WorldWideScience

Sample records for strength transition rates

  1. Oscillator strengths and radiative rates for transitions in neutral sulfur

    International Nuclear Information System (INIS)

    Deb, N.C.; Hibbert, A.

    2008-01-01

    We present accurate oscillator strengths and radiative rates for 2173 E1 transitions among the 120 levels belonging to 3s 2 3p 4 , 3s3p 5 , and 3s 2 3p 3 ( 4 S o , 2 D o , 2 P o )nl configurations where nl=4s,5s,6s,4p,5p,6p,3d,4d,4f,5f. A configuration interaction approach is employed through the standard CIV3 program. The 114 LS states included in the present calculation generate 250 fine-structure levels belonging to the above configurations below 100,000 cm -1 . However, results of only 120 fine-structure levels are presented due to the absence of experimental energy values for the remaining levels. Tabulations of oscillator strengths and radiative rates, and their comparison with other calculations, are presented in the first two tables. In a separate table the oscillator strengths and transition probabilities, in length and velocity gauges, are presented for 2173 E1 transitions, and are arranged in ascending order of wavelength

  2. Strength and rupture-life transitions caused by secondary carbide precipitation in HT-9 during high-temperature low-rate mechanical testing

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.; Hughes, T.H.

    1992-01-01

    The martensitic-ferritic alloy HT-9 is slated for long-term use as a fuel-cladding material in the Integral Fast Reactor. Analysis of published high-temperature mechanical property data suggests that secondary carbide precipitation would occur during service life causing substantial strengthening of the as-heat-treated material. Aspects of the kinetics of this precipitation process are extracted from calculations of the back stress necessary to produce the observed strengthening effect under various creep loading conditions. The resulting Arrhenius factor is shown to agree quantitatively with shifts to higher strength of crept material in reference to the intrinsic strength of HT-9. The results of very low constant strain-rate high-temperature tensile tests on as-heat-treated HT-9 that focus on the transition in strength with precipitation will be presented and related to rupture-life

  3. Electric Monopole Transition Strengths in 62Ni

    Directory of Open Access Journals (Sweden)

    Evitts L. J.

    2016-01-01

    Full Text Available Excited states in 62Ni were populated with a (p, p’ reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0, were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77−34+23 × 10−3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0 value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0 values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0 value for the 22+ to 21+ transition.

  4. Electric Monopole Transition Strengths in 62Ni

    Science.gov (United States)

    Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Moukaddam, M.; Alshahrani, B.; Eriksen, T. K.; Holt, J. D.; Hota, S. S.; Lane, G. J.; Lee, B. Q.; McCormick, B. P.; Palalani, N.; Reed, M. W.; Stroberg, S. R.; Stuchbery, A. E.

    2016-09-01

    Excited states in 62Ni were populated with a (p, p') reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0), were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77-34+23 × 10-3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0) value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0) values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0) value for the 22+ to 21+ transition.

  5. Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.N., E-mail: prabhukn_2002@yahoo.co.in [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India); Deshapande, Parashuram; Satyanarayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Effect of cooling rate on tensile and impact properties of Sn-9Zn alloy was assessed. Black-Right-Pointing-Pointer Both DBTT and UTS of the solder alloy increased with increase in cooling rate. Black-Right-Pointing-Pointer An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile-brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn-9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 Degree-Sign C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the

  6. Effect of cooling rate during solidification of Sn–9Zn lead-free solder alloy on its microstructure, tensile strength and ductile–brittle transition temperature

    International Nuclear Information System (INIS)

    Prabhu, K.N.; Deshapande, Parashuram; Satyanarayan

    2012-01-01

    Highlights: ► Effect of cooling rate on tensile and impact properties of Sn–9Zn alloy was assessed. ► Both DBTT and UTS of the solder alloy increased with increase in cooling rate. ► An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile–brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn–9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 °C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the DBTT.

  7. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    International Nuclear Information System (INIS)

    Aggarwal, Kanti M; Keenan, Francis P

    2013-01-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 8 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions. (paper)

  8. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    Science.gov (United States)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2013-04-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.

  9. Electric Monopole Transition Strengths in the Stable Nickel Isotopes

    Science.gov (United States)

    Evitts, Lee John

    A series of measurements of stable nickel isotopes were performed at the Australian National University in Canberra. Excited states in 58,60,62Ni were populated via inelastic scattering of proton beams delivered by the 14UD Pelletron accelerator. Multiple setups were used in order to determine the structure of low-lying states. The CAESAR array of Compton-suppressed HPGe detectors was used to measure the (E2/M1) mixing ratio of transitions from angular distributions of gamma rays. The Super-e spectrometer was used to measure conversion coefficients for a number of J to J transitions. The data obtained from both devices was combined with previously measured parent lifetimes and branching ratios to determine E0 transition strengths between J-pi transitions. The E0 transition strength for the second 0+ to first 0+ transitions in 60,62Ni have been measured for the first time through internal conversion electron detection. The experimental value of 132(+59,-70) for 62Ni agrees within 2 sigma of the previous result obtained from internal pair formation. However it is likely that the previous experimental results used an outdated theoretical model for internal pair formation emission. This work also represents the first measurements of E0 transition strengths between 2+ states in Ni isotopes. There is generally large E0 strength between the 2+ states, particularly in the second 2+ to first 2+ transition, however there is also a large uncertainty in the measurements owing to the difficulties involved in measuring conversion coefficients. In 62Ni, the E0 transition strength of 172(+62,-77) for the second 2+ to first 2+ transition gives further weight to the argument against the spherical vibrator model, as an E0 transition is forbidden if there is a change of only one phonon. The large measurement also indicates the presence of shape coexistence, complementing the recent experimental work carried out in the neutron-rich Ni isotopes.

  10. Polynomial expansions and transition strengths

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1980-01-01

    The subject is statistical spectroscopy applied to determining strengths and strength sums of excitation processes in nuclei. The focus will be on a ds-shell isoscalar E2 study with detailed shell-model results providing the standard for comparison; similar results are available for isovector E2 and M1 and E4 transitions as well as for single-particle transfer and ν +- decay. The present study is intended to serve as a tutorial for applications where shell-model calculations are not feasible. The problem is posed and a schematic theory for strengths and sums is presented. The theory is extended to include the effect of correlations between H, the system Hamiltonian, and theta, the excitation operator. Associated with correlation measures is a geometry that can be used to anticipate the goodness of a symmetry. This is illustrated for pseudo SU(3) in the fp-shell. Some conclusions about fluctuations and collectivity that one can deduce from the statistical results for strengths are presented

  11. Random matrix theory for transition strengths: Applications and open questions

    Science.gov (United States)

    Kota, V. K. B.

    2017-12-01

    Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different) and so on. Using embedded ensembles (EE), there are efforts to derive a good statistical theory for transition strengths. With m fermions (or bosons) in N mean-field single particle levels and interacting via two-body forces, we have with GOE embedding, the so called EGOE(1+2). Now, the transition strength density (transition strength multiplied by the density of states at the initial and final energies) is a convolution of the density generated by the mean-field one-body part with a bivariate spreading function due to the two-body interaction. Using the embedding U(N) algebra, it is established, for a variety of transition operators, that the spreading function, for sufficiently strong interactions, is close to a bivariate Gaussian. Also, as the interaction strength increases, the spreading function exhibits a transition from bivariate Breit-Wigner to bivariate Gaussian form. In appropriate limits, this EE theory reduces to the polynomial theory of Draayer, French and Wong on one hand and to the theory due to Flambaum and Izrailev for one-body transition operators on the other. Using spin-cutoff factors for projecting angular momentum, the theory is applied to nuclear matrix elements for neutrinoless double beta decay (NDBD). In this paper we will describe: (i) various developments in the EE theory for transition strengths; (ii) results for nuclear matrix elements for 130Te and 136Xe NDBD; (iii) important open questions in the current form of the EE theory.

  12. Oscillator strengths and transition probabilities for the intercombination transitions in Fe XXII

    International Nuclear Information System (INIS)

    Glass, R.

    1979-01-01

    Oscillator strengths and transition probabilities are evaluated for the intercombination transitions between the 2s 2 2p, 2s 2p 2 and 2p 3 states of Fe XXII using configuration interaction wavefunctions. The fine-structure splittings have also been calculated. Some significant differences with previous calculations are obtained

  13. Transition and Electron Impact Excitation Collision Rates for O III

    Science.gov (United States)

    Tayal, S. S.; Zatsarinny, O.

    2017-12-01

    Transition probabilities, electron excitation collision strengths, and rate coefficients for a large number of O III lines over a broad wavelength range, from the infrared to ultraviolet, have been reported. The collision strengths have been calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in combination with B-spline expansions is employed for an accurate representation of the target wave functions. The close-coupling expansion contains 202 O2+ fine-structure levels of the 2{s}22{p}2,2s2{p}3, 2{p}4,2{s}22p3s,3p,3d, 4s,4p,4d,4f,5s, and 2s2{p}33s,3p,3d configurations. The effective collision strengths are obtained by averaging electron excitation collision strengths over a Maxwellian distribution of velocities at electron temperatures ranging from 100 to 100,000 K. The calculated effective collision strengths have been reported for the 20,302 transitions between all 202 fine-structure levels. There is an overall good agreement with the recent R-matrix calculations by Storey et al. for the transitions between all levels of the ground 2{s}22{p}2 configuration, but significant discrepancies have been found with Palay et al. for transitions to the 2{s}22{p}2 1 S 0 level. Line intensity ratios between the optical lines arising from the 2{s}22{p}2{}3{P}{0,1,2} - 1 D 2 transitions have been compared with other calculations and observations from the photoionized gaseous nebulae, and good agreement is found. The present calculations provide the most complete and accurate data sets, which should allow a more detailed treatment of the available measured spectra from different ground and space observatories.

  14. Effect of symmetry breaking on transition strength distributions

    International Nuclear Information System (INIS)

    Mitchell, G.E.; Shriner, J.F. Jr.

    2001-01-01

    The quantum numbers of over 100 states in 30 P have been determined from the ground state to 8 MeV. Previous measurements had provided complete spectroscopy in 26 Al. For these N=Z=odd nuclei, states of isospin T=0 and T=1 coexist at all energies. These spectra provide a unique opportunity to test the effect of symmetry breaking (of the approximate symmetry isospin) on the level statistics and on the transition strength distributions. The level statistics are strongly affected by the small symmetry breaking and the transition strength distributions differ from the Porter-Thomas distribution

  15. Energy levels and radiative rates for transitions in Ti VI

    International Nuclear Information System (INIS)

    Aggarwal, K M; Keenan, F P; Msezane, A Z

    2013-01-01

    We report on calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 253 levels of the (1s 2 2s 2 2p 6 ) 3s 2 3p 5 , 3s3p 6 , 3s 2 3p 4 3d, 3s3p 5 3d, 3s 2 3p 3 3d 2 , 3s 2 3p 4 4s, 3s 2 3p 4 4p and 3s 2 3p 4 4d configurations of Ti VI. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 253 levels, although calculations have been performed for a much larger number of levels. Comparisons are made with existing available results and the accuracy of the data is assessed. Additionally, lifetimes for all 253 levels are listed, although comparisons with other theoretical results are limited to only 88 levels. Our energy levels are estimated to be accurate to better than 1% (within 0.03 Ryd), whereas results for other parameters are probably accurate to better than 20%. A reassessment of the energy level data on the National Institute of Standards and Technology website for Ti VI is suggested. (paper)

  16. Transition-strength fluctuations and the onset of chaotic motion

    International Nuclear Information System (INIS)

    Alhassid, Y.; Levine, R.D.

    1986-01-01

    The maximum-entropy formalism is used to characterize the fluctuations in transition strengths for a bound quantum-mechanical system. In the chaotic limit only one, ever present, sum rule is required as a constraint. The resulting distribution is that of Porter and Thomas, which can also be derived from random-matrix theory. For nonchaotic systems the distribution of transition strengths has a lower entropy. A possible additional constraint, operative during the onset of chaos, is proposed. The distribution of maximal entropy subject to both constraints accords with computed intensities in a system of two degrees of freedom

  17. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    Science.gov (United States)

    Aggarwal, Sunny; Singh, J.; Jha, A. K. S.; Mohan, Man

    2014-07-01

    Fine-structure energies of the 67 levels belonging to the 1s2, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  18. Strengths of gamma-ray transitions in A = 6–44 nuclei (III)

    NARCIS (Netherlands)

    Endt, P.M.

    The present tables list the strengths (in Weisskopf units) of over 2400 γ-ray transitions in A = 6–44 nuclei, classified according to character (electric or magnetic, multipolarity, isospin forbiddenness). Selected transitions from unbound states are included. The strengths for isovector E1 and M1

  19. Dependence of dipole transition gamma ray strength on the type of nucleus

    International Nuclear Information System (INIS)

    Cojocaru, V.; Stefanescu, Irina; Popescu, I.V.; Badica, T.; Olariu, A.

    2000-01-01

    The strength of gamma-ray transition is defined as the ratio between the experimental radiative width Γ γ and the theoretical radiative width calculated according to a model (for example Weisskopf single particle model, Γ W ). It is important to know on which parameters this strengths depend. In our previous work we put in evidence the dependence of the dipole transition gamma-ray strengths on the type of the nucleus. In this paper we look for a possible dependence of the quadrupole gamma-ray strengths on the type of nucleus (doubly-even, doubly-odd, with odd proton number and odd neutron number). All the input data are taken from the National Nuclear Data Center, Brookhaven. In order to demonstrate this possible dependence one can use the average of the strongest 10% transitions of given character. As the A dependence is concerned we use the following A-regions: 6-20, 21-44, 45-90, 91-150, 151-200. An average value for these transitions is also plotted both for the E2 and M2 transitions. Generally, all the functions log 10 vs A (S=Γ γ /Γ W ) have the same pattern as 'total' put in evidence by Endt. Moreover, there is a clear difference in the most A regions of the average S 10 values for different types of nuclei. As the RUL (Recommended Upper Limits W.u.) are concerned they have to be established as the highest experimental values of the transition strengths. In this work we suggest new RUL but this time in connection with the type of the nucleus. A table with the RUL depending on the nuclear type, for E2 and M2 transitions, respectively, is given. The number of M2 transitions is quite small. In this case, one might set the recommended upper limits with some precaution. (authors)

  20. Strength distribution of γ-transitions deexciting superdeformed rotational bands

    International Nuclear Information System (INIS)

    Lopez-Martens, A.P.; Doesing, T.; Khoo, T.L.; Korichi, A.; Hannachi, F.; Calderin, I.J.; Lauritsen, T.; Ahmad, I.; Carpenter, M.P.; Fischer, S.M.; Hackman, G.; Janssens, R.V.F.; Nisius, D.; Reiter, P.; Amro, H.; Moore, E.F.

    1999-01-01

    The strength distribution of the γ rays in the decay-out from superdeformed (SD) states is investigated by applying the maximum likelihood method, with special emphasis on the influence of the lower threshold given by experimental conditions. Clear graphical solutions are found, and a careful estimation of the dispersion in the values of the number of degrees of freedom and of the average strength of the most likely χ 2 distribution is carried out. For the 194 Hg nucleus, 41 primary transitions from the decay-out of SD states are identified above 2600 keV. It is concluded that they represent the strongest 10% of the transitions selected stochastically from a Porter-Thomas distribution. This would support the scenario of a statistical decay of SD states via coupling to a compound state at normal deformation. However, the occurrence of several very strong direct one-step transitions as previously observed in 194 Hg has a very small probability of the order of 10 -4 . This may indicate special selection rules governing the decay. However, based on the absence of strong primary transitions from SD states in adjacent nuclei, the situation in 194 Hg is viewed as a very lucky incidence

  1. Acrylate oligomers in ultraviolet cured PSA's glass transition, molecular weight versus peel strength

    International Nuclear Information System (INIS)

    Miller, H.C.

    1999-01-01

    Typically those not skilled in the art relate Glass Transition Temperature to Pressure Sensitive Adhesives. You need a low Tg material to prepare good pressure sensitive adhesives. This report deals with a wide range acrylate terminated oligomers in a standard formulation. Molecular weight, chemical structure variations are examined versus the Glass Transition of the oligomers and final peel strength. Each formulated adhesive will require unique oligomer properties to reach one hundred newtons per 100 millimeters (5.71 pounds per square inch) peel strength. Excellent peel strengths may be obtained with oligomer molecular weight ranging from six thousand to one thousand molecular weight and glass transition temperatures ranging from minus seventy four degrees centigrade up to thirteen degrees centigrade

  2. Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2.2.2]oct-2-ene.

    Science.gov (United States)

    Mohanty, Jyotirmayee; Nau, Werner M

    2004-01-01

    The photophysical properties of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) were determined in 15 solvents, two supramolecular hosts (cucurbit[7]uril and beta-cyclodextrin) as well as in the gas phase. The oscillator strength and radiative decay rate of DBO as a function of refractive index i.e. polarizability have been analyzed. The oscillator strength increases by a factor of 10 upon going from the gas phase to the most polarizable carbon disulfide, while the corresponding radiative decay rates increase by a factor of 40. There is a good empirical correlation between the oscillator strength of the weakly allowed n,pi* transition of DBO and the reciprocal bulk polarizability, which can be employed to assess the polarizability of unknown microheterogeneous environments. A satisfactory correlation between the radiative decay rate and the square of the refractive index is also found, as previously documented for chromophores with allowed transitions. However, the correlation improves significantly when the oscillator strength is included in the correlation, which demonstrates the importance of this factor in the Strickler-Berg equation for chromophores with forbidden or weakly allowed transitions, for which the oscillator strength may be strongly solvent dependent. The radiative decay rate of DBO in two supramolecular assemblies has been determined, confirming the very low polarizability inside the cucurbituril cavity, in between perfluorohexane and the gas phase. The fluorescence quantum yield of DBO in the gas phase has been remeasured (5.1 +/- 0.5%) and was found to fall one full order of magnitude below a previously reported value.

  3. Configuration interaction calculations and excitation rates of X-ray and EUV transitions in sulfurlike manganese

    Energy Technology Data Exchange (ETDEWEB)

    El-Maaref, A.A., E-mail: ahmed.maaref@azhar.edu.eg; Saddeek, Y.B.; Abou halaka, M.M.

    2017-02-15

    Highlights: • Fine-structure calculations of sulfurlike Mn have been performed using configuration interaction technique, CI. • The relativistic effects, Breit-Pauli Hameltonian, have been correlated to the CI calculations. • Excitation rates by electron impact of the Mn X ion have been evaluated up to ionization potential. - Abstract: Fine-structure calculations of energies and transition parameters have been performed using the configuration interaction technique (CI) as implemented in CIV3 code for sulfurlike manganese, Mn X. The calculations are executed in an intermediate coupling scheme using the Breit-Pauli Hamiltonian. As well as, energy levels and oscillator strengths are calculated using LANL code, where the calculations by LANL have been used to estimate the accuracy of the present CI calculations. The calculated energy levels, oscillator strengths, and lifetimes are in reasonable agreement with the published experimental and theoretical values. Electron impact excitation rates of the transitions emit soft X-ray and extreme ultraviolet (EUV) wavelengths have been evaluated. The level population densities are calculated using the collisional radiative model (CRM), as well. The collisional excitation rates and collision strengths have been calculated in the electron temperature range ≤ the ionization potential, ∼1–250 eV.

  4. Spontaneous transition rates for electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions for He-like calcium and sulfur ions

    International Nuclear Information System (INIS)

    Kingston, A.E.; Norrington, P.H.; Boone, A.W.

    2002-01-01

    The spontaneous decay rates for the electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions between all of the 1s 2 , 1s2 l and 1s3 l states have been obtained for helium-like calcium and sulfur ions. To assess the accuracy of the calculations, the transition probabilities were calculated using two sets of configuration interaction wavefunctions. One set of wavefunctions was generated using the fully relativistic GRASP code and the other was obtained using CIV3, in which relativistic effects are introduced using the Breit-Pauli approximation. The transition rates, A values, oscillator strengths and line strengths from our two calculations are found to be similar and to compare very well with other recent results for Δn=1 or 2 transitions. For Δn=0 transitions the agreement is much less good; this is mainly due to differences in the calculated excitation energies. (author)

  5. Collision strengths for dipole-allowed transitions in S II

    International Nuclear Information System (INIS)

    Ho, Y.K.; Henry, R.J.W.

    1990-01-01

    Calculations of collision strengths for electron-impact excitations of S II from the ground state 3p3 4S0 to excited states 3p4 4P, 3d 4F, 3d 4D, 4s 4P, and 3d 4P were carried out using the R-matrix code described by Berrington et al. (1978) and the NIEM code described by Henry et al. (1981). Results are presented for the thermally averaged collision strengths for the five-state and six-state calculations. Convergence behaviors were examined by comparison with the six-state calculations and the previously obtained two-state calculations. Uncertainties for these transitions were estimated to be within 20 percent, except for the 4S0 - 3p4 4P transition in which a 40 percent uncertainty was estimated. 22 refs

  6. Flat punch adhesion: transition from fracture-based to strength-limited pull-off

    International Nuclear Information System (INIS)

    Jiang, Yijie; Turner, Kevin T; Grierson, David S

    2014-01-01

    The adhesion of a cylindrical flat punch to a surface due to interatomic forces is a well-known problem that is important in many applications, including indentation experiments and the adhesion of fibrillar structures. Traditionally, the pull-off force has been related to the work of adhesion and punch geometry via the Kendall solution that uses a Griffith energy balance to assess crack propagation and pull-off. More recently, it has been shown that under certain conditions, notably at small punch diameters, the contact can behave in a ‘strength-limited’ fashion in which the interface separates uniformly rather than via crack propagation. Here, a Maugis-Dugdale-type analysis of power-law-shaped bodies in contact is used to examine the change in behaviour from the fracture-based Kendall solution to strength-limited pull-off for cylindrical flat punches. The transition from fracture-based to strength-limited behaviour is described in terms of a non-dimensional parameter that is similar to previous quantities used to describe the transition and is a function of the punch size, the elasticity of the contact, and the adhesion properties. The results of this relatively simple analysis compare favourably with results from more complex computational simulations. In addition, the results are used to develop a function that quantifies the transition between the Kendall solution and the strength-limited solution in order to facilitate interpretation of adhesion measurements in the transition regime between the two limits. Finally, the power-law analysis is used to assess the sensitivity of the transition to the exact shape of the punch. (paper)

  7. Energy levels and radiative rates for transitions in B-like to F-like Xe ions (Xe L-XLVI)

    International Nuclear Information System (INIS)

    Aggarwal, K.M.; Keenan, F.P.; Lawson, K.D.

    2010-01-01

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Xe ions, Xe L-XLVI. For the calculations, a fully relativistic GRASP code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among the lowest 125, 236, 272, 226, and 113 levels of Xe L, Xe XLIX, Xe XLVIII, Xe XLVII, and Xe XLVI, respectively, belonging to the n ≤ 3 configurations.

  8. Energy levels, oscillator strengths, line strengths, and transition probabilities in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhan-Bin, E-mail: chenzb008@qq.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Ma, Kun [School of Information Engineering, Huangshan University, Huangshan 245041 (China); Wang, Hong-Jian [Chongqing Key Laboratory for Design and Control of Manufacturing Equipment, Chongqing Technology and Business University, Chongqing 40067 (China); Wang, Kai, E-mail: wangkai@hbu.edu.cn [Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Liu, Xiao-Bin [Department of Physics, Tianshui Normal University, Tianshui 741001 (China); Zeng, Jiao-Long [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2017-01-15

    Detailed calculations using the multi-configuration Dirac–Fock (MCDF) method are carried out for the lowest 64 fine-structure levels of the 3s{sup 2}3p{sup 2}, 3s{sup 2}3p3d, 3s3p{sup 3}, 3s3p{sup 2}3d, 3s{sup 2}3d{sup 2}, and 3p{sup 4} configurations in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI. Energies, oscillator strengths, wavelengths, line strengths, and radiative electric dipole transition rates are given for all ions. A parallel calculation using the many-body perturbation theory (MBPT) method is also carried out to assess the present energy levels accuracy. Comparisons are performed between these two sets of energy levels, as well as with other available results, showing that they are in good agreement with each other within 0.5%. These high accuracy results can be used to the modeling and the interpretation of astrophysical objects and fusion plasmas. - Highlights: • Energy levels and E1 transition rates of Si-like ions are presented. • Breit interaction and Quantum Electrodynamics effects are discussed. • Present results should be useful in the astrophysical application and plasma modeling.

  9. Excitation rates for transitions in Kr XXXII

    Science.gov (United States)

    Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.

    2009-04-01

    In this paper we report our results for collision strengths and effective collision strengths for transitions among the lowest 125 levels of the 2s22p, 2s2p2, 2p3, 2s23ell, 2s2p3ell, and 2p23ell configurations of Kr XXXII. For our calculations both the FAC and DARC codes have been employed.

  10. E2 and M1 transition strengths in heavy deformed nuclei revisited

    International Nuclear Information System (INIS)

    Draayer, J.P.; Popa, G.; Hirsch, J.G.; Vargas, C.E.

    2003-01-01

    An update on the status of pseudo-SU(3) shell-model calculations in strongly deformed nuclei in the rare earth region is presented. Representative results for energy levels as well as E2 (quadrupole) and M1 (scissors) transitions strengths in 162 Dy (even-even) and 163 Dy (odd-mass) are given. The calculations use realistic single-particle energies and quadrupole-quadrupole and pairing interaction strengths fixed from systematics. The strengths of rotor-like terms included in the Hamiltonian- all small relative to the other terms in the interaction were adjusted to give an overall best fit to the energy spectra. The results present a paradox: for even-even nuclei (integer angular momentum) non-zero pseudo-spin configurations seems to be unimportant while for the odd-mass systems (half-integer angular momentum) pseudo-spin mixing is essential as spin-flip couplings appear to dominate the M1 transition strengths. (Author)

  11. Collision strengths for transitions in Ni XIX

    Indian Academy of Sciences (India)

    4l configurations of Ni XIX, for which flexible atomic code. (FAC) has been ... atomic data (namely energy levels, radiative rates, collision strengths, excitation rates, etc.) ... Zhang and Sampson, who adopted the Coulomb–Born-exchange.

  12. COLLISION STRENGTHS AND EFFECTIVE COLLISION STRENGTHS FOR TRANSITIONS WITHIN THE GROUND-STATE CONFIGURATION OF S III

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C. E.; Ramsbottom, C. A.; Scott, M. P., E-mail: c.hudson@qub.ac.uk, E-mail: c.ramsbottom@qub.ac.uk, E-mail: p.scott@qub.ac.uk [Department of Applied Maths and Theoretical Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2012-05-01

    We have carried out a 29-state R-matrix calculation in order to calculate collision strengths and effective collision strengths for the electron impact excitation of S III. The recently developed parallel RMATRX II suite of codes have been used, which perform the calculation in intermediate coupling. Collision strengths have been generated over an electron energy range of 0-12 Ryd, and effective collision strength data have been calculated from these at electron temperatures in the range 1000-100,000 K. Results are here presented for the fine-structure transitions between the ground-state configurations of 3s {sup 2}3p {sup 23} P{sub 0,1,2}, {sup 1}D{sub 2}, and {sup 1} S{sub 0}, and the values given resolve a discrepancy between two previous R-matrix calculations.

  13. Oscillator strengths and transition probabilities from the Breit–Pauli R-matrix method: Ne IV

    Energy Technology Data Exchange (ETDEWEB)

    Nahar, Sultana N., E-mail: nahar@astronomy.ohio-state.edu

    2014-09-15

    The atomic parameters–oscillator strengths, line strengths, radiative decay rates (A), and lifetimes–for fine structure transitions of electric dipole (E1) type for the astrophysically abundant ion Ne IV are presented. The results include 868 fine structure levels with n≤ 10, l≤ 9, and 1/2≤J≤ 19/2 of even and odd parities, and the corresponding 83,767 E1 transitions. The calculations were carried out using the relativistic Breit–Pauli R-matrix method in the close coupling approximation. The transitions have been identified spectroscopically using an algorithm based on quantum defect analysis and other criteria. The calculated energies agree with the 103 observed and identified energies to within 3% or better for most of the levels. Some larger differences are also noted. The A-values show good to fair agreement with the very limited number of available transitions in the table compiled by NIST, but show very good agreement with the latest published multi-configuration Hartree–Fock calculations. The present transitions should be useful for diagnostics as well as for precise and complete spectral modeling in the soft X-ray to infra-red regions of astrophysical and laboratory plasmas. -- Highlights: •The first application of BPRM method for accurate E1 transitions in Ne IV is reported. •Amount of atomic data (n going up to 10) is complete for most practical applications. •The calculated energies are in very good agreement with most observed levels. •Very good agreement of A-values and lifetimes with other relativistic calculations. •The results should provide precise nebular abundances, chemical evolution etc.

  14. Garnet Yield Strength at High Pressures and Implications for Upper Mantle and Transition Zone Rheology

    International Nuclear Information System (INIS)

    Kavner, A.

    2008-01-01

    Garnet helps control the mechanical behavior of the Earth's crust, mantle, and transition zone. Here, measurements are presented suggesting that garnet, long considered to be a high-viscosity phase, is actually weaker than the other dominant components in the transition zone. The mechanical behavior of garnet at high pressures was examined using radial diffraction techniques in the diamond anvil cell. The yield strength of grossular garnet was inferred from synchrotron X-ray measurements of differential lattice strains. The differential stress was found to increase from 1.3 (±0.6) GPa at a hydrostatic pressure 5.8 (±1.1) GPa to 4.1 (±0.4) GPa at 15.7 (±1.0) GPa, where it was level to 19 GPa. The strength results are consistent with inferred strength values for majorite garnet from measurements in the diamond cell normal geometry, bolstering the idea that garnet-structured materials may all have similar strengths. In this low-temperature, high differential stress regime, garnet is shown to be significantly weaker than anhydrous ringwoodite and to have a strength similar to hydrous ringwoodite. This result suggests that the presence of water in the transition zone may not be required to explain a weak rheology, and therefore models of transition zone behavior built assuming that garnet is the high-strength phase may need to be revised.

  15. Fine-structure energy levels, oscillator strengths and transition probabilities in Ni XVI

    International Nuclear Information System (INIS)

    Deb, N.C.; Msezane, A.Z.

    2001-01-01

    Fine-structure energy levels relative to the ground state, oscillator strengths and transition probabilities for transitions among the lowest 40 fine-structure levels belonging to the configurations 3s 2 3p, 3s3p 2 , 3s 2 3d, 3p 3 and 3s3p3d of Ni XVI are calculated using a large scale CI in program CIV3 of Hibbert. Relativistic effects are included through the Breit-Pauli approximation via spin-orbit, spin-other-orbit, spin-spin, Darwin and mass correction terms. The existing discrepancies between the calculated and measured values for many of the relative energy positions are resolved in the present calculation which yields excellent agreement with measurement. Also, many of our oscillator strengths for allowed and intercombination transitions are in very good agreement with the recommended data by the National Institute of Standard and Technology (NIST). (orig.)

  16. Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII XXVIII)

    Science.gov (United States)

    Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.

    2008-05-01

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n ⩽ 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.

  17. Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions

    Science.gov (United States)

    Bouazza, Safa

    2017-01-01

    This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: 5s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.

  18. Strength of wood versus rate of testing - A theoretical approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    Strength of wood is normally measured in ramp load experiments. Experience shows that strength increases with increasing rate of testing. This feature is considered theoretically in this paper. It is shown that the influence of testing rate is a phenomenon, which depends on the quality...... of the considered wood. Low quality wood shows lesser influence of testing rate. This observation agrees with the well-known statement made by Borg Madsen that weak wood subjected to a constant load, has a longer lifetime than strong wood. In general, the influence of testing rate on strength increases...

  19. Prediction of the oscillator strengths for the electric dipole transitions in Th II

    Energy Technology Data Exchange (ETDEWEB)

    Dembczynski, Jerzy [Institute of Control and Information Engineering, Faculty of Electrical Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan (Poland); Ruczkowski, Jaroslaw; Elantkowska, Magdalena [Laboratory of Quantum Engineering and Metrology, Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13B, 60-965 Poznan (Poland)

    2014-07-01

    In order to parametrize the oscillator strength, the matrix of angular coefficients of the possible transitions in multiconfiguration system were calculated. In the odd and even configuration systems, the fine structure eigenvectors for both parities were obtained, using our semiempirical method, which taken into account also the second order effects, resulting from the excitations from electronic closed shells to open shells and from open shells to empty shell. The correctness of the fine structure wave functions was verified by the comparison of calculated and experimental hyperfine structure constants for Th II available in the literature. The least square fit to experimental values for some transitions allow to obtain the values of radial parameters and predict the oscillator strengths values for all possible transitions from the levels under consideration. These calculations are necessary for the design of the nuclear frequency standard based on the thorium ion.

  20. The empirical connection between (p,n) cross sections and beta decay transition strengths

    International Nuclear Information System (INIS)

    Taddeucci, T.N.

    1988-01-01

    A proportionality is assumed to exist between 0/degree/ (p,n) cross sections and the corresponding beta decay transition strengths. The validity of this assumption is tested by comparison of measured (p,n) cross sections and analogous beta decay strengths. Distorted waves impulse approximation calculations also provide useful estimates of the accuracy of the proportionality relationship. 14 refs., 10 figs

  1. Strength functions of primary transitions following thermal neutron capture in strontium

    International Nuclear Information System (INIS)

    Winter, C.; Lieb, K.P.

    1989-01-01

    The primary E1, M1 and E2 γ-radiation in 87,88,89 Sr observed after thermal neutron capture was compared with the predictions of single particle and giant resonance models. The nuclei feature a wide range of neutron binding energies between 6.3 and 11.1 MeV, which makes a 5.5 MeV spectrum of primary transition energies available for investigation. The (n, γ) reaction was used to estimate the parameters of the spin-flip M1 giant resonance in strontium. The total energy weighted M1 strength of this resonance exceeds the results of shell model and random phase approximation calculations for 90 Zr by a factor of 3-4. The E1 strengths were found to agree with the established giant dipole resonance model. The few data on primary E2 transitions do not allow to differentiate between the giant quadrupole resonance and the single particle models. (orig.)

  2. Electron-impact excitation of Fe II: Effective collision strengths for optically allowed fine-structure transitions

    International Nuclear Information System (INIS)

    Ramsbottom, C.A.

    2009-01-01

    In this paper, we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Fe II. We consider specifically the optically allowed lines for transitions from the 3d 6 4s and 3d 7 even parity configuration states to the 3d 6 4p odd parity configuration levels. The parallel suite of Breit-Pauli codes are utilized to compute the collision cross-sections where relativistic effects are included explicitly in both the target and the scattering approximation. A total of 100 LS or 262-jj levels formed from the basis configurations 3d 6 4s, 3d 7 and 3d 6 4p were included in the wavefunction representation of the target, including all doublet, quartet and sextet terms. The Maxwellian averaged effective collision strengths are computed across a wide range of electron temperatures from 100 to 100,000 K, temperatures of importance in astrophysical and plasma applications. A detailed comparison is made with previous works and significant differences were found to occur for some of the transitions considered. We conclude that in order to obtain converged collision strengths and effective collision strengths for these allowed transitions it is necessary to include contributions from partial waves up to L = 50 explicitly in the calculation, and in addition, account for contributions from even higher partial waves through a 'top up' procedure.

  3. Large enhancement of radiative strength for soft transitions in the quasicontinuum.

    Science.gov (United States)

    Voinov, A; Algin, E; Agvaanluvsan, U; Belgya, T; Chankova, R; Guttormsen, M; Mitchell, G E; Rekstad, J; Schiller, A; Siem, S

    2004-10-01

    Radiative strength functions (RSFs) for the (56,57)Fe nuclei below the separation energy are obtained from the 57Fe(3He,alphagamma)56Fe and 57Fe(3He,3He'gamma)57Fe reactions, respectively. An enhancement of more than a factor of 10 over common theoretical models of the soft (E(gamma) less than or approximately equal 2 MeV) RSF for transitions in the quasicontinuum (several MeV above the yrast line) is observed. Two-step cascade intensities with soft primary transitions from the 56Fe(n,2gamma)57Fe reaction confirm the enhancement.

  4. A comparative study of different methods for calculating electronic transition rates

    Science.gov (United States)

    Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan

    2018-03-01

    We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.

  5. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  6. Increased strength of concrete subject to high loading rates

    International Nuclear Information System (INIS)

    Curbach, M.

    1987-01-01

    Within the scope of this work various problems are discussed which occur in connection with concrete under high tensile loading rates (e.g. when a plane crashes on a nuclear power plant very high loads occur which act only for a very short time). Particularly the causes for the already frequently noticed increases in strength with increasing loading rates are investigated and also the question whether this increased strength can be taken into account when dimensioning a construction. (MM) [de

  7. Atomic data from the IRON Project. XXXII. On the accuracy of the effective collision strength for the electron impact excitation of the quadrupole transition in AR III

    Science.gov (United States)

    Galavís, M. E.; Mendoza, C.; Zeippen, C. J.

    1998-12-01

    Since te[Burgess et al. (1997)]{bur97} have recently questioned the accuracy of the effective collision strength calculated in the IRON Project for the electron impact excitation of the 3ssp23p sp4 \\ sp1 D -sp1 S quadrupole transition in Ar iii, an extended R-matrix calculation has been performed for this transition. The original 24-state target model was maintained, but the energy regime was increased to 100 Ryd. It is shown that in order to ensure convergence of the partial wave expansion at such energies, it is necessary to take into account partial collision strengths up to L=30 and to ``top-up'' with a geometric series procedure. By comparing effective collision strengths, it is found that the differences from the original calculation are not greater than 25% around the upper end of the common temperature range and that they are much smaller than 20% over most of it. This is consistent with the accuracy rating (20%) previously assigned to transitions in this low ionisation system. Also the present high-temperature limit agrees fairly well (15%) with the Coulomb-Born limit estimated by Burgess et al., thus confirming our previous accuracy rating. It appears that Burgess et al., in their data assessment, have overextended the low-energy behaviour of our reduced effective collision strength to obtain an extrapolated high-temperature limit that appeared to be in error by a factor of 2.

  8. Beta transition rates in hot and dense matter

    International Nuclear Information System (INIS)

    Takahashi, K.; El Eid, M.F.; Hillebrandt, W.

    1977-05-01

    Allowed and first-forbidden transition rates of β +- decays and e +- captures under stellar conditions of high temperatures and high densities are reformulated. The present paper mainly describes the formalism which is essentially based on the gross theory of nuclear β-decays, but also contains the numerical results of the transition rates of nuclei with the mass number 56. The discussion includes a short but critical review of several different approaches to the astrophysical β-transitions of nuclei as well as of the neutron and proton. Further results of the transition rates and the neutrino energy losses will soon be presented elsewhere as simple functions of temperature and density for many nuclei, together with an application to collapsing massive stars. (orig.) [de

  9. Calculations for energies, transition rates, and lifetimes in Al-like Kr XXIV

    Science.gov (United States)

    Zhang, C. Y.; Si, R.; Liu, Y. W.; Yao, K.; Wang, K.; Guo, X. L.; Li, S.; Chen, C. Y.

    2018-05-01

    Using the second-order many-body perturbation theory (MBPT) method, a complete and accurate data set of excitation energies, lifetimes, wavelengths, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) line strengths, transition rates, and oscillator strengths for the lowest 880 levels arising from the 3l3 (0 ≤ l ≤ 2), 3l2 4l‧ (0 ≤ l ≤ 2, 0 ≤l‧ ≤ 3), 3s2 5 l (0 ≤ l ≤ 4), 3p2 5 l (0 ≤ l ≤ 1), and 3s3p5 l (0 ≤ l ≤ 4) configurations in Al-like Kr XXIV is provided. Comparisons are made with available experimental and theoretical results. Our calculated energies are expected to be accurate enough to facilitate identifications of observed lines involving the n = 4 , 5 levels. The complete data set is also useful for modeling and diagnosing fusion plasma.

  10. Effect of electric field on the oscillator strength and cross-section for intersubband transition in a semiconductor quantum ring

    International Nuclear Information System (INIS)

    Bhattacharyya, S; Das, N R

    2012-01-01

    In this paper, we study the oscillator strength and cross-section for intersubband optical transition in an n-type semiconductor quantum ring of cylindrical symmetry in the presence of an electric field perpendicular to the plane of the ring. The analysis is done considering Kane-type band non-parabolicity of the semiconductor and assuming that the polarization of the incident radiation is along the axis of the ring. The results show that the oscillator strength decreases and the transition energy increases with the electric field. The assumption of a parabolic band leads to an overestimation of the oscillator strength. The effects of the electric field, band non-parabolicity and relaxation time on absorption cross-section for intersubband transition in a semiconductor quantum ring are also shown. (paper)

  11. Dependent interest and transition rates in life insurance

    DEFF Research Database (Denmark)

    Buchardt, Kristian

    2014-01-01

    For market consistent life insurance liabilities modelled with a multi-state Markov chain, it is of importance to consider the interest and transition rates as stochastic processes, for example in order to consider hedging possibilities of the risks, and for risk measurement. In the literature......, this is usually done with an assumption of independence between the interest and transition rates. In this paper, it is shown how to valuate life insurance liabilities using affine processes for modelling dependent interest and transition rates. This approach leads to the introduction of so-called dependent...... forward rates. We propose a specific model for surrender modelling, and within this model the dependent forward rates are calculated, and the market value and the Solvency II capital requirement are examined for a simple savings contract....

  12. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    Science.gov (United States)

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  13. Electron impact collision strengths and transition rates for extreme ultraviolet emission from Xe10+

    International Nuclear Information System (INIS)

    Shen Yunfeng; Gao Cheng; Zeng Jiaolong

    2009-01-01

    The energy levels, oscillator strengths, and electron impact collision strengths are calculated for the Xe 10+ ion using the configuration interaction scheme implemented by the Flexible Atomic Code. These data pertain to the 3917 levels belonging to the following configurations: 4s 2 4p 6 4d 8 , 4s 2 4p 6 4d 7 4f, 4s 2 4p 6 4d 7 5l (l = s, p, d, or f), 4s 2 4p 5 4d 9 , 4s 2 4p 5 4d 8 4f, 4s 2 4p 5 4d 8 5l, 4s 2 4p 6 4d 6 5s5p, 4s 2 4p 6 4d 6 5p5d. Configuration interactions among these configurations are included in the calculation. Collision strengths are obtained at 10 scattered electron energies (1-1000 eV) and are tabulated here at five representative energies of 10, 50, 100, 500, and 1000 eV. Effective collision strengths are obtained by assuming a Maxwellian electron velocity distribution at 10 temperatures ranging from 10 to 100 eV, and are tabulated at five representative temperatures of 10, 30, 50, 70 and 100 eV in this work. The whole data set should be useful for research involving extreme ultraviolet emission from Xe 10+

  14. Oscillator strengths for transitions among Fe III levels belonging to the three lowest configurations

    International Nuclear Information System (INIS)

    Deb, N C; Hibbert, A

    2008-01-01

    Accurate oscillator strengths and Einstein A-coefficients for some El and E2 transitions among 3d 6 , 3d 5 4s and 3d 5 4p levels of FeIII are presented and compared with other available results. The present results comprise by far the largest configuration interaction calculation for this astrophysically important ion, and include relativistic effects through the Breit-Pauli operator. The core-valence effects from a large number of 3d 6 and 3d 5 cores are carefully treated by optimising 4d, 4f, 5s, 5p, 5d, 5f and 6p orbitals either as a correction or as a correlation orbital while 1s, 2s, 2p, 3s, 3p and 3d Hartree-Fock functions are used. The 4s and 4p functions are optimised as spectroscopic orbitals. Fine-tuning of the ab initio energies was done through adjusting by a small amount some diagonal elements of the Hamiltonian matrix. It is found that for many of the relatively strong dipole transitions, our calculated oscillator strengths agree with available calculations, while for the weaker transitions our results often disagree with the previously determined results. We also present gA values for five E2 transitions for the multiplets 3d 6 5 DJ → 3d 5 ( 6 S)4s 5 S 2. The present results for these transitions show a 30-40% increase over the results previously published.

  15. Strength training improves fatigue resistance and self-rated health in workers with chronic pain

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus Due; Brandt, Mikkel

    2016-01-01

    of a randomized controlled trial investigates the effect of strength training on muscular fatigue resistance and self-rated health among workers with chronic pain. Sixty-six slaughterhouse workers with chronic upper limb pain and work disability were randomly allocated to 10 weeks of strength training or usual...... (Spearman's rho = -0.40; P = 0.01). In conclusion, specific strength training improves muscular fatigue resistance and self-rated health and reduces pain of the hand/wrist in manual workers with chronic upper limb pain. This trial is registered with ClinicalTrials.gov NCT01671267.......-rated health and pain. Time to fatigue, muscle strength, hand/wrist pain, and self-rated health improved significantly more following strength training than usual care (all P

  16. Energies, Wavelengths, and Transition Rates for Ga-Like Ions (Nd XXX-Tb XXXV)

    Science.gov (United States)

    El-Sayed, Fatma; Attia, S. M.

    2016-03-01

    Energies, wavelengths, transition probabilities, oscillator strengths, and line strengths have been calculated for 4s24p-4s4p2 and 4s24p-4s24d transitions in gallium-like ions from Z = 60 to 65, for Nd XXX, Pm XXXI, Sm XXXII, Eu XXXIII, Gd XXXIV, and Tb XXXV using the fully relativistic multiconfi guration Dirac-Fock method. The correlation with the n = 4 complex and the quantum electrodynamic effects have been considered in the calculations. The obtained results have been compared with the available experimental and other theoretical results.

  17. Relativistic model-potential oscillator strengths and transition probabilities for 4fsup(n)6s-4fsup(n)6p transitions in Eu(II), Tb(II), and Ho(II) in J1j coupling

    International Nuclear Information System (INIS)

    Migdalek, J.

    1984-01-01

    The lowest 4fsup(n)6s-4fsup(n)6p transitions are studied for the Eu(II) (n=7), Tb(II) (n=9), and Ho(II) (n=11) spectra, where the J 1 J coupling is an acceptable approximation. The relativistic radial integrals, required to evaluate the oscillator strengths and transition probabilities, are calculated with the model-potential method, which includes also core-polarization effects. The similarities observed in oscillator strengths for transitions with given ΔJ but different J values are discussed and explained. The computed oscillator strengths are compared with those obtained with the Coulomb approximation and it is found that the latter are only 11-12% lower. The core polarization influence on oscillator strengths is also investigated and the 19-21% decrease in oscillator strengths due to this effect is predicted. This result may, however, be overestimated because of some deficiencies in our procedure. (author)

  18. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vink, Jorick S.; Graefener, Goetz, E-mail: jsv@arm.ac.uk [Armagh Observatory, College Hill, BT61 9DG Armagh (United Kingdom)

    2012-06-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of {approx_equal}2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot{sub trans} between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the {approx}50 M{sub Sun} mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  19. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    International Nuclear Information System (INIS)

    Vink, Jorick S.; Gräfener, Götz

    2012-01-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of ≅2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot trans between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the ∼50 M ☉ mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  20. Consequences of acid strength for isomerization and elimination catalysis on solid acids.

