments realised on the FeCu binary alloy and on complex alloys, described in the literature. The vacancy diffusion thermal annealing simulations show that when a vacancy is available, all the solutes migrate and form clusters, in agreement with the observed experimental tendencies. Secondly, to simulate the microstructural evolution under irradiation, we have introduced interstitials in the KMC code. Their presence leads to a more efficient transport of Mn. The first simulations of electron and neutron irradiations show that the model results are globally qualitatively coherent with the experimentally observed tendencies. (author)

  16. Swelling in several commercial alloys irradiated to very high neutron fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.; Pintler, J.S.

    1984-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10 23 n/cm 2 (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650 0 C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys

  17. Microstructural influences on strengthening in a naturally aged and overaged Al–Cu–Li–Mg based alloy

    International Nuclear Information System (INIS)

    Ovri, Henry; Jägle, Eric A.; Stark, Andreas; Lilleodden, Erica T.

    2015-01-01

    A combination of transmission electron microscopy, atom probe tomography and high-energy X-ray diffraction was employed to investigate the influence of local microstructural changes on strengthening in a commercial Al–Cu–Li–Mg based alloy, AA2198, in the stretched and naturally aged, and overaged states. Strengthening in the stretched and naturally aged temper was shown to be governed by a combination of Cu–Cu clusters, δ′/β′ phase and solution strengthening. This is in contrast to another report which suggests that strength in this temper is only due to Cu-rich clusters [B. Decreus, et al., Acta Mater., 61 (2013) 2207]. On the other hand, although large volume fractions of equilibrium phases such as T B , and θ were present in the overaged temper, its strengthening was largely governed by order hardening, which is the strengthening mechanism associated with the δ′/β′ phase. The δ′/β′ phase remained in the matrix even after extensive overaging

  18. Microstructural influences on strengthening in a naturally aged and overaged Al–Cu–Li–Mg based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ovri, Henry, E-mail: henry.ovri@hzg.de [Helmholtz Zentrum Geesthacht, Institute of Materials Research, Materials Mechanics, 21502 Geesthacht (Germany); Jägle, Eric A. [Max-Planck-Institut für Eisenforschung GmbH, Department of Microstructure Physics and Alloy Design, 40237 Düsseldorf (Germany); Stark, Andreas [Helmholtz Zentrum Geesthacht, Institute of Materials Research, Materials Physics, 21502 Geesthacht (Germany); Lilleodden, Erica T. [Helmholtz Zentrum Geesthacht, Institute of Materials Research, Materials Mechanics, 21502 Geesthacht (Germany)

    2015-06-18

    A combination of transmission electron microscopy, atom probe tomography and high-energy X-ray diffraction was employed to investigate the influence of local microstructural changes on strengthening in a commercial Al–Cu–Li–Mg based alloy, AA2198, in the stretched and naturally aged, and overaged states. Strengthening in the stretched and naturally aged temper was shown to be governed by a combination of Cu–Cu clusters, δ′/β′ phase and solution strengthening. This is in contrast to another report which suggests that strength in this temper is only due to Cu-rich clusters [B. Decreus, et al., Acta Mater., 61 (2013) 2207]. On the other hand, although large volume fractions of equilibrium phases such as T{sub B}, and θ were present in the overaged temper, its strengthening was largely governed by order hardening, which is the strengthening mechanism associated with the δ′/β′ phase. The δ′/β′ phase remained in the matrix even after extensive overaging.

  19. Effects of alloying and processing modifications on precipitation and strength in 9%Cr ferritic/martensitic steels for fast reactor cladding

    Science.gov (United States)

    Tippey, Kristin E.

    P92 was modified with respect to alloying and processing in the attempt to enhance high-temperature microstructural stability and mechanical properties. Alloying effects were modeled in ThermoCalcRTM and analyzed with reference to literature. ThermoCalcRTM modeling was conducted to design two low-carbon P92-like low-carbon alloys with austenite stabilized by alternative alloying; full conversion to austenite allows for a fully martensitic structure. Goals included avoidance of Z-phase, decrease of M23C6 phase fraction and maintained or increased MX phase fraction. Fine carbonitride precipitation was optimized by selecting alloying compositions such that all V and Nb could be solutionized at temperatures outside the delta-ferrite phase field. A low-carbon alloy (LC) and a low-carbon-zero-niobium alloy (0Nb) were identified and fabricated. This low-carbon approach stems from the increased creep resistance reported in several low-carbon alloys, presumably from reduced M23C6 precipitation and maintained MX precipitation [1], although these low-carbon alloys also contained additional tungsten (W) and cobalt (Co) compared to the base P92 alloy. The synergistic effect of Co and W on the microstructure and mechanical properties are difficult to deconvolute. Higher solutionizing temperatures allow more V and Nb into solution and increase prior austenite grain size; however, at sufficiently high temperatures delta-ferrite forms. Optimal solutionizing temperatures to maximize V and Nb in solution, while avoiding the onset of the delta ferrite phase field, were analyzed in ThermoCalcRTM. Optical microscopy showed ThermoCalc RTM predicted higher delta-ferrite onset temperatures of 20 °C in P92 alloys to nearly 50 °C in the designed alloys of the critical temperature. Identifying the balance where maximum fine precipitation is achieved and delta-ferrite avoided is a key factor in the design of an acceptable P92-like alloy for Generation IV reactor cladding. Processing was

  20. Formation of oxides particles in ferritic steel by using gas-atomized powder

    International Nuclear Information System (INIS)

    Liu Yong; Fang Jinghua; Liu Donghua; Lu Zhi; Liu Feng; Chen Shiqi; Liu, C.T.

    2010-01-01

    Oxides dispersion strengthened (ODS) ferritic steel was prepared by using gas-atomized pre-alloyed powder, without the conventional mechanical alloying process. By adjusting the volume content of O 2 in the gas atmosphere Ar, the O level in the ferritic powder can be well controlled. The O dissolves uniformly in the ferritic powder, and a very thin layer of oxides forms on the powder surface. After hot deformation, the primary particle boundaries, which retain after sintering, can be disintegrated and near fully dense materials can be obtained. The oxide layer on the powder surface has a significant effect on the microstructural evolution. It may prevent the diffusion in between the primary particles during sintering, and may dissolve and/or induce the nucleation of new oxides in the ferritic matrix during recrystallization. Two kinds of oxide particles are found in the ferritic steel: large (∼100 nm) Ti-rich and fine (10-20 nm) Y-Ti-rich oxides. The hardness of the ferritic steel increases with increasing annealing temperatures, however, decreases at 1400 deg. C, due to the coarsening of precipitates and the recrystallization microstructure.

  1. Improving significantly the failure strain and work hardening response of LPSO-strengthened Mg-Y-Zn-Al alloy via hot extrusion speed control

    Science.gov (United States)

    Tan, Xinghe; Chee, Winston; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2017-07-01

    The effect of hot extrusion speed on the microstructure and mechanical properties of MgY1.06Zn0.76Al0.42 (at%) alloy strengthened by the novel long-period stacking ordered (LPSO) phase was systematically investigated. Increase in the speed of extrusion accelerated dynamic recrystallization of α-Mg via particle-stimulated nucleation and grain growth in the alloy. The intensive recrystallization and grain growth events weakened the conventional basal texture and Hall-Petch strengthening in the alloy which led to significant improvement in its failure strain from 4.9% to 19.6%. The critical strengthening contribution from LPSO phase known for attributing high strength to the alloy was observed to be greatly undermined by the parallel competition from texture weakening and the adverse Hall-Petch effect when the alloy was extruded at higher speed. Absence of work hardening interestingly observed in the alloy extruded at lower speed was discussed in terms of its ultra-fine grained microstructure which promoted the condition of steady-state defect density in the alloy; where dislocation annihilation balances out the generation of new dislocations during plastic deformation. One approach to improve work hardening response of the alloy to prevent unstable deformation and abrupt failure in service is to increase the grain diameter in the alloy by judiciously increasing the extrusion speed.

  2. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  3. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-04-01

    Full Text Available A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt % were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA route followed by spark plasma sintering (SPS and rapid cooling. Neutron Powder Diffraction (NPD, Electron Back Scattering Diffraction (EBSD, and Transmission Electron Microscopy (TEM were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  4. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  5. Irradiation-Induced Solute Clustering in a Low Nickel FeMnNi Ferritic Alloy

    International Nuclear Information System (INIS)

    Meslin, E.; Barbu, A.; Radiguet, B.; Pareige, P.; Toffolon, C.

    2011-01-01

    Understanding the radiation embrittlement of reactor pressure vessel (RPV) steels is required to be able to operate safely a nuclear power plant or to extend its lifetime. The mechanical properties degradation is partly due to the clustering of solute under irradiation. To gain knowledge about the clustering process, a Fe-1.1 Mn-0.7 Ni (at.%) alloy was irradiated in a test reactor at two fluxes of 0.15 and 9 *10 17 n E≥1MeV . m -2 .s -1 and at increasing doses from 0.18 to 1.3 *10 24 n E≥1MeV ) . m -2 at 300 degrees C. Atom probe tomography (APT) experiments revealed that the irradiation promotes the formation in the α iron matrix of Mn/Mn and/or Ni/Ni pair correlations at low dose and Mn-Ni enriched clusters at high dose. These clusters dissolve partially after a thermal treatment at 400 degrees C. Based on a comparison with thermodynamic calculations, we show that the solute clustering under irradiation can just result from an induced mechanism. (authors)

  6. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    Science.gov (United States)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  7. Investigation of irradiation strengthening of bcc metals and their alloys. Progress report, January 1977--October 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Progress is reported in the areas of (a) the effect of neutron damage on the dislocation kinetics in bcc metals and their alloys, and (b) the effect of 3 He on the deformation characteristics of body centered cubic metals and their alloys. Results obtained from these projects are discussed

  8. Compatibility of graphite with a martensitic-ferritic steel, an austenitic stainless steel and a Ni-base alloy up to 1250 C

    International Nuclear Information System (INIS)

    Hofmann, P.

    1994-08-01

    To study the chemical interactions between graphite and a martensitic-ferritic steel (1.4914), an austenitic stainless steel (1.4919; AISI 316), and a Ni-base alloy (Hastelloy X) isothermal reaction experiments were performed in the temperature range between 900 and 1250 C. At higher temperatures a rapid and complete liquefaction of the components occurred as a result of eutectic interactions. The chemical interactions are diffusion-controlled processes and can be described by parabolic rate laws. The reaction behavior of the two steels is very similar. The chemical interactions of the steels with graphite are much faster above 1100 C than those for the Ni-base alloy. Below 1000 C the effect is opposite. (orig.) [de

  9. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, R., E-mail: r.koegler@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Anwand, W. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Richter, A. [Department of Engineering, Technical University of Applied Sciences Wildau, Bahnhofstrasse 1, 15745 Wildau (Germany); Butterling, M.; Ou, Xin; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Chen, C.-L. [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2012-08-15

    Open volume defects generated by ion implantation into oxide dispersion strengthened (ODS) alloy and the related hardness were investigated by positron annihilation spectroscopy and nanoindentation measurements, respectively. Synchronized dual beam implantation of Fe and He ions was performed at room temperature and at moderately enhanced temperature of 300 Degree-Sign C. For room temperature implantation a significant hardness increase after irradiation is observed which is more distinctive in heat treated than in as-received ODS alloy. There is also a difference between the simultaneous and sequential implantation mode as the hardening effect for the simultaneously implanted ODS alloy is stronger than for sequential implantation. The comparison of hardness profiles and of the corresponding open volume profiles shows a qualitative agreement between the open volume defects generated on the nanoscopic scale and the macroscopic hardness characteristics. Open volume defects are drastically reduced for performing the simultaneous dual beam irradiation at 300 Degree-Sign C which is a more realistic temperature under application aspects. Few remaining defects are clusters of 3-4 vacancies in connection with Y oxide nanoparticles. These defects completely disappear in a shallow layer at the surface. The results are in agreement with hardness measurements showing little hardness increase after irradiation at 300 Degree-Sign C. Suitable characteristics of ODS alloy for nuclear applications and the close correlation between He-related open volume defects and the hardness characteristics are verified.

  10. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

    International Nuclear Information System (INIS)

    Xie Zhuoming; Liu Rui; Fang Qianfeng; Zhang Tao; Jiang Yan; Wang Xianping; Liu Changsong

    2015-01-01

    W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high temperature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700 °C is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500°C–600°C, which is about 100 °C lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening. (paper)

  11. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  12. New concept of composite strengthening in Co-Re based alloys for high temperature applications in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, D.; Roesler, J.; Fricke, T.; Schmitz, F. [Technische Univ. Braunschweig (DE). Inst. fuer Werkstoffkunde (IfW); Piegert, S. [Siemens AG, Berlin (DE). Energy Sector (F PR GT EN)

    2010-07-01

    High temperature material development is mainly driven by gas turbine needs. Today, Ni-based superalloys are the dominant material class in the hot section of turbines. Material development will continue to push the maximum service temperature of Ni-superalloys upwards. However, this approach has a fundamental limit and can not be sustained indefinitely, as the Ni-superalloys are already used very close to their melting point. Within the frame work of a DFG Forschergruppe program (FOR 727) - ''Beyond Ni-base Superalloys'' - Co-Re based alloys are being developed as a new generation of high temperature materials that can be used at +100 C above single crystal Ni-superalloys. Along with other strengthening concepts, hardening by second phase is explored to develop a two phase composite alloy. With quaternary Co-Re-Cr-Ni alloys we demonstrate this development concept, where Co{sub 2}Re{sub 3}-type {sigma} phase is used in a novel way as the hardening phase. Thermodynamic calculation was used for designing model alloy compositions. (orig.)

  13. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  14. Summary of Prior Work on Joining of Oxide Dispersion-Strengthened Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Ian G [ORNL; Tatlock, Gordon J [ORNL; Badairy, H. [University of Liverpool; Chen, C-L. [University of Liverpool

    2009-08-01

    There is a range of joining techniques available for use with ODS alloys, but care should be exercised in matching the technique to the final duty requirements of the joint. The goal for joining ODS alloys is a joint with no local disruption of the distribution of the oxide dispersion, and no significant change in the size and orientation of the alloy microstructure. Not surprisingly, the fusion welding processes typically employed with wrought alloys produce the least satisfactory results with ODS alloys, but some versions, such as fusion spot welding, and the laser and electron-beam welding technologies, have demonstrated potential for producing sound joints. Welds made using solid-state spot welding reportedly have exhibited parent metal properties. Thus, it is possible to employ processes that result in significant disruption of the alloy microstructure, as long as the processing parameters are adjustment to minimize the extent of or influence of the changes in the alloy microstructure. Selection among these joining approaches largely depends on the particular application and component configuration, and an understanding of the relationships among processing, alloy microstructure, and final properties is key. Recent developments have resulted in friction welding evolving to be a prime method for joining ODS sheet products, and variants of brazing/diffusion bonding have shown excellent promise for use with tubes and pipes. The techniques that come closest to the goal defined above involve solid-state diffusion bonding and, in particular, it has been found that secondary recrystallization of joints made by pulsed plasma-assisted diffusion can produce the desired, continuous, large alloy grain structure through the joint. Such joints have exhibited creep rupture failure at >82% of the load needed to fail the monolithic parent alloy at 1000 C.

  15. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars

    Science.gov (United States)

    Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; de Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; Ulbricht, A.

    2017-11-01

    The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.

  16. Study on microstructure and strengthening mechanism of AZ91-Y magnesium alloy

    Science.gov (United States)

    Cai, Huisheng; Guo, Feng; Su, Juan; Liu, Liang; Chen, Baodong

    2018-03-01

    AZ91-Y magnesium alloy with different thicknesses were prepared by die casting process. The main existence forms of Y in alloy and the effects of Y on microstructure and mechanical properties of alloy were studied, the main reason for the change of mechanical properties and fracture mechanism were analyzed. The results show that, yttrium exists mainly in the forms of Al2Y phase and trace solid solution in α-Mg. Yttrium can refine the grain of α-Mg, reduce the amount of eutectic β-Mg17Al12 phase and promote its discrete distribution. The room temperature tensile strength and elongation of alloy increased first and then decreased with the increase of Y content. The designed alloys containing 0.6% Y (measured containing 0.63% Y) have better mechanical properties. The change of mechanical properties of alloy is a comprehensive reflection of the effect of solid solution, grain refinement and second phase. The cracking of Al2Y phase and β-Mg17Al12 phase and crack propagation through Al2Y phase and β-Mg17Al12 phase are the main fracture mechanism of magnesium alloy containing yttrium. The cooling rate does not change the trend of the influence of Y, but affects the degree of influence of Y.

  17. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Chlup, Zdeněk; Dlouhý, Antonín; Dobeš, Ferdinand; Roupcová, Pavla; Vilémová, Monika; Matějíček, Jiří

    2017-01-01

    Roč. 689, MAR (2017), s. 252-256 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA14-25246S; GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Creep * High-entropy alloy (HEA) * Mechanical alloying * Oxide dispersion strength ened (ODS) alloy * Powder metallurgy * Spark plasma sintering Subject RIV: JG - Metallurgy; JG - Metallurgy (UFP-V) OBOR OECD: Materials engineering; Materials engineering (UFM-A); Materials engineering (UFP-V) Impact factor: 3.094, year: 2016

  18. Scanning Precession Electron Diffraction Study of 2xxx Series Aluminium Alloys Exhibiting Several Coexisting Strengthening Phases

    OpenAIRE

    Sunde, Jonas Kristoffer

    2016-01-01

    Throughout this thesis, scanning precession electron diffraction is applied to heat-treated Al-Cu-Li and Al-Mg-Cu-Ag alloys, shedding light on the distribution of phases present and the complex interplay between these microstructural features. The employed technique yielded high quality data sets, which through subsequent data processing enabled a detailed phase mapping of these multi-component Al alloys. Among the main results presented, are virtual dark field images highlighting all separat...

  19. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    Science.gov (United States)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  20. Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Švec, P. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava (Slovakia); Simančík, F. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, Bratislava (Slovakia); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada)

    2015-08-26

    An aluminum–magnesium alloy was friction-stir processed in the presence of TiO{sub 2} nanoparticles which were pre-placed in a groove on the surface to produce a composite. Field emission-scanning and transmission electron microscopy studies show that solid state chemical reactions occur between the Al–Mg matrix and the ceramic particles upon the severe plastic deformation process. The microstructure of the aluminum alloy consists of a coarse grain structure, large complex (Fe,Mn,Cr){sub 3}SiAl{sub 12} particles, and small Mg{sub 2}Si precipitates. After friction stir processing, a deformed grain structure containing rod-like Al–Fe–Mn–Si precipitates is attained, along with cuboidal (~100 nm) Cr{sub 2} precipitates and spherical (~100 and 5 nm) Mg{sub 2}Si particles. In the presence of TiO{sub 2} nanoparticles, magnesium oxide (MgO) and titanium aluminide (Al{sub 3}Ti) nanophases are formed. It is shown that these microstructural modifications lead to a significant enhancement in the hardness and tensile strength of the aluminum alloy. The relationship between the microstructural evolution and mechanical properties and the role of hard inclusions are presented and discussed. An analysis based on strengthening models indicates that the yield strength of the nanocomposite is mainly controlled by dislocations and grain boundaries rather than the nano-scale inclusions.

  1. Microstructural characterization of dispersion-strengthened Cu-Ti-Al alloys obtained by reaction milling

    International Nuclear Information System (INIS)

    Espinoza, Rodrigo A.; Palma, Rodrigo H.; Sepulveda, Aquiles O.; Fuenzalida, Victor; Solorzano, Guillermo; Craievich, Aldo; Smith, David J.; Fujita, Takeshi; Lopez, Marta

    2007-01-01

    The microstructure, electrical conductivity and hot softening resistance of two alloys (G-10 and H-20), projected to attain Cu-2.5 vol.% TiC-2.5 vol.% Al 2 O 3 nominal composition, and prepared by reaction milling and hot extrusion, were studied. The alloys were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and several chemical analysis techniques. The first alloy, G-10, showed the formation of Al 2 O 3 nanodispersoids and the presence of particles from non-reacted raw materials (graphite, Ti and Al). A second alloy, H-20, was prepared employing different fabrication conditions. This alloy exhibited a homogeneous distribution of Al 2 O 3 and Ti-Al-Fe nanoparticles, with the microstructure being stable after annealing and hot compression tests. These nanoparticles acted as effective pinning sites for dislocation slip and grain growth. The room-temperature hardness of the H-20 consolidated material (330 HV) was approximately maintained after annealing for 1 h at 1173 K; the electrical conductivity was 60% IACS (International Annealing Copper Standard)

  2. Effect of initial structure on strengthening and properties of the 35NKhTYu alloy bands

    International Nuclear Information System (INIS)

    Vorontsov, N.M.; Shugaenko, V.K.; Drapiko, P.E.; Chernyakova, L.E.; Patseka, R.F.

