International Nuclear Information System (INIS)
Gharari, Rahman; Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi
2016-01-01
In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor
Energy Technology Data Exchange (ETDEWEB)
Gharari, Rahman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi [Nuclear Engineering Dept, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)
2016-10-15
In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.
Strength Pareto Evolutionary Algorithm using Self-Organizing Data Analysis Techniques
Directory of Open Access Journals (Sweden)
Ionut Balan
2015-03-01
Full Text Available Multiobjective optimization is widely used in problems solving from a variety of areas. To solve such problems there was developed a set of algorithms, most of them based on evolutionary techniques. One of the algorithms from this class, which gives quite good results is SPEA2, method which is the basis of the proposed algorithm in this paper. Results from this paper are obtained by running these two algorithms on a flow-shop problem.
Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.
Elhossini, Ahmed; Areibi, Shawki; Dony, Robert
2010-01-01
This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning
International Nuclear Information System (INIS)
Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew
2011-01-01
Purpose: In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. Methods: pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. Results: pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.
Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew
2011-09-01
In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows promise in optimizing the number
Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells.
Tendler, Avichai; Mayo, Avraham; Alon, Uri
2015-03-07
Organisms that need to perform multiple tasks face a fundamental tradeoff: no design can be optimal at all tasks at once. Recent theory based on Pareto optimality showed that such tradeoffs lead to a highly defined range of phenotypes, which lie in low-dimensional polyhedra in the space of traits. The vertices of these polyhedra are called archetypes- the phenotypes that are optimal at a single task. To rigorously test this theory requires measurements of thousands of species over hundreds of millions of years of evolution. Ammonoid fossil shells provide an excellent model system for this purpose. Ammonoids have a well-defined geometry that can be parameterized using three dimensionless features of their logarithmic-spiral-shaped shells. Their evolutionary history includes repeated mass extinctions. We find that ammonoids fill out a pyramid in morphospace, suggesting five specific tasks - one for each vertex of the pyramid. After mass extinctions, surviving species evolve to refill essentially the same pyramid, suggesting that the tasks are unchanging. We infer putative tasks for each archetype, related to economy of shell material, rapid shell growth, hydrodynamics and compactness. These results support Pareto optimality theory as an approach to study evolutionary tradeoffs, and demonstrate how this approach can be used to infer the putative tasks that may shape the natural selection of phenotypes.
Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah
2017-04-20
This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.
An Evolutionary Efficiency Alternative to the Notion of Pareto Efficiency
I.P. van Staveren (Irene)
2012-01-01
textabstractThe paper argues that the notion of Pareto efficiency builds on two normative assumptions: the more general consequentialist norm of any efficiency criterion, and the strong no-harm principle of the prohibition of any redistribution during the economic process that hurts at least one
Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio
2010-05-01
This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.
Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart
2010-01-01
Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.
Othman, Muhammad Murtadha; Abd Rahman, Nurulazmi; Musirin, Ismail; Fotuhi-Firuzabad, Mahmud; Rajabi-Ghahnavieh, Abbas
2015-01-01
This paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE) in various conditions. Eventually, the power transfer based available transfer capability (ATC) is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.
Directory of Open Access Journals (Sweden)
Muhammad Murtadha Othman
2015-01-01
Full Text Available This paper introduces a novel multiobjective approach for capacity benefit margin (CBM assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE in various conditions. Eventually, the power transfer based available transfer capability (ATC is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.
Jiang, Shouyong; Yang, Shengxiang
2016-02-01
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.
Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan
2018-03-01
In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.
Saborido, Rubén; Ruiz, Ana B; Luque, Mariano
2017-01-01
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.
2013-01-01
In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility
2011-01-01
Itaalia majandusteadlase Vilfredo Pareto jõudmisest oma kuulsa printsiibini ja selle printsiibi mõjust tänapäevasele juhtimisele. Pareto printsiibi kohaselt ei aita suurem osa tegevusest meid tulemuseni jõuda, vaid on aja raiskamine. Diagramm
Universal scaling for the dilemma strength in evolutionary games
Wang, Zhen; Kokubo, Satoshi; Jusup, Marko; Tanimoto, Jun
2015-09-01
Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research
Pareto optimal pairwise sequence alignment.
DeRonne, Kevin W; Karypis, George
2013-01-01
Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.
DEFF Research Database (Denmark)
Mozaffari, Ahmad; Gorji-Bandpy, Mofid; Samadian, Pendar
2013-01-01
Optimizing and controlling of complex engineering systems is a phenomenon that has attracted an incremental interest of numerous scientists. Until now, a variety of intelligent optimizing and controlling techniques such as neural networks, fuzzy logic, game theory, support vector machines...... and stochastic algorithms were proposed to facilitate controlling of the engineering systems. In this study, an extended version of mutable smart bee algorithm (MSBA) called Pareto based mutable smart bee (PBMSB) is inspired to cope with multi-objective problems. Besides, a set of benchmark problems and four...... well-known Pareto based optimizing algorithms i.e. multi-objective bee algorithm (MOBA), multi-objective particle swarm optimization (MOPSO) algorithm, non-dominated sorting genetic algorithm (NSGA-II), and strength Pareto evolutionary algorithm (SPEA 2) are utilized to confirm the acceptable...
Strengths and Weaknesses of McNamara's Evolutionary Psychological Model of Dreaming
Directory of Open Access Journals (Sweden)
Sandra Olliges
2010-10-01
Full Text Available This article includes a brief overview of McNamara's (2004 evolutionary model of dreaming. The strengths and weaknesses of this model are then evaluated in terms of its consonance with measurable neurological and biological properties of dreaming, its fit within the tenets of evolutionary theories of dreams, and its alignment with evolutionary concepts of cooperation and spirituality. McNamara's model focuses primarily on dreaming that occurs during rapid eye movement (REM sleep; therefore this article also focuses on REM dreaming.
A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2013-01-01
Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.
Directory of Open Access Journals (Sweden)
J. L. Guardado
2014-01-01
Full Text Available Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2 and the Nondominated Sorting Genetic Algorithm II (NSGA-II. The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.
Guardado, J L; Rivas-Davalos, F; Torres, J; Maximov, S; Melgoza, E
2014-01-01
Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD) technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the Nondominated Sorting Genetic Algorithm II (NSGA-II). The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.
Improving Polyp Detection Algorithms for CT Colonography: Pareto Front Approach.
Huang, Adam; Li, Jiang; Summers, Ronald M; Petrick, Nicholas; Hara, Amy K
2010-03-21
We investigated a Pareto front approach to improving polyp detection algorithms for CT colonography (CTC). A dataset of 56 CTC colon surfaces with 87 proven positive detections of 53 polyps sized 4 to 60 mm was used to evaluate the performance of a one-step and a two-step curvature-based region growing algorithm. The algorithmic performance was statistically evaluated and compared based on the Pareto optimal solutions from 20 experiments by evolutionary algorithms. The false positive rate was lower (pPareto optimization process can effectively help in fine-tuning and redesigning polyp detection algorithms.
Evolutionary trade-offs in plants mediate the strength of trophic cascades.
Mooney, Kailen A; Halitschke, Rayko; Kessler, Andre; Agrawal, Anurag A
2010-03-26
Predators determine herbivore and plant biomass via so-called trophic cascades, and the strength of such effects is influenced by ecosystem productivity. To determine whether evolutionary trade-offs among plant traits influence patterns of trophic control, we manipulated predators and soil fertility and measured impacts of a major herbivore (the aphid Aphis nerii) on 16 milkweed species (Asclepias spp.) in a phylogenetic field experiment. Herbivore density was determined by variation in predation and trade-offs between herbivore resistance and plant growth strategy. Neither herbivore density nor predator effects on herbivores predicted the cascading effects of predators on plant biomass. Instead, cascade strength was strongly and positively associated with milkweed response to soil fertility. Accordingly, contemporary patterns of trophic control are driven by evolutionary convergent trade-offs faced by plants.
Active learning of Pareto fronts.
Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto
2014-03-01
This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.
Directory of Open Access Journals (Sweden)
Kareema Abed Al-Kadim
2017-12-01
Full Text Available In this paper Rayleigh Pareto distribution have introduced denote by( R_PD. We stated some useful functions. Therefor we give some of its properties like the entropy function, mean, mode, median , variance , the r-th moment about the mean, the rth moment about the origin, reliability, hazard functions, coefficients of variation, of sekeness and of kurtosis. Finally, we estimate the parameters so the aim of this search is to introduce a new distribution
GENERALIZED DOUBLE PARETO SHRINKAGE.
Armagan, Artin; Dunson, David B; Lee, Jaeyong
2013-01-01
We propose a generalized double Pareto prior for Bayesian shrinkage estimation and inferences in linear models. The prior can be obtained via a scale mixture of Laplace or normal distributions, forming a bridge between the Laplace and Normal-Jeffreys' priors. While it has a spike at zero like the Laplace density, it also has a Student's t -like tail behavior. Bayesian computation is straightforward via a simple Gibbs sampling algorithm. We investigate the properties of the maximum a posteriori estimator, as sparse estimation plays an important role in many problems, reveal connections with some well-established regularization procedures, and show some asymptotic results. The performance of the prior is tested through simulations and an application.
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
DEFF Research Database (Denmark)
Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei
2003-01-01
Large databases that can be used in the search for new materials with specific properties remain an elusive goal in materials science. The problem is complicated by the fact that the optimal material for a given application is usually a compromise between a number of materials properties and the ......Large databases that can be used in the search for new materials with specific properties remain an elusive goal in materials science. The problem is complicated by the fact that the optimal material for a given application is usually a compromise between a number of materials properties...... and the cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory......, the Pareto-optimal set, to determine optimal alloy solutions for the compromise between low compressibility, high stability, and cost....
The influence of tie strength on evolutionary games on networks: An empirical investigation
Buesser, Pierre; Peña, Jorge; Pestelacci, Enea; Tomassini, Marco
2011-11-01
Extending previous work on unweighted networks, we present here a systematic numerical investigation of standard evolutionary games on weighted networks. In the absence of any reliable model for generating weighted social networks, we attribute weights to links in a few ways supported by empirical data ranging from totally uncorrelated to weighted bipartite networks. The results of the extensive simulation work on standard complex network models show that, except in a case that does not seem to be common in social networks, taking the tie strength into account does not change in a radical manner the long-run steady-state behavior of the studied games. Besides model networks, we also included a real-life case drawn from a coauthorship network. In this case also, taking the weights into account only changes the results slightly with respect to the raw unweighted graph, although to draw more reliable conclusions on real social networks many more cases should be studied as these weighted networks become available.
Park, Matthew H; Banks, Taylor A; Nelson, Michael R
2016-03-01
The practice parameters for allergy and immunology (A/I) are a valuable tool guiding practitioners' clinical practice. The A/I practice parameters have evolved over time in the context of evidence-based medicine milestones. To identify evolutionary trends in the character, scope, and evidence underlying recommendations in the A/I practice parameters. Practice parameters that have guided A/I from 1995 through 2014 were analyzed. Statements and recommendations with strength of recommendation categories A and B were considered to have a basis in evidence from controlled trials. Forty-three publications and updates covering 25 unique topics were identified. There was great variability in the number of recommendations made and the proportion of statements with controlled trial evidence. The mean number of recommendations made per practice parameter has decreased significantly, from 95.8 to a mean of 38.3. There also is a trend toward an increased proportion of recommendations based on controlled trial evidence in practice parameters with fewer recommendations, with a mean of 30.7% in practice parameters with at least 100 recommendations based on controlled trial evidence compared with 48.3% in practice parameters with 30 to 100 recommendations and 51.0% in those with fewer than 30 recommendations. The A/I practice parameters have evolved significantly over time. Encouragingly, greater controlled trial evidence is associated with updated practice parameters and a recent trend of more narrowly focused topics. These findings should only bolster and inspire confidence in the utility of the A/I practice parameters in assisting practitioners to navigate through the uncertainty that is intrinsic to medicine in making informed decisions with patients. Published by Elsevier Inc.
Pareto-optimal phylogenetic tree reconciliation.
Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S; Kellis, Manolis
2014-06-15
Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. . © The Author 2014. Published by Oxford University Press.
Wang, Zhen; Kokubo, Satoshi; Jusup, Marko; Tanimoto, Jun
2015-09-01
While comprehensive reviews of the literature, by gathering in one place most of the relevant information, undoubtedly steer the development of every scientific field, we found that the comments in response to a review article can be as informative as the review itself, if not more. Namely, reading through the comments on the ideas expressed in Ref. [1], we could identify a number of pressing problems for evolutionary game theory, indicating just how much space there still is for major advances and breakthroughs. In an attempt to bring a sense of order to a multitude of opinions, we roughly classified the comments into three categories, i.e. those concerned with: (i) the universality of scaling in heterogeneous topologies, including empirical dynamic networks [2-8], (ii) the universality of scaling for more general game setups, such as the inclusion of multiple strategies and external features [4,9-11], and (iii) experimental confirmations of the theoretical developments [2,12,13].