    Science.gov (United States)

    Macht, Josef; Carr, Robert T; Iglesia, Enrique

    2009-05-13

    We address here the manner in which acid catalysis senses the strength of solid acids. Acid strengths for Keggin polyoxometalate (POM) clusters and zeolites, chosen because of their accurately known structures, are described rigorously by their deprotonation energies (DPE). Mechanistic interpretations of the measured dynamics of alkane isomerization and alkanol dehydration are used to obtain rate and equilibrium constants and energies for intermediates and transition states and to relate them to acid strength. n-Hexane isomerization rates were limited by isomerization of alkoxide intermediates on bifunctional metal-acid mixtures designed to maintain alkane-alkene equilibrium. Isomerization rate constants were normalized by the number of accessible protons, measured by titration with 2,6-di-tert-butylpyridine during catalysis. Equilibrium constants for alkoxides formed by protonation of n-hexene increased slightly with deprotonation energies (DPE), while isomerization rate constants decreased and activation barriers increased with increasing DPE, as also shown for alkanol dehydration reactions. These trends are consistent with thermochemical analyses of the transition states involved in isomerization and elimination steps. For all reactions, barriers increased by less than the concomitant increase in DPE upon changes in composition, because electrostatic stabilization of ion-pairs at the relevant transition states becomes more effective for weaker acids, as a result of their higher charge density at the anionic conjugate base. Alkoxide isomerization barriers were more sensitive to DPE than for elimination from H-bonded alkanols, the step that limits 2-butanol and 1-butanol dehydration rates; the latter two reactions showed similar DPE sensitivities, despite significant differences in their rates and activation barriers, indicating that slower reactions are not necessarily more sensitive to acid strength, but instead reflect the involvement of more unstable organic

  1. Influence of Binding Rates on Strength Properties of Moulding Sands with the GEOPOL Binder

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2014-03-01

    Full Text Available The results of investigations of moulding sands with an inorganic binder called GEOPOL, developed by the SAND TEAM Company are presented in the paper. Hardeners of various hardening rates are used for moulding sands with this binder. The main aim of investigations was determination of the influence of the hardening rate of moulding sands with the GEOPOL binder on technological properties of these sands (bending strength, tensile strength, permeability and grindability. In addition, the final strength of moulding sands of the selected compositions was determined by two methods: by splitting strength and shear strength measurements. No essential influence of the hardening rate on such parameters as: permeability, grindability and final strength was found. However, the sand in which the slowest hardener (SA 72 were used, after 1 hour of holding, had the tensile and bending strength practically zero. Thus, the time needed for taking to pieces the mould made of such moulding sand will be 1.5 - 2 hours.

  2. Rate-making in economies in transition

    International Nuclear Information System (INIS)

    Horvath, R.S.

    1996-01-01

    Eastern European economies in transition have unique needs which may be best served by considering how other economies around the world are making the transition to market-based economies. In particular, the recent Mexican experience may provide some lessons learned. Mexico has recently established for the first time a regulatory body with the power to regulate natural gas in certain ways. This paper outlines how the Mexican experience may be an appropriate jumping-off point for Eastern European economies in transition as they develop their own regulatory structure and rate-making. The paper concludes with an update on the recent experience in the U.S. to push the development of a market economy for natural gas further than it ever has before

  3. Experimental investigation of bond strength under high loading rates

    Directory of Open Access Journals (Sweden)

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  4. E1-forbidden transition rates in ions of astrophysical interest

    International Nuclear Information System (INIS)

    Träbert, E

    2014-01-01

    Transition rates in atomic systems may appear to be of little importance in steady-state plasmas that are observed at great distances from Earth. However, some of the transition rates compete with collision rates, and in these cases certain line intensity ratios are affected and can serve as remote indicators of density. In the low-density environments of stellar coronae and planetary nebulae, the transition rates of interest are mostly spin-forbidden E1 decays, higher-multipole order transitions (M1, E2, M2, M3), and hyperfine-induced transitions. On Earth, measurements of the long upper level lifetimes of these atomic systems require the use of ion traps. A fair number of test cases with lifetimes in the range from nanoseconds to many seconds have been treated successfully, and the evolution of calculations along with the experimental progress is notable. A new generation of cold ion traps is expected to extend the atomic lifetime measurements on multiply charged ions into the range of many minutes. (paper)

  5. Evolution of E 2 transition strength in deformed hafnium isotopes from new measurements on 172Hf,174Hf, and 176Hf

    Science.gov (United States)

    Rudigier, M.; Nomura, K.; Dannhoff, M.; Gerst, R.-B.; Jolie, J.; Saed-Samii, N.; Stegemann, S.; Régis, J.-M.; Robledo, L. M.; Rodríguez-Guzmán, R.; Blazhev, A.; Fransen, Ch.; Warr, N.; Zell, K. O.

    2015-04-01

    Background: The available data for E 2 transition strengths in the region between neutron-deficient hafnium and platinum isotopes are far from complete. More and precise data are needed to enhance the picture of structure evolution in this region and to test state-of-the-art nuclear models. In a simple model, the maximum collectivity is expected at the middle of the major shell. However, for actual nuclei, particularly in heavy-mass regions, which should be highly complex, this picture may no longer be the case, and one should use a more realistic nuclear-structure model. We address this point by studying the spectroscopy of Hf as a representative case. Purpose: We remeasure the 21+ half-lives of 172,174,176Hf, for which there is some disagreement in the literature. The main goal is to measure, for the first time, the half-lives of higher-lying states of the rotational band. The new results are compared to a theoretical calculation for absolute transition strengths. Method: The half-lives were measured using γ -γ and conversion-electron-γ delayed coincidences with the fast timing method. For the determination of half-lives in the picosecond region, the generalized centroid difference method was applied. For the theoretical calculation of the spectroscopic properties, the interacting boson model is employed, whose Hamiltonian is determined based on microscopic energy-density functional calculations. Results: The measured 21+ half-lives disagree with results from earlier γ -γ fast timing measurements, but are in agreement with data from Coulomb excitation experiments and other methods. Half-lives of the 41+ and 61+ states were measured, as well as a lower limit for the 81+ states. Conclusions: This work shows the importance of a mass-dependent effective boson charge in the interacting boson model for the description of E 2 transition rates in chains of nuclei. It encourages further studies of the microscopic origin of this mass dependence. New experimental

  6. Rating the strength of scientific evidence: relevance for quality improvement programs.

    Science.gov (United States)

    Lohr, Kathleen N

    2004-02-01

    To summarize an extensive review of systems for grading the quality of research articles and rating the strength of bodies of evidence, and to highlight for health professionals and decision-makers concerned with quality measurement and improvement the available "best practices" tools by which these steps can be accomplished. Drawing on an extensive review of checklists, questionnaires, and other tools in the field of evidence-based practice, this paper discusses clinical, management, and policy rationales for rating strength of evidence in a quality improvement context, and documents best practices methods for these tasks. After review of 121 systems for grading the quality of articles, 19 systems, mostly specific, met a priori scientific standards for grading systematic reviews, randomized controlled trials, observational studies, and diagnostic tests; eight systems (of 40 reviewed) met similar standards for rating the overall strength of evidence. All can be used as is or adapted for particular types of evidence reports or systematic reviews. Formally grading study quality and rating overall strength of evidence, using sound instruments and procedures, can produce reasonable levels of confidence about the science base for parts of quality improvement programs. With such information, health care professionals and administrators concerned with quality improvement can understand better the level of science (versus only clinical consensus or opinion) that supports practice guidelines, review criteria, and assessments that feed into quality assurance and improvement programs. New systems are appearing and research is needed to confirm the conceptual and practical underpinnings of these grading and rating systems, but the need for those developing systematic reviews, practice guidelines, and quality or audit criteria to understand and undertake these steps is becoming increasingly clear.

  7. Radiative rates for E1, E2, M1 and M2 transitions in Fe X

    International Nuclear Information System (INIS)

    Aggarwal, K.M.; Keenan, F.P.

    2004-01-01

    Energies of the 54 levels belonging to the (1s 2 2s 2 2p 6 ) 3s 2 3p 5 , 3s3p 6 , 3s 2 3p 4 3d and 3s3p 5 3d configurations of Fe X have been calculated using the GRASP code of Dyall and colleagues (1989). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Comparisons are made with results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 3%, whereas results for other parameters are probably accurate to better than 20% . Additionally, the agreement between measured and calculated lifetimes is better than 10%. (authors)

  8. Tensile strength of concrete under static and intermediate strain rates: Correlated results from different testing methods

    International Nuclear Information System (INIS)

    Wu Shengxing; Chen Xudong; Zhou Jikai

    2012-01-01

    Highlights: ► Tensile strength of concrete increases with increase in strain rate. ► Strain rate sensitivity of tensile strength of concrete depends on test method. ► High stressed volume method can correlate results from various test methods. - Abstract: This paper presents a comparative experiment and analysis of three different methods (direct tension, splitting tension and four-point loading flexural tests) for determination of the tensile strength of concrete under low and intermediate strain rates. In addition, the objective of this investigation is to analyze the suitability of the high stressed volume approach and Weibull effective volume method to the correlation of the results of different tensile tests of concrete. The test results show that the strain rate sensitivity of tensile strength depends on the type of test, splitting tensile strength of concrete is more sensitive to an increase in the strain rate than flexural and direct tensile strength. The high stressed volume method could be used to obtain a tensile strength value of concrete, free from the influence of the characteristics of tests and specimens. However, the Weibull effective volume method is an inadequate method for describing failure of concrete specimens determined by different testing methods.

  9. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  10. Daylight Savings Time Transitions and the Incidence Rate of Unipolar Depressive Episodes.

    Science.gov (United States)

    Hansen, Bertel T; Sønderskov, Kim M; Hageman, Ida; Dinesen, Peter T; Østergaard, Søren D

    2017-05-01

    Daylight savings time transitions affect approximately 1.6 billion people worldwide. Prior studies have documented associations between daylight savings time transitions and adverse health outcomes, but it remains unknown whether they also cause an increase in the incidence rate of depressive episodes. This seems likely because daylight savings time transitions affect circadian rhythms, which are implicated in the etiology of depressive disorder. Therefore, we investigated the effects of daylight savings time transitions on the incidence rate of unipolar depressive episodes. Using time series intervention analysis of nationwide data from the Danish Psychiatric Central Research Register from 1995 to 2012, we compared the observed trend in the incidence rate of hospital contacts for unipolar depressive episodes after the transitions to and from summer time to the predicted trend in the incidence rate. The analyses were based on 185,419 hospital contacts for unipolar depression and showed that the transition from summer time to standard time were associated with an 11% increase (95% CI = 7%, 15%) in the incidence rate of unipolar depressive episodes that dissipated over approximately 10 weeks. The transition from standard time to summer time was not associated with a parallel change in the incidence rate of unipolar depressive episodes. This study shows that the transition from summer time to standard time was associated with an increase in the incidence rate of unipolar depressive episodes. Distress associated with the sudden advancement of sunset, marking the coming of a long period of short days, may explain this finding. See video abstract at, http://links.lww.com/EDE/B179.

  11. Non-Parametric Analysis of Rating Transition and Default Data

    DEFF Research Database (Denmark)

    Fledelius, Peter; Lando, David; Perch Nielsen, Jens

    2004-01-01

    We demonstrate the use of non-parametric intensity estimation - including construction of pointwise confidence sets - for analyzing rating transition data. We find that transition intensities away from the class studied here for illustration strongly depend on the direction of the previous move b...

  12. Effect of transition metal impurities on the strength of grain boundaries in vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei; Liu, Wei; Liu, C. S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-09-07

    Effects of 3d (Ti-Ni), 4d (Zr-Pd), and 5d (Hf-Pt) transition metal impurities on strength of two representative vanadium grain boundaries (GBs), symmetric Σ3(111) and asymmetric Σ5(210), were studied by first-principles calculations within the framework of the Rice-Wang thermodynamic model and within the computational tensile test. The desirable elements to increase the GB cohesion were predicted based on their segregation and strengthening behaviors across the different GB sites. It reveals that the elements Ti, Zr, Hf, Nb, and Ta are good choices for the GB cohesion enhancers. In addition, the GB strengthening by solutes is sensitive to the GB structures. The elements Cr, Mn, Fe, Co, and Ni decrease the GB strength of the Σ3(111) GB but they can increase the cohesion of the Σ5(210) GB. Furthermore, the origin of Ti-induced change of the GB strength was uncovered by analyzing the atomic bonds and electronic structures as well as the tensile strength. This work provides a theoretical guidance to screen promising alloying elements in V-based materials with improved resistance to GB decohesion and also helps us to understand the formation mechanism of Ti-rich precipitates in the V-Cr-Ti alloys under neutron or ion irradiation environments.

  13. Anomalous transition strength in the proton-unbound nucleus {sup 109}{sub 53}I{sub 56}

    Energy Technology Data Exchange (ETDEWEB)

    Procter, M.G., E-mail: mark.procter@postgrad.manchester.ac.uk [School of Physics and Astronomy, Schuster Laboratory, The University of Manchester, Manchester M13 9PL (United Kingdom); Cullen, D.M. [School of Physics and Astronomy, Schuster Laboratory, The University of Manchester, Manchester M13 9PL (United Kingdom); Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Scholey, C.; Ruotsalainen, P. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Angus, L. [University of The West of Scotland, High Street, Paisley PA1 2BE (United Kingdom); Baeck, T.; Cederwall, B. [Department of Physics, Royal Institute of Technology, SE-10691 Stockholm (Sweden); Dewald, A.; Fransen, C. [Institut fuer Kernphysik, Universitaet zu Koeln, D-50937, Koeln (Germany); Grahn, T. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Greenlees, P.T. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Hackstein, M. [Institut fuer Kernphysik, Universitaet zu Koeln, D-50937, Koeln (Germany); Jakobsson, U.; Jones, P.M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Liotta, R. [Department of Physics, Royal Institute of Technology, SE-10691 Stockholm (Sweden); Lumley, N.M. [School of Physics and Astronomy, Schuster Laboratory, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2011-10-13

    A lifetime measurement has been made for the first excited 11/2{sup +} state in the proton-unbound nucleus {sup 109}{sub 53}I{sub 56} using the recoil-distance Doppler-shift method in conjunction with recoil-proton tagging. The experimental reduced transition probability is considerably smaller than the prediction of theoretical shell-model calculations using the CD-Bonn nucleon-nucleon potential. The discrepancy between the theoretical and experimental reduced transition strengths in this work most likely arises from the inability of the current shell-model calculations to accurately account for the behavior of the unbound nuclear states.

  14. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-12-01

    Full Text Available The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been found to play an important role for this HSSS due to load transfer and strain partitioning between two phases, and a higher strain rate could cause even higher strain partitioning in the softer austenite grains, delaying the deformation instability. Deformation twins are observed in the austenite grains at all strain rates to facilitate the uniform tensile deformation. The B2 phase (FeAl intermetallic compound is less deformable at higher strain rates, resulting in easier brittle fracture in B2 particles, smaller dimple size and a higher density of phase interfaces in final fracture surfaces. Thus, more energy need be consumed during the final fracture for the experiments conducted at higher strain rates, resulting in better tensile toughness.

  15. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  16. Role of the momentum transfer in the quenching of the Gamow-Teller strength

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Physics Department, Faculty of Science, University of Zagreb (Croatia); Martinez-Pinedo, Gabriel [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Paar, Nils; Vretenar, Dario [Physics Department, Faculty of Science, University of Zagreb (Croatia)

    2012-07-01

    A fully consistent calculation of the Gamow-Teller strength is presented, based on a microscopic theoretical framework. Nuclear ground state is determined using the relativistic Hartree-Bogolyubov (RHB) model with density dependent meson-nucleon coupling constants, and transition rates are calculated via proton-neutron relativistic quasiparticle RPA using the same interaction as in the RHB equations. The (p,n) probe has a similar spin-isospin operator structure to the Gamow-Teller (GT) operator. However, they become comparable only if the GT cross section is measured at a very small momentum transfer q. At higher momentum transfer the isovector spin monopole (IVSM) mode occurs, with the r{sup 2}{sigma}{tau} transition operator. Unlike the Gamow-Teller operator which excites only the 0{Dirac_h}{omega} transitions, the isovector spin monopole operator can also excite 2{Dirac_h}{omega} transitions and can change the strength distribution at high excitation energies. We explore the strength beyond the resonance, examine the effect of momentum transfer on the total strength and compare the results with recent measurements.

  17. Reinterpretation of the recently measured absolute generalized oscillator strength for the Ar 3p-4p transition

    International Nuclear Information System (INIS)

    Msezane, A.Z.; Felfli, Z.; Chen, Z.; Amusia, M.Ya.; Chernysheva, L. V.

    2002-01-01

    The recent experimental observation of the absolute generalized oscillator strength (GOS) for the Ar 3p-(4p,4p ' ) nondipole transition has been interpreted as a manifestation of quadrupole excitation [X. W. Fan and K. T. Leung, Phys. Rev. A 62, 062703 (2000)]. Contrary to the experimentalists' assignment, on the grounds of our random-phase-approximation with exchange (RPAE) calculation, we attribute the measured GOS to combined monopole, the dominant component, and quadrupole contributions. Our RPAE GOS's for the Ar dipole 3p-4s and 3p-3d,5s and the lowest nondipole transitions are compared with the measurements. The results could have significant implications for other similar transitions, previously interpreted as quadrupole excitation and for interpreting other discrete transitions

  18. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Weighted f-values, A-values, and line strengths for the E1 transitions among 3d6, 3d54s, and 3d54p levels of Fe III

    International Nuclear Information System (INIS)

    Deb, Narayan C.; Hibbert, Alan

    2009-01-01

    Weighted oscillator strengths, weighted radiative rates, and line strengths for all the E1 transitions between 285 fine-structure levels belonging to the 3d 6 , 3d 5 4s, and 3d 5 4p configurations of Fe III are presented, in ascending order of wavelength. Calculations have been undertaken using the general configuration interaction (CI) code CIV3. The large configuration set is constructed by allowing single and double replacements from any of 3d 6 , 3d 5 4s, 3d 5 4p, and 3d 5 4d configurations to nl orbitals with n≤5,l≤3 as well as 6p. Additional selective promotions from 3s and 3p subshells are also included in the CI expansions to incorporate the important correlation effects in the n=3 shell. Results of some strong transitions between levels of 3d 6 , 3d 5 4s, and 3d 5 4p configurations are also presented and compared with other available calculations. It is found that large disagreements occur in many transitions among the existing calculations

  20. Daylight savings time transitions and the incidence rate of unipolar depressive episodes

    DEFF Research Database (Denmark)

    Hansen, Bertel T; Sønderskov, Kim M; Hageman, Ida

    2017-01-01

    Background: Daylight savings time transitions affect approximately 1.6 billion people worldwide. Prior studies have documented associations between daylight savings time transitions and adverse health outcomes, but it remains unknown whether they also cause an increase in the incidence rate...... of depressive episodes. This seems likely because daylight savings time transitions affect circadian rhythms, which are implicated in the etiology of depressive disorder. Therefore, we investigated the effects of daylight savings time transitions on the incidence rate of unipolar depressive episodes. Methods...

  1. Probabilistic concept to describe the influence of rate of loading on strength of concrete

    International Nuclear Information System (INIS)

    Mihashi, H.; Wittmann, F.H.

    1981-01-01

    Any reliability assessment of concrete structures is dependent on realistic assumptions on strength distribution. By means of experimental test series the most appropriate distribution function cannot be determined. In this contribution a theoretical concept to describe variability of strength of concrete will be presented. This approach is based on the characteristic composite structure. The structure of concrete is composed of aggregates and a binding agent i.e. porous hardened cement paste. Under formal conditions there are already big pores and cracks in the matrix as well as in the interface before a specimen is loaded. All structural defects can be assumed to be statistically distributed all over the specimen. If a load is applied cracks start to grow form the most critical structural defects. For a realistic estimation of the reliability of a secondary containment under impact loading conditions the influence of rate of loading on mean value and variability of strength is of major interest. The presented theory predicts that the mean strength increases with a power law as the rate of loading increases, while the coefficient of variation remains constant. A number of test series have been carried out to verify the theoretical concept. Different types of mortar (model concrete) and concrete have been included in the test program. Within the range of accuracy experimental results agree well with theoretical predictions. It can be concluded that the variability of macroscopic properties of concrete can be linked with the distribution of structural defects. Strength of concrete is best represented by a Weibull-type distribution function. The influence of rate of loading on strength can be experessed by means of a general rate process. (orig.)

  2. Muscle strength and physical activity are associated with self-rated health in an adult Danish population.

    Science.gov (United States)

    Hansen, Andreas W; Beyer, Nina; Flensborg-Madsen, Trine; Grønbæk, Morten; Helge, Jørn W

    2013-12-01

    To describe associations of muscle strength, physical activity and self-rated health. Isometric muscle strength by maximal handgrip strength (HGS) or muscle strength by 30s repeated chair stand test (30s-CS) was combined with leisure time physical activity. Using logistic regression odds ratio was calculated for good self-rated health according to the combined associations among 16,539 participants (59.7% women), mean age 51.9 (SD: 13.8) years, from a cross-sectional study in Denmark 2007-2008. Good self-rated health was positively associated with higher levels of physical activity and greater muscle strength. Regarding HGS the highest OR for good self-rated health was in the moderate/vigorous physically active participants with high HGS (OR=6.84, 95% CI: 4.85-9.65 and OR=7.34, 95% CI: 5.42-9.96 for men and women, respectively). Similarly the highest OR for good self-rated health was in the moderate/vigorous physically active participants with high scores in the 30s-CS test (6.06, 95% CI: 4.32-8.50 and 13.38, 95% CI: 9.59-18.67 for men and women, respectively). The reference groups were sedentary participants with low strength (HGS or 30s-CS). The combined score for physical activity level with either HGS or 30s-CS was strongly positively associated with self-related health. © 2013.

  3. Study of the strength distribution of primary γ-transitions in the decay from superdeformed states in 194Hg

    International Nuclear Information System (INIS)

    Lopez-Martens, A.P.; Doessing, T.; Khoo, T.L.; Korichi, A.; Hannachi, F.; Calderin, I.J.; Lauritsen, T.; Ahmad, I.; Carpenter, M.P.; Fischer, S.M.; Hackman, G.; Janssens, R.V.F.; Nisius, D.; Reiter, P.; Amro, H.; Moore, E.F.

    1999-01-01

    The strength distribution of the primary γ rays in the decay from superdeformed (SD) states is investigated by applying the maximum likelihood method. For the 194 Hg nucleus, 41 primary transitions are identified above 2600 keV. It is concluded that they represent the strongest 10% of the transitions selected stochastically from a Porter-Thomas distribution. This would support the scenario of a statistical decay of SD states via coupling to a compound state at normal deformation. However, the occurrence of several very strong 'one-step linking' transitions is found to have a very small probability. Based on the absence of strong primary transitions from SD states in adjacent nuclei, the situation in 194 Hg is viewed as a very lucky incidence

  4. The effect of changing the magnetic field strength on HiPIMS deposition rates

    International Nuclear Information System (INIS)

    Bradley, J W; Mishra, A; Kelly, P J

    2015-01-01

    The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ∼25–40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B.These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B.From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, β, of the metal species in HiPIMS has been calculated. There is a clear fall in αβ (from ∼0.9 to ∼0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates. (paper)

  5. Increasing FSW join strength by optimizing feed rate, rotating speed and pin angle

    Science.gov (United States)

    Darmadi, Djarot B.; Purnowidodo, Anindito; Siswanto, Eko

    2017-10-01

    Principally the join in Friction Stir Welding (FSW) is formed due to mechanical bonding. At least there are two factors determines the quality of this join, first is the temperature in the area around the interface and secondly the intense of mixing forces in nugget zone to create the mechanical bonding. The adequate temperature creates good flowability of the nugget zone and an intensive mixing force produces homogeneous strong bonding. Based on those two factors in this research the effects of feed rate, rotating speed and pin angle of the FSW process to the tensile strength of resulted join are studied. The true experimental method was used. Feed rate was varied at 24, 42, 55 and 74 mm/minutes and from the experimental results, it can be concluded that the higher feed rate decreases the tensile strength of weld join and it is believed due to the lower heat embedded in the material. Inversely, the higher rotating speed increases the join’s tensile strength as a result of higher heat embedded in base metal and higher mixing force in the nugget zone. The rotating speed were 1842, 2257 and 2904 RPMs. The pin angle determines the direction of mixing force. With variation of pin angle: 0°, 4°, 8° and 12° the higher pin angle generally increases the tensile strength because of more intensive mixing force. For 12° pin angle the lower tensile strength is found since the force tends to push out the nugget area from the joint gap.

  6. Interpreting impedance spectra of organic photovoltaic cells—Extracting charge transit and recombination rates

    Energy Technology Data Exchange (ETDEWEB)

    Mullenbach, Tyler K.; Zou, Yunlong; Holmes, Russell J., E-mail: rholmes@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Holst, James [New Products R and D, Sigma-Aldrich Corporation, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209 (United States)

    2014-09-28

    Impedance spectroscopy has been widely used to extract the electron-hole recombination rate constant in organic photovoltaic cells (OPVs). This technique is typically performed on OPVs held at open-circuit. Under these conditions, the analysis is simplified with recombination as the only pathway for the decay of excess charge carriers; transit provides no net change in the charge density. In this work, we generalize the application and interpretation of impedance spectroscopy for bulk heterojunction OPVs at any operating voltage. This, in conjunction with reverse bias external quantum efficiency measurements, permits the extraction of both recombination and transit rate constants. Using this approach, the transit and recombination rate constants are determined for OPVs with a variety of electron donor-acceptor pairings and compositions. It is found that neither rate constant individually is sufficient to characterize the efficiency of charge collection in an OPV. It is demonstrated that a large recombination rate constant can be accompanied by a large transit rate constant, thus fast recombination is not necessarily detrimental to OPV performance. Extracting the transit and recombination rate constants permits a detailed understanding of how OPV architecture and processing conditions impact the transient behavior of charge carriers, elucidating the origin of optimum device configurations.

  7. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  8. Distribution of spin dipole transition strength in the 15N(n,p)15C reaction

    International Nuclear Information System (INIS)

    Cellar, A.; Alford, W.P.; Helmer, R.; Abegg, R.; Frekers, D.; Haeusser, O.; Henderson, R.S.; Jackson, K.P.; Vetterli, M.; Yen, S.; Jeppesen, R.; Larson, B.; Mildenberger, J.; Pointon, B.W.; Trudel, A.

    1990-08-01

    The reaction 15 N(n,p) 15 C was studied at a neutron energy of 288 MeV using the TRIUMF (n,p) charge exchange facility and a high pressure gas target. The angular distributions for spin dipole (ΔL=1) transitions to the states in 15 C at energies 0 MeV and 0.740 MeV, as well as for higher excitation energies, were measured and the results were compared with DWIA calculations. The measured distribution of the spin dipole strength agrees well with shell model predictions, indicating that a rather simple model provides a satisfactory description of the 15 N ground state, and of positive parity states in 15 C up to about 18 MeV excitation. The magnitude of the peak cross sections (at ≅ 7 degrees) is described well by the calculations when the theoretical cross section is renormalized by a factor 0.7. The calculated cross sections near zero degrees are generally smaller than experimental data. It this is a general feature of ΔL=1 transitions, it suggests that estimates of GT strength based on a multipole decomposition of measured cross sections may be too high. (Author) (41 refs., 3 tabs., 14 figs.)

  9. Identifying transition rates of ionic channels via observations at a single state

    CERN Document Server

    Deng Ying Chun; Qian Min Ping; Feng Jian Feng

    2003-01-01

    We consider how to determine all transition rates of an ion channel when it can be described by a birth-death chain or a Markov chain on a star-graph with continuous time. It is found that all transition rates are uniquely determined by the distribution of its lifetime and death-time histograms at a single state. An algorithm to calculate the transition rates exactly, based on the statistics of the lifetime and death-time of the Markov chain at the state, is provided. Examples to illustrate how an ion channel activity is fully determined by the observation of a single state of the ion channel are included.

  10. Identifying transition rates of ionic channels via observations at a single state

    International Nuclear Information System (INIS)

    Deng Yingchun; Peng Shenglun; Qian Minping; Feng Jianfeng

    2003-01-01

    We consider how to determine all transition rates of an ion channel when it can be described by a birth-death chain or a Markov chain on a star-graph with continuous time. It is found that all transition rates are uniquely determined by the distribution of its lifetime and death-time histograms at a single state. An algorithm to calculate the transition rates exactly, based on the statistics of the lifetime and death-time of the Markov chain at the state, is provided. Examples to illustrate how an ion channel activity is fully determined by the observation of a single state of the ion channel are included

  11. Identifying transition rates of ionic channels via observations at a single state

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yingchun [School of Mathematics, Peking University, Beijing (China); Peng Shenglun [School of Mathematics, Peking University, Beijing (China); Qian Minping [School of Mathematics, Peking University, Beijing (China); Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom)

    2003-02-07

    We consider how to determine all transition rates of an ion channel when it can be described by a birth-death chain or a Markov chain on a star-graph with continuous time. It is found that all transition rates are uniquely determined by the distribution of its lifetime and death-time histograms at a single state. An algorithm to calculate the transition rates exactly, based on the statistics of the lifetime and death-time of the Markov chain at the state, is provided. Examples to illustrate how an ion channel activity is fully determined by the observation of a single state of the ion channel are included.

  12. The numerical evaluation on non-radiative multiphonon transition rate from different electronic bases

    International Nuclear Information System (INIS)

    Zhu Bangfen.

    1985-10-01

    A numerical calculation on the non-radiative multiphonon transition probability based on the adiabatic approximation (AA) and the static approximation (SA) has been accomplished in a model of two electronic levels coupled to one phonon mode. The numerical results indicate that the spectra based on different approximations are generally different apart from those vibrational levels which are far below the classical crossing point. For large electron-phonon coupling constant, the calculated transition rates based on AA are more reliable; on the other hand, for small transition coupling the transition rates near or beyond the cross region are quite different for two approximations. In addition to the diagonal non-adiabatic potential, the mixing and splitting of the original static potential sheets are responsible for the deviation of the transition rates based on different approximations. The relationship between the transition matrix element and the vibrational level shift, the Huang-Rhys factor, the separation of the electronic levels and the electron-phonon coupling is analysed and discussed. (author)

  13. Gamow-Teller strength distributions and electron capture rates for 55Co and 56Ni

    International Nuclear Information System (INIS)

    Nabi, Jameel-Un; Rahman, Muneeb-Ur

    2005-01-01

    The Gamow-Teller strength (GT) distributions and electron capture rates on 55 Co and 56 Ni have been calculated using the proton-neutron quasiparticle random phase approximation theory. We calculate these weak interaction mediated rates over a wide temperature (0.01x10 9 -30x10 9 K) and density (10-10 11 gcm -3 ) domain. Electron capture process is one of the essential ingredients involved in the complex dynamics of supernova explosion. Our calculations of electron capture rates show differences with the reported shell model diagonalization approach calculations and are comparatively enhanced at presupernova temperatures. We note that the GT strength is fragmented over many final states

  14. Model of fracture of metal melts and the strength of melts under dynamic conditions

    International Nuclear Information System (INIS)

    Mayer, P. N.; Mayer, A. E.

    2015-01-01

    The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength

  15. Model of fracture of metal melts and the strength of melts under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P. N., E-mail: polina.nik@mail.ru; Mayer, A. E., E-mail: mayer@csu.ru [Chelyabinsk State University (Russian Federation)

    2015-07-15

    The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength.

  16. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    Science.gov (United States)

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.

  17. Strength distributions of electromagnetic transitions in light nuclei

    International Nuclear Information System (INIS)

    Kostin, V.Ya.; Koval', A.A.; Kopanets, E.G.; Tsytko, S.P.

    1980-01-01

    Distributions of probabilities of electromagnetic transitions from resonance levels of light nuclei with masses A=Z-40 for eight types of transition (epsilon1, epsilon2, M1, M8, isoscalar and isovector) are obtained. Recommended upper limits (RUL) of transition probabilities are determined for each type of transitions. A comparison with analogous characteristics for transitions between bound states is carried out. It has been causes found that RUL for resonance states substantially differ from RUL for transitions between bound states. Possible causes of such difference are discussed

  18. Flashing motor at high transition rate

    International Nuclear Information System (INIS)

    Ai Baoquan; Wang Liqiu; Liu Lianggang

    2007-01-01

    The movement of a Brownian particle in a fluctuating two-state periodic potential is investigated. At high transition rate, we use a perturbation method to obtain the analytical solution of the model. It is found that the net current is a peaked function of thermal noise, barrier height and the fluctuation ratio between the two states. The thermal noise may facilitate the directed motion at a finite intensity. The asymmetry parameter of the potential is sensitive to the direction of the net current

  19. Comparison of approximations to the transition rate in the DDHMS preequilibrium model

    International Nuclear Information System (INIS)

    Brito, L.; Carlson, B.V.

    2014-01-01

    The double differential hybrid Monte Carlo simulation model (DDHMS) originally used exciton model densities and transition densities with approximate angular distributions obtained using linear momentum conservation. Because the model uses only the simplest transition rates, calculations using more complex approximations to these are still viable. We compare calculations using the original approximation to one using a nonrelativistic Fermi gas transition densities with the approximate angular distributions and with exact nonrelativistic and relativistic transition transition densities. (author)

  20. Atomic Transition Probabilities Scandium through Manganese

    International Nuclear Information System (INIS)

    Martin, G.A.; Fuhr, J.R.; Wiese, W.L.

    1988-01-01

    Atomic transition probabilities for about 8,800 spectral lines of five iron-group elements, Sc(Z = 21) to Mn(Z = 25), are critically compiled, based on all available literature sources. The data are presented in separate tables for each element and stage of ionization and are further subdivided into allowed (i.e., electric dipole-E1) and forbidden (magnetic dipole-M1, electric quadrupole-E2, and magnetic quadrupole-M2) transitions. Within each data table the spectral lines are grouped into multiplets, which are in turn arranged according to parent configurations, transition arrays, and ascending quantum numbers. For each line the transition probability for spontaneous emission and the line strength are given, along with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the upper and lower states. For allowed lines the absorption oscillator strength is listed, while for forbidden transitions the type of transition is identified (M1, E2, etc.). In addition, the estimated accuracy and the source are indicated. In short introductions, which precede the tables for each ion, the main justifications for the choice of the adopted data and for the accuracy rating are discussed. A general introduction contains a discussion of our method of evaluation and the principal criteria for our judgements

  1. Method to increase the transition temperature and for the critical magnetic field strength of the known intermetallic compounds of vanadium or niobium

    International Nuclear Information System (INIS)

    Winter, H.

    1977-01-01

    The invention deals with a method to raise the transition temperature and critical magnetic field strength of superconducting, intermetallic compounds of vanadium and niobium. For example, a niobium alloy with 4 wt.% Al in melted in vacuum electric arc and formed into a sheet of about 1 mm thick. Strips of this sheet are electrically heated up to 1,900 0 C for one hour in a high-vacuum oven. The strips are then annealed in evacuated quartz ampoules for 120 hours at 800 0 C. These strips have a transition temperature of 24 K and a critical magnetic field strength of 600 kg; the critical current density was 5 x 10 4 A/cm 2 . (HPOE) [de

  2. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.

    Science.gov (United States)

    Ly, Cheng; Marsat, Gary

    2018-02-01

    Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.

  3. Rock mass classification system : transition from RMR to GSI.

    Science.gov (United States)

    2013-11-01

    The AASHTO LRFD Bridge Design Specifications is expected to replace the rock mass rating : (RMR) system with the Geological Strength Index (GSI) system for classifying and estimating : engineering properties of rock masses. This transition is motivat...

  4. Inter-band B(E2) transitions strengths in 160-170Dy nuclei

    International Nuclear Information System (INIS)

    Vargas, Carlos E; Lerma, Sergio; Velázquez, Víctor

    2015-01-01

    The rare earth region of the nuclear landscape is characterized by a large collectivity observed. The microscopic studies are difficult to perform in the region due to the enormous size of the valence spaces. The use of symmetries based models avoids that problem, because the symmetry allows to choose the most relevant degrees of freedom for the system under consideration. We present theoretical results for electromagnetic properties in 160-168 Dy isotopes employing the pseudo-SU(3) model. In particular, we study the B(E2) inter-band transition strengths between the ground state, γ and, β-bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus 170 Dy

  5. A PERFORMANCE COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORKS AND MULTIVARIATE STATISTICAL METHODS IN FORECASTING FINANCIAL STRENGTH RATING IN TURKISH BANKING SECTOR

    OpenAIRE

    MELEK ACAR BOYACIOĞLU; YAKUP KARA

    2013-01-01

    Financial strength rating indicates the fundamental financial strength of a bank. The aim of financial strength rating is to measure a bank’s fundamental financial strength excluding the external factors. External factors can stem from the working environment or can be linked with the outside protective support mechanisms. With the evaluation, the rating of a bank free from outside supportive factors is being sought. Also the financial fundamental, franchise value, the variety of assets and w...

  6. Two- to one-phonon E3 transition strength in {sup 148}Gd

    Energy Technology Data Exchange (ETDEWEB)

    Piiparinen, M [Niels Bohr Institute, Tandem Accelerator Laboratory, Roskilde (Denmark); [Jyvaeskylae Univ. (Finland). Dept. of Physics; Atac, A; Nyberg, J; Ramsoy, T; Sletten, G [Niels Bohr Institute, Tandem Acceleratory Laboratory, Roskile, (Denmark); Virtanen, A; Muller, D [Jyvaeskylae Univ. (Finland). Dept. of Physics; Kleinheinz, P [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Blomqvist, J [Manne Siegbahn Inst. of Physics, Stockholm (Sweden)

    1992-08-01

    In a plunger experiment the mean life of the ({nu} f{sub 6}{sup 2}x3{sup -}x3{sup -})12{sup +} state at 3.981 MeV in {sub 64}{sup 148}Gd{sub 84} was measured as {tau}=83(10)ps, giving 77(11)B{sub w} for the 1286 keV 12{sup +} {yields} 9{sup -} E3 transition rate, which confirms the double-octupole character of the 12{sup +} state. The observed deviations in energy and transition rate from harmonic vibration are shown to be caused by the exclusion principle acting between nucleons in the two phonons and are related to the dominant contributions to the {sup 148}Gd octupole phonon of the low-lying {Delta}l={Delta}j=3 proton- and neutron in-shell 3{sup -} excitations which are of vital significance for the octupole mode in open-shell nuclei. (author). 17 refs., 2 figs.

  7. A system for rating the stability and strength of medical evidence

    Directory of Open Access Journals (Sweden)

    Reston James T

    2006-10-01

    Full Text Available Abstract Background Methods for describing one's confidence in the available evidence are useful for end-users of evidence reviews. Analysts inevitably make judgments about the quality, quantity consistency, robustness, and magnitude of effects observed in the studies identified. The subjectivity of these judgments in several areas underscores the need for transparency in judgments. Discussion This paper introduces a new system for rating medical evidence. The system requires explicit judgments and provides explicit rules for balancing these judgments. Unlike other systems for rating the strength of evidence, our system draws a distinction between two types of conclusions: quantitative and qualitative. A quantitative conclusion addresses the question, "How well does it work?", whereas a qualitative conclusion addresses the question, "Does it work?" In our system, quantitative conclusions are tied to stability ratings, and qualitative conclusions are tied to strength ratings. Our system emphasizes extensive a priori criteria for judgments to reduce the potential for bias. Further, the system makes explicit the impact of heterogeneity testing, meta-analysis, and sensitivity analyses on evidence ratings. This article provides details of our system, including graphical depictions of how the numerous judgments that an analyst makes can be combined. We also describe two worked examples of how the system can be applied to both interventional and diagnostic technologies. Summary Although explicit judgments and formal combination rules are two important steps on the path to a comprehensive system for rating medical evidence, many additional steps must also be taken. Foremost among these are the distinction between quantitative and qualitative conclusions, an extensive set of a priori criteria for making judgments, and the direct impact of analytic results on evidence ratings. These attributes form the basis for a logically consistent system that can

  8. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    International Nuclear Information System (INIS)

    Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2017-01-01

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO 2 -FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10 −2  M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  9. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Prédélus, Dieuseul; Lassabatere, Laurent, E-mail: laurent.lassabatere@entpe.fr [Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA (France); Louis, Cédric; Gehan, Hélène [Nano-H S.A.S., 2 place de l’Europe, Bâtiment A, Parc d’activité VALAD (France); Brichart, Thomas [Université Lyon 1-CNRS, Institut Lumière Matière, UMR 5306 CNRS (France); Winiarski, Thierry; Angulo-Jaramillo, Rafael [Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA (France)

    2017-03-15

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO{sub 2}-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10{sup −2} M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  10. Cost-related model for transit rates in electric power distribution networks

    International Nuclear Information System (INIS)

    Collstrand, F.

    1994-02-01

    The planned deregulation of the swedish electrical power market will require a new structure of the electrical energy rates. In this report different models of transit rates are studied. The report includes studies of literature and a proposal to a rate structure and is made specifically for Malmoe Energi AB. The differences between various methods of calculating the transfer cost are illustrated. Further, the build-up of the tariff structure and its base elements are discussed. The costs are divided on different categories of costumers and shows the cost for each customer. The new regulations should apply simultaneously to all networks, independent of the voltage level. The transit cost should be based on a number of basic elements: capital cost, operation and maintenance, losses, measuring and administration. Capital cost and operation and maintenance should be charged as power fees, the loss cost as an energy fee and the measuring and administration cost as a fixed fee. The customer bill should be split into two parts, one for the transit cost and one for the energy usage. 15 refs., 37 tabs., 6 figs

  11. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    Science.gov (United States)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  12. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    Science.gov (United States)

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  13. The Impact of the Applied Exchange Rate Regimes on the Internal Balance of Transition Countries

    Directory of Open Access Journals (Sweden)

    Vujanić Vlado

    2017-12-01

    Full Text Available One of the key goals of the economic policy makers of every country is to achieve internal and external balance. An unavoidable segment of the analysis concerning the achievement of internal and external balance is certainly the influence of the exchange rate regime applied in a country. European transition countries, despite their similar initial problems and final objectives, applied different exchange rate regimes adapted to the economic circumstances and needs of the country. The paper aims to examine and demonstrate the impact of the applied exchange rate regime on the internal balance of the transition countries. The research encompasses 10 representative transition countries, in the period from 2000-2014. The results of the research, from the aspect of internal balance, confirmed the justification of the application of the floating exchange rate regime in more developed, but not in less-developed, European transition countries. The application of floating exchange rate regimes in less-developed transition countries is associated with a considerably higher average inflation rate, which may be explained by the higher import dependence of lessdeveloped countries and by the consequent transfer of depreciation to price growth.

  14. Relativistic transition rates for sextet levels in Cr II

    International Nuclear Information System (INIS)

    Aashamar, K.; Luke, T.M.

    1994-01-01

    Configuration interaction calculations have been carried out to obtain rates for electric dipole transitions and lifetimes for the 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4d and 5s 6 D and 4d 6 F levels in Cr II. Up to 40 configurations have been included so correlation effects should be well accounted for. Relativistic interactions are included through the use of the Breit-Pauli hamiltonian to obtain the level wave functions and energies. Strong mixing of the 4d levels occurs and this leads to substantial departures from earlier nonrelativistic calculations that assume LS coupling for these states. Results include the actual compositions of both even and odd parity levels where significant mixing occurs and the rates for all transitions that are allowed to lower levels from these 4d and 5s levels. (orig.)

  15. Biasing transition rate method based on direct MC simulation for probabilistic safety assessment

    Institute of Scientific and Technical Information of China (English)

    Xiao-Lei Pan; Jia-Qun Wang; Run Yuan; Fang Wang; Han-Qing Lin; Li-Qin Hu; Jin Wang

    2017-01-01

    Direct Monte Carlo (MC) simulation is a powerful probabilistic safety assessment method for accounting dynamics of the system.But it is not efficient at simulating rare events.A biasing transition rate method based on direct MC simulation is proposed to solve the problem in this paper.This method biases transition rates of the components by adding virtual components to them in series to increase the occurrence probability of the rare event,hence the decrease in the variance of MC estimator.Several cases are used to benchmark this method.The results show that the method is effective at modeling system failure and is more efficient at collecting evidence of rare events than the direct MC simulation.The performance is greatly improved by the biasing transition rate method.

  16. Heart rate variability reflects self-regulatory strength, effort, and fatigue.

    Science.gov (United States)

    Segerstrom, Suzanne C; Nes, Lise Solberg

    2007-03-01

    Experimental research reliably demonstrates that self-regulatory deficits are a consequence of prior self-regulatory effort. However, in naturalistic settings, although people know that they are sometimes vulnerable to saying, eating, or doing the wrong thing, they cannot accurately gauge their capacity to self-regulate at any given time. Because self-regulation and autonomic regulation colocalize in the brain, an autonomic measure, heart rate variability (HRV), could provide an index of self-regulatory strength and activity. During an experimental manipulation of self-regulation (eating carrots or cookies), HRV was elevated during high self-regulatory effort (eat carrots, resist cookies) compared with low self-regulatory effort (eat cookies, resist carrots). The experimental manipulation and higher HRV at baseline independently predicted persistence at a subsequent anagram task. HRV appears to index self-regulatory strength and effort, making it possible to study these phenomena in the field as well as the lab.

  17. Gamow-Teller strength and lepton captures rates on 66-71Ni in stellar matter

    Science.gov (United States)

    Nabi, Jameel-Un; Majid, Muhammad

    Charge-changing transitions play a significant role in stellar weak-decay processes. The fate of the massive stars is decided by these weak-decay rates including lepton (positron and electron) captures rates, which play a consequential role in the dynamics of core collapse. As per previous simulation results, weak interaction rates on nickel (Ni) isotopes have significant influence on the stellar core vis-à-vis controlling the lepton content of stellar matter throughout the silicon shell burning phases of high mass stars up to the presupernova stages. In this paper, we perform a microscopic calculation of Gamow-Teller (GT) charge-changing transitions, in the β-decay and electron capture (EC) directions, for neutron-rich Ni isotopes (66-71Ni). We further compute the associated weak-decay rates for these selected Ni isotopes in stellar environment. The computations are accomplished by employing the deformed proton-neutron quasiparticle random phase approximation (pn-QRPA) model. A recent study showed that the deformed pn-QRPA theory is well suited for the estimation of GT transitions. The astral weak-decay rates are determined over densities in the range of 10-1011g/cm3 and temperatures in the range of 0.01 × 109-30 × 109K. The calculated lepton capture rates are compared with the previous calculation of Pruet and Fuller (PF). The overall comparison demonstrates that, at low stellar densities and high temperatures, our EC rates are bigger by as much as two orders of magnitude. Our results show that, at higher temperatures, the lepton capture rates are the dominant mode for the stellar weak rates and the corresponding lepton emission rates may be neglected.