    1978-01-01

    Variation in the structure, mechanical strength, plasticity, and elasticity of thin (about 0.15 mm thick) bands of 36NKhTYu alloy after their cold rolling to the reduction degree up to 70% was examined. The influence of the cold plastic deformation on the dislocation structure of the alloy has been determined. By resorting to the method of transmission electron microscopy, the distribution of dislocations depending on the reduction degree has been shown. The character of the influence of the initial structure of bands after their plastic deformation on the process of decomposition of the solid solution and the formation of γ 1 -phase in tempering and a variation in the mechanical properties of 36NKhTYu alloy have been established

  3. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    Science.gov (United States)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  4. Simulation of Concurrent Precipitation of Two Strengthening Phases in Magnesium Alloys

    Science.gov (United States)

    Sun, Weihua; Zhang, Chuan; Klarner, Andrew D.; Cao, Weisheng; Luo, Alan A.

    The precipitation kinetics and microtructure in Mg-Sn binary and Mg-Al-Sn ternary alloys are simulated using PanPrecipitation coupled with Mg thermodynamic database and a newly established mobility database of the Mg-Al-Sn ternary system. Both Mg2Sn and Mg17Al12 precipitates are considered in this work. The obtained kinetic parameters for these two precipitates can be used in the simulation of both individual and concurrent precipitations of Mg17Al12 and Mg2Sn in Mg-Al-Sn alloys. The simulated microstructure evolution, such as the particle size and number density, are in agreement with experimental data.

  5. Development of a dispersion strengthened copper alloy using a MA-HIP method

    Directory of Open Access Journals (Sweden)

    T. Yamada

    2016-12-01

    Full Text Available A new Cu-Al alloy was fabricated by a MA-HIP method for application to the heat sink materials of divertors. With the increase in MA time, the grain size and Vickers hardness decreased and increased, respectively. At MA time of 32hrs, the hardness of the alloy was comparable to that of Glidcop® although the grain size was much larger. X-ray diffractometry, electrical resistivity measurements and STEM-EDS analyses suggested precipitation of Al-rich phase by MA for 32hrs followed by HIP.

  6. Experimental analysis of compressive notch strengthening in closed-cell aluminum alloy foam

    NARCIS (Netherlands)

    Antoniou, A; Onck, PR; Bastawros, Ashraf F.

    2004-01-01

    The notch strengthening effect is studied experimentally in closed cell aluminum foams. The limit loads, net section strength were found for a set of double-edge-notched (DEN) and single-edge-notched (SEN) specimens loaded in compression. In addition, the evolution of the deformation is monitored

  7. Stacking fault energy measurements in solid solution strengthened Ni-Cr-Fe alloys using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Unfried-Silgado, Jimy [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Universidade Estadual de Campinas UNICAMP, Faculdade de Engenharia Mecanica FEM, Campinas (Brazil); Universidad Autonoma del Caribe, Grupo IMTEF, Ingenieria Mecanica, Barranquilla (Colombia); Wu, Leonardo [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Furlan Ferreira, Fabio [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas (CCNH), Sao Paulo (Brazil); Mario Garzon, Carlos [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Ramirez, Antonio J, E-mail: antonio.ramirez@lnnano.org.br [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil)

    2012-12-15

    The stacking fault energy (SFE) in a set of experimental Ni-Cr-Fe alloys was determined using line profile analysis on synchrotron X-ray diffraction measurements. The methodology used here is supported by the Warren-Averbach calculations and the relationships among the stacking fault probability ({alpha}) and the mean-square microstrain (<{epsilon}{sup 2}{sub L}>). These parameters were obtained experimentally from cold-worked and annealed specimens extracted from the set of studied Ni-alloys. The obtained results show that the SFE in these alloys is strongly influenced by the kind and quantity of addition elements. Different effects due to the action of carbide-forming elements and the solid solution hardening elements on the SFE are discussed here. The simultaneous addition of Nb, Hf, and, Mo, in the studied Ni-Cr-Fe alloys have generated the stronger decreasing of the SFE. The relationships between SFE and the contributions on electronic structure from each element of additions were established.

  8. Effect of equal-channel angular pressing on the creep resistance of precipitation-strengthened alloys

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Král, Petr; Dvořák, Jiří; Kvapilová, Marie; Kawasaki, M.; Langdon, T. G.

    667-669, - (2011), s. 897-902 ISSN 0255-5476. [NanoSPD5 - International Conference on Nanomaterials by Severe Plastic Deformation /5./. Nanjing, 21.03.2011-25.03.2011] Institutional research plan: CEZ:AV0Z20410507 Keywords : creep * equal-channel angular pressing * precipitation- strength ened alloys * creep damage Subject RIV: JG - Metallurgy

  9. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  10. Use of Nitrocarburizing for Strengthening Threaded Joints of Drill Pipes from Medium-Carbon Alloy Steels

    Science.gov (United States)

    Priymak, E. Yu.; Stepanchukova, A. V.; Yakovleva, I. L.; Tereshchenko, N. A.

    2015-05-01

    Nitrocarburizing is tested at the Drill Equipment Plant for reinforcing threaded joints of drill pipes for units with retrievable core receiver (RCR). The effect of the nitrocarburizing on the mechanical properties of steels of different alloying systems is considered. Steels for the production of threaded joints of drill pipes are recommended.

  11. Effects in Mg-Zn-based alloys strengthened by quasicrystalline phase

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Lukáč, F; Melikhova, O; Hruška, P; Procházka, I; Vlach, M; Stulíková, I; Smola, B; Jäger, A

    2016-01-01

    Magnesium Mg-based alloys are promising lightweight structural materials for automotive, aerospace and biomedical applications. Recently Mg-Zn-Y system attracted a great attention due to a stable icosahedral phase (I-phase) with quasicrystalline structure which is formed in these alloys. Positron lifetime spectroscopy and in situ synchrotron X-ray diffraction were used to study thermal stability of I-phase and precipitation effects in Mg-Zn-Y and Mg- Zn-Al alloys. All alloys containing quasicrystalline I-phase exhibit misfit defects characterized by positron lifetime of ∼ 300 ps. These defects are associated with the interfaces between I- phase particles and Mg matrix. The quasicrystalline I-phase particles were found to be stable up to temperatures as high as ∼ 370°C. The W-phase is more stable and melts at ∼ 420°C. Concentration of defects associated with I-phase decreases after annealing at temperatures above ∼ 300°C. (paper)

  12. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    Science.gov (United States)

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  13. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    Science.gov (United States)

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  14. Design of Fatigue Resistant Heusler-strengthened PdTi-based Shape Memory Alloys for Biomedical Applications

    Science.gov (United States)

    Frankel, Dana J.

    The development of non-surgical transcatheter aortic valve implantation (TAVI) techniques, which utilize collapsible artificial heart valves with shape memory alloy (SMA)-based frames, pushes performance requirements for biomedical SMAs beyond those for well-established vascular stent applications. Fatigue life for these devices must extend into the ultra-high cycle fatigue (UHCF) regime (>600M cycles) with zero probability of failure predicted at applied strain levels. High rates of Ni-hypersensitivity raise biocompatibility concerns, driving the development of low-Ni and Ni-free SMAs. This work focuses on the development of biocompatible, precipitation-strengthened, fatigue-resistant PdTi-based SMAs for biomedical applications. Functional and structural fatigue are both manifestations of cyclic instability resulting in accumulation of slip and eventual structural damage. While functional fatigue is easily experimentally evaluated, structural fatigue is more difficult to measure without the proper equipment. Therefore, in this work a theoretical approach using a model well validated in steels is utilized to investigate structural fatigue behavior in NiTi in the UHCF regime, while low cycle functional fatigue is evaluated in order to monitor the core phenomena of the cyclic instability. Results from fatigue simulations modeling crack nucleation at non-metallic inclusions in commercial NiTi underscore the importance of increasing yield strength for UHCF performance. Controlled precipitation of nanoscale, low-misfit, L21 Heusler aluminides can provide effective strengthening. Phase relations, precipitation kinetics, transformation temperature, transformation strain, cyclic stability, and mechanical properties are characterized in both Ni-free (Pd,Fe)(Ti,Al) and low-Ni high-strength "hybrid" (Pd,Ni)(Ti,Zr,Al) systems. Atom probe tomography is employed to measure phase compositions and particle sizes used to calibrate LSW models for coarsening kinetics and Gibbs

  15. Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong [Southern Univ. and A& M College, Baton Rouge, LA (United States)

    2016-05-30

    This report summarizes our recent works of theoretical modeling, simulation and experimental validation of the simulation results on the ferritic oxide dispersion strengthened (ODS) alloy research. The simulation of the stability and thermal dynamics simulation on potential thermal stable candidates were performed and related ODS samples were synthesized and characterized. The simulation methods and experimental texture validation techniques development, achievements already reached, course work development, students and postdoc training, and future improvement are briefly introduced.

  16. Computational design and performance prediction of creep-resistant ferritic superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Wang, Shao-Yu [Univ. of Tennessee, Knoxville, TN (United States); Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautum [Northwestern Univ., Evanston, IL (United States); Song, Gian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rawlings, Michael [Univ. of Tennessee, Knoxville, TN (United States); Baik, Sung Il [Northwestern Univ., Evanston, IL (United States)

    2017-12-04

    Ferritic superalloys containing the B2 phase with the parent L21 phase precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate-strengthened ferritic alloy (HPSFA), had been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by adding Ti into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). Following with the concept of HPSFAs, in the present research, a systematic investigation on adding other elements, such as Hf and Zr, and optimizing the Ti content within the alloy system, has been conducted, in order to further improve the creep resistance of the model alloys. Studies include advanced experimental techniques, first-principles calculations on thermodynamic and mechanical properties, and numerical simulations on precipitation hardening, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of alloys. The experimental techniques include transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), neutron diffraction (ND), and atom-probe tomography (APT), which provide the detailed microstructural information of the model alloys. Systematic tension/compression creep tests have also been conducted in order to verify the creep resistance of the potential alloy compositions. The results show that when replacing Ti with Hf and Zr, it does not form the L21 phase. Instead, the hexagonal Laves phase forms and distributes majorly along the grain boundary, or large segregation within grains. Since the Laves phase does not form parent to the B2-phase precipitates, it cannot bring the strengthening effect of HPSFAs. As a result, the FBB8 + 2 wt. % Hf and FBB8 + 2 wt. % Zr alloys have similar mechanical properties to the original FBB8. The FBB8 + Ti series alloys had also been studied, from the creep tests and microstructural characterizations, the FBB8 + 3.5 wt.% Ti

  17. Microstructure, plastic deformation and strengthening mechanisms of an Al–Mg–Si alloy with a bimodal grain structure

    International Nuclear Information System (INIS)

    Shakoori Oskooie, M.; Asgharzadeh, H.; Kim, H.S.

    2015-01-01

    Highlights: • Al6063 with bimodal grain structures was fabricated by a powder metallurgy route. • The bimodal alloys showed a reasonable ductility together with a high strength. • Grain boundary strengthening was reduced at higher fraction of coarse grains. • The enhanced tensile ductility was attributed to crack blunting and delamination. - Abstract: Al6063 alloys with bimodal grain size distributions comprised of ultrafine-grained (UFG) and coarse-grained (CG) regions were produced via mechanical milling followed by hot extrusion. High-energy planetary ball milling for 22.5 h with a rotational speed of 350 rpm was employed for the synthesis of nanocrystalline Al6063 powders. The as-milled Al6063 powders were mixed with 15, 30, and 45 vol.% of the unmilled powders and then the powder mixtures were consolidated via extrusion at 450 °C with an extrusion ratio of 9:1. The microstructure of the bimodal extrudates was investigated using optical microscope, transmission electron microscope (TEM) and field emission scanning electron microscope equipped with an electron backscattered diffraction (EBSD) detector. The deformation behavior was investigated by means of uniaxial tensile tests. The bimodal Al6063 exhibited balanced mechanical properties, including high yield stress and ultimate tensile strength resulting from the UFG regions together with reasonable ductility attained from the CG areas. The fracture surfaces demonstrated a ductile fracture mode, in which the dimple size was correlated with the grain structure. The strengthening mechanisms are discussed based on the dislocation models and the functions of the CGs in the deformation behavior and ductility enhancement of bimodal Al6063 are explored

  18. Microstructural characterization of ODS ferritic steels at different processing stages

    Energy Technology Data Exchange (ETDEWEB)

    Gil, E., E-mail: egil@ceit.es; Ordás, N.; García-Rosales, C.; Iturriza, I., E-mail: iiturriza@ceit.es

    2015-10-15

    Highlights: • ODS ferritic stainless steel produced by new route without mechanical alloying. • Fully dense ferritic stainless steels containing Y and Ti were obtained by HIPping. • Y and Ti-rich precipitates prevent grain growth during heat treatment up to 1320 °C. • HIPping at 1220 °C dissolves the metastable oxides on PPBs. - Abstract: Nanostructured Oxide Dispersion Strengthened Reduced Activation Ferritic Stainless Steels (ODS RAF) are promising structural materials for fusion reactors, due to their ultrafine microstructure and the presence of a dispersion of Y–Ti–O nanoclusters that provide excellent creep strength at high temperatures (up to 750 °C). The traditional powder metallurgical route to produce these steels is based on Gas Atomization (GA) + Mechanical Alloying (MA) + HIP + ThermoMechanical Treatments (TMTs). Recently, alternative methods have arisen to avoid the MA step. In line with this new approach, ferritic stainless steel powders were produced by gas atomization and HIPped, after adjusting their oxygen, Y and Ti contents to form Y–Ti–O nanoclusters during subsequent heat treatments. The microstructure of as-HIPped steels mainly consists of ferrite grains, Y–Ti precipitates, carbides and oxides on Prior Particle Boundaries (PPBs). Post-HIP heat treatments performed at high temperatures (1270 and 1300 °C) evaluated the feasibility of achieving a complete dissolution of the oxides on PPBs and a precipitation of ultrafine Ti- and Y-rich oxides in the Fe14Cr2W matrix. FEG-SEM with extensive EDS analysis was used to characterize the microstructure of the atomized powders and the ODS-RAF specimens after HIP consolidation and post-HIP heat treatments. A deeper characterization of atomized powder was carried out by TEM.

  19. The influence of Cr content on the mechanical properties of ODS ferritic steels

    Science.gov (United States)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  20. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Steckmeyer, A., E-mail: antonin.steckmeyer@cea.f [Service de Recherches Metallurgiques Appliquees, CEA Saclay, Gif-sur-Yvette (France); Praud, M.; Fournier, B.; Malaplate, J.; Garnier, J.; Bechade, J.L.; Tournie, I.; Tancray, A.; Bougault, A. [Service de Recherches Metallurgiques Appliquees, CEA Saclay, Gif-sur-Yvette (France); Bonnaillie, P. [Service de Recherche en Metallurgie Physique, CEA Saclay, Gif-sur-Yvette (France)

    2010-10-15

    The search for a new cladding material is part of the research studies carried out at CEA to develop a sodium-cooled fast reactor meeting the expectations of the Generation IV International Forum. In this study, the tensile properties of a ferritic oxide dispersion strengthened steel produced by hot extrusion at CEA have been evaluated. They prove the studied alloy to be as resistant as and more ductile than the other nano-reinforced alloys of literature. The effects of the strain rate and temperature on the total plastic strain of the material remind of diffusion phenomena. Intergranular damage and intergranular decohesion are clearly highlighted.

  1. Precipitation and strengthening phenomena in Al-Si-Ge and Al-Cu-Si-Ge alloys

    International Nuclear Information System (INIS)

    Mitlin, D.; Morris, J.W.; Dahmen, U.; Radmilovic, V.

    2000-01-01

    The objective of this work was to determine whether Al rich Al-Si-Ge and 2000 type Al-Cu-Si-Ge alloys have sufficient hardness to be useful for structural applications. It is shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. However, Al-Cu-Si-Ge displayed a uniquely fast aging response, a high peak hardness and a good stability during prolonged aging. The high hardness of the Cu containing alloy is due to the dense and uniform distribution of fine θ' precipitates (metastable Al 2 Cu) which are heterogeneously nucleated on the Si-Ge particles. High resolution TEM demonstrated that in both alloys all the Si-Ge precipitates start out, and remain multiply twinned throughout the aging treatment. Since the twinned section of the precipitate does not maintain a low index interface with the matrix, the Si-Ge precipitates are equiaxed in morphology. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. The influence of deformation, annealing and recrystallisation on oxide nanofeatures in oxide dispersion strengthened steel

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Karl, E-mail: k.dawson@liverpool.ac.uk; Tatlock, Gordon J.

    2017-04-01

    This work demonstrates that Y-Ti oxide nanofeatures, observed in as-extruded oxide dispersion strengthened steel, are structurally modified by cold forging. A 950 °C heat treatment promoted restructuring of the deformed particles and partial recrystallisation of the cold forged alloy. Transmission electron microscopy revealed that cuboid shaped nanofeatures were deformed during forging, which resulted in high number densities of lens shaped yttrium-titanium oxide particles. Annealing the forged alloy promoted partial recrystallisation of the ferritic matrix. Particle morphology reverted from lens shaped, as witnessed in the deformed material, to cuboid shaped oxide nanofeatures, identical to those observed in as-extruded material. Precipitation distributions evaluated in both recrystallised and recovering grains were indistinguishable from those first measured in the as-extruded alloy. TEM images revealed a widespread orientation relationship between the oxide precipitates and the recrystallised grains; registration with the ferrite lattice was omnipresent in both recovering and recrystallised grains.

  3. Characterization of uniaxial fatigue behavior of precipitate strengthened Cu-Ni-Si alloy (SICLANIC(TM

    Directory of Open Access Journals (Sweden)

    B. Saadouki

    2018-01-01

    Full Text Available Fatigue tests were conducted on cylindrical bars specimens to understand the fatigue behavior of SICLANIC. Although it displays good resistance in monotonic tension, this material weakens and shows a softening in repeated solicitation. This has been verified through a SEM observation, the Cu-Ni-Si alloy presents transgranular failure by cleavage. The MansonCoffin diagram exhibited the plastic deformation accommodation. The plastic deformation becomes periodic and decreases progressively as the cycle number increases. The approximations of Manson Coffin give fatigue parameters values which are in good agreement with the experience

  4. TEM Study of the Orientation Relationship Between Cementite and Ferrite in a Bainitic Low Carbon High Strength Low Alloy Steel

    OpenAIRE

    Illescas Fernandez, Silvia; Brown, A.P.; He, K.; Fernández, Javier; Guilemany Casadamon, Josep Maria

    2005-01-01

    Two different bainitic structures are observed in a steel depending on the sample heat treatment. The different types of bainitic structures exhibit different orientation relationships between cementite and the ferrite matrix. Upper bainite presents a Pitsch orientation relationship and lower bainite presents a Bagaryatski orientation relationship. Different heat treatments of low carbon HSLA steel samples have been studied using TEM in order to find the orientation relationshi...

  5. Stabilizing the strengthening precipitates in aluminum-manganese alloys by the addition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yangyang; Makhlouf, Makhlouf M., E-mail: mmm@wpi.edu

    2017-04-13

    The Al-Mn-W system has considerable potential as a basis for lightweight aluminum alloys that are intended for use at temperatures approaching 350 °C (623 K). In this ternary system, aluminum, manganese, and tungsten co-precipitate to form the meta-stable Al{sub 12}(Mn{sub (1-x)}W{sub x}) phase, which is thermally stable and will not coarsen when held at elevated temperatures for extended periods of time. This enhanced thermal stability of the Al{sub 12}(Mn{sub (1-x)}W{sub x}) phase in comparison to the Al{sub 12}Mn phase which forms in binary Al-Mn alloys is explained in terms of the Gibbs free energy of the two phases. It is shown that co-precipitating tungsten with aluminum and manganese lowers the Gibbs free energy of the precipitated phase and by so doing, it slows down its coarsening rate and enhances its thermal stability.