On the Truncated Pareto Distribution with applications
Zaninetti, Lorenzo; Ferraro, Mario
2008-01-01
The Pareto probability distribution is widely applied in different fields such us finance, physics, hydrology, geology and astronomy. This note deals with an application of the Pareto distribution to astrophysics and more precisely to the statistical analysis of mass of stars and of diameters of asteroids. In particular a comparison between the usual Pareto distribution and its truncated version is presented. Finally a possible physical mechanism that produces Pareto tails for the distributio...
Record Values of a Pareto Distribution.
Ahsanullah, M.
The record values of the Pareto distribution, labelled Pareto (II) (alpha, beta, nu), are reviewed. The best linear unbiased estimates of the parameters in terms of the record values are provided. The prediction of the sth record value based on the first m (s>m) record values are obtained. A classical Pareto distribution provides reasonably…
Pareto law and Pareto index in the income distribution of Japanese companies
Ishikawa, Atushi
2004-01-01
In order to study the phenomenon in detail that income distribution follows Pareto law, we analyze the database of high income companies in Japan. We find a quantitative relation between the average capital of the companies and the Pareto index. The larger the average capital becomes, the smaller the Pareto index becomes. From this relation, we can possibly explain that the Pareto index of company income distribution hardly changes, while the Pareto index of personal income distribution chang...
Pareto optimization in algebraic dynamic programming.
Saule, Cédric; Giegerich, Robert
2015-01-01
Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.
Existence of pareto equilibria for multiobjective games without compactness
Shiraishi, Yuya; Kuroiwa, Daishi
2013-01-01
In this paper, we investigate the existence of Pareto and weak Pareto equilibria for multiobjective games without compactness. By employing an existence theorem of Pareto equilibria due to Yu and Yuan([10]), several existence theorems of Pareto and weak Pareto equilibria for the multiobjective games are established in a similar way to Flores-B´azan.
International Nuclear Information System (INIS)
Ferreira, Jose C.; Gaspar-Cunha, Antonio; Fonseca, Carlos M.
2007-01-01
Most of the real world optimization problems involve multiple, usually conflicting, optimization criteria. Generating Pareto optimal solutions plays an important role in multi-objective optimization, and the problem is considered to be solved when the Pareto optimal set is found, i.e., the set of non-dominated solutions. Multi-Objective Evolutionary Algorithms based on the principle of Pareto optimality are designed to produce the complete set of non-dominated solutions. However, this is not allays enough since the aim is not only to know the Pareto set but, also, to obtain one solution from this Pareto set. Thus, the definition of a methodology able to select a single solution from the set of non-dominated solutions (or a region of the Pareto frontier), and taking into account the preferences of a Decision Maker (DM), is necessary. A different method, based on a weighted stress function, is proposed. It is able to integrate the user's preferences in order to find the best region of the Pareto frontier accordingly with these preferences. This method was tested on some benchmark test problems, with two and three criteria, and on a polymer extrusion problem. This methodology is able to select efficiently the best Pareto-frontier region for the specified relative importance of the criteria
The exponentiated generalized Pareto distribution | Adeyemi | Ife ...
African Journals Online (AJOL)
Recently Gupta et al. (1998) introduced the exponentiated exponential distribution as a generalization of the standard exponential distribution. In this paper, we introduce a three-parameter generalized Pareto distribution, the exponentiated generalized Pareto distribution (EGP). We present a comprehensive treatment of the ...
Pareto fronts in clinical practice for pinnacle.
Janssen, Tomas; van Kesteren, Zdenko; Franssen, Gijs; Damen, Eugène; van Vliet, Corine
2013-03-01
Our aim was to develop a framework to objectively perform treatment planning studies using Pareto fronts. The Pareto front represents all optimal possible tradeoffs among several conflicting criteria and is an ideal tool with which to study the possibilities of a given treatment technique. The framework should require minimal user interaction and should resemble and be applicable to daily clinical practice. To generate the Pareto fronts, we used the native scripting language of Pinnacle(3) (Philips Healthcare, Andover, MA). The framework generates thousands of plans automatically from which the Pareto front is generated. As an example, the framework is applied to compare intensity modulated radiation therapy (IMRT) with volumetric modulated arc therapy (VMAT) for prostate cancer patients. For each patient and each technique, 3000 plans are generated, resulting in a total of 60,000 plans. The comparison is based on 5-dimensional Pareto fronts. Generating 3000 plans for 10 patients in parallel requires on average 96 h for IMRT and 483 hours for VMAT. Using VMAT, compared to IMRT, the maximum dose of the boost PTV was reduced by 0.4 Gy (P=.074), the mean dose in the anal sphincter by 1.6 Gy (P=.055), the conformity index of the 95% isodose (CI(95%)) by 0.02 (P=.005), and the rectal wall V(65 Gy) by 1.1% (P=.008). We showed the feasibility of automatically generating Pareto fronts with Pinnacle(3). Pareto fronts provide a valuable tool for performing objective comparative treatment planning studies. We compared VMAT with IMRT in prostate patients and found VMAT had a dosimetric advantage over IMRT. Copyright © 2013 Elsevier Inc. All rights reserved.
Pareto Fronts in Clinical Practice for Pinnacle
International Nuclear Information System (INIS)
Janssen, Tomas; Kesteren, Zdenko van; Franssen, Gijs; Damen, Eugène; Vliet, Corine van
2013-01-01
Purpose: Our aim was to develop a framework to objectively perform treatment planning studies using Pareto fronts. The Pareto front represents all optimal possible tradeoffs among several conflicting criteria and is an ideal tool with which to study the possibilities of a given treatment technique. The framework should require minimal user interaction and should resemble and be applicable to daily clinical practice. Methods and Materials: To generate the Pareto fronts, we used the native scripting language of Pinnacle 3 (Philips Healthcare, Andover, MA). The framework generates thousands of plans automatically from which the Pareto front is generated. As an example, the framework is applied to compare intensity modulated radiation therapy (IMRT) with volumetric modulated arc therapy (VMAT) for prostate cancer patients. For each patient and each technique, 3000 plans are generated, resulting in a total of 60,000 plans. The comparison is based on 5-dimensional Pareto fronts. Results: Generating 3000 plans for 10 patients in parallel requires on average 96 h for IMRT and 483 hours for VMAT. Using VMAT, compared to IMRT, the maximum dose of the boost PTV was reduced by 0.4 Gy (P=.074), the mean dose in the anal sphincter by 1.6 Gy (P=.055), the conformity index of the 95% isodose (CI 95% ) by 0.02 (P=.005), and the rectal wall V 65 Gy by 1.1% (P=.008). Conclusions: We showed the feasibility of automatically generating Pareto fronts with Pinnacle 3 . Pareto fronts provide a valuable tool for performing objective comparative treatment planning studies. We compared VMAT with IMRT in prostate patients and found VMAT had a dosimetric advantage over IMRT
Pareto-Optimal Estimates of California Precipitation Change
Langenbrunner, Baird; Neelin, J. David
2017-12-01
In seeking constraints on global climate model projections under global warming, one commonly finds that different subsets of models perform well under different objective functions, and these trade-offs are difficult to weigh. Here a multiobjective approach is applied to a large set of subensembles generated from the Climate Model Intercomparison Project phase 5 ensemble. We use observations and reanalyses to constrain tropical Pacific sea surface temperatures, upper level zonal winds in the midlatitude Pacific, and California precipitation. An evolutionary algorithm identifies the set of Pareto-optimal subensembles across these three measures, and these subensembles are used to constrain end-of-century California wet season precipitation change. This methodology narrows the range of projections throughout California, increasing confidence in estimates of positive mean precipitation change. Finally, we show how this technique complements and generalizes emergent constraint approaches for restricting uncertainty in end-of-century projections within multimodel ensembles using multiple criteria for observational constraints.
Efficiently approximating the Pareto frontier: Hydropower dam placement in the Amazon basin
Wu, Xiaojian; Gomes-Selman, Jonathan; Shi, Qinru; Xue, Yexiang; Garcia-Villacorta, Roosevelt; Anderson, Elizabeth; Sethi, Suresh; Steinschneider, Scott; Flecker, Alexander; Gomes, Carla P.
2018-01-01
Real–world problems are often not fully characterized by a single optimal solution, as they frequently involve multiple competing objectives; it is therefore important to identify the so-called Pareto frontier, which captures solution trade-offs. We propose a fully polynomial-time approximation scheme based on Dynamic Programming (DP) for computing a polynomially succinct curve that approximates the Pareto frontier to within an arbitrarily small > 0 on treestructured networks. Given a set of objectives, our approximation scheme runs in time polynomial in the size of the instance and 1/. We also propose a Mixed Integer Programming (MIP) scheme to approximate the Pareto frontier. The DP and MIP Pareto frontier approaches have complementary strengths and are surprisingly effective. We provide empirical results showing that our methods outperform other approaches in efficiency and accuracy. Our work is motivated by a problem in computational sustainability concerning the proliferation of hydropower dams throughout the Amazon basin. Our goal is to support decision-makers in evaluating impacted ecosystem services on the full scale of the Amazon basin. Our work is general and can be applied to approximate the Pareto frontier of a variety of multiobjective problems on tree-structured networks.
Post Pareto optimization-A case
Popov, Stoyan; Baeva, Silvia; Marinova, Daniela
2017-12-01
Simulation performance may be evaluated according to multiple quality measures that are in competition and their simultaneous consideration poses a conflict. In the current study we propose a practical framework for investigating such simulation performance criteria, exploring the inherent conflicts amongst them and identifying the best available tradeoffs, based upon multi-objective Pareto optimization. This approach necessitates the rigorous derivation of performance criteria to serve as objective functions and undergo vector optimization. We demonstrate the effectiveness of our proposed approach by applying it with multiple stochastic quality measures. We formulate performance criteria of this use-case, pose an optimization problem, and solve it by means of a simulation-based Pareto approach. Upon attainment of the underlying Pareto Frontier, we analyze it and prescribe preference-dependent configurations for the optimal simulation training.
Pareto versus lognormal: a maximum entropy test.
Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano
2011-08-01
It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.
Energy Technology Data Exchange (ETDEWEB)
2016-12-21
The JMP Add-In TopN-PFS provides an automated tool for finding layered Pareto front to identify the top N solutions from an enumerated list of candidates subject to optimizing multiple criteria. The approach constructs the N layers of Pareto fronts, and then provides a suite of graphical tools to explore the alternatives based on different prioritizations of the criteria. The tool is designed to provide a set of alternatives from which the decision-maker can select the best option for their study goals.
Robust bayesian inference of generalized Pareto distribution ...
African Journals Online (AJOL)
En utilisant une etude exhaustive de Monte Carlo, nous prouvons que, moyennant une fonction perte generalisee adequate, on peut construire un estimateur Bayesien robuste du modele. Key words: Bayesian estimation; Extreme value; Generalized Fisher information; Gener- alized Pareto distribution; Monte Carlo; ...
Axiomatizations of Pareto Equilibria in Multicriteria Games
Voorneveld, M.; Vermeulen, D.; Borm, P.E.M.
1997-01-01
We focus on axiomatizations of the Pareto equilibrium concept in multicriteria games based on consistency.Axiomatizations of the Nash equilibrium concept by Peleg and Tijs (1996) and Peleg, Potters, and Tijs (1996) have immediate generalizations.The axiomatization of Norde et al.(1996) cannot be
Pareto optimality in organelle energy metabolism analysis.
Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe
2013-01-01
In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.
How Well Do We Know Pareto Optimality?
Mathur, Vijay K.
1991-01-01
Identifies sources of ambiguity in economics textbooks' discussion of the condition for efficient output mix. Points out that diverse statements without accompanying explanations create confusion among students. Argues that conflicting views concerning the concept of Pareto optimality as one source of ambiguity. Suggests clarifying additions to…
Performance-based Pareto optimal design
Sariyildiz, I.S.; Bittermann, M.S.; Ciftcioglu, O.
2008-01-01
A novel approach for performance-based design is presented, where Pareto optimality is pursued. Design requirements may contain linguistic information, which is difficult to bring into computation or make consistent their impartial estimations from case to case. Fuzzy logic and soft computing are
van Zyl, J. Martin
2012-01-01
Random variables of the generalized Pareto distribution, can be transformed to that of the Pareto distribution. Explicit expressions exist for the maximum likelihood estimators of the parameters of the Pareto distribution. The performance of the estimation of the shape parameter of generalized Pareto distributed using transformed observations, based on the probability weighted method is tested. It was found to improve the performance of the probability weighted estimator and performs good wit...