  18. Nuclear Weak Rates and Detailed Balance in Stellar Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Misch, G. Wendell, E-mail: wendell@sjtu.edu, E-mail: wendell.misch@gmail.com [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2017-07-20

    Detailed balance is often invoked in discussions of nuclear weak transitions in astrophysical environments. Satisfaction of detailed balance is rightly touted as a virtue of some methods of computing nuclear transition strengths, but I argue that it need not necessarily be strictly obeyed in astrophysical environments, especially when the environment is far from weak equilibrium. I present the results of shell model calculations of nuclear weak strengths in both charged-current and neutral-current channels at astrophysical temperatures, finding some violation of detailed balance. I show that a slight modification of the technique to strictly obey detailed balance has little effect on the reaction rates associated with these strengths under most conditions, though at high temperature the modified technique in fact misses some important strength. I comment on the relationship between detailed balance and weak equilibrium in astrophysical conditions.

  19. Application of the oscillator strength of 'hypersensitive' transitions to the investigation of complex equilibria of lanthanide ions

    International Nuclear Information System (INIS)

    Bukietynska, K.; Mondry, A.; Osmeda, E.

    1981-01-01

    Stability constants and thermodynamic parameters of Nd 3+ , Ho 3+ and Er 3+ complexes with acetates, propionates, glycolates, lactates and α-hydroxyisobutyrates were determined by a spectroscopic method based upon the measurements of the variation of oscillator strengths of 'hypersensitive' 4f-4f-transitions. The sets of βsub (n) values at 21 0 C are in a good agreement with those found potentiometrically. The stability constants of the complexes evaluated at 5 different temperatures were used for the calculation of ΔG, ΔH, ΔS values. The evaluated thermodynamic parameters are in a satisfactory agreement with those found calorimetrically. The thermodynamic parameters calculated from two independent 'hypersensitive' transitions of the Er 3+ ion are also consistent. (author)

  20. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  1. Adaptive transition rates in excitable membranes

    Directory of Open Access Journals (Sweden)

    Shimon Marom

    2009-02-01

    Full Text Available Adaptation of activity in excitable membranes occurs over a wide range of timescales. Standard computational approaches handle this wide temporal range in terms of multiple states and related reaction rates emanating from the complexity of ionic channels. The study described here takes a different (perhaps complementary approach, by interpreting ion channel kinetics in terms of population dynamics. I show that adaptation in excitable membranes is reducible to a simple Logistic-like equation in which the essential non-linearity is replaced by a feedback loop between the history of activation and an adaptive transition rate that is sensitive to a single dimension of the space of inactive states. This physiologically measurable dimension contributes to the stability of the system and serves as a powerful modulator of input-output relations that depends on the patterns of prior activity; an intrinsic scale free mechanism for cellular adaptation that emerges from the microscopic biophysical properties of ion channels of excitable membranes.

  2. Assessment of isometric muscle strength and rate of torque development with hand-held dynamometry: Test-retest reliability and relationship with gait velocity after stroke.

    Science.gov (United States)

    Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A

    2018-04-27

    Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Excitation strengths and transition radii differences of one-phonon quadrupole excitations from electron scattering on {sup 92,94}Zr and {sup 94}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh Obeid, Abdulrahman

    2014-11-01

    In the framework of this thesis electron scattering experiments on low-energy excitations of {sup 92}Zr and {sup 94}Zr were performed at the S-DALINAC in a momentum transfer range q=0.3-0.6 fm{sup -1}. The nature of one-phonon symmetric and mixed-symmetric 2{sup +} and 3{sup -} states of {sup 92}Zr was investigated by comparison with predictions of the quasi-particle phonon model (QPM). Theoretical (e,e') cross sections have been calculated within the distorted wave Born approximation (DWBA) to account for Coulomb distortion effects. The reduced strengths of the one-quadrupole phonon states and the one-octupole phonon state have been extracted. The similarity of the momentum-transfer dependence of the form factors between the 2{sup +} states supports the one-phonon nature of the 2{sup +}{sub 2} state of {sup 92}Zr. A new method based on the Plane Wave Born Approximation (PWBA) for a model-independent determination of the ratio of the E2 transition strengths of fully symmetric (FSS) and mixed-symmetry (MSS) one-phonon excitations of heavy vibrational nuclei is introduced. Due to the sensitivity of electron scattering to charge distributions, the charge transition-radii difference can be determined. The basic assumptions (independence from the ratio of Coulomb corrections and from absolute values of transition radii) are tested within the Tassie model, which makes no specific assumptions about the structure of the states other than collectivity. It is shown that a PWBA analysis of the form factors, which usually fails for heavy nuclei, can nevertheless be applied in a relative analysis. This is a new promising approach to determine the ground state transition strength of the 2{sup +} MSS of vibrational nuclei with a precision limited only by the experimental information about the B(E2;2{sup +}{sub 1}→0{sup +}{sub 1}) strength. The PWBA approach furthermore provides information about differences of the proton transition radii of the respective states

  4. MONETARY TRANSMISSION CHANNELS IN FLEXIBLE MONETARY AND EXCHANGE RATE REGIMES: THE CASE OF SELECTED TRANSITION ECONOMIES

    OpenAIRE

    JOSIFIDIS, Kosta; PUCAR, Emilija Beker; SUPIĆ, Novica

    2010-01-01

    The paper explores selected monetary transmission channels in the case of transition economies. Namely, an exchange rate channel, an interest rate channel, direct and indirect influence to an exchange rate, are focused. Specific (former) transition economies are differentiated according the combination of implemented monetary and exchange rate regimes: exchange rate as a nominal anchor and rigid exchange rate regimes, exchange rate as a nominal anchor and intermediate exchange rate regimes, a...

  5. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  6. A PERFORMANCE COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORKS AND MULTIVARIATE STATISTICAL METHODS IN FORECASTING FINANCIAL STRENGTH RATING IN TURKISH BANKING SECTOR

    Directory of Open Access Journals (Sweden)

    MELEK ACAR BOYACIOĞLU

    2013-06-01

    Full Text Available Financial strength rating indicates the fundamental financial strength of a bank. The aim of financial strength rating is to measure a bank’s fundamental financial strength excluding the external factors. External factors can stem from the working environment or can be linked with the outside protective support mechanisms. With the evaluation, the rating of a bank free from outside supportive factors is being sought. Also the financial fundamental, franchise value, the variety of assets and working environment of a bank are being evaluated in this context. In this study, a model has been developed in order to predict the financial strength rating of Turkish banks. The methodology of this study is as follows: Selecting variables to be used in the model, creating a data set, choosing the techniques to be used and the evaluation of classification success of the techniques. It is concluded that the artificial neural network system shows a better performance in terms of classification of financial strength rating in comparison to multivariate statistical methods in the raining set. On the other hand, there is no meaningful difference could be found in the validation set in which the prediction performances of the employed techniques are tested.

  7. Isometric arm strength and subjective rating of upper limb fatigue in two-handed carrying tasks.

    Science.gov (United States)

    Li, Kai Way; Chiu, Wen-Sheng

    2015-01-01

    Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks.

  8. Laser spectroscopy of the 109.1-nm transition in neutral Cs

    International Nuclear Information System (INIS)

    Dimiduk, D.P.; Young, J.F.; Harris, S.E.; Pedrotti, K.D.

    1986-01-01

    Certain core-excited quartet levels in alkali-like atoms and ions, termed quasi-metastable, have slow autoionizing rates and comparable (relatively fast for quartets) VUV radiative rates. This circumstance, desirable for laser transitions, is due to angular momentum and parity selection rules on these quarters and the doublets to which they may couple via the spin-orbit interaction. The 109.1-nm transition is between Cs(5p/sup 5/5d6s)/sup 4/P/sub 5/2/ and Cs(5p/sup 6/5d)/sup 2/D and is a prototype of a class of transitions which originate on quasi-metastable levels. It has been observed in emission from a pulsed hollow-cathode discharge. Here the authors report an experiment using the same discharge to populate the lower level of this transition; tunable VUV radiation, generated by four-wave mixing, is used to make absorption measurements at near Doppler-limited resolution. From these data the authors measure accurately the fine-structure splitting of the transition, estimate the oscillator strength and hyperfine splitting, and thus confirm the identity of the transition. The VUV radiation was generated via a resonant process in Zn vapor and then directed through the pulsed hollow cathode. The scanned VUV was absorbed by the excited Cs(5p/sup 6/5d)/sup 2/D atoms in the discharge. The authors measured separately the excited atom populations via absorption on the 5d-nf transitions, thus measuring the NL product of the lower levels. By varying the discharge current, the absorption was measured as a function of the lower level NL yielding curves of growth for these transitions. Careful study of these curves yielded the oscillator strengths of both components of this transition and an estimate of the hyperfine broadening of the upper level. The measured oscillator strengths agreed well with the authors' calculations using the code RCN/RCG

  9. Evaluation of the effects of strain rate on material properties of the high strength concrete used in nuclear facilities

    International Nuclear Information System (INIS)

    Kawaguchi, Shohei; Shirai, Koji; Takayanagi, Hideaki

    2011-01-01

    Concrete physical properties (compressive strength, tensile strength, initial elastic modulus and maximum strain) affected by strain rate weren't fully utilize for material model in dynamic response analysis for seismic and impact load because of few reports and various difficulties of impact tests. Split Hopkinson Pressure Bar (SHPB) methods are the most popular high-speed material testing and were also applied for composite material. We applied SHPB for concrete specimen and reported the strain rate effect to the concrete physical property. We used hydraulic testing device for 10 -5 /s to 10 0 /s strain rate and SHPB methods for over 10 1 /s. Four cases of concrete tests (high (50MPa at 28days)/low (35MPa at 28days) compressive strength (based on the test of exiting nuclear power facilities) and dry/wet condition) were done. And we formulated strain rate effect about compressive strength and initial elastic modulus from comparing with previous studies. (author)

  10. Effect of steam corrosion on core post strength loss: I. Low, chronic steam ingress rates

    International Nuclear Information System (INIS)

    Wichner, R.P.

    1976-10-01

    The purpose of the study was to assess the effect of chronic, low levels of steam ingress into the primary system of the HTGR on the corrosion, and consequent strength loss of the core support posts. The assessment proceeded through the following three steps: (1) The impurity composition in the primary system was estimated as a function of a range of steady ingress rates of from 0.001 to 1.0 g/sec, both by means of an analysis of the Dragon steam ingress experiment and a computer code, TIMOX, which treats the primary system as a well-mixed pot. (2) The core post burnoffs which result from 40-year exposures to these determined impurity atmospheres were then estimated using a corrosion rate expression derived from published ATJ-graphite corrosion rate data. Burnoffs were determined for both the core posts at the nominal and the maximum sustained temperature, estimated to be 90 0 C above nominal. (3) The final step involved assessment of the degree of strength loss resulting from the estimated burnoffs. An empirical equation was developed for this purpose which compares reasonably well with strength loss data for a number of different graphites and specimen geometries

  11. The unusual strength of the 5.14→1.27MeV, 2-→2+ transition in 22Ne

    International Nuclear Information System (INIS)

    Merdinger, J.C.; Bozek, E.; Gehringer, C.; Stachura, Z.

    1975-01-01

    The lifetime of the 5.14MeV excited state of 22 Ne was investigated by use of the electronic timing, recoil distance and Doppler shift attenuation techniques. A mean life tau=1.2+-0.3ps was obtained, corresponding to a transition strength of 9.8x10 -6 W.u. for the E1 decay of this state [fr

  12. Bubble nucleation and growth in very strong cosmological phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel, E-mail: megevand@mdp.edu.ar; Ramírez, Santiago

    2017-06-15

    Strongly first-order phase transitions, i.e., those with a large order parameter, are characterized by a considerable supercooling and high velocities of phase transition fronts. A very strong phase transition may have important cosmological consequences due to the departures from equilibrium caused in the plasma. In general, there is a limit to the strength, since the metastability of the old phase may prevent the transition to complete. Near this limit, the bubble nucleation rate achieves a maximum and thus departs from the widely assumed behavior in which it grows exponentially with time. We study the dynamics of this kind of phase transitions. We show that in some cases a gaussian approximation for the nucleation rate is more suitable, and in such a case we solve analytically the evolution of the phase transition. We compare the gaussian and exponential approximations with realistic cases and we determine their ranges of validity. We also discuss the implications for cosmic remnants such as gravitational waves.

  13. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  14. Electric dipole transitions for four-times ionized cerium (Ce V)

    Energy Technology Data Exchange (ETDEWEB)

    Usta, Betül Karaçoban, E-mail: bkaracoban@sakarya.edu.tr; Akgün, Elif, E-mail: elif.akgun@ogr.sakarya.edu.tr; Alparslan, Büşra, E-mail: busra.alparslan1@ogr.sakarya.edu.tr [Physics Department, Sakarya University, 54187, Sakarya (Turkey)

    2016-03-25

    We have calculated the transition parameters, such as wavelengths, oscillator strengths, and transition probabilities (or rates), for the electric dipole (E1) transitions in four-times ionized cerium (Ce V, Z = 58) by using the multiconfiguration Hartree-Fock method within the framework of Breit-Pauli (MCHF+BP) relativistic corrections and the relativistic Hartree-Fock (HFR) method. The obtained results have been compared with other works available in literature. A discussion of these calculations for Ce V in this study has also been in view of the MCHF+BP and HFR methods.

  15. Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied

    Directory of Open Access Journals (Sweden)

    Pei-Yun Shu

    2018-06-01

    Full Text Available Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar (SHPB testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2–4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding. Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing

  16. Real Exchange Rates in Advanced Transition Economies

    Directory of Open Access Journals (Sweden)

    Sanja Grubacic

    2015-10-01

    Full Text Available The recent evidence from Eastern Europe suggests that one of the major obstacles towards the adoption of euro may lie in the impact that the recession of 2008 exerted on the trajectory of real exchange rates in new member countries (European Commission, 2015.  This paper aims to establish and explain the relationship between the external shocks derived from the global financial crisis and recession of 2008 and equilibrium real exchange rate in advanced transition economies of Eastern Europe. The interplay between the external and internal balances is explained by developing an inter-temporal optimizing model of the real exchange rate determination in a small open economy with structural distortions. The results of our model suggest that, in the aftermath of recession, if the Eastern European economies attempt to restore and maintain the balance between the consumption, saving, and investment, the equilibrium real exchange rate will tend to reverse its trajectory from appreciation to depreciation over time in order to encourage a greater production in the future. The equilibrium real exchange rate depreciation in the future may obtain either as a result of an increase in the direct subsidies on investment or as a result of reduced subsidies on the "net-of-investment" income.  The deprecation of countries’ real exchange rate, however, may continue to act as an effective constraint against the adoption of euro.

  17. Allowed and forbidden transition parameters for Fe XV

    International Nuclear Information System (INIS)

    Nahar, Sultana N.

    2009-01-01

    A comprehensive set of fine structure energy levels, oscillator strengths (f), line strengths (S), and radiative decay rates (A) for bound-bound transitions in Fe XV is presented. The allowed electric dipole (E1) transitions were obtained from the relativistic Breit-Pauli R-matrix method which is based on the close coupling approximation. A total of 507 fine structure energy levels with n ≤ 10, l ≤ 9, and 0 ≤ J ≤ 10 are found. They agree within 1% with the available observed energies. These energy levels yield a total of 27,812 E1, same-spin multiplets and intercombination transitions. The A values are in good agreement with those compiled by NIST and other existing values for most transitions. Forbidden transitions are obtained from a set of 20 configurations with orbitals ranging from 1s to 5f using the relativistic code SUPERSTRUCTURE (SS) in the Breit-Pauli approximation. From a set of 123 fine structure levels, a total of 6962 S and A values are presented for forbidden electric quadrupole (E2), electric octupole (E3), magnetic dipole (M1), and magnetic quadrupole (M2) transitions. The energies from SS calculations agree with observed energies to within 1-3%. A values for E2, M1 transitions agree very well with the available values for most transitions while those for M2 transitions show variable agreement. The large set of transition parameters presented should be applicable for both diagnostics and spectral modeling in the X-ray, ultraviolet, and optical regions of astrophysical plasmas.

  18. MgH Rydberg series: Transition energies from electron propagator theory and oscillator strengths from the molecular quantum defect orbital method

    Science.gov (United States)

    Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.

    2018-02-01

    Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.

  19. Fissure formation in coke. 2: Effect of heating rate, shrinkage and coke strength

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jenkins; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences

    2010-07-15

    We investigate the effects of the heating rate, coke shrinkage and coke breakage strength upon the fissure pattern developed in a coke oven charge during carbonisation. This is done principally using a mechanistic model of the formation of fissures, which considers them to be an array of equally spaced fissures, whose depth follows a 'period doubling' pattern based upon the time history of the fissures. The model results are compared with pilot scale coke oven experiments. The results show that the effect of heating rate on the fissure pattern is different to the effect of coke shrinkage, while the effect of coke breakage strength on the pattern is less pronounced. The results can be seen in both the shape and size of resulting coke lumps after stabilisation. The approach gives the opportunity to consider means of controlling the carbonisation process in order to tune the size of the coke lumps produced. 7 refs., 18 figs., 4 tabs.

  20. Electric-dipole allowed and intercombination transitions among the 3d5, 3d44s and 3d44p levels of Fe IV

    International Nuclear Information System (INIS)

    Deb, Narayan C.; Hibbert, Alan

    2010-01-01

    Oscillator strengths and transition rates for the electric-dipole (E1) allowed and intercombination transitions among 3d 5 , 3d 4 4s and 3d 4 4p levels of Fe IV are calculated using the CIV3 code of Hibbert and coworkers. Using the Hartree-Fock functions up to 3d orbitals we have also optimized 4s, 4p, 4d, 4f, 5s, 5p and 5d orbitals of which 4s and 4p are taken to be spectroscopic and the remaining orbitals represent corrections to the spectroscopic orbitals or the correlation effects. The J-dependent levels of 108 LS states are included in the calculation and the relativistic effects are accounted for via the Breit-Pauli operator. Configurations are chosen in two steps: (a) two promotions were allowed from the 3p, 3d, 4s and 4p subshells, using all the orbitals; and (b) selective promotions from the 3s subshell are included, but only to the 3s and 4s orbitals. The ab initio fine-structure levels are then fine tuned to reproduce observed energy levels as closely as possible, and the resulting wavefunctions are used to calculate oscillator strengths and transition rates for all possible E1 transitions. For many of these transitions, the present results show good agreement between the length and velocity forms while for some transitions, some large disagreements are found with other available results. The complete list of weighted oscillator strengths, transition rates, and line strengths for transitions among the fine structure levels of the three lowest configurations are presented in ascending order of wavelength.

  1. Effect of Strength Training on Rate of Force Development in Older Women

    Science.gov (United States)

    Gurjao, Andre Luiz Demantova; Gobbi, Lilian Teresa Bucken; Carneiro, Nelson Hilario; Goncalves, Raquel; Ferreira de Moura, Rodrigo; Cyrino, Edilson Serpeloni; Altimari, Leandro Ricardo; Gobbi, Sebastiao

    2012-01-01

    We analyzed the effect of an 8-week strength training (ST) program on the rate of force development (RFD) and electromyographic activity (EMG) in older women. Seventeen women (M age = 63.4 years, SD = 4.9) without previous ST experience were randomly assigned to either a control (n = 7) or training (n = 10) group. A leg-press isometric test was…

  2. Effects of temperature and sliding rate on frictional strength of granite

    Science.gov (United States)

    Lockner, D.A.; Summers, R.; Byerlee, J.D.

    1986-01-01

    Layers of artificial granite gouge have been deformed on saw-cut granite surfaces inclined 30?? to the sample axes. Samples were deformed at a constant confining pressure of 250 MPa and temperatures of 22 to 845??C. The velocity dependence of the steady-state coefficient of friction (??ss) was determined by comparing sliding strengths at different sliding rates. The results of these measurements are consistent with those reported by Solberg and Byerlee (1984) at room temperature and Stesky (1975) between 300 and 400??C. Stesky found that the slip-rate dependence of (??ss) increased above 400??C. In the present study, however, the velocity dependence of (??ss) was nearly independent of temperature. ?? 1986 Birkha??user Verlag.

  3. Random walk theory and exchange rate dynamics in transition economies

    Directory of Open Access Journals (Sweden)

    Gradojević Nikola

    2010-01-01

    Full Text Available This paper investigates the validity of the random walk theory in the Euro-Serbian dinar exchange rate market. We apply Andrew Lo and Archie MacKinlay's (1988 conventional variance ratio test and Jonathan Wright's (2000 non-parametric ranks and signs based variance ratio tests to the daily Euro/Serbian dinar exchange rate returns using the data from January 2005 - December 2008. Both types of variance ratio tests overwhelmingly reject the random walk hypothesis over the data span. To assess the robustness of our findings, we examine the forecasting performance of a non-linear, nonparametric model in the spirit of Francis Diebold and James Nason (1990 and find that it is able to significantly improve upon the random walk model, thus confirming the existence of foreign exchange market imperfections in a small transition economy such as Serbia. In the last part of the paper, we conduct a comparative study on how our results relate to those of other transition economies in the region.

  4. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  5. The adverse effect of real effective exchange rate change on trade balance in European transition countries

    Directory of Open Access Journals (Sweden)

    Selena Begović

    2017-12-01

    Full Text Available Most European transition countries have fixed or highly managed flexible exchange rate regimes. This exchange rate rigidity is sometimes argued to worsen the trade balance by keeping the currency overvalued. However, there is no unambiguous evidence that currency depreciation/devaluation positively affects trade balance and leads towards the adjustment, even in the short-run. Therefore, we examine the effect of real effective exchange rate (hereafter REER on trade balance in European transition economies over the period 2000-2015. By using fixed effect model for static and generalised method of moments for dynamic estimation, we find that there is an adverse effect of the REER on trade balance in European transition countries over the period 2000-2015. Namely, depreciation of REER deteriorates trade balance in European transition countries, which could be explained by high import dependence and low export capacity. This implies that policymakers in European transition countries should not use exchange rate policy to improve trade balance. This is important in the light of their accession towards European economic and monetary integration, implying that these countries should focus more on using fiscal, rather than monetary (and exchange rate, policy to adjust trade balance, which is one of the required real convergence towards the EU standards.

  6. The Coupled Effect of Loading Rate and Grain Size on Tensile Strength of Sandstones under Dynamic Disturbance

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-01-01

    Full Text Available It is of significance to comprehend the effects of rock microstructure on the tensile strength under different loading rates caused by mining disturbance. So, in this paper, three kinds of sandstones drilled from surrounding rocks in Xiao Jihan Coal to simulate the in situ stress state, whose average grain size is 30 μm (fine grain, FG, 105 μm (medium grain, MG, and 231 μm (Coarse grain, CG, are selected with the calculation of optical microscopic technique and moreover processed to Brazilian disc (BD to study the mechanical response of samples. The dynamic Brazilian tests of samples with three kinds of grain sizes are conducted with the Split Hopkinson Pressure Bar (SHPB driven by pendulum hammer, which can produce four different velocities (V=2.0 m/s, 2.5 m/s, 3.3 m/s, and 4.2 m/s when the incident bar is impacted by pendulum hammer. The incident wave produced by pendulum hammer is a slowly rising stress wave, which allows gradual stress accumulation in the specimen and maintains the load at both ends of the specimen in an equilibrium state. The results show that the dynamic strength of three kinds of BD samples represented loading rates dependence, and FG sandstones are more sensitive for loading rates than MG and CG samples. Moreover, the peak strength is observed to increase linearly with an increasing stress rates, and the relationship between the dynamic BD strength and stress rates can be built through a linear equation. Finally, the failure modes of different grain sizes are discussed and explained by microfailure mechanism.

  7. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  8. Soft radiative strength in warm nuclei

    International Nuclear Information System (INIS)

    Becker, J A; Bernstein, L A; Garrett, P E; Nelson, R O; Schiller, A; Voinov, A; Agvaanluvsan, U; Algin, E; Belgya, T; Chankova, R; Guttormsen, M; Mitchell, G E; Rekstad, J; Siem, S

    2004-01-01

    Unresolved transitions in the nuclear γ-ray cascade produced in the decay of excited nuclei are best described by statistical concepts: a continuous radiative strength function (RSF) and level density yield mean values of transition matrix elements. Data on the soft (E γ < 3-4 MeV) RSF for transitions between warm states (i.e. states several MeV above the yrast line) have, however, remained elusive

  9. Relativistic many-body calculations of magnetic dipole transitions in Be-like ions

    International Nuclear Information System (INIS)

    Safronova, U.I.; Johnson, W.R.; Derevianko, A.

    1999-01-01

    Reduced matrix elements and transition rates are calculated for all magnetic dipole (M1) transitions within 2l2l' configurations and for some 2l3l'-2l2l' transitions in Be-like ions with nuclear charges ranging from Z = 4 to 100. Many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded M1 matrix elements. The calculations start with a (1s) 2 Dirac-Fock potential and include all possible n = 2 configurations, leading to 4 odd-parity and 6 even-parity states, and some n = 3 configurations. First-order perturbation theory is used to obtain intermediate coupling coefficients. Second-order MBPT is used to determine the matrix elements, which are evaluated for all 11 M1 transitions within 2l2l' configurations and for 35 M1 transitions between 2l3l' and 2l2l' states. The transition energies used in the calculation of oscillator strengths and transition rates are obtained from second-order MBPT. The importance of negative-energy contributions to M1 transition amplitudes is discussed. (orig.)

  10. MONETARY TRANSMISSION CHANNELS IN FLEXIBLE MONETARY AND EXCHANGE RATE REGIMES: THE CASE OF SELECTED TRANSITION ECONOMIES

    Directory of Open Access Journals (Sweden)

    Kosta JOSIFIDIS

    2010-01-01

    Full Text Available The paper explores selected monetary transmission channels in the case of transition economies. Namely, an exchange rate channel, an interest rate channel, direct and indirect influence to an exchange rate, are focused. Specific (former transition economies are differentiated according the combination of implemented monetary and exchange rate regimes: exchange rate as a nominal anchor and rigid exchange rate regimes, exchange rate as a nominal anchor and intermediate exchange rate regimes, and implicit/explicit inflation targeting monetary regime and floating (managed/free exchange rate regime. The monetary transmission is tracked during different phases in a transition process towards the EU and compared between different nominal anchors and exchange rate regimes. In order to track the influence of a monetary policy instruments (impulses to different goals of a monetary policy (responses during the period from 6-24 months, we use VAR and VEC models. Monthly frequency of following time series are used in the models: nominal exchange rates, consumer price indexes, foreign exchange reserves, and reference interest rates. The aim of the paper is to point to the distinction between de jure and de facto exchange rate regimes, and to the adequacy of used combination of monetary and exchange rate regimes having in mind revealed features of investigated monetary transmission channels.

  11. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    Science.gov (United States)

    Lukatskaya, Maria R.; Kota, Sankalp; Lin, Zifeng; Zhao, Meng-Qiang; Shpigel, Netanel; Levi, Mikhael D.; Halim, Joseph; Taberna, Pierre-Louis; Barsoum, Michel W.; Simon, Patrice; Gogotsi, Yury

    2017-08-01

    The use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g-1 at scan rates of 10 V s-1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ˜1,500 F cm-3 reaching the previously unmatched volumetric performance of RuO2.

  12. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    International Nuclear Information System (INIS)

    Chen, Hang; Thill, Peter; Cao, Jianshu

    2016-01-01

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  13. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-07

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  14. Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires.

    Science.gov (United States)

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-02-14

    The mechanical properties and plastic deformation mechanisms of metal nanowires have been studied intensely for many years. One of the important yet unresolved challenges in this field is to bridge the gap in properties and deformation mechanisms reported for slow strain rate experiments (∼10 -2 s -1 ), and high strain rate molecular dynamics (MD) simulations (∼10 8 s -1 ) such that a complete understanding of strain rate effects on mechanical deformation and plasticity can be obtained. In this work, we use long time scale atomistic modeling based on potential energy surface exploration to elucidate the atomistic mechanisms governing a strain-rate-dependent incipient plasticity and yielding transition for face centered cubic (FCC) copper and silver nanowires. The transition occurs for both metals with both pristine and rough surfaces for all computationally accessible diameters (ductile-to-brittle transition in failure mode similar to previous experimental studies on bicrystalline silver nanowires is observed, which is driven by differences in dislocation activity and grain boundary mobility as compared to the high strain rate case.

  15. Relativistic many-body calculation of energies, transition rates, lifetimes, and multipole polarizabilities in Cs-like La iii

    Science.gov (United States)

    Safronova, U. I.; Safronova, M. S.

    2014-05-01

    Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.

  16. Causal strength induction from time series data.

    Science.gov (United States)

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Beware of breaks in exchange rates: evidence from European transition countries

    Czech Academy of Sciences Publication Activity Database

    Kočenda, Evžen

    2005-01-01

    Roč. 29, č. 3 (2005), s. 307-324 ISSN 0939-3625 Institutional research plan: CEZ:AV0Z70850503 Keywords : exchange rate regime * emerging and transition countries * central banks Subject RIV: AH - Economics http://dx.doi.org/10.1016/j.ecosys.2005.02.006

  18. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

    Science.gov (United States)

    Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio

    2016-01-13

    The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

  19. Policies for school-to-work transitions in Sweden, Denmark and Finland

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms; Lundahl, Lisbeth; Järvinen, Tero

    2018-01-01

    All over Europe, a range of policy measures to support young people’s school-to-work transitions have been initiated. However, these transition policies have rarely been studied systematically, particularly not from a comparative perspective. The aim of this article is to compare Swedish, Danish...... and Finnish policies for supporting young people’s edu¬ca¬¬tional and school-to-work transitions, with a particular focus on NEETs and dropouts. The comparison is exploratory and aims to illuminate the strengths and weaknesses of each system in reducing dropout rates and promoting smooth transitions. We draw...... and migrant youth, the political discourse is marked more by ideas of employability and vulnerability than of personal development and citizenship....

  20. New technique for a simultaneous estimation of the level density and radiative strength functions of dipole transitions at E sub e sub x<=B sub n -0.5 MeV

    CERN Document Server

    Khitrov, V A

    2001-01-01

    The new, model-independent method to estimate simultaneously the level densities excited in the (n,gamma) reaction and the radiative strength functions of dipole transitions is developed. The method can be applied for any nucleus and reaction followed by cascade gamma-emission. It is just necessary to measure the intensities of two-step gamma-cascades depopulating one or several high-excited states and determine the quanta ordering in the main portion of the observed cascades. The method provides a sufficiently narrow interval of most probable densities of levels with given J suppi and radiative strength functions of dipole transitions populating them.

  1. Correlation and relativistic effects for the 4f-nl and 5p-nl multipole transitions in Er-like tungsten

    International Nuclear Information System (INIS)

    Safronova, U. I.; Safronova, A. S.

    2011-01-01

    Wavelengths, transition rates, and line strengths are calculated for the multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited [Cd]4f 13 5p 6 nl, [Cd]4f 14 5p 5 nl configurations and the ground [Cd]4f 14 5p 6 state in Er-like W 6+ ion ([Cd]=[Kr]4d 10 5s 2 ). In particular, the relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in this hole-particle system. This method is based on the relativistic many-body perturbation theory that agrees with multiconfiguration Dirac-Fock (MCDF) calculations in lowest order, and includes all second-order correlation corrections and corrections from negative-energy states. The calculations start from a [Cd]4f 14 5p 6 Dirac-Fock (DF) potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the multipole matrix elements needed for calculations of other atomic properties such as line strengths and transition rates. In addition, core multipole polarizability is evaluated in random-phase and DF approximations. The comparison with available data is demonstrated.

  2. Radiative Decay Rates for Electric Dipole, Magnetic Dipole and Electric Quadrupole Transitions in Triply Ionized Thulium (Tm IV

    Directory of Open Access Journals (Sweden)

    Saturnin Enzonga Yoca

    2017-09-01

    Full Text Available A new set of radiative decay parameters (oscillator strengths, transition probabilities for spectral lines in triply ionized thulium (Tm IV has been obtained within the framework of the pseudo-relativistic Hartree-Fock (HFR approach. The effects of configuration interaction and core-polarization have been investigated in detail and the quality of the results has been assessed through a comparison between different HFR physical models. The spectroscopic data listed in the present paper cover electric dipole as well as magnetic dipole and electric quadrupole transitions in a wide range of wavelengths from extreme ultraviolet to near infrared.

  3. The Multi-state Latent Factor Intensity Model for Credit Rating Transitions

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Monteiro, A.

    2008-01-01

    A new empirical reduced-form model for credit rating transitions is introduced. It is a parametric intensity-based duration model with multiple states and driven by exogenous covariates and latent dynamic factors. The model has a generalized semi-Markov structure designed to accommodate many of the

  4. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  5. Search for weak M 1 transitions in 48Ca with inelastic proton scattering

    Science.gov (United States)

    Mathy, M.; Birkhan, J.; Matsubara, H.; von Neumann-Cosel, P.; Pietralla, N.; Ponomarev, V. Yu.; Richter, A.; Tamii, A.

    2017-05-01

    Background: The quenching of spin-isospin modes in nuclei is an important field of research in nuclear structure. It has an impact on astrophysical reaction rates and on fundamental processes like neutrinoless double-β decay. Gamow-Teller (GT) and spin-flip M 1 strengths are quenched. Concerning the latter, the Jπ=1+ resonance in the doubly magic nucleus 48Ca, dominated by a single transition, serves as a reference case. Purpose: The aim of the present work is to search for weak M 1 transitions in 48Ca with a high-resolution (p ,p') experiment at 295 MeV and forward angles including 0∘ and a comparison with results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B (M 1 ) strength in 48Ca. Methods: The spin-M 1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis (MDA) and converted to reduced spin-M 1 transition strengths by using the unit cross-section method. For a comparison with electron-scattering results, corresponding reduced B (M 1 ) transition strengths are extracted following the approach outlined in Birkhan et al. [Phys. Rev. C 93, 041302(R) (2016), 10.1103/PhysRevC.93.041302]. Results: In total, 30 peaks containing a M 1 contribution are found in the excitation energy region 7-13 MeV. The resulting B (M 1 ) strength distribution compares well to the electron-scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.14(7) μN2 deduced assuming a nonquenched isoscalar part of the (p ,p') cross sections agrees with the (e ,e') result of 1.21(13) μN2. A bin-wise analysis above 10 MeV provides an upper limit of 1.51(17) μN2. Conclusions: The present results confirm the previous electron

  6. Lifetime measurements and dipole transition rates for superdeformed states in 190Hg

    International Nuclear Information System (INIS)

    Amro, H.

    1999-01-01

    The Doppler-shift attenuation method was used to measure life-times of superdeformed (SD) states for both the yrast and the first excited superdeformed band of 190 Hg. Intrinsic quadruple moments Q 0 were extracted. For the first time, the dipole transition rates have been extracted for the inter-band transitions which connect the excited SD band to the yrast states in the second minimum. The results support the interpretation of the excited SD band as a rotational band built on an octupole vibration

  7. Roles of pinning strength and density in vortex melting

    International Nuclear Information System (INIS)

    Obaidat, I M; Khawaja, U Al; Benkraouda, M

    2008-01-01

    We have investigated the role of pinning strength and density on the equilibrium vortex-lattice to vortex-liquid phase transition under several applied magnetic fields. This study was conducted using a series of molecular dynamic simulations on several samples with different strengths and densities of pinning sites which are arranged in periodic square arrays. We have found a single solid-liquid vortex transition when the vortex filling factor n>1. We have found that, for fixed pinning densities and strengths, the melting temperature, T m , decreases almost linearly with increasing magnetic field. Our results provide direct numerical evidence for the significant role of both the strength and density of pinning centers on the position of the melting line. We have found that the vortex-lattice to vortex-liquid melting line shifts up as the pinning strength or the pinning density was increased. The effect on the melting line was found to be more pronounced at small values of strength and density of pinning sites

  8. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Lukatskaya, Maria R. [Drexel Univ., Philadelphia, PA (United States); Dept. of Chemical Engineering, Stanford, CA (United States); Kota, Sankalp [Drexel Univ., Philadelphia, PA (United States); Lin, Zifeng [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Zhao, Meng -Qiang [Drexel Univ., Philadelphia, PA (United States); Shpigel, Netanel [Bar-Ilan Univ., Ramat-Gan (Israel); Levi, Mikhael D. [Bar-Ilan Univ., Ramat-Gan (Israel); Halim, Joseph [Drexel Univ., Philadelphia, PA (United States); Taberna, Pierre -Louis [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Barsoum, Michel W. [Drexel Univ., Philadelphia, PA (United States); Simon, Patrice [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-07-10

    In this study, the use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g–1 at scan rates of 10 V s–1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ~1,500 F cm–3 reaching the previously unmatched volumetric performance of RuO2.

  9. An attempt to explain strength increase due to high loading rates

    International Nuclear Information System (INIS)

    Eibl, J.; Curbach, M.

    1989-01-01

    Most materials such as steel, concrete, ceramics, polymers, etc. show an increase of strength due to high loading rates. A number of mathematical equations are available to describe this behaviour. Nevertheless the physical reasons for these observations are still unknown. The common behaviour of a number of materials leads to the assumption that at least some explanations are material independent. Due to this reason the results of the research done at the Institute for Concrete Structures in Karlsruhe are presented in this paper to furnish new ideas for the material research due to dynamic loading. (orig.)

  10. Energy levels, radiative rates, and lifetimes for transitions in W XL

    International Nuclear Information System (INIS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2014-01-01

    Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (GRASP). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s 2 4p 5 ,4s 2 4p 4 4d,4s 2 4p 4 4f,4s4p 6 ,4p 6 4d,4s4p 5 4d,4s 2 4p 3 4d 2 , and 4s 2 4p 3 4d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in GRASP. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions

  11. Loading rate effects on strength and fracture toughness of pipe steels used in Task 1 of the IPIRG program

    International Nuclear Information System (INIS)

    Marschall, C.W.; Landow, M.P.; Wilkowski, G.M.

    1993-10-01

    Material characterization tests were conducted on laboratory specimens machined from pipes to determine the effect of dynamic loading (i.e., rates comparable to those for high amplitude seismic events) on tensile properties and fracture resistance at 288 C (550 F). Specimens were fabricated from seven different pipes, including carbon steels and stainless steels (both base metal and weld metal), which were to be subjected to full-scale pipe tests in IPIRG Task 1.0. For the stainless steels tested at 288 C (550 F), tensile strength was unchanged, while yield strength and fracture resistance were increased. The increase in fracture resistance was modest for the wrought base metals and substantial for the weld metal and the cast base metal. The carbon steels tested were sensitive to dynamic strain aging, and hence the strength and toughness was affected by both temperature and strain rate effects. The carbon steel base metal and welds exhibited ultimate tensile strength values at 288 C (550 F) that were greater than at room temperature. Furthermore, the ultimate tensile strength at 288 C (550 F) was lowered significantly by increased strain rate and, in the carbon steel base metals, increased strain rate also lowered the fracture resistance, substantially in the base metal of one pipe. In comparing these results to the IPIRG pipe test results to date, it was found that the trends of these tests agree well with the Subtask 1.2 quasi-static and dynamic pipe fracture experiments. Loads measured in the Subtask 1.1 pipe experiments were, however, somewhat higher than would have been expected by the trends observed in the laboratory tests

  12. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    Science.gov (United States)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  13. Absolute E0 and E2 transition rates and collective states in 116Sn

    International Nuclear Information System (INIS)

    Kantele, J.; Julin, R.; Luontama, M.; Passoja, A.; Poikolainen, T.; Baecklin, A.; Jonsson, N.-G.

    1978-08-01

    Absolute E0 and E2 transition rates in 116 Sn have been measured using several newly developed techniques. Many E2 transitions are observed to have a collective character with B(E2) values of up to 60 W.u. The presence of deformed excited states in 116 Sn is discussed in view of the results obtained. (author)

  14. Hydration rate and strength development of low-heat type portland cement mortar mixed with pozzolanic materials

    International Nuclear Information System (INIS)

    Matsui, Jun

    1998-01-01

    Recently, low-heat type Portland cement was specified in Japan Industrial Standards (JIS). Its hydration proceeds slowly. The results of the research so far obtained indicate that slow hydration of cement and mixing of pozzolanic materials with cement make micro-structure of harded cement paste dense and durable. In this study, a blended cement using low-heat type Portland cement and some of pozzolanic materials has been newly developed and its strength property and hydration ratio were checked. The followings are conclusion. (1) Hydration rate of cement paste varies with the replacement ratio of pozzolanic materials. (2) A good liner relationship between strength and total hydration rate of cement paste was observed. (3) A proper replacement ratio of both base-cement and pozzolanic material for manufacturing a blended cement is 50%. (author)

  15. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  16. Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)

    Science.gov (United States)

    Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.

    1982-04-01

    The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.

  17. Biotic turnover rates during the Pleistocene-Holocene transition

    Science.gov (United States)

    Stivrins, Normunds; Soininen, Janne; Amon, Leeli; Fontana, Sonia L.; Gryguc, Gražyna; Heikkilä, Maija; Heiri, Oliver; Kisielienė, Dalia; Reitalu, Triin; Stančikaitė, Miglė; Veski, Siim; Seppä, Heikki

    2016-11-01

    The Northern Hemisphere is currently warming at the rate which is unprecedented during the Holocene. Quantitative palaeoclimatic records show that the most recent time in the geological history with comparable warming rates was during the Pleistocene-Holocene transition (PHT) about 14,000 to 11,000 years ago. To better understand the biotic response to rapid temperature change, we explore the community turnover rates during the PHT by focusing on the Baltic region in the southeastern sector of the Scandinavian Ice Sheet, where an exceptionally dense network on microfossil and macrofossil data that reflect the biotic community history are available. We further use a composite chironomid-based summer temperature reconstruction compiled specifically for our study region to calculate the rate of temperature change during the PHT. The fastest biotic turnover in the terrestrial and aquatic communities occurred during the Younger Dryas-Holocene shift at 11,700 years ago. This general shift in species composition was accompanied by regional extinctions, including disappearance of mammoth (Mammuthus primigenius) and reindeer (Rangifer tarandus) and many arctic-alpine plant taxa, such as Dryas octopetala, Salix polaris and Saxifraga aizoides, from the region. This rapid biotic turnover rate occurred when the rate of warming was 0.17 °C/decade, thus slightly lower than the current Northern Hemisphere warming of 0.2 °C/decade. We therefore conclude that the Younger Dryas-Holocene shift with its rapid turnover rates and associated regional extinctions represents an important palaeoanalogue to the current high latitude warming and gives insights about the probable future turnover rates and patterns of the terrestrial and aquatic ecosystem change.

  18. Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro.

    Directory of Open Access Journals (Sweden)

    Sophia Rudorf

    2014-10-01

    Full Text Available The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have

  19. Gamow-teller transitions: progress and problems

    International Nuclear Information System (INIS)

    Walter, G.

    1994-01-01

    The determination of the Gamow-Teller (GT) matrix elements from beta-decay and charge exchange reactions has led to a series of discoveries concerning the structure of the nucleus and the properties of spin-isospin transitions in nuclei. The study of GT distribution and strength, either by charge exchange or weak decay, provides excellent tests for nuclear models as these parameters are extremely sensitive to the details of nuclear structure. Recent improvements of these models have reduced, for the most part, differences between experiment and theory, allowing in turn a more reliable estimate of weak decay rates in stellar matter. A better understanding of the 'missing strength' and of the failure of many experiments to detect the strength that is present have also been obtained. Recently, it appears also that weak decay studies in selected region (proton or neutron rich) of the N-Z plane give access to the GT giant resonance. (J.S.). 65 refs., 10 figs

  20. Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.

    Science.gov (United States)

    Brown, B Alex; Larsen, A C

    2014-12-19

    A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8  MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates.

  1. Sex Differences in the Level and Rate of Change of Physical Function and Grip Strength in the Danish 1905-Cohort Study

    DEFF Research Database (Denmark)

    Oksuzyan, Anna; Maier, Heiner; McGue, Matt

    2010-01-01

    OBJECTIVE: The study was conducted to examine sex differences in the initial level and rate of change in physical function and grip strength. METHOD: The baseline survey included 2,262 Danes born in 1905 and alive in 1998 and followed-up in 2000, 2003, and 2005. Hence, the authors fully used...... the power of having a cohort with multiple assessments in late life and virtually complete follow-up of lifespan (through December 2008). Latent growth curve modeling was used. RESULTS: Men had higher initial levels and rates of decline in strength score and grip strength. Lifespan was positively correlated...

  2. Theory of free-bound transitions in channeling radiation

    International Nuclear Information System (INIS)

    Saenz, A.W.; Nagl, A.; Uberall, H.

    1988-01-01

    On the basis of a single-string model, we derive formulas for the transition strengths of free-bound transitions of axially channeled electrons. We illustrate the theory by numerical calculations of these strengths for 3.5-MeV electrons in Si. Experimental evidence for such transitions has been obtained previously [J.U. Andersen et al., Nucl. Instrum. Methods 194, 209 (1982)] and is in good qualitative agreement with our calculations

  3. Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4.

    Science.gov (United States)

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2014-05-14

    The impact of ultrahigh (dis)charge rates on the phase transition mechanism in LiFePO4 Li-ion electrodes is revealed by in situ synchrotron diffraction. At high rates the solubility limits in both phases increase dramatically, causing a fraction of the electrode to bypass the first-order phase transition. The small transforming fraction demonstrates that nucleation rates are consequently not limiting the transformation rate. In combination with the small fraction of the electrode that transforms at high rates, this indicates that higher performances may be achieved by further optimizing the ionic/electronic transport in LiFePO4 electrodes.

  4. Transition properties of the Be-like X-ray from Mg IX

    Indian Academy of Sciences (India)

    Feng Hu

    2017-11-23

    Nov 23, 2017 ... Transition properties of the Be-like Kα X-ray from Mg IX. FENG HU1,3,∗ ... 1. Introduction. Magnesium is one of the most abundant elements in the. Universe, and its .... sion coefficients for the configuration state functions are optimized to ..... The absorption oscillator strengths ( fij) and radiative rate Aji for a ...