  6. Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-01

    This report focuses on the development of a physics-based thermal creep model aiming to predict the behavior of Zr alloy under reactor accident condition. The current models used for this kind of simulations are mostly empirical in nature, based generally on fits to the experimental steady-state creep rates under different temperature and stress conditions, which has the following limitations. First, reactor accident conditions, such as RIA and LOCA, usually take place in short times and involve only the primary, not the steady-state creep behavior stage. Moreover, the empirical models cannot cover the conditions from normal operation to accident environments. For example, Kombaiah and Murty [1,2] recently reported a transition between the low (n~4) and high (n~9) power law creep regimes in Zr alloys depending on the applied stress. Capturing such a behavior requires an accurate description of the mechanisms involved in the process. Therefore, a mechanism-based model that accounts for the evolution with time of microstructure is more appropriate and reliable for this kind of simulation.

  7. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment

    International Nuclear Information System (INIS)

    Lambard, V.

    2000-01-01

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  8. Solid state welding processes for an oxide dispersion strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Moore, T. J.

    1975-01-01

    Solid-state welding processes were evaluated for joining TD-NiCrAl (Ni-16Cr-4Al-2ThO2) alloy sheet. Both hot-press and resistance spot welding techniques were successfully applied in terms of achieving grain growth across the bond line. Less success was achieved with a resistance seam welding process. In stress-rupture shear and tensile shear tests of lap joints at 1100 C, most failures occurred in the parent material, which indicates that the weld quality was good and that the welds were not a plane of weakness. The overall weld quality was not as good as previously attained with TD-NiCr, probably because the presence of alumina at the faying surfaces and the developmental TD-NiCrAl sheet, which was not of the quality of the TD-NiCr sheet in terms of surface flatness and dimensional control.

  9. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  10. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements

    International Nuclear Information System (INIS)

    Huang Zanjun; Yang Bin; Cui Hua; Zhang Jishan

    2003-01-01

    A new idea to fabricate aluminum matrix composites strengthened by combined in-situ particle strengthening and in-situ alloying has been proposed. Following the concept of in-situ alloying and in-situ particle strengthening, aluminum matrix composites reinforced by Cu and α-Al 2 O 3 particulate (material I) and the same matrix reinforced by Cu, Si alloying elements and α-Al 2 O 3 particulate (material II) have been obtained. SEM observation, EDS and XRD analysis show that the alloy elements Cu and Si exist in the two materials, respectively. In-situ Al 2 O 3 particulates are generally spherical and their mean size is less than 0.5 μm. TEM observation shows that the in-situ α-Al 2 O 3 particulates have a good cohesion with the matrix. The reaction mechanism of the Al 2 O 3 particulate obtained by this method was studied. Thermodynamic considerations are given to the in-situ reactions and the distribution characteristic of in-situ the α-Al 2 O 3 particulate in the process of solidification is also discussed

  11. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  12. Influence of Mn-Co Spinel Coating on Oxidation Behavior of Ferritic SS Alloys for SOFC Interconnect Applications

    DEFF Research Database (Denmark)

    Venkatachalam, Vinothini; Molin, Sebastian; Kiebach, Wolff-Ragnar

    2014-01-01

    Chromia forming ferritic stainless steels (SS) are being considered for intermediate temperature solid oxide fuel cell interconnect applications. However, protective coatings are in general needed to avoid chromium volatilization and poisoning of cathodes from chromium species. Mn-Co spinel is one...... of the promising candidates to prevent chromium outward diffusion, improve oxidation resistance and ensure high electrical conductivity over the lifetime of interconnects. In the present study, uniform and well adherent Mn-Co spinel coatings were produced on Crofer 22APU using electrophoretic deposition (EPD...

  13. Fabrication and characterization of Y2O3 dispersion strengthened copper alloys

    International Nuclear Information System (INIS)

    Carro, G.; Muñoz, A.; Monge, M.A.; Savoini, B.; Pareja, R.; Ballesteros, C.; Adeva, P.

    2014-01-01

    Three copper base materials were fabricated following different routes: cast Cu–1 wt.%Y (C-Cu1Y) produced by vacuum induction melting, and Cu–1 wt.%Y (PM-Cu1Y) and Cu–1 wt.%Y 2 O 3 (PM-Cu1Y 2 O 3 ) both processed by a powder metallurgy route and sintering by hot isostatic pressing. PM-Cu1Y alloy was prepared by cryomilling and PM-Cu1Y 2 O 3 by conventional milling at room temperature. The materials were characterized by X-ray diffraction, optical and electron microscopy and microhardness measurements. C-Cu1Y presents a characteristic eutectic microstructure while PM-Cu1Y 2 O 3 exhibits a composite like microstructure. Electron microscopy analyses of as-HIP PM-Cu1Y revealed irregular decoration of yttrium-rich oxides at the grain boundaries and an inhomogeneous dispersion of polygonal shaped yttrium-rich oxides dispersed in the Cu matrix. Tensile tests performed on PM-Cu–1Y on the temperature range of 293–773 K have showed a decrease of the yield strength at temperatures higher than 473 K, and monotonically decrease of the ultimate tensile strength and maximum plastic strain on increasing temperature

  14. Fabrication and characterization of Y{sub 2}O{sub 3} dispersion strengthened copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Carro, G.; Muñoz, A. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Monge, M.A., E-mail: mmonge@fis.uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Savoini, B.; Pareja, R.; Ballesteros, C. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Adeva, P. [Centro Nacional de Investigaciones Metalúrgicas, CSIC, Av. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2014-12-15

    Three copper base materials were fabricated following different routes: cast Cu–1 wt.%Y (C-Cu1Y) produced by vacuum induction melting, and Cu–1 wt.%Y (PM-Cu1Y) and Cu–1 wt.%Y{sub 2}O{sub 3} (PM-Cu1Y{sub 2}O{sub 3}) both processed by a powder metallurgy route and sintering by hot isostatic pressing. PM-Cu1Y alloy was prepared by cryomilling and PM-Cu1Y{sub 2}O{sub 3} by conventional milling at room temperature. The materials were characterized by X-ray diffraction, optical and electron microscopy and microhardness measurements. C-Cu1Y presents a characteristic eutectic microstructure while PM-Cu1Y{sub 2}O{sub 3} exhibits a composite like microstructure. Electron microscopy analyses of as-HIP PM-Cu1Y revealed irregular decoration of yttrium-rich oxides at the grain boundaries and an inhomogeneous dispersion of polygonal shaped yttrium-rich oxides dispersed in the Cu matrix. Tensile tests performed on PM-Cu–1Y on the temperature range of 293–773 K have showed a decrease of the yield strength at temperatures higher than 473 K, and monotonically decrease of the ultimate tensile strength and maximum plastic strain on increasing temperature.

  15. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Loder, D. [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Reip, T.; Ardehali Barani, A. [Outokumpu Nirosta GmbH, Essener Straße 244, 44793 Bochum (Germany); Bernhard, C. [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  16. Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Bu, Fanqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yangzhou Hongfu Aluminium Co. Ltd, Yangzhou 100049 (China); Li, Yangde; Li, Weirong [E-ande Scientific & Technology Co. Ltd, Dongguan 523000 (China); Sun, Wei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Liu, Xiaojuan, E-mail: lxjuan@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-04-25

    In this paper we report a quantitative study of the age-hardening in the high-pressure die-cast Mg–4Al−5.6Sm−0.3Mn alloy. The results indicate that a number of nano-scale spherical precipitates identified as Al{sub 3}Sm using high-angle annular dark-field scanning transmission electron microscopy, precipitated in Mg matrix after aging at 150–225 °C, with no obvious changes on grain sizes, intermetallic phases formed during solidification, and dislocation densities. From the existing strengthening theory equations in which some lacking parameters were taken from the first-principles density functional theory (DFT) calculations, a quantitative insight into the strengthening mechanisms of the nano-scale precipitate was formulated. The results are in reasonable agreement with the experimental values, and the operative mechanism of precipitation strengthening was revealed as Orowan dislocation bypassing. - Highlights: • The yield strength of Mg–Al–Sm alloy was improved by aging treatment. • A number of nano-scale precipitates formed in matrix after aging treatments. • The nanoscale precipitate was confirmed as Al{sub 3}Sm based on the data of HAADF-STEM study. • The strengthening mechanisms of the nano-scale precipitate were quantitatively formulated. • The operative mechanism of precipitate strengthening is Orowan dislocation bypassing.

  17. Investigation and modeling of Al3(Sc, Zr) precipitation strengthening in the presence of enhanced supersaturation and within Al-Cu binary alloys

    Science.gov (United States)

    Deane, Kyle

    Diffuse Al-Sc and Al-Zr alloys have been demonstrated in literature to be relatively coarsening resistant at higher temperatures when compared with commonly used precipitation strengthening alloys (e.g. 2000 series, 6000 series). However, because of a limited strengthening due to the low solubility of scandium and zirconium in aluminum, and owing to the scarcity and therefore sizeable price tag attached to scandium, little research has been done in the way of optimizing these alloys for commercial applications. With this in mind, this dissertation describes research which aims to tackle several important areas of Al-Sc-Zr research that have been yet unresolved. In Chapter 4, rapid solidification was utilized to enhance the achievable supersaturation of the alloy in an effort to increase the achievable precipitate strengthening. In Chapter 5, Additive Friction Stir processing (AFS), a novel method of mechanically combining materials without melting, was employed in an attempt to pass the benefits of supersaturation from melt spun ribbon into a more structurally useful bulk material. In Chapter 6, a Matlab program written to predict precipitate nucleation, growth, and coarsening with a modified Kampmann and Wagner Numerical (KWN) model, was used to predict heat treatment regimens for more efficient strengthening. Those predictions were then tested experimentally to test the validity of the results. And lastly, in Chapter 7, the effect of zirconium on Al-Cu secondary precipitates was studied in an attempt to increase their thermal stability, as much higher phase fractions of Al-Cu precipitates are achievable than Al-Zr precipitates.

  18. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  19. Compliance variations in the fatigue thresold regime of a low alloy ferritic steel under closure-free testing conditions

    International Nuclear Information System (INIS)

    Vaidya, W.V.

    1991-01-01

    Compliance variations in the threshold regime of a high strength ferritic steel tested under closure-free conditions at room temperature and in air are reported. In contrast to the Paris regime, and irrespective of whether the data during load shedding, at threshold or after postthreshold load increase are considered, it is found that comparatively compliance varies inconsistently in the threshold regime. Therefore, a 1:1 correlation between the averaged optical crack length and that inferred from compliance was not observed. This discrepancy is analyzed. The variations in compliance are utilized to infer the crack front behavior, and the results are discussed in terms of the microstructural impedance. (orig.) With 22 figs., 2 appendices [de

  20. Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering

    International Nuclear Information System (INIS)

    Wen, Haiming; Topping, Troy D.; Isheim, Dieter; Seidman, David N.; Lavernia, Enrique J.

    2013-01-01

    A bulk nanostructured alloy with the nominal composition Cu–30Zn–0.8Al wt.% (commercial designation brass 260) was fabricated by cryomilling of brass powders and subsequent spark plasma sintering (SPS) of the cryomilled powders, yielding a compressive yield strength of 950 MPa, which is significantly higher than the yield strength of commercial brass 260 alloys (∼200–400 MPa). Transmission electron microscopy investigations revealed that cryomilling results in an average grain diameter of 26 nm and a high density of deformation twins. Nearly fully dense bulk samples were obtained after SPS of cryomilled powders, with average grain diameter 110 nm. After SPS, 10 vol.% of twins is retained with average twin thickness 30 nm. Three-dimensional atom-probe tomography studies demonstrate that the distribution of Al is highly inhomogeneous in the sintered bulk samples, and Al-containing precipitates including Al(Cu,Zn)–O–N, Al–O–N and Al–N are distributed in the matrix. The precipitates have an average diameter of 1.7 nm and a volume fraction of 0.39%. Quantitative calculations were performed for different strengthening contributions in the sintered bulk samples, including grain boundary, twin boundary, precipitate, dislocation and solid-solution strengthening. Results from the analyses demonstrate that precipitate and grain boundary strengthening are the dominant strengthening mechanisms, and the calculated overall yield strength is in reasonable agreement with the experimentally determined compressive yield strength

  1. Oxide Dispersion Strengthened Fe3Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    2002-02-08

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe{sub 3}Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100% in the power generation industry. A particular ''in service application'' anomaly of Fe{sub 3}Al-based alloys is that the environmental resistance is maintained up to 1200 C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism. Thus, the challenges of this program are manifold: (1) to produce thin walled ODS-Fe{sub 3}Al tubes, employing powder extrusion methodologies, with (2) adequate increased strength for service at operating temperatures, and (3) to mitigate creep failures by enhancing the as-processed grain size in ODS-Fe{sub 3}Al tubes. Our research progress till date has resulted in the successful batch production of typically 8 Ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness, ODS-Fe{sub 3}Al tubes via a proprietary single step extrusion consolidation process. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Such processing parameters (i.e., extrusion ratios, temperature, can design etc.) were particularly guided by the need to effect post-extrusion recrystallization and grain growth at a sufficiently low temperature, while still meeting the creep requirement at service temperatures. Static recrystallization studies show that elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long can be obtained routinely, at 1200 C. The growth kinetics are affected by the interstitial impurity content in the powder batches. For example complete recrystallization, across the tube wall thickness, is

  2. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  3. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar

    A novel high-temperature alkaline earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO 4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor-phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor-phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in the failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in the formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  4. Impact of creep-fatigue interaction on the lifetime of a dispersion strengthened copper alloy in unirradiated and irradiated conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Toft, P.; Stubbins, J.F.

    2001-06-01

    Creep-fatigue interaction behaviour of a dispersion strengthened copper alloy was investigated at 22 and 250 deg. C. To determine the effect of irradiation a number of fatigue specimens were irradiated at 250 deg. C to a dose level of 0.3 dpa and were tested at 250 deg. C. The creep-fatigue interaction was simulated by applying a certain hold-time on both tension and compression sides of the cyclic loading with a frequency of 0.5 Hz. Hold-times of 0,2, 5, 10, 100 and 1000 seconds were used. For a given hold-time, the real lifetime and the number of cycles to failure were determined at different strain amplitudes. Post-deformation micro-structures and fracture surfaces were investigated using transmission and scanning electron microscopes, respectively. The main results of these investigations are presented and their implications are briefly discussed in the present report. The central conclusion emerging from the present work is that a hold-time of 10 seconds or less causes a drastic decrease in the real lifetime as well as in the number of cycles to failure, particularly at low levels of strain amplitudes. A combination of higher temperature, higher strain amplitude and longer hold-time, on the other hand, may lead to an improvement in the lifetime. The irradiation at 250 deg. C to a dose level of 0.3 dpa does not play any significant role in determining the lifetime under creep-fatigue testing conditions. (au)

  5. Optimization and testing results of Zr-bearing ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tyburska-Puschel, Beata [Univ. of Wisconsin, Madison, WI (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  6. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  7. Composites Strengthened with Graphene Platelets and Formed in Semisolid State Based on α and α/β MgLiAl Alloys

    Science.gov (United States)

    Dutkiewicz, Jan; Rogal, Łukasz; Fima, Przemyslaw; Ozga, Piotr

    2018-05-01

    MgLiAl base composites strengthened with graphene platelets were prepared by semisolid processing of ball-milled alloy chips with 2% of graphene platelets. Composites strengthened with graphene platelets show higher hardness and yield stress than the cast alloys, i.e., 160 MPa as compared to 90 MPa for as-cast alloy MgLi9Al1.5. Mechanical properties for MgLiAl-based composites were similar or higher than for composites based on conventional AZ91 or WE43 alloys. The strengthening however was not only due to the presence of graphene, but also phases resulting from the reaction between carbon and lithium, i.e., Li2C2 carbide. Graphene platelets were located at globules boundaries resulting from semisolid processing for all investigated composites. Graphene platelets were in agglomerates forming continuous layers at grain boundaries in the composite based on the alloy MgLi4.5Al1.5. The shape of agglomerates was more complex and wavy in the composite based on MgLi9Al1.5 alloy most probably due to lithium-graphene reaction. Electron diffraction from the two-phase region α + β in MgLi9Al1.5 indicated that [001]α and [110]β directions are rotated about 4° from the ideal relationship [001] hex || [110] bcc phases. It showed higher lattice rotation than in earlier studies what is most probably caused by lattice slip and rotation during semisolid pressing causing substantial deformation particularly within the β phase. Raman spectroscopy studies confirmed the presence of graphene platelets within agglomerates and in addition the presence mainly of Li2C2 carbides in composites based on MgLi4.5Al1.5 and Mg9Li1.5Al alloys. From the character of Raman spectra refinement of graphene platelets was found in comparison with their initial size. The graphene areas without carbides contain graphene nanoplatelets with lateral dimension close to initial graphene sample. Electron diffraction allowed to confirm the presence of Li2C2 carbide at the surface of agglomerates found from

  8. Size effect of primary Y{sub 2}O{sub 3} additions on the characteristics of the nanostructured ferritic ODS alloys: Comparing as-milled and as-milled/annealed alloys using S/TEM

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Mostafa, E-mail: msaber@ncsu.edu; Xu, Weizong; Li, Lulu; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2014-09-15

    The need for providing S/TEM evidence to clarify the mechanisms of nano-scale precipitate formation was the motivation of this investigation. In this study, an Fe–14Cr–0.4Ti alloy was ball-milled with different amounts of Y{sub 2}O{sub 3} content up to 10 wt.%, and then annealed at temperatures up to 1100 °C. Micron-size Y{sub 2}O{sub 3} particles were substituted for the nano-size counterpart to elucidate the mechanism of oxide precipitate formation. The S/TEM studies revealed that the microstructure of the alloy with 10 wt.% yttria contained amorphous undissolved Y{sub 2}O{sub 3} after ball milling, while a small part of the initial oxide particles were dissolved into the solid solution. Consequently, when the amount of yttria was reduced to 1 wt.%, the amorphous phase of the yttria vanished and the whole content of Y{sub 2}O{sub 3} was dissolved into the BCC solid solution. Defect analysis of precipitates on the annealed samples via S/TEM and micro-hardness studies revealed that the use of micron-size primary oxide particles can produce nano-size precipitates, stable up to temperatures as high as 1100 °C, and uniformly distributed throughout the microstructure. This study indicates that the use of high energy ball milling along with micron-size primary oxide particles can lead to nanostructured ferritic ODS alloys without the use of nano-size primary oxide additions.

  9. Modeling the long-term evolution of the primary damage in ferritic alloys using coarse-grained methods

    International Nuclear Information System (INIS)

    Becquart, C.S.; Barbu, A.; Bocquet, J.L.; Caturla, M.J.; Domain, C.; Fu, C.-C.; Golubov, S.I.; Hou, M.; Malerba, L.; Ortiz, C.J.; Souidi, A.; Stoller, R.E.

    2010-01-01

    Knowledge of the long-term evolution of the microstructure after introduction of primary damage is an essential ingredient in understanding mechanical property changes that occur during irradiation. Within the European integrated project 'PERFECT,' different techniques have been developed or improved to model microstructure evolution of Fe alloys under irradiation. This review paper aims to present the current state of the art of these techniques, as developed in the project, as well as the main results obtained.

  10. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  11. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  12. Polycrystalline strengthening

    DEFF Research Database (Denmark)

    Hansen, Niels

    1985-01-01

    for the understanding of polycrystalline strengthening is obtained mainly from surface relief patterns and from bulk structures observed by transmission electron microscopy of thin foils. The results obtained by these methods are discussed and correlations are proposed. A number of features characterizing the deformed...... structure are summarized and the behavior of a number of metals and alloys is reviewed with emphasis on the structural changes in the interior of the grains and in the vicinity of the grain boundaries. The models for strain accommodation during deformation are discussed on the basis of the microstructures...