Implementation of an evolutionary algorithm in planning investment in a power distribution system
Directory of Open Access Journals (Sweden)
Carlos Andrés García Montoya
2011-06-01
Full Text Available The definition of an investment plan to implement in a distribution power system, is a task that constantly faced by utilities. This work presents a methodology for determining the investment plan for a distribution power system under a shortterm, using as a criterion for evaluating investment projects, associated costs and customers benefit from its implementation. Given the number of projects carried out annually on the system, the definition of an investment plan requires the use of computational tools to evaluate, a set of possibilities, the one that best suits the needs of the present system and better results. That is why in the job, implementing a multi objective evolutionary algorithm SPEA (Strength Pareto Evolutionary Algorithm, which, based on the principles of Pareto optimality, it deliver to the planning expert, the best solutions found in the optimization process. The performance of the algorithm is tested using a set of projects to determine the best among the possible plans. We analyze also the effect of operators on the performance of evolutionary algorithm and results.
Evaluation of Preanalytical Quality Indicators by Six Sigma and Pareto`s Principle.
Kulkarni, Sweta; Ramesh, R; Srinivasan, A R; Silvia, C R Wilma Delphine
2018-01-01
Preanalytical steps are the major sources of error in clinical laboratory. The analytical errors can be corrected by quality control procedures but there is a need for stringent quality checks in preanalytical area as these processes are done outside the laboratory. Sigma value depicts the performance of laboratory and its quality measures. Hence in the present study six sigma and Pareto principle was applied to preanalytical quality indicators to evaluate the clinical biochemistry laboratory performance. This observational study was carried out for a period of 1 year from November 2015-2016. A total of 1,44,208 samples and 54,265 test requisition forms were screened for preanalytical errors like missing patient information, sample collection details in forms and hemolysed, lipemic, inappropriate, insufficient samples and total number of errors were calculated and converted into defects per million and sigma scale. Pareto`s chart was drawn using total number of errors and cumulative percentage. In 75% test requisition forms diagnosis was not mentioned and sigma value of 0.9 was obtained and for other errors like sample receiving time, stat and type of sample sigma values were 2.9, 2.6, and 2.8 respectively. For insufficient sample and improper ratio of blood to anticoagulant sigma value was 4.3. Pareto`s chart depicts out of 80% of errors in requisition forms, 20% is contributed by missing information like diagnosis. The development of quality indicators, application of six sigma and Pareto`s principle are quality measures by which not only preanalytical, the total testing process can be improved.
Pareto front estimation for decision making.
Giagkiozis, Ioannis; Fleming, Peter J
2014-01-01
The set of available multi-objective optimisation algorithms continues to grow. This fact can be partially attributed to their widespread use and applicability. However, this increase also suggests several issues remain to be addressed satisfactorily. One such issue is the diversity and the number of solutions available to the decision maker (DM). Even for algorithms very well suited for a particular problem, it is difficult-mainly due to the computational cost-to use a population large enough to ensure the likelihood of obtaining a solution close to the DM's preferences. In this paper we present a novel methodology that produces additional Pareto optimal solutions from a Pareto optimal set obtained at the end run of any multi-objective optimisation algorithm for two-objective and three-objective problem instances.
Multiclass gene selection using Pareto-fronts.
Rajapakse, Jagath C; Mundra, Piyushkumar A
2013-01-01
Filter methods are often used for selection of genes in multiclass sample classification by using microarray data. Such techniques usually tend to bias toward a few classes that are easily distinguishable from other classes due to imbalances of strong features and sample sizes of different classes. It could therefore lead to selection of redundant genes while missing the relevant genes, leading to poor classification of tissue samples. In this manuscript, we propose to decompose multiclass ranking statistics into class-specific statistics and then use Pareto-front analysis for selection of genes. This alleviates the bias induced by class intrinsic characteristics of dominating classes. The use of Pareto-front analysis is demonstrated on two filter criteria commonly used for gene selection: F-score and KW-score. A significant improvement in classification performance and reduction in redundancy among top-ranked genes were achieved in experiments with both synthetic and real-benchmark data sets.
Pareto vs Simmel: residui ed emozioni
Directory of Open Access Journals (Sweden)
Silvia Fornari
2017-08-01
Full Text Available A cento anni dalla pubblicazione del Trattato di sociologia generale (Pareto 1988 siamo a mantenere vivo ed attuale lo studio paretiano con una rilettura contemporanea del suo pensiero. Ricordato per la grande versatilità intellettuale dagli economisti, rimane lo scienziato rigoroso ed analitico i cui contributi sono ancora discussi a livello internazionale. Noi ne analizzeremo gli aspetti che l’hanno portato ad avvicinarsi all’approccio sociologico, con l’introduzione della nota distinzione dell’azione sociale: logica e non-logica. Una dicotomia utilizzata per dare conto dei cambiamenti sociali riguardanti le modalità d’azione degli uomini e delle donne. Com’è noto le azioni logiche sono quelle che riguardano comportamenti mossi da logicità e raziocinio, in cui vi è una diretta relazione causa-effetto, azioni oggetto di studio degli economisti, e di cui non si occupano i sociologi. Le azioni non-logiche riguardano tutte le tipologie di agire umano che rientrano nel novero delle scienze sociali, e che rappresentano la parte più ampia dell’agire sociale. Sono le azioni guidate dai sentimenti, dall’emotività, dalla superstizione, ecc., illustrate da Pareto nel Trattato di sociologia generale e in saggi successivi, dove riprende anche il concetto di eterogenesi dei fini, formulato per la prima volta da Giambattista Vico. Concetto secondo il quale la storia umana, pur conservando in potenza la realizzazione di certi fini, non è lineare e lungo il suo percorso evolutivo può accadere che l’uomo nel tentativo di raggiungere una finalità arrivi a conclusioni opposte. Pareto collega la definizione del filosofo napoletano alle tipologie di azione sociale e alla loro distinzione (logiche, non-logiche. L’eterogenesi dei fini per Pareto è dunque l’esito di un particolare tipo di azione non-logica dell’essere umano e della collettività.
Monopoly, Pareto and Ramsey mark-ups
Ten Raa, T.
2009-01-01
Monopoly prices are too high. It is a price level problem, in the sense that the relative mark-ups have Ramsey optimal proportions, at least for independent constant elasticity demands. I show that this feature of monopoly prices breaks down the moment one demand is replaced by the textbook linear demand or, even within the constant elasticity framework, dependence is introduced. The analysis provides a single Generalized Inverse Elasticity Rule for the problems of monopoly, Pareto and Ramsey.
RNA-Pareto: interactive analysis of Pareto-optimal RNA sequence-structure alignments.
Schnattinger, Thomas; Schöning, Uwe; Marchfelder, Anita; Kestler, Hans A
2013-12-01
Incorporating secondary structure information into the alignment process improves the quality of RNA sequence alignments. Instead of using fixed weighting parameters, sequence and structure components can be treated as different objectives and optimized simultaneously. The result is not a single, but a Pareto-set of equally optimal solutions, which all represent different possible weighting parameters. We now provide the interactive graphical software tool RNA-Pareto, which allows a direct inspection of all feasible results to the pairwise RNA sequence-structure alignment problem and greatly facilitates the exploration of the optimal solution set.
Pareto Optimal Design for Synthetic Biology.
Patanè, Andrea; Santoro, Andrea; Costanza, Jole; Carapezza, Giovanni; Nicosia, Giuseppe
2015-08-01
Recent advances in synthetic biology call for robust, flexible and efficient in silico optimization methodologies. We present a Pareto design approach for the bi-level optimization problem associated to the overproduction of specific metabolites in Escherichia coli. Our method efficiently explores the high dimensional genetic manipulation space, finding a number of trade-offs between synthetic and biological objectives, hence furnishing a deeper biological insight to the addressed problem and important results for industrial purposes. We demonstrate the computational capabilities of our Pareto-oriented approach comparing it with state-of-the-art heuristics in the overproduction problems of i) 1,4-butanediol, ii) myristoyl-CoA, i ii) malonyl-CoA , iv) acetate and v) succinate. We show that our algorithms are able to gracefully adapt and scale to more complex models and more biologically-relevant simulations of the genetic manipulations allowed. The Results obtained for 1,4-butanediol overproduction significantly outperform results previously obtained, in terms of 1,4-butanediol to biomass formation ratio and knock-out costs. In particular overproduction percentage is of +662.7%, from 1.425 mmolh⁻¹gDW⁻¹ (wild type) to 10.869 mmolh⁻¹gDW⁻¹, with a knockout cost of 6. Whereas, Pareto-optimal designs we have found in fatty acid optimizations strictly dominate the ones obtained by the other methodologies, e.g., biomass and myristoyl-CoA exportation improvement of +21.43% (0.17 h⁻¹) and +5.19% (1.62 mmolh⁻¹gDW⁻¹), respectively. Furthermore CPU time required by our heuristic approach is more than halved. Finally we implement pathway oriented sensitivity analysis, epsilon-dominance analysis and robustness analysis to enhance our biological understanding of the problem and to improve the optimization algorithm capabilities.
A Pareto-Improving Minimum Wage
Eliav Danziger; Leif Danziger
2014-01-01
This paper shows that a graduated minimum wage, in contrast to a constant minimum wage, can provide a strict Pareto improvement over what can be achieved with an optimal income tax. The reason is that a graduated minimum wage requires high-productivity workers to work more to earn the same income as low-productivity workers, which makes it more difficult for the former to mimic the latter. In effect, a graduated minimum wage allows the low-productivity workers to benefit from second-degree pr...
Pareto-optimal estimates that constrain mean California precipitation change
Langenbrunner, B.; Neelin, J. D.
2017-12-01
Global climate model (GCM) projections of greenhouse gas-induced precipitation change can exhibit notable uncertainty at the regional scale, particularly in regions where the mean change is small compared to internal variability. This is especially true for California, which is located in a transition zone between robust precipitation increases to the north and decreases to the south, and where GCMs from the Climate Model Intercomparison Project phase 5 (CMIP5) archive show no consensus on mean change (in either magnitude or sign) across the central and southern parts of the state. With the goal of constraining this uncertainty, we apply a multiobjective approach to a large set of subensembles (subsets of models from the full CMIP5 ensemble). These constraints are based on subensemble performance in three fields important to California precipitation: tropical Pacific sea surface temperatures, upper-level zonal winds in the midlatitude Pacific, and precipitation over the state. An evolutionary algorithm is used to sort through and identify the set of Pareto-optimal subensembles across these three measures in the historical climatology, and we use this information to constrain end-of-century California wet season precipitation change. This technique narrows the range of projections throughout the state and increases confidence in estimates of positive mean change. Furthermore, these methods complement and generalize emergent constraint approaches that aim to restrict uncertainty in end-of-century projections, and they have applications to even broader aspects of uncertainty quantification, including parameter sensitivity and model calibration.
Classification as clustering: a Pareto cooperative-competitive GP approach.
McIntyre, Andrew R; Heywood, Malcolm I
2011-01-01
Intuitively population based algorithms such as genetic programming provide a natural environment for supporting solutions that learn to decompose the overall task between multiple individuals, or a team. This work presents a framework for evolving teams without recourse to prespecifying the number of cooperating individuals. To do so, each individual evolves a mapping to a distribution of outcomes that, following clustering, establishes the parameterization of a (Gaussian) local membership function. This gives individuals the opportunity to represent subsets of tasks, where the overall task is that of classification under the supervised learning domain. Thus, rather than each team member representing an entire class, individuals are free to identify unique subsets of the overall classification task. The framework is supported by techniques from evolutionary multiobjective optimization (EMO) and Pareto competitive coevolution. EMO establishes the basis for encouraging individuals to provide accurate yet nonoverlaping behaviors; whereas competitive coevolution provides the mechanism for scaling to potentially large unbalanced datasets. Benchmarking is performed against recent examples of nonlinear SVM classifiers over 12 UCI datasets with between 150 and 200,000 training instances. Solutions from the proposed coevolutionary multiobjective GP framework appear to provide a good balance between classification performance and model complexity, especially as the dataset instance count increases.
Hui, Pak Ming; Xu, Chen
2015-09-01
Evolutionary game theory is a powerful tool for studying the emergence of cooperation among competing individuals [1]. Popularly studied games include the prisoner's dilemma [2], snowdrift game [3] and stag hunt game [4]. They have been extensively studied for the extent of cooperative behavior under different dilemma strengths. Generally, the games can be defined by a 2 × 2 matrix and thus four payoff elements, T, R, P, and S, for the possible payoffs to players when they use pure strategies against each other. Detailed definitions of the four payoffs are given in the review by Wang et al. [5]. For simplicity, it is often the case that fewer parameters are invoked, e.g. a single parameter [3] and more generally two parameters [6]. Generally speaking, reducing the number of parameters has the effect of restricting the system to a certain subspace of the unreduced case. In addition, the spatial structures, such as a well-mixed population or a population forming a complex network, that govern the competing relationship and environment of the agents, and the evolutionary rules, that govern how agents update their strategies, are vital in determining how cooperation evolves, as well documented in the references of [5].