  5. Yield and strength properties of the Ti-6-22-22S alloy over a wide strain rate and temperature range

    International Nuclear Information System (INIS)

    Krueger, L.; Kanel, G.I.; Razorenov, S.V.; Bezrouchko, G.S.; Meyer, L.

    2002-01-01

    A mechanical behavior of the Ti-6-22-22S alloy was studied under uniaxial strain conditions at shock-wave loading and under uniaxial compressive stress conditions over a strain rate range of 10-4 s-1 to 103 s-1. The test temperature was varied from -175 deg. C to 620 deg. C. The strain-rate and the temperature dependencies of the yield stress obtained from the uniaxial stress tests and from the shock-wave experiments are in a good agreement and demonstrate a significant decrease in the yield strength as the temperature increases. This indicates the thermal activation mechanism of plastic deformation of the alloy is maintained at strain rates up to 106 s-1. Variation of sample thickness from 2.24 to 10 mm results in relatively small variations in the dynamic yield strength and the spall strength over the whole temperature range

  6. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  7. Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition.

    Science.gov (United States)

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-04-30

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time-dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time-dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single crystal FCC metal (Cu, Ag, Pt) nanowires. We report that both Cu and Ag nanowires show significantly increased ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro or millisecond timescale. The transition in deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) timescales. Overall, this work demonstrates the necessity of accessing timescales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.

  8. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    Science.gov (United States)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  9. Microcrack Evolution and Associated Deformation and Strength Properties of Sandstone Samples Subjected to Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Chong-Feng Chen

    2018-05-01

    Full Text Available The evolution of micro-cracks in rocks under different strain rates is of great importance for a better understanding of the mechanical properties of rocks under complex stress states. In the present study, a series of tests were carried out under various strain rates, ranging from creep tests to intermediate strain rate tests, so as to observe the evolution of micro-cracks in rock and to investigate the influence of the strain rate on the deformation and strength properties of rocks. Thin sections from rock samples at pre- and post-failure were compared and analyzed at the microscale using an optical microscope. The results demonstrate that the main crack propagation in the rock is intergranular at a creep strain rate and transgranular at a higher strain rate. However, intergranular cracks appear mainly around the quartz and most of the punctured grains are quartz. Furthermore, the intergranular and transgranular cracks exhibit large differences in the different loading directions. In addition, uniaxial compressive tests were conducted on the unbroken rock samples in the creep tests. A comparison of the stress–strain curves of the creep tests and the intermediate strain rate tests indicate that Young’s modulus and the peak strength increase with the strain rate. In addition, more deformation energy is released by the generation of the transgranular cracks than the generation of the intergranular cracks. This study illustrates that the conspicuous crack evolution under different strain rates helps to understand the crack development on a microscale, and explains the relationship between the micro- and macro-behaviors of rock before the collapse under different strain rates.

  10. Multi-informant assessment of transition-related skills and skill importance in adolescents with autism spectrum disorder.

    Science.gov (United States)

    Hume, Kara; Dykstra Steinbrenner, Jessica; Sideris, John; Smith, Leann; Kucharczyk, Suzanne; Szidon, Kate

    2018-01-01

    Adolescents with autism spectrum disorder have limited participation in the transition planning process, despite the link between active participation and an improvement in postsecondary education and employment outcomes. The Secondary School Success Checklist was designed to support transition planning for adolescents with autism spectrum disorder by incorporating their own assessments of strengths, skill deficits, and prioritization for instruction along with those of their parents and teachers across multiple skill domains. Findings from more than 500 adolescents with autism spectrum disorder across the United States indicate discrepancies between adolescent, teacher, and parent ratings of skills highlighting the importance of the inclusion of multiple perspectives in transition planning. Although ratings varied, agreement between adolescents with autism spectrum disorder, parents, and teachers across the highest and lowest rated skills suggests the need to broaden the focus on critical transition skills to include problem-solving, planning for life after high school, and self-advocacy.

  11. Policies of school-to-work transitions and VET in Sweden, Denmark and Finland

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms; Lundahl, Lisbeth; Järvinen, Tero

    All over Europe, a range of policy measures to support young people’s school-to-work transitions have been initiated. However, these transition policies have rarely been studied systematically, particularly not from a comparative perspective. The aim of this article is to compare Swedish, Danish...... and Finnish policies for supporting young people’s edu¬ca¬¬tional and school-to-work transitions, with a particular focus on NEETs and dropouts. The comparison is exploratory and aims to illuminate the strengths and weaknesses of each system in reducing dropout rates and promoting smooth transitions. We draw...... and migrant youth, the political discourse is marked more by ideas of employability and vulnerability than of personal development and citizenship....

  12. Pygmy dipole strength in {sup 86}Kr and systematics of N=50 isotones

    Energy Technology Data Exchange (ETDEWEB)

    Schwengner, R.; Bemmerer, D.; Beyer, R.; Junghans, A.R.; Marta, M.; Schilling, K.D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Germany); Massarczyk, R.; Hannaske, R. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Germany); TU Dresden (Germany); Rusev, G.; Kelley, J.H.; Kwan, E.; Raut, R.; Tonchev, A.; Tornow, W. [Triangle Universities Nuclear Laboratory (TUNL), Durham NC (United States); Tsoneva, N.; Lenske, H. [Universitaet Giessen (Germany)

    2013-07-01

    We present results of the first photon-scattering study of {sup 86}Kr. Experiments were carried out with bremsstrahlung at the ELBE accelerator of HZDR and with monoenergetic, polarized γ rays at the HIγS facility of TUNL. A high-pressure gas target was used. We identified about 40 states with J{sup π} = 1{sup -} up to the neutron-separation energy for the first time. For the determination of the absorption cross section, strength in the quasicontinuum was taken into account and a correction of the cross section for inelastic transitions was performed on the basis of simulations of statistical γ-ray cascades. The resulting absorption cross section shows enhanced strength considered as a pygmy dipole resonance (PDR) and is compared with predictions of the quasiparticle-phonon model. The behavior of PDR strength within the series of N=50 isotones is discussed. Enhanced photon strength may influence neutron-capture reaction rates relevant for transmutation studies.

  13. Flow-rate measurement using radioactive tracers and transit time method

    International Nuclear Information System (INIS)

    Turtiainen, Heikki

    1986-08-01

    The transit time method is a flow measurement method based on tracer techniques. Measurement is done by injecting to the flow a pulse of tracer and measuring its transit time between two detection positions. From the transit time the mean flow velosity and - using the pipe cross section area - the volume flow rate can be calculated. When a radioisotope tracer is used the measurement can be done from outside the pipe and without disturbing the process (excluding the tracer injection). The use of the transit time method has been limited because of difficulties associated with handling and availability of radioactive tracers and lack of equipment suitable for routine use in industrial environments. The purpose of this study was to find out if these difficulties may be overcome by using a portable isotope generator as a tracer source and automating the measurement. In the study a test rig and measuring equipment based on the use of a ''1''3''7Cs/''1''3''7''''mBa isotope generator were constructed. They were used to study the accuracy and error sources of the method and to compare different algorithms to calculate the transit time. The usability of the method and the equipment in industrial environments were studied by carrying out over 20 flow measurements in paper and pulp mills. On the basis of the results of the study, a project for constructing a compact radiatracer flowmeter for industrial use has been started. The application range of this kind of meter is very large. The most obvious applications are in situ calibration of flowmeters, material and energy balance studies, process equipment analyses (e.g. pump efficiency analyses). At the moment tracer techniques are the only methods applicable to these measurements on-line and with sufficient accuracy

  14. A Multi-Phase Equation of State and Strength Model for Tin

    International Nuclear Information System (INIS)

    Cox, G. A.

    2006-01-01

    This paper considers a multi-phase equation of state and a multi-phase strength model for tin in the β, γ and liquid phases. At a phase transition there are changes in volume, energy, and properties of a material that should be included in an accurate model. The strength model will also be affected by a solid-solid phase transition. For many materials there is a lack of experimental data for strength at high pressures making the derivation of strength parameters for some phases difficult. In the case of tin there are longitudinal sound speed data on the Hugoniot available that have been used here in conjunction with a multi-phase equation of state to derive strength parameters for the γ phase, a phase which does not exist at room temperature and pressure

  15. Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300-3600)-cm(-1) region: Transitions involving f and g states and oscillator strengths

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Matulková, Irena; Cihelka, Jaroslav; Kubelík, Petr

    2010-01-01

    Roč. 82, č. 2 (2010), 022502 ISSN 1050-2947 R&D Projects: GA AV ČR IAA400400705; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * transitions * oscillator strengths Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 2.861, year: 2010

  16. Lifetime measurements and dipole transition rates for superdeformed states in {sup 190}Hg.

    Energy Technology Data Exchange (ETDEWEB)

    Amro, H.

    1999-03-24

    The Doppler-shift attenuation method was used to measure life-times of superdeformed (SD) states for both the yrast and the first excited superdeformed band of {sup 190}Hg. Intrinsic quadruple moments Q{sub 0} were extracted. For the first time, the dipole transition rates have been extracted for the inter-band transitions which connect the excited SD band to the yrast states in the second minimum. The results support the interpretation of the excited SD band as a rotational band built on an octupole vibration.

  17. The calculation of oscillator strengths for the 5s21S0→5s5p1,3P1 transitions in Cd-like ions

    International Nuclear Information System (INIS)

    Li Guangyuan

    1998-01-01

    The screened hydrogenic model is employed to calculate the oscillator strength of the 5s 2 1 S 0 -5s5p 1 P 1 resonance transition in Cd-like ions (Z = 48 -74). The expression for the oscillator strength of the 5s 2 1 S 0 -5s5p 3 P1 is given, with the introduction of the correctional coefficient K and the mixing angle in jj-coupling. The results are compared with that of other authors, and some discussions are also given

  18. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birbilis, N., E-mail: nick.birbilis@monash.ed [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); CAST Co-operative Research Centre, Monash University (Australia); Cavanaugh, M.K. [Department of Materials Science and Engineering, The Ohio State University (United States); Sudholz, A.D. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); Zhu, S.M.; Easton, M.A. [CAST Co-operative Research Centre, Monash University (Australia); Gibson, M.A. [CSIRO Division of Process Science and Engineering (Australia)

    2011-01-15

    Research highlights: This study presents a body of corrosion data for a set of custom alloys and displays this in multivariable space. These alloys represent the next generation of Mg alloys for auto applications. The data is processed using an ANN model, which makes it possible to yield a single expression for prediction of corrosion rate (and strength) as a function of any input composition (of Ce, La or Nd between 0 and 6 wt.%). The relative influence of the various RE elements on corrosion is assessed, with the outcome that Nd additions can offer comparable strength with minimal rise in corrosion rate. The morphology and solute present in the eutectic region itself (as opposed to just the intermetallic presence) was shown - for the first time - to also be a key contributor to corrosion. The above approach sets the foundation for rational alloy design of alloys with corrosion performance in mind. - Abstract: Additions of Ce, La and Nd to Mg were made in binary, ternary and quaternary combinations up to {approx}6 wt.%. This provided a dataset that was used in developing a neural network model for predicting corrosion rate and yield strength. Whilst yield strength increased with RE additions, corrosion rates also systematically increased, however, this depended on the type of RE element added and the combination of elements added (along with differences in intermetallic morphology). This work is permits an understanding of Mg-RE alloy performance, and can be exploited in Mg alloy design for predictable combinations of strength and corrosion resistance.

  19. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys

    International Nuclear Information System (INIS)

    Birbilis, N.; Cavanaugh, M.K.; Sudholz, A.D.; Zhu, S.M.; Easton, M.A.; Gibson, M.A.

    2011-01-01

    Research highlights: → This study presents a body of corrosion data for a set of custom alloys and displays this in multivariable space. These alloys represent the next generation of Mg alloys for auto applications. → The data is processed using an ANN model, which makes it possible to yield a single expression for prediction of corrosion rate (and strength) as a function of any input composition (of Ce, La or Nd between 0 and 6 wt.%). → The relative influence of the various RE elements on corrosion is assessed, with the outcome that Nd additions can offer comparable strength with minimal rise in corrosion rate. → The morphology and solute present in the eutectic region itself (as opposed to just the intermetallic presence) was shown - for the first time - to also be a key contributor to corrosion. → The above approach sets the foundation for rational alloy design of alloys with corrosion performance in mind. - Abstract: Additions of Ce, La and Nd to Mg were made in binary, ternary and quaternary combinations up to ∼6 wt.%. This provided a dataset that was used in developing a neural network model for predicting corrosion rate and yield strength. Whilst yield strength increased with RE additions, corrosion rates also systematically increased, however, this depended on the type of RE element added and the combination of elements added (along with differences in intermetallic morphology). This work is permits an understanding of Mg-RE alloy performance, and can be exploited in Mg alloy design for predictable combinations of strength and corrosion resistance.

  20. Effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4

    International Nuclear Information System (INIS)

    Bai, J.B.

    1996-01-01

    In this paper, the effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4 has been investigated. The hydriding temperature used is 700degC, strain rates being 4x10 -4 s -1 and 4x10 -3 s -1 . The results show that at same conditions the ductility of hydrides decreases as the hydriding temperature decreases. There exists a critical temperature (transition temperature) of 250degC for hydriding at 700degC, below which the hydrided specimens (and so for the hydrides) are brittle, while above it they are ductile. This transition temperature is lower than the one mentioned by various authors obtained for hydriding at 400degC. For the same hydriding temperature of 700degC, the specimens tested at 4x10 -3 s -1 are less ductile than those tested at 4x10 -4 s -1 . Furthermore, unlike at a strain rate of 4x10 -4 s -1 , there is no more a clear ductile-brittle transition behaviour. (author)

  1. Discrete dislocation plasticity analysis of loading rate-dependent static friction.

    Science.gov (United States)

    Song, H; Deshpande, V S; Van der Giessen, E

    2016-08-01

    From a microscopic point of view, the frictional force associated with the relative sliding of rough surfaces originates from deformation of the material in contact, by adhesion in the contact interface or both. We know that plastic deformation at the size scale of micrometres is not only dependent on the size of the contact, but also on the rate of deformation. Moreover, depending on its physical origin, adhesion can also be size and rate dependent, albeit different from plasticity. We present a two-dimensional model that incorporates both discrete dislocation plasticity inside a face-centred cubic crystal and adhesion in the interface to understand the rate dependence of friction caused by micrometre-size asperities. The friction strength is the outcome of the competition between adhesion and discrete dislocation plasticity. As a function of contact size, the friction strength contains two plateaus: at small contact length [Formula: see text], the onset of sliding is fully controlled by adhesion while for large contact length [Formula: see text], the friction strength approaches the size-independent plastic shear yield strength. The transition regime at intermediate contact size is a result of partial de-cohesion and size-dependent dislocation plasticity, and is determined by dislocation properties, interfacial properties as well as by the loading rate.

  2. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  3. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    Science.gov (United States)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  4. Low-energy enhancement of nuclear γ strength and its impact on astrophysical reaction rates

    Directory of Open Access Journals (Sweden)

    Larsen A. C.

    2014-03-01

    Full Text Available An unexpected enhancement in the low-energy part of the γ-strength function for light and medium-mass nuclei has been discovered at the Oslo Cyclotron Laboratory. This enhancement could lead to an increase in the neutron-capture rates up to two orders of magnitude for very exotic, neutron-rich nuclei. However, it is still an open question whether this structure persists when approaching the neutron drip line.

  5. Elastic-plastic transition: A universal law

    Directory of Open Access Journals (Sweden)

    Chen Zhong

    2016-01-01

    Full Text Available Although the initial stress-strain behavior in a tensile test is often characterized as linear elastic up to a yield stress and nonlinear plastic thereafter, the pre-yield transition region is known to exhibit significant curvature and hysteresis. Hundreds of high-precision loading-unloading-loading tensile tests were performed using 26 commercial sheet alloys exhibiting a wide range of strength, ductility and crystal structure. Analysis of the results reveals the following: 1.There is no significant linear elastic region; the proportional limit is ~0 MPa when measured with sufficient sensitivity. 2.Each of the hundreds of measured transitional stress-strain curves can be characterized by a single parameter, here called the “modulus reduction rate.”The corresponding equation captures ~80% of the observed variation, a factor of 3 to 6 better than a one-parameter linear approximation. 3.Most interestingly, the transitional behavior for all alloys follows a “Universal Law” requiring no fit parameters. The law depends only upon the strength of the material and its Young’s modulus, both of which are can be measured by independent tests or adopted from handbooks. The Universal Law captures ~90% of the variation represented by the one-parameter representation and eliminates the need for mechanical testing to implement and apply. The practical and theoretical implications of these results are discussed. The results provide a simple path to significantly improving applied constitutive models in the transitional regime. The consistency of the effect for such a wide range of metals and suggests that the origin of the behavior lies in the pile-up and relaxation of dislocation arrays.

  6. L-shell radiative transition rates by selective synchrotron ionization

    International Nuclear Information System (INIS)

    Bonetto, R D; Carreras, A C; Trincavelli, J; Castellano, G

    2004-01-01

    Relative L-shell radiative transition rates were obtained for a number of decays in Gd, Dy, Er, Yb, Hf, Ta and Re by means of a method for refining atomic and experimental parameters involved in the spectral analysis of x-ray irradiated samples. For this purpose, pure samples were bombarded with monochromatic synchrotron radiation tuning the incident x-ray energy in order to allow selective ionization of the different atomic shells. The results presented are compared to experimental and theoretical values published by other authors. A good general agreement was found and some particular discrepancies are discussed

  7. Relativistic configuration-interaction calculations of electric dipole n=2−n=3 transitions for medium-charge Li-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Banglin, E-mail: banglindeng@yahoo.cn [Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Jiang, Gang [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, Sichuan (China); Zhang, Chuanyu [Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, Sichuan (China)

    2014-09-15

    In this work, the multi-configuration Dirac–Fock and relativistic configuration-interaction methods have been used to calculate the transition wavelengths, electric dipole transition probabilities, line strengths, and absorption oscillator strengths for the 2s–3p, 2p–3s, and 2p–3d transitions in Li-like ions with nuclear charge Z=7–30. Our calculated values are in good agreement with previous experimental and theoretical results. We took the contributions from Breit interaction, finite nuclear mass corrections, and quantum electrodynamics corrections to the initial and final levels into account, and also found that the contributions from Breit interaction, self-energy, and vacuum polarization grow fast with increasing nuclear charge for a fixed configuration. The ratio of the velocity to length form of the transition rate (A{sub v}/A{sub l}) was used to estimate the accuracy of our calculations.

  8. Strength and Absorption Rate of Compressed Stabilized Earth Bricks (CSEBs Due to Different Mixture Ratios and Degree of Compaction

    Directory of Open Access Journals (Sweden)

    Abdullah Abd Halid

    2017-01-01

    Full Text Available Compressed Stabilized Earth Brick (CSEB is produced by compressing a mixture of water with three main materials such as Ordinary Portland Cement (OPC, soil, and sand. It becomes popularfor its good strength, better insulation properties, and a sustainable product due to its easy production with low carbon emission and less skilled labour required. Different types of local soils usedwill produce CSEB of different physical properties in terms of its strength, durability, and water absorption rate. This study focuses on laterite soil taken from the surrounding local area in Parit Raja, Johor, and CSEB samples are produced based on prototype brick size 100×50×30 mm. The investigations are based on four different degree of compactions (i.e. 1500, 2000, 2500, and 3000 Psi and three different mix proportion ratios of cement:sand:laterite soil (i.e. 1:1:9, 1:2:8, 1:3:7. A total of 144 CSEB samples have been tested at 7 and 28 days curing periods to determine the compressive strength (BS 3921:1985 and water absorption rate (MS 76:1972. It was found that maximum compressive strength of CSEB was 14.68 N/mm2 for mixture ratio of 1:3:7 at 2500 Psi compaction. Whereas, the minimum strengthis 6.87 N/mm2 for 1:1:9mixture ratio at 1500 Psi. Meanwhile, the lowest water absorption was 12.35% for mixture ratio of 1:2:8 at 3000 Psi; while the 1:1:9 mixture ratio at 1500 Psi gave the highest rate of 16.81%. This study affirms that the sand content in the mixture and the degree of compaction would affect the value of compressive strength and water absorption of CSEB.

  9. High-intensity intermittent exercise and its effects on heart rate variability and subsequent strength performance

    Directory of Open Access Journals (Sweden)

    Valéria Leme Gonçalves Panissa

    2016-03-01

    Full Text Available PRUPOSE: To investigate the effects of a 5-km high-intensity interval exercise (HIIE on heart rate variability (HRV and subsequent strength performance. METHODS: nine trained males performed a control session composed of a half-squat strength exercise (4 x 80% of one repetition maximum – 1RM in isolation and 30-min, 1-, 4-, 8- and 24-h after an HIIE (1-min at the velocity peak:1-min passive recovery. All experimental sessions were performed on different days. The maximum number of repetitions and total weight lifted during the strength exercise were registered in all conditions; in addition, prior to each session, HRV were assessed [beat-to-beat intervals (RR and log-transformed of root means square of successive differences in the normal-to-normal intervals (lnRMSSD]. RESULTS: Performance in the strength exercise dropped at 30-min (31% and 1-h (19% post-HIIE concomitantly with lower values of RR (781±79 ms; 799±134 ms, respectively in the same recovery intervals compared to the control (1015±197 ms. Inferential analysis did not detect any effect of condition on lnRMSSD, however, values were lower after 30-min (3.5±0.4 ms and 1-h (3.3±0.5 ms with moderate and large effect sizes (0.9 and 1.2, respectively compared with the control condition (3.9±0.4 ms. CONCLUSION: Both RR and lnRMSSD seem to be associated with deleterious effects on strength performance, although further studies should be conducted to clarify this association.

  10. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4  s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  11. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  12. Distorted wave approach to calculate Auger transition rates of ions in metals

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Stefan A. E-mail: sad@utk.edu; Diez Muino, R.; Arnau, A.; Salin, A.; Zaremba, E

    2001-08-01

    We evaluate the role of target distortion in the determination of Auger transition rates for multicharged ions in metals. The required two electron matrix elements are calculated using numerical solutions of the Kohn-Sham equations for both the bound and continuum states. Comparisons with calculations performed using plane waves and hydrogenic orbitals are presented.

  13. Flow Strength of Shocked Aluminum in the Solid-Liquid Mixed Phase Region

    Science.gov (United States)

    Reinhart, William

    2011-06-01

    Shock waves have been used to determine material properties under high shock stresses and very-high loading rates. The determination of mechanical properties such as compressive strength under shock compression has proven to be difficult and estimates of strength have been limited to approximately 100 GPa or less in aluminum. The term ``strength'' has been used in different ways. For a Von-Mises solid, the yield strength is equal to twice the shear strength of the material and represents the maximum shear stress that can be supported before yield. Many of these concepts have been applied to materials that undergo high strain-rate dynamic deformation, as in uni-axial strain shock experiments. In shock experiments, it has been observed that the shear stress in the shocked state is not equal to the shear strength, as evidenced by elastic recompressions in reshock experiments. This has led to an assumption that there is a yield surface with maximum (loading)and minimum (unloading), shear strength yet the actual shear stress lies somewhere between these values. This work provides the first simultaneous measurements of unloading velocity and flow strength for transition of solid aluminum to the liquid phase. The investigation describes the flow strength observed in 1100 (pure), 6061-T6, and 2024 aluminum in the solid-liquid mixed phase region. Reloading and unloading techniques were utilized to provide independent data on the two unknowns (τc and τo) , so that the actual critical shear strength and the shear stress at the shock state could be estimated. Three different observations indicate a change in material response for stresses of 100 to 160 GPa; 1) release wave speed (reloading where applicable) measurements, 2) yield strength measurements, and 3) estimates of Poisson's ratio, all of which provide information on the melt process including internal consistency and/or non-equilibrium and rate-dependent melt behavior. The study investigates the strength properties

  14. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  15. Relativistic configuration interaction treatment of generalized oscillator strength for krypton

    International Nuclear Information System (INIS)

    Wang Huangchun; Qu Yizhi; Liu Chunhua

    2007-01-01

    A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717 eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions (K 2 in a.u.) of the minimum and maximum GOSs in the 4s 2 4p 6 →4s 2 4p 5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97. (authors)

  16. Relativistic Configuration Interaction Treatment of Generalized Oscillator Strength for Krypton

    Institute of Scientific and Technical Information of China (English)

    WANG Huang-Chun; QU Yi-Zhi; LIU Chun-Hua

    2007-01-01

    A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions ( K2 in a.u.) of the minimum and maximum GOSs in the 4s24p6 → 4s24p5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].

  17. Configuration splitting and gamma-decay transition rates in the two-group shell model

    International Nuclear Information System (INIS)

    Isakov, V. I.

    2015-01-01

    Expressions for reduced gamma-decay transition rates were obtained on the basis of the twogroup configuration model for the case of transitions between particles belonging to identical groups of nucleons. In practical applications, the present treatment is the most appropriate for describing decays for odd–odd nuclei in the vicinity of magic nuclei or for nuclei where the corresponding subshells stand out in energy. Also, a simple approximation is applicable to describing configuration splitting in those cases. The present calculations were performed for nuclei whose mass numbers are close to A ∼ 90, including N = 51 odd—odd isotones

  18. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan

    Science.gov (United States)

    Wang, G.; Suemine, A.; Schulz, W.H.

    2010-01-01

    A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.

  19. Optical potentials and isoscalar transition rates from 104 MeV alpha-particle scattering by the N=28 isotopes 48Ca, 50Ti and 52Cr

    International Nuclear Information System (INIS)

    Friedman, E.; Pesl, R.; Gils, H.J.; Rebel, H.; Buschmann, J.; Klewe-Nebenius, H.; Zagromski, S.

    1983-02-01

    Precisely measured differential cross sections for elastic and inelastic scattering from 104 MeV alpha-particles by 48 Ca, 50 Ti and 52 Cr are reported. The analyses aim primarily at the determination of strength, radial shapes and deformation of the scattering potentials, looking for isotonic differences of N = 28 isotones. The mean square radii of the (real) potentials are discussed in terms of mean square radius differences of the matter distributions. The isoscalar transition rates derived by coupled channel analyses of the measured cross sections are compared with electromagnetic rates. In addition to the analyses on the basis of a slightly generalized extended optical model a semi-microscopic deformed folding model has been applied, using a density-dependent effective alpha-bound nucleon interaction. Though an excellent description of the data over the full angular range is obtained the resulting values of the deformation parameters appear to be not consistent with results from various different methods. (orig.) [de

  20. gamma -transition rates in transitional odd gold nuclei

    CERN Document Server

    Berg, V; Oms, J

    1981-01-01

    The results of two half-life measurements of excited states in /sup 185/Au are presented. One supports the proposed interpretation of the ground state configuration, the other one calls attention to the h 9/2 to h 11/2 M1 transitions in odd mass gold nuclei, which, in spite of considerable deformation changes of the h 9/2 state, all show the same retardation. (5 refs).

  1. Quadrupole and monopole generalized oscillator strength for 2p-3p, 2p-4p transition of neon atomic in the velocity formulation

    International Nuclear Information System (INIS)

    Gomis, L; Diedhiou, I; Tall, M S; Diallo, S; Diatta, C S; Niassy, B

    2007-01-01

    The quadrupole and monopole generalized oscillator strengths (GOS) as a function of momentum transfer are calculated for the 2p-3p and 2p-4p transitions of the neon atom using the analytical Hartree-Fock (HF) wavefunctions for the ground-state and the wavefunctions for the excited states which are obtained numerically from the modified HF Slater equation. Calculations are carried out by using the HF method and random phase approximation with exchange in the velocity formulation. The positions and the number of the extrema in the GOS have received particular attention in the evaluation. Our calculated monopole GOS of 2p-3p transition in velocity form reveals one maximum located between the experimental and theoretical results of other authors. The disagreement between our first maximum of the quadrupole GOS 2p-3p transition with the experimental and other theoretical ones is unimportant. The extrema of the monopole and quadrupole GOS of 2p-4p transition are given in this paper. The results of velocity form study also show that the electron correlation effects are important around the maxima and are found to influence the positions of the extrema insignificantly

  2. Absolute El, {delta}K= O Transition Rates in Odd-Mass Pm and Eu-Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G

    1967-06-15

    The half life of the 5/2{sup -} (532) intrinsic state in {sup 151}Pm, {sup 153}Eu and {sup 155}Eu has been determined by the delayed coincidence method. The absolute E1, {delta}K = 0 transition probabilities between the 5/2{sup -} (532) -> 5/2{sup +} (413) intrinsic states have been deduced and compared with theoretical predictions, using the Nilsson model as a starting point. The effect on the predicted transition probabilities obtained by adding pairing correlations and Coriolis coupling have also been studied. It has been found that the experimental transition rates, which are still strongly enhanced, cannot be explained by these contributions alone. It is therefore suggested that collective dipole contributions like those arising through the octupole excitations are of importance.

  3. Improving Parolees' Participation in Drug Treatment and Other Services through Strengths Case Management.

    Science.gov (United States)

    Prendergast, Michael; Cartier, Jerome J

    2008-01-01

    In an effort to increase participation in community aftercare treatment for substance-abusing parolees, an intervention based on a transitional case management (TCM) model that focuses mainly on offenders' strengths has been developed and is under testing. This model consists of completion, by the inmate, of a self-assessment of strengths that informs the development of the continuing care plan, a case conference call shortly before release, and strengths case management for three months post-release to promote retention in substance abuse treatment and support the participant's access to designated services in the community. The post-release component consists of a minimum of one weekly client/case manager meeting (in person or by telephone) for 12 weeks. The intervention is intended to improve the transition process from prison to community at both the individual and systems level. Specifically, the intervention is designed to improve outcomes in parolee admission to, and retention in, community-based substance-abuse treatment, parolee access to other needed services, and recidivism rates during the first year of parole. On the systems level, the intervention is intended to improve the communication and collaboration between criminal justice agencies, community-based treatment organizations, and other social and governmental service providers. The TCM model is being tested in a multisite study through the Criminal Justice Drug Abuse Treatment Studies (CJ-DATS) research cooperative funded by the National Institute of Drug Abuse.

  4. Transition rates in {sup 161}Dy

    Energy Technology Data Exchange (ETDEWEB)

    Berg, V; Malmskog, S G

    1969-06-15

    The decay of {sup 161}Tb has been studied using a high resolution Ge(Li)-detector. Five new transitions were observed and fitted into the earlier proposed decay scheme. The half-life of the 131.8 keV level in {sup 161}Dy was determined in a delayed coincidence measurement to be 145 {+-} 15 psec. The low level scheme in {sup 161}Dy is discussed within a quasi-particle model allowing for Coriolis mixing. Special attention is given to the strongly retarded, K-allowed 131.8 keV E1 transition with a retardation factor F{sub W} > 1.5 x 10{sup 8}.

  5. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  6. Generalized oscillator strength for the transition Aapprox. /sup 1/B/sup 2u/Xapprox. A/sub 1g/ in benzene at initial kinetic energies 400 eV and 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Klump, K N; Lassettre, E N

    1977-10-01

    Generalized oscillator strengths, f, for the transition A/sup 1/B/sub 2u/ reverse arrow X/sup 1/A/sub 1g/ in benzene, determined by electron impact methods, are reported as a function of the momentum change. At scattering angles down to 2.5/sup 0/ helium was used as the comparison gas. Determinations are also reported at theta = 0/sup 0/ using mercury as the comparison gas. The oscillator strength curve has both a minimum and a maximum due to the superposition of electric dipole and octupole transitions. The band envelope is studied and is shown to remain unchanged in shape but is shifted by h nu/sub 6/ approximately 0.065 eV with increasing angle due to the shift from electric dipole to octupole scattering.

  7. Effective axial-vector strength and β-decay systematics

    Science.gov (United States)

    Delion, D. S.; Suhonen, J.

    2014-09-01

    We use the weak axial-vector coupling strength g_{\\text{A}} as a key parameter to reproduce simultaneously the available data for both the Gamow-Teller \\beta^- and \\beta^+/\\text{EC} decay rates in nine triplets of isobars with mass numbers A=70,78,100,104,106,110,116,128,130 . We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with schematic dipole interaction containing particle-particle and particle-hole parts with mass-dependent strengths. Our analysis points to a strongly quenched effective value g_{\\text{A}}\\approx 0.3 , with a relative error of 28%. We then perform a systematic computation of 218 experimentally known \\beta^- and \\beta^+/\\text{EC} decays with quite a remarkable success. The presently extracted value of g_{\\text{A}} should be taken as an effective one, specific for a given nuclear theory framework. Present studies suggest that the effective g_{\\text{A}} is suitable for the description of decay transitions to 1^+ states at moderate excitation, below the Gamow-Teller giant resonance region.

  8. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype

    International Nuclear Information System (INIS)

    Xu, W.; Moriarty, J.A.

    1996-01-01

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal molybdenum (Mo). Many-body angular forces, which are important to the structural and mechanical properties of such central transition metals with partially filled d bands, are accounted for in the present theory through explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations have also been investigated. The left-angle 110 right-angle split dumbbell interstitial is found to have the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measurements. In ascending order, the sequence of energetically stable interstitials is predicted to be left-angle 110 right-angle split dumbbell, crowdion, left-angle 111 right-angle split dumbbell, tetrahedral site, left-angle 001 right-angle split dumbbell, and octahedral site. In addition, the migration paths for the left-angle 110 right-angle dumbbell self-interstitial have been studied. The migration energies are found to be 3 endash 15 times higher than previous theoretical estimates obtained using simple radial-force Finnis-Sinclair potentials. Finally, the atomic structure and energetics of left-angle 111 right-angle screw dislocations in Mo have been investigated. We have found that the so-called open-quote open-quote easy close-quote close-quote core configuration has a lower formation energy than the open-quote open-quote hard close-quote close-quote one, consistent with previous theoretical studies. (Abstract Truncated)

  9. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Erzar, Benjamin

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504

  10. Efficient Computation of Transition State Resonances and Reaction Rates from a Quantum Normal Form

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2006-01-01

    A quantum version of a recent formulation of transition state theory in phase space is presented. The theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-Siegert resonances with very high accuracy. The algorithm is especially efficient for

  11. Energies and electric dipole transitions for low-lying levels of protactinium IV and uranium V

    Energy Technology Data Exchange (ETDEWEB)

    Uerer, Gueldem; Oezdemir, Leyla [Sakarya Univ. (Turkey). Physics Dept.

    2012-01-15

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z = 91) and uranium V (Z = 92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature. (orig.)

  12. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis.

    Science.gov (United States)

    Guizelini, Pedrode Camargo; de Aguiar, Rafael Alves; Denadai, Benedito Sérgio; Caputo, Fabrizio; Greco, Camila Coelho

    2018-02-01

    Rapid force capacity, identified by rate of rise in contractile force at the onset of contraction, i.e., the rate of force development (RFD), has been considered an important neuromuscular parameter of physical fitness in elderly individuals. Randomized control studies conducted in adults have found that resistance training may elicit different outcomes in terms of RFD and muscle strength. Thus, the main purpose of this study was to review systematically the literature for studies regarding the influence of resistance training on muscle strength and RFD in elderly persons. A literature search was performed in major electronic databases from inception to March 2017. Studies including health individuals with a mean age≥60years, describing the effect of resistance training on RFD and muscle strength were found eligible. The outcomes were calculated as the difference in percentage change between control and experimental groups (% change) and data were presented as mean±95% confidence limits. Meta-analyses were performed using a random-effects model and, in addition, simple and multiple meta-regression analyses were used to identify effects of age, training type, sessions per week and training duration on % change in RFD and muscle strength. Thirteen training effects were collected from 10 studies included in the meta-analysis. The resistance training program had a moderate beneficial effect on both muscle strength (% change=18.40%, 95% CL 13.69-23.30, pchange=26.68, 95% CL 14.41-35.52, pchanges in muscle strength and RFD. It can be concluded that explosive training and heavy strength training are effective resistance training methods aiming to improve both muscle strength and RFD after short-to-medium training period. However, muscle strength and RFD seem to adapt differently to resistance training programs, suggesting caution for their interchangeable use in clinical assessments of the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Absolute Transition Rates in {sup 188}lr

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G; Berg, V

    1969-09-15

    Half-lives of several excited levels in {sup 188}lr have been measured using an electron-electron delayed coincidence spectrometer. Active {sup 188}Pt sources were prepared from spallation products using the ISOLDE on-line mass separator facility at CERN. The following half-lives were obtained: T{sub 1/2} (54.8 keV level) = (1.93 {+-} 0.10) nsec; T{sub 1/2} (96.7 keV level) = (0.59 {+-} 0.12) nsec; T{sub 1/2} (187.6 keV level) = (0.056 {+-} 0.013) nsec; T{sub 1/2} (195.1 keV level) = (0.051 {+-} 0.010) nsec; T{sub 1/2} (478. 3 keV level) {<=} 0.15 nsec The 54.8 keV transition was found to have an enhanced E2 transition probability indicating a collective character for this transition.

  14. A study on the strength of an armour-grade aluminum under high strain-rate loading

    Science.gov (United States)

    Appleby-Thomas, G. J.; Hazell, P. J.

    2010-06-01

    The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.

  15. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)

    International Nuclear Information System (INIS)

    Iversen, N.; Jorgensen, B.B.

    1985-01-01

    Concomitant radiotracer measurements were made of in situ rates of sulfate reduction and anaerobic methane oxidation in 2-3-m-long sediment cores. Methane accumulated to high concentrations (> 1 mM CH 4 ) only below the sulfate zone, at 1 m or deeper in the sediment. Sulfate reduction showed a broad maximum below the sediment surface and a smaller, narrow maximum at the sulfate-methane transition. Methane oxidation was low (0.002-0.1 nmol CH 4 cm -3 d -1 ) throughout the sulfate zone and showed a sharp maximum at the sulfate-methane transition, coinciding with the sulfate reduction maximum. Total anaerobic methane oxidation at two stations was 0.83 and 1.16 mmol CH 4 m -2 d -1 , of which 96% was confined to the sulfate-methane transition. All the methane that was calculated to diffuse up into the sulfate-methane transition was oxidized in this zone. The methane oxidation was equivalent to 10% of the electron donor requirement for the total measured sulfate reduction. A third station showed high sulfate concentrations at all depths sampled and the total methane oxidation was only 0.013 mmol m -2 d -1 . From direct measurements of rates, concentration gradients, and diffusion coefficients, simple calculations were made of sulfate and methane fluxes and of methane production rates

  16. Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition

    Energy Technology Data Exchange (ETDEWEB)

    Fouladirad, Mitra, E-mail: mitra.fouladirad@utt.f [Universite de Technologie de Troyes, Institut Charles Delaunay, FRE CNRS 2848, 12 rue Marie Curie, 10010 Troyes (France); Grall, Antoine [Universite de Technologie de Troyes, Institut Charles Delaunay, FRE CNRS 2848, 12 rue Marie Curie, 10010 Troyes (France)

    2011-06-15

    The aim of this paper is to propose an adaptive maintenance model for a gradually deteriorating system. The system considered initially deteriorates with a nominal deterioration rate and at an unknown time the system's deterioration rate changes and the new deterioration rate is a time-dependent function. To deal with the transition of mode of deterioration in the framework of the maintenance decision rule an adequate online change detection algorithm is used. The maintenance decision rule is chosen in order to minimise the total maintenance cost including the cost of unavailability. The main result of this paper is to point out the interest of using a detection algorithm and hence the appreciation of a decision rule which takes into account transitions in the deterioration rate.

  17. Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition

    International Nuclear Information System (INIS)

    Fouladirad, Mitra; Grall, Antoine

    2011-01-01

    The aim of this paper is to propose an adaptive maintenance model for a gradually deteriorating system. The system considered initially deteriorates with a nominal deterioration rate and at an unknown time the system's deterioration rate changes and the new deterioration rate is a time-dependent function. To deal with the transition of mode of deterioration in the framework of the maintenance decision rule an adequate online change detection algorithm is used. The maintenance decision rule is chosen in order to minimise the total maintenance cost including the cost of unavailability. The main result of this paper is to point out the interest of using a detection algorithm and hence the appreciation of a decision rule which takes into account transitions in the deterioration rate.

  18. Mapping strengths into virtues: The relation of the 24 VIA-strengths to six ubiquitous virtues

    Directory of Open Access Journals (Sweden)

    Willibald eRuch

    2015-04-01

    Full Text Available The Values-in-Action (VIA-classification distinguishes six core virtues and 24 strengths. As the assignment of the strengths to the virtues was done on theoretical grounds it still needs empirical verification. As an alternative to factor analytic investigations the present study utilizes expert judgments. In a pilot study the conceptual overlap among five sources of knowledge (strength’s name including synonyms, short definitions, brief descriptions, longer theoretical elaborations, and item content about a particular strength was examined. The results show that the five sources converged quite well, with the short definitions and the items being slightly different from the other. All strengths exceeded a cut-off value but the convergence was much better for some strengths (e.g., zest than for others (e.g., perspective. In the main study 70 experts (from psychology, philosophy, theology, etc. and 41 laypersons rated how prototypical the strengths are for each of the six virtues. The results showed that 10 were very good markers for their virtues, 9 were good markers, four were acceptable markers, and only one strength failed to reach the cut-off score for its assigned virtue. However, strengths were often markers for two or even three virtues, and occasionally they marked the other virtue more strongly than the one they were assigned to. The virtue prototypicality ratings were slightly positively correlated with higher coefficients being found for justice and humanity. A factor analysis of the 24 strengths across the ratings yielded the six factors with an only slightly different composition of strengths and double loadings. It is proposed to adjust either the classification (by reassigning strengths and by allowing strengths to be subsumed under more than one virtue or to change the definition of certain strengths so that they only exemplify one virtue. The results are discussed in the context of factor analytic attempts to verify the

  19. Effect of Ambulatory Transitional Care Management on 30-Day Readmission Rates.

    Science.gov (United States)

    Ballard, Jonathan; Rankin, Wade; Roper, Karen L; Weatherford, Sarah; Cardarelli, Roberto

    2018-05-01

    A process improvement initiative for transitional care management (TCM) was evaluated for effectiveness in reducing 30-day readmission rates in a retrospective cohort study. Regression models analyzed the association between level of TCM component implementation and readmission rates among patients discharged from a university medical center hospital. Of the 1884 patients meeting inclusion criteria, only 3.7% (70) experienced a 30-day readmission. Patients receiving the full complement of TCM had 86.6% decreased odds of readmission compared with patients who did not receive TCM ( P < .001). However, the complete package of TCM services under Medicare guidelines may not be essential. A postdischarge telephone call did not reduce readmission odds, provided a TCM office visit occurred. Important for risk assessment models targeting patients for TCM, the number of previous hospital admissions, not age, predicted 30-day readmission risk. This study provides evidence that primary care-based TCM can reduce 30-day readmissions even when overall rates are low.

  20. Transitions in the cadmium sequence

    International Nuclear Information System (INIS)

    Hibbert, A.

    1982-01-01

    We present calculations of oscillator strengths of the 5s 2 1 S 0 -5s5p sup(1,3)P 1 transitions for Cd I, In II, I VI and Xe VII, using configuration interaction wave functions which take into account valence shell correlation only. It is found that for the intercombination line there is reasonable agreement between theory and experiment, but for the allowed transitions, in I VI and Xe VII, the theoretical and experimental oscillator strengths differ by about a factor of 2. A major part of this disagreement is removed when correction factors, representing the use of experimental energy splittings and the effect of the core, are applied to the ab initio results. (orig.)

  1. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  2. Controlling the delocalization-localization transition of light via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Cheng Jing; Huang Guoxiang

    2011-01-01

    We propose a scheme to realize a transition from delocalization to localization of light waves via electromagnetically induced transparency. The system we suggested is a resonant cold atomic ensemble having N configuration, with a control field consisting of two pairs of laser beams with different cross angles, which produce an electromagnetically induced quasiperiodic waveguide (EIQPW) for the propagation of a signal field. By appropriately tuning the incommensurate rate or relative modulation strength between the two pairs of control-field components, the signal field can exhibit the delocalization-localization transition as it transports inside the atomic ensemble. The delocalization-localization transition point is determined and the propagation property of the signal field is studied in detail. Our work provides a way of realizing wave localization via atomic coherence, which is quite different from the conventional, off-resonant mechanism-based Aubry-Andre model, and the great controllability of the EIQPW also allows an easy manipulation of the delocalization-localization transition.

  3. Where is the Scissors Mode Strength in Odd-Mass Nuclei?

    International Nuclear Information System (INIS)

    Enders, J.; Huxel, N.; von Neumann-Cosel, P.; Richter, A.

    1997-01-01

    It is demonstrated by a fluctuation analysis based on the assumption of a Wigner distribution for the nuclear level spacings and of a Porter-Thomas distribution for the transition strengths that significant parts of the dipole strength excited in photon scattering experiments in heavy, deformed odd-mass nuclei are hidden in the background of the experimental spectra. With this additional strength, the heretofore claimed severe reduction of the B(M1) scissors mode strength in odd-mass nuclei compared to the one in neighboring even-even nuclei disappears. copyright 1997 The American Physical Society

  4. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator

    Directory of Open Access Journals (Sweden)

    Ju-Yeon Lee

    2017-01-01

    Full Text Available Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses.

  5. Topological strength of magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Ramos, J.G.G.S.; Rodrigues, E.I.B.

    2017-02-01

    This work deals with magnetic structures that attain integer and half-integer skyrmion numbers. We model and solve the problem analytically, and show how the solutions appear in materials that engender distinct, very specific physical properties, and use them to describe their topological features. In particular, we found a way to model skyrmion with a large transition region correlated with the presence of a two-peak skyrmion number density. Moreover, we run into the issue concerning the topological strength of a vortex-like structure and suggest an experimental realization, important to decide how to modify and measure the topological strength of the magnetic structure.

  6. Transition sum rules in the shell model

    Science.gov (United States)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  7. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    International Nuclear Information System (INIS)

    Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu

    2011-01-01

    Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  8. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)

    2011-04-15

    Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  9. Non-resonant triple alpha reaction rate at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Carter, J.; Donaldson, L.; Sideras-Haddad, E. [Schools of Physics, University of Witwatersrand, Johannesburg 2050 (South Africa); Furuno, T.; Kawabata, T. [Departments of Physics, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Kamimura, M. [RIKEN Nishina Center, Wako, Saitama, 351-0198 (Japan); Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C. [iThemba Laboratory for Accelerator Based Sciences Somerset, West, 7129 (South Africa)

    2014-05-02

    Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

  10. Effect of traditional resistance and power training using rated perceived exertion for enhancement of muscle strength, power, and functional performance.