  13. Evaluation of ferritic alloy Fe-2 1/4Cr-1Mo after neutron irradiation: Microstructural development

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1986-10-01

    As part of a program to provide a data base on the bainitic alloy Fe-2-1/4-1Mo for fusion energy applications, microstructural examinations are reported for nine specimen conditions for 2-1/4Cr-1Mo steel which had been irradiated by fast neutrons over the temperature range 390 to 510 0 C. Void swelling is found following irradiation at 400 0 C to 480 0 C. Concurrently dislocation structure and precipitation developed. Peak void swelling, void density, dislocation density and precipitate number density formed at the lowest temperature, approximately 400 0 C, whereas mean void size, and mean precipitate size increased with increasing irradiation temperature. The examination results are used to provide interpretation of in-reactor creep, density change and post irradiation tensile behavior

  14. Solute nanostructures and their strengthening effects in Al–7Si–0.6Mg alloy F357

    CSIR Research Space (South Africa)

    Sha, G

    2012-01-01

    Full Text Available The solute nanostructures formed in the primary a-Al grains of a semi-solid metal cast Al–7Si–0.6Mg alloy (F357) during ageing at 180°C, and the age-hardening response of the alloy, have been systematically investigated by transmission electron...

  15. On the formation and stability of Y-Ti-O nanoparticles in ODS alloys

    International Nuclear Information System (INIS)

    Sundar, C.S.

    2012-01-01

    The thermal and radiation stability of Y-Ti-O nanoparticles in oxide dispersion strengthened steels is a topic of interest, given that these nanoparticles bestow the crucial high temperature creep strength, and these ferritic alloys are candidate materials for cladding and structural materials for fast and fusion reactors. In addition, there is also interest in obtaining a basic understanding of the various issues, such as the role of alloying element Ti, on the formation of uniform sized and small nanoparticles in these alloys that are formed using the powder metallurgy route of ball milling followed by consolidation using hot extrusion

  16. Influence of Zr and nano-Y{sub 2}O{sub 3} additions on thermal stability and improved hardness in mechanically alloyed Fe base ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hkotan@konya.edu.tr [Department of Metallurgical Engineering and Materials Science, Necmettin Erbakan University, Dere Aşıklar Mah. Demet Sokak, Meram, Konya 42140 (Turkey); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Scattergood, Ronald O.; Koch, Carl C. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27695-7907 (United States)

    2014-12-05

    The motivation of this work was driven to improve the thermal stability in systems where polymorphic transformations can result in an additional driving force, upsetting the expected thermodynamic stability. In this study, Fe{sub 92}Ni{sub 8} alloys with Zr and nano-Y{sub 2}O{sub 3} additions were produced by ball milling and then annealed at high temperatures. Emphasis was placed on understanding the effects of dispersed nano-Y{sub 2}O{sub 3} particle additions and their effect on microstructural stability at and above the bcc-to-fcc transformation occurring at 700 °C in Fe–Ni systems. Results reveal that microstructural stability and hardness can be promoted by a combination of Zr and Y{sub 2}O{sub 3} additions, that being mostly effective for stability before and after phase transition, respectively. The mechanical strength of these alloys is achieved by a unique microstructure comprised a ultra-fine grain Fe base matrix, which contains dispersions of both nano-scale in-situ formed Zr base intermetallics and ex-situ added Y{sub 2}O{sub 3} secondary oxide phases. Both of these were found to be essential for a combination of high thermal stability and high mechanical strength properties. - Highlights: • Polymorphic transformations can limit the processing of nanostructured powders. • It causes a rapid grain growth and impairs the improved mechanical properties. • We aim to improve the hardness and thermal stability above the phase transformation. • Thermal stability is achieved by a combination of Zr and Y{sub 2}O{sub 3} additions. • Hardness is promoted by in-situ formed and ex-situ added secondary nano phases.

  17. Chemical heat treatment of low alloyed maraging steels

    Energy Technology Data Exchange (ETDEWEB)

    Malinov, L S; Korotich, I K [Zhdanovskij Metallurgicheskij Inst. (Ukrainian SSR)

    1979-09-01

    The investigation concerned the nitriding, cementation, chromizing, borating of economically alloyed maraging grade 04Kh2N5MFYu steel. The investigated methods of chemothermal treatment were found to considerably increase the hardness of the surface layer of the maraging steel. The high tempering of the grade 04Kh2N5MFYu cemented and hardened steel was found to produce secondary hardening. On chromizing, the diffusion layer is an alloyed ferrite which strengthens because of the dispersion hardening on ageing. The formation of the plastic low-carbon martensite at relatively small cooling rates greatly decreases the tendency of the boride layer to cracking.

  18. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  19. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition

    International Nuclear Information System (INIS)

    Tang, Yongpeng; Goto, Wataru; Hirosawa, Shoichi; Horita, Zenji; Lee, Seungwon; Matsuda, Kenji; Terada, Daisuke

    2017-01-01

    In this study, the age-hardening behavior and precipitate microstructures of severely-deformed and then artificially-aged Al-13.4 wt%Mg alloy has been investigated by Vickers hardness test, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and atom probe tomography (APT). The combined processing of high-pressure torsion (HPT) and aging treatment at a temperature below spinodal lines results in a higher attained hardness of ∼HV296 with an age-hardenability (i.e ΔHV31 ± 2) comparable to that of the undeformed specimen without HPT (i.e. ΔHV33 ± 2). The corresponding TEM microstructures consist of modulated structures associated with spinodal decomposition, and quantitative estimation of the amplitude, as well as the wavelength, of Mg fluctuations was successfully conducted by APT for the first time for this alloy system. The linear relationship between the increment of Vickers hardness and the estimated amplitude of the undeformed specimen supposed that Kato's spinodal-hardening mechanism works even in the HPTed specimen with a high number density of grain boundaries. Therefore, our proposed strategy; i.e. taking advantage of spinodal decomposition, is regarded as a convincing approach to achieving concurrent strengthening by ultrafine-grained and precipitation hardenings for the alloys that decompose via spinodal decomposition.

  20. Ferrite re-crystallization kinetics on a C-Mn steel and on two micro alloyed steels after dual-phase strain; Cinetica de recristalizacao da ferrita em um aco C-Mn e dois acos microligados apos deformacao na regiao bifasica

    Energy Technology Data Exchange (ETDEWEB)

    Simieli, Eider A. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1991-12-31

    Ferrite recrystallization was investigated in two micro alloyed steels deformed in the inter critical range. A reference steel was also used, which had a composition of 0,06% C and 1,31% Mn. (author). 15 refs., 7 figs., 3 tabs.

  1. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr

  2. Creep property of carbon and nitrogen free high strength new alloys

    Energy Technology Data Exchange (ETDEWEB)

    Muneki, S., E-mail: ABE.Fujio@nims.go.j [Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science (Japan); Okubo, H.; Abe, F. [Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science (Japan)

    2010-06-15

    The carbon and nitrogen free new alloys which were composed of supersaturated martensitic microstructure with high dislocation density before the creep test have been investigated systematically. These alloys were produced from the new approach which raised creep strength by the utilization of the reverse transformed austenite phase as a matrix and intermetallic compounds such as Laves phase and mu-phase as precipitates during heating before the creep test. It is important that these alloys are independent of any carbides and nitrides as strengthening factors. The high temperature creep test over 700 {sup o}C exceeds 50,000 h, and the test is continuous. Creep behavior of the alloys is found to be different from that of the conventional high-Cr ferritic steels. The addition of boron to the alloy pulled the recrystallization temperature up in the high temperature, and it became a creep test in the un-recrystallization condition, and the creep property of high temperature over 700 {sup o}C was drastically improved. The minimum creep rates of Fe-Ni alloys at 700 {sup o}C are found to be much lower than those of the conventional high Cr ferritic heat resistant steels, which is due to fine dispersion strengthening useful even at 700 {sup o}C in these alloys. As a result it became clear that the value for 100,000 h was exceeded at 700 {sup o}C and 100 MPa calculated from the Larson-Miller parameter at C = 20.

  3. Investigation of irradiation strengthening of b.c.c. metals and their alloys. Progress report, January 1976--October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Research on irradiation of bcc metals and alloys is reported. Data and information are presented in appendixes on low temperature neutron irradiation of Nb, effects of tritium on the yield stress of Nb, multiple dislocation motion, dislocation group motion, dislocation kinetics, and computer simulation of dislocation motion

  4. Microstructure and phase analysis of Zirconia-ODS (Oxide Dispersion Strengthen) alloy sintered by APS with milling time variation

    Science.gov (United States)

    Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi

    2018-03-01

    Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.

  5. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    International Nuclear Information System (INIS)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming

    2017-01-01

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y_2O-3 and Fe-9Cr-2W-0.3Zr-0.3Y_2O_3 were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y_4Zr_3O_1_2 oxides and body-centered cubic Y_2O_3 oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y_4Zr_3O_1_2 particles is much smaller than that of Y_2O_3. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10"2"3/m"3 with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time

  6. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang (China)

    2017-02-15

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y{sub 2}O-3 and Fe-9Cr-2W-0.3Zr-0.3Y{sub 2}O{sub 3} were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y{sub 4}Zr{sub 3}O{sub 12} oxides and body-centered cubic Y{sub 2}O{sub 3} oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y{sub 4}Zr{sub 3}O{sub 12} particles is much smaller than that of Y{sub 2}O{sub 3}. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10{sup 23}/m{sup 3} with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

  7. Characterisation of As-deformed microstructure of ODS NI-Base superalloy and ODS ferritic steel prior to directional recrystallisation

    International Nuclear Information System (INIS)

    Baloch, M.M.; Memon, S.A.

    2007-01-01

    The materials studied are unusual in the sense that they have been prepared from mechanically alloyed procedures, including compaction and hot extrusion. It was felt necessary to characterise the initial microstructure thoroughly prior to directional recrystallisation of the alloys. Following consolidation by hot extrusion, dispersion strengthened superalloys appear to display a very fine sub-micron grain size consisting of both dislocation free recrystallised material and un- recrystallised regions of high dislocation density. It is found that there is a very fine dislocation cell structure in the ODS (Oxide Dispersion Strengthened) Ferritic stainless Steel prior to recrystallisation treatment, which shows that alloy is in old-deformed condition after mechanical alloying, extrusion I hot-working. This is in contrast to the mechanically alloyed Nickel Base Superalloy, which have consistently been found to be in primary recrystallisation state following extrusion. In order to understand the recrystallisation behaviour of the two mechanically illoyed materials with commercial designations MA6000 and MA956, a measurement of the orientation relationship between adjacent grains in the as- deformed ODS alloys has also been carried out using Transmission Electron microscope. (author)

  8. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    Science.gov (United States)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  9. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shufeng, E-mail: shufengli@hotmail.com [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Imai, Hisashi; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu Metals Co. LTD., 1892 OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-08-15

    Effect of Ti and Sn alloying elements on microstructure and mechanical properties of 60/40 brass has been studied via the powder metallurgy (P/M) route. The water-atomized BS40-0.6Sn1.0Ti (Cu40wt%Zn-0.6wt%Sn1.0wt%Ti) pre-alloyed powder was consolidated at various temperatures within range of 400-600 Degree-Sign C using spark plasma sintering (SPS) and hot extrusion was carried out at 500 Degree-Sign C. Effects of extrusion temperature on microstructure and tensile strength were investigated by employing SEM-EDS/EBSD, TEM, XRD and tensile test. Results indicated that super-saturated solid solution Ti and Sn elements created high chemical potential for a precipitate reaction in rapidly solidified brass powder, which showed significant strengthening effects on the extruded sample consolidated at lower temperature. Solid solubility of Ti in brass matrix decreased with increasing of sintering temperature, thus resulted in degradation of mechanical properties. Consequently, lower hot processing temperature is necessary to obtain excellent mechanical properties for BS40-0.6Sn1.0Ti during sintering and extrusion. An yield strength of 398 MPa and ultimate tensile strength of 615 MPa were achieved, they respectively showed 31.3% and 22.9% higher values than those of extruded Cu40Zn brass. -- Graphical abstract: The Ti and Sn alloying elements additions showed significant grain refinement on Cu40Zn-0.6Sn1.0Ti brass (b) as comparing with that of the conventional Cu40Zn brass (a), detected by electron backscatter diffraction (EBSD) technique. The grain boundaries maps of (a) BS40 (b) BS40-0.6Sn1.0Ti SPS compact sintered at 400 Degree-Sign C reveals by electron backscatter diffraction (EBSD) technique. Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer CuSn{sub 3}Ti{sub 5

  10. The study of Widmanstätten ferrite in Fe–C alloys by a phase field model coupled with anisotropic elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shen, Yao, E-mail: yaoshen@sjtu.edu.cn [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wan, Haibo [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Power Equipment Research Institute, Shanghai 200240 (China); Xiong, Xiaochuan [General Motors Global Research & Development, China Science Laboratory, Shanghai 201206 (China); Zhang, Lanting [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-25

    A phase field model accounting for anisotropic elastic energy has been formulated to investigate the morphology and growth kinetics of a Widmanstätten microstructure during the isothermal austenite to ferrite transformation in binary Fe–C. Physically realistic parameters are employed, for which the thermodynamic functions and the diffusional mobilities are from the literatures that were assessed via the Calphad technique and from experimental results respectively. The simulation results suggest that the anisotropy of elastic energy, resulting from the lattice distortion between the ferrite precipitate and the austenite matrix in the phase transformation, is sufficient to generate a plate-like Widmanstätten structure. The growth of the ferrite precipitate follows completely different dynamic laws in different directions, i.e., parabolic thickening in the direction of the plate thickness and linear lengthening in the direction toward the plate tip. The chief reason for the former is that the moving of the plate broad sides may be regarded as a migration of straight interfaces in the diffusion-controlled phase transformation; the latter is because that the plate tip can maintain a constant radius of curvature during the phase transition after a transient initial stage. Furthermore, the aspect ratio and the lengthening rate of the Widmanstätten ferrite plate simulated by our analyses are in good agreement with the experimental observations. - Highlights: • A model assuming elastic anisotropy for the growth of ferrites is formulated. • The elastic anisotropy is sufficient to generate acicular Widmanstätten ferrites. • The direction of the plate thickness features a parabolic thickening. • The direction of the plate tip characterizes a linear lengthening. • The calculated aspect ratio and growth rate are in good agreement with experiments.

  11. Development of new ferritic / martensitic steels for fuel cladding in fast neutron reactors

    International Nuclear Information System (INIS)

    Ratti, M.

    2009-11-01

    Many studies are directed toward the development of ferritic / martensitic ODS materials for applications in Gen IV programs. In this study, the mechanisms of formation of nano-phases (Y, Ti, O) and the influence of titanium on the precipitation refinement have been analyzed by small angle neutron scattering, X-ray diffraction and neutron diffraction. The obtained results allow developing new materials reinforced by nitrides (NDS which stands for Nitride Dispersion Strengthened). A first CEA patent is now being registered on these NDS materials processed by mechanical alloying. However, microstructural and mechanical characterizations are necessary to improve these new alloys. At last, a tensile and creep database has been acquired on an ODS Fe-18Cr material between room temperature and 650 C. These tests allow a qualitative description of the ODS mechanical behaviour. (author)

  12. Optimization of HIP bonding conditions for ITER shielding blanket/first wall made from austenitic stainless steel and dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Sato, S.; Hatano, T.; Kuroda, T.; Furuya, K.; Hara, S.; Enoeda, M.; Takatsu, H.

    1998-01-01

    Optimum bonding conditions were studied on the hot isostatic pressing (HIP) bonded joints of type 316L austenitic stainless steel and dispersion strengthened copper alloy (DSCu) for application to the ITER shielding blanket / first wall. HIP bonded joints were fabricated at temperatures in a 980-1050 C range, and a series of mechanical tests and metallurgical observations were conducted on the joints. Also, bondability of two grades of DSCu (Glidcop Al-25 trademark and Al-15 trademark ) with SS316L was examined in terms of mechanical properties of the HIP bonded joints. From those studies it was concluded that the HIP temperature of 1050 C was an optimal condition for obtaining higher ductility, impact values and fatigue strength. Also, SS316L/Al-15 joints showed better results in terms of ductility and impact values compared with SS316L/Al-25 joints. (orig.)

  13. Strengthening of the brazed joint for single-crystalline molybdenum by using Mo-40%Ru-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Y. [Okayama Univ. of Science (Japan). Department of Applied Physics; Igarashi, T. [Tokyo Tungsten Co. Ltd., Toyama (Japan). Research and Development Division

    1998-12-01

    In this study, the bend properties of the single-crystalline molybdenum brazed by using Mo-40%Ru alloys containing boron of 1-6 mass%Ru alloy for the improvement of the joint strength was determined. (orig.) [Deutsch] Durchgefuehrt wurde die Herstellung von Verbindungen aus einkristallinem Molybdaen. Hierbei kamen Mo-40%Ru-Legierungen mit 1 bis 6 Gew.-% Bor als Lotmaterialien zum Einsatz. Festigkeit und Duktilitaet der Verbindungen wurden mittels 3-Punkt-Biegepruefung bei Raumtemperatur und unter fluessigem Stickstoff ermittelt. Die Bruchflaechen der Proben wurden mit Hilfe eines Rasterelektronenmikroskopes untersucht. Die Ergebnisse lassen sich wie folgt zusammenfassen: Der optimale Borgehalt bezueglich Festigkeit und Duktilitaet der geloeteten Verbindung liegt bei 2 Gew.-%. Die entsprechende Probe hat bei einem Biegewinkel von 100 bei Raumtemperatur nicht versagt. Auch unter fluessigem Stickstoff zeigte diese Probe eine Festigkeit in der Groessenordnung des einkristallinen Vollmaterials. (orig.)

  14. Numerical analysis of residual stress of Al-Mg-Mn-Sc-Zr alloy subjected to surface strengthening by shot peening

    Directory of Open Access Journals (Sweden)

    Mariusz Stegliński

    2015-03-01

    Full Text Available In this paper, we presented the results of the analysis of the stresses in the Al-Mg5%-Mn1,5%-Sc0,8%-Zr0,4% alloy after shot peening process using solver ANSYSANSYSANSYS LS-Dyna. The computational model illustrates the phenomena occurring as a result of plastic deformation caused by hitting a steel ball on the surface of the analyzed aluminium alloy. We analyzed two input variables: diameter and speed of a ball. The resulting normal stress distribution centred exposes the minimum compressive stress at a position located at a depth point of Belayev 0.125 mm with a value of σ = –345 MPa. Variable parameter shows the correlation of the boundary conditions of minimum stress increase with increasing ball’s diameter and its speed. Selected points of numerical analysis were verified with experimental results.[b]Keywords[/b]: materials science, numerical analysis, metal forming, shot peening, aluminium

  15. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  16. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg−Zn−Mn alloy processed by high strain rate rolling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jimiao; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Hongge [School of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Yang, Chao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Ni, Song, E-mail: song.ni@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2016-11-15

    The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that the high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.

  17. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  18. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  19. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  20. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Li Shufeng, E-mail: shufenglimail@gmail.com [Joining and Welding Research Institute, Osaka University (Japan); Imai, Hisashi; Atsumi, Haruhiko; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu metals Co. Ltd., 1892, OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer Ti is readily segregated in primary particle boundaries in BS40-1.0Ti. Black-Right-Pointing-Pointer Sn was proposed as an additive to inhibit segregation of Ti in BS40-1.0Ti. Black-Right-Pointing-Pointer The introduction of Sn to BS40-1.0Ti brass effectively impedes Ti segregation. - Abstract: The effects of Ti and Sn alloying elements on the microstructural and mechanical properties of 60/40 brass were studied by powder metallurgy processing. The super-saturated solid solution of Ti creates a high precipitation reaction chemical potential in water-atomized BS40-1.0Ti brass powder. Consequently, BS40-1.0Ti brass was remarkably strengthened by the addition of Ti. However, Ti readily segregated in the primary particle boundaries at elevated temperatures, which detrimentally affected the mechanical properties of BS40-1.0Ti brass. Accordingly, Sn was proposed as an additive to BS40-0.6Sn1.0Ti to inhibit the segregation of Ti. Consequently, the Ti precipitate was retained in the form of CuSn{sub 3}Ti{sub 5} in the interior of grains and grain boundaries rather than in the primary particle boundaries. This result demonstrates that the addition of Sn can effectively hinder Ti segregation in the primary particle boundaries. Sn addition produced significant grain refinement and mechanical strengthening effects in BS40-0.6Sn1.0Ti brass. As a result, outstanding strengthening effects were observed for BS40-0.6Sn1.0Ti sintered at 600 Degree-Sign C, which exhibited a yield strength of 315 MPa, an ultimate tensile strength of 598 MPa, and a Vickers micro-hardness of 216 Hv. These values represent increases of 27.5%, 20.1% and 45.6%, over those of extruded BS40-1.0Ti brass.