Pareto Improving Price Regulation when the Asset Market is Incomplete
Herings, P.J.J.; Polemarchakis, H.M.
1999-01-01
When the asset market is incomplete, competitive equilibria are constrained suboptimal, which provides a scope for pareto improving interventions. Price regulation can be such a pareto improving policy, even when the welfare effects of rationing are taken into account. An appealing aspect of price
Pareto optimality in infinite horizon linear quadratic differential games
Reddy, P.V.; Engwerda, J.C.
2013-01-01
In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal
Pareto 80/20 Law: Derivation via Random Partitioning
Lipovetsky, Stan
2009-01-01
The Pareto 80/20 Rule, also known as the Pareto principle or law, states that a small number of causes (20%) is responsible for a large percentage (80%) of the effect. Although widely recognized as a heuristic rule, this proportion has not been theoretically based. The article considers derivation of this 80/20 rule and some other standard…
The exponential age distribution and the Pareto firm size distribution
Coad, Alex
2008-01-01
Recent work drawing on data for large and small firms has shown a Pareto distribution of firm size. We mix a Gibrat-type growth process among incumbents with an exponential distribution of firm’s age, to obtain the empirical Pareto distribution.
Tractable Pareto Optimization of Temporal Preferences
Morris, Robert; Morris, Paul; Khatib, Lina; Venable, Brent
2003-01-01
This paper focuses on temporal constraint problems where the objective is to optimize a set of local preferences for when events occur. In previous work, a subclass of these problems has been formalized as a generalization of Temporal CSPs, and a tractable strategy for optimization has been proposed, where global optimality is defined as maximizing the minimum of the component preference values. This criterion for optimality, which we call 'Weakest Link Optimization' (WLO), is known to have limited practical usefulness because solutions are compared only on the basis of their worst value; thus, there is no requirement to improve the other values. To address this limitation, we introduce a new algorithm that re-applies WLO iteratively in a way that leads to improvement of all the values. We show the value of this strategy by proving that, with suitable preference functions, the resulting solutions are Pareto Optimal.
Projections onto the Pareto surface in multicriteria radiation therapy optimization.
Bokrantz, Rasmus; Miettinen, Kaisa
2015-10-01
To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose-volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose-volume histogram constraints were used. No consistent improvements in target homogeneity were observed. There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.
Projections onto the Pareto surface in multicriteria radiation therapy optimization
International Nuclear Information System (INIS)
Bokrantz, Rasmus; Miettinen, Kaisa
2015-01-01
Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose–volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. Results: The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose–volume histogram constraints were used. No consistent improvements in target homogeneity were observed. Conclusions: There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan
Analysis of a Pareto Mixture Distribution for Maritime Surveillance Radar
Directory of Open Access Journals (Sweden)
Graham V. Weinberg
2012-01-01
Full Text Available The Pareto distribution has been shown to be an excellent model for X-band high-resolution maritime surveillance radar clutter returns. Given the success of mixture distributions in radar, it is thus of interest to consider the effect of Pareto mixture models. This paper introduces a formulation of a Pareto intensity mixture distribution and investigates coherent multilook radar detector performance using this new clutter model. Clutter parameter estimates are derived from data sets produced by the Defence Science and Technology Organisation's Ingara maritime surveillance radar.
Automated Design Framework for Synthetic Biology Exploiting Pareto Optimality.
Otero-Muras, Irene; Banga, Julio R
2017-07-21
In this work we consider Pareto optimality for automated design in synthetic biology. We present a generalized framework based on a mixed-integer dynamic optimization formulation that, given design specifications, allows the computation of Pareto optimal sets of designs, that is, the set of best trade-offs for the metrics of interest. We show how this framework can be used for (i) forward design, that is, finding the Pareto optimal set of synthetic designs for implementation, and (ii) reverse design, that is, analyzing and inferring motifs and/or design principles of gene regulatory networks from the Pareto set of optimal circuits. Finally, we illustrate the capabilities and performance of this framework considering four case studies. In the first problem we consider the forward design of an oscillator. In the remaining problems, we illustrate how to apply the reverse design approach to find motifs for stripe formation, rapid adaption, and fold-change detection, respectively.
A Pareto Optimal Auction Mechanism for Carbon Emission Rights
Directory of Open Access Journals (Sweden)
Mingxi Wang
2014-01-01
Full Text Available The carbon emission rights do not fit well into the framework of existing multi-item auction mechanisms because of their own unique features. This paper proposes a new auction mechanism which converges to a unique Pareto optimal equilibrium in a finite number of periods. In the proposed auction mechanism, the assignment outcome is Pareto efficient and the carbon emission rights’ resources are efficiently used. For commercial application and theoretical completeness, both discrete and continuous markets—represented by discrete and continuous bid prices, respectively—are examined, and the results show the existence of a Pareto optimal equilibrium under the constraint of individual rationality. With no ties, the Pareto optimal equilibrium can be further proven to be unique.
Kullback-Leibler divergence and the Pareto-Exponential approximation.
Weinberg, G V
2016-01-01
Recent radar research interests in the Pareto distribution as a model for X-band maritime surveillance radar clutter returns have resulted in analysis of the asymptotic behaviour of this clutter model. In particular, it is of interest to understand when the Pareto distribution is well approximated by an Exponential distribution. The justification for this is that under the latter clutter model assumption, simpler radar detection schemes can be applied. An information theory approach is introduced to investigate the Pareto-Exponential approximation. By analysing the Kullback-Leibler divergence between the two distributions it is possible to not only assess when the approximation is valid, but to determine, for a given Pareto model, the optimal Exponential approximation.
Approximating convex Pareto surfaces in multiobjective radiotherapy planning
International Nuclear Information System (INIS)
Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.
2006-01-01
Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing
Phase transitions in Pareto optimal complex networks.
Seoane, Luís F; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Kinetics of wealth and the Pareto law.
Boghosian, Bruce M
2014-04-01
An important class of economic models involve agents whose wealth changes due to transactions with other agents. Several authors have pointed out an analogy with kinetic theory, which describes molecules whose momentum and energy change due to interactions with other molecules. We pursue this analogy and derive a Boltzmann equation for the time evolution of the wealth distribution of a population of agents for the so-called Yard-Sale Model of wealth exchange. We examine the solutions to this equation by a combination of analytical and numerical methods and investigate its long-time limit. We study an important limit of this equation for small transaction sizes and derive a partial integrodifferential equation governing the evolution of the wealth distribution in a closed economy. We then describe how this model can be extended to include features such as inflation, production, and taxation. In particular, we show that the model with taxation exhibits the basic features of the Pareto law, namely, a lower cutoff to the wealth density at small values of wealth, and approximate power-law behavior at large values of wealth.
Pareto-path multitask multiple kernel learning.
Li, Cong; Georgiopoulos, Michael; Anagnostopoulos, Georgios C
2015-01-01
A traditional and intuitively appealing Multitask Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing among the tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a multiobjective optimization problem, which considers the concurrent optimization of all task objectives involved in the Multitask Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel support vector machine MT-MKL framework that considers an implicitly defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using the algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving a better classification performance, when compared with other similar MTL approaches.
Zalazinsky, A. G.; Kryuchkov, D. I.; Nesterenko, A. V.; Titov, V. G.
2017-12-01
The results of an experimental study of the mechanical properties of pressed and sintered briquettes consisting of powders obtained from a high-strength VT-22 titanium alloy by plasma spraying with additives of PTM-1 titanium powder obtained by the hydride-calcium method and powder of PV-N70Yu30 nickel-aluminum alloy are presented. The task is set for the choice of an optimal charge material composition of a composite material providing the required mechanical characteristics and cost of semi-finished products and items. Pareto optimal values for the composition of the composite material charge have been obtained.
Evolutionary institutionalism.
Fürstenberg, Dr Kai
Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.
Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan
2017-07-01
Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1
Langenbrunner, B.; Neelin, J. D.
2017-09-01
Global climate models (GCMs) are examples of high-dimensional input-output systems, where model output is a function of many variables, and an update in model physics commonly improves performance in one objective function (i.e., measure of model performance) at the expense of degrading another. Here concepts from multiobjective optimization in the engineering literature are used to investigate parameter sensitivity and optimization in the face of such trade-offs. A metamodeling technique called cut high-dimensional model representation (cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM simulation of the tropical Pacific climate, focusing on seasonal precipitation, column water vapor, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which are surfaces in objective function space along which trade-offs in GCM performance occur. This approach allows the modeler to visualize trade-offs quickly and identify the physics at play. In some cases, Pareto fronts are small, implying that trade-offs are minimal, optimal parameter value choices are more straightforward, and the GCM is well-functioning. In all cases considered here, the control run was found not to be Pareto-optimal (i.e., not on the front), highlighting an opportunity for model improvement through objectively informed parameter selection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude, not spatial correlation, and they show that specific parameter updates can improve fields fundamental to tropical moist processes—namely precipitation and skin temperature—without significantly impacting others. These results provide an example of how basic elements of multiobjective optimization can facilitate pragmatic GCM tuning processes.
A Pareto upper tail for capital income distribution
Oancea, Bogdan; Pirjol, Dan; Andrei, Tudorel
2018-02-01
We present a study of the capital income distribution and of its contribution to the total income (capital income share) using individual tax income data in Romania, for 2013 and 2014. Using a parametric representation we show that the capital income is Pareto distributed in the upper tail, with a Pareto coefficient α ∼ 1 . 44 which is much smaller than the corresponding coefficient for wage- and non-wage-income (excluding capital income), of α ∼ 2 . 53. Including the capital income contribution has the effect of increasing the overall inequality measures.
Designing Pareto-superior demand-response rate options
International Nuclear Information System (INIS)
Horowitz, I.; Woo, C.K.
2006-01-01
We explore three voluntary service options-real-time pricing, time-of-use pricing, and curtailable/interruptible service-that a local distribution company might offer its customers in order to encourage them to alter their electricity usage in response to changes in the electricity-spot-market price. These options are simple and practical, and make minimal information demands. We show that each of the options is Pareto-superior ex ante, in that it benefits both the participants and the company offering it, while not affecting the non-participants. The options are shown to be Pareto-superior ex post as well, except under certain exceptional circumstances. (author)
Pareto-Zipf law in growing systems with multiplicative interactions
Ohtsuki, Toshiya; Tanimoto, Satoshi; Sekiyama, Makoto; Fujihara, Akihiro; Yamamoto, Hiroshi
2018-06-01
Numerical simulations of multiplicatively interacting stochastic processes with weighted selections were conducted. A feedback mechanism to control the weight w of selections was proposed. It becomes evident that when w is moderately controlled around 0, such systems spontaneously exhibit the Pareto-Zipf distribution. The simulation results are universal in the sense that microscopic details, such as parameter values and the type of control and weight, are irrelevant. The central ingredient of the Pareto-Zipf law is argued to be the mild control of interactions.
Pareto Distribution of Firm Size and Knowledge Spillover Process as a Network
Tomohiko Konno
2013-01-01
The firm size distribution is considered as Pareto distribution. In the present paper, we show that the Pareto distribution of firm size results from the spillover network model which was introduced in Konno (2010).
Can we reach Pareto optimal outcomes using bottom-up approaches?
V. Sanchez-Anguix (Victor); R. Aydoğan (Reyhan); T. Baarslag (Tim); C.M. Jonker (Catholijn)
2016-01-01
textabstractClassically, disciplines like negotiation and decision making have focused on reaching Pareto optimal solutions due to its stability and efficiency properties. Despite the fact that many practical and theoretical algorithms have successfully attempted to provide Pareto optimal solutions,
A Pareto scale-inflated outlier model and its Bayesian analysis
Scollnik, David P. M.
2016-01-01
This paper develops a Pareto scale-inflated outlier model. This model is intended for use when data from some standard Pareto distribution of interest is suspected to have been contaminated with a relatively small number of outliers from a Pareto distribution with the same shape parameter but with an inflated scale parameter. The Bayesian analysis of this Pareto scale-inflated outlier model is considered and its implementation using the Gibbs sampler is discussed. The paper contains three wor...