    Science.gov (United States)

    Tiggemann, Carlos Leandro; Dias, Caroline Pieta; Radaelli, Regis; Massa, Jéssica Cassales; Bortoluzzi, Rafael; Schoenell, Maira Cristina Wolf; Noll, Matias; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2016-04-01

    The present study compared the effects of 12 weeks of traditional resistance training and power training using rated perceived exertion (RPE) to determine training intensity on improvements in strength, muscle power, and ability to perform functional task in older women. Thirty healthy elderly women (60-75 years) were randomly assigned to traditional resistance training group (TRT; n = 15) or power training group (PT; n = 15). Participants trained twice a week for 12 weeks using six exercises. The training protocol was designed to ascertain that participants exercised at an RPE of 13-18 (on a 6-20 scale). Maximal dynamic strength, muscle power, and functional performance of lower limb muscles were assessed. Maximal dynamic strength muscle strength leg press (≈58 %) and knee extension (≈20 %) increased significantly (p training. Muscle power also increased with training (≈27 %; p functional performance after training period (≈13 %; p effective in improving maximal strength, muscle power, and functional performance of lower limbs in elderly women.

  11. Intermediate coupling collision strengths from LS coupled R-matrix elements

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    1978-01-01

    Fine structure collision strength for transitions between two groups of states in intermediate coupling and with inclusion of configuration mixing are obtained from LS coupled reactance matrix elements (R-matrix elements) and a set of mixing coefficients. The LS coupled R-matrix elements are transformed to pair coupling using Wigner 6-j coefficients. From these pair coupled R-matrix elements together with a set of mixing coefficients, R-matrix elements are obtained which include the intermediate coupling and configuration mixing effects. Finally, from the latter R-matrix elements, collision strengths for fine structure transitions are computed (with inclusion of both intermediate coupling and configuration mixing). (Auth.)

  12. CI+MBPT calculations of Ar I energies, g factors, and transition line strengths

    Science.gov (United States)

    Savukov, I. M.

    2018-03-01

    Excited states of noble gas atoms present certain challenges to atomic theory for several reasons: first, relativistic effects are important and LS coupling is not optimal; second, energy intervals can be quite small, leading to strong mixing of states; third, many-body perturbation theory for hole states does not converge well. Previously, some attempts were made to solve this problem, using for example the all-order coupled-cluster approach and particle-hole configuration-interaction many-body perturbation theory (CI-MBPT) with modified denominators. However, while these approaches were promising, the accuracy was still limited. In this paper, we calculate Ar I energies, g factors, and transition amplitudes using ab initio CI-MBPT with eight valence electrons to avoid the problem of slow convergence of MBPT due to strong interaction between 3p and 3s states. We also included in CI many dominant states obtained by double excitations of the ground state configuration. Thus perturbation corrections were needed only for 1s, 2s, 2p core electrons non-included in valence-valence CI, which are quite small. We found that energy, g factors, and electric dipole matrix elements are in reasonable agreement with experiments. It is noteworthy that the theory agreed well with accurately measured g factors. Experimental oscillator strengths have large uncertainty, so in some cases we made a comparison with average values.

  13. Argon line broadening by neutral atoms and application to the measurement of oscillator strengths of AI resonance lines

    International Nuclear Information System (INIS)

    Vallee, O.; Ranson, P.; Chapelle, J.

    1977-01-01

    AI line broadening was studied from collisions between neutral argon atoms (3p 5 4p-3p 5 4s transitions) in a weakly ionised plasma jet (neutral atoms temperature T 0 approximately 4000K, electrons temperature Tsub(e) approximately 6000K, electronic density Nsub(e) 15 cm -3 , ionisation rate α -4 , and pressure range from 1 to 3 kg/cm 2 ). A satisfactory description of Van der Waals broadened lines is obtained by means of a Lennard-Jones potential. Measurement of line widths whose corresponding transitions occur on resonant levels, gives with relatively good accuracy the oscillator strength of the argon resonance lines [fr

  14. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  15. Agreement between pre-post measures of change and transition ratings as well as then-tests

    OpenAIRE

    Meyer, Thorsten; Richter, Susanne; Raspe, Heiner

    2013-01-01

    Background Different approaches have been developed for measuring change. Direct measurement of change (transition ratings) requires asking a patient directly about his judgment about the change he has experienced (reported change). With indirect measures of change, the patients? status is assessed at different time points and differences between them are calculated (measured change). When using the quasi-indirect approach (?then-test?), patients are asked after an intervention to rate their ...

  16. The development, retention and decay rates of strength and power in elite rugby union, rugby league and American football: a systematic review.

    Science.gov (United States)

    McMaster, Daniel Travis; Gill, Nicholas; Cronin, John; McGuigan, Michael

    2013-05-01

    Strength and power are crucial components to excelling in all contact sports; and understanding how a player's strength and power levels fluctuate in response to various resistance training loads is of great interest, as it will inevitably dictate the loading parameters throughout a competitive season. This is a systematic review of training, maintenance and detraining studies, focusing on the development, retention and decay rates of strength and power measures in elite rugby union, rugby league and American football players. A literature search using MEDLINE, EBSCO Host, Google Scholar, IngentaConnect, Ovid LWW, ProQuest Central, ScienceDirect Journals, SPORTDiscus and Wiley InterScience was conducted. References were also identified from other review articles and relevant textbooks. From 300 articles, 27 met the inclusion criteria and were retained for further analysis. STUDY QUALITY: Study quality was assessed via a modified 20-point scale created to evaluate research conducted in athletic-based training environments. The mean ± standard deviation (SD) quality rating of the included studies was 16.2 ± 1.9; the rating system revealed that the quality of future studies can be improved by randomly allocating subjects to training groups, providing greater description and detail of the interventions, and including control groups where possible. Percent change, effect size (ES = [Post-Xmean - Pre-Xmean)/Pre-SD) calculations and SDs were used to assess the magnitude and spread of strength and power changes in the included studies. The studies were grouped according to (1) mean intensity relative volume (IRV = sets × repetitions × intensity; (2) weekly training frequency per muscle group; and (3) detraining duration. IRV is the product of the number of sets, repetitions and intensity performed during a training set and session. The effects of weekly training frequencies were assessed by normalizing the percent change values to represent the weekly changes in

  17. Collision strengths and oscillator strengths for excitation to the n = 3 and 4 levels of neon-like ions

    International Nuclear Information System (INIS)

    Zhang, H.; Sampson, D.H.; Clark, R.E.H.; Mann, J.B.

    1987-01-01

    Collision strengths are given for the 88 possible fine-structure transitions between the ground level and the n = 3 and 4 levels in 20 neon-like ions with nuclear charge number Z in the range 18 ≤Z≤74. The results are given for the nine impact-electron energies in threshold units X = 1.0, 1.2, 1.5, 1.9, 2.5, 4.0, 6.0, 10.0, and 15.0. In addition, electric dipole oscillator strengths obtained by various methods are given. copyright 1987 Academic Press, Inc

  18. Evaluation of Relationships between Drilling Rate Index and Physical and Strength Properties of Selected Rock Units of Pakistan

    International Nuclear Information System (INIS)

    Shafique, U.; Abu Bakar, M. Z.

    2015-01-01

    Fifteen selected rock types collected from different formations of Pakistan were subjected to Drilling Rate Index (DRI) tests and various physical and strength properties tests including, porosity (n), density, primary wave velocity (V/sub p/), uniaxial compressive strength (sigma/sub c/), Brazilian tensile strength (sigma/sub t/) and Schmidt hammer rebound number (R/sub n/),. Prior knowledge of the drill ability of rocks and their physico-mechanical properties plays a decisive role in planning and design of rock drilling and excavation processes. DRI tests developed by NTNU/SINTEF are in use by the industry since 1960s and have proved very successful in estimation of the boreability of rocks, but no such work has been reported for Pakistani rocks to date. Reasonable correlations were found between the DRI and the properties of the tested rocks. The trends shown in this paper are of interest for the machine manufacturers and operators working on various projects involving the use of drilling machines and other mechanical excavators. (author)

  19. Quantum-Classical Phase Transition of the Escape Rate of Two-Sublattice Antiferromagnetic Large Spins

    Science.gov (United States)

    Owerre, Solomon Akaraka; Paranjape, M. B.

    2014-11-01

    The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.

  20. Scaling behavior in first-order quark-hadron phase transition

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1994-01-01

    It is shown that in the Ginzburg-Landau description of first-order quark-hadron phase transition the normalized factorial moments exhibit scaling behavior. The scaling exponent ν depends on only one effective parameter g, which characterizes the strength of the transition. For a strong first-order transition, we find ν=1.45. For weak transition it is 1.30 in agreement with the earlier result on second-order transition

  1. Families in Transition .

    Science.gov (United States)

    Bundy, Michael L., Ed.; Gumaer, James, Ed.

    1984-01-01

    Focuses on disrupted families and the role of the school counselor in helping children adjust. Describes characteristics of healthy families, and discusses the transition to the blended family, effects of divorce groups on children's classroom behavior, counseling children in stepfamilies, single-parent families, and parenting strengths of single…

  2. Energy landscape, structure and rate effects on strength properties of alpha-helical proteins

    International Nuclear Information System (INIS)

    Bertaud, Jeremie; Hester, Joshua; Jimenez, Daniel D; Buehler, Markus J

    2010-01-01

    The strength of protein domains is crucial to identify the mechanical role of protein domains in biological processes such as mechanotransduction, tissue mechanics and tissue remodeling. Whereas the concept of strength has been widely investigated for engineered materials, the strength of fundamental protein material building blocks and how it depends on structural parameters such as the chemical bonding, the protein filament length and the timescale of observation or deformation velocity remains poorly understood. Here we report a systematic analysis of the influence of key parameters that define the energy landscape of the strength properties of alpha-helical protein domains, including energy barriers, unfolding and refolding distances, the locations of folded and unfolded states, as well as variations of the length and pulling velocity of alpha-helical protein filaments. The analysis is facilitated by the development of a double-well mesoscale potential formulation, utilized here to carry out a systematic numerical analysis of the behavior of alpha-helices. We compare the results against widely used protein strength models based on the Bell model, one of the simplest models used to characterize the strength of protein filaments. We find that, whereas Bell-type models are a reasonable approximation to describe the rupture of alpha-helical protein domains for a certain range of pulling speeds and values of energy barriers, the model ceases to hold for very large energy barriers and for very small pulling speeds, in agreement with earlier findings. We conclude with an application of our mesoscale model to investigate the effect of the length of alpha-helices on their mechanical strength. We find a weakening effect as the length of alpha-helical proteins increases, followed by an asymptotic regime in which the strength remains constant. We compare strand lengths found in biological proteins with the scaling law of strength versus alpha-helix filament length. The

  3. Calculation of levels, transition rates, and lifetimes for the arsenic isoelectronic sequence Sn XVIII-Ba XXIV, W XLII

    Science.gov (United States)

    Wang, K.; Chen, Z. B.; Chen, C. Y.; Yan, J.; Dang, W.; Zhao, X. H.; Yang, X.

    2017-09-01

    Multi-configuration Dirac-Fock (MCDF) calculations of energy levels, wavelengths, oscillator strengths, lifetimes, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates are reported for the arsenic isoelectronic sequence Sn XVIII-Ba XXIV, W XLII. Results are presented among the 86 levels of the 4s2 4p3, 4 s 4p4, 4p5, 4s2 4p2 4 d, and 4 s 4p3 4 d configurations in each ion. The relativistic atomic structure package GRASP2K is adopted for the calculations, in which the contributions from the correlations within the n ≤ 7 complexes, Breit interaction (BI) and quantum electrodynamics (QED) effects are taking into account. The many-body perturbation theory (MBPT) method is also employed as an independent calculation for comparison purposes, taking W XLII as an example. Calculated results are compared with data from other calculations and the observed values from the Atomic Spectra Database (ASD) of the National Institute of Standards and Technology (NIST). Good agreements are obtained. i.e, the accuracy of our energy levels is assessed to be better than 0.6%. These accurate theoretical data should be useful for diagnostics of hot plasmas in fusion devices.

  4. Real exchange rates and transition economies

    NARCIS (Netherlands)

    Boero, G.; Mavromatis, K.; Taylor, M.P.

    2015-01-01

    In a number of empirical studies, transition economies have been shown to be subject to the Harrod-Balassa-Samuelson effect. This implies that the currencies of these countries have experienced a prolonged appreciation in real terms as their convergence proceeded. In this paper we find that a

  5. Tests of Hadronic Probes of GT Strength

    CERN Multimedia

    2002-01-01

    There are many important problems where one wishes to know the distribution of Gamow-Teller (GT) strength in circumstances where it cannot be measured directly (for example, because of energy-release limitations). Then one must rely on hadronic probes to infer the GT strength. It is therefore essential to test these probes as extensively as possible. The isospin-analog transitions in $^{37}$Ca $\\beta^{+}$ -decay and $^{37}$Cl$(p, n)$ provide an excellent ground for such a test. Recent $^{37}$Cl$ (p, n) $ studies, while qualitatively in agreement with our previous ISOLDE work on $^{37}$Ca $\\beta^{+} $ -decay, show quantitative discrepancies that appear to grow as the excitation energy in the residual nuclei increases. Because of the bulk of the GT strengh appears at these high excitation energies, it is important to extend the $\\beta$-decay data to even higher excitation energies where, because of rapidly diminishing phase-space, strong GT transitions correspond to very weak $\\beta$ -branches. We propose to do...

  6. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    Science.gov (United States)

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  7. Accelerated Strength Testing of Thermoplastic Composites

    Science.gov (United States)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  8. Generalized oscillator strengths for some higher valence-shell excitations of argon

    International Nuclear Information System (INIS)

    Zhu, Lin-Fan; Yuan, Hui; Jiang, Wei-Chun; Zhang, Fang-Xin; Yuan, Zhen-Sheng; Cheng, Hua-Dong; Xu, Ke-Zun

    2007-01-01

    The valence shell excitations of argon were investigated by an angle-resolved fast-electron energy-loss spectrometer at an incident electron energy of 2500 eV, and the transition multipolarities for the excitations of 3p→3d, 4d, 5s, and 5p were elucidated with the help of the calculated intermediate coupling coefficients using the COWAN code. The generalized oscillator strengths for the excitations to 3p 5 (3d,3d ' ), 3p 5 (5p,5p ' ), and 3p 5 (5s,4d) were measured, and the profiles of these generalized oscillator strength were analyzed. Furthermore, although the present experimental positions of the maxima for the electric-monopole and electric-quadrupole excitations in 3p→5p are in agreement with the theoretical calculations [Amusia et al., Phys. Rev. A 67, 022703 (2003)], the generalized oscillator strength profiles show obvious differences. In addition, the experimental generalized oscillator strength ratios for the electric-octupole transitions in 3p→3d are different from the theoretical prediction calculated by the COWAN code

  9. Impact of a Ninth-Grade Transition Program on Cumulative GPAs and Credits, Ninth-Grade Dropout Rates, and Student Satisfaction

    Science.gov (United States)

    Buhrman, B. R.

    2010-01-01

    Concerned educators have been implementing ninth-grade transition programs to help freshmen adjust to the demands in high school and to reduce ninth-grade failure rates. The purpose of this quasi-experimental quantitative study was to investigate the impact of a ninth-grade transition program. The research questions addressed impact on cumulative…

  10. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  11. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation.

    Science.gov (United States)

    Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  12. Behaviour of venous flow rates in intermittent sequential pneumatic compression of the legs using different compression strengths

    International Nuclear Information System (INIS)

    Fassmann-Glaser, I.

    1984-01-01

    A study with 25 patients was performed in order to find out whether intermittent, sequential, pneumatic leg compression is of value in the preventive management of thrombosis due to its effect on the venous flow rates. For this purpose, xenon 133 was injected into one of the foot veins and the flow rate in each case determined for the distance between instep and inguen using different compression strengths, with pressure being exerted on the ankle, calf and thigh. Increased flow rates were already measured at an average pressure value of 34.5 mmHg, while the maximum effect was achieved by exerting a pressure of 92.5 mmHg, which increased the flow rate by 366% as compared to the baseline value. The results point to a significant improvement of the venous flow rates due to intermittent, sequential, pneumatic leg compression and thus provide evidence to prove the value of this method in the prevention of hemostasis and thrombosis. (TRV) [de

  13. The effect of the long-wavelength approximation on the one-photon transition rates for heavy quarkonia

    International Nuclear Information System (INIS)

    Adam, J. Jr.; Adamova, D.

    1985-05-01

    A simple model of the one-photon transitions in heavy quarkonia is presented based on a quark-antiquark Hamiltonian with spin-dependent potential terms. qq-bar bound state wavefunctions are obtained treating the whole Hamiltonian nonperturbatively, including the tensor term. The one-photon transition rates are calculated using these wave functions and a non-relativistic electromagnetic current density operator. All the relevant terms in the multipole decomposition are taken into account and the results are compared with those obtained after performing the long-wavelength limit as well as with results given by other authors. (author)

  14. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    Science.gov (United States)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated

  15. Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A. [SIMAP, INPGrenoble-CNRS-UJF BP 75, 38402 St Martin d' Heres Cedex (France)], E-mail: alexis.deschamps@simap.grenoble-inp.fr; Texier, G.; Ringeval, S. [CEA-DAM centre de Valduc, 21120 Is-Sur-Tille (France); SIMAP, INPGrenoble-CNRS-UJF BP 75, 38402 St Martin d' Heres Cedex (France); Delfaut-Durut, L. [CEA-DAM centre de Valduc, 21120 Is-Sur-Tille (France)

    2009-02-15

    Medium strength Al-Zn-Mg age hardening alloys are widely used when a low quench sensitivity is required, such as in welding applications. In this work we present a detailed characterization of the precipitate microstructures resulting from different quench rates from the solution treatment, and from the subsequent artificial ageing to the T6 state, in an Al-4.5Zn-1Mg (wt%) alloy. This work is carried out using differential scanning calorimetry, transmission electron microscopy and in situ small-angle X-ray scattering. It is shown that for quench rate between 5 and 200 deg. C/min substantial heterogeneous precipitation is observed, nucleated on dispersoids and on grain boundaries, the former being of much larger size than the latter. During subsequent ageing, it is shown that the precipitation kinetics in the material unaffected by the quench-induced precipitates is independent on the quench rate used.

  16. ScienceToGo.org: The Strengths and Weaknesses of Communicating Climate Change through Mass Transit Advertising Spaces

    Science.gov (United States)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.; Wilson, R.; Rabkin, D.; Thompson, S. R.

    2016-02-01

    Engaging urban populations with climate change science is a difficult challenge since cities can seem so removed from the `natural environment.' However, mass transit provides an inherent means of communicating environmental messages with a cross section of the urban population. The Out of Home Media (OHM) spaces found on platforms and inside train cars provide a potentially effective means of bringing informal science learning opportunities directly to an underserved STEM audience. Our team felt that any messaging curriculum for a coastal urban subway system must complement the scary reality of the impacts of a changing climate (i.e. rising sea levels) with current examples of how the city is preparing for a more sustainable future. Urban areas such as Boston must develop adaptation and mitigation strategies that will help them not only survive, but thrive in a changing environment. In 2013-14, ScienceToGo.org ran a series of 12 engaging posters and placards staring `Ozzie the Ostrich' on the Massachusetts Bay Transit Authority's Red and Orange subway lines targeting an audience of more than 400,000 riders per day. The 12 month curriculum was divided into three phases: reality, relevance, and hope. During the presentation, we will present the results of our quasi-experimental research which identifies, quantifies, and explains the observed impacts of the campaign on adult riders. The strengths and weaknesses of the communication strategy will be discussed. Finally, we will conclude with some recommendations for how this work could improve and inform other urban informal science learning initiatives.

  17. Transition of some type of integrated circuits into latch-up mode under effect of ionizing radiation of large dose rate

    International Nuclear Information System (INIS)

    Berdichevskij, B.E.; Madzharova, T.B.

    1986-01-01

    Some types of integrated circuits (IC) are almost short-circuit, i.e. they transit to the latch-up regime under the effect of ionizing radiation pulses of large dose rate. The results of investigation into IC under their transition into the latch-up regime at supply voltage of 10 V are presented. It is shown that IC stably transit to the latch-up regime if the dinistor current becomes at least equal to the photocurrent. At bias reduction from 15 to 6 V the dose rate at which the latch-up arises grows from 2.5x10 9 to 3.5x10 9 rad (Si)/s. Burn-out of supply busbar is the usual type of IC failure at latch-up arising. Measures for IC protection from latch-up are shown. In some IC the latch-up is formed beginning from a certain critical value of dose rate, the so-called ''windows'' of latch-up

  18. Anomalies in the coil-stretch transition of flexible polymers

    Science.gov (United States)

    Ghosal, Aishani; Cherayil, Binny J.

    2018-03-01

    The flow-induced coil-stretch transition of high molecular weight polymers has generally been held to be of first order. But evidence of significant slowing down in the rate at which the polymers relax to equilibrium in the vicinity of the transition suggests that the thermodynamic character of the transition may be less clear-cut. The above slowing down effect is actually characteristic of a second-order transition, and it points to the existence of a broad spectrum of conformational states in the transition region, analogous to the existence of fluctuations of all length scales at a critical point. In this paper, using a path integral approach based on a free-draining finitely extensible chain model, we calculate various polymer properties as a function of elongational flow as a way of exploring different statistical mechanical details of the coil-stretch transition. These properties include the molecular weight dependence of the flow-extension curve of the polymer, the distribution of its steady-state end-to-end distances, and the characteristic relaxation time τR of these distances. Among other findings, our calculations indicate that the coil-stretch transition is discontinuous in the N → ∞ limit, that the effective free energy of the chain is unimodal at all values of the flow, becoming broad and flat in the immediate vicinity of the transition, and that the ratio of τR to the Rouse relaxation time increases abruptly at the transition before eventually reaching a plateau value at large flow strengths. These aspects of the coil-stretch transition place it among a larger class of unconventional nominally first-order single chain transitions that include the adsorption transition of surface-tethered polymers and the escape transition of compressed polymers.

  19. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    Science.gov (United States)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  20. Isospin symmetry of Tz =±3/2→±1/2 Gamow-Teller transitions in A=41 nuclei

    Science.gov (United States)

    Fujita, Y.; Shimbara, Y.; Adachi, T.; Berg, G. P.; Brown, B. A.; Fujita, H.; Hatanaka, K.; Kamiya, J.; Nakanishi, K.; Sakemi, Y.; Sasaki, S.; Shimizu, Y.; Tameshige, Y.; Uchida, M.; Wakasa, T.; Yosoi, M.

    2004-11-01

    Under the assumption that isospin T is a good quantum number, isobaric analog states and various analogous transitions are expected in isobars with mass number A . The strengths of Tz =±3/2→±1/2 analogous Gamow-Teller (GT) transitions and analogous M1 transitions within the A=41 isobar quartet are compared in detail. The Tz =+3/2→+1/2 GT transitions from the Jπ = 3/2+ ground state of 41K leading to excited Jπ = 1/2+ , 3/2+ , and 5/2+ states in 41Ca were measured using the ( 3He ,t) charge-exchange reaction. With a high energy resolution of 35 keV , many fragmented states were observed, and the GT strength distribution was determined up to 10 MeV excitation energy ( Ex ) . The main part of the strength was concentrated in the Ex =4 6 MeV region. A shell-model calculation could reproduce the concentration, but not so well details of the strength distribution. The obtained distribution was further compared with two results of 41Ti β decay studying the analogous Tz =-3/2→-1/2 GT strengths. They reported contradicting distributions. One-to-one correspondences of analogous transitions and analog states were assigned up to Ex =6 MeV in the comparison with one of these 41Ti β -decay results. Combining the spectroscopic information of the analog states in 41Ca and 41Sc , the most probable Jπ values were deduced for each pair of analog states. It was found that 5/2+ states carry the main part of the observed GT strength, while much less GT strength was carried by 1/2+ and 3/2+ states. The gross features of the GT strength distributions for each J were similar for the isospin analogous Tz =±3/2→±1/2 transitions, but the details were somewhat different. From the difference of the distributions, isospin-asymmetry matrix elements of ≈8 keV were deduced. The Coulomb displacement energy, which is sensitive to the configuration of states, showed a sudden increase of about 50 keV at the excitation energy of 3.8 MeV . The strengths of several M1 transitions to the

  1. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    International Nuclear Information System (INIS)

    Li Songjie; Zhang Zuogui; Akiyama, Eiji; Tsuzaki, Kaneaki; Zhang Boping

    2010-01-01

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  2. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    Energy Technology Data Exchange (ETDEWEB)

    Li Songjie [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China); Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Zuogui [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Akiyama, Eiji [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: AKIYAMA.Eiji@nims.go.jp; Tsuzaki, Kaneaki [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Boping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China)

    2010-05-15

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  3. Effects of oxygen content and heating rate on phase transition behavior in Bi2(V0.95Ti0.05)O5.475-x

    International Nuclear Information System (INIS)

    Taninouchi, Yu-ki; Uda, Tetsuya; Ichitsubo, Tetsu; Awakura, Yasuhiro; Matsubara, Eiichiro

    2011-01-01

    Highlights: → Phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and physical forms. → At the same heating rate of 10 K min -1 , Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. → α f directly transformed to β f at fast heating rates. At a slower heating rate of 2 K min -1 , β f precipitated from α f due to the sufficient diffusion of Ti and oxygen vacancies. - Abstract: The phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and sample forms, has been studied by means of differential scanning calorimetry. Thermogravimetric analysis revealed that the oxygen content per compositional formula varied with the applied thermal treatment, although no significant structural difference was observed by X-ray diffraction (XRD) analysis. The phase transition behavior from α f to β f and from β f to γ f , observed at a heating rate of 10 K min -1 , are markedly affected by the sample preparation. For example, the endothermic peak of the transition from α f to β f appeared at around 400 deg. C for quenched powder and at around 320 deg. C for powder cooled at 0.5 K min -1 . The trend of the transition temperatures can be qualitatively explained in terms of oxygen content, i.e., Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits the transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. We confirmed the two types of transition behavior from α f to β f depending on heating rate of DSC and high-temperature X-ray diffraction (HT-XRD) analysis. At rapid heating rates of 10 and 40 K min -1 , α f transformed to β f directly. Meanwhile, at a slow heating rate of 2 K min -1 , the β f precipitated from α f because slow heating

  4. Functional changes through the usage of 3D-printed transitional prostheses in children.

    Science.gov (United States)

    Zuniga, Jorge M; Peck, Jean L; Srivastava, Rakesh; Pierce, James E; Dudley, Drew R; Than, Nicholas A; Stergiou, Nicholas

    2017-11-08

    There is limited knowledge on the use of 3 D-printed transitional prostheses, as they relate to changes in function and strength. Therefore, the purpose of this study was to identify functional and strength changes after usage of 3 D-printed transitional prostheses for multiple weeks for children with upper-limb differences. Gross manual dexterity was assessed using the Box and Block Test and wrist strength was measured using a dynamometer. This testing was conducted before and after a period of 24 ± 2.61 weeks of using a 3 D-printed transitional prosthesis. The 11 children (five girls and six boys; 3-15 years of age) who participated in the study, were fitted with a 3 D-printed transitional partial hand (n = 9) or an arm (n = 2) prosthesis. Separate two-way repeated measures ANOVAs were performed to analyze function and strength data. There was a significant hand by time interaction for function, but not for strength. Conclusion and relevance to the study of disability and rehabilitation: The increase in manual gross dexterity suggests that the Cyborg Beast 2 3 D-printed prosthesis can be used as a transitional device to improve function in children with traumatic or congenital upper-limb differences. Implications for Rehabilitation Children's prosthetic needs are complex due to their small size, rapid growth, and psychosocial development. Advancements in computer-aided design and additive manufacturing offer the possibility of designing and printing transitional prostheses at a very low cost, but there is limited knowledge on the function of this type of devices. The use of 3D printed transitional prostheses may improve manual gross dexterity in children after several weeks of using it.

  5. A Longitudinal Study into Indicators of Mental Health, Strengths and Difficulties Reported by Boarding Students as They Transition from Primary School to Secondary Boarding Schools in Perth, Western Australia

    Science.gov (United States)

    Mander, David J.; Lester, Leanne

    2017-01-01

    This study examined indicators of mental health, as well as strengths and difficulties, as reported by same-age boarding and non-boarding students spanning four time points over a 2-year period as they transitioned from primary to boarding school in Western Australia (i.e., at the end of Grade 7, beginning of Grade 8, end of Grade 8, and end of…

  6. Scan-rate dependence in protein calorimetry: the reversible transitions of Bacillus circulans xylanase and a disulfide-bridge mutant.

    OpenAIRE

    Davoodi, J.; Wakarchuk, W. W.; Surewicz, W. K.; Carey, P. R.

    1998-01-01

    The stabilities of Bacillus circulans xylanase and a disulfide-bridge-containing mutant (S100C/N148C) were investigated by differential scanning calorimetry (DSC) and thermal inactivation kinetics. The thermal denaturation of both proteins was found to be irreversible, and the apparent transition temperatures showed a considerable dependence upon scanning rate. In the presence of low (nondenaturing) concentrations of urea, calorimetric transitions were observed for both proteins in the second...

  7. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  8. Energy Levels and B(E2) transition rates in the Hartree-Fock approximation with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1976-11-01

    The Hartree-Fock approximation with the Skyrme force is applied to the A = 4n type of nuclei in the s-d shell. Energy levels and electric quadrupole transition probabilities within the ground states band are calculated from the projected states of good angular momentum. Strong approximations are made but the results concerning the spectra are better than those obtained with more sophisticated density independent two-body interactions. The transition rates are less sensitive to the interaction, as previously verified

  9. Lost in Transition: Examining Transitions in Psychotherapy Training.

    Science.gov (United States)

    Tan, Adrienne; Philipp, Diane; Malat, Jan; Feder, Victor; Kulkarni, Chetana; Lawson, Andrea; So, Vivien; Ravitz, Paula

    2015-10-01

    Disruptions are inevitable during psychiatry residency training and can affect resident learning and patient care. This exploratory study examined the nature and impact of transitions in psychotherapy training. PGY2-5 residents (45/150; 30% response rate) and psychotherapy supervisors (46/247; 18.6% response rate) were surveyed about transitional events during residency training in psychotherapy. Supervisors and residents ranked the frequency of occurrence of transitional events and their impact very similarly, as well as the "feed forward" items when transitioning to a new supervisor. Residents feeling confused or overwhelmed with the balancing of learning differing models with differing levels of comfort or knowledge was ranked as the issue that occurred most frequently by both supervisors and residents. This study highlights issues that arise at transitions during psychotherapy training in psychiatry residency. Strategies for managing these periods are discussed, with a focus on resident learning and improved continuity of patient care.

  10. An alternative method for determination of oscillator strengths: The example of Sc II

    International Nuclear Information System (INIS)

    Ruczkowski, J.; Elantkowska, M.; Dembczyński, J.

    2014-01-01

    We describe our method for determining oscillator strengths and hyperfine structure splittings that is an alternative to the commonly used, purely theoretical calculations, or to the semi-empirical approach combined with theoretically calculated transition integrals. We have developed our own computer programs that allow us to determine all attributes of the structure of complex atoms starting from the measured frequencies emitted by the atoms. As an example, we present the results of the calculation of the structure, electric dipole transitions, and hyperfine splittings of Sc II. The angular coefficients of the transition matrix in pure SL coupling were found from straightforward Racah algebra. The transition matrix was transformed into the actual intermediate coupling by the fine structure eigenvectors obtained from the semi-empirical approach. The transition integrals were treated as free parameters in the least squares fit to experimental gf values. For most transitions, the experimental and the calculated gf-values are consistent with the accuracy claimed in the NIST compilation. - Highlights: • The method of simultaneous determination of all the attributes of atomic structure. • The semi-empirical method of parameterization of oscillator strengths. • Illustration of the method application for the example of Sc II data

  11. Transition from amplitude to oscillation death in a network of oscillators

    International Nuclear Information System (INIS)

    Nandan, Mauparna; Hens, C. R.; Dana, Syamal K.; Pal, Pinaki

    2014-01-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics

  12. Transition from amplitude to oscillation death in a network of oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Mauparna [Dr. B. C. Roy Engineering College, Durgapur 713206 (India); Department of Mathematics, National Institute of Technology, Durgapur 713209 (India); Hens, C. R.; Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Pal, Pinaki [Department of Mathematics, National Institute of Technology, Durgapur 713209 (India)

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  13. ASD Transition to Mainstream Secondary: A Positive Experience?

    Science.gov (United States)

    Neal, Sinead; Frederickson, Norah

    2016-01-01

    The transition to secondary school is considered difficult for children with autistic spectrum disorder (ASD), yet there has been little strength-based investigation of positive experiences of this population and the types of support they value most in managing anxiety about transition. The current article presents a qualitative exploration of the…

  14. Creep Strength of Discontinuous Fibre Composites

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker

    1974-01-01

    relation between stress and strain rate. Expressions for the interface stress, the creep velocity profile adjacent to the fibres and the creep strength of the composite are derived. Previous results for the creep strength, sc = aVfs0 ( \\frac[( Î )\\dot] [( Î )\\dot] 0 )1/nr1 + 1/n c=Vf001n1+1n in which[( Î...... )\\dot] is the composite creep rate,V f is the fibre volume fraction,sgr 0,epsi 0 andn are the constants in the matrix creep law. The creep strength coefficient agr is found to be very weakly dependent onV f and practically independent ofn whenn is greater than about 6....

  15. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  16. Evaluation of bond strength and load deflection rate of multi-stranded fixed retainer wires: An In-Vitro Study

    Directory of Open Access Journals (Sweden)

    Renu Sarah Samson

    2018-01-01

    Full Text Available Background: Fixed orthodontic retainers must be well retained on the tooth surfaces, allow physiologic movement of teeth and exert minimal forces on the teeth to be retained. Previous studies analyzed the bond strength and amount of deflection caused due to the debonding force but not the magnitude of force needed for unit deformation. Aims: This study aims to evaluate and compare the bond strength and load deflection rate (LDR of three different fixed retainer wires. Materials and Methods: The wires were divided into three Groups: A – three-stranded twisted ligature wire, B – Bond-A-Braid (Reliance Orthodontics, and C – three-stranded twisted lingual retainer wire (3M Unitek. Twenty models were prepared for each group with a passive 15 mm long lingual retainer wire bonded to two lower incisors. An occlusogingival force was applied to the wire until it debonded. For LDR, three-point bending test was done at 0.5 mm deflection. These forces were measured using a Universal Instron Testing Machine. Statistical Analysis: Mean bond strength/LDR and pairwise comparisons were analyzed with one-way ANOVA and Tukey's honest significant difference post hoc test, respectively. Results: Group C exhibited the highest mean bond strength and LDR of 101.17N and 1.84N, respectively. The intergroup comparisons were all statistically significant. Conclusion: Compared to the other two wire types, Group C might be better retained on the teeth due to its higher bond strength. With its relatively higher LDR value, it may resist deformation from occlusal forces, thereby reducing inadvertent tooth movement and yet remain flexible enough to allow physiologic tooth movements.

  17. E0 transitions in {sup 106}Pd: Implications for shape coexistence

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E.E.; Mynk, M.G. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); Prados-Estevez, F.M.; Chakraborty, A.; Yates, S.W. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); University of Kentucky, Department of Physics and Astronomy, Lexington, KY (United States); Bandyopadhyay, D.; Choudry, S.N.; Crider, B.P.; Kumar, A.; Lesher, S.R.; McKay, C.J.; Orce, J.N.; Scheck, M. [University of Kentucky, Department of Physics and Astronomy, Lexington, KY (United States); Garrett, P.E. [University of Guelph, Department of Physics, Guelph, Ontario (Canada); Hicks, S.F. [University of Dallas, Department of Physics, Irving, TX (United States); Vanhoy, J.R. [United States Naval Academy, Department of Physics, Annapolis, MD (United States); Wood, J.L. [Georgia Institute of Technology, School of Physics, Atlanta, GA (United States)

    2016-04-15

    Level lifetimes in {sup 106}Pd were measured with the Doppler-shift attenuation method following inelastic neutron scattering, and electric monopole transition strengths between low-lying 2{sup +} states were deduced. The large ρ{sup 2} (E0) values obtained provide evidence for shape coexistence, extending observation of such structures in the N = 60 isotones. Included in these results is the first determination of the E0 transition strength in the Pd nuclei between levels with K = 2. (orig.)

  18. Near-ideal strength in metal nanotubes revealed by atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingfei; Xiao, Fei [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Deng, Chuang, E-mail: dengc@ad.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, The University of Manitoba, 15Gillson Street, Winnipeg, Manitoba R3T 5V6 (Canada)

    2013-12-02

    Here we report extraordinary mechanical properties revealed by atomistic simulations in metal nanotubes with hollow interior that have been long overlooked. Particularly, the yield strength in [1 1 1] Au nanotubes is found to be up to 60% higher than the corresponding solid Au nanowire, which approaches the theoretical ideal strength in Au. Furthermore, a remarkable transition from sharp to smooth yielding is observed in Au nanotubes with decreasing wall thickness. The ultrahigh tensile strength in [1 1 1] Au nanotube might originate from the repulsive image force exerted by the interior surface against dislocation nucleation from the outer surface.

  19. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  20. Ordinary muon capture as a probe of virtual transitions of ββ decay

    International Nuclear Information System (INIS)

    Kortelainen, M.; Suhonen, J.

    2002-01-01

    A reliable theoretical description of double-beta-decay processes needs a possibility to test the involved virtual transitions against experimental data. Unfortunately, only the lowest virtual transition can be probed by the traditional electron capture of β - decay experiments. In this article we propose that calculated amplitudes for many virtual transitions can be probed by experiments measuring rates of ordinary muon capture (OMC) to the relevant intermediate states. The first results form such experiments are expected to appear soon. As an example, we discuss the ββ decays of 76 Ge and 106 Cd and the corresponding OMC for the 76 Se and 106 Cd nuclei in the framework of the proton-neutron QRPA with realistic interactions. It is found that the OMC observables, just like the 2νββ-decay amplitudes, strongly depend on the strength of the particle-particle part of the proton-neutron interaction. (author)

  1. Radon concentration; source strength and ventilation rate: how well do we know the connections

    International Nuclear Information System (INIS)

    Ring, J.W.

    1984-01-01

    The simple steady state model which is frequently used to relate radon concentration (C), source strength (S) and ventilation rate (l/'tau') is expressed in the equation C=S'tau'. The assumptions of this model are given and their validity explored in this paper. In particular the assumption of steady state conditions fot the ventilation rate is studied experimentally in a simple one chamber building, the Solar Classroom at Hamilton College. Even in this simple case variations are found of a factor of three or more in 'tau' which can be attributed to wind and stack effects. Studies of other houses are cited which show that variations of 'tau' between houses can be as large as factor of sixty or more. The implications of these results for developing ventilation standards or for mitigating the indoor radon problem are suggested. Individual houses can be understood and mitigating strategies implemented in them on a case by case basis but a statistical treatment of houses in general does not seem to be a fruitful approach. (Author)

  2. Meson-Exchange Enhancement of First-Forbidden $\\beta$-Transitions in the Lead Region

    CERN Multimedia

    Delaure, B J P; Severijns, N

    2002-01-01

    Both on-line and off-line low temperature nuclear orientation is used to measure the $\\beta$-asymmetry parameter for the first-forbidden g.s. $\\rightarrow$~g.s. $\\beta$-transitions of $^{205}$Hg, $^{207,209}$Tl, $^{209}$Pb and $^{213}$Bi. From this, the ratio of the rank-zero and the rank-one strengths in these decays can be deduced, with the rank of a $\\beta$-transition being defined as the total angular momentum of the lepton system. Combining this result with the experimental ${ft}$-values yields for the first time a purely experimental determination of the rank-zero contribution in these $\\Delta$ J = 0 first-forbidden transitions. This provides an independent check of the large enhancement (of about 100% over the impulse approximation) of the rank-zero matrix element of $\\gamma_{5} $, caused by meson exchange currents (MEC), which was recently obtained from a comparison of calculated first-forbidden $\\beta$-decay rates with experimentally observed values for nuclei in the lead region (A = 205-212). Measur...

  3. Systematics of strength function sum rules

    Directory of Open Access Journals (Sweden)

    Calvin W. Johnson

    2015-11-01

    Full Text Available Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink–Axel hypothesis, for example, does not hold for most cases, though it weakly holds in at least some cases for electric dipole transitions. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators. Seen through this lens, violation of the generalized Brink–Axel hypothesis is unsurprising: one expects sum rules to evolve with excitation energy. Furthermore, to lowest order the slope of the secular evolution can be traced to a component of the Hamiltonian being positive (repulsive or negative (attractive.

  4. Microstructural evolution and mechanical properties of a novel FeCrNiBSi advanced high-strength steel: Slow, accelerated and fast casting cooling rates

    Energy Technology Data Exchange (ETDEWEB)

    Askari-Paykani, Mohsen; Shahverdi, Hamid Reza, E-mail: shahverdi@modares.ac.ir; Miresmaeili, Reza

    2016-06-21

    In the current work, three different solidification routes and a two-step heat treatment process were applied to a novel FeCrNiBSi alloy system to introduce a new candidate for advanced high-strength steels. The evolution of the microstructure after solidification, heat treatment, and tensile deformation was characterized using optical and electron microscopy techniques, as well as hardness and room temperature uniaxial tensile tests. The effects of the different solidification routes and heat treatment parameters on the deformation and fracture mechanisms of this steel are discussed. Grain refinement, precipitation hardening, and solid solution as a result of the fast casting cooling rate led to an increase in strength at improved ductility. This result can be explained partly by the less severe stress/strain partitioning at the matrix grain/M{sub 2}B interfaces and better interface cohesion. Moreover, the stress/strain partitioning characteristics between the matrix grains and M{sub 2}B led to a higher initial strain hardening rate. The fast casting cooling rate further promoted ductile fracture mechanisms, which is a result of increased cleavage fracture stress. The higher casting cooling rate and two-step heat treatment resulted in a strong increase in formability index, from 8 GPa% to 24 GPa%, at which the mechanical properties occupy the TRIP envelope. Heat treatment of the fast-cooling specimens led to a small reduction in yield and tensile strength and 22% total elongation percentage improvement (from 10% to 32%).

  5. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    International Nuclear Information System (INIS)

    Tournier, Robert F.

    2014-01-01

    An undercooled liquid is unstable. The driving force of the glass transition at T g is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change −V m ×Δp at T g where V m is the molar volume. A stable glass–liquid transition model predicts the specific heat jump of fragile liquids at T≤T g , the Kauzmann temperature T K where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between T K and T g , the maximum nucleation rate at T K of superclusters containing magic atom numbers, and the equilibrium latent heats at T g and T K . Strong-to-fragile and strong-to-strong liquid transitions at T g are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid–liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at T K of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at T g without stable-glass formation while a strong glass is stable after transition

  6. Dissipation-driven quantum phase transitions in collective spin systems

    International Nuclear Information System (INIS)

    Morrison, S; Parkins, A S

    2008-01-01

    We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)

  7. Improving Parolees' Participation in Drug Treatment and Other Services through Strengths Case Management

    OpenAIRE

    Prendergast, Michael; Cartier, Jerome J.

    2008-01-01

    In an effort to increase participation in community aftercare treatment for substance-abusing parolees, an intervention based on a transitional case management (TCM) model that focuses mainly on offenders' strengths has been developed and is under testing. This model consists of completion, by the inmate, of a self-assessment of strengths that informs the development of the continuing care plan, a case conference call shortly before release, and strengths case management for three months post...

  8. M1 and E2 transitions in the ground-state configuration of atomic ...

    Indian Academy of Sciences (India)

    have calculated the forbidden transition (M1 and E2) parameters such as transition energies, log- arithmic weighted ... Keywords. Forbidden transitions; transition energies; logarithmic weighted oscillator strengths; .... optimizing the energy function based on the non-relativistic Hamiltonian of an atom,. HNR = N. ∑ j=1. (12∇ ...

  9. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    Science.gov (United States)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  10. Calculation of Rates of 4p–4d Transitions in Ar II

    Directory of Open Access Journals (Sweden)

    Alan Hibbert

    2017-02-01

    Full Text Available Recent experimental work by Belmonte et al. (2014 has given rates for some 4p–4d transitions that are significantly at variance with the previous experimental work of Rudko and Tang (1967 recommended in the NIST tabulations. To date, there are no theoretical rates with which to compare. In this work, we provide such theoretical data. We have undertaken a substantial and systematic configuration interaction calculation, with an extrapolation process applied to ab initio mixing coefficients, which gives energy differences in agreement with experiment. The length and velocity forms give values that are within 10%–15% of each other. Our results are in sufficiently close agreement with those of Belmonte et al. that we can confidently recommend that their results are much more accurate than the early results of Rudko and Tang, and should be adopted in place of the latter.

  11. Thermal expansion and cooling rate dependence of transition temperature in ZrTiO4 single crystal

    International Nuclear Information System (INIS)

    Park, Y.

    1998-01-01

    Thermal expansion in ZrTiO 4 single crystal was investigated in the temperature range covering the normal, incommensurate, and commensurate phases. Remarkable change was found at the normal-incommensurate phase transition (T I ) in all thermal expansion coefficients a, b, and c. The spontaneous strains χ as and χ bs along the a and b axes show linear temperature dependence, while the spontaneous strain χ cs along the c axis shows a nonlinear temperature dependence. Small discontinuity along the c direction was observed at the incommensurate-commensurate transition temperature, T c = 845 C. dT I /dP and dT c /dP depend on the cooling rate

  12. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    Energy Technology Data Exchange (ETDEWEB)

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom); Keenan, F. P., E-mail: c.ramsbottom@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  13. A study of the oscillator strengths and line strenghts of Agl and AuI Using the Coulomb approximation

    Directory of Open Access Journals (Sweden)

    M. Soltanolkotabi

    1998-04-01

    Full Text Available   Single-valence electron atoms are an important class of atoms. Their oscillator strengths are their important properties. Knowing the oscillator strengths one can easity calculate the transition probabilities of the spectral lines and hence the lifetimes of energy levels of most atoms. The oscillator strengths of the spectral lines of most atoms are not knoen with sufficient accuracy due to the experimental difficulties. The results of most measurements are subject to large inaccuracies due to uncertainties in vapor pressure data. A quick and simple theoretical method for calculation of atomic oscillator strength seems to be the Coulomb approximation of Bates and Damagaard. This method reveals some interesting properties that are generally confirmed by experimental results. In this paper, we have studied oscillator strengths and line strengths of the different allowed transitions in AgI and AuI using the Coulomb approximation. The log (λfg curves(λ, f and g are the wavelength of transition, oscillator strength and statistical weight of upper level, respectively versus the reciprocal of the principal quantum number of upper level, 1/n, show a linear behavior only for large values of the principal quantum number of lower level. The effect of change of total angular momentum,Δ J, in the curvature and slope of the plotted curves has been also investigated. The deviation of the curves from straight lines, which indicates failure of the Coulomb approximation is due to the exchange forces. In addition, the n3fg curves   (n , the effective total quantum number of upper level have been plotted versus n for different allowed transitions in AgL and AuI. It has been found that f is proportional to 1/n and this proportionality is linear for large values of n . For some transitions, however, there is a significant deviation from the linear dependence for large values of n , which can be attributed to the signature of total angular momentum quantum

  14. Variational transition-state theory

    International Nuclear Information System (INIS)

    Truhlar, D.G.; Garrett, B.C.