  1. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion

    International Nuclear Information System (INIS)

    Li Shufeng; Imai, Hisashi; Atsumi, Haruhiko; Kondoh, Katsuyoshi; Kojima, Akimichi; Kosaka, Yoshiharu; Yamamoto, Koji; Takahashi, Motoi

    2012-01-01

    Highlights: ► Alloying elements Ti and Sn are proposed as additives in 60/40 brass. ► Super-saturated Ti in powder creates high chemical potential for precipitation. ► Ti is readily segregated in primary particle boundaries in BS40–1.0Ti. ► Sn was proposed as an additive to inhibit segregation of Ti in BS40–1.0Ti. ► The introduction of Sn to BS40–1.0Ti brass effectively impedes Ti segregation. - Abstract: The effects of Ti and Sn alloying elements on the microstructural and mechanical properties of 60/40 brass were studied by powder metallurgy processing. The super-saturated solid solution of Ti creates a high precipitation reaction chemical potential in water-atomized BS40-1.0Ti brass powder. Consequently, BS40–1.0Ti brass was remarkably strengthened by the addition of Ti. However, Ti readily segregated in the primary particle boundaries at elevated temperatures, which detrimentally affected the mechanical properties of BS40–1.0Ti brass. Accordingly, Sn was proposed as an additive to BS40–0.6Sn1.0Ti to inhibit the segregation of Ti. Consequently, the Ti precipitate was retained in the form of CuSn 3 Ti 5 in the interior of grains and grain boundaries rather than in the primary particle boundaries. This result demonstrates that the addition of Sn can effectively hinder Ti segregation in the primary particle boundaries. Sn addition produced significant grain refinement and mechanical strengthening effects in BS40–0.6Sn1.0Ti brass. As a result, outstanding strengthening effects were observed for BS40–0.6Sn1.0Ti sintered at 600 °C, which exhibited a yield strength of 315 MPa, an ultimate tensile strength of 598 MPa, and a Vickers micro-hardness of 216 Hv. These values represent increases of 27.5%, 20.1% and 45.6%, over those of extruded BS40–1.0Ti brass.

  2. Investigation of irradiation strengthening of b.c.c. metals and their alloys. Progress report, January 1975--October 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Results of studies on radiation strengthening of V, Mo, and Nb are presented. Information is included on deformation characteristics of low-temperature neutron-irradiated Nb, the effects of He 3+ on the low-temperature deformation characteristics of Nb, electron-transmission microscopic studies of the nature of neutron damage effects of post-irradiation annealing, microplasticity, thermally activated dislocation motion, production of high-purity Nb and V, early stages of flow in Mo, microplasticity in V, and effects of impurity interstitials on the lattice resistance to dislocation motion. (JRD)

  3. Impact of grain microstructure on the heterogeneity of precipitation strengthening in an Al–Li–Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au [Université Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Constellium Technology Center, CS 10027, 38341 Voreppe Cedex (France); Deschamps, Alexis; De Geuser, Frédéric [Université Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Robaut, Florence [Consortium des Moyens Technologiques Communs, Grenoble-INP, F-38502 St. Martin d’Hères (France)

    2015-03-11

    The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al–Cu–Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T{sub 1} precipitates.

  4. Interfacial structures and energetics of the strengthening precipitate phase in creep-resistant Mg-Nd-based alloys.

    Science.gov (United States)

    Choudhuri, D; Banerjee, R; Srinivasan, S G

    2017-01-17

    The extraordinary creep-resistance of Mg-Nd-based alloys can be correlated to the formation of nanoscale-platelets of β 1 -Mg 3 Nd precipitates, that grow along 〈110〉 Mg in bulk hcp-Mg and on dislocation lines. The growth kinetics of β 1 is sluggish even at high temperatures, and presumably occurs via vacancy migration. However, the rationale for the high-temperature stability of precipitate-matrix interfaces and observed growth direction is unknown, and may likely be related to the interfacial structure and excess energy. Therefore, we study two interfaces- {112} β1 /{100} Mg and {111} β1 /{110} Mg - that are commensurate with β 1 /hcp-Mg orientation relationship via first principles calculations. We find that β 1 acquires plate-like morphology to reduce small lattice strain via the formation of energetically favorable {112} β1 /{100} Mg interfaces, and predict that β 1 grows along 〈110〉 Mg on dislocation lines due to the migration of metastable {111} β1 /{110} Mg . Furthermore, electronic charge distribution of the two interfaces studied here indicated that interfacial-energy of coherent precipitates is sensitive to the population of distorted lattice sites, and their spatial extent in the vicinity of interfaces. Our results have implications for alloy design as they suggest that formation of β 1 -like precipitates in the hcp-Mg matrix will require well-bonded coherent interface along precipitate broad-faces, while simultaneously destabilizing other interfaces.

  5. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Science.gov (United States)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  6. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    International Nuclear Information System (INIS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; Carlan, Y. de; Legris, A.

    2015-01-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe–Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  7. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment; Developpement d'une nouvelle nuance martensitique ODS pour utilisation sous rayonnement a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lambard, V

    2000-07-01

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  8. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure

    International Nuclear Information System (INIS)

    Huang, Lin; Jiang, Lin; Topping, Troy D.; Dai, Chen; Wang, Xin; Carpenter, Ryan; Haines, Christopher; Schoenung, Julie M.

    2017-01-01

    In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk tungsten materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS). The results show that the application of a high pressure of 1 GPa during SPS significantly accelerates the densification process. Concurrently, the second phase oxide nanoparticles with an average grain size of 108 nm, which are distributed within the interiors of the W grains, simultaneously provide strengthening and plasticity by inhibiting grain growth, and generating, blocking, and storing dislocations. - Graphical abstract: In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk W materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS).

  9. Microstructural Evolution of Thor™ 115 Creep-Strength Enhanced Ferritic Steel

    Science.gov (United States)

    Ortolani, Matteo; D'Incau, Mirco; Ciancio, Regina; Scardi, Paolo

    2017-12-01

    A new ferritic steel branded as Thor™ 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy, cast to different product forms such as plates and tubes, was extensively tested to assess the high-temperature time-dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide and nitride phases. Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term property stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray Powder Diffraction on specimens aged up to 50,000 hours. A thermodynamic modeling supports presentation and evaluation of the experimental results. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.

  10. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys.

    Science.gov (United States)

    Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R

    2014-09-01

    Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  12. Influence of stress change on the fatigue behavior and fatigue life of aluminum oxide-dispersion-strengthening copper alloy at room temperature and 350degC

    International Nuclear Information System (INIS)

    Kawagoishi, Norio; Kondo, Eiji; Nisitani, Hironobu; Shimamoto, Atsunori; Tashiro, Rieko

    2004-01-01

    In order to investigate the influence of stress change on the fatigue behavior and fatigue life of an aluminum oxide-dispersion-strengthening copper alloy at elevated temperature, rotating bending fatigue tests were carried out under two-step loading at room temperature and 350degC. Both of static strength and fatigue strength decreased at 350degC. However, at the same relative stress σ a /σ B , fatigue life was longer at 350degC than at room temperature. Although the cumulative ratios Σ(N/N f ) were nearly unity for both the low to high and the high to low block loadings at room temperature, Miner's rule did not hold at 350degC. These results were related to the stress dependence on the log l-N/N f relation. That is, the crack length initiated at the same N/N f was larger in higher stress level at 350degC, whereas there was no stress dependence in the relation at room temperature. The stress dependence on the relation at 350degC was caused by the suppression of crack initiation due to the surface oxidation. (author)

  13. Processing, Microstructure, and Material Property Relationships Following Friction Stir Welding of Oxide Dispersion Strengthened Steels

    Science.gov (United States)

    2013-09-01

    Fast, 200 Ferritic- martensitic steels , ODS alloys Stainless steels Lead fast reactor Lead or lead- bismuth 800 Fast, 150 Ferritic- martensitic ...from Zinkle [from 1]. T22, T9, T91, E911, NF12, NF616, and SAVE12 are all Ferritic or Martensitic steels with variations in alloy concentrations and...manufacturing techniques. Similarly HCM12 and HCM12A are High Chromium Martensitic steels

  14. Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A., E-mail: mauger@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Munoz, A., E-mail: amunoz@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Monge, M.A., E-mail: mmonge@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Castro, V. de, E-mail: vanessa.decastro@materials.ox.ac.uk [Department of Materials, University of Oxford, OX1 3PH (United Kingdom); Fernandez, P., E-mail: pilar.fernandez@ciemat.es [National Fusion Laboratory-CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Garces, G., E-mail: ggarces@cenim.csic.es [Departamento de Metalurgia Fisica, CENIM (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Pareja, R., E-mail: rpp@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain)

    2011-10-01

    Reduced activation ferritic Fe-14 wt%Cr and Fe-14 wt%Cr-0.3 wt%Y{sub 2}O{sub 3} alloys were produced by mechanical alloying and hot isostatic pressing followed by forging and heat treating. The alloy containing Y{sub 2}O{sub 3} developed a submicron-grained structure with homogeneous dispersion of oxide nanoparticles that enhanced the tensile properties in comparison to the Y{sub 2}O{sub 3} free alloy. Strengthening induced by the Y{sub 2}O{sub 3} dispersion appears to be effective up to 873 K, at least. A uniform distribution of Cr-rich precipitates, stable upon a heat treatment at 1123 K for 2 h, was also found in both alloys.

  15. Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys

    International Nuclear Information System (INIS)

    Auger, M.A.; Leguey, T.; Munoz, A.; Monge, M.A.; Castro, V. de; Fernandez, P.; Garces, G.; Pareja, R.

    2011-01-01

    Reduced activation ferritic Fe-14 wt%Cr and Fe-14 wt%Cr-0.3 wt%Y 2 O 3 alloys were produced by mechanical alloying and hot isostatic pressing followed by forging and heat treating. The alloy containing Y 2 O 3 developed a submicron-grained structure with homogeneous dispersion of oxide nanoparticles that enhanced the tensile properties in comparison to the Y 2 O 3 free alloy. Strengthening induced by the Y 2 O 3 dispersion appears to be effective up to 873 K, at least. A uniform distribution of Cr-rich precipitates, stable upon a heat treatment at 1123 K for 2 h, was also found in both alloys.

  16. Effect of strengthening mechanisms on cold workability and instantaneous strain hardening behavior during grain refinement of AA 6061-10 wt.% TiO2 composite prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Iyer, Vijay Kumar

    2010-01-01

    Research highlights: → Various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening promoted yield strength of the composites → The 5 h sintered composite yielded a large plastic strain (23%) at ambient temperature. → The domination of interparticle friction effects, grain size and dislocation strengthening diminished the deformation capacity of the composites greater than 5 h of milling. → Ultra-fine grained composite (40 h) yielded a high strength (>1000 MPa). → The proposed instantaneous new Poisson's ratio and the instantaneous strain hardening index used to study the extent of plastic zone and strain levels of the composite. - Abstract: The mechanical alloying (MA) of AA 6061 alloy reinforced with 10 wt.% fine anatase-titania composites powder milled with different timings (1, 5, 10, 20, 30, and 40 h) was cold consolidated and sintered. The main purpose of this study is to investigate the effect of microstructure and the various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening during grain refinement of AA 6061-10 wt.% TiO 2 composite via MA on cold working and strain hardening behavior. The sintered composite preforms were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The strengthening mechanisms were estimated by using simplified models available in the literatures. The evaluation of cold deformation behavior under triaxial stress condition through room temperature cold-upsetting tests (incremental loads) was studied by correlating the strengthening mechanisms. Among the developed strengthening mechanisms the grain size and dislocation strengthening mechanisms diminished the deformation capacity of the composites. The strain hardening behavior was also examined by proposing instantaneous strain hardening index (n i ). The value of maximum instantaneous strain

  17. Precipitates and boundaries interaction in ferritic ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Sallez, Nicolas, E-mail: nicolas.sallez@simap.grenoble-inp.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); Hatzoglou, Constantinos [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Delabrouille, Fredéric [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Sornin, Denis; Chaffron, Laurent [CEA, DEN, Service de Recherches Métallurgiques Appliqué, 91191 Gif-sur-Yvette (France); Blat-Yrieix, Martine [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Radiguet, Bertrand; Pareige, Philippe [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Donnadieu, Patricia; Bréchet, Yves [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France)

    2016-04-15

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels. - Highlights: • To study the microstructural evolution of a ferritic ODS steel during its extrusion, observations have been carried on samples resulting from a voluntarily interrupted extrusion and extruded materials. • A highly heterogeneous precipitate population have been observed. Nanosized coherent precipitates (2–5 nm) on both sides of the grain boundaries despite grain boundary migration after precipitation due to further thermo-mechanical processing as well as coarse precipitates (10–40 nm) alignments are observed on the grain boundaries and within the grains, parallel to the grain boundaries. • Asymmetrical PFZs can be observed around precipitates alignments and grain boundaries. Using TEM with EDX and APT we have been able to ensure that the PFZs are chemically depleted.

  18. CHARACTERIZING AND MODELING FERRITE-CORE PROBES

    International Nuclear Information System (INIS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.

    2010-01-01

    In this paper, we accurately and carefully characterize a ferrite-core probe that is widely used for aircraft inspections. The characterization starts with the development of a model that can be executed using the proprietary volume-integral code, VIC-3D(c), and then the model is fitted to measured multifrequency impedance data taken with the probe in freespace and over samples of a titanium alloy and aluminum. Excellent results are achieved, and will be discussed.

  19. Characterization and Modeling of Grain Boundary Chemistry Evolution in Ferritic Steels under Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, Emmanuelle [Univ. of Michigan, Ann Arbor, MI (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-03-28

    Ferritic/martensitic (FM) steels such as HT-9, T-91 and NF12 with chromium concentrations in the range of 9-12 at.% Cr and high Cr ferritic steels (oxide dispersion strengthened steels with 12-18% Cr) are receiving increasing attention for advanced nuclear applications, e.g. cladding and duct materials for sodium fast reactors, pressure vessels in Generation IV reactors and first wall structures in fusion reactors, thanks to their advantages over austenitic alloys. Predicting the behavior of these alloys under radiation is an essential step towards the use of these alloys. Several radiation-induced phenomena need to be taken into account, including phase separation, solute clustering, and radiation-induced segregation or depletion (RIS) to point defect sinks. RIS at grain boundaries has raised significant interest because of its role in irradiation assisted stress corrosion cracking (IASCC) and corrosion of structural materials. Numerous observations of RIS have been reported on austenitic stainless steels where it is generally found that Cr depletes at grain boundaries, consistently with Cr atoms being oversized in the fcc Fe matrix. While FM and ferritic steels are also subject to RIS at grain boundaries, unlike austenitic steels, the behavior of Cr is less clear with significant scatter and no clear dependency on irradiation condition or alloy type. In addition to the lack of conclusive experimental evidence regarding RIS in F-M alloys, there have been relatively few efforts at modeling RIS behavior in these alloys. The need for predictability of materials behavior and mitigation routes for IASCC requires elucidating the origin of the variable Cr behavior. A systematic detailed high-resolution structural and chemical characterization approach was applied to ion-implanted and neutron-irradiated model Fe-Cr alloys containing from 3 to 18 at.% Cr. Atom probe tomography analyses of the microstructures revealed slight Cr clustering and segregation to dislocations and

  20. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  1. XXIst Century Ferrites

    International Nuclear Information System (INIS)

    Mazaleyrat, F; Zehani, K; Pasko, A; Loyau, V; LoBue, M

    2012-01-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Oersted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the down sizing of ceramics microstructure to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba 2+ Fe 12 O 19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  2. Investigations of low-temperature neutron embrittlement of ferritic steels

    International Nuclear Information System (INIS)

    Farrell, K.; Mahmood, S.T.; Stoller, R.E.; Mansur, L.K.

    1992-01-01

    Investigations were made into reasons for accelerated embrittlement of surveillance specimens of ferritic steels irradiated at 50C at the High Flux Isotope Reactor (HFIR) pressure vessel. Major suspects for the precocious embrittlement were a highly thermalized neutron spectrum,a low displacement rate, and the impurities boron and copper. None of these were found guilty. A dosimetry measurement shows that the spectrum at a major surveillance site is not thermalized. A new model of matrix hardening due to point defect clusters indicates little effect of displacement rate at low irradiation temperature. Boron levels are measured at 1 wt ppM or less, inadequate for embrittlement. Copper at 0.3 wt % and nickel at 0.7 wt % are shown to promote radiation strengthening in iron binary alloys irradiated at 50 to 60C, but no dependence on copper and nickel was found in steels with 0.05 to 0.22% Cu and 0.07 to 3.3% Ni. It is argued that copper impurity is not responsible for the accelerated embrittlement of the HFIR surveillance specimens. The dosimetry experiment has revealed the possibility that the fast fluence for the surveillance specimens may be underestimated because the stainless steel monitors in the surveillance packages do not record an unexpected component of neutrons in the spectrum at energies just below their measurement thresholds of 2 to 3 MeV

  3. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    International Nuclear Information System (INIS)

    Cui, W.F.; Zhang, S.X.; Jiang, Y.; Dong, J.; Liu, C.M.

    2011-01-01

    Highlights: → Mechanical properties and microstructures of low carbon bainite steel are examined. → Cu-P alloying promotes strengthening and uniform plastic deformation. → Cu-P alloying delays recovery process during rolling interval. → Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  4. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: wenfangcui@yahoo.com.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Zhang, S.X. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Jiang, Y. [School of Chemical Engineering, University of Queensland, Brisbane 4072 (Australia); Dong, J. [Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Liu, C.M. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2011-08-15

    Highlights: {yields} Mechanical properties and microstructures of low carbon bainite steel are examined. {yields} Cu-P alloying promotes strengthening and uniform plastic deformation. {yields} Cu-P alloying delays recovery process during rolling interval. {yields} Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  5. Control of activation levels to simplify waste management of fusion reactor ferritic steel components

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Santoro, R.T.

    1983-01-01

    Activation characteristics of a material for service in the neutron flux of a fusion reactor first wall fall into three areas: waste management, reactor maintenance and repair, and safety. Of these, the waste management area is the most likely to impact the public acceptance of fusion reactors for power generation. The decay of the activity in steels within tens of years could lead to simplified waste disposal or possibly even to materials recycle. Whether or not these can be achieved will be controlled by (1) selection of alloying elements, (2) control of critical impurity elements, and (3) control of cross contamination from other reactor components. Several criteria can be used to judge the acceptability of potential alloying elements in iron, and to define the limits on content of critical impurity elements. One approach is to select and limit alloying additions on the basis of the activity. If material recycle is a goal, N, Al, Ni, Cu, Nb, and Mo must be excluded. If simplified waste storage by shallow land burial is the goal, regulations limit the concentration of only a few isotopes. For first-wall material that will be exposed to 9 MW-y/m 2 service, allowable initial concentration limits include (in at. ppM) Ni < 20,000; Mo < 3650; N < 3650, Cu < 2400; and Nb < 1.0. The other constituent elements of ferritic steels will not be limited. Possible substitutes for the molybdenum normally used to strengthen the steels include W, Ta, Ti, and V

  6. Localized corrosion and stress corrosion cracking behavior of austenitic stainless steel weldments containing retained ferrite. Annual progress report, June 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Savage, W.F.; Duquette, D.J.