Multi-agent Pareto appointment exchanging in hospital patient scheduling
I.B. Vermeulen (Ivan); S.M. Bohte (Sander); D.J.A. Somefun (Koye); J.A. La Poutré (Han)
2007-01-01
htmlabstractWe present a dynamic and distributed approach to the hospital patient scheduling problem, in which patients can have multiple appointments that have to be scheduled to different resources. To efficiently solve this problem we develop a multi-agent Pareto-improvement appointment
Multi-agent Pareto appointment exchanging in hospital patient scheduling
Vermeulen, I.B.; Bohté, S.M.; Somefun, D.J.A.; Poutré, La J.A.
2007-01-01
We present a dynamic and distributed approach to the hospital patient scheduling problem, in which patients can have multiple appointments that have to be scheduled to different resources. To efficiently solve this problem we develop a multi-agent Pareto-improvement appointment exchanging algorithm:
Word frequencies: A comparison of Pareto type distributions
Wiegand, Martin; Nadarajah, Saralees; Si, Yuancheng
2018-03-01
Mehri and Jamaati (2017) [18] used Zipf's law to model word frequencies in Holy Bible translations for one hundred live languages. We compare the fit of Zipf's law to a number of Pareto type distributions. The latter distributions are shown to provide the best fit, as judged by a number of comparative plots and error measures. The fit of Zipf's law appears generally poor.
Robustness analysis of bogie suspension components Pareto optimised values
Mousavi Bideleh, Seyed Milad
2017-08-01
Bogie suspension system of high speed trains can significantly affect vehicle performance. Multiobjective optimisation problems are often formulated and solved to find the Pareto optimised values of the suspension components and improve cost efficiency in railway operations from different perspectives. Uncertainties in the design parameters of suspension system can negatively influence the dynamics behaviour of railway vehicles. In this regard, robustness analysis of a bogie dynamics response with respect to uncertainties in the suspension design parameters is considered. A one-car railway vehicle model with 50 degrees of freedom and wear/comfort Pareto optimised values of bogie suspension components is chosen for the analysis. Longitudinal and lateral primary stiffnesses, longitudinal and vertical secondary stiffnesses, as well as yaw damping are considered as five design parameters. The effects of parameter uncertainties on wear, ride comfort, track shift force, stability, and risk of derailment are studied by varying the design parameters around their respective Pareto optimised values according to a lognormal distribution with different coefficient of variations (COVs). The robustness analysis is carried out based on the maximum entropy concept. The multiplicative dimensional reduction method is utilised to simplify the calculation of fractional moments and improve the computational efficiency. The results showed that the dynamics response of the vehicle with wear/comfort Pareto optimised values of bogie suspension is robust against uncertainties in the design parameters and the probability of failure is small for parameter uncertainties with COV up to 0.1.
Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing
Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.
2006-01-01
The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval
Efficient approximation of black-box functions and Pareto sets
Rennen, G.
2009-01-01
In the case of time-consuming simulation models or other so-called black-box functions, we determine a metamodel which approximates the relation between the input- and output-variables of the simulation model. To solve multi-objective optimization problems, we approximate the Pareto set, i.e. the
Tsallis-Pareto like distributions in hadron-hadron collisions
International Nuclear Information System (INIS)
Barnafoeldi, G G; Uermoessy, K; Biro, T S
2011-01-01
Non-extensive thermodynamics is a novel approach in high energy physics. In high-energy heavy-ion, and especially in proton-proton collisions we are far from a canonical thermal state, described by the Boltzmann-Gibbs statistic. In these reactions low and intermediate transverse momentum spectra are extremely well reproduced by the Tsallis-Pareto distribution, but the physical origin of Tsallis parameters is still an unsettled question. Here, we analyze whether Tsallis-Pareto energy distribution do overlap with hadron spectra at high-pT. We fitted data, measured in proton-proton (proton-antiproton) collisions in wide center of mass energy range from 200 GeV RHIC up to 7 TeV LHC energies. Furthermore, our test is extended to an investigation of a possible √s-dependence of the power in the Tsallis-Pareto distribution, motivated by QCD evolution equations. We found that Tsallis-Pareto distributions fit well high-pT data, in the wide center of mass energy range. Deviance from the fits appears at p T > 20-30 GeV/c, especially on CDF data. Introducing a pT-scaling ansatz, the fits at low and intermediate transverse momenta still remain good, and the deviations tend to disappear at the highest-pT data.
COMPROMISE, OPTIMAL AND TRACTIONAL ACCOUNTS ON PARETO SET
Directory of Open Access Journals (Sweden)
V. V. Lahuta
2010-11-01
Full Text Available The problem of optimum traction calculations is considered as a problem about optimum distribution of a resource. The dynamic programming solution is based on a step-by-step calculation of set of points of Pareto-optimum values of a criterion function (energy expenses and a resource (time.
Directory of Open Access Journals (Sweden)
Min-Yin Liu
2017-05-01
Full Text Available Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz measured by electroencephalography (EEG mostly during non-rapid eye movement (NREM stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1 the lack of common benchmark databases, and (2 the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA, the Strength Pareto Evolutionary Algorithm (SPEA2, to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT, and two Hilbert-Huang transform (HHT based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.
Pareto-Optimization of HTS CICC for High-Current Applications in Self-Field
Directory of Open Access Journals (Sweden)
Giordano Tomassetti
2018-01-01
Full Text Available The ENEA superconductivity laboratory developed a novel design for Cable-in-Conduit Conductors (CICCs comprised of stacks of 2nd-generation REBCO coated conductors. In its original version, the cable was made up of 150 HTS tapes distributed in five slots, twisted along an aluminum core. In this work, taking advantage of a 2D finite element model, able to estimate the cable’s current distribution in the cross-section, a multiobjective optimization procedure was implemented. The aim of optimization was to simultaneously maximize both engineering current density and total current flowing inside the tapes when operating in self-field, by varying the cross-section layout. Since the optimization process involved both integer and real geometrical variables, the choice of an evolutionary search algorithm was strictly necessary. The use of an evolutionary algorithm in the frame of a multiple objective optimization made it an obliged choice to numerically approach the problem using a nonstandard fast-converging optimization algorithm. By means of this algorithm, the Pareto frontiers for the different configurations were calculated, providing a powerful tool for the designer to achieve the desired preliminary operating conditions in terms of engineering current density and/or total current, depending on the specific application field, that is, power transmission cable and bus bar systems.
Income inequality in Romania: The exponential-Pareto distribution
Oancea, Bogdan; Andrei, Tudorel; Pirjol, Dan
2017-03-01
We present a study of the distribution of the gross personal income and income inequality in Romania, using individual tax income data, and both non-parametric and parametric methods. Comparing with official results based on household budget surveys (the Family Budgets Survey and the EU-SILC data), we find that the latter underestimate the income share of the high income region, and the overall income inequality. A parametric study shows that the income distribution is well described by an exponential distribution in the low and middle incomes region, and by a Pareto distribution in the high income region with Pareto coefficient α = 2.53. We note an anomaly in the distribution in the low incomes region (∼9,250 RON), and present a model which explains it in terms of partial income reporting.
Pareto-depth for multiple-query image retrieval.
Hsiao, Ko-Jen; Calder, Jeff; Hero, Alfred O
2015-02-01
Most content-based image retrieval systems consider either one single query, or multiple queries that include the same object or represent the same semantic information. In this paper, we consider the content-based image retrieval problem for multiple query images corresponding to different image semantics. We propose a novel multiple-query information retrieval algorithm that combines the Pareto front method with efficient manifold ranking. We show that our proposed algorithm outperforms state of the art multiple-query retrieval algorithms on real-world image databases. We attribute this performance improvement to concavity properties of the Pareto fronts, and prove a theoretical result that characterizes the asymptotic concavity of the fronts.
Decomposition and Simplification of Multivariate Data using Pareto Sets.
Huettenberger, Lars; Heine, Christian; Garth, Christoph
2014-12-01
Topological and structural analysis of multivariate data is aimed at improving the understanding and usage of such data through identification of intrinsic features and structural relationships among multiple variables. We present two novel methods for simplifying so-called Pareto sets that describe such structural relationships. Such simplification is a precondition for meaningful visualization of structurally rich or noisy data. As a framework for simplification operations, we introduce a decomposition of the data domain into regions of equivalent structural behavior and the reachability graph that describes global connectivity of Pareto extrema. Simplification is then performed as a sequence of edge collapses in this graph; to determine a suitable sequence of such operations, we describe and utilize a comparison measure that reflects the changes to the data that each operation represents. We demonstrate and evaluate our methods on synthetic and real-world examples.
[Origination of Pareto distribution in complex dynamic systems].
Chernavskiĭ, D S; Nikitin, A P; Chernavskaia, O D
2008-01-01
The Pareto distribution, whose probability density function can be approximated at sufficiently great chi as rho(chi) - chi(-alpha), where alpha > or = 2, is of crucial importance from both the theoretical and practical point of view. The main reason is its qualitative distinction from the normal (Gaussian) distribution. Namely, the probability of high deviations appears to be significantly higher. The conception of the universal applicability of the Gauss law remains to be widely distributed despite the lack of objective confirmation of this notion in a variety of application areas. The origin of the Pareto distribution in dynamic systems located in the gaussian noise field is considered. A simple one-dimensional model is discussed where the system response in a rather wide interval of the variable can be quite precisely approximated by this distribution.
Using the Pareto Distribution to Improve Estimates of Topcoded Earnings
Philip Armour; Richard V. Burkhauser; Jeff Larrimore
2014-01-01
Inconsistent censoring in the public-use March Current Population Survey (CPS) limits its usefulness in measuring labor earnings trends. Using Pareto estimation methods with less-censored internal CPS data, we create an enhanced cell-mean series to capture top earnings in the public-use CPS. We find that previous approaches for imputing topcoded earnings systematically understate top earnings. Annual earnings inequality trends since 1963 using our series closely approximate those found by Kop...
Accelerated life testing design using geometric process for pareto distribution
Mustafa Kamal; Shazia Zarrin; Arif Ul Islam
2013-01-01
In this paper the geometric process is used for the analysis of accelerated life testing under constant stress for Pareto Distribution. Assuming that the lifetimes under increasing stress levels form a geometric process, estimates of the parameters are obtained by using the maximum likelihood method for complete data. In addition, asymptotic interval estimates of the parameters of the distribution using Fisher information matrix are also obtained. The statistical properties of the parameters ...
Small Sample Robust Testing for Normality against Pareto Tails
Czech Academy of Sciences Publication Activity Database
Stehlík, M.; Fabián, Zdeněk; Střelec, L.
2012-01-01
Roč. 41, č. 7 (2012), s. 1167-1194 ISSN 0361-0918 Grant - others:Aktion(CZ-AT) 51p7, 54p21, 50p14, 54p13 Institutional research plan: CEZ:AV0Z10300504 Keywords : consistency * Hill estimator * t-Hill estimator * location functional * Pareto tail * power comparison * returns * robust tests for normality Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.295, year: 2012
Pareto optimal design of sectored toroidal superconducting magnet for SMES
Energy Technology Data Exchange (ETDEWEB)
Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok
2014-10-15
Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.
Multicriteria Similarity-Based Anomaly Detection Using Pareto Depth Analysis.
Hsiao, Ko-Jen; Xu, Kevin S; Calder, Jeff; Hero, Alfred O
2016-06-01
We consider the problem of identifying patterns in a data set that exhibits anomalous behavior, often referred to as anomaly detection. Similarity-based anomaly detection algorithms detect abnormally large amounts of similarity or dissimilarity, e.g., as measured by the nearest neighbor Euclidean distances between a test sample and the training samples. In many application domains, there may not exist a single dissimilarity measure that captures all possible anomalous patterns. In such cases, multiple dissimilarity measures can be defined, including nonmetric measures, and one can test for anomalies by scalarizing using a nonnegative linear combination of them. If the relative importance of the different dissimilarity measures are not known in advance, as in many anomaly detection applications, the anomaly detection algorithm may need to be executed multiple times with different choices of weights in the linear combination. In this paper, we propose a method for similarity-based anomaly detection using a novel multicriteria dissimilarity measure, the Pareto depth. The proposed Pareto depth analysis (PDA) anomaly detection algorithm uses the concept of Pareto optimality to detect anomalies under multiple criteria without having to run an algorithm multiple times with different choices of weights. The proposed PDA approach is provably better than using linear combinations of the criteria, and shows superior performance on experiments with synthetic and real data sets.
Pareto optimal design of sectored toroidal superconducting magnet for SMES
International Nuclear Information System (INIS)
Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok
2014-01-01
Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy
Computing gap free Pareto front approximations with stochastic search algorithms.