    1980-01-01

    A general introduction to and some results from studies of a procedure called variational transition-state theory are presented. A fundamental assumption of this theory is that the net rate of forward reaction at equilibrium equals the equilibrium flux in the product direction through the transition state where the transition state is a surface in phase space dividing reactants from products. Classical generalized-transition-state-theory calculations for nine collinear systems are compared to classical trajectory calculations. This new technique should provide useful insight into the successes and failures of the conventional theory and useful quantitative estimates of possible errors on the predictions of conventional transition-state theory. This should also contribute to a more accurate theory now available for the practical calculations of chemical reaction rates and thermochemical and structural interpretations of rate processes

  15. Early warning signals of desertification transitions in semiarid ecosystems.

    Science.gov (United States)

    Corrado, Raffaele; Cherubini, Anna Maria; Pennetta, Cecilia

    2014-12-01

    The identification of early warning signals for regime shifts in ecosystems is of crucial importance given their impact in terms of economic and social effects. We present here the results of a theoretical study on the desertification transition in semiarid ecosystems under external stress. We performed numerical simulations based on a stochastic cellular automaton model, and we studied the dynamics of the vegetation clusters in terms of percolation theory, assumed as an effective tool for analyzing the geometrical properties of the clusters. Focusing on the role played by the strength of external stresses, measured by the mortality rate m, we followed the progressive degradation of the ecosystem for increasing m, identifying different stages: first, the fragmentation transition occurring at relatively low values of m, then the desertification transition at higher mortality rates, and finally the full desertification transition corresponding to the extinction of the vegetation and the almost complete degradation of the soil, attained at the maximum value of m. For each transition we calculated the spanning probabilities as functions of m and the percolation thresholds according to different spanning criteria. The identification of the different thresholds is proposed as an useful tool for monitoring the increasing degradation of real-world finite-size systems. Moreover, we studied the time fluctuations of the sizes of the biggest clusters of vegetated and nonvegetated cells over the entire range of mortality values. The change of sign in the skewness of the size distributions, occurring at the fragmentation threshold for the biggest vegetation cluster and at the desertification threshold for the nonvegetated cluster, offers new early warning signals for desertification. Other new and robust indicators are given by the maxima of the root-mean-square deviation of the distributions, which are attained respectively inside the fragmentation interval, for the vegetated

  16. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2014-01-01

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which

  17. Influence of multiaxial preloading on the strength of concrete

    International Nuclear Information System (INIS)

    Linse, D.

    1975-01-01

    In a preliminary study about the influence of the loading direction discs of 20/20/5 cm were loaded at different stress-rates in one direction, then unloaded and loaded up to failure again. Two series of each about 15 specimens were tested: the first series was reloaded in the same direction as it was loaded before. If the preloading was not greater than about 90% of the original short-term uniaxial strength βsub(p), one could achieve in the second loading a higher strength than the strength βsub(p). The second series was reloaded normal to the direction of preloading. By an other series of about 50 specimens the influence of triaxial preloading on the uniaxial strength of concrete was tested. Cubes of 10cm were loaded by brush bearing platens up to a stress which was maximally three times higher than the uniaxial short-term strength βsub(p), then unloaded and tested again under uniaxial compression. The achieved ultimate strength of the cubes at the second loading was obviously dependent upon the stress-state and the stress-rate of the preloading. Multiaxial preloading which is far below the ultimate multiaxial strength can considerably defect the remaining strength of concrete. The decrease in strength was defined by the reduction of the uniaxial strength. It can be assumed that the remaining multiaxial strength is reduced at least to the same rate. Further tests are planned

  18. Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions

    Science.gov (United States)

    Marketin, T.; Huther, L.; Martínez-Pinedo, G.

    2016-02-01

    Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be

  19. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    Science.gov (United States)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  20. Impact strength of the uranium-6 weight percent niobium alloy between -1980 and +2000C

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1981-09-01

    A study was conducted to determine if a ductile-to-brittle transition wxisted for the uranium-6 wt % niobium (U-6Nb) alloy. Standard V-notched Charpy bars were made from both solution-quenched and solution-quenched and aged U-6Nb alloy and were tested between -198 0 and +200 0 C. It was found that a sharp ductile-brittle transition does not exist for the alloy. A linear relationship existed between test temperature and impact strength, and the alloy retained a significant amount of impact strength even at very low temperatures. 9 figures

  1. 34 CFR 300.43 - Transition services.

    Science.gov (United States)

    2010-07-01

    ..., including postsecondary education, vocational education, integrated employment (including supported...; (2) Is based on the individual child's needs, taking into account the child's strengths, preferences..., acquisition of daily living skills and provision of a functional vocational evaluation. (b) Transition...

  2. Aging transition in systems of oscillators with global distributed-delay coupling.

    Science.gov (United States)

    Rahman, B; Blyuss, K B; Kyrychko, Y N

    2017-09-01

    We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.

  3. Exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model

    International Nuclear Information System (INIS)

    Divari, P.C.; Vergados, J.D.; Kosmas, T.S.; Skouras, L.D.

    2001-01-01

    A comprehensive study of the exotic (μ - ,e + ) conversion in 27 Al, 27 Al(μ - ,e + ) 27 Na is presented. The relevant operators are deduced assuming one-pion and two-pion modes in the framework of intermediate neutrino mixing models, paying special attention to the light neutrino case. The total rate is calculated by summing over partial transition strengths for all kinematically accessible final states derived with s-d shell model calculations employing the well-known Wildenthal realistic interaction

  4. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    Science.gov (United States)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  5. High-resolution study of Gamow-Teller transitions in the 47Ti(3He,t)47V reaction

    Science.gov (United States)

    Ganioǧlu, E.; Fujita, H.; Fujita, Y.; Adachi, T.; Algora, A.; Csatlós, M.; Deaven, J. M.; Estevez-Aguado, E.; Guess, C. J.; Gulyás, J.; Hatanaka, K.; Hirota, K.; Honma, M.; Ishikawa, D.; Krasznahorkay, A.; Matsubara, H.; Meharchand, R.; Molina, F.; Okamura, H.; Ong, H. J.; Otsuka, T.; Perdikakis, G.; Rubio, B.; Scholl, C.; Shimbara, Y.; Susoy, G.; Suzuki, T.; Tamii, A.; Thies, J. H.; Zegers, R. G. T.; Zenihiro, J.

    2013-01-01

    Given the importance of Gamow-Teller (GT) transitions in nuclear structure and astrophysical nuclear processes, we have studied Tz=+3/2→+1/2, GT transitions starting from the 47Ti nucleus in the (3He,t) charge-exchange reaction at 0∘ and at an intermediate incident energy of 140 MeV/nucleon. The experiments were carried out at the Research Center for Nuclear Physics (RCNP), Osaka, using the high-resolution facility with a high-dispersion beam line and the Grand-Raiden spectrometer. With an energy resolution of 20 keV, individual GT transitions were observed and GT strength was derived for each state populated up to an excitation energy (Ex) of 12.5 MeV. The GT strength was widely distributed from low excitation energy up to 12.5 MeV, where we had to stop the analysis because of the high level density. The distribution of the GT strengths was compared with the results of shell model calculations using the GXPF1 interaction. The calculations could reproduce the experimental GT distributions well. The GT transitions from the ground state of 47Ti and the M1 transitions from the isobaric analog state in 47V to the same low-lying states in 47V are analogous. It was found that the ratios of GT transition strengths to the ground state, the 0.088-MeV state, and the 0.146-MeV state are similar to the ratios of the strengths of the analogous M1 transitions from the isobaric analog state (IAS) to these states. The measured distribution of the GT strengths was also compared with those starting from the Tz=+3/2 nucleus 41K to the Tz=+1/2 nucleus 41Ca.

  6. Fine-structure energy levels, oscillator strengths and lifetimes

    Indian Academy of Sciences (India)

    We have done relativistic calculations for the evaluation of energy levels, oscillator strengths, transition probabilities and lifetimes for Cr VIII ion. Use has been made of configuration interaction technique by including Briet–Pauli approximation. The energies of various levels from the ground state to excited levels of 3s3p6, ...

  7. Strengths perspective among the homeless adolescents: A systematic review

    Directory of Open Access Journals (Sweden)

    Janmejaya Samal

    2017-01-01

    Full Text Available Background: Earlier, the scholars of family studies have primarily focused on the problems and weaknesses of the families. However, during these days, there is a shift from problems to strength-based perspective. Methodology: Search of literature was carried out through internet-based Google Scholar search engine. Of the 112 titles obtained 21 titles fit the criteria of the study objectives, of which 9 full-text articles were finally selected for the purpose of this review. Results: In this review, nine full-text articles were reviewed. Nine of these researches investigated different facets of strengths perspective among the homeless adolescents. Chronologically, nine of these reviewed studies delineated the following thematic facets of strengths perspective among the homeless adolescents. These include personal strength and informal resources, personal strength in high-risk environment, strengths perspective during the transition of adolescence to adulthood, personal and social strengths that refrained the homeless adolescents form intravenous drug use, resilience and self-esteem, religion as an important strength, “hope” as a way of living among the homeless adolescents, coping strategies of street-involved youth, and usage of internet and social media as an important strength among homeless adolescents. Conclusion: Strengths perspective helps the youth to become a master of their own lives and helps to deal with all the adversities in life.

  8. Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M.; Pokorny, P.; Stoulil, J. [University of Chemistry and Technology, Prague (Czech Republic)

    2017-04-15

    Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

  9. Heliospheric Modulation Strength During The Neutron Monitor Era

    Science.gov (United States)

    Usoskin, I. G.; Alanko, K.; Mursula, K.; Kovaltsov, G. A.

    Using a stochastic simulation of a one-dimensional heliosphere we calculate galactic cosmic ray spectra at the Earth's orbit for different values of the heliospheric mod- ulation strength. Convoluting these spectra with the specific yield function of a neu- tron monitor, we obtain the expected neutron monitor count rates for different values of the modulation strength. Finally, inverting this relation, we calculate the modula- tion strength using the actually recorded neutron monitor count rates. We present the reconstructed annual heliospheric modulation strengths for the neutron monitor era (1953­2000) using several neutron monitors from different latitudes, covering a large range of geomagnetic rigidity cutoffs from polar to equatorial regions. The estimated modulation strengths are shown to be in good agreement with the corresponding esti- mates reported earlier for some years.

  10. Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Zhou Peng

    2010-01-01

    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.

  11. Integrated High-Rate Transition Radiation Detector and Tracking Chamber for the LHC

    CERN Multimedia

    2002-01-01

    % RD-6 \\\\ \\\\Over the past five years, RD-6 has developed a transition radiation detector and charged particle tracker for high rate operation at LHC. The detector elements are based on C-fibre reinforced kapton straw tubes of 4~mm diameter filled with a Xenon gas mixture. Detailed measurements with and without magnetic field have been performed in test beams, and in particular have demonstrated the possibility of operating straw tubes at very high rate (up to 20~MHz) with accurate drift-time measurement accuracy. A full-scale engineering prototype containing 10~000 straws is presently under assembly and will be accurately measured with a powerful X-ray tube. Integrated front-end electronics with fast readout have been designed and successfully operated in test beam. \\\\ \\\\Finally extensive simulations performed for ATLAS have shown that such a detector will provide powerful pattern recognition, accurate momentum measurements, efficient level-2 triggering and excellent electron identification, even at the highe...

  12. Energies and E1, M1, E2, and M2 transition rates for states of the 2s{sup 2}2p{sup 3}, 2s2p{sup 4}, and 2p{sup 5} configurations in nitrogen-like ions between F III and Kr XXX

    Energy Technology Data Exchange (ETDEWEB)

    Rynkun, P., E-mail: pavel.rynkun@gmail.com [Department of Physics and Information Technologies, Lithuanian University of Educational Science, Studentu 39, LT-08106 Vilnius (Lithuania); Jönsson, P. [Group for Materials Science and Applied Mathematics, Malmö University, 20506 Malmö (Sweden); Gaigalas, G. [Department of Physics and Information Technologies, Lithuanian University of Educational Science, Studentu 39, LT-08106 Vilnius (Lithuania); Vilnius University, Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108 Vilnius (Lithuania); Froese Fischer, C. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8420 (United States)

    2014-03-15

    Based on relativistic wavefunctions from multiconfiguration Dirac–Hartree–Fock and configuration interaction calculations, E1, M1, E2, and M2 transition rates, weighted oscillator strengths, and lifetimes are evaluated for the states of the (1s{sup 2})2s{sup 2}2p{sup 3},2s2p{sup 4}, and 2p{sup 5} configurations in all nitrogen-like ions between F III and Kr XXX. The wavefunction expansions include valence, core–valence, and core–core correlation effects through single–double multireference expansions to increasing sets of active orbitals. The computed energies agree very well with experimental values, with differences of only 300–600 cm{sup −1} for the majority of the levels and ions in the sequence. Computed transitions rates are in close agreement with available data from MCHF-BP calculations by Tachiev and Froese Fischer [G.I. Tachiev, C. Froese Fischer, A and A 385 (2002) 716].

  13. Gastrointestinal transit and reflux studies

    International Nuclear Information System (INIS)

    Greenspan, R.L.; Kochan, J.

    1988-01-01

    Current imaging modalities such as magnetic resonance imaging and computed tomography provide anatomic resolution far beyond that achievable with the current methods of scintigraphic imaging. Consequently, the strength of nuclear medicine has shifted and now lies in its ability to provide physiologic data noninvasively and simply. This ability is well illustrated by the scintigraphic techniques developed for evaluation of the alimentary tract. Studies of esophageal transit, gastroesophageal reflux, and gastric emptying are now widely available. Evaluation of small and large intestinal transit have also been investigated. These techniques are discussed in the present chapter

  14. Gamow-Teller Strengths from (3He,t) Charge-Exchange Reaction

    International Nuclear Information System (INIS)

    Fujita, Yoshitaka

    2006-01-01

    Gamow-Teller (GT) transition is the most popular nuclear weak process with the nature of spin-isospin excitation. GT transitions in pf-shell nuclei, including those starting from unstable nuclei, are of interest, due to their importance in astrophysical processes. Weak processes, however, gives us rather limited information on the GT response of nuclei. We introduce high-resolution ( 3 He, t) reaction at 0 0 and at an intermediate beam energy as a new spectroscopic tool for studying GT excitations. Owing to the high energy-resolution of the reaction (∼ 30 keV), individual transitions can be observed up to the region of GT giant resonance. Assuming isospin symmetry for the T z = ±1 → 0 isobaric analogous transitions in isobars with mass number A, we present a new method to deduce GT transition strengths starting from proton rich exotic nuclei

  15. Study on conversion relationships of compressive strength indexes for recycled lightweight aggregate concrete

    Science.gov (United States)

    Zhang, Xiang-gang; Yang, Jian-hui; Kuang, Xiao-mei

    2017-01-01

    In order to study cube compressive strength and axial compressive strength of recycled lightweight aggregate concrete(RLAC), and conversion relationship between the two, with the replacement rate of recycled lightweight coarse aggregate as change parameters, 15 standard cube test specimens and 15 standard prism test specimens were produced to carry out the test. Then compressive strength of test specimens were measured, and the law of different replacement rate of recycled lightweight coarse aggregate influencing compressive strength of RLAC was analyzed, as the method of statistical regression adopted, the conversion relationships between of cube compressive strength and axial compressive strength of RLAC was obtained. It is shown that compressive strength of RLAC are lower than compressive strength of ordinary concrete; and that compressive strength of RLAC gradually decreases as replacement rate of recycled lightweight coarse aggregate increases; as well as, the conversion relationship between axial compressive strength and cube compressive strength of RLAC is different from ordinary concrete; based on the experimental data, conversion relationship formula between compressive strength indexes of RLAC was established. It is suggested that the replacement rate of recycled lightweight aggregate should be controlled within 25%.

  16. Comments on the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first-order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory with light Higgs bosons. (orig.)

  17. Quadrupole decay strength of the M1 scissors mode

    Science.gov (United States)

    Beck, T.; Beller, J.; Derya, V.; Gayer, U.; Isaak, J.; Löher, B.; Mertes, L.; Pietralla, N.; Ries, P.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Weller, H. R.; Werner, V.; Zweidinger, M.

    2015-10-01

    The E2/M1 multipole mixing ratio δ1→2 of the 1sc +→21+ transition of Gd was determined using results from high-statistics photon scattering. This provides a possibility for a new approach on the search of Jsc + members of the rotational band built on the scissors mode. By application of Alaga's rule, which is justifiable as 156Gd is a well-deformed rotor with good K quantum number, a transition strength of B (E 2 ;2sc +→01+)=0.034 (13 ) W.u. is estimated.

  18. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    Science.gov (United States)

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. High rate gamma spectroscopy system for activation analysis of short-lived isomeric transitions

    Energy Technology Data Exchange (ETDEWEB)

    Westphall, G P [Atominstitut der Oesterreichischen Hochschulen, Vienna

    1976-07-15

    A high rate spectroscopy system specially suited for measurement of short-lived isomeric transitions is described, which, as part of a fast activation analysis facility at the TRIGA Mark II reactor, provides for automatic recording and immediate evaluation of gamma spectra taken from nuclides activated at stationary or pulsed reactor power. The system consists of a commercial de-coupled Ge(Li)-detector of 70 cm/sup 3/ modified for recycling operation for input rates in excess of 500000 c/s /sup 60/Co, a time variant trapezoidal shaping section and a fast constant dead-time ADC coupled to a programmed multichannel analyzer. Novel circuits for efficient pile-up rejection and time variant base line restoration extend the concept of gated integration up to count rates of more than 200000 c/s /sup 60/Co. Time-sequenced recording of spectra is performed by a minicomputer operated as a front-end processor of a larger laboratory computer, where final data processing takes place. New concepts for very simple and cost-effective implementation of multichannel analyzers by means of general purpose small computers are described.

  20. Are rate of perceived exertion and feelings of pleasure/displeasure modified in elderly women undergoing 8 week of strength training of prescribe intensity?

    Science.gov (United States)

    Benites, Mariana L; Alves, Ragami C; Ferreira, Sandro S; Follador, Lucio; da Silva, Sergio G

    2016-01-01

    [Purpose] The aim of the present study was to verify the rate of perceived exertion and feelings of pleasure/displeasure in elderly women, who did normally perform physical exercises, following eight weeks of strength training in a constant routine. [Subjects and Methods] Eleven sedentary women were subjected to anthropometric assessment. The maximum load (100%) for each used in this study was determined by performing a test to determined the 1RM for each of them according to the protocol of Fatouros et al. and the Feeling Scale and RPE scale were explained to the women. After these initial procedures, the subjects followed a routine for strength training, performing three sets of repetitions at 70% of the one-repetition maximum for each exercise (bench press, leg extension, pulldown, leg curl) without modifying the exercises and their execution order. The frequency of training was three days per week. ANOVA was used to analyze the behavior of the dependent variable, and the post hoc tests were used to identify significant differences. [Results] Strength increased only in the fifth week. The rate of perceived exertion showed a reduction only in the fifth week in the leg extension, pulldown, leg curl. [Conclusion] The percentage of 70% the one-repetition maximum recommended to increase the strength gains and hypertrophy of skeletal muscle does not provide feelings of displeasure when performing proposed exercise. However, it may be possible to modulate this percentage to obtain more pleasant feelings over two months.

  1. Gastric emptying rate and small bowel transit time in patients with irritable bowel syndrome determined with 99mTc-labeled pellets and scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.H.; Gjorup, T.; Christensen, F.N.

    1986-12-01

    A new method employing 99mTc-labeled pellets for determination of the gastric emptying rate and small bowel transit time is described. The participants were six normal subjects and 16 patients with irritable bowel syndrome (eight with diarrhea and eight with obstipation as the primary complaint). The gastric emptying rate was the same in the three groups. The patients in the obstipation group had a significantly longer small bowel transit time than the normals (P less than 0.02) and the patients in the diarrhea group (P less than 0.01). There was no demonstrable difference between the small bowel transit time in the normals and in the patients in the diarrhea group.

  2. Gastric emptying rate and small bowel transit time in patients with irritable bowel syndrome determined with 99mTc-labeled pellets and scintigraphy

    International Nuclear Information System (INIS)

    Nielsen, O.H.; Gjorup, T.; Christensen, F.N.

    1986-01-01

    A new method employing 99mTc-labeled pellets for determination of the gastric emptying rate and small bowel transit time is described. The participants were six normal subjects and 16 patients with irritable bowel syndrome (eight with diarrhea and eight with obstipation as the primary complaint). The gastric emptying rate was the same in the three groups. The patients in the obstipation group had a significantly longer small bowel transit time than the normals (P less than 0.02) and the patients in the diarrhea group (P less than 0.01). There was no demonstrable difference between the small bowel transit time in the normals and in the patients in the diarrhea group

  3. Astrophysical relevance of γ transition energies

    International Nuclear Information System (INIS)

    Rauscher, Thomas

    2008-01-01

    The relevant γ energy range is explicitly identified where additional γ strength must be located to have an impact on astrophysically relevant reactions. It is shown that folding the energy dependences of the transmission coefficients and the level density leads to maximal contributions for γ energies of 2≤E γ ≤4 unless quantum selection rules allow isolated states to contribute. Under this condition, electric dipole transitions dominate. These findings allow us to more accurately judge the relevance of modifications of the γ strength for astrophysics

  4. Influence of transit water flow rate on its dispensation and on inflow through nozzles in pressure pipeline under action of external pressure

    Science.gov (United States)

    Cherniuk, V. V.; Riabenko, O. A.; Ivaniv, V. V.

    2017-12-01

    The influence of transit flow rate of water upon operative of the equipped with nozzles pressure pipeline is experimentally investigated. External pressure, which varies in the range of 1465-2295 mm, acted upon the pipeline. The angle β between vectors of velocities of the stream in the pipeline and jets which branch off through nozzles were given the value: 0° ; 45° ; 90° ; 135° ; 180°. The diameter of the pipeline was of D=20.18 mm, the diameter of nozzles d=6.01 mm. The distances between the nozzles were 180 mm, and the number of them 11. The value of the transit flow rate at input into the pipeline varied from 4.05 to 130.20 cm3 / s. The increase in flow rate of the transit flux Qtr caused increase in non-uniformity of distribution of operating heads and increase in flow rate of water along the pipeline over the segment of its dispensation. On the segment of collecting of water, inverse tendency was observed. The number of nozzles through which water became to be dispensed increased with the increase in Qtr.

  5. Enhancement of octupole strength in near spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, L.M. [Universidad Autonoma de Madrid, Dep. Fisica Teorica, Facultad de Ciencias, Madrid (Spain)

    2016-09-15

    The validity of the rotational formula used to compute E1 and E3 transition strengths in even-even nuclei is analyzed within the Generator Coordinate Method framework based on mean field wave functions. It turns out that those nuclei with spherical or near spherical shapes the E1 and E3 strengths computed with this formula are strongly underestimated and a sound evaluation of them requires angular-momentum projected wave functions. Results for several isotopic chains with proton number equal to or near magic numbers are analyzed and compared with experimental data. The use of angular-momentum projected wave functions greatly improves the agreement with the scarce experimental data. (orig.)

  6. H2 Control for the Continuous-Time Markovian Jump Linear Uncertain Systems with Partly Known Transition Rates and Input Quantization

    Directory of Open Access Journals (Sweden)

    Xin-Gang Zhao

    2013-01-01

    Full Text Available For a class of continuous-time Markovian jump linear uncertain systems with partly known transition rates and input quantization, the H2 state-feedback control design is considered. The elements in the transition rates matrix include completely known, boundary known, and completely unknown ones. First, an H2 cost index for Markovian jump linear uncertain systems is introduced; then by introducing a new matrix inequality condition, sufficient conditions are formulated in terms of linear matrix inequalities (LMIs for the H2 control of the Markovian jump linear uncertain systems. Less conservativeness is achieved than the result obtained with the existing technique. Finally, a numerical example is given to verify the validity of the theoretical results.

  7. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  8. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  9. Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements

    Science.gov (United States)

    Fivet, Vanessa; Quinet, P.; Bautista, M.

    2012-05-01

    Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189

  10. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires

    International Nuclear Information System (INIS)

    Magagnosc, D.J.; Kumar, G.; Schroers, J.; Felfer, P.; Cairney, J.M.; Gianola, D.S.

    2014-01-01

    Ion irradiation of thermoplastically molded Pt 57.5 Cu 14.3 Ni 5.7 P 22.5 metallic glass nanowires is used to study the relationship between glass structure and tensile behavior across a wide range of structural states. Starting with the as-molded state of the glass, ion fluence and irradiated volume fraction are systematically varied to rejuvenate the glass, and the resulting plastic behavior of the metallic glass nanowires probed by in situ mechanical testing in a scanning electron microscope. Whereas the as-molded nanowires exhibit high strength, brittle-like fracture and negligible inelastic deformation, ion-irradiated nanowires show tensile ductility and quasi-homogeneous plastic deformation. Signatures of changes to the glass structure owing to ion irradiation as obtained from electron diffraction are subtle, despite relatively large yield strength reductions of hundreds of megapascals relative to the as-molded condition. To reconcile changes in mechanical behavior with glass properties, we adapt previous models equating the released strain energy during shear banding to a transit through the glass transition temperature by incorporating the excess enthalpy associated with distinct structural states. Our model suggests that ion irradiation increases the fictive temperature of our glass by tens of degrees – the equivalent of many orders of magnitude change in cooling rate. We further show our analytical description of yield strength to quantitatively describe literature results showing a correlation between severe plastic deformation and hardness in a single glass system. Our results highlight not only the capacity for room temperature ductile plastic flow in nanoscaled metallic glasses, but also processing strategies capable of glass rejuvenation outside of the realm of traditional thermal treatments

  11. Plants Growth Rate in Evapotranspiration continuous system reactors as the 2nd Treatment at Anaerobic-evapotranspiration system with High Strength Ammonium in Leachate Influent

    Directory of Open Access Journals (Sweden)

    Badrus Zaman

    2014-05-01

    Full Text Available Ammonium is one of parameter which responsible to leachate toxicity. Preliminary research was shown that the Fimbristylis globulosa (water plant, Alocasia macrorrhiza (terrestrial plant and Eleusine indica (terrestrial grass were potential plants for used as object in evaporation reactor system with high strength ammonium  concentration in leachate treatment. This research was integrated of anaerobic system with evapotranspiration system with continuous influent using ammonium concentration in leachate was 2000 mg/l NH4-N. Plants growth rate was analyzed for 25 days operated. The result shown that average of thallus growth rate of Fimbristylis globulosa was 17,5 cm d-1. The average of leaf and thallus growth rate of Alocasia macrorrhiza was 18,1 cm d-1 and 3,2 cm d-1 respectively. The average of blade and thallus of Eleusine indica were same that was 4,7 cm d-1.This research conclude that integration system of anaerobic and evpotranspiration was be potential used for high strength ammonium in leachate treatment.

  12. Decline in measured glomerular filtration rate is associated with a decrease in endurance, strength, balance and fine motor skills.

    Science.gov (United States)

    Hellberg, Matthias; Höglund, Peter; Svensson, Philippa; Abdulahi, Huda; Clyne, Naomi

    2017-07-01

    Physical performance in chronic kidney disease affects morbidity and mortality. The aim was to find out which measures of physical performance are important in chronic kidney disease (CKD) and if there are associations with declining measured glomerular filtration rate (GFR). Endurance was assessed by 6 min walk test (6-MWT) and stair climbing, muscular endurance by 30 s sit to stand, heel rises and toe lifts, strength by quadriceps- and handgrip-strength, balance by functional reach and Berg's balance scale, and fine motor skills by Moberg's picking-up test. GFR was measured by Iohexol clearance. The study comprised 101 patients with CKD 3b-5 not started dialysis, 40 women and 61 men, with a mean age of 67 ± 13 (range: 22 - 87) years. All measures of physical performance were impaired. A decrease in GFR of 10 mL/min per 1.73 m 2 corresponded to a 35 metre shorter walking distance in the 6-MWT. Multivariable linear regression analysis showed significant relationships between decline in GFR and the 6-MWT (P = 0.04), isometric quadriceps strength left (P = 0.04), balance measured as functional reach (P = 0.02) and fine motor skills in the left hand as measured by Moberg's picking-up test (P = 0.01), respectively, after sex, age, comorbidity and the interaction between sex and age had been taken into account. Endurance, muscular endurance, strength, balance and fine motor skills were impaired in patients with CKD 3b-5. Walking capacity, isometric quadriceps strength, balance, and fine motor skills were associated with declining GFR. The left extremities were more susceptible to GFR, ageing and comorbidities and seem thus to be more sensitive. © 2016 Asian Pacific Society of Nephrology.

  13. A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate.

    Science.gov (United States)

    Xu, Kun; Tan, Ying; Chen, Qiang; An, Huiyong; Li, Wenbo; Dong, Lisong; Wang, Pixin

    2010-05-15

    Series of hydrophilic core-shell microgels with cross-linked poly(N-isopropylacrylamide) (PNIPAAm) as core and poly(vinyl amine) (PVAm) as shell are synthesized via surfactant-free emulsion polymerization. Then, the microgels are treated with a small amount of potassium persulfate (KPS) to generate free radicals on the amine nitrogens of PVAm, which subsequently initiate the graft copolymerization of acrylic acid (AA), acryloyloxyethyl trimethyl ammonium chloride (DAC), and acrylamide (AAm) onto microgels to prepare multi-responsive composite hydrogels. The composite hydrogels consist of cross-linked ungrafted polyampholyte chains as the first network and microgels with grafted polyampholyte chains as graft point and second network and show surprising mechanical strength and rapid response rate. The investigation shows the compress strength of composite hydrogels is up to 17-30 MPa, which is 60-100 times higher than that of the hydrogel matrix. The composite hydrogel shows reversible switch of transmittance when traveling the lowest critical temperature (LCST) of microgels. When the composite hydrogel swollen in pH 2.86 solution at ambient condition is immersed into the pH 7.00 solution at 45 °C, a rapid dynamic shrinking can be observed. And the character time (τ) of shrinking dynamic of composite hydrogel is 251.9 min, which is less than that of hydrogel matrix (τ=2273.7 min). Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Electron-impact collision strengths for excitation of He-like ions from the levels with n = 1 and 2 to all singly excited levels with higher n less than or equal to 5

    International Nuclear Information System (INIS)

    Sampson, D.H.; Goett, S.J.; Clark, R.E.H.

    1983-01-01

    Intermediate-coupling collision strengths were calculated for all transitions of the kind 1s2p/sup 2S + 1/P/sub J/ - 1sn'l'/sup 2S' + 1/L'/sub J'/ with n' = 3,4 and 5 and l' greater than or equal to 1 (p, d, f, g) for 20 He-like ions with nuclear charge number Z in the range 4 less than or equal to Z less than or equal to 74. The method used is a Coulomb-Born-Exchange method especially well suited for calculating results from any members of an isoelectronic sequence simultaneously. The calculations were made for nine impact-electron energies in threshold units epsilon = 1.0, 1.2, 1.5, 1.9, 2.5, 4.0, 6.0, 10.0, and 15.0. The results are given in the form of fits to a simple function of epsilon that is readily integrated over a Maxwellian to obtain collision rates. The parameters required in obtaining collision strengths for the simpler transitions from the 1s2p levels to the 1sn's levels the 3 less than or equal to n' less than or equal to 5 and for the transitions from the ground level and the 1s2s levels to all singly excited levels with higher n values less than or equal to 5 are given, as well. Results for transitions between energy terms and their jj coupling analogs are also included. In addition, calculated values for the transition energies and the electric-dipole radiative line strengths are given for all transitions. 21 references, 11 tables

  15. Strength, ductility, and ductile-brittle transition temperature for MFR candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.

    1988-01-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20 and 38%. The reduction in area ranged from 30 to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0-0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. (orig.)

  16. Collision strengths for the excitation of lithium- and boron-like ions by electron impact

    International Nuclear Information System (INIS)

    Goett, S.J.

    1983-01-01

    The theory of collision strengths of highly charged ions is presented in terms of the R-matrix formalism by utilizing time-dependent perturbation theory. This theory is then applied to the general case of an ion with three valence electrons. The theory is general enough to admit the possiblity of three equivalent electrons. The effects of configuration interaction and intermediate coupling are incorporated through the mixing coefficients calculated by diagonalizing the perturbation matrix. This matrix is formed by taking into account the electron-electron electrostatic interaction as well as all first order relativistic corrections. The dipole radiative line strengths are also calculated using these mix coefficients. The line strengths are needed for the Coulomb-Bethe approximation which estimates the contributions to the collision strengths from large values of the impact electron's orbital angular momentum. All the above quantities are calculated in both the LS and jj coupling schemes. This dual calculation provides useful information about the mixing of the states present, as well as serving as a valuable check on the development of the theory and the coding of the computer programs. An application is made to the calculation of transition energies, line strengths and collision strengths of transitions from all lower states with a configuration of 1s 2 2I to all upper states with a configuraiton of 1s2I/sub a/'2I/sub b/'

  17. Articular Cartilage Increases Transition Zone Regeneration in Bone-tendon Junction Healing

    Science.gov (United States)

    Qin, Ling; Lee, Kwong Man; Leung, Kwok Sui

    2008-01-01

    The fibrocartilage transition zone in the direct bone-tendon junction reduces stress concentration and protects the junction from failure. Unfortunately, bone-tendon junctions often heal without fibrocartilage transition zone regeneration. We hypothesized articular cartilage grafts could increase fibrocartilage transition zone regeneration. Using a goat partial patellectomy repair model, autologous articular cartilage was harvested from the excised distal third patella and interposed between the residual proximal two-thirds bone fragment and tendon during repair in 36 knees. We evaluated fibrocartilage transition zone regeneration, bone formation, and mechanical strength after repair at 6, 12, and 24 weeks and compared them with direct repair. Autologous articular cartilage interposition resulted in more fibrocartilage transition zone regeneration (69.10% ± 14.11% [mean ± standard deviation] versus 8.67% ± 7.01% at 24 weeks) than direct repair at all times. There was no difference in the amount of bone formation and mechanical strength achieved. Autologous articular cartilage interposition increases fibrocartilage transition zone regeneration in bone-tendon junction healing, but additional research is required to ascertain the mechanism of stimulation and to establish the clinical applicability. PMID:18987921

  18. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength...... are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...

  19. Transitions between compound states of spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons

  20. Exoplanet Transits of Stellar Active Regions

    Science.gov (United States)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano

    2018-01-01

    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  1. Extinction transition in stochastic population dynamics in a random, convective environment

    International Nuclear Information System (INIS)

    Juhász, Róbert

    2013-01-01

    Motivated by modeling the dynamics of a population living in a flowing medium where the environmental factors are random in space, we have studied an asymmetric variant of the one-dimensional contact process, where the quenched random reproduction rates are systematically greater in one direction than in the opposite one. The spatial disorder turns out to be a relevant perturbation but, according to results of Monte Carlo simulations, the behavior of the model at the extinction transition is different from the (infinite-randomness) critical behavior of the disordered symmetric contact process. Depending on the strength a of the asymmetry, the critical population drifts either with a finite velocity or with an asymptotically vanishing velocity as x(t) ∼ t μ(a) , where μ(a) < 1. Dynamical quantities are non-self-averaging at the extinction transition; the survival probability, for instance, shows multiscaling, i.e. it is characterized by a broad spectrum of effective exponents. For a sufficiently weak asymmetry, a Griffiths phase appears below the extinction transition, where the survival probability decays as a non-universal power of the time while, above the transition, another extended phase emerges, where the front of the population advances anomalously with a diffusion exponent continuously varying with the control parameter. (paper)

  2. Atomic structure calculation of energy levels and oscillator strengths in Ti ion, 2

    International Nuclear Information System (INIS)

    Ishii, Keishi

    1983-10-01

    Energy levels and oscillator strengths are calculated for 3s-3p and 3p-3d transition arrays in Ti X, isoelectronic to Al I. The energy levels are obtained by the Slater-Condon theory of atomic structure, including explicitly the strong configuration interactions. The results are presented both in numerical tables and in diagrams. In the tables, the observed data are included for comparison, where available. The calculated weighted oscillator strengths (gf-value) are also displayed in figures, where the weighted oscillator strengths are plotted as a function of wavelength. (author)

  3. Strength of low-carbon rotor steel

    International Nuclear Information System (INIS)

    Voropaev, V.I.; Filimonov, O.V.; Borisov, I.A.

    1988-01-01

    The results of studying the effect of chemical composition and thermal treatment regimes on the structural strength of steels of the 25KhN3MFA type are presented. It is shown that alloying with niobium from 0.01 to 0.08% steels with the increased nickel content (4.2-4.5%) contributes to the increase of structural strength and reduction of semibrittleness temperature. To obtain high values of strength and plastic properties cooling with the rate of 10 3 -10 5 K/hr is recommended

  4. Transgender community belongingness as a mediator between strength of transgender identity and well-being.

    Science.gov (United States)

    Barr, Sebastian M; Budge, Stephanie L; Adelson, Jill L

    2016-01-01

    This study examined transgender community belongingness as a mediator between strength of transgender identity and well-being. A total of 571 transgender adults (n = 209 transgender women, n = 217 transgender men, and n = 145 nonbinary-identified individuals) completed an online survey assessing transgender community belongingness, strength of transgender identity (operationalized as the extent to which a person self-categorizes their identity as transgender and the extent to which they believe their gender transition to be important to their self-definition), and well-being (using measures of self-esteem, satisfaction with life, and psychological well-being). Structural equation modeling was used to analyze the data. When controlling for participants' income, age, and stage of gender transition, transgender community belongingness fully mediated the relationship between strength of transgender identity and well-being. Strength of transgender identity was indirectly and positively related to well-being through community belongingness, but was not directly related to well-being. Results suggest that transgender community belongingness is an important construct in the mental health of transgender people. The strength of a person's transgender identity also appears to be a significant construct in transgender people's well-being via its relationship with transgender community belongingness. Implications of the findings are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated

  6. Generalized oscillator strength for the argon 3p6-3p5 4s transition: Correlation and exchange effects on the characteristic minimum

    International Nuclear Information System (INIS)

    Chen, Zhifan; Msezane, Alfred Z.; Amusia, M. Ya.

    1999-01-01

    We have investigated the generalized oscillator strength (GOS) for a transition of the type np→(n+1)s, where n is the principal quantum number of the outermost filled shell of the atomic ground state, using the random-phase approximation with exchange. We find that the influence of correlation and exchange effects on the position of the characteristic minimum in the GOS of Ar(n=3) is insignificant. Also, our first Born approximation predicts the position of the minimum accurately provided that accurate target wave functions are employed. Our results agree excellently with measurements and are expected to be applicable equally to the corresponding subshells of Ne(n=2), Kr(n=4), and Xe(n=5). (c) 1999 The American Physical Society

  7. Atmospheric cycles of nitrogen oxides and ammonia. [source strengths and destruction rates

    Science.gov (United States)

    Bottger, A.; Ehhalt, D. H.; Gravenhorst, G.

    1981-01-01

    The atmospheric cycles of nitrogenous trace compounds for the Northern and Southern Hemispheres are discussed. Source strengths and destruction rates for the nitrogen oxides: NO, NO2 and HNO3 -(NOX) and ammonia (NH3) are given as a function of latitude over continents and oceans. The global amounts of NOX-N and NH3-N produced annually in the period 1950 to 1975 (34 + 5 x one trillion g NOx-N/yr and 29 + or - 6 x one trillion g NH3-N/yr) are much less than previously assumed. Globally, natural and anthropogenic emissions are of similar magnitude. The NOx emission from anthropogenic sources is 1.5 times that from natural processes in the Northern Hemisphere, whereas in the Southern Hemisphere, it is a factor of 3 or 4 less. More than 80% of atmospheric ammonia seems to be derived from excrements of domestic animals, mostly by bulk deposition: 24 + or - 9 x one trillion g NO3 -N/yr and 21 + or - 9 x one trillion g NH4+-N/yr. Another fraction may be removed by absorption on vegetation and soils.

  8. STYLIZED ECONOMIC FACTS OF TRANSITION

    Directory of Open Access Journals (Sweden)

    NATASHA TRAJKOVA-NAJDOVSKA

    2017-12-01

    Full Text Available In the course of transition, former socialistic countries moved from planned to market economy. This journey typically started with sharp falls in economic activity in all transition countries, accompanied by deterioration of various social indicators. Hence, their main objective was the recovery of economic activity, i.e. increasing the economic growth rate, which in addition was supposed to enable catching up with the European developed economies. This growth movement is usually described by famous U-curve of transition. However, in spite of the efforts and reforms, all transition economies recorded various paces of recovery. This study discusses that difference, through various GDP indicators, - real GDP path, GDP growth rates path, the height of the GDP index achieved and the volatility of growth rates. Analysed in concert, these indicators suggest several other variations of the transition Ucurve, such as: the rapid-J group, the wide-U group and the L-curve group. Namely, almost three decades after the start of the transition, the differences persist, suggesting that some transition economies has not moved significantly towards catching up with the successful transition countries, or with the developed economies.

  9. Youth and administrator perspectives on transition in Kentucky's state agency schools.

    Science.gov (United States)

    Marshall, Amy; Powell, Norman; Pierce, Doris; Nolan, Ronnie; Fehringer, Elaine

    2012-01-01

    Students, a large percentage with disabilities, are at high risk for poor post-secondary outcomes in state agency education programs. This mixed-methods study describes the understandings of student transitions in state agency education programs from the perspectives of youth and administrators. Results indicated that: transition is more narrowly defined within alternative education programs; key strengths of transition practice are present in nontraditional schools; and the coordination barriers within this fluid inter-agency transition system are most apparent in students' frequent inter-setting transitions between nontraditional and home schools.

  10. Ginsburg-Landau equation around the superconductor-insulator transition

    International Nuclear Information System (INIS)

    Ng, T.K.

    1991-01-01

    Based on the scaling theory of localization, we construct a Ginsburg-Landau (GL) equation for superconductors in an arbitrary strength of disordered potential. Using this GL equation, we reexamine the criteria for the superconductor-insulator transition and find that the transition to a localized superconductor can happen on both sides of the (normal) metal-insulator transition, in contrast to a previous prediction by Ma and Lee [Phys. Rev. B 32, 5658 (1985)] that the transition can only be on the insulator side. Furthermore, by comparing our theory with a recent scaling theory of dirty bosons by Fisher et al. [Phys. Rev. Lett. 64, 587 (1990)], we conclude that nontrivial crossover behavior in transport properties may occur in the vicinity of the superconductor-insulator transition

  11. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    Science.gov (United States)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  12. Transition rates from schizotypal disorder to psychotic disorder for first-contact patients included in the OPUS trial. A randomized clinical trial of integrated treatment and standard treatment

    DEFF Research Database (Denmark)

    Nordentoft, Merete; Thorup, Anne; Petersen, Lone

    2006-01-01

    Only a few randomized clinical trials have tested the effect on transition rates of intervention programs for patients with sub-threshold psychosis-like symptoms.......Only a few randomized clinical trials have tested the effect on transition rates of intervention programs for patients with sub-threshold psychosis-like symptoms....

  13. Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2017-06-28

    The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.

  14. Bridging analytical approaches for low-carbon transitions

    Science.gov (United States)

    Geels, Frank W.; Berkhout, Frans; van Vuuren, Detlef P.

    2016-06-01

    Low-carbon transitions are long-term multi-faceted processes. Although integrated assessment models have many strengths for analysing such transitions, their mathematical representation requires a simplification of the causes, dynamics and scope of such societal transformations. We suggest that integrated assessment model-based analysis should be complemented with insights from socio-technical transition analysis and practice-based action research. We discuss the underlying assumptions, strengths and weaknesses of these three analytical approaches. We argue that full integration of these approaches is not feasible, because of foundational differences in philosophies of science and ontological assumptions. Instead, we suggest that bridging, based on sequential and interactive articulation of different approaches, may generate a more comprehensive and useful chain of assessments to support policy formation and action. We also show how these approaches address knowledge needs of different policymakers (international, national and local), relate to different dimensions of policy processes and speak to different policy-relevant criteria such as cost-effectiveness, socio-political feasibility, social acceptance and legitimacy, and flexibility. A more differentiated set of analytical approaches thus enables a more differentiated approach to climate policy making.

  15. Strength and strain rate sensitivity for hcp and fcc nanopolycrystal ...

    Indian Academy of Sciences (India)

    Abstract. While there is overwhelming evidence that strengthening from grain size refinement persists into the nanocrystalline grain size regime consistent with extrapolation of classical Hall–Petch (H–P) behaviour, there are indications of a transition to an inverse H–P dependence, i.e. grain boundary weakening behaviour,.

  16. Computational study of the signature of hydrogen-bond strength on the infrared spectra of a hydrogen-bonded complex dissolved in a polar liquid

    International Nuclear Information System (INIS)

    Hanna, Gabriel; Geva, Eitan

    2010-01-01

    The signature of hydrogen-bond strength on the one- and two-dimensional infrared spectra of the hydrogen-stretch in a hydrogen-bonded complex dissolved in a polar liquid was investigated via mixed quantum-classical molecular dynamics simulations. Non-Condon effects were found to intensify with increasing hydrogen-bond strength and to shift oscillator strength from the stable configurations that correspond to the ionic and covalent tautomers into unstable configurations that correspond to the transition-state between them. The transition-state peak is observed to blue shift and increase in intensity with increasing hydrogen-bond strength, and to dominate the spectra in the case of a strong hydrogen-bond. It is argued that the application of multidimensional infrared spectroscopy in the region of the transition-state peak can provide a uniquely direct probe of the molecular events underlying breaking and forming of hydrogen-bonds in the condensed phase.

  17. Effects of stair-climbing on balance, gait, strength, resting heart rate, and submaximal endurance in healthy seniors.