    1979-03-01

    Localized corrosion and stress corrosion cracking experiments have been performed on single phase 304 stainless steel alloys and autogeneous weldments containing retained delta ferrite as a second phase. The results of the pitting experiments show that the pressure of delta ferrite decreases localized corrosion resistance with pits initiating preferentially at delta ferrite--gamma austenite interphase boundaries. This increased susceptibility is reversible with elevated temperature heat treatments which revert the metastable ferrite phase to the equilibrium austenite phase

  7. Reduced activation ODS ferritic steel - recent development in high speed hot extrusion processing

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Zbigniew [Faculty of Mechanical Engineering, Bialystok Technical University (Poland); Lewandowska, Malgorzata; Kurzydlowski, Krzysztof [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Baluc, Nadine [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Villigen PSI (Switzerland)

    2010-05-15

    The paper presents the microstructure and mechanical properties of an oxide dispersion strengthened (ODS), reduced activation, ferritic steel, namely the Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} alloy, which was fabricated by hot isostatic pressing followed by high speed hydrostatic extrusion (HSHE) and heat treatment HT at 1050 C. Transmission electron microscopy (TEM) observations revealed significant differences in the grain size and dislocation density between the as-HIPped and as-HSHE materials. It was also found that the microstructure of the steel is stable after HT. The HSHE process improves significantly the tensile and Charpy impact properties of the as-HIPped steel. The ultimate tensile strength at room temperature increases from 950 up to 1350 MPa, while the upper shelf energy increases from 3.0 up to 6.0 J. However, the ductile-to-brittle transition temperature (DBTT) remains relatively high (about 75 C).These results indicate that HSHE is a promising method for achieving grain refinement and thus improving the mechanical properties of ODS ferritic steels. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Optimization of production and properties of the nanoscaled ferritic ODS-alloy 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2} and characterization of structure and property correlations; Eigenschaftsoptimierung der nanoskaligen ferritischen ODS-Legierung 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}, metallkundliche Charakterisierung und Bestimmung von Struktur-Eigenschaftskorrelationen

    Energy Technology Data Exchange (ETDEWEB)

    Eiselt, Charles Christopher

    2010-01-15

    Fusion power reactors next to renewable energy sources shall form an important basis for a future energy scenario avoiding damaging emissions due to the lack of fossil primary energy carriers. An efficient operation of such reactors necessitate temperatures >700 C, which require new kinds of structural materials. Today only reduced activated oxide dispersion-strengthened (ODS-) materials based on iron, which have high strengths at elevated temperatures, offer the possibility to meet those criterias, which are developed in internationally coordinated programs. Therefore a nearly industrial production process based on the powdermetallurgical route is iteratively and systematically optimized to produce the ferritic ODS-alloy 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}. Through TEM elemental analyses of mechanically alloyed steel powder it is confirmed, that the additives Y{sub 2}O{sub 3} and TiH{sub 2} dissolve completely in the powder and form the ODS-particles during the HIP-cycle. Detailed studies of powder contamination during mechanical alloying reveal correlations between the contamination behaviour of certain elements and the milling parameters. A specially designed procedure of powder encapsulation and sealing leads to a successful powder compaction to the ODS-material 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}. Detailed TEM studies show a bimodal grain size distribution within the material at first. The alloy's recrystallization behaviour is the main reason for this phenomenon and is therefore discussed in detail. A high dispersion of ODS-particles as the decisive material's component with particle sizes von 3-5nm within grains and 12-36nm at the grain boundaries is successfully reached and verified by numerous TEM-Elemental Mappings. By applying hot rolling as an additional step during production a more even grain structure by equally maintaining the fine nanoskaled particle dispersion is set up. The microstructure is highly stable, since no grain- or

  9. A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy

    NARCIS (Netherlands)

    Najafi, S.; Eivani, A. R.; Samaee, M.; Jafarian, H. R.; Zhou, J.

    2018-01-01

    The effect of equal channel angular pressing (ECAP) on the microstructure and mechanical properties of AA6063 aluminum alloy was investigated. For this purpose, samples of AA6063 aluminum alloy were deformed up to 10 passes using ECAP and the evolution of microstructure, texture and dislocation

  10. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix

    International Nuclear Information System (INIS)

    Monnet, I.

    1999-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO 2 +Y 2 O 3 ) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide ( 2 O 3 , Y 2 O 3 , MgO or MgAl 2 O 4 . These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel pairs only) shows the importance of free point defects in the dissolution phenomena. For all the irradiations (ions or electrons) the spinel MgAl 2 O 4 seems more resistant than Y 2 O 3 to dissolution, and MgO and Al 2 O 3 are even less resistant. This is the order of stability under irradiation of bulk oxides. (author)

  11. Lower Length Scale Characterization and Validation of Formation and Stability of Helium Bubbles in Nano-structured Ferritic Alloys under Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huijuan [Clemson Univ., SC (United States); Yun, Di [Argonne National Lab. (ANL), Argonne, IL (United States); Hoelzer, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)

    2018-01-30

    In order to extend the operating license of current light water reactors (LWRs) in the United States and other countries to as many as 80 years or longer, it is demanding to identify potential materials for many of the internal structural components and fasteners. We proposed that 14YWT iron alloy can be adopted in such applications with its excellent material properties, such as high-temperature strength, low creep rate, and high irradiation resistance. Application with 14YWT would improve the void/helium swelling characteristics of the LWR fuels, extend the burn-up limits with the tolerant temperature up to 800oC and reduce the hydrogen production. One key feature of 14YWT material property enhancement is the ultrafine high density of 2-4nm Y-Ti-O enriched nanoclusters (NCs) within the 14YWT iron matrix. The NCs can effectively pin the ultra-fine grain boundaries and dislocations, which significantly enhance mechanical properties of the alloy. Moreover, these nanoclusters remain stable with no coarsening after a large dose of ion irradiation. After ion irradiation, the helium bubbles are observed extremely uniform in size (1nm) and quite homogeneously distributed within the 14YWT matrix, which indicates that the microstructure of 14YWT remains remarkably tolerance to radiation damage. However, there is a lack of understanding of 14YWT both theoretically and experimentally in order to understand the mechanism behind the material property enhancement and to further develop and design a new generation of advanced structural material for current LWR applications and future fusion applications.

  12. Microstructural evolution in friction stir welding of nanostructured ODS alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Tatlock, G.J.; Jones, A.R.

    2010-01-01

    Nanostructured oxide dispersion strengthened (ODS) Fe-based alloys manufactured by mechanical alloying (MA) are generally considered to be promising candidate materials for high-temperature applications up to at least 1100 o C because of their excellent creep strength and good oxidation resistance. However, a key issue with these alloys is the difficulty in using fusion welding techniques to join components due to oxide particle agglomeration and loss in the weld zone and the disruption and discontinuity in the grain structure introduced at the bond. In this study, the evolution of microstructure has been comprehensively studied in friction stir welds in a ferritic ODS alloy. Initially, electron backscattering diffraction (EBSD) was used to analyze the grain orientation, the grain boundary geometries and recrystallization behaviour. It suggested that deformation heterogeneities were introduced during the friction stirring process which facilitated the onset of recrystallization. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to observe the effects of the friction stir welding (FSW) process on the grain structure and the distribution of Y 2 O 3 and other particles in the metal substrates in the FSW and adjacent regions, after the alloys had been recrystallized at temperatures up to 1380 o C for 1 h in air. The results show that fine-equiaxed grains and a uniform distribution of oxide particles were present in the friction stirred region but that the grain boundaries in the parent metal were pinned by particles. Friction stirring appeared to release these boundaries and allowed secondary recrystallization to occur after further heat treatment. The FSW process appears to be a promising technique for joining ferritic ODS alloys in the form of sheet and tube.

  13. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  14. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies

  15. Strengthening mechanisms, creep, and fatigue processes in dispersion-hardened niobium alloy. Final scientific report, 1 Feb 89-31 Jan 92

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.K.; Gibeling, J.C.

    1992-04-20

    The creep and fatigue properties of pure Nb and Nb-l%Zr alloy were investigated. A model was developed based on the migration of subgrain boundary that can explain the anomalous primary creep transients found in Nb-l%Zr alloy, due to coarsening of subgrain structure. TEM investigations confirmed that such subgrain coarsening occurs during primary creep of Nb-l%Zr. Baseline low cycle fatigue studies of Nb and Nb-l%Zr were completed. Cyclic hardening is observed and there is a microplastic plateau in Nb. The Nb-1%Zr is stronger in cyclic deformation than Nb, with little influence of strain rate. The deformation in the alloy at both high and low strain rates is controlled by the interaction between gliding edge dislocation and solute atoms.

  16. Intragranular ferrite morphologies in medium carbon vanadium-microalloyed steel

    Directory of Open Access Journals (Sweden)

    Fadel A.

    2013-01-01

    Full Text Available The aim of this work was to determine TTT diagram of medium carbon V-N micro-alloyed steel with emphasis on the development of intragranular ferrite morphologies. The isothermal treatment was carried out at 350, 400, 450, 500, 550 and 600°C. These treatments were interrupted at different times in order to analyze the evolution of the microstructure. Metallographic evaluation was done using optical and scanning electron microscopy (SEM. The results show that at high temperatures (≥ 500°C polygonal intragranulary nucleated ferrite idiomorphs, combined with grain boundary ferrite and pearlite were produced and followed by an incomplete transformation phenomenon. At intermediate temperatures (450, 500°C an interloced acicular ferrite (AF microstructure is produced, and at low temperatures (400, 350°C the sheave of parallel acicular ferrite plates, similar to bainitic sheaves but intragranularly nucleated were observed. In addition to sheaf type acicular ferrite, the grain boundary nucleated bainitic sheaves are observed. [Projekat Ministartsva nauke Republike Srbije, br. OI174004

  17. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  18. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  19. Temperature-dependent transformation from whisker- to nanoparticle-strengthened composite interface in the Al{sub 2}O{sub 3}/Ag-based alloy system and mechanical properties of the joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Cao, Jian, E-mail: cao_jian@hit.edu.cn; Wang, Zhijie; Chen, Zhe; Song, Xiaoguo; Feng, Jicai

    2015-11-15

    Al{sub 4}B{sub 2}O{sub 9}-whisker-coated Al{sub 2}O{sub 3} ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. The microstructure of the whisker-coated Al{sub 2}O{sub 3} joints was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A continuous (Cu,Al){sub 3}Ti{sub 3}O layer formed against the alloy at lower bonding temperatures, and a complex transition zone bordering the whiskers was observed, which consisted of Ag nanoparticles, titanium oxides, TiB{sub 2}, (Cu,Al){sub 3}Ti{sub 3}O nanoparticles and possible Ag{sub 3}Al. As the bonding temperature increased, the Al{sub 2}O{sub 3}/AgCuTi interface was found to transform from whisker- to nanoparticle-strengthened composite region. Bend test results revealed that both the whiskers grown on Al{sub 2}O{sub 3} and the dispersive nanoscale products in the alloy played positive roles in improving the joint properties. The maximum bend strength of the whisker-coated Al{sub 2}O{sub 3} joints was 313 MPa at the bonding temperature of 820 °C. - Highlights: • Al{sub 4}B{sub 2}O{sub 9}-whisker-coated Al{sub 2}O{sub 3} ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. • Microstructures of whisker-coated Al{sub 2}O{sub 3} joints were investigated in detail. • Both whiskers and the dispersive nanoscale products can improve the joint properties. • The maximum bend strength of the whisker-coated Al{sub 2}O{sub 3} joints was 313 MPa.

  20. Temperature-dependent transformation from whisker- to nanoparticle-strengthened composite interface in the Al2O3/Ag-based alloy system and mechanical properties of the joints

    International Nuclear Information System (INIS)

    Wang, Yifeng; Cao, Jian; Wang, Zhijie; Chen, Zhe; Song, Xiaoguo; Feng, Jicai

    2015-01-01

    Al 4 B 2 O 9 -whisker-coated Al 2 O 3 ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. The microstructure of the whisker-coated Al 2 O 3 joints was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A continuous (Cu,Al) 3 Ti 3 O layer formed against the alloy at lower bonding temperatures, and a complex transition zone bordering the whiskers was observed, which consisted of Ag nanoparticles, titanium oxides, TiB 2 , (Cu,Al) 3 Ti 3 O nanoparticles and possible Ag 3 Al. As the bonding temperature increased, the Al 2 O 3 /AgCuTi interface was found to transform from whisker- to nanoparticle-strengthened composite region. Bend test results revealed that both the whiskers grown on Al 2 O 3 and the dispersive nanoscale products in the alloy played positive roles in improving the joint properties. The maximum bend strength of the whisker-coated Al 2 O 3 joints was 313 MPa at the bonding temperature of 820 °C. - Highlights: • Al 4 B 2 O 9 -whisker-coated Al 2 O 3 ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. • Microstructures of whisker-coated Al 2 O 3 joints were investigated in detail. • Both whiskers and the dispersive nanoscale products can improve the joint properties. • The maximum bend strength of the whisker-coated Al 2 O 3 joints was 313 MPa.

  1. CASS Ferrite and Grain Structure Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Clayton O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  2. Evaluation of welds on a ferritic-austenitic stainless steel

    International Nuclear Information System (INIS)

    Pleva, J.; Johansson, B.

    1984-01-01

    Five different welding methods for the ferritic-austenitic steel 22Cr6Ni3MoN have been evaluated on mill welded heavy wall pipes. The corrosion resistance of the weld joints has been tested both in standard tests and in special environments, related to certain oil and gas wells. The tests were conclusive in that a welding procedure with the addition of sufficient amounts of filler metal should be employed. TIG welds without or with marginal filler addition showed poor resistance to pitting, and to boiling nitric acid. Contents of main alloying elements in ferrite and austenite phases have been measured and causes of corrosion attack in welds are discussed

  3. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  4. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Wen, Haiming; Zhang, Dalong; Chen, Zhen; Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.

    2016-01-01

    We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA.

  5. The role of yttrium and titanium during the development of ODS ferritic steels obtained through the STARS route: TEM and XAS study

    Science.gov (United States)

    Ordás, Nerea; Gil, Emma; Cintins, Arturs; de Castro, Vanessa; Leguey, Teresa; Iturriza, Iñigo; Purans, Juris; Anspoks, Andris; Kuzmin, Alexei; Kalinko, Alexandr

    2018-06-01

    Oxide Dispersion Strengthened Ferritic Steels (ODS FS) are candidate materials for structural components in future fusion reactors. Their high strength and creep resistance at elevated temperatures and their good resistance to neutron radiation damage is obtained through extremely fine microstructures containing a high density of nanometric precipitates, generally yttrium and titanium oxides. This work shows transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) characterization of Fe-14Cr-2W-0.3Ti-0.24Y ODS FS obtained by the STARS route (Surface Treatment of gas Atomized powder followed by Reactive Synthesis), an alternative method to obtain ODS alloys that avoids the mechanical alloying to introduce Y2O3 powder particles. In this route, FS powders already containing Ti and Y, precursors of the nanometric oxides, are obtained by gas atomization. Then, a metastable Cr- and Fe-rich oxide layer is formed on the surface of the powder particles. During consolidation by HIP at elevated temperatures, and post-HIP heat treatments above the HIP temperature, this oxide layer at Prior Particle Boundaries (PPBs) dissociates, the oxygen diffuses, and Y-Ti-O nano-oxides precipitate in the ferritic matrix. TEM characterization combined with XAFS and XANES analyses have proven to be suitable tools to follow the evolution of the nature of the different oxides present in the material during the whole processing route and select appropriate HIP and post-HIP parameters to promote profuse and fine Y-Ti-O nanometric precipitates.

  6. Inhibited Aluminization of an ODS FeCr Alloy

    International Nuclear Information System (INIS)

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A.

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small (∼ 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  7. Methods of acicular ferrite forming in the weld bead metal (Brief analysis

    Directory of Open Access Journals (Sweden)

    Володимир Олександрович Лебедєв

    2016-11-01

    Full Text Available A brief analysis of the methods of acicular ferrite formation as the most preferable structural component in the weld metal has been presented. The term «acicular ferrite» is meant as a structure that forms during pearlite and martensite transformation and austenite decomposition. Acicular ferrite is a packet structure consisting of battens of bainitic ferrite, there being no cementite particles inside these battens at all. The chemical elements most effectively influencing on the formation of acicular ferrite have been considered and their combined effect as well. It has been shown in particular, that the most effective chemical element in terms of impact toughness and cost relation is manganese. Besides, the results of multipass surfacing with impulse and constant feed of low-alloy steel wire electrode have been considered. According to these results acicular ferrite forms in both cases. However, at impulse feed of the electrode wire high mechanical properties of surfacing layer were got in the first passes, the form of the acicular ferrite crystallite has been improved and volume shares of polygonal and lamellar ferrite have been reduced. An assumption has been made, according to which acicular ferrite in the surfacing layer may be obtained through superposition of mechanical low-frequency oscillation on the welding torch or on the welding pool instead of periodic thermal effect due to electrode wire periodic feed

  8. Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials

    Energy Technology Data Exchange (ETDEWEB)

    Ribis, J., E-mail: joel.ribis@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Thual, M.A. [LLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette (France); Guilbert, T.; Carlan, Y. de [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legris, A. [UMET, CNRS/UMR 8207, Bât. C6, Univ. Lille 1, 59655 Villeneuve d’Ascq (France)

    2017-02-15

    ODS steels are a promising class of structural materials for sodium cooled fast reactor application. The ultra-high density of the strengthening nanoclusters dispersed within the ferritic matrix is responsible of the excellent creep properties of the alloy. Fine characterization of the nanoclusters has been conducted on a Fe-14Cr-0.3Ti-0.3Y{sub 2}O{sub 3} ODS material using High Resolution and Energy Filtered Transmission Electron Microscopy. The nanoclusters exhibit a cubic symmetry possibly identified as f.c.c and display a non-equilibrium YTiCrO chemical composition thought to be stabilized by a vacancy supersaturation. These nanoclusters undergo relaxation towards the Y{sub 2}Ti{sub 2}O{sub 7}-like state as they grow. A Cr shell is observed around the relaxed nano-oxides, this size-dependent shell may form after the release of Cr by the particles. The relaxation energy barrier appears to be higher for the smaller particles probably owing to a volume/surface ratio effect in reason to the full coherency of the nanoclusters. - Highlights: • The nanoclusters display a f.c.c. cubic symmetry and a non-equilibrium YTiCrO chemical composition. • During thermal annealing the coherent nanocluster transform into semi-coherent pyrochlore particles. • A Cr ring is observed around the relaxed pyrochlore type particles.

  9. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  10. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    Science.gov (United States)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  11. Dispersion strengthening

    International Nuclear Information System (INIS)

    Scattergood, R.O.; Das, E.S.P.

    1976-01-01

    Using digital computer-based methods, models for dispersion strengthening can now be developed which take into account many of the important effects that have been neglected in the past. In particular, the self interaction of a dislocation can be treated, and a computer simulation method was developed to determine the flow stress of a random distribution of circular, impenetrable obstacles, taking into account all such interactions. The flow stress values depended on the obstacle sizes and spacings, over and above the usual 1/L dependence where L is the average obstacle spacing. From an analysis of the results, it was found that the main effects of the self interactions can be captured in a line tension analogue in which the obstacles appear to be penetrable

  12. Material physical properties of 11Cr-ferritic/martensitic steel (PNC-FMS) wrapper tube materials

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Kaito, Takeji; Ohtsuka, Satoshi; Tanno, Takashi; Uwaba, Tomoyuki; Koyama, Shinichi

    2012-09-01

    It is necessary to develop core materials for fast reactors in order to achieve high-burnup. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, various physical properties of PNC-FMS wrapper materials were measured and equations and future standard measurement technique of physical properties for the design and evaluation were conducted. (author)

  13. Regularities of ferritic-pearlitic structure formation during subcooled austenite decomposition

    International Nuclear Information System (INIS)

    Shkatov, V.V.; Frantsenyuk, L.I.; Bogomolov, I.V.

    1997-01-01

    Relationships of ferrite-pearlite structure parameters to austenite grain size and cooling conditions during γ -> α transformation are studied for steel 3 sp. A mathematical description has been proposed for grain evolution in carbon and low alloy steel cooling after hot rolling. It is shown that ferrite grain size can be controlled by changing temperature range of water spraying when the temperatures of rolling completion and strip coiling are the same

  14. Analysis of the temperature and thermal stress in pure tungsten monoblock during heat loading and the influences of alloying and dispersion strengthening on these responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, 6-6-01-2 Aramaki-aza Aoba, Aobaku, Sendai, 980-8579 (Japan); Nogami, Shuhei; Guan, Wenhai; Hasegawa, Akira [Tohoku University, 6-6-01-2 Aramaki-aza Aoba, Aobaku, Sendai, 980-8579 (Japan); Muroga, Takeo [National Institute for Fusion Science, 322-6 Oroshi-cho, Gifu, 509-5292 (Japan)

    2016-06-15

    Highlights: • The heat load response of pure W and its alloys monoblock was investigated by FEA. • The effect of alloying on heat load response of W was not clearly observed. • The possibility of cracking during cooling phase after heat load was suggested. • The effects of recrystallization and irradiation embrittlement were discussed. • W alloys will show better reliability than pure W during fusion reactor operation. - Abstract: The effects of 3% Re addition and K-bubble dispersion on temperature and stress values and the distributions thereof in a W monoblock during heat loading were investigated using finite element analysis. K-doped W-3%Re exhibited the highest recrystallization resistance but showed a higher surface temperature than pure W or K-doped W during the heat loading. The effect of K-bubble dispersion and 3% Re addition on thermal stress distribution during heat loading was not clearly observed, and residual tensile stress after heat loading, which could possibly cause cracking, was observed at the top surfaces of all materials. Because of the higher strength and temperature at which recrystallization starts for the K-doped W-3%Re and K-doped W, the probability of crack formation at the top surface might be lower compared to that in pure W. The improvement in the material properties and resistance to crack initiation and propagation in W during cyclic heat loading is crucial for the design and development of plasma-facing components. This work suggests possibility of the crack formation in a pure W monoblock in the cooling phase after a 20 MW/m{sup 2} heat loading cycle and the effectiveness of K-bubble dispersion and Re addition for improving the heat loading resistance of monoblock W.