Schütze, Oliver; Laumanns, Marco; Tantar, Emilia; Coello, Carlos A Coello; Talbi, El-Ghazali
2010-01-01
Recently, a convergence proof of stochastic search algorithms toward finite size Pareto set approximations of continuous multi-objective optimization problems has been given. The focus was on obtaining a finite approximation that captures the entire solution set in some suitable sense, which was defined by the concept of epsilon-dominance. Though bounds on the quality of the limit approximation-which are entirely determined by the archiving strategy and the value of epsilon-have been obtained, the strategies do not guarantee to obtain a gap free approximation of the Pareto front. That is, such approximations A can reveal gaps in the sense that points f in the Pareto front can exist such that the distance of f to any image point F(a), a epsilon A, is "large." Since such gap free approximations are desirable in certain applications, and the related archiving strategies can be advantageous when memetic strategies are included in the search process, we are aiming in this work for such methods. We present two novel strategies that accomplish this task in the probabilistic sense and under mild assumptions on the stochastic search algorithm. In addition to the convergence proofs, we give some numerical results to visualize the behavior of the different archiving strategies. Finally, we demonstrate the potential for a possible hybridization of a given stochastic search algorithm with a particular local search strategy-multi-objective continuation methods-by showing that the concept of epsilon-dominance can be integrated into this approach in a suitable way.
Pareto optimal design of sectored toroidal superconducting magnet for SMES
Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok
2014-10-01
A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.
Generalized Pareto optimum and semi-classical spinors
Rouleux, M.
2018-02-01
In 1971, S. Smale presented a generalization of Pareto optimum he called the critical Pareto set. The underlying motivation was to extend Morse theory to several functions, i.e. to find a Morse theory for m differentiable functions defined on a manifold M of dimension ℓ. We use this framework to take a 2 × 2 Hamiltonian ℋ = ℋ(p) ∈ 2 C ∞(T * R 2) to its normal form near a singular point of the Fresnel surface. Namely we say that ℋ has the Pareto property if it decomposes, locally, up to a conjugation with regular matrices, as ℋ(p) = u ‧(p)C(p)(u ‧(p))*, where u : R 2 → R 2 has singularities of codimension 1 or 2, and C(p) is a regular Hermitian matrix (“integrating factor”). In particular this applies in certain cases to the matrix Hamiltonian of Elasticity theory and its (relative) perturbations of order 3 in momentum at the origin.
Chevalier, Robert L
2017-05-01
Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
International Nuclear Information System (INIS)
Ottosson, Rickard O.; Sjoestroem, David; Behrens, Claus F.; Karlsson, Anna; Engstroem, Per E.; Knoeoes, Tommy; Ceberg, Crister
2009-01-01
Pareto optimality is a concept that formalises the trade-off between a given set of mutually contradicting objectives. A solution is said to be Pareto optimal when it is not possible to improve one objective without deteriorating at least one of the other. A set of Pareto optimal solutions constitute the Pareto front. The Pareto concept applies well to the inverse planning process, which involves inherently contradictory objectives, high and uniform target dose on one hand, and sparing of surrounding tissue and nearby organs at risk (OAR) on the other. Due to the specific characteristics of a treatment planning system (TPS), treatment strategy or delivery technique, Pareto fronts for a given case are likely to differ. The aim of this study was to investigate the feasibility of using Pareto fronts as a comparative tool for TPSs, treatment strategies and delivery techniques. In order to sample Pareto fronts, multiple treatment plans with varying target conformity and dose sparing of OAR were created for a number of prostate and head and neck IMRT cases. The DVHs of each plan were evaluated with respect to target coverage and dose to relevant OAR. Pareto fronts were successfully created for all studied cases. The results did indeed follow the definition of the Pareto concept, i.e. dose sparing of the OAR could not be improved without target coverage being impaired or vice versa. Furthermore, various treatment techniques resulted in distinguished and well separated Pareto fronts. Pareto fronts may be used to evaluate a number of parameters within radiotherapy. Examples are TPS optimization algorithms, the variation between accelerators or delivery techniques and the degradation of a plan during the treatment planning process. The issue of designing a model for unbiased comparison of parameters with such large inherent discrepancies, e.g. different TPSs, is problematic and should be carefully considered
Ottosson, Rickard O; Engstrom, Per E; Sjöström, David; Behrens, Claus F; Karlsson, Anna; Knöös, Tommy; Ceberg, Crister
2009-01-01
Pareto optimality is a concept that formalises the trade-off between a given set of mutually contradicting objectives. A solution is said to be Pareto optimal when it is not possible to improve one objective without deteriorating at least one of the other. A set of Pareto optimal solutions constitute the Pareto front. The Pareto concept applies well to the inverse planning process, which involves inherently contradictory objectives, high and uniform target dose on one hand, and sparing of surrounding tissue and nearby organs at risk (OAR) on the other. Due to the specific characteristics of a treatment planning system (TPS), treatment strategy or delivery technique, Pareto fronts for a given case are likely to differ. The aim of this study was to investigate the feasibility of using Pareto fronts as a comparative tool for TPSs, treatment strategies and delivery techniques. In order to sample Pareto fronts, multiple treatment plans with varying target conformity and dose sparing of OAR were created for a number of prostate and head & neck IMRT cases. The DVHs of each plan were evaluated with respect to target coverage and dose to relevant OAR. Pareto fronts were successfully created for all studied cases. The results did indeed follow the definition of the Pareto concept, i.e. dose sparing of the OAR could not be improved without target coverage being impaired or vice versa. Furthermore, various treatment techniques resulted in distinguished and well separated Pareto fronts. Pareto fronts may be used to evaluate a number of parameters within radiotherapy. Examples are TPS optimization algorithms, the variation between accelerators or delivery techniques and the degradation of a plan during the treatment planning process. The issue of designing a model for unbiased comparison of parameters with such large inherent discrepancies, e.g. different TPSs, is problematic and should be carefully considered.
Chevrier , Rémy
2010-01-01
International audience; An approach for speed tuning in railway management is presented for optimizing both travel duration and energy saving. This approach is based on a state-of-the-art evolutionary algorithm with Pareto approach. This algorithm provides a set of diversified non-dominated solutions to the decision-maker. A case study on Gonesse connection (France) is also reported and analyzed.
Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Lvjiang Yin
2016-12-01
Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.
On the size distribution of cities: an economic interpretation of the Pareto coefficient.
Suh, S H
1987-01-01
"Both the hierarchy and the stochastic models of size distribution of cities are analyzed in order to explain the Pareto coefficient by economic variables. In hierarchy models, it is found that the rate of variation in the productivity of cities and that in the probability of emergence of cities can explain the Pareto coefficient. In stochastic models, the productivity of cities is found to explain the Pareto coefficient. New city-size distribution functions, in which the Pareto coefficient is decomposed by economic variables, are estimated." excerpt
Directory of Open Access Journals (Sweden)
Mariano Frutos-Alazard
2012-01-01
Full Text Available La planificación, en el ámbito productivo, se encarga de diseñar, coordinar, administrar y controlar todas las operaciones que se hallan presentes en la explotación de los sistemas productivos. En este marco de trabajo, aparecen numerosos Problemas de Optimización Multi-objetivo (MOPs. Éstos constan de varias funciones que suelen ser complejas y evaluarlas puede ser muy costoso. La optimización multi-objetivo es la disciplina que trata de encontrar las soluciones, denominadas Pareto óptimas, a este tipo de problemas. La compleja resolución de los MOPs es debida a las dimensiones propias del problema, al carácter combinatorio de los algoritmos y a la naturaleza de los objetivos, los cuales están vinculados a la eficiencia del sistema. En las últimas décadas muchos MOPs vinculados a la producción han sido tratados con éxito con técnicas de resolución basadas en Algoritmos Genéticos. En este trabajo se evalúa a NSGAII (Non-dominated Sorting Genetic Algorithm II, SPEAII (Strength Pareto Evolutionary Algorithm II y a sus antecesores, NSGA y SPEA, en el proceso de planificación de la producción no estandarizada. Luego de la experiencia realizada, el algoritmo NSGAII mostró mayor eficiencia.Planning in production environments takes care of designing, coordinating, managing and controlling all the operations existing in the use of productive systems. There are, in the framework analyzed within this work, several relevant Multi-Objective Optimization Problems (MOPs. They consist of several functions which tend to be complex and expensive to evaluate. Multi-objective optimization is the discipline developed to provide solutions, called Pareto optimal, for the simultaneous optimization of those functions. The costs of solving MOPs is due to the dimension of the problems, the combinatorial nature of the algorithms and the kind of objectives represented, linked to the efficiency of the system.. In the last decades several production
The Pareto Analysis for Establishing Content Criteria in Surgical Training.
Kramp, Kelvin H; van Det, Marc J; Veeger, Nic J G M; Pierie, Jean-Pierre E N
2016-01-01
Current surgical training is still highly dependent on expensive operating room (OR) experience. Although there have been many attempts to transfer more training to the skills laboratory, little research is focused on which technical behaviors can lead to the highest profit when they are trained outside the OR. The Pareto principle states that in any population that contributes to a common effect, a few account for the bulk of the effect. This principle has been widely used in business management to increase company profits. This study uses the Pareto principle for establishing content criteria for more efficient surgical training. A retrospective study was conducted to assess verbal guidance provided by 9 supervising surgeons to 12 trainees performing 64 laparoscopic cholecystectomies in the OR. The verbal corrections were documented, tallied, and clustered according to the aimed change in novice behavior. The corrections were rank ordered, and a cumulative distribution curve was used to calculate which corrections accounted for 80% of the total number of verbal corrections. In total, 253 different verbal corrections were uttered 1587 times and were categorized into 40 different clusters of aimed changes in novice behaviors. The 35 highest-ranking verbal corrections (14%) and the 11 highest-ranking clusters (28%) accounted for 80% of the total number of given verbal corrections. Following the Pareto principle, we were able to identify the aspects of trainee behavior that account for most corrections given by supervisors during a laparoscopic cholecystectomy on humans. This strategy can be used for the development of new training programs to prepare the trainee in advance for the challenges encountered in the clinical setting in an OR. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Pareto-Optimal Model Selection via SPRINT-Race.
Zhang, Tiantian; Georgiopoulos, Michael; Anagnostopoulos, Georgios C
2018-02-01
In machine learning, the notion of multi-objective model selection (MOMS) refers to the problem of identifying the set of Pareto-optimal models that optimize by compromising more than one predefined objectives simultaneously. This paper introduces SPRINT-Race, the first multi-objective racing algorithm in a fixed-confidence setting, which is based on the sequential probability ratio with indifference zone test. SPRINT-Race addresses the problem of MOMS with multiple stochastic optimization objectives in the proper Pareto-optimality sense. In SPRINT-Race, a pairwise dominance or non-dominance relationship is statistically inferred via a non-parametric, ternary-decision, dual-sequential probability ratio test. The overall probability of falsely eliminating any Pareto-optimal models or mistakenly returning any clearly dominated models is strictly controlled by a sequential Holm's step-down family-wise error rate control method. As a fixed-confidence model selection algorithm, the objective of SPRINT-Race is to minimize the computational effort required to achieve a prescribed confidence level about the quality of the returned models. The performance of SPRINT-Race is first examined via an artificially constructed MOMS problem with known ground truth. Subsequently, SPRINT-Race is applied on two real-world applications: 1) hybrid recommender system design and 2) multi-criteria stock selection. The experimental results verify that SPRINT-Race is an effective and efficient tool for such MOMS problems. code of SPRINT-Race is available at https://github.com/watera427/SPRINT-Race.
Pareto joint inversion of 2D magnetotelluric and gravity data
Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek
2015-04-01
In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where
Income dynamics with a stationary double Pareto distribution.
Toda, Alexis Akira
2011-04-01
Once controlled for the trend, the distribution of personal income appears to be double Pareto, a distribution that obeys the power law exactly in both the upper and the lower tails. I propose a model of income dynamics with a stationary distribution that is consistent with this fact. Using US male wage data for 1970-1993, I estimate the power law exponent in two ways--(i) from each cross section, assuming that the distribution has converged to the stationary distribution, and (ii) from a panel directly estimating the parameters of the income dynamics model--and obtain the same value of 8.4.
Bayesian modeling to paired comparison data via the Pareto distribution
Directory of Open Access Journals (Sweden)
Nasir Abbas
2017-12-01
Full Text Available A probabilistic approach to build models for paired comparison experiments based on the comparison of two Pareto variables is considered. Analysis of the proposed model is carried out in classical as well as Bayesian frameworks. Informative and uninformative priors are employed to accommodate the prior information. Simulation study is conducted to assess the suitablily and performance of the model under theoretical conditions. Appropriateness of fit of the is also carried out. Entire inferential procedure is illustrated by comparing certain cricket teams using real dataset.
Using Pareto optimality to explore the topology and dynamics of the human connectome.
Avena-Koenigsberger, Andrea; Goñi, Joaquín; Betzel, Richard F; van den Heuvel, Martijn P; Griffa, Alessandra; Hagmann, Patric; Thiran, Jean-Philippe; Sporns, Olaf
2014-10-05
Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.