    Science.gov (United States)

    Donath, L; Faude, O; Roth, R; Zahner, L

    2014-04-01

    Stair-climbing serves as a feasible opportunity to remain physically active within everyday-life. Data on neuromuscular and cardiorespiratory performance after regular stair-climbing in seniors are scarce. Forty-eight seniors were stratified to a one- (taking every step, INT1) or two-step strategy (every second step, INT2) or a control group (CON). Thirty-nine seniors [females: n = 22, males: n = 17; age: 70.5 (SD 5.1) years; BMI: 25.8 (3.1) kg/m(2)] completed the 8-week intervention (three weekly sessions). Before and after the intervention, balance, gait, strength, and submaximal endurance (at different intensities) were assessed. Maximal strength and explosive power did not improve significantly (0.10 walking significantly decreased (-11/min; P beam balancing (4.5 cm width) increased in INT2 (P = 0.007) compared with CON. With more pronounced effects in INT2, stair-climbing significantly improved resting and exercise heart rates, perceived exertion, and dynamic balance performance in healthy seniors and may contribute to better overall fitness, reduced fall risk, and less perceived strain during daily life activities. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Regular-chaos transition of the energy spectrum and electromagnetic transition intensities in 44V nucleus using the framework of the nuclear shell model

    International Nuclear Information System (INIS)

    Hamoudi, A.K.; Abdul Majeed Al-Rahmani, A.

    2012-01-01

    The spectral fluctuations and the statistics of electromagnetic transition intensities and electromagnetic moments in 44 V nucleus are studied by the framework of the interacting shell model, using the FPD6 as a realistic effective interaction in the isospin formalism for 4 particles move in the fp-model space with a 40 Ca core. To look for a regular-chaos transition in 44 V nucleus, we perform shell model calculations using various interaction strengths β to the off-diagonal matrix elements of the FPD6. The nearest-neighbors level spacing distribution P(s) and the distribution of electromagnetic transition intensities [such as, B(M1) and B(E2) transitions] are found to have a regular dynamic at β=0, a chaotic dynamic at β⩾0.3 and an intermediate situation at 0 3 statistic we have found a regular dynamic at β=0, a chaotic dynamic at β⩾0.4 and an intermediate situation at 0<β<0.4. It is also found that the statistics of the squares of M1 and E2 moments, which are consistent with a Porter-Thomas distribution, have no dependence on the interaction strength β.

  19. Effect of UV irradiation on the shear bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane.

    Science.gov (United States)

    Sakamoto, Harumi; Hirohashi, Yohei; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao

    2008-01-01

    The objective of this study was to investigate the effect of UV irradiation on shear bond strength between a titanium (Ti) and a segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). To this end, the shear bond strength of Ti/SPU interface of Ti-SPU composite under varying conditions of ultraviolet ray (UV) irradiation was evaluated by a shear bond test. The glass transition temperatures of SPU with and without UV irradiation were also determined using differential scanning calorimetry. It was found that the shear bond strength of Ti/SPU interface increased with UV irradiation. However, excessive UV irradiation decreased the shear bond strength of Ti/SPU interface. Glass transition temperature was found to increase during 40-60 seconds of UV irradiation. In terms of durability after immersion in water at 37 degrees C for 30 days, shear bond strength was found to improve with UV irradiation. In conclusion, UV irradiation to a Ti-SPU composite was clearly one of the means to improve the shear bond strength of Ti/SPU interface.

  20. Investigation of Bond Strength in Centrifugal Lining of Babbitt on Cast Iron

    Science.gov (United States)

    Diouf, Papa; Jones, Alan

    2010-03-01

    The quality of the bond between Babbitt metal and a cast iron substrate was evaluated for centrifugal casting and static casting using the Chalmers bond strength method and scanning electron microscopy (SEM). The effect of three different centrifugal casting parameters, the speed of revolution, the pouring rate, and the cooling rate, was investigated. The bond strength and the microstructure at the bond interface were predominantly affected by the cooling rate, with a fast cooling rate resulting in better properties. The speed of revolution and the pouring rate only had a small effect on the bond strength, with faster revolution and faster pouring rate resulting in slightly better bonds.

  1. γ transitions from 30P and 32S nuclei resonance levels

    International Nuclear Information System (INIS)

    Kostin, V.Ya.; Kopanets, E.G.; Koval', A.A.

    1977-01-01

    The probability distributions of dipole and quadrupole electromagnetic transitions from resonance excitation-energy range from 6.2 to 8.3 MeV and from 9.2 to 12.0 MeV respectively, were obtained. An analysis of the distributions shows that isovector dipole electic and magnetic transitions are comparable in magnitude with transitions between bound states. Isoscalar dipole transitions are stronger by an order of magnitude than transitions between bound states. This may be attributed to the increase in isospin mixing in the resonance range of excitation of atomic nuclei. Quadrupole electrical transitions have strengths comparable with those of transitions between bound states. For magnetic quadrupole transitions, a strong increase in transition probabilities compared with transitions between bound states is noted. The isospin selection rules for γ transitions in self-conjugate nuclei are discussed

  2. Numerical modeling of dynamics of heart rate and arterial pressure during passive orthostatic test

    Science.gov (United States)

    Ishbulatov, Yu. M.; Kiselev, A. R.; Karavaev, A. S.

    2018-04-01

    A model of human cardiovascular system is proposed to describe the main heart rhythm, influence of autonomous regulation on frequency and strength of heart contractions and resistance of arterial vessels; process of formation of arterial pressure during systolic and diastolic phases; influence of respiration; synchronization between loops of autonomous regulation. The proposed model is used to simulate the dynamics of heart rate and arterial pressure during passive transition from supine to upright position. Results of mathematical modeling are compared to original experimental data.

  3. Levels and Transition Rates in {sup 199}Au

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G; Baecklin, A; Fogelberg, B

    1967-10-15

    The decay of {sup 199}Pt to {sup 199}Au (T{sub 1/2} = 30.8 min) has been investigated using a Ge(Li) detector and a double focusing beta spectrometer. 34 transitions were found and multipolarities were assigned for 11 of these, including a 55.15 keV M2 + (0.9 {+-} 0.5) % E3 isomeric transition. Using these data together with the results of {gamma}-{gamma} and {beta}-{gamma} coincidence measurements, a decay scheme containing 9 excited levels and 25 transitions was constructed and spin and parity assignments were made. Using the delayed coincidence technique half-lives were determined for 3 levels and upper limits were obtained for 5 additional levels. The following levels were found: 77.21 {+-} 0.03 keV (1/2{sup +}, 1.1 {+-} 0.1 ns ); 316.98 {+-} 0.10 (5/2{sup +}, < 55 ps); 323.57 {+-}0.09 keV ((1/2), 3/2{sup +}, 35 {+-}20 ps); 493.59 {+-}0.10 keV (7/2{sup +}, < 35 ps ) ; 542.82 {+-} 0.07 keV (5/2{sup +}, < 30 ps ) ; 548.65 {+-} 0.09 keV (11/2{sup -}); 734.44 {+-}0.11 keV (7/2{sup -}, 0.36 {+-} 0.04 ns); 791.47 {+-} 0.15 keV (3/2{sup +}, 5/2{sup +}, < 50 ps); and 967.98 {+-} 0.20 keV (3/2{sup (+)}, 5/2{sup (+)}, < 100 ps ). The decay properties of the lowest excited positive parity levels are discussed in terms of de-Shalit's core excitation model.

  4. Calculation of photonuclear process in the region of several tens MeV. Formulation of exact transition rate for high energy γ-ray

    International Nuclear Information System (INIS)

    Wada, Hiroaki; Harada, Hideo

    1999-01-01

    The electromagnetic field approximated by using long wave-length limit is not valid for heavy nuclear mass or high energy γ-ray transition. To examine the contribution of the electric multipole field that is neglected in long wave-length limit, we formulize the El transition rate for the strict electric multipole field and compare quantitatively this result with Weisskopf estimate. (author)

  5. Investigations on the tensile strength of high performance concrete incorporating silica fume

    International Nuclear Information System (INIS)

    Santanu Bhanja; Bratish Sengupta

    2005-01-01

    Though the literature is rich in reporting on silica fume concrete the technical data on tensile strength is quite limited. The present paper is directed towards developing a better understanding on the isolated contribution of silica fume on the tensile strengths of High Performance Concrete. Extensive experimentation was carried out over water-binder ratios ranging from 0.26 to 0.42 and silica fume binder ratios from 0.0 to 0.3. For all the mixes compressive, flexural and split tensile strengths were determined at 28 days. The results of the present investigation indicate that silica fume incorporation results in significant improvements in the tensile strengths of concrete. It is also observed that the optimum replacement percentage, which led to maximization of strength, is not a constant one but depends on the water- cementitious material ratio of the mix. Compared to split tensile strengths, flexural strengths have exhibited greater percentage gains in strength. Increase in split tensile strength beyond 15% silica fume replacement is almost insignificant whereas sizeable gains in flexural tensile strength have occurred even up to 25% replacements. For the present investigation transgranular failure of concrete was observed which indicate that silica fume incorporation results in significant improvements in the strength of both paste and transition zone. (authors)

  6. Collision-induced stimulated photon echo generated at transition 0-1 on broad spectral line conditions

    Science.gov (United States)

    Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.

    2018-04-01

    For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb  +  Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.

  7. Optimization of high-rate TN removal in a novel constructed wetland integrated with microelectrolysis system treating high-strength digestate supernatant.

    Science.gov (United States)

    Guo, Luchen; He, Keli; Wu, Shubiao; Sun, Hao; Wang, Yanfei; Huang, Xu; Dong, Renjie

    2016-08-01

    The potential of high-rate TN removal in three aerated horizontal subsurface-flow constructed wetlands to treat high-strength anaerobic digestate supernatant was evaluated. Different strategies of intermittent aeration and effluent recirculation were applied to compare their effect on nitrogen depuration performance. Additional glucose supply and iron-activated carbon based post-treatment systems were established and examined, respectively, to further remove nitrate that accumulated in the effluents from aerated wetlands. The results showed that intermittent aeration (1 h on:1 h off) significantly improved nitrification with ammonium removal efficiency of 90% (18.1 g/(m(2)·d)), but limited TN removal efficiency (53%). Even though effluent recirculation (a ratio of 1:1) increased TN removal from 53% to 71%, the effluent nitrate concentration was still high. Additional glucose was used as a post-treatment option and further increased the TN removal to 82%; however, this implementation caused additional organic pollution. Furthermore, the iron-activated carbon system stimulated with a microelectrolysis process achieved greater than 85% effluent nitrate removal and resulted in 86% TN removal. Considering the high TN removal rate, aerated constructed wetlands integrated with a microelectrolysis-driven system show great potential for treating high-strength digestate supernatant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Selected properties of nuclei at the magic shell closures from the studies of E1, M1 and E2 transition rates

    International Nuclear Information System (INIS)

    Mach, H.; Baluyut, A.-M.; Smith, D.; Ruchowska, E.; Koester, U.; Fraile, L. M.; Penttilae, H.; Aeystoe, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Karvonen, P.; Kessler, T.; Moore, I. D.; Rahaman, S.; Rissanen, J.; Ronkainen, J.; Ronkanen, P.; Saastamoinen, A.

    2009-01-01

    Using the Advanced Time-Delayed method we have studied transition rates in several neutron-rich nuclei at the magic shell closures. These include the heavy Co and Fe nuclei just below the Z = 28 shell closure at the point of transition from spherical to collective structures. Of particular interest is 63 Fe located exactly at the point of transition at N = 37. A substantial increase in the information on this nucleus was obtained from a brief fast timing study conducted at ISOLDE. The new results indicate that 63 Fe seems to depart from a simple shell model structure observed for heavier N = 37 isotones of 65 Ni and 67 Zn.Another region of interest are the heavy Cd and Sn nuclei at N = 72, 74 and the properties of negative parity quasi-particle excitations. These experiments, performed at the IGISOL separator at Jyvaeskylae, revealed interesting properties of the E2 rates in the sequence of E2 transitions connecting the 10 + , 8 + , 6 + , 4 + , 2 + and 0 + members of the multiplet of levels in 122 Sn due to neutrons in the h 11/2 orbit.

  9. Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment

    Science.gov (United States)

    Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.

    2016-02-01

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  10. Dynamics of a Landau–Zener transitions in a two-level system driven by a dissipative environment

    Energy Technology Data Exchange (ETDEWEB)

    Ateuafack, M.E., E-mail: esouamath@yahoo.fr [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon); Diffo, J.T., E-mail: diffojaures@yahoo.com [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon); Department of Physics, Higher Teachers' Training College, The University of Maroua, PO Box 55 Maroua (Cameroon); Fai, L.C., E-mail: corneliusfai@yahoo.fr [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon)

    2016-02-15

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  11. Generalized oscillator strengths for the valence-shell excitations of argon

    International Nuclear Information System (INIS)

    Zhu Linfan; Cheng Huadong; Yuan Zhensheng; Liu Xiaojing; Sun Jianmin; Xu Kezun

    2006-01-01

    The generalized oscillator strengths for the valence-shell excitations to 3p 5 (4s,4s ' ) and 3p 5 (4p,4p ' ) of argon were measured by an angle-resolved fast-electron energy-loss spectrometer at an incident electron energy of 2500 eV. The transition multipolarities for these excitations were elucidated with the help of the calculated intermediate coupling coefficients using the COWAN code. The generalized oscillator strength profiles for the electric dipole excitations to 3p 5 (4s,4s ' ), the electric quadrupole and monopole excitations to 3p 5 (4p,4p ' ) were analyzed and their positions of the extrema were determined. Furthermore, the generalized oscillator strength of the electric quadrupole excitation in 3p→4p was determined and its profile is in general agreement with the theoretical calculations. However, the generalized oscillator strength profile of the electric monopole excitation in 3p→4p is different from the theoretical calculations

  12. Condensation of Counterions Gives Rise to Contraction Transitions in a One-Dimensional Polyelectrolyte Gel

    Directory of Open Access Journals (Sweden)

    Gerald S. Manning

    2018-04-01

    Full Text Available The equilibrium volume of a polyelectrolyte gel results from a balance between the tendency to swell caused by outbound polymer/counterion diffusion along with Coulomb interactions on the one hand; and, on the other, the elastic resilience of the cross-linked polymer network. Direct Coulomb forces contribute both to non-ideality of the equilibrated Donnan osmotic pressure, but also to stretching of the network. To isolate the effect of polyelectrolyte expansion, we have analyzed a “one-dimensional” version of a gel, a linear chain of charged beads connected by Hooke’s law springs. As in the range of weak Coulomb strengths previously studied, the springs are significantly stretched by the repulsive interactions among the beads even when the Coulomb strength is strong enough to cause condensation of counterions. There is a quasi-abrupt transition from a stretched state to a partially collapsed state in a transition range between weak and strong Coulomb strengths. Fluctuations between stretched and contracted conformations occur within the transition range. As the solvent quality decreases past the transition range, a progressive collapse can result if the condensed counterions strengthen the spring constant.

  13. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  14. Exploring and Leveraging Chinese International Students' Strengths for Success

    Science.gov (United States)

    He, Ye; Hutson, Bryant

    2018-01-01

    This study used an Appreciative Education framework to explore the strengths of Chinese international students and to identify areas where support is needed during their transition to U.S. higher education settings. Using a convergent mixed methods design with data collected from surveys, interviews and focus groups, the complex nature of the…

  15. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    Energy Technology Data Exchange (ETDEWEB)

    Volotka, A.V.

    2006-07-01

    Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be

  16. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    International Nuclear Information System (INIS)

    Volotka, A.V.

    2006-01-01

    Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be

  17. The Reliability and Validity of the English and Spanish Strengths and Weaknesses of ADHD and Normal Behavior Rating Scales in a Preschool Sample: Continuum Measures of Hyperactivity and Inattention

    Science.gov (United States)

    Lakes, Kimberley D.; Swanson, James M.; Riggs, Matt

    2012-01-01

    Objective: To evaluate the reliability and validity of the English and Spanish versions of the Strengths and Weaknesses of ADHD-symptom and Normal-behavior (SWAN) rating scale. Method: Parents of preschoolers completed both a SWAN and the well-established Strengths and Difficulties Questionnaire (SDQ) on two separate occasions over a span of 3…

  18. Micromechanical analysis of polyacrylamide-modified concrete for improving strengths

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zengzhi [School of Materials Science and Engineering, Chang' an University, Xi' an 710064 (China)], E-mail: zz-sun@126.com; Xu Qinwu [Pavement research, Transtec Group Inc., Austin 78731 (United States)], E-mail: qinwu_xu@yahoo.com

    2008-08-25

    This paper studies how polyacrylamide (PAM) alters the physicochemical and mechanical properties of concrete. The microstructure of PAM-modified concrete and the physicochemical reaction between PAM and concrete were studied through scanning electron microscope (SEM), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and infrared spectrum analysis. Meanwhile, the workability and strengths of cement paste and concrete were tested. PAM's modification mechanism was also discussed. Results indicate that PAM reacts with the Ca{sup 2+} and Al{sup 3+} cations produced by concrete hydration to form the ionic compounds and reduce the crystallization of Ca(OH){sub 2}, acting as a flexible filler and reinforcement in the porosity of concrete and, therefore, improving concrete's engineering properties. PAM also significantly alters the microstructure at the aggregate-cement interfacial transition zone. Mechanical testing results indicate that the fluidity of cement paste decreases initially, then increases, and decreases again with increasing PAM content. PAM can effectively improve the flexural strength, bonding strength, dynamic impact resistance, and fatigue life of concrete, though it reduces the compressive strength to some extent.

  19. Micromechanical analysis of polyacrylamide-modified concrete for improving strengths

    International Nuclear Information System (INIS)

    Sun Zengzhi; Xu Qinwu

    2008-01-01

    This paper studies how polyacrylamide (PAM) alters the physicochemical and mechanical properties of concrete. The microstructure of PAM-modified concrete and the physicochemical reaction between PAM and concrete were studied through scanning electron microscope (SEM), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and infrared spectrum analysis. Meanwhile, the workability and strengths of cement paste and concrete were tested. PAM's modification mechanism was also discussed. Results indicate that PAM reacts with the Ca 2+ and Al 3+ cations produced by concrete hydration to form the ionic compounds and reduce the crystallization of Ca(OH) 2 , acting as a flexible filler and reinforcement in the porosity of concrete and, therefore, improving concrete's engineering properties. PAM also significantly alters the microstructure at the aggregate-cement interfacial transition zone. Mechanical testing results indicate that the fluidity of cement paste decreases initially, then increases, and decreases again with increasing PAM content. PAM can effectively improve the flexural strength, bonding strength, dynamic impact resistance, and fatigue life of concrete, though it reduces the compressive strength to some extent

  20. Effect of microstructure on the impact toughness of high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, I.

    2014-07-01

    One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design. (Author)

  1. Rates of E1, E2, M1, and M2 transitions in Ni II

    Science.gov (United States)

    Cassidy, C. M.; Hibbert, A.; Ramsbottom, C. A.

    2016-03-01

    Aims: We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation. Methods: The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation. Results: Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive. Conclusions: We believe that the present transition data are the best currently available. Full Table 4 and Tables 5-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A107

  2. Safety of strength training in premenopausal women: musculoskeletal injuries from a two-year randomized trial.

    Science.gov (United States)

    Warren, Meghan; Schmitz, Kathryn H

    2009-01-01

    The health benefits of strength training must be weighed against risks, including injuries. A prior study observed 4.2 injuries that limited usual activities for a day per 1000 strength training sessions among men and women. The analysis herein explores the incidence rates of musculoskeletal injuries from strength training in women. Randomized controlled trial. SETTING; Free-living community. A total of 163 injury-free, overweight, sedentary, premenopausal women aged 25 to 44 years. Two years of strength training (n = 81) or standard care (n = 82). The intervention followed published guidelines (U.S. Department of Health and Human Services) with hypothesized injury prevention strategies. An injury survey was administered at years 1 and 2. Injury was defined as physical activity or strength training associated injuries that limited daily activities for 1 week or more. Denominators for rate calculation were accelerometer-measured physical activity and strength training attendance (strength training only). The between-group probability of injuries was assessed using generalized estimating equations. Injury incidence rates were higher in strength training compared with standard care. In strength training, the injury rates were 3.6 per 1000 strength training sessions (95% confidence interval: 2.5-4.8 per 1000) for physical activity-related injuries, and 2.6 per 1000 (95% confidence interval: 1.5-3.6 per 1000) for strength training-related injuries. Injury rates varied by definition and denominator. Strength training had lower injury rates than previously reported, providing preliminary support for the prevention strategies. The finding of strength training injuries underscores the need for balancing the benefits against the potential risks of this exercise modality.

  3. NUSTART: A PC code for NUclear STructure And Radiative Transition analysis and supplementation

    International Nuclear Information System (INIS)

    Larsen, G.L.; Gardner, D.G.; Gardner, M.A.

    1990-10-01

    NUSTART is a computer program for the IBM PC/At. It is designed for use with the nuclear reaction cross-section code STAPLUS, which is a STAPRE-based CRAY computer code that is being developed at Lawrence Livermore National Laboratory. The NUSTART code was developed to handle large sets of discrete nuclear levels and the multipole transitions among these levels; it operates in three modes. The Data File Error Analysis mode analyzes an existing STAPLUS input file containing the levels and their multipole transition branches for a number of physics and/or typographical errors. The Interactive Data File Generation mode allows the user to create input files of discrete levels and their branching fractions in the format required by STAPLUS, even though the user enters the information in the (different) format used by many people in the nuclear structure field. In the Branching Fractions Calculations mode, the discrete nuclear level set is read, and the multipole transitions among the levels are computed under one of two possible assumptions: (1) the levels have no collective character, or (2) the levels are all rotational band heads. Only E1, M1, and E2 transitions are considered, and the respective strength functions may be constants or, in the case of E1 transitions, the strength function may be energy dependent. The first option is used for nuclei closed shells; the bandhead option may be used to vary the E1, M1, and E2 strengths for interband transitions. K-quantum number selection rules may be invoked if desired. 19 refs

  4. Fatigue properties for the fracture strength of columnar accessory minerals embedded within metamorphic tectonites: implications for stress magnitude in continental crust at the depth of the brittle-plastic transition zone

    Science.gov (United States)

    Kimura, N.; Iwashita, N.; Masuda, T.

    2009-04-01

    1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0

  5. Transitions to Synchrony in Coupled Bursting Neurons

    Science.gov (United States)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  6. Transitions to synchrony in coupled bursting neurons

    International Nuclear Information System (INIS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony

  7. Near-infrared intersubband transitions in InGaAs-AlAs-InAlAs double quantum wells

    International Nuclear Information System (INIS)

    Semtsiv, M.P.; Ziegler, M.; Masselink, W.T.; Georgiev, N.; Dekorsy, T.; Helm, M.

    2005-01-01

    Intersubband optical transitions at short wavelengths in strain-compensated In 0.70 Ga 0.30 As--AlAs double quantum wells are investigated by means of mid-infrared absorption. Trade-offs between achieving a high transition energy and a large oscillator strength of the two highest-energy intersubband transitions using our strain-compensation approach are analyzed as a function of the widths of the two wells. Two design strategies leading to relatively strong intersubband optical transitions at 800 meV, 1.55 μm, are described and the corresponding structures grown using gas-source molecular-beam epitaxy on (001)InP are investigated. The strongest intersubband transitions obtained experimentally are generally between 300 and 600 meV, 2-4 μm. Significant oscillator strength, however, also extends out to 800 meV, 1.55 μm

  8. Interference in the resonance fluorescence of two incoherently coupled transitions

    International Nuclear Information System (INIS)

    Kiffner, Martin; Evers, Joerg; Keitel, Christoph H.

    2006-01-01

    The fluorescence light emitted by a four-level system in J=1/2 to J=1/2 configuration driven by a monochromatic laser field and in an external magnetic field is studied. We show that the spectrum of resonance fluorescence emitted on the π transitions shows a signature of spontaneously generated interference effects. The degree of interference in the fluorescence spectrum can be controlled by means of the external magnetic field, provided that the Lande g factors of the excited and the ground state doublet are different. For a suitably chosen magnetic field strength, the relative weight of the Rayleigh line can be completely suppressed, even for low intensities of the coherent driving field. The incoherent fluorescence spectrum emitted on the π transitions exhibits a very narrow peak whose width and weight depend on the magnetic field strength. We demonstrate that the spectrum of resonance fluorescence emitted on the σ transitions shows an indirect signature of interference. A measurement of the relative peak heights in the spectrum from the σ transitions allows us to determine the branching ratio of the spontaneous decay of each excited state into the σ channel

  9. Known for My Strengths: Positive Traits of Transition-Age Youth With Intellectual Disability and/or Autism

    Science.gov (United States)

    Carter, Erik W.; Boehm, Thomas L.; Biggs, Elizabeth E.; Annandale, Naomi H.; Taylor, Courtney E.; Loock, Aimee K.; Liu, Rosemary Y.

    2015-01-01

    Can young people with intellectual and developmental disabilities be known for their strengths? This mixed-method study explored the strengths of 427 youth and young adults with intellectual disability and/or autism (ages 13-21) from the vantage point of their parents. Using the Assessment Scale for Positive Character Traits-Developmental…

  10. Work and family transitions and the self-rated health of young women in South Africa.

    Science.gov (United States)

    Bennett, Rachel; Waterhouse, Philippa

    2018-04-01

    Understanding the transition to adulthood has important implications for supporting young adults and understanding the roots of diversity in wellbeing later in life. In South Africa, the end of Apartheid means today's youth are experiencing their transition to adulthood in a changed social and political context which offers opportunities compared to the past but also threats. This paper presents the first national level analysis of the patterning of key transitions (completion of education, entry into the labour force, motherhood and marriage or cohabitation), and the association between the different pathways and health amongst young women. With the use of longitudinal data from the South African National Income Dynamics Study (2008-2015), this paper employs sequence analysis to identify common pathways to adulthood amongst women aged 15-17 years at baseline (n = 429) and logistic regression modelling to examine the association between these pathways and self-rated health. The sequence analysis identified five pathways: 1. 'Non-activity commonly followed by motherhood', 2. 'Pathway from school, motherhood then work', 3. 'Motherhood combined with schooling', 4. 'Motherhood after schooling', and 5. 'Schooling to non-activity'. After controlling for baseline socio-economic and demographic characteristics and health, the regression results show young women who followed pathways characterised by early motherhood and economic inactivity (1, 3 and 4) had poorer self-rated health compared to women whose pathways were characterised by combining motherhood and economic activity (2) and young women who were yet to become economically active or mothers (5). Therefore, policies should seek to prevent adolescent childbearing, support young mothers to continue their educational careers and enable mothers in work and seeking work to balance their work and care responsibilities. Further, the findings highlight the value of taking a holistic approach to health and provide

  11. Rural Vocational and Transition Assessment Practices for Students with Intellectual Disabilities: What Do Educators Really Know?

    Science.gov (United States)

    Brendle, Janna; Tucker, Kathryn J.; Lock, Robin H.

    2018-01-01

    Transition planning requires quality vocational and transition assessment tailored to the student's needs, strengths, preferences and interests. Limited research is currently available that addresses assessment types and use of results that rural practitioners utilize to aid in transition planning for students with intellectual disabilities (ID).…

  12. Infrared Preheating to Enhance Interlayer Strength of Components Printed on the Big Area Additive Manufacturing (BAAM) System

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, Vidya [ORNL; Ajinjeru, Christine [ORNL; Duty, Chad E [ORNL; Nycz, Andrzej [ORNL; Post, Brian K [ORNL; Lindahl, John M [ORNL; Kunc, Vlastimil [ORNL

    2017-01-01

    The Big Area Additive Manufacturing (BAAM) system has the capacity to print structures on the order of several meters at a rate exceeding 50 kg/h, thereby having the potential to significantly impact the production of components in automotive, aerospace and energy sectors. However, a primary issue that limits the functional use of such parts is mechanical anisotropy. The strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This is largely due to poor bonding between the printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. This work explores the use of infrared heating to increase the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. The material used in this study was acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber by weight. Significant improvements in z-strength were observed for the parts whose surface temperature was increased from below Tg to close to or above Tg using infrared heating. Parameters such as print speed, nozzle diameter and extrusion temperature were also found to impact the heat input required to enhance interlayer adhesion without significantly degrading the polymer and compromising on surface finish.

  13. The astrophysical r-process and its dependence on properties of nuclei far from stability beta strength functions and neutron capture rates

    CERN Document Server

    Klapdor-Kleingrothaus, H V; Metzinger, J; Oda, T; Thielemann, F K

    1981-01-01

    It is shown that the astrophysical r-process and the question of its site are very sensitive to 'standard' nuclear physics parameters like the beta decay properties and neutron capture rates. Since for these quantities in almost all r-process calculations up to now, and also in all estimates of the production rates of chronometric pairs, only very rough assumptions have been made, it is attempted to present procedures which put the calculation of these quantities for nuclei far from stability on a reliable physical basis. This is done by a microscopic description of the beta strength function and by using a statistical model based on a 'next to first principles' optical potential including effects of deformation for the neutron capture rates. The beta -decay rates for approximately 6000 nuclei between the beta -stability line and the neutron drip line are calculated. The heavy element synthesis by explosive He burning then is calculated using these beta -rates and using realistic star models treating the supe...

  14. Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows

    Science.gov (United States)

    Şengül, Taylan; Wang, Shouhong

    2018-02-01

    The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple

  15. Fracture strength of aluminium alloys under rapid loading conditions

    International Nuclear Information System (INIS)

    Joshi, K.D.; Rav, Amit S.; Sur, Amit; Kaushik, T.C.; Gupta, Satish C.

    2016-04-01

    Spall fracture strength and dynamic yield strength of aluminium alloys have been measured at high strain rates generated in plate impact experiments carried out at different impact velocities ranging from 174 m/s to 560 m/s using single stage gas gun facility. In each experiment, the free surface velocity history of the sample plate of aluminium alloy has been derived from time resolved Doppler shift measured employing indigenously developed velocity interferometer system for any reflector (VISAR). The free surface velocity history so determined has been used to evaluate the spall fracture strength and dynamic yield strength of the target material. The two kinds of alloys of aluminium namely Al2014-T4 and Al2024-T4 have been investigated in these experiments. In Al2014-T4 target plates, the spall strength determined from free surface velocity history recorded for impact velocities of 179 m/s, 307 m/s, 398 m/s and 495m/s is 0.90 GPa, 0.96 GPa, 1.0 GPa and 1.1 GPa, respectively. The average strain rates just ahead of spall pulse have been found to vary from ∼ 1.1×10 4 /s to 2.4×10 4 /s. The dynamic yield strength derived from the measured Hugoniot elastic limit ranges from 0.36 GPa to 0.40 GPa. The spall strength for Al2024-T4 samples has been determined to be 1.11 GPa, 1.18 GPa and 1.42 GPa, at impact velocities of 174 m/s, 377 m/s and 560 m/s, respectively. The corresponding average strain rates range from 1.9×104/s to 2.5×104/s. The dynamic yield strength of Al2024-T4 at these impact velocities has been found to vary from 0.37 GPa to 0.43 GPa. The measured spall strengths in all these experiments are higher than the quasi-static value of 0.511 GPa for Al2014-T4 and 0.470 GPa for Al2024. Similarly, the dynamic yield strengths are also larger than the quasi-static value of 0.355 GPa for Al2014-T4 and 0.360 GPa for Al2024-T4. These experimental studies suggest that at high strain rates, both the alloys of aluminium offer higher resistance against the tensile

  16. Loschmidt echo for local perturbations: non-monotonic cross-over from the Fermi-golden-rule to the escape-rate regime

    International Nuclear Information System (INIS)

    Goussev, Arseni; Waltner, Daniel; Richter, Klaus; Jalabert, Rodolfo A

    2008-01-01

    We address the sensitivity of quantum mechanical time evolution by considering the time decay of the Loschmidt echo (LE) (or fidelity) for local perturbations of the Hamiltonian. Within a semiclassical approach, we derive analytical expressions for the LE decay for chaotic systems for the whole range from weak to strong local perturbations and identify different decay regimes which complement those known for the case of global perturbations. For weak perturbations, a Fermi-golden-rule (FGR)-type behavior is recovered. For strong perturbations, the escape-rate regime is reached, where the LE decays exponentially with a rate independent of the perturbation strength. The transition between the FGR regime and the escape-rate regime is non-monotonic, i.e. the rate of the exponential time-decay of the LE oscillates as a function of the perturbation strength. We further perform extensive quantum mechanical calculations of the LE based on numerical wave packet evolution, which strongly support our semiclassical theory. Finally, we discuss in some detail possible experimental realizations for observing the predicted behavior of the LE

  17. Electron impact excitation collision strengths for neon-like Ni XIX ...

    Indian Academy of Sciences (India)

    Abstract. In a recent paper [Pramana – J. Phys. 64, 129 (2005)] results have been presented for electron impact excitation collision strengths for transitions among the fine- structure levels of the 2s22p6 and 2s22p53s configurations of Ni XIX. In this paper we demonstrate through an independent calculation with the ...

  18. Electron impact excitation collision strengths for neon-like Ni XIX ...

    Indian Academy of Sciences (India)

    In a recent paper [Pramana - J. Phys. 64, 129 (2005)] results have been presented for electron impact excitation collision strengths for transitions among the fine-structure levels of the 2s22p6 and 2s22p53s configurations of Ni XIX. In this paper we demonstrate through an independent calculation with the relativistic -matrix ...

  19. A high rate gamma spectroscopy system for activation analysis of short lived isomeric transitions

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, G P [Atominstitut, Vienna (Austria)

    1976-07-01

    A high rate spectroscopy system specially suited for measurement of short-lived isomeric transitions is described, which, as part of a fast activation analysis facility at the TRIGA Mark II reactor, provides for automatic recording and immediate evaluation of gamma spectra taken from nuclides activated at stationary or pulsed reactor power. The system consists of a commercial DC-coupled Ge(Li)-detector of 70 cm{sup 3} modified for recycling operation for input rates in excess of 500,000 c/s Co-60, a time variant trapezoidal shaping section and a fast constant dead-time ADC coupled to a programmed multi-channel analyzer. Novel circuits for efficient pile-up rejection and time variant base line restoration extend the concept of gated integration up to count rates of more than 300,000 c/s Co-60. Time-sequenced recording of spectra is performed by a mini computer operated as a front-end processor of a larger laboratory computer, where final data processing takes place. New concepts for very simple and cost-effective implementation of multi-channel analyzers by means of general purpose small computers are described. (author)

  20. Shell model calculations for levels and transition rates in 204Pb and 206Pb

    International Nuclear Information System (INIS)

    Wang, D.; McEllistrem, M.T.

    1990-01-01

    Level energies and decay rates of both negative and positive parity levels of 206,204 Pb have been calculated through mixed-configuration shell model calculations using the modified surface delta interaction (MSDI), the Schiffer-True central interaction, and another two-body interaction. These calculations were all carried out with a full six-orbit neutron hole space. The predicted low-lying levels with the MSDI are in excellent agreement with experiments, accounting for the energies, spins, and parities of essentially all levels below 3 MeV excitation energy except known particle-hole collective excitations in both nuclei. Almost all calculated E2 and M1 transition rates are consistent with measured branching ratios for γ-ray decay of excited levels. The comparison of the observed and calculated levels demonstrates the important role played by the neutron-hole i 13/2 configuration in the levels of 204 Pb and 206 Pb, and interprets an apparent discrepancy over the character and energy spacings of 0 + levels in 204 Pb

  1. Oscillator strengths for highly ionized atomic systems. Final report, May 1, 1977-December 31, 1979

    International Nuclear Information System (INIS)

    Fischer, C.F.

    1979-12-01

    Oscillator strengths (or f-values) for resonance transitions in highly ionized atoms have assumed importance in fusion plasma research. Beam-foil spectroscopy has been able to deduce some of these values but present experimental limitations restrict its applicability. A theoretical study of trends along an isoelectronic sequence has provided an alternative approach. The Multi-configuration Hartree-Fock method (MCHF) is a general theoretical method for determining wavefunctions for atomic states from which oscillator strengths can be computed. A first-order theory has been shown to yield reliable f-values provided the ionization energy is predicted with reasonable accuracy and the transition matrix element is not sensitive to cancellation effects. General computer programs have been developed for this method and extended to include the dominant relativistic effects

  2. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

    Science.gov (United States)

    Hussein, M.

    2018-06-01

    The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.

  3. A Peer-Led High School Transition Program Increases Graduation Rates Among Latino Males.

    Science.gov (United States)

    Johnson, Valerie L; Simon, Patricia; Mun, Eun-Young

    2014-01-01

    The present study investigated the impact of a manualized high school transition program, the Peer Group Connection (PGC) program, on the graduation rate at a low-income, Mid-Atlantic high school. The program utilized twelfth grade student peer leaders to create a supportive environment for incoming ninth grade students. Results of a randomized control trial demonstrated that male students who participated in the program during ninth grade were significantly more likely to graduate from high school within four years than male students in the control group (81% versus 63%). Findings suggest that peers can be effective in delivering a school-based, social emotional learning intervention and that it is possible to intervene in the ninth grade to influence the probability of high school graduation.

  4. The TIGRESS Integrated Plunger ancillary systems for electromagnetic transition rate studies at TRIUMF

    International Nuclear Information System (INIS)

    Voss, P.; Henderson, R.; Andreoiu, C.; Ashley, R.; Austin, R.A.E.; Ball, G.C.; Bender, P.C.; Bey, A.; Cheeseman, A.; Chester, A.; Cross, D.S.; Drake, T.E.; Garnsworthy, A.B.; Hackman, G.; Holland, R.; Ketelhut, S.; Kowalski, P.; Krücken, R.; Laffoley, A.T.; Leach, K.G.

    2014-01-01

    The TIGRESS Integrated Plunger device is a new experimental tool for nuclear structure investigations via gamma-ray spectroscopy with post-accelerated beams from the ISAC-II facility at TRIUMF. Several ancillary detection systems integral to the device's capabilities for charged-particle tagging and light-ion identification following a variety of nuclear reaction mechanisms have been constructed and characterized. In particular, a silicon PIN diode wall, an annular silicon segmented detector, and a CsI(Tl) scintillator wall have together enabled particle-gamma correlations for reaction channel selectivity and precision kinematic reconstruction in recent measurements. We highlight the construction, characteristics, and implementation of the device's ancillary detectors as they enable a rich set of electromagnetic transition rate measurements via Doppler-shift lifetime techniques and low-energy Coulomb excitation

  5. Generalized oscillator strength for the argon 3p{sup 6}-3p{sup 5} 4s transition: Correlation and exchange effects on the characteristic minimum

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhifan [Center for Theoretical Studies of Physical Systems, and Department of Physics, Clark Atlanta University, Atlanta, Georgia 30314 (United States); Msezane, Alfred Z. [Center for Theoretical Studies of Physical Systems, and Department of Physics, Clark Atlanta University, Atlanta, Georgia 30314 (United States); Amusia, M. Ya. [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, (Israel)

    1999-12-01

    We have investigated the generalized oscillator strength (GOS) for a transition of the type np{yields}(n+1)s, where n is the principal quantum number of the outermost filled shell of the atomic ground state, using the random-phase approximation with exchange. We find that the influence of correlation and exchange effects on the position of the characteristic minimum in the GOS of Ar(n=3) is insignificant. Also, our first Born approximation predicts the position of the minimum accurately provided that accurate target wave functions are employed. Our results agree excellently with measurements and are expected to be applicable equally to the corresponding subshells of Ne(n=2), Kr(n=4), and Xe(n=5). (c) 1999 The American Physical Society.

  6. Transition rate diagrams — A new approach to the study of selective excitation processes: The spectrum of manganese in a Grimm-type glow discharge

    International Nuclear Information System (INIS)

    Weiss, Zdeněk; Steers, Edward B.M.; Pickering, Juliet C.; Mushtaq, Sohail

    2014-01-01

    The emission spectra of manganese observed using a Grimm-type glow discharge in pure argon, argon with 0.3% v/v hydrogen and pure neon were studied in order to identify major excitation and ionization processes of manganese in the plasma. A new procedure is proposed, in which each observed emission line is associated with the corresponding transition between different states of the Mn atom or Mn ion, and, by considering all the observed transitions from and into a specific state, a measure of the total rate is determined at which this state is radiatively populated and depopulated. These resulting population/depopulation rates are then plotted as function of level energy. Such plots, called here “transition rate diagrams”, show the role of individual states in the formation of the observed spectrum and can be used to identify possible selective excitation processes. Also, cascade excitation by radiative decay of higher excited states can be conveniently evaluated in this way. A detailed description of the observed Mn I and Mn II spectra is given for Ar, Ar–H 2 and Ne plasmas and relevant excitation/ionization mechanisms are discussed. Matrix effects in analysis of manganese by glow discharge spectroscopy are discussed. A list of important Mn I and Mn II lines excited in the glow discharge plasma is given. - Highlights: • We measured GD-OES spectra of Mn in Ar, Ar(H) and Ne discharges. • We determined transition rate diagrams of Mn I and Mn II in these discharges. • Using those diagrams, we identified major excitation processes involved

  7. Isospin symmetry of T-z=+/- 3/2 ->+/- 1/2 Gamow-Teller transitions in A=41 nuclei

    NARCIS (Netherlands)

    Fujita, Y; Shimbara, Y; Adachi, T; Berg, GPA; Fujita, H; Hatanaka, K; Kamiya, J; Nakanishi, K; Sakemi, Y; Sasaki, S; Shimizu, Y; Tameshige, Y; Uchida, M; Wakasa, T; Yosoi, M

    2004-01-01

    Under the assumption that isospin T is a good quantum number, isobaric analog states and various analogous transitions are expected in isobars with mass number A. The, strengths of T-z = +/-3/2 --> 1/2 analogous Gamow-Teller (GT) transitions and analogous M1 transitions within the A = 41 isobar

  8. Isospin symmetry of T-z=+/- 3/2 ->+/- 1/2 Gamow-Teller transitions in A=41 nuclei

    NARCIS (Netherlands)

    Fujita, Y; Shimbara, Y; Adachi, T; Berg, GPA; Fujita, H; Hatanaka, K; Kamiya, J; Nakanishi, K; Sakemi, Y; Sasaki, S; Shimizu, Y; Tameshige, Y; Uchida, M; Wakasa, T; Yosoi, M

    Under the assumption that isospin T is a good quantum number, isobaric analog states and various analogous transitions are expected in isobars with mass number A. The, strengths of T-z = +/-3/2 --> 1/2 analogous Gamow-Teller (GT) transitions and analogous M1 transitions within the A = 41 isobar

  9. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  10. CANFLEX fuel bundle strength tests (test report)

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, C. H.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs

  11. Relativistic effects in atomic inner-shell transitions

    International Nuclear Information System (INIS)

    Chen, M.H.

    1982-01-01

    Theoretical calculations of atomic inner-shell transition rates based on independent-particle models are reviewed. Factors affecting inner-shell transition rates are examined, particularly the effects of relativity. 48 references, 5 figures

  12. An International Assessment of the Emotional and Behavioral Strengths of Youth

    Science.gov (United States)

    Lappalainen, Kristiina; Savolainen, Hannu; Kuorelahti, Matti; Epstein, Michael H.

    2009-01-01

    The assessment of emotional and behavioral strengths has been identified as an important part of the assessment process for children referred for specialized services. The Behavioral and Emotional Rating Scale-2 (BERS-2; Epstein, Behavioral and Emotional Rating Scale: a strength-based approach to assessment. PRO-Ed, Austin, TX, 2004) was developed…

  13. Geometric structure and information change in phase transitions

    Science.gov (United States)

    Kim, Eun-jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L , which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD | and D-1 /2 in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  14. Strength and lifetime of polymer glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bartenev, G.M.; Kartasov, E.M.

    1981-03-01

    A kinetic equation of the time-dependence of strength (complete isotherm of lifetime) of polymer glasses at stress values ranging from the limiting stress of the occurence of separation breaks to the critical stress is derived. The curvature of lifetime plots occuring at low and high periods of time in the experiments are considered. The ranges of noncritical state, breaks caused by a thermofluctuation mechanism, a transition range and athermal breaks are discerned. The limitations of applicability of the basic empirical equation of the kinetic theory of the time-dependence of strength are explained. Theoretical equations are suggested for calculating various characteristics of the brittle break, as limiting stress and critical stress, relative critical craze length and coefficient of stress concentration at the craze tip with respect to various geometrical configurations of the craze and its position in the sample. With polymethylmethacrylate as an example in the brittle and quasi-brittle state, as characterized by the transition from the rupture of sets of chemical bonds to individual chemical bonds, the thermofluctuation processes of break in polymer glasses are discussed. The application of the thermofluctuation theory of solids to the quasi-brittle fracture is considered. The growth kinetics of crazes and the corresponding equation of lifetime were found to be described by identical (corresponding) analytical expressions by which the changes of the coefficients of stress concentration in the range of microplastic deformation in front of the growing is covered within a wide region of temperature including the brittle temperature.

  15. Outcome Evidence for Structured Pediatric to Adult Health Care Transition Interventions: A Systematic Review.

    Science.gov (United States)

    Gabriel, Phabinly; McManus, Margaret; Rogers, Katherine; White, Patience

    2017-09-01

    To identify statistically significant positive outcomes in pediatric-to-adult transition studies using the triple aim framework of population health, consumer experience, and utilization and costs of care. Studies published between January 1995 and April 2016 were identified using the CINAHL, Ovid MEDLINE, PubMed, Scopus, and Web of Science databases. Included studies evaluated pre-evaluation and postevaluation data, intervention and comparison groups, and randomized clinic trials. The methodological strength of each study was assessed using the Effective Public Health Practice Project Quality Assessment Tool. Out of a total of 3844 articles, 43 met our inclusion criteria. Statistically significant positive outcomes were found in 28 studies, most often related to population health (20 studies), followed by consumer experience (8 studies), and service utilization (9 studies). Among studies with moderate to strong quality assessment ratings, the most common positive outcomes were adherence to care and utilization of ambulatory care in adult settings. Structured transition interventions often resulted in positive outcomes. Future evaluations should consider aligning with professional transition guidance; incorporating detailed intervention descriptions about transition planning, transfer, and integration into adult care; and measuring the triple aims of population health, experience, and costs of care. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance

    Directory of Open Access Journals (Sweden)

    Wirth Klaus

    2016-12-01

    Full Text Available The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p < 0.001, while in the squat group such variables as 1-repetition-maximum, the squat jump and the countermovement jump increased significantly (p < 0.001. The maximal isometric force showed no statistically significant result for the repeated measures factor, while the rate of force development of the squat group even showed a statistically significant decrease. Differences between the 2 experimental groups were detected for the squat jump and the countermovement jump. In comparison with the leg press, the squat might be a better strength training exercise for the development of jump performance.