  15. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  16. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    Science.gov (United States)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  17. Strengthening mechanisms and mechanical properties of high interstitial stainless steel for drill collar and its corrosion resistance

    Science.gov (United States)

    Lee, Eunkyung

    Two types (CN66, CN71) of high interstitial stainless steels (HISSs) were investigated for down-hole application in sour gas well environments. Experiments were designed to identify factors that have a significant effect on mechanical properties. The three factors examined in the study were carbon + nitrogen content (0.66 or 0.71 mass %), cooling rate in quenching (air or water), and heat treatment time (2 or 4 hours). The results showed that the cooling rate, C+N content, and the two-factor interaction of these variables have a significant effect on the mechanical properties of HISSs. Based on the statistical analysis results on mechanical properties, extensive analyses were undertaken to understand the strengthening mechanisms of HISSs. Microstructure analysis revealed that a pearlite phase with a high carbide and/or nitride content is dissolved in the matrix by heat treatment at 1,200 ºC which is considered the dissolution to increase the concentration of interstitial elements in steels. The distribution of elements in HISSs was investigated by quantitative mapping using EPMA, which showed that the high carbon concentration (carbide/cementite) area was decreased by increases in both the cooling rate and C+N content. The ferrite volume fraction of each specimen is increased by an increase in cooling rate, because there is insufficient time to form austenite from retained ferrite. The lattice expansion of HISS was investigated by the calculation of lattice parameters under various conditions, and these investigations confirm the solid solution strengthening effect on HISSs. CN66 with heat treatment at fast cooling has the highest wear resistance; a finding that was consistent with hardening mechanisms that occur due to an increased ferrite volume fraction. In addition, precipitates on the surface and the chemical bonding of chromium were investigated. As the amount of CrN bonding increased, the wear resistance also increased. This study also assessed the

  18. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Tanabe, Tatsuhiko; Nakajima, Hajime

    1994-01-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000 C in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000 to 900 C. The trend observed in the tests from 900 to 1000 C can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900 C plays the role of the protective barrier against the boron dissipation into the environment. (orig.)

  19. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Tanabe, Tatsuhiko.

    1993-09-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000degC in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the born content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000degC to 900degC. The trend observed in the tests from 900degC to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (author)

  20. Process optimization of atomized melt deposition for the production of dispersion strengthened Al-8.5%Fe-1.2%V-1.7%Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1995-01-01

    Atomized melt deposition is a low cost manufacturing process with the microstructural control achieved through rapid solidification. In this process the liquid metal is disintegrated into fine droplets by gas atomization and the droplets are deposited on a substrate producing near net shape products. In the present investigation Al-8.5%Fe-1.2%V-1.7%Si alloy was produced using atomized melt deposition process to study the evolution of microstructure and assess the cooling rates and the undercooling achieved during the process. The size, morphology and the composition of second phase particles in the alloy are strong functions of the cooling rate and the undercooling and hence microstructural changes with the variation in process parameters were quantified. To define optimum conditions for the atomized melt deposition process, a mathematical model was developed. The model determines the temperature distribution of the liquid droplets during gas atomization and during the deposition stages. The model predicts the velocity distribution, cooling rates and the fraction solid, during the flight for different droplet sizes. The solidification heat transfer phenomena taking place during the atomized melt deposition process was analyzed using a finite difference method based on the enthalpy formulation

  1. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    Science.gov (United States)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  2. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  3. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  4. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    Science.gov (United States)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  5. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    Science.gov (United States)

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.

  6. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  7. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Mueller, P.; Spaetig, P.; Baluc, N.

    2011-01-01

    The Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  8. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: oksiuta@pb.edu.pl [Bialystok Technical University, Mechanical Department, Wiejska 45c, 15-351 Bialystok (Poland); Mueller, P.; Spaetig, P.; Baluc, N. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-05-15

    The Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  9. Manufacturing and mechanical property test of the large-scale oxide dispersion strengthened martensitic mother tube by hot isostatic pressing and hot extrusion process

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2003-09-01

    Mass production capability of Oxide Dispersion Strengthened (ODS) ferritic steel cladding (9Cr) is evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube is a dominant factor in the total cost for manufacturing ODS ferritic cladding. In this study, the large-scale 9Cr-ODS martensitic mother tube was produced by overseas supplier with mass production equipments for commercialized ODS steels. The process of manufacturing the ODS mother tube consists of raw material powder production, mechanical alloying by high energy ball mill, hot isostatic pressing(HIP), and hot extrusion. Following results were obtained in this study. (1) Micro structure of the ODS steels is equivalent to that of domestic products, and fine oxides are uniformly distributed. The mechanical alloying by large capacity (1 ton) ball mill can be satisfactorily carried out. (2) A large scale mother tube (65 mm OD x 48 mm ID x 10,000 mm L), which can produce about 60 pieces of 3 m length ODS ferritic claddings by four times cold rolling, have been successfully manufactured through HIP and Hot Extrusion process. (3) Rough surface of the mother tubes produced in this study can be improved by selecting the reasonable hot extrusion condition. (4) Hardness and tensile strength of the manufactured ODS steels are lower than domestic products with same chemical composition. This is owing to the high aluminum content in the product, and those properties could be improved by decreasing the aluminum content in the raw material powder. (author)

  10. C-Curves for Lengthening of Widmanstätten and Bainitic Ferrite

    Science.gov (United States)

    Yin, Jiaqing; Leach, Lindsay; Hillert, Mats; Borgenstam, Annika

    2017-09-01

    Widmanstätten ferrite and bainitic ferrite are both acicular and their lengthening rate in binary Fe-C alloys and low-alloyed steels under isothermal conditions is studied by searching the literature and through new measurements. As a function of temperature, the lengthening rate can be represented by a common curve for both kinds of acicular ferrite in contrast to the separate C-curves often presented in time-temperature-transformation (TTT) diagrams. The curves for Fe-C alloys with low carbon content show no obvious decrease in rate at low temperatures down to 623 K (350 °C). For alloys with higher carbon content, the expected decrease of rate as a function of temperature below a nose was observed. An attempt to explain the absence of a nose for low carbon contents by an increasing deviation from local equilibrium at high growth rates is presented. This explanation is based on a simple kinetic model, which predicts that the growth rates for Fe-C alloys with less than 0.3 mass pct carbon are high enough at low temperatures to make the carbon pileup, in front of the advancing tip of a ferrite plate, shrink below atomic dimensions, starting at about 600 K (323 °C).

  11. Development of high performance ODS alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lin [Texas A & M Univ., College Station, TX (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States); Garner, Frank [Texas A & M Univ., College Station, TX (United States)

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoid and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.

  12. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  13. Simple Magnetic Device Indicates Thickness Of Alloy 903

    Science.gov (United States)

    Long, Pin Jeng; Rodriguez, Sergio; Bright, Mark L.

    1995-01-01

    Handheld device called "ferrite indicator" orginally designed for use in determining ferrite content of specimen of steel. Placed in contact with specimen and functions by indicating whether magnet attracted more strongly to specimen or to calibrated reference sample. Relative strength of attraction shows whether alloy overlay thinner than allowable.

  14. Fracture toughness evaluation of select advanced replacement alloys for LWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Xiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to develop and test degradation resistant alloys from current commercial alloy specifications by 2021 to a new advanced alloy with superior degradation resistance in light water reactor (LWR)-relevant environments by 2024. Fracture toughness is one of the key engineering properties required for core internal materials. Together with other properties, which are being examined such as high-temperature steam oxidation resistance, radiation hardening, and irradiation-assisted stress corrosion cracking resistance, the alloys will be down-selected for neutron irradiation study and comprehensive post-irradiation examinations. According to the candidate alloys selected under the ARRM program, ductile fracture toughness of eight alloys was evaluated at room temperature and the LWR-relevant temperatures. The tested alloys include two ferritic alloys (Grade 92 and an oxide-dispersion-strengthened alloy 14YWT), two austenitic stainless steels (316L and 310), four Ni-base superalloys (718A, 725, 690, and X750). Alloy 316L and X750 are included as reference alloys for low- and high-strength alloys, respectively. Compact tension specimens in 0.25T and 0.2T were machined from the alloys in the T-L and R-L orientations according to the product forms of the alloys. This report summarizes the final results of the specimens tested and analyzed per ASTM Standard E1820. Unlike the

  15. Tensile anisotropy and creep properties of a Fe-14CrWTi ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Steckmeyer, A., E-mail: antonin.steckmeyer@cea.fr [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France); Rodrigo, Vargas Hideroa [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France); Gentzbittel, J.M. [CEA Grenoble, DRT/LITEN/DTBH/LCTA, 38054 Grenoble Cedex 9 (France); Rabeau, V.; Fournier, B. [CEA Saclay, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France)

    2012-07-15

    A Fe-14Cr oxide dispersion strengthened (ODS) ferritic steel is studied as a potential material for cladding tube application for the next generation of fast-breeder nuclear reactors. Tensile specimens machined out from a hot extruded round bar in three different orientations are used to evaluate the mechanical anisotropy of this steel for temperatures in the range 20-750 Degree-Sign C. Its anisotropy is discussed both in terms of mechanical strength and fracture mode. At high temperatures (HTs), above 500 Degree-Sign C, the longitudinal direction appears to be the most ductile and most resistant direction. Longitudinal creep tests between 650 Degree-Sign C and 900 Degree-Sign C were also carried out. They show this ODS steel has a high HT creep lifetime and a low creep failure strain. Intergranular cracks aligned along the loading axis were observed on fractured creep specimens. They reveal a particular weakness of prior particle boundaries and suggest to modify the elaboration process through mechanical alloying and hot extrusion.

  16. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum

    International Nuclear Information System (INIS)

    Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2014-01-01

    The oxide dispersion strengthened (ODS) ferritic steels with nominal composition of Fe–16Cr–2W–0.5Ti–0.4Y 2 O 3 –4Al–1Zr (16Cr–4Al–Zr–ODS) were fabricated by a sol–gel method combining with mechanical alloying and spark plasma sintering (SPS) technique, and the 16Cr–ODS and 16Cr–4Al–ODS steels were prepared for comparison in the same way. Microstructure characterization reveals that in the 16Cr–4Al–ODS steel coarse Y–Al–O particles were formed while in the 16Cr–4Al–Zr–ODS steel finer Y–Zr–O particles were formed. The mean size and number density of the nano-oxide particles in the 16Cr–4Al–Zr–ODS steel are about 25 nm and 2.6 × 10 21 /m 3 , respectively. The ultimate tensile strength (UTS) of the 16Cr–ODS steel is about 1045 MPa, but UTS of the 16Cr–4Al–ODS steel decreases to 974 MPa. However, UTS of the 16Cr–4Al–Zr–ODS steel increases to 1180 MPa while keeping a large uniform elongation up to 23%, indicating the enhancement of mechanical properties by Zr addition

  17. Creep lifetime assessements of ferritic pipeline welds

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Goodall, I.W.; Miller, D.A.

    1995-01-01

    The low alloy ferritic steam pipework in Advanced Gas Cooled reactor (AGR) power stations operates at temperatures in the creep range. An inspection strategy for continued operation of the pipework has been developed based on estimation of the creep rupture life of pipework weldments and fracture mechanics for demonstrating acceptance of defects. This strategy is described in outline. The estimation of creep rupture life is described in more detail. Validation for the approach is illustrated by comparison with pressure vessel tests and with metallographic examination of components removed from service. The fracture mechanics methods are also described. It is shown that the amount of creep crack growth is dependent on the life fraction at which the assessment is made; crack growth being rapid as the creep rupture life is approached. (author). 3 refs., 5 figs., 1 tab

  18. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong

    2015-01-01

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO 4 . For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases

  19. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  20. Thermomechanical treatment of titanium alloys

    International Nuclear Information System (INIS)

    Khorev, A.K.

    1979-01-01

    The problems of the theory and practical application of thermomechanical treatment of titanium alloys are presented. On the basis of the systematic investigations developed are the methods of thermomechanical treatment of titanium alloys, established are the optimum procedures and produced are the bases of their industrial application with an account of alloy technological peculiarities and the procedure efficiency. It is found that those strengthening methods are more efficient at which the contribution of dispersion hardening prevails over the strengthening by phase hardening

  1. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix; Stabilite sous irradiation de particules d'oxydes finement dispersees dans des alliages ferritiques

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, I

    1999-07-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO{sub 2}+Y{sub 2}O{sub 3}) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide (< 20 nm) disappear, the modification of oxide composition, and a halo of fine oxides appear around the larger oxides. The use of such a material requires a study of oxide stability under irradiation, since the oxide particles provide the desired mechanical properties. The study is based on two types of alloys, the DY and four ferritic steels Fe-9Cr-1Mo reinforced by Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, MgO or MgAl{sub 2}O{sub 4}. These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel

  2. The Origin of Acicular Ferrite in Gas Metal Arc and Submerged ARC Welds

    Science.gov (United States)

    1994-03-01

    Ratio vs Acicular Ferrite 45 Figure 2.10 Crack Propagati6n Schematic . . ........... 46 Figure 2.11 CCT Diagram ... .......... ............ 47 Figure 3.1...10𔃾 TIME (S) Figure 2. 11 Continuous cooling transformation ( CCT ) diagram showing the effects of alloying elements, inclusion formers and cooling rate

  3. MARTENSITIC CREEP RESISTANT STEEL STRENGTHENED BY Z-PHASE

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to steel alloys having a martensitic or martensitic- ferritic structure and comprising Z-phase (CrXN) particles, where X is one or more of the elements V, Nb, Ta, and where the Z-phase particles have an average size of less than 400 nm. The alloy comprises by wt...... % the following components: 9 to 15% Cr, 0.01-0.20% N, C in an amount less than 0.1%, one or more of: 0.01- 0.5%V,0.01-1%Nb, 0.01-2%Ta, and a balance being substantially iron and inevitable impurities. The invention further relates to a method of manufacturing such a steel alloy, a component comprising...... such a steel alloy, and to the use of such a steel alloy for high temperature components....

  4. High purity ferritic Cr-Mo stainless steel

    International Nuclear Information System (INIS)

    Knoth, J.

    1977-01-01

    In five years, E-BRITE 26-1 ferritic stainless steel has won an important place in the spectrum of materials suitable for use in chemical process equipment. It provides, in stainless steel, performance-capability characteristics comparable to more expensive alloys. It has demonstrated cost-effectiveness in equipment used for caustic, nitric-urea, organic chemicals, pulping liquors, refinery streams, and elsewhere. User confidence in the reliability and integrity of Grade XM 27 has increased to the point where large critical systems are now routinely specified in the alloy. The market acceptance of this material has attracted attempts to produce substitute versions of the alloy. Imitation, should be viewed with caution. Stabilized 26-IS must be examined over a lengthy period of time to determine if its own corrosion resistance, ductility, fabricability and reproducibility properties could ever be likened to those of E-BRITE 26-1. (orig.) [de

  5. Development of ferritic steels for reduced activation: the US program

    International Nuclear Information System (INIS)

    Klueh, R.L.; Gelles, D.S.; Lechtenberg, T.A.

    1986-01-01

    The Cr-Mo ferritic (martensitic) steels are candidates for the structural components of fusion reactors. Irradiation of such steels in a fusion environment produces long-lived radioactive isotopes, which lead to difficult radioactive waste disposal problems once the structure is removed from service. Such problems could be reduced by using steels that contain only elements that produce radioactive isotopes that decay to low levels in a reasonable time (tens of years instead of hundreds or thousands of years). The US Department of Energy has a program to develop steels to meet the criteria for shallow land burial as opposed to deep geologic storage. A review of the alloy development programs indicates that ferritic steels that meet these criteria can be developed

  6. Corrosion of ferrous alloys in eutectic lead-lithium environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-09-01

    Corrosion data have been obtained on austenitic prime candidate alloy (PCA) and Type 316 stainless steel and ferritic HT-9 and Fe-9Cr-1Mo steels in a flowing Pb-17 at. % Li environment at 727 and 700 K (454 and 427 0 C). The results indicate that the dissolution rates for both austenitic and ferritic steels in Pb-17Li are an order of magnitude greater than in flowing lithium. The influence of time, temperature, and alloy composition on the corrosion behavior in Pb-17Li is similar to that in lithium. The weight losses for the austenitic steels are an order of magnitude greater than for the ferritic steels. The rate of weight loss for the ferritic steels is constant, whereas the dissolution rates for the austenitic steels decrease with time. After exposure to Pb-17Li, the austenitic steels develop a very weak and porous ferrite layer which easily spalls from the specimen surface

  7. Effects of Mn addition on microstructures and mechanical properties of 10Cr ODS ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic (FM) steels are very attractive for the structural materials of fast fission reactors such as a sodium cooled fast reactor (SFR) owing to their excellent irradiation resistance to a void swelling, but are known to reveal an abrupt loss of their creep and tensile strengths at temperatures above 600 .deg. C. Accordingly, high temperature strength should be considerably improved for an application of the FM steel to the structural materials of SFR. Oxide dispersion strengthened (ODS) FM steels are considered to be promising candidate materials for high- temperature components operating in severe environments such as nuclear fusion and fission systems due to their excellent high temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in the ferritic/martensitic matrix.. To develop an advanced ODS steel for core structural materials for next generation nuclear reactor system applications, it is important to optimize its compositions to improve the high temperature strength and radiation resistance. This study investigates effects of Mn addition on microstructures and mechanical properties of 10Cr ODS FM steel. For this, two 10 Cr ODS FM steels were prepared by mechanical alloying (MA), hot isostatic pressing (HIP), and hot rolling process. Tensile tests were carried out at room temperature and 700 .deg. C to evaluate the influences of the Mn element on the mechanical properties. The microstructures were observed using SEM, electron back-scatter diffraction (EBSD) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS). In the present study, the effects of Mn addition on the microstructure and mechanical properties of ODS FM steels were investigated. The ODS FM steels were manufactured by the MA, HIP and hot-rolling processes

  8. Effect of niobium clustering and precipitation on strength of an NbTi-microalloyed ferritic steel

    International Nuclear Information System (INIS)

    Kostryzhev, A.G.; Al Shahrani, A.; Zhu, C.; Cairney, J.M.; Ringer, S.P.; Killmore, C.R.; Pereloma, E.V.

    2014-01-01

    The microstructure–property relationship of an NbTi-microalloyed ferritic steel was studied as a function of thermo-mechanical schedule using a Gleeble 3500 simulator, optical and scanning electron microscope, and atom probe tomography. Contributions to the yield stress from grain size, solid solution, work hardening, particle and cluster strengthening were calculated using the established equations and the measured microstructural parameters. With a decrease in the austenite deformation temperature the yield stress decreased, following a decrease in the number density of >20 nm Nb-rich particles and ≈5 nm Nb-C clusters, although the grain refinement contribution increased. To achieve the maximum cluster/precipitation strengthening in ferrite, the austenite deformation should be carried out in the recrystallisation temperature region where there is a limited tendency for strain-induced precipitation. Based on the analysis of cluster strengthening increment, it could be suggested that the mechanism of dislocation–cluster interaction is closer to shearing than looping

  9. Effect of niobium clustering and precipitation on strength of an NbTi-microalloyed ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kostryzhev, A.G., E-mail: kostryzhev@yahoo.com [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2500 (Australia); Al Shahrani, A. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2500 (Australia); Zhu, C.; Cairney, J.M.; Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Killmore, C.R. [BlueScope Steel Limited, Five Islands Road, Port Kembla, NSW 2505 (Australia); Pereloma, E.V. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2500 (Australia); UOW Electron Microscopy Centre, University of Wollongong, NSW 2519 (Australia)

    2014-06-01

    The microstructure–property relationship of an NbTi-microalloyed ferritic steel was studied as a function of thermo-mechanical schedule using a Gleeble 3500 simulator, optical and scanning electron microscope, and atom probe tomography. Contributions to the yield stress from grain size, solid solution, work hardening, particle and cluster strengthening were calculated using the established equations and the measured microstructural parameters. With a decrease in the austenite deformation temperature the yield stress decreased, following a decrease in the number density of >20 nm Nb-rich particles and ≈5 nm Nb-C clusters, although the grain refinement contribution increased. To achieve the maximum cluster/precipitation strengthening in ferrite, the austenite deformation should be carried out in the recrystallisation temperature region where there is a limited tendency for strain-induced precipitation. Based on the analysis of cluster strengthening increment, it could be suggested that the mechanism of dislocation–cluster interaction is closer to shearing than looping.