Directory of Open Access Journals (Sweden)
Robert L. Chevalier
2017-05-01
Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Towards a seascape typology. I. Zipf versus Pareto laws
Seuront, Laurent; Mitchell, James G.
Two data analysis methods, referred to as the Zipf and Pareto methods, initially introduced in economics and linguistics two centuries ago and subsequently used in a wide range of fields (word frequency in languages and literature, human demographics, finance, city formation, genomics and physics), are described and proposed here as a potential tool to classify space-time patterns in marine ecology. The aim of this paper is, first, to present the theoretical bases of Zipf and Pareto laws, and to demonstrate that they are strictly equivalent. In that way, we provide a one-to-one correspondence between their characteristic exponents and argue that the choice of technique is a matter of convenience. Second, we argue that the appeal of this technique is that it is assumption-free for the distribution of the data and regularity of sampling interval, as well as being extremely easy to implement. Finally, in order to allow marine ecologists to identify and classify any structure in their data sets, we provide a step by step overview of the characteristic shapes expected for Zipf's law for the cases of randomness, power law behavior, power law behavior contaminated by internal and external noise, and competing power laws illustrated on the basis of typical ecological situations such as mixing processes involving non-interacting and interacting species, phytoplankton growth processes and differential grazing by zooplankton.
PARETO OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE GENERALIZED ASSIGNMENT PROBLEM
Directory of Open Access Journals (Sweden)
S. Prakash
2012-01-01
Full Text Available
ENGLISH ABSTRACT: The Multi-Objective Generalized Assignment Problem (MGAP with two objectives, where one objective is linear and the other one is non-linear, has been considered, with the constraints that a job is assigned to only one worker – though he may be assigned more than one job, depending upon the time available to him. An algorithm is proposed to find the set of Pareto optimal solutions of the problem, determining assignments of jobs to workers with two objectives without setting priorities for them. The two objectives are to minimise the total cost of the assignment and to reduce the time taken to complete all the jobs.
AFRIKAANSE OPSOMMING: ‘n Multi-doelwit veralgemeende toekenningsprobleem (“multi-objective generalised assignment problem – MGAP” met twee doelwitte, waar die een lineêr en die ander nielineêr is nie, word bestudeer, met die randvoorwaarde dat ‘n taak slegs toegedeel word aan een werker – alhoewel meer as een taak aan hom toegedeel kan word sou die tyd beskikbaar wees. ‘n Algoritme word voorgestel om die stel Pareto-optimale oplossings te vind wat die taaktoedelings aan werkers onderhewig aan die twee doelwitte doen sonder dat prioriteite toegeken word. Die twee doelwitte is om die totale koste van die opdrag te minimiseer en om die tyd te verminder om al die take te voltooi.
Determination of Pareto frontier in multi-objective maintenance optimization
International Nuclear Information System (INIS)
Certa, Antonella; Galante, Giacomo; Lupo, Toni; Passannanti, Gianfranco
2011-01-01
The objective of a maintenance policy generally is the global maintenance cost minimization that involves not only the direct costs for both the maintenance actions and the spare parts, but also those ones due to the system stop for preventive maintenance and the downtime for failure. For some operating systems, the failure event can be dangerous so that they are asked to operate assuring a very high reliability level between two consecutive fixed stops. The present paper attempts to individuate the set of elements on which performing maintenance actions so that the system can assure the required reliability level until the next fixed stop for maintenance, minimizing both the global maintenance cost and the total maintenance time. In order to solve the previous constrained multi-objective optimization problem, an effective approach is proposed to obtain the best solutions (that is the Pareto optimal frontier) among which the decision maker will choose the more suitable one. As well known, describing the whole Pareto optimal frontier generally is a troublesome task. The paper proposes an algorithm able to rapidly overcome this problem and its effectiveness is shown by an application to a case study regarding a complex series-parallel system.
Hunt, Tam
2014-01-01
Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766
DEFF Research Database (Denmark)
Levitis, Daniel
2015-01-01
of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness......Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...
An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index
DEFF Research Database (Denmark)
Dierckx, Goedele; Goegebeur, Yuri; Guillou, Armelle
2013-01-01
We introduce a robust and asymptotically unbiased estimator for the tail index of Pareto-type distributions. The estimator is obtained by fitting the extended Pareto distribution to the relative excesses over a high threshold with the minimum density power divergence criterion. Consistency...
Strong Convergence Bound of the Pareto Index Estimator under Right Censoring
Directory of Open Access Journals (Sweden)
Peng Zuoxiang
2010-01-01
Full Text Available Let be a sequence of positive independent and identically distributed random variables with common Pareto-type distribution function as , where represents a slowly varying function at infinity. In this note we study the strong convergence bound of a kind of right censored Pareto index estimator under second-order regularly varying conditions.
A. Bouter (Anton); K. Pirpinia (Kleopatra); T. Alderliesten (Tanja); P.A.N. Bosman (Peter)
2017-01-01
textabstractA multi-objective optimization approach is o.en followed by an a posteriori decision-making process, during which the most appropriate solution of the Pareto set is selected by a professional in the .eld. Conventional visualization methods do not correct for Pareto fronts with
DEFF Research Database (Denmark)
Ottosson, Rickard O; Engstrom, Per E; Sjöström, David
2008-01-01
constitute the Pareto front. The Pareto concept applies well to the inverse planning process, which involves inherently contradictory objectives, high and uniform target dose on one hand, and sparing of surrounding tissue and nearby organs at risk (OAR) on the other. Due to the specific characteristics...
Directory of Open Access Journals (Sweden)
E. SCHNEIDER
2014-07-01
Full Text Available The article is part of a special issue on occasion of the publication of the entire scientific correspondence of Vilfredo Pareto with Maffeo Pantaleoni. The author reconstructs the beginning of their correspondence, the debate in pure mathematical economics and draws main conclusions on the different views of Pareto with respect to Marshal, Edgeworth and Fisher.JEL: B16, B31, C02, C60
GAO Hongying; WU Kangping
2007-01-01
This paper estimates the Pareto exponent of the city size (population size and economy size) distribution, all provinces, and three regions in China in 1997, 2000 and 2003 by OLS, comparatively analyzes the Pareto exponent cross section and times, and empirically analyzes the factors which impacts on the Pareto exponents of provinces. Our analyses show that the size distributions of cities in China follow the Pareto distribution and are of structural features. Variations in the value of the P...
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
Dictatorship, liberalism and the Pareto rule: Possible and impossible
Directory of Open Access Journals (Sweden)
Boričić Branislav
2009-01-01
Full Text Available The current economic crisis has shaken belief in the capacity of neoliberal 'free market' policies. Numerous supports of state intervention have arisen, and the interest for social choice theory has revived. In this paper we consider three standard properties for aggregating individual into social preferences: dictatorship, liberalism and the Pareto rule, and their formal negations. The context of the pure first-order classical logic makes it possible to show how some combinations of the above mentioned conditions, under the hypothesis of unrestricted domain, form simple and reasonable examples of possible or impossible social choice systems. Due to their simplicity, these examples, including the famous 'liberal paradox', could have a particular didactic value.
Optimal PMU Placement with Uncertainty Using Pareto Method
Directory of Open Access Journals (Sweden)
A. Ketabi
2012-01-01
Full Text Available This paper proposes a method for optimal placement of Phasor Measurement Units (PMUs in state estimation considering uncertainty. State estimation has first been turned into an optimization exercise in which the objective function is selected to be the number of unobservable buses which is determined based on Singular Value Decomposition (SVD. For the normal condition, Differential Evolution (DE algorithm is used to find the optimal placement of PMUs. By considering uncertainty, a multiobjective optimization exercise is hence formulated. To achieve this, DE algorithm based on Pareto optimum method has been proposed here. The suggested strategy is applied on the IEEE 30-bus test system in several case studies to evaluate the optimal PMUs placement.
Pareto analysis of critical factors affecting technical institution evaluation
Directory of Open Access Journals (Sweden)
Victor Gambhir
2012-08-01
Full Text Available With the change of education policy in 1991, more and more technical institutions are being set up in India. Some of these institutions provide quality education, but others are merely concentrating on quantity. These stakeholders are in a state of confusion about decision to select the best institute for their higher educational studies. Although various agencies including print media provide ranking of these institutions every year, but their results are controversial and biased. In this paper, the authors have made an endeavor to find the critical factors for technical institution evaluation from literature survey. A Pareto analysis has also been performed to find the intensity of these critical factors in evaluation. This will not only help the stake holders in taking right decisions but will also help the management of institutions in benchmarking for identifying the most important critical areas to improve the existing system. This will in turn help Indian economy.
Origin of Pareto-like spatial distributions in ecosystems.
Manor, Alon; Shnerb, Nadav M
2008-12-31
Recent studies of cluster distribution in various ecosystems revealed Pareto statistics for the size of spatial colonies. These results were supported by cellular automata simulations that yield robust criticality for endogenous pattern formation based on positive feedback. We show that this patch statistics is a manifestation of the law of proportionate effect. Mapping the stochastic model to a Markov birth-death process, the transition rates are shown to scale linearly with cluster size. This mapping provides a connection between patch statistics and the dynamics of the ecosystem; the "first passage time" for different colonies emerges as a powerful tool that discriminates between endogenous and exogenous clustering mechanisms. Imminent catastrophic shifts (such as desertification) manifest themselves in a drastic change of the stability properties of spatial colonies.
Pareto optimization of an industrial ecosystem: sustainability maximization
Directory of Open Access Journals (Sweden)
J. G. M.-S. Monteiro
2010-09-01
Full Text Available This work investigates a procedure to design an Industrial Ecosystem for sequestrating CO2 and consuming glycerol in a Chemical Complex with 15 integrated processes. The Complex is responsible for the production of methanol, ethylene oxide, ammonia, urea, dimethyl carbonate, ethylene glycol, glycerol carbonate, β-carotene, 1,2-propanediol and olefins, and is simulated using UNISIM Design (Honeywell. The process environmental impact (EI is calculated using the Waste Reduction Algorithm, while Profit (P is estimated using classic cost correlations. MATLAB (The Mathworks Inc is connected to UNISIM to enable optimization. The objective is granting maximum process sustainability, which involves finding a compromise between high profitability and low environmental impact. Sustainability maximization is therefore understood as a multi-criteria optimization problem, addressed by means of the Pareto optimization methodology for trading off P vs. EI.
DEFF Research Database (Denmark)
Nash, Ulrik William
2014-01-01
, they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...
Wjst, M
2013-12-01
Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.
Directory of Open Access Journals (Sweden)
Gregory Gorelik
2014-10-01
Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.
Sánchez, M S; Sarabia, L A; Ortiz, M C
2012-11-19
Experimental designs for a given task should be selected on the base of the problem being solved and of some criteria that measure their quality. There are several such criteria because there are several aspects to be taken into account when making a choice. The most used criteria are probably the so-called alphabetical optimality criteria (for example, the A-, E-, and D-criteria related to the joint estimation of the coefficients, or the I- and G-criteria related to the prediction variance). Selecting a proper design to solve a problem implies finding a balance among these several criteria that measure the performance of the design in different aspects. Technically this is a problem of multi-criteria optimization, which can be tackled from different views. The approach presented here addresses the problem in its real vector nature, so that ad hoc experimental designs are generated with an algorithm based on evolutionary algorithms to find the Pareto-optimal front. There is not theoretical limit to the number of criteria that can be studied and, contrary to other approaches, no just one experimental design is computed but a set of experimental designs all of them with the property of being Pareto-optimal in the criteria needed by the user. Besides, the use of an evolutionary algorithm makes it possible to search in both continuous and discrete domains and avoid the need of having a set of candidate points, usual in exchange algorithms. Copyright © 2012 Elsevier B.V. All rights reserved.
Mahmoodabadi, M J; Taherkhorsandi, M; Bagheri, A
2014-01-01
An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot.
Derivative-free generation and interpolation of convex Pareto optimal IMRT plans
Hoffmann, Aswin L.; Siem, Alex Y. D.; den Hertog, Dick; Kaanders, Johannes H. A. M.; Huizenga, Henk
2006-12-01
In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning.
Derivative-free generation and interpolation of convex Pareto optimal IMRT plans
International Nuclear Information System (INIS)
Hoffmann, Aswin L; Siem, Alex Y D; Hertog, Dick den; Kaanders, Johannes H A M; Huizenga, Henk
2006-01-01
In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning
Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel
2013-06-01
Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.