  17. Postsecondary Strengths, Challenges, and Supports Experienced by Foster Care Alumni College Graduates

    Science.gov (United States)

    Salazar, Amy M.; Jones, Kevin R.; Emerson, John C.; Mucha, Lauren

    2016-01-01

    Young people transitioning from foster care to college experience unique identities and circumstances that make being successful in college especially challenging. We used qualitative survey data from 248 college graduates who were formerly in foster care to explore the strengths, challenges, and supports they experienced while in college that…

  18. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    Science.gov (United States)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on

  19. Variational transition state theory for multidimensional activated rate processes in the presence of anisotropic friction

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Frishman, Anatoli M.; Pollak, Eli

    1994-09-01

    Variational transition state theory (VTST) is applied to the study of the activated escape of a particle trapped in a multidimensional potential well and coupled to a heat bath. Special attention is given to the dependence of the rate constant on the friction coefficients in the case of anisotropic friction. It is demonstrated explicitly that both the traditional as well as the nontraditional scenarios for the particle escape are recovered uniformly within the framework of VTST. Effects such as saddle point avoidance and friction dependence of the activation energy are derived from VTST using optimized planar dividing surfaces.

  20. Preventive strength training improves working ergonomics during welding.

    Science.gov (United States)

    Krüger, Karsten; Petermann, Carmen; Pilat, Christian; Schubert, Emil; Pons-Kühnemann, Jörn; Mooren, Frank C

    2015-01-01

    To investigate the effect of a preventive strength training program on cardiovascular, metabolic and muscular strains during welding. Welders are one of the occupation groups which typically have to work in extended forced postures which are known to be an important reason for musculoskeletal disorders. Subjects (exercise group) accomplished a 12-week strength training program, while another group served as controls (control group). Pre and post training examinations included the measurements of the one repetition maximum and an experimental welding test. Local muscle activities were analysed by surface electromyography. Furthermore, heart rate, blood pressure, lactate and rating of perceived exertion were examined. In the exercise group, strength training lead to a significant increase of one repetition maximum in all examined muscles (pwelding test muscle activities of trunk and shoulder muscles and arm muscles were significantly reduced in the exercise group after intervention (pwelding (p<.05). Effects of strength training can be translated in an improved working ergonomics and tolerance against the exposure to high physical demands at work.

  1. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  2. Application and validation of the notch master curve in medium and high strength structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Sergio; Garcia, Tiberio [Universidad de Cantabria, Santander (Spain); Madrazo, Virginia [PCTCAN, Santander (Spain)

    2015-10-15

    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches.

  3. Stress, Depression, and Anxiety among Transitioning College Students: The Family as a Protective Factor

    Science.gov (United States)

    Kahn, Jeffrey H.; Kasky-Hernández, Lynda M.; Ambrose, Pamm; French, Sarah

    2017-01-01

    Stress associated with the college transition can bring about depression and anxiety symptoms, but family relationships can reduce the impact of stress. We hypothesized that secure attachment to parents, comfort with talking about stressors, and family support would reduce the strength of the relationships between transition-related stress and…

  4. Ideal glass transitions in thin films: An energy landscape perspective

    OpenAIRE

    Truskett, Thomas M.; Ganesan, Venkat

    2003-01-01

    We introduce a mean-field model for the potential energy landscape of a thin fluid film confined between parallel substrates. The model predicts how the number of accessible basins on the energy landscape and, consequently, the film's ideal glass transition temperature depend on bulk pressure, film thickness, and the strength of the fluid-fluid and fluid-substrate interactions. The predictions are in qualitative agreement with the experimental trends for the kinetic glass transition temperatu...

  5. Microscopic analysis of order parameters in nuclear quantum phase transitions

    International Nuclear Information System (INIS)

    Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.

    2009-01-01

    Microscopic signatures of nuclear ground-state shape phase transitions in Nd isotopes are studied using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. As a function of the physical control parameter, the number of nucleons, energy gaps between the ground state and the excited vibrational states with zero angular momentum, isomer shifts, and monopole transition strengths exhibit sharp discontinuities at neutron number N=90, which is characteristic of a first-order quantum phase transition.

  6. Development of specimen size and test rate effects on the J-integral upper transition behavior of A533B steel

    International Nuclear Information System (INIS)

    Joyce, James A.

    1988-01-01

    During the past three years a test method has been developed for dynamic testing of fracture mechanics specimens which is specifically designed for application to the upper transition temperature range. The method uses drop tower loading rates of 2.5 m/sec and obtains a J IC or a J-R curve using an analytical key curve approach verified by initial and final crack length measurements obtained from the fracture surface. A J-R curve is obtained from each specimen and contains crack growth corrections so that it is directly comparable with static results obtained in accordance with the ASTM E1152 J-R curve test method. The test procedure has been applied to A106 steel, A533B steel and US Navy HY80 and HY100 steels at temperatures from -200F to 150F. Standard 1T three point bend specimens were used for the A533B and the HY100 steel. Static test results have shown that the J at cleavage initiation (which is presently an unstandardized quantity) is specimen a/W independent throughout the ductile to brittle transition but of course demonstrates considerable statistical scatter in the vicinity of the ductile upper shelf. Dynamic J-R tests have shown an increase in J IC with test rate for most, but not for all, materials. Separation of J into elastic and plastic components shows that the elastic J component increases with test rate in a fashion consistent with the materials tensile sensitivity to test rate but the plastic J component decreases with test rate - an apparent visco-plastic phenomena. For A106 steel the plastic J decrease exceeds the elastic J increase and the upper shelf toughness falls - while the other materials have demonstrated a relatively larger increase in the elastic J component and a smaller decrease in the plastic J component giving an overall increase in upper shelf toughness. Separation of the J integral into elastic and plastic components has demonstrated that J EL is specimen scale and geometry dependent while J PL is relatively scale and geometry

  7. Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks

    International Nuclear Information System (INIS)

    Wang, Baoying; Gong, Yubing; Xie, Huijuan; Wang, Qi

    2016-01-01

    Highlights: • Optimal autaptic delay enhanced synchronization transitions induced by synaptic delay in neuronal networks. • Optimal synaptic delay enhanced synchronization transitions induced by autaptic delay. • Optimal coupling strength enhanced synchronization transitions induced by autaptic or synaptic delay. - Abstract: In this paper, we numerically study the effect of electrical autaptic and synaptic delays on synchronization transitions induced by each other in Newman–Watts Hodgkin–Huxley neuronal networks. It is found that the synchronization transitions induced by synaptic delay vary with varying autaptic delay and become strongest when autaptic delay is optimal. Similarly, the synchronization transitions induced by autaptic delay vary with varying synaptic delay and become strongest at optimal synaptic delay. Also, there is optimal coupling strength by which the synchronization transitions induced by either synaptic or autaptic delay become strongest. These results show that electrical autaptic and synaptic delays can enhance synchronization transitions induced by each other in the neuronal networks. This implies that electrical autaptic and synaptic delays can cooperate with each other and more efficiently regulate the synchrony state of the neuronal networks. These findings could find potential implications for the information transmission in neural systems.

  8. Weak interaction rates

    International Nuclear Information System (INIS)

    Sugarbaker, E.

    1995-01-01

    I review available techniques for extraction of weak interaction rates in nuclei. The case for using hadron charge exchange reactions to estimate such rates is presented and contrasted with alternate methods. Limitations of the (p,n) reaction as a probe of Gamow-Teller strength are considered. Review of recent comparisons between beta-decay studies and (p,n) is made, leading to cautious optimism regarding the final usefulness of (p,n)- derived GT strengths to the field of astrophysics. copyright 1995 American Institute of Physics

  9. Microstructure evolution of fault rocks at the "brittle-to-plastic" transition

    Science.gov (United States)

    Heilbronner, R.; Pec, M.; Stunitz, H.

    2011-12-01

    In the continental crust, large earthquakes tend to nucleate at the "brittle-to-plastic" transition at depths of ~ 10 - 20 km indicating stress release by rupture at elevated PT. Experimental studies, field observations, and models predict peak strength of the lithosphere at depths where rocks deform by "semi-brittle" flow. Thus, the deformation processes taking place at these conditions are important aspects of the seismic cycle and fault rheology in general. We performed a series of experiments with crushed Verzasca gneiss powder (d ≤ 200 μm), "pre-dried" and 0.2 wt% H2O added, placed between alumina forcing blocks (45° pre-cut) and weld-sealed in Pt jackets. The experiments were performed at Pc = 500, 1000 and 1500 MPa, T = 300°C and 500°C. and shear strain rates of ~10-3 s-1 to ~10-5 s-1 in a solid medium deformation apparatus (Griggs rig). Samples deformed at Pc = 500 MPa attain peak strength (~ 1100-1400 MPa) at γ ~ 2, they weaken by ~20 MPa (300°C) to ~140 MPa (500°C) and reach a steady state. The 300°C experiments are systematically stronger by ~ 330 - 370 MPa than the 500°C experiments, and flow stress increases with increasing strain rate. At Pc = 1000 and 1500 MPa, peak strength (~1300-1600 MPa) is reached at γ = 1 to 1.5 followed by weakening of ~60 (300°C) and ~150 MPa (500°C). The strength difference between 300°C and 500°C samples is 270-330 MPa and does not increase with increasing confining pressure. The peak strength increase with confining pressure is modest (50-150 MPa), indicating that the rocks reach their maximal compressive strength. The microstructure develops as an S-C-C' fabric with dominant C' slip zones. At low strains, the gouge zone is pervasively cut by closely spaced C' shears containing fine-grained material (d disintegration of the grains is accompanied by transport of alkalis, producing a different mineral chemistry even at short experimental time scales (~20 min to 30 hrs). The amorphous to nano

  10. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  11. Gamma transitions between compound states in spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Average values of the reduced γ widths and their dispersions are investigated, basing on the Wigner statistical matrix method, for γ transitions from a compound state c into a less-energy excited state f of an arbitrary complexity in spherical nuclei. It is shown that in all the cases of practical interest the Porter-Thomas distribution is valid for the γ widths. It is found that in the γ transitions between compound states c and c' with Esub(γ) <= 2 MeV the dominating role is played by the M1 transitions due to the main multiquasiparticle states of c, and by the E1 transitions, due to small components of the state c. In framework of the existent theoretical schemes it is shown that the strength functions of the M1 and E1 transitions between the compound states with Esub(γ) <2 MeV are close. It is deduced thet the variant of the M1 transitions is preferable in view of the experimental results on the (n, γα) reactions induced by thermal and resonance neutrons

  12. E1 and M1 strength functions at low energy

    Science.gov (United States)

    Schwengner, Ronald; Massarczyk, Ralph; Bemmerer, Daniel; Beyer, Roland; Junghans, Arnd R.; Kögler, Toni; Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner; Wagner, Andreas

    2017-09-01

    We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.

  13. E1 and M1 strength functions at low energy

    Directory of Open Access Journals (Sweden)

    Schwengner Ronald

    2017-01-01

    Full Text Available We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.

  14. General trend and local variations of neutron resonance cascade gamma-decay radiative strength functions

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Furman, W.I.; Khitrov, V.A.; Jovancevic, N.

    2012-01-01

    A new hypothesis on the dependence of the form of the radiative strength functions of electric and magnetic dipole gamma transitions in a heated nucleus on the excited level density was suggested and tested experimentally. For this purpose, the region of possible values of random values of the level density and radiative strength functions which precisely reproduced experimental intensity of two-step cascades for 41 nuclei from 40K to 200Hg was determined. It was obtained that the suggested hypothesis can provide the maximal increase of radiative strength functions values by order of magnitude in comparison with existing notations as a result of collective effects enhancement. This result points to the necessity to take into account this possibility in existing and future models of radiative strength functions

  15. Personality Typology in Relation to Muscle Strength

    Science.gov (United States)

    Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi

    2011-01-01

    Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (Epersonality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452

  16. Residual-strength determination in polymetric materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.M.

    1981-10-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data.

  17. Residual-strength determination in polymetric materials

    International Nuclear Information System (INIS)

    Christensen, R.M.

    1981-01-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data

  18. Continuum random-phase approximation study of the incoherent μ--e- conversion rate and its spurious 1- admixture

    International Nuclear Information System (INIS)

    Papakonstantinou, P.; Wambach, J.; Kosmas, T.S.; Faessler, A.

    2006-01-01

    The incoherent transition strength of the exotic μ - -e - conversion in the 208 Pb nucleus is investigated by utilizing the continuum random-phase-approximation method, appropriate for the evaluation of the rate that goes to the continuum of the nuclear spectrum. We find that the contribution of resonances lying high in the continuum is not negligible. Special attention is paid to the detailed study of the pronounced 1 - contribution that according to previous calculations, dominates the overall incoherent rate in about all the nuclear targets. The spurious center-of-mass admixture to the partial rate originating from the 1 - excitations is explored, and its elimination is performed by correcting properly the dipole operators. The results found this way show that the greatest portion of the total 1 - contribution to the incoherent rate is spurious

  19. Cyclic strength of metals at impact strain rates

    International Nuclear Information System (INIS)

    Eleiche, A.M.; El-Kady, M.M.

    1987-01-01

    Rigorous understanding of the effects of impact loading on the mechanical response of materials and structures is essential for the optimum design and safe operation of many sophisticated engineering systems and components, such as industrial high-energy-rate fabrication processes and nuclear reactor containments. Extensive data are available at present on the dynamic behaviour of most metals in uniaxial tension, compression, torsion and pure shear, when they are subjected to diversified loading conditions, ranging from those characterised by monotonic constant rates, to those involving forward or reverse strain-rate jumps of several orders of magnitude. What appears to be missing in the current material data banks, however, is detailed information concerning the mechanical response under cyclic loading at impact strain rates. Such data are needed for engineering design purposes on one hand, and for the formulation of proper constitutive equations and the accurate modeling of deformation processes on the other. In the present paper, typical stress-strain characteristics at ambient temperature for copper, mild steel and titanium are first exhibited. The application of the unified Bodner-Partom constitutive theory to these data is then presented and discussed. (orig./GL)

  20. Influence of extreme pedal rates on pulmonary O(2) uptake kinetics during transitions to high-intensity exercise from an elevated baseline.

    Science.gov (United States)

    Dimenna, Fred J; Wilkerson, Daryl P; Burnley, Mark; Bailey, Stephen J; Jones, Andrew M

    2009-10-31

    We used extreme pedal rates to investigate the influence of muscle fibre recruitment on pulmonary V(O)(2) kinetics during unloaded-to-moderate-intensity (U-->M), unloaded-to-high-intensity (U-->H), and moderate-intensity to high-intensity (M-->H) cycling transitions. Seven healthy men completed transitions to 60% of the difference between gas-exchange threshold and peak V(O)(2) from both an unloaded and a moderate-intensity (95% GET) baseline at cadences of 35 and 115rpm. Pulmonary gas exchange was measured breath-by-breath and iEMG of the m. vastus lateralis and m. gluteus maximus was measured during all tests. At 35rpm, the phase II time constant (tau(p)) values for U-->M, U-->H, and M-->H were 26+/-7, 31+/-7 and 36+/-8s with the value for M-->H being longer than for U-->M (PM, U-->H, and M-->H were 29+/-8, 48+/-16 and 53+/-20s with the value for U-->M being shorter than for the other two conditions (Pinfluenced by an interaction of exercise intensity and pedal rate and are consistent with the notion that changes in muscle fibre recruitment are responsible for slower phase II V(O)(2) kinetics during high-intensity and work-to-work exercise transitions.

  1. The Importance of Muscular Strength: Training Considerations.

    Science.gov (United States)

    Suchomel, Timothy J; Nimphius, Sophia; Bellon, Christopher R; Stone, Michael H

    2018-04-01

    This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should

  2. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomised parallel trial.

    Science.gov (United States)

    Clemson, Lindy; Fiatarone Singh, Maria A; Bundy, Anita; Cumming, Robert G; Manollaras, Kate; O'Loughlin, Patricia; Black, Deborah

    2012-08-07

    To determine whether a lifestyle integrated approach to balance and strength training is effective in reducing the rate of falls in older, high risk people living at home. Three arm, randomised parallel trial; assessments at baseline and after six and 12 months. Randomisation done by computer generated random blocks, stratified by sex and fall history and concealed by an independent secure website. Residents in metropolitan Sydney, Australia. Participants aged 70 years or older who had two or more falls or one injurious fall in past 12 months, recruited from Veteran's Affairs databases and general practice databases. Exclusion criteria were moderate to severe cognitive problems, inability to ambulate independently, neurological conditions that severely influenced gait and mobility, resident in a nursing home or hostel, or any unstable or terminal illness that would affect ability to do exercises. Three home based interventions: Lifestyle integrated Functional Exercise (LiFE) approach (n=107; taught principles of balance and strength training and integrated selected activities into everyday routines), structured programme (n=105; exercises for balance and lower limb strength, done three times a week), sham control programme (n=105; gentle exercise). LiFE and structured groups received five sessions with two booster visits and two phone calls; controls received three home visits and six phone calls. Assessments made at baseline and after six and 12 months. Primary measure: rate of falls over 12 months, collected by self report. Secondary measures: static and dynamic balance; ankle, knee and hip strength; balance self efficacy; daily living activities; participation; habitual physical activity; quality of life; energy expenditure; body mass index; and fat free mass. After 12 months' follow-up, we recorded 172, 193, and 224 falls in the LiFE, structured exercise, and control groups, respectively. The overall incidence of falls in the LiFE programme was 1.66 per person

  3. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions

    International Nuclear Information System (INIS)

    Schatz, G.C.; Walch, S.P.; Wagner, A.F.

    1980-01-01

    We present ab initio (GVB--POL--CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH 4 (CD 4 ) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF--SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL--CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL--CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL--CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL--CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH 3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange

  4. Polydispersity effect on solid-fluid transition in hard sphere systems

    KAUST Repository

    Nogawa, T.

    2010-02-01

    The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first order transition between the solid, fcc crystal, and fluid states occurs. It is found that the density gap between the bistable states decreases with increasing the strength of the polydispersity and continuously approaches to zero at the critical point. © 2010.

  5. Influence of Compacting Rate on the Properties of Compressed Earth Blocks

    Directory of Open Access Journals (Sweden)

    Humphrey Danso

    2016-01-01

    Full Text Available Compaction of blocks contributes significantly to the strength properties of compressed earth blocks. This paper investigates the influence of compacting rates on the properties of compressed earth blocks. Experiments were conducted to determine the density, compressive strength, splitting tensile strength, and erosion properties of compressed earth blocks produced with different rates of compacting speed. The study concludes that although the low rate of compaction achieved slightly better performance characteristics, there is no statistically significant difference between the soil blocks produced with low compacting rate and high compacting rate. The study demonstrates that there is not much influence on the properties of compressed earth blocks produced with low and high compacting rates. It was further found that there are strong linear correlations between the compressive strength test and density, and density and the erosion. However, a weak linear correlation was found between tensile strength and compressive strength, and tensile strength and density.

  6. Transiting Exoplanet Monitoring Project (TEMP). IV. Refined System Parameters, Transit Timing Variations, and Orbital Stability of the Transiting Planetary System HAT-P-25

    Science.gov (United States)

    Wang, Xian-Yu; Wang, Songhu; Hinse, Tobias C.; Li, Kai; Wang, Yong-Hao; Laughlin, Gregory; Liu, Hui-Gen; Zhang, Hui; Wu, Zhen-Yu; Zhou, Xu; Zhou, Ji-Lin; Hu, Shao-Ming; Wu, Dong-Hong; Peng, Xi-Yan; Chen, Yuan-Yuan

    2018-06-01

    We present eight new light curves of the transiting extra-solar planet HAT-P-25b obtained from 2013 to 2016 with three telescopes at two observatories. We use the new light curves, along with recent literature material, to estimate the physical and orbital parameters of the transiting planet. Specifically, we determine the mid-transit times (T C ) and update the linear ephemeris, T C[0] = 2456418.80996 ± 0.00025 [BJDTDB] and P = 3.65281572 ± 0.00000095 days. We carry out a search for transit timing variations (TTVs), and find no significant TTV signal at the ΔT = 80 s-level, placing a limit on the possible strength of planet–planet interactions (TTVG). In the course of our analysis, we calculate the upper mass-limits of the potential nearby perturbers. Near the 1:2, 2:1, and 3:1 resonances with HAT-P-25b, perturbers with masses greater than 0.5, 0.3, and 0.5 M ⊕ respectively, can be excluded. Furthermore, based on the analysis of TTVs caused by light travel time effect (LTTE) we also eliminate the possibility that a long-period perturber exists with M p > 3000 MJ within a = 11.2 au of the parent star.

  7. Localization and Instability in Sheared Granular Materials: Role of Pore Fluids and Non-monotonic Rate Dependent Rheology

    Science.gov (United States)

    Ma, X.; Elbanna, A. E.; Kothari, K.

    2017-12-01

    Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate

  8. Dynamics and order-disorder transitions in bidisperse diblock copolymer blends

    International Nuclear Information System (INIS)

    Wang Yueqiang; Li Xuan; Tang Ping; Yang Yuliang

    2011-01-01

    We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order-disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G' corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, (χN) ODT , whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in (χN) ODT . To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in (χN) ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT. -- Research highlights: → Order-disorder transition in AB diblock copolymer mixtures is investigated using DSCFT. → Microphase separation strength at the ODT increases with PDI in the majority block. → Microphase separation strength at the ODT decreases with PDI in the minority block. → Introduction of polydispersity is efficient to control microphase separation strength at the ODT.

  9. IMPACT OF NEW GAMOW–TELLER STRENGTHS ON EXPLOSIVE TYPE IA SUPERNOVA NUCLEOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Suzuki, Toshio [National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hidaka, Jun [Mechanical Engineering Department, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506 (Japan); Honma, Michio [Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580 (Japan); Iwamoto, Koichi [Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308 (Japan); Nomoto, Ken’ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Otsuka, Takaharu, E-mail: kanji.mori@nao.ac.jp, E-mail: kajino@nao.ac.jp, E-mail: michael.famiano@wmich.edu, E-mail: suzuki@phys.chs.nihon-u.ac.jp, E-mail: jun.hidaka@meisei-u.ac.jp, E-mail: m-honma@u-aizu.ac.jp, E-mail: iwamoto@phys.cst.nihon-u.ac.jp, E-mail: nomoto@astron.s.u-tokyo.ac.jp, E-mail: otsuka@phys.s.u-tokyo.ac.jp [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-12-20

    Recent experimental results have confirmed a possible reduction in the Gamow–Teller (GT{sub +}) strengths of pf-shell nuclei. These proton-rich nuclei are of relevance in the deflagration and explosive burning phases of SNe Ia. While prior GT strengths result in nucleosynthesis predictions with a lower-than-expected electron fraction, a reduction in the GT{sub +} strength can result in a slightly increased electron fraction compared to previous shell model predictions, though the enhancement is not as large as previous enhancements in going from rates computed by Fuller, Fowler, and Newman based on an independent particle model. A shell model parametrization has been developed that more closely matches experimental GT strengths. The resultant electron-capture rates are used in nucleosynthesis calculations for carbon deflagration and explosion phases of SNe Ia, and the final mass fractions are compared to those obtained using more commonly used rates.

  10. Microstructural evolution and mechanical characterization for the A508-3 steel before and after phase transition

    Science.gov (United States)

    Lu, Chuanyang; He, Yanming; Gao, Zengliang; Yang, Jianguo; Jin, Weiya; Xie, Zhigang

    2017-11-01

    Nuclear power, as a reliable clean and economical energy source, has gained great attention from all over the world. The A508-3 steel will be introduced as the structural materials for Chinese nuclear reactor pressure vessels (RPVs). This work investigated the temperature-dependence microstructural evolution during high-temperature heat treatments, and built the relationship between the microstructure and mechanical properties for the steel before and after phase transition. The results show that the original steel consists of the bainite, allotriomorphic ferrite, retained austenite and few Mo-rich M2C carbides. The phase-transition temperature of the steel is determined to be 750 °C. The tensile tests performed at 20-1000 °C indicate that both of the yield strength and ultimate tensile strength decrease monotonously with increasing the temperature. Before phase transition, precipitation of cementite from the retained austenite and coarsening of cementite at the austenite-ferrite interphases should be responsible for their sharp decrease. After phase transition, the growth of austenite grain reduces the strength moderately. As for the elongation, however, it increases dramatically when the testing temperature is over 750 °C, due to the dissolution of cementite and formation of austenite. The obtained results will provide some fundamental data to understand and implement the In-Vessel Retention strategy.

  11. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  12. Transition rate diagrams - A new approach to the study of selective excitation processes: The spectrum of manganese in a Grimm-type glow discharge

    Science.gov (United States)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.; Mushtaq, Sohail

    2014-02-01

    The emission spectra of manganese observed using a Grimm-type glow discharge in pure argon, argon with 0.3% v/v hydrogen and pure neon were studied in order to identify major excitation and ionization processes of manganese in the plasma. A new procedure is proposed, in which each observed emission line is associated with the corresponding transition between different states of the Mn atom or Mn ion, and, by considering all the observed transitions from and into a specific state, a measure of the total rate is determined at which this state is radiatively populated and depopulated. These resulting population/depopulation rates are then plotted as function of level energy. Such plots, called here “transition rate diagrams”, show the role of individual states in the formation of the observed spectrum and can be used to identify possible selective excitation processes. Also, cascade excitation by radiative decay of higher excited states can be conveniently evaluated in this way. A detailed description of the observed Mn I and Mn II spectra is given for Ar, Ar-H2 and Ne plasmas and relevant excitation/ionization mechanisms are discussed. Matrix effects in analysis of manganese by glow discharge spectroscopy are discussed. A list of important Mn I and Mn II lines excited in the glow discharge plasma is given.

  13. Towards Bridging the Gaps in Holistic Transition Prediction via Numerical Simulations

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Duan, Lian; Chang, Chau-Lyan; Carpenter, Mark H.; Streett, Craig L.; Malik, Mujeeb R.

    2013-01-01

    The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition prediction in particular. Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper provides a summary of selected research activities targeting the current gaps in high-fidelity transition prediction, specifically those related to the receptivity and laminar breakdown phases of crossflow induced transition in a subsonic swept-wing boundary layer. The results of direct numerical simulations are used to obtain an enhanced understanding of the laminar breakdown region as well as to validate reduced order prediction methods.

  14. Simulating the electroweak phase transition in the SU(2) Higgs model

    International Nuclear Information System (INIS)

    Fodor, Z.; Hein, J.; Jansen, K.; Jaster, A.; Montvay, I.

    1994-09-01

    Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and its strength is rapidly decreasing with increasing Higgs boson mass. In order to control the systematic errors, we also perform studies of scaling violations and of finite volume effects. (orig.)

  15. Electric and Magnetic Dipole Strength at Low Energy

    Science.gov (United States)

    Sieja, K.

    2017-08-01

    A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ -ray strength of the Sc 44 isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1 ℏω s d -p f -g d s model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M 1 strength but show quite different behavior for the E 1 strength.

  16. Blackbody radiation shift of the Ga+ clock transition

    International Nuclear Information System (INIS)

    Cheng, Yongjun; Mitroy, J

    2013-01-01

    The blackbody radiation shift of the Ga + clock transition is computed to be −0.0140 ± 0.0062 Hz at 300 K. The small shift is consistent with the blackbody radiation shifts of the clock transitions of other group III ions which are of a similar size. The polarizabilities of the Ga + states were computed using the configuration interaction method with an underlying semi-empirical core potential. Quadrupole and non-adiabatic dipole polarizabilities were also computed. A byproduct of the analysis involved calculations of the low-lying spectrum and oscillator strengths, including polarizabilities, of the Ga 2+ ion. (paper)

  17. Transitions induced by speed in self-propelled particles system with attractive interactions

    Science.gov (United States)

    Cambui, Dorilson. S.; Rosas, Alexandre

    2018-05-01

    In this work, we consider a system of self-propelled particles with attractive interactions in two dimensions. The model presents an order-disorder transition with the speed playing the role of the control parameter. In order to characterize the transition, we investigate the behavior of the order parameter and the Binder cumulant as a function of the speed. Our main finding is that the transition can be either continuous or discontinuous depending on two parameter of the model: the strength of the noise and the radius of attraction.

  18. Tensile Strength of the Eggshell Membranes

    Czech Academy of Sciences Publication Activity Database

    Strnková, J.; Nedomová, Š.; Kumbár, V.; Trnka, Jan

    2016-01-01

    Roč. 64, č. 1 (2016), s. 159-164 ISSN 1211-8516 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : eggshell membrane * tesile test * loading rate * tensile strength * fracture strain Subject RIV: GM - Food Processing

  19. Strength and life under creeping

    International Nuclear Information System (INIS)

    Pospishil, B.

    1982-01-01

    Certain examples of the application of the Lepin modified creep model, which are of interest from technical viewpoint, are presented. Mathematical solution of the dependence of strength limit at elevated temperatures on creep characteristics is obtained. Tensile test at elevated temperatures is a particular case of creep or relaxation and both strength limit and conventional yield strength at elevated temperatures are completely determined by parameters of state equations during creep. The equation of fracture summing during creep is confirmed not only by the experiment data when stresses change sporadically, but also by good reflection of durability curve using the system of equations. The system presented on the basis of parameters of the equations obtained on any part of durability curve, permits to forecast the following parameters of creep: strain, strain rate, life time, strain in the process of fracture. Tensile test at elevated temperature is advisable as an addition when determining creep curves (time-strain curves) [ru

  20. Improved Ultraviolet and Infrared Oscillator Strengths for OH+

    Science.gov (United States)

    Hodges, James N.; Bittner, Dror M.; Bernath, Peter F.

    2018-03-01

    Molecular ions are key reaction intermediates in the interstellar medium. OH+ plays a central role in the formation of more complex chemical species and for estimating the cosmic ray ionization rate in astrophysical environments. Here, we use a recent analysis of a laboratory spectrum in conjunction with ab initio methods to calculate infrared and ultraviolet oscillator strengths. These new oscillator strengths include branch dependent intensity corrections, arising from the Herman–Wallis effect, that have not been included before. We estimate 10% total uncertainty in the UV and 6% total uncertainty in the IR for the oscillator strengths.

  1. High strength and large ductility in spray-deposited Al–Zn–Mg–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongchun, E-mail: hcyu@hnu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Wang, Mingpu; Jia, Yanlin [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Xiao, Zhu, E-mail: xiaozhu8417@gmail.com [School of Engineering, University of Liverpool, Liverpool L69 3GH (United Kingdom); Chen, Chang; Lei, Qian; Li, Zhou; Chen, Wei [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Hao [Jiangsu Haoran Spray Forming Alloys Co., Ltd., Zhengjiang 212009, Jiangsu (China); Wang, Yanguo; Cai, Canying [School of Physics and Microelectronics, Hunan University, Changsha 410082, Hunan (China)

    2014-07-15

    Highlights: • Spray deposition process was used to produce Al alloys with excellent performance. • The deposited alloys exhibited a high strength of 690 MPa and elongation up to 17.2%. • The η′ phase was coherent with α-Al and their orientation relationship was studied. • The interface misfits and the transition matrixes of two phases were calculated. - Abstract: The mechanical properties and microstructure of large-scale Al–Zn–Mg–Cu alloys fabricated by spray deposition/rapid solidification technology were investigated in detail. The as-extruded alloys under peak-aging temper exhibited ultimate tensile strength (UTS), yield strength (YS) and elongation of 690 MPa, 638 MPa and 17.2%, respectively. The simultaneous coexisting of high strength and large tensile ductility of the alloys were achieved in our experiment. It was considered that the high-density nano-precipitates distributed uniformly in the peak-aged alloys may be responsible for the high strength and improved ductility. Orientation relationship between η′ precipitates and α-Al matrix were verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction patterns (SADPs) observations. The η′ phases in the alloy were fully coherent with the aluminum matrix, with the orientation relationship of (101{sup ¯}0){sub η{sup ′}}//{110}{sub Al} and [1{sup ¯}21{sup ¯}0]{sub η{sup ′}}//<1{sup ¯}12>{sub Al}. The relationship between the lattice parameters of η′ phase and the related plane-spacing of the aluminum were a{sub η{sup ′}}=3d{sub (112){sub A{sub l}}} and c{sub η{sup ′}}=6d{sub (111){sub A{sub l}}}. Based on obtained orientation relationship, the transition matrix of η′ phases were also calculated.

  2. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    Science.gov (United States)

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  3. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  4. Measurement of K-line transition rates for Ti, V, Cr, Mn, Fe and Co using synchrotron radiation

    International Nuclear Information System (INIS)

    Carreras, A.; Stutz, G.; Castellano, G.

    2003-01-01

    Transition rates were obtained from spectra for pure metallic samples of atomic number ranging from 22 to 27, measured with monochromatic incident X-ray beams from a synchrotron source. The experimental setup for this consisted of an energy dispersive spectrometer in a conventional 45-45 deg. geometry, mounted in an evacuated chamber. Absorption, detector efficiency and multiple scattering were taken into account. The results obtained are compared with recent theoretical and experimental data as well as with the well-known theoretical predictions from Scofield

  5. Measurement of K-line transition rates for Ti, V, Cr, Mn, Fe and Co using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, A. E-mail: alejo@quechua.fis.uncor.edu; Stutz, G.; Castellano, G

    2003-08-01

    Transition rates were obtained from spectra for pure metallic samples of atomic number ranging from 22 to 27, measured with monochromatic incident X-ray beams from a synchrotron source. The experimental setup for this consisted of an energy dispersive spectrometer in a conventional 45-45 deg. geometry, mounted in an evacuated chamber. Absorption, detector efficiency and multiple scattering were taken into account. The results obtained are compared with recent theoretical and experimental data as well as with the well-known theoretical predictions from Scofield.

  6. Electroweak phase transition in two Higgs doublet models

    International Nuclear Information System (INIS)

    Cline, J.M.; Lemieux, P.

    1997-01-01

    We reexamine the strength of the first-order phase transition in the electroweak theory supplemented by an extra Higgs doublet. The finite-temperature effective potential V eff is computed to one-loop order, including the summation of ring diagrams, to study the ratio φ c /T c of the Higgs field VEV to the critical temperature. We make a number of improvements over previous treatments, including a consistent treatment of Goldstone bosons in V eff , an accurate analytic approximation to V eff valid for any mass-to-temperature ratios, and use of the experimentally measured top quark mass. For two-Higgs-doublet models, we identify a significant region of parameter space where φ c /T c is large enough for electroweak baryogenesis, and we argue that this identification should persist even at higher orders in perturbation theory. In the case of the minimal supersymmetric standard model, our results indicate that the extra Higgs bosons have little effect on the strength of the phase transition. copyright 1997 The American Physical Society

  7. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    Science.gov (United States)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  8. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10 6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ∼10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  9. Observation of the Photon-Blockade Breakdown Phase Transition

    Directory of Open Access Journals (Sweden)

    J. M. Fink

    2017-01-01

    Full Text Available Nonequilibrium phase transitions exist in damped-driven open quantum systems when the continuous tuning of an external parameter leads to a transition between two robust steady states. In second-order transitions this change is abrupt at a critical point, whereas in first-order transitions the two phases can coexist in a critical hysteresis domain. Here, we report the observation of a first-order dissipative quantum phase transition in a driven circuit quantum electrodynamics system. It takes place when the photon blockade of the driven cavity-atom system is broken by increasing the drive power. The observed experimental signature is a bimodal phase space distribution with varying weights controlled by the drive strength. Our measurements show an improved stabilization of the classical attractors up to the millisecond range when the size of the quantum system is increased from one to three artificial atoms. The formation of such robust pointer states could be used for new quantum measurement schemes or to investigate multiphoton phases of finite-size, nonlinear, open quantum systems.

  10. Mental models accurately predict emotion transitions.

    Science.gov (United States)

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  11. Mental models accurately predict emotion transitions

    Science.gov (United States)

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  12. Extended calculations of energies, transition rates, and lifetimes for F-like Kr XXVIII

    Science.gov (United States)

    Zhang, C. Y.; Si, R.; Yao, K.; Gu, M. F.; Wang, K.; Chen, C. Y.

    2018-02-01

    The excitation energies, lifetimes, wavelengths and E1, E2, M1 and M2 transition rates for the lowest 389 levels of the 2l7, 2l63l‧, 2l64l‧, and 2l65l‧ configurations from second-order many-body perturbation theory (MBPT) calculations, and the results for the lowest 200 states of the 2l7, 2l63l‧, and 2l64l‧ configurations from multi-configuration Dirac-Hartree-Fock (MCDHF) calculations in F-like Kr XXVIII are presented in this work. The relative differences between our two sets of level energies are mostly within 0.005% for the lowest 200 levels. Comparisons are made with experimental and other available theoretical results to assess the reliability and accuracy of the present calculations. We believe them to be the most complete and accurate results for Kr XXVIII at present.

  13. A study on the strength properties of the rock mass based on triaxial tests conducted at the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Ishii, Eiichi; Fujita, Tomoo; Kondo, Keiji; Tsusaka, Kimikazu

    2015-03-01

    Japan Atomic Energy Agency (JAEA) has been conducting R and D activities at the off-site URL at Horonobe, Hokkaido, Japan in order to enhance reliability of technology related to deep geological disposal of HLW in sedimentary rocks. In this report, strength properties (cohesion and frictional angle) of rock masses in the Koetoi and Wakkanai formations are investigated on the basis of triaxial tests conducted in the Horonobe URL considering the relative depths to the formation. Strength properties investigated in this report are compared with the properties obtained in the designing phase. The cohesion in the Koetoi Formation increased with increasing depth. On the other hand, in the transition zone of the Wakkanai Formation, the cohesion increased significantly in the shallow Wakkanai formation (transition zone). Below the transition zone, the cohesion does not significantly depend on the depth. Thus the strength properties between two formations were found to be different. Comparing the cohesions and frictional angles determined from triaxial tests with the values determined in the designing phase, there was no agreement between these values in almost all the depth. Thus it is essential to determine cohesion and frictional angle considering the relative depths to the formation for detailed understanding of strength properties of rock mass. A CD-ROM is attached as an appendix. (J.P.N.)

  14. Observation/confirmation of hindered E2 strength in {sup 18}C/{sup 16}C

    Energy Technology Data Exchange (ETDEWEB)

    Ong, H.J. [Osaka University, RCNP, Ibaraki, Osaka (Japan); Imai, N. [KEK, Tsukuba, Ibaraki (Japan); Suzuki, D.; Iwasaki, H.; Onishi, T.K.; Suzuki, M.K.; Nakao, T.; Ichikawa, Y. [University of Tokyo, Department of Physics, Bunkyo,Tokyo (Japan); Sakurai, H.; Takeuchi, S.; Kondo, Y.; Aoi, N.; Baba, H.; Bishop, S.; Ishihara, M.; Kubo, T.; Motobayashi, T.; Yanagisawa, Y. [RIKEN, RIKEN Nishina Center, Wako, Saitama (Japan); Ota, S. [University of Tokyo, RIKEN Campus, CNS, Wako, Saitama (Japan); Togano, Y.; Kurita, K. [Rikkyo University, Department of Physics, Toshima, Tokyo (Japan); Nakamura, T.; Okumura, T. [Tokyo Institute of Technology, Department of Physics, Meguro, Tokyo (Japan)

    2009-12-15

    We have measured the lifetime of the first excited 2{sup +} state in {sup 18}C using an upgraded recoil shadow method to determine the electric quadrupole transition. The measured mean lifetime is 18.9{+-}0.9 (stat){+-}4.4 (syst) ps, corresponding to B(E2;2{sub 1} {sup +}{yields} 0{sup +} {sub gs}) = 4.3{+-}0.2{+-}1.0 e{sup 2}fm{sup 4}, or about 1.5 Weisskopf units. The mean lifetime of the first 2{sup +} state in {sup 16}C was remeasured to be 18.3{+-}1.4{+-}4.8 ps, about four times shorter than the value reported previously. The discrepancy is explained by incorporating the {gamma} -ray angular distribution obtained in this work into the previous measurement. The observed transition strengths in {sup 16,18}C are hindered compared to the empirical values, indicating that the anomalous E2 strength observed in {sup 16}C persists in {sup 18}C. (orig.)

  15. Kuramoto-type phase transition with metronomes

    International Nuclear Information System (INIS)

    Boda, Sz; Ujvári, Sz; Tunyagi, A; Néda, Z

    2013-01-01

    Metronomes placed on the perimeter of a disc-shaped platform, which can freely rotate in a horizontal plane, are used for a simple classroom illustration of the Kuramoto-type phase transition. The rotating platform induces a global coupling between the metronomes, and the strength of this coupling can be varied by tilting the metronomes’ swinging plane relative to the radial direction on the disc. As a function of the tilting angle, a transition from spontaneously synchronized to unsynchronized states is observable. By varying the number of metronomes on the disc, finite-size effects are also exemplified. A realistic theoretical model is introduced and used to reproduce the observed results. Computer simulations of this model allow a detailed investigation of the emerging collective behaviour in this system. (paper)

  16. Analysis of transitions at two-fold redundant sites in mammalian genomes. Transition redundant approach-to-equilibrium (TREx distance metrics

    Directory of Open Access Journals (Sweden)

    Liberles David A

    2006-03-01

    Full Text Available Abstract Background The exchange of nucleotides at synonymous sites in a gene encoding a protein is believed to have little impact on the fitness of a host organism. This should be especially true for synonymous transitions, where a pyrimidine nucleotide is replaced by another pyrimidine, or a purine is replaced by another purine. This suggests that transition redundant exchange (TREx processes at the third position of conserved two-fold codon systems might offer the best approximation for a neutral molecular clock, serving to examine, within coding regions, theories that require neutrality, determine whether transition rate constants differ within genes in a single lineage, and correlate dates of events recorded in genomes with dates in the geological and paleontological records. To date, TREx analysis of the yeast genome has recognized correlated duplications that established a new metabolic strategies in fungi, and supported analyses of functional change in aromatases in pigs. TREx dating has limitations, however. Multiple transitions at synonymous sites may cause equilibration and loss of information. Further, to be useful to correlate events in the genomic record, different genes within a genome must suffer transitions at similar rates. Results A formalism to analyze divergence at two fold redundant codon systems is presented. This formalism exploits two-state approach-to-equilibrium kinetics from chemistry. This formalism captures, in a single equation, the possibility of multiple substitutions at individual sites, avoiding any need to "correct" for these. The formalism also connects specific rate constants for transitions to specific approximations in an underlying evolutionary model, including assumptions that transition rate constants are invariant at different sites, in different genes, in different lineages, and at different times. Therefore, the formalism supports analyses that evaluate these approximations. Transitions at synonymous

  17. Nuclear structure properties and stellar weak rates for 76Se: Unblocking of the Gamow Teller strength

    Science.gov (United States)

    Nabi, Jameel-Un; Ishfaq, Mavra; Böyükata, Mahmut; Riaz, Muhammad

    2017-10-01

    At finite temperatures (≥ 107K), 76Se is abundant in the core of massive stars and electron capture on 76Se has a consequential role to play in the dynamics of core-collapse. The present work may be classified into two main categories. In the first phase we study the nuclear structure properties of 76Se using the interacting boson model-1 (IBM-1). The IBM-1 investigations include the energy levels, B (E 2) values and the prediction of the geometry. We performed the extended consistent-Q formalism (ECQF) calculation and later the triaxial formalism calculation (constructed by adding the cubic term to the ECQF). The geometry of 76Se can be envisioned within the formalism of the potential energy surface based on the classical limit of IBM-1 model. In the second phase, we reconfirm the unblocking of the Gamow-Teller (GT) strength in 76Se (a test case for nuclei having N > 40 and Z fashion. Results are compared with experimental data and previous calculations. The calculated GT distribution fulfills the Ikeda sum rule. Rates for β-delayed neutrons and emission probabilities are also calculated. Our study suggests that at high stellar temperatures and low densities, the β+-decay on 76Se should not be neglected and needs to be taken into consideration along with electron capture rates for simulation of presupernova evolution of massive stars.

  18. Combined strength and endurance training in competitive swimmers.

    Science.gov (United States)

    Aspenes, Stian; Kjendlie, Per-Ludvik; Hoff, Jan; Helgerud, Jan

    2009-01-01

    A combined intervention of strength and endurance training is common practice in elite swimming training, but the scientific evidence is scarce. The influences between strength and endurance training have been investigated in other sports but the findings are scattered. Some state the interventions are negative to each other, some state there is no negative relationship and some find bisected and supplementary benefits from the combination when training is applied appropriately. The aim of this study was to investigate the impact of a combined intervention among competitive swimmers. 20 subjects assigned to a training intervention group (n = 11) or a control group (n = 9) from two different teams completed the study. Anthropometrical data, tethered swimming force, land strength, performance in 50m, 100m and 400m, work economy, peak oxygen uptake, stroke length and stroke rate were investigated in all subjects at pre- and post-test. A combined intervention of maximal strength and high aerobic intensity interval endurance training 2 sessions per week over 11 weeks in addition to regular training were used, while the control group continued regular practice with their respective teams. The intervention group improved land strength, tethered swimming force and 400m freestyle performance more than the control group. The improvement of the 400m was correlated with the improvement of tethered swimming force in the female part of the intervention group. No change occurred in stroke length, stroke rate, performance in 50m or 100m, swimming economy or peak oxygen uptake during swimming. Two weekly dry-land strength training sessions for 11 weeks increase tethered swimming force in competitive swimmers. This increment further improves middle distance swimming performance. 2 weekly sessions of high- intensity interval training does not improve peak oxygen uptake compared with other competitive swimmers. Key pointsTwo weekly sessions of dry land strength training improves the

  19. Study of photon strength functions via (γ→, γ', γ″) reactions at the γ3-setup

    Science.gov (United States)

    Isaak, Johann; Savran, Deniz; Beck, Tobias; Gayer, Udo; Krishichayan; Löher, Bastian; Pietralla, Norbert; Scheck, Marcus; Tornow, Werner; Werner, Volker; Zilges, Andreas

    2018-05-01

    One of the basic ingredients for the modelling of the nucleosynthesis of heavy elements are so-called photon strength functions and the assumption of the Brink-Axel hypothesis. This hypothesis has been studied for many years by numerous experiments using different and complementary reactions. The present manuscript aims to introduce a model-independent approach to study photon strength functions via γ-γ coincidence spectroscopy of photoexcited states in 128Te. The experimental results provide evidence that the photon strength function extracted from photoabsorption cross sections is not in an overall agreement with the one determined from direct transitions to low-lying excited states.

  20. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.