  10. Effect of molybdenum and chromium additions on the mechanical properties of Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Sun Yangshan; Xue Feng; Mei Jianping; Yu Xingquan; Zhang Lining

    1995-01-01

    Iron aluminides based on Fe 3 Al offer excellent oxidation and sulfidation resistance, with lower material cost and density than stainless steels. However, their potential use as structural material has been hindered by limited ductility and a sharp drop in strength above 600 C. Recent development efforts have indicated that adequate engineering ductility of 10--20% and tensile yield strength of as high as 500 MPa can be achieved through control of composition and microstructure. These improved tensile properties make Fe 3 Al-based alloys more competitive against conventional austenic and ferritic steels. The improvement of high temperature mechanical properties has been achieved mainly by alloying processes. Molybdenum has been found to be one of the most important alloying elements for strengthening Fe 3 Al-based alloys at high temperatures. However, the RT(room temperature) ductility decreases with the increase of a molybdenum addition. On the other hand, a chromium addition to Fe 3 Al-based alloys is very efficient for improving RT ductility but not beneficial to yield strength at temperatures to 800 C. The purpose of the present paper is to report the effects of combined additions of molybdenum and chromium on mechanical properties at ambient temperature and high temperature of 600 C

  11. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  12. Strengthening Mechanisms in Microtruss Metals

    Science.gov (United States)

    Ng, Evelyn K.

    Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing

  13. Optimisation of the mechanical alloying process for odsferritic steels for generation IV reactors application

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Abrudeanu, M.

    2016-01-01

    ODS ferritic steels appear as promising materials for fusion and Gen IV fission reactors, offering high temperature performance, corrosion and irradiation resistance and meeting low activation criteria. Mechanical alloying (MA) is a powder metallurgy technique efficient for fabricating advanced materials, and has been used for strengthening structural materials including Fe-Cr alloys. In this paper a high-energy ball mill is used to study the microstructural evolution of 14YW alloy during the mechanical alloying process. The elemental powders are milled at a rotation speed of 250rot/min in cycles of 10min milling and 5min pause, with a ball-to-powder ration of 10:1 and in argon protective atmosphere. After 72 hours milling, the morphology and element distribution of the MA powders is investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, respectively. It is observed that the particles size increases in the first milling stages and then decreases with the milling time. Changes in the material composition are analysed by X-ray diffraction (DRX). It seems that after milling part of the W remains non-dissolved in the Fe-Cr matrix retarding the solid solution formation. (authors)

  14. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  15. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  16. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  17. Use of microstructure control to toughen ferritic steels for cryogenic use. I. Fe--Ni steels

    International Nuclear Information System (INIS)

    Syn, C.K.; Jin, S.; Morris, J.W. Jr.

    1976-12-01

    Alternation of austenitization and austenite + ferrite two-phase decomposition treatment in a cyclic thermal treatment allows the achievement of ultra-fine grain size in steels containing 8-12% Ni. The grain refinement leads to a substantial improvement in cryogenic mechanical properties. The ductile-brittle transition temperature of a ferritic Fe-12Ni-0.25Ti alloy was suppressed to below liquid helium temperature by this grain refinement procedure; the transition temperature of commercial ''9Ni'' cryogenic steel was similarly reduced by combining the grain refinement with a final temper which introduces a small admixture of retained austenite

  18. Evaluation of feasibility of tungsten/oxide dispersion strengthened steel bonding with vanadium insert

    International Nuclear Information System (INIS)

    Noto, Hiroyuki; Kimura, Akihiko; Kurishita, Hiroaki; Matsuo, Satoru; Nogami, Shuhei

    2013-01-01

    A diffusion bonding (DB) technique to reduce thermal expansion coefficient mismatch between tungsten (W) and oxide dispersion strengthened ferritic steel (ODS-FS) was developed by applying a vanadium (V) alloy as an insert material. In order to suppress σ phase precipitation at the interface, DB of ODS-FS and V-4Cr-4Ti was carried out by introducing a Ti insert as a diffusion barrier between V-4Cr-4Ti and ODS-FS, and examined feasibility of W/V/Ti/ODS-FS joint for application to fusion reactor components by comparing the three-point bending strength and microstructure between the joints with and without a Ti diffusion barrier layer. It is shown that the fracture strength of the joint without a Ti insert was decreased by 25% after aging at 700°C for 100 h, but that with a Ti insert shows no change after the aging treatment up to 1000 h. The result indicates that the introduction of a Ti insert leads to the prevention of the formation of σ phase during aging and resultant control of the degradation of the bonding strength. (author)

  19. Strengthening of Shear Walls

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg

    The theory for concrete structures strengthened with fiber reinforced polymer materials has been developing for approximately two decades, and there are at the present time numerous guidelines covering strengthening of many commonly encountered structural building elements. Strengthening of in...... that describes a unit width strip of a strengthened disk. The unit width strip is named a strengthened concrete tension member and contains a single tensile crack and four debonding cracks. Analysis of the member results in closed form expressions for the load-crack opening relationship. Further analysis...... of the response, results in the ability to determine and characterize the two-way crack propagation, i.e. the relationship between tensile cracking in the concrete and interface debonding between strengthening and concrete. Using the load-crack opening relationship from the strengthened concrete tension member...

  20. Some initial considerations on the suitability of Ferritic/ martensitic stainless steels as first wall and blanket materials in fusion reactors

    International Nuclear Information System (INIS)

    Butterworth, G.J.

    1982-01-01

    The constitution of stainless iron alloys and the characteristic properties of alloys in the main ferritic, martensitic and austenitic groups are discussed. A comparison of published data on the mechanical, thermal and irradiation properties of typical austenitic and martensitic/ferritic steels shows that alloys in the latter groups have certain advantages for fusion applications. The ferromagnetism exhibited by martensitic and ferritic alloys has, however, been identified as a potentially serious obstacle to their utilisation in magnetic confinement devices. The paper describes measurements performed in other laboratories on the magnetic properties of two representative martensitic alloys 12Cr-1Mo and 9Cr-2Mo. These observations show that a modest bias magnetic field of magnitude 1 - 2 tesla induces a state of magnetic saturation in these materials. They would thus behave as essentially paramagnetic materials having a relative permeability close to unity when saturated by the toroidal field of a tokamak reactor. The results of computations by the General Atomic research group to assess the implications of such magnetic behaviour on reactor design and operation are presented. The results so far indicate that the ferromagnetism of martensitic/ferritic steels would not represent a major obstacle to their utilisation as first wall or blanket materials. (author)

  1. Investigation on grain refinement and precipitation strengthening applied in high speed wire rod containing vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Da-yong; Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn; Wang, Bin; Liu, Jia-ling; Liao, Bo, E-mail: cyddjyjs@263.net

    2014-01-13

    To obtain necessary information for the simulation of high speed wire production process, the effect of grain refinement and precipitation strengthening on two high speed wire rod steels with different vanadium and nitrogen contents was investigated by continuous cooling transformation (CCT) characteristics. CCT curves were constructed by the dilatometer test and microscopic observation. Results showed that the formation of intra-granular ferrite (IGF) could refine grain remarkably and accelerate the ferrite transformation. Schedules for high speed wire production process focused on the effect of cooling rate. Ferrite grain was refined by increasing cooling rate and the formation of IGF. The microhardness calculation revealed that the steels were strengthened mostly by a combined effect of grain refinement and precipitation hardening. Degenerated pearlite was observed at lower transformation temperature and the fracture morphology changed from cementite lamellar to nanoscale cementite particle with increasing cooling rate. Based on the analysis above, an optimal schedule was applied and the microstructure and microhardness were improved.

  2. Influence of Powder Outgassing Conditions on the Chemical, Microstructural, and Mechanical Properties of a 14 wt% Cr Ferritic ODS Steel

    Science.gov (United States)

    Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.

    2017-11-01

    Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.

  3. Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C-Mn steels

    International Nuclear Information System (INIS)

    Hossein Nedjad, S.; Zahedi Moghaddam, Y.; Mamdouh Vazirabadi, A.; Shirazi, H.; Nili Ahmadabadi, M.

    2011-01-01

    Research highlights: → Bainite showed weak property improvement after rolling and annealing. → Additions of titanium and titanium oxide stimulated acicular ferrite. → Acicular ferrite obtained by nanoparticles exhibited very high strength. → Rolling and annealing of acicular ferrite gave substantial property improvement. - Abstract: The propensity of bainite and acicular ferrite structures of experimental C-Mn steels for enhanced grain refinement by combining phase transformation and plastic deformation has been investigated. Formation of acicular ferrite structures were stimulated with a small amount of titanium and titanium oxide nanoparticles added into the molten steels of high Mn concentrations. Isothermal transformations into the bainite and acicular ferrite structures were performed for 1.8 ks at 823 K after preliminary austenitization for 1.8 ks at 1523 K. Cold rolling for 50% thickness reduction was conducted on the isothermally transformed structures. Subsequent annealing of the deformed structures was conducted for 3.6 ks at 773, 873 and 973 K. Optical microscopy, scanning electron microscopy and tensile test were used for characterization of the studied steels. Cold rolling and annealing of the transformed structures at 873 K resulted in strengthening at the expense of ductility where an initial stage of recrystallization is realized. Acicular ferrite obtained by the addition of titanium into the molten steel exhibited the remarkable improvement of tensile properties. Discontinuous recrystallization of the deformed structures at 973 K leads to the formation of fine grains wherein acicular structures represented more enhanced grain refinement than bainite.

  4. Nanoscale lamellae in an oxide dispersion strengthened steel processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N. R.

    2014-01-01

    The microstructure of an oxide dispersion strengthened ferritic PM2000 steel with a strong initial (100) texture has been investigated after compression by dynamic plastic deformation (DPD) at room temperature to a strain of 2.1. Measurements using electron backscatter diffraction and transmission...

  5. First-principles study on influence of molybdenum on acicular ferrite formation on TiC particles in microallyed steels

    Science.gov (United States)

    Hua, Guomin; Li, Changsheng; Cheng, Xiaonong; Zhao, Xinluo; Feng, Quan; Li, Zhijie; Li, Dongyang; Szpunar, Jerzy A.

    2018-01-01

    In this study, influences of molybdenum on acicular ferrite formation on precipitated TiC particles are investigated from thermodynamic and kinetic respects. In thermodynamics, Segregation of Mo towards austenite/TiC interface releases the interfacial energy and induces phase transformation from austenite to acicular ferrite on the precipitated TiC particles. The Phase transformation can be achieved by displacive deformation along uniaxial Bain path. In addition, the segregation of Mo atom will also lead to the enhanced stability of ferrite in comparison with austenite no matter at low temperature or at high temperature. In kinetics, the Mo solute in acicular ferrite can effectively suppress the diffusion of carbon atoms, which ensures that orientation relationship between acicular ferrite and austenitized matrix can be satisfied during the diffusionless phase transformation. In contrast to ineffectiveness of TiC particles, the alloying Mo element can facilitate the formation of acicular ferrite on precipitated TiC particles, which is attributed to the above thermodynamic and kinetic reasons. Furthermore, Interfacial toughness and ductility of as-formed acicular ferrite/TiC interface can be improved simultaneously by segregation of Mo atom.

  6. Irradiation creep in ferritic steels

    International Nuclear Information System (INIS)

    Vandermeulen, W.; Bremaecker, A. de; Burbure, S. de; Huet, J.J.; Asbroeck, P. van

    Pressurized and non-pressurized capsules of several ferritic steels have been irradiated in Rapsodie between 400 and 500 0 C up to 3.7 x 10 22 n/cm 2 (E>0.1 MeV). Results of the diameter measurements are presented and show that the total in-pile deformation is lower than for austenitic steels

  7. Tensile and fracture characteristics of oxide dispersion strengthened Fe–12Cr produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vanessa de, E-mail: vanessa.decastro@uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); Garces-Usan, Jose Maria; Leguey, Teresa; Pareja, Ramiro [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain)

    2013-11-15

    The mechanical characteristics of a model oxide dispersion strengthened (ODS) alloy with nominal composition Fe–12 wt%Cr–0.4 wt%Y{sub 2}O{sub 3} were investigated by means of microhardness measurements, tensile tests up to fracture in the temperature range of 298–973 K, and fracture surface analyses. A non-ODS Fe–12 wt%Cr alloy was also studied to assess the real capacity of the oxide dispersion for strengthening the alloy. The materials were produced by mechanical alloying followed by hot isostatic pressing consolidation and heat treatment at 1023 K. The strengthening effect of the oxide nanodispersion was effective at all temperatures studied, although the tensile strength converges towards the one obtained for the reference alloy at higher temperatures. Moreover, the ODS alloys failed prematurely at T < 673 K due to the presence of Y-rich inclusions, as seen in the fracture surface of these alloys.

  8. Tensile and fracture characteristics of oxide dispersion strengthened Fe–12Cr produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Castro, Vanessa de; Garces-Usan, Jose Maria; Leguey, Teresa; Pareja, Ramiro

    2013-01-01

    The mechanical characteristics of a model oxide dispersion strengthened (ODS) alloy with nominal composition Fe–12 wt%Cr–0.4 wt%Y 2 O 3 were investigated by means of microhardness measurements, tensile tests up to fracture in the temperature range of 298–973 K, and fracture surface analyses. A non-ODS Fe–12 wt%Cr alloy was also studied to assess the real capacity of the oxide dispersion for strengthening the alloy. The materials were produced by mechanical alloying followed by hot isostatic pressing consolidation and heat treatment at 1023 K. The strengthening effect of the oxide nanodispersion was effective at all temperatures studied, although the tensile strength converges towards the one obtained for the reference alloy at higher temperatures. Moreover, the ODS alloys failed prematurely at T < 673 K due to the presence of Y-rich inclusions, as seen in the fracture surface of these alloys

  9. ODS alloys for structures subjected to irradiation

    International Nuclear Information System (INIS)

    Carlan, Y. de

    2010-01-01

    ODS (oxide-dispersion-strengthened) materials are considered for cladding purposes for the fourth-generation sodium-cooled fast reactors. ODS materials afford many benefits. Indeed, these high-performance materials combine, at the same time, remarkable mechanical strength, in hot conditions, and outstanding irradiation behavior. New ODS steel grades, exhibiting better performance levels than the last-generation austenitic steels, afford not only negligible swelling under irradiation, owing to their 'ferritic' body-centered cubic structure - by contrast to austenitic grades, which feature a face-centered cubic structure - but equally outstanding creep properties, owing to the nano-reinforcements present in the matrix. ODS materials are obtained by powder metallurgy, the first fabrication step involves co-grinding a metal powder together with yttrium oxide (Y 2 O 3 ) powder. At this stage, an iron oxide may also be added, or an yttrium-rich intermetallic compound in order to provide the amounts of yttrium, and oxygen required for the formation of nano-oxides. The metal powder consists of a powder pre-alloyed to the chemical composition of the desired material. Once the powder has been obtained, consolidation of the ODS materials is achieved either by hot extrusion, or by hot isostatic pressing. (A.C.)

  10. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  11. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  12. Review of creep resistant alloys for power plant applications

    Directory of Open Access Journals (Sweden)

    A. Nagode

    2011-01-01

    Full Text Available A paper describes the most popular alloys for power plant application as well as the most promising alloys for future application in that technology. The components in power plants operate in severe conditions (high temperatures and pressures and they are expected reliable service for 30 years and more. The correct choice of the material is, thus, of a very importance. The paper describes the development as well as advantages and disadvantages of convenient ferritic/martensitic steels, ferritic/bainitic steels, austenitic stainless steels and the new alloys for the application at temperatures of 650°C and more.

  13. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Arash Fattah-alhosseini

    2015-10-01

    Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.

  14. Water corrosion test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    As a part of feasibility study of ODS steel cladding, its water corrosion resistance was examined under water pool condition. Although addition of Cr is effective for preventing water corrosion, excessive Cr addition leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, water corrosion test was conducted for these ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) Corrosion rate of 9Cr-ODS martensitic and 12Cr-ODS ferritic steel are significantly small and no pitting was observed. Thus, these ODS steels have superior resistance for water corrosion under the condition of 60degC and pH8-12. (2) It was showed that 9Cr-ODS martensitic steel and 12Cr-ODS ferritic steel have comparable water corrosion resistance to that of PNC316 and PNC-FMS at 60degC for 1,000h under varying pH of 8, 10. Water corrosion resistance of these alloys is slightly larger than that of PNC316 and PNC-FMS at pH12 without significant difference of appearance and uneven condition. (author)

  15. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  16. Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongsheng, E-mail: chen.dongsheng85@gmail.com [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko; Han, Wentuo; Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-10-15

    Highlights: • The role of oxide particles in α/α′ phase decomposition behavior; microstructure of phase decomposition observed by TEM. • The characteristics of ductility loss caused by age-hardening. • Correlation of phase decomposition and age-hardening explained by dispersion strengthened models. • Age-hardening susceptibility of ODS steels and SUS430 steel. - Abstract: The effect of aging on high-Cr ferritic steels was investigated with focusing on the role of oxide particles in α/α′ phase decomposition behavior. 12Cr-oxide dispersion strengthened (ODS) steel, 15Cr-ODS steel and commercial SUS430 steel were isothermally aged at 475 °C for up to 10,000 h. Thermal aging caused a larger hardening in SUS430 than 15Cr-ODS, while 12Cr-ODS showed almost no hardening. A characteristic of the ODS steels is that the hardening was not accompanied by the significant loss of ductility that was observed in SUS430 steel. After aging for 2000 h, SUS430 steel shows a larger ductile–brittle transition temperature (DBTT) shift than 15Cr-ODS steel, which suggests that the age-hardening susceptibility is lower in 15Cr-ODS steel than in conventional SUS430 steel. Thermal aging leaded to a large number of Cr-rich α′ precipitates, which were confirmed by transmission electron microscopy (TEM). Correlation of age-hardening and phase decomposition was interpreted by Orowan type strengthening model. Results indicate that oxide particles cannot only suppress ductility loss, but also may influence α/α′ phase decomposition kinetics.

  17. Structural characterization of ferrite nanoparticles and composite materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Albuquerque, A.S.; Macedo, W.A.A.; Plivelic, T.; Torriani, I.L.; Jimenez, J.A.L.; Saitovich, E.B.

    2001-01-01

    During the last decade nanocrystalline magnetic materials have been widely studied due to the multiple technological applications. Amongst the magnetic materials of major technological interest are the soft magnetic ferrites and the granular solids formed by ferrites dispersed in non-magnetic matrices. It is a well known fact that the magnetic properties of these materials, such as coercivity, magnetic saturation and magnetization, depend on the shape, size and size distribution of the nanoparticles. For this reason, the general purpose of this work was to obtain structural information on ferrite nanoparticles (NiFe 2 O 4 and NiZnFe 2 O 4 ) and granular solids obtained by dispersion of these particles in non magnetic matrices, like SiO 2 and SnO 2 . The ferrite samples were prepared by co-precipitation and heat treated between 300 and 600 deg. C at the Applied Physics Laboratory of tile CDTN. The granular solids, with 30% in volume concentration of ferrite, were obtained by mechanical alloying with milling times (t m ) varying between 1.25 and 10 h, at the CBPF

  18. Conversion of MX Nitrides to Modified Z-Phase in 9-12%Cr Ferritic Steels

    DEFF Research Database (Denmark)

    Cipolla, Leonardo

    for Z-phase formation was highlighted during the studies. Several 9-12%Cr commercial steels with prolonged high-temperature exposures have been investigated, too. The same mechanism of Z-phase formation o