Giller, C A
2011-12-01
The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use computer models to show that Pareto analysis may be feasible for GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant to B if the prescription isodose volume of A covers more tumor but not more normal tissue than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal if it is not dominated by any other plan. Two different Pareto optimal plans represent different tradeoffs between dose to tumor and normal tissue, because neither plan dominates the other. 'GK simulator' software calculated dose distributions for GK plans, and was called repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor shapes were tested in 17 trials using various combinations of shots. The mean number of Pareto dominant plans/trial was 59 ± 17 (sd). Different planning strategies were identified by large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto dominant plans represent different dosimetric tradeoffs and can be systematically calculated using genetic algorithms. Automatic identification of non-intuitive planning strategies may be feasible with these methods.
Indian Academy of Sciences (India)
In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...
Accident investigation of construction sites in Qom city using Pareto chart (2009-2012
Directory of Open Access Journals (Sweden)
M. H. Beheshti
2015-07-01
.Conclusions: Employing Pareto charts as a method for analyzing and identification of accident causes can have an effective role in the management of work-related accidents, proper allocation of funds and time.
A fast method for calculating reliable event supports in tree reconciliations via Pareto optimality.
To, Thu-Hien; Jacox, Edwin; Ranwez, Vincent; Scornavacca, Celine
2015-11-14
Given a gene and a species tree, reconciliation methods attempt to retrieve the macro-evolutionary events that best explain the discrepancies between the two tree topologies. The DTL parsimonious approach searches for a most parsimonious reconciliation between a gene tree and a (dated) species tree, considering four possible macro-evolutionary events (speciation, duplication, transfer, and loss) with specific costs. Unfortunately, many events are erroneously predicted due to errors in the input trees, inappropriate input cost values or because of the existence of several equally parsimonious scenarios. It is thus crucial to provide a measure of the reliability for predicted events. It has been recently proposed that the reliability of an event can be estimated via its frequency in the set of most parsimonious reconciliations obtained using a variety of reasonable input cost vectors. To compute such a support, a straightforward but time-consuming approach is to generate the costs slightly departing from the original ones, independently compute the set of all most parsimonious reconciliations for each vector, and combine these sets a posteriori. Another proposed approach uses Pareto-optimality to partition cost values into regions which induce reconciliations with the same number of DTL events. The support of an event is then defined as its frequency in the set of regions. However, often, the number of regions is not large enough to provide reliable supports. We present here a method to compute efficiently event supports via a polynomial-sized graph, which can represent all reconciliations for several different costs. Moreover, two methods are proposed to take into account alternative input costs: either explicitly providing an input cost range or allowing a tolerance for the over cost of a reconciliation. Our methods are faster than the region based method, substantially faster than the sampling-costs approach, and have a higher event-prediction accuracy on
Computing the Pareto-Nash equilibrium set in finite multi-objective mixed-strategy games
Directory of Open Access Journals (Sweden)
Victoria Lozan
2013-10-01
Full Text Available The Pareto-Nash equilibrium set (PNES is described as intersection of graphs of efficient response mappings. The problem of PNES computing in finite multi-objective mixed-strategy games (Pareto-Nash games is considered. A method for PNES computing is studied. Mathematics Subject Classification 2010: 91A05, 91A06, 91A10, 91A43, 91A44.
He, Lu; Friedman, Alan M.; Bailey-Kellogg, Chris
2016-01-01
In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability vs. novelty, affinity vs. specificity, activity vs. immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not “dominated”; i.e., no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), in order to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, PEPFR (Protein Engineering Pareto FRontier), that hierarchically subdivides the objective space, employing appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. PMID:22180081
Strong Convergence Bound of the Pareto Index Estimator under Right Censoring
Directory of Open Access Journals (Sweden)
Bao Tao
2010-01-01
Full Text Available Let {Xn,n≥1} be a sequence of positive independent and identically distributed random variables with common Pareto-type distribution function F(x=1−x−1/γlF(x as γ>0, where lF(x represents a slowly varying function at infinity. In this note we study the strong convergence bound of a kind of right censored Pareto index estimator under second-order regularly varying conditions.
Pareto Efficient Solutions of Attack-Defence Trees
DEFF Research Database (Denmark)
Aslanyan, Zaruhi; Nielson, Flemming
2015-01-01
Attack-defence trees are a promising approach for representing threat scenarios and possible countermeasures in a concise and intuitive manner. An attack-defence tree describes the interaction between an attacker and a defender, and is evaluated by assigning parameters to the nodes, such as proba......Attack-defence trees are a promising approach for representing threat scenarios and possible countermeasures in a concise and intuitive manner. An attack-defence tree describes the interaction between an attacker and a defender, and is evaluated by assigning parameters to the nodes......, such as probability or cost of attacks and defences. In case of multiple parameters most analytical methods optimise one parameter at a time, e.g., minimise cost or maximise probability of an attack. Such methods may lead to sub-optimal solutions when optimising conflicting parameters, e.g., minimising cost while...... maximising probability. In order to tackle this challenge, we devise automated techniques that optimise all parameters at once. Moreover, in the case of conflicting parameters our techniques compute the set of all optimal solutions, defined in terms of Pareto efficiency. The developments are carried out...
The geometry of the Pareto front in biological phenotype space
Sheftel, Hila; Shoval, Oren; Mayo, Avi; Alon, Uri
2013-01-01
When organisms perform a single task, selection leads to phenotypes that maximize performance at that task. When organisms need to perform multiple tasks, a trade-off arises because no phenotype can optimize all tasks. Recent work addressed this question, and assumed that the performance at each task decays with distance in trait space from the best phenotype at that task. Under this assumption, the best-fitness solutions (termed the Pareto front) lie on simple low-dimensional shapes in trait space: line segments, triangles and other polygons. The vertices of these polygons are specialists at a single task. Here, we generalize this finding, by considering performance functions of general form, not necessarily functions that decay monotonically with distance from their peak. We find that, except for performance functions with highly eccentric contours, simple shapes in phenotype space are still found, but with mildly curving edges instead of straight ones. In a wide range of systems, complex data on multiple quantitative traits, which might be expected to fill a high-dimensional phenotype space, is predicted instead to collapse onto low-dimensional shapes; phenotypes near the vertices of these shapes are predicted to be specialists, and can thus suggest which tasks may be at play. PMID:23789060
Scaling of Precipitation Extremes Modelled by Generalized Pareto Distribution
Rajulapati, C. R.; Mujumdar, P. P.
2017-12-01
Precipitation extremes are often modelled with data from annual maximum series or peaks over threshold series. The Generalized Pareto Distribution (GPD) is commonly used to fit the peaks over threshold series. Scaling of precipitation extremes from larger time scales to smaller time scales when the extremes are modelled with the GPD is burdened with difficulties arising from varying thresholds for different durations. In this study, the scale invariance theory is used to develop a disaggregation model for precipitation extremes exceeding specified thresholds. A scaling relationship is developed for a range of thresholds obtained from a set of quantiles of non-zero precipitation of different durations. The GPD parameters and exceedance rate parameters are modelled by the Bayesian approach and the uncertainty in scaling exponent is quantified. A quantile based modification in the scaling relationship is proposed for obtaining the varying thresholds and exceedance rate parameters for shorter durations. The disaggregation model is applied to precipitation datasets of Berlin City, Germany and Bangalore City, India. From both the applications, it is observed that the uncertainty in the scaling exponent has a considerable effect on uncertainty in scaled parameters and return levels of shorter durations.
Using Pareto points for model identification in predictive toxicology
2013-01-01
Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology. PMID:23517649
Pareto-Optimal Multi-objective Inversion of Geophysical Data
Schnaidt, Sebastian; Conway, Dennis; Krieger, Lars; Heinson, Graham
2018-01-01
In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.
Multiobjective Optimization of Linear Cooperative Spectrum Sensing: Pareto Solutions and Refinement.
Yuan, Wei; You, Xinge; Xu, Jing; Leung, Henry; Zhang, Tianhang; Chen, Chun Lung Philip
2016-01-01
In linear cooperative spectrum sensing, the weights of secondary users and detection threshold should be optimally chosen to minimize missed detection probability and to maximize secondary network throughput. Since these two objectives are not completely compatible, we study this problem from the viewpoint of multiple-objective optimization. We aim to obtain a set of evenly distributed Pareto solutions. To this end, here, we introduce the normal constraint (NC) method to transform the problem into a set of single-objective optimization (SOO) problems. Each SOO problem usually results in a Pareto solution. However, NC does not provide any solution method to these SOO problems, nor any indication on the optimal number of Pareto solutions. Furthermore, NC has no preference over all Pareto solutions, while a designer may be only interested in some of them. In this paper, we employ a stochastic global optimization algorithm to solve the SOO problems, and then propose a simple method to determine the optimal number of Pareto solutions under a computational complexity constraint. In addition, we extend NC to refine the Pareto solutions and select the ones of interest. Finally, we verify the effectiveness and efficiency of the proposed methods through computer simulations.
Diversity comparison of Pareto front approximations in many-objective optimization.
Li, Miqing; Yang, Shengxiang; Liu, Xiaohui
2014-12-01
Diversity assessment of Pareto front approximations is an important issue in the stochastic multiobjective optimization community. Most of the diversity indicators in the literature were designed to work for any number of objectives of Pareto front approximations in principle, but in practice many of these indicators are infeasible or not workable when the number of objectives is large. In this paper, we propose a diversity comparison indicator (DCI) to assess the diversity of Pareto front approximations in many-objective optimization. DCI evaluates relative quality of different Pareto front approximations rather than provides an absolute measure of distribution for a single approximation. In DCI, all the concerned approximations are put into a grid environment so that there are some hyperboxes containing one or more solutions. The proposed indicator only considers the contribution of different approximations to nonempty hyperboxes. Therefore, the computational cost does not increase exponentially with the number of objectives. In fact, the implementation of DCI is of quadratic time complexity, which is fully independent of the number of divisions used in grid. Systematic experiments are conducted using three groups of artificial Pareto front approximations and seven groups of real Pareto front approximations with different numbers of objectives to verify the effectiveness of DCI. Moreover, a comparison with two diversity indicators used widely in many-objective optimization is made analytically and empirically. Finally, a parametric investigation reveals interesting insights of the division number in grid and also offers some suggested settings to the users with different preferences.
Safety management in NPPs using evolutionary algorithm
International Nuclear Information System (INIS)
Mishra, A.; Patwardhan, A.; Chauhan, A.; Verma, A.K.
2005-01-01
Technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. Accordingly, the risk-based analysis of Technical Specification (RBTS) is being considered in evaluating current TS. The multi objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper a multi objective Evolutionary Algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for Loss of coolant Accident (LOCA) and Main Steam Line Break (MSLB) as initiating events. (authors)
Birds shed RNA-viruses according to the pareto principle.
Jankowski, Mark D; Williams, Christopher J; Fair, Jeanne M; Owen, Jennifer C
2013-01-01
A major challenge in disease ecology is to understand the role of individual variation of infection load on disease transmission dynamics and how this influences the evolution of resistance or tolerance mechanisms. Such information will improve our capacity to understand, predict, and mitigate pathogen-associated disease in all organisms. In many host-pathogen systems, particularly macroparasites and sexually transmitted diseases, it has been found that approximately 20% of the population is responsible for approximately 80% of the transmission events. Although host contact rates can account for some of this pattern, pathogen transmission dynamics also depend upon host infectiousness, an area that has received relatively little attention. Therefore, we conducted a meta-analysis of pathogen shedding rates of 24 host (avian) - pathogen (RNA-virus) studies, including 17 bird species and five important zoonotic viruses. We determined that viral count data followed the Weibull distribution, the mean Gini coefficient (an index of inequality) was 0.687 (0.036 SEM), and that 22.0% (0.90 SEM) of the birds shed 80% of the virus across all studies, suggesting an adherence of viral shedding counts to the Pareto Principle. The relative position of a bird in a distribution of viral counts was affected by factors extrinsic to the host, such as exposure to corticosterone and to a lesser extent reduced food availability, but not to intrinsic host factors including age, sex, and migratory status. These data provide a quantitative view of heterogeneous virus shedding in birds that may be used to better parameterize epidemiological models and understand transmission dynamics.
Birds shed RNA-viruses according to the pareto principle.
Directory of Open Access Journals (Sweden)
Mark D Jankowski
Full Text Available A major challenge in disease ecology is to understand the role of individual variation of infection load on disease transmission dynamics and how this influences the evolution of resistance or tolerance mechanisms. Such information will improve our capacity to understand, predict, and mitigate pathogen-associated disease in all organisms. In many host-pathogen systems, particularly macroparasites and sexually transmitted diseases, it has been found that approximately 20% of the population is responsible for approximately 80% of the transmission events. Although host contact rates can account for some of this pattern, pathogen transmission dynamics also depend upon host infectiousness, an area that has received relatively little attention. Therefore, we conducted a meta-analysis of pathogen shedding rates of 24 host (avian - pathogen (RNA-virus studies, including 17 bird species and five important zoonotic viruses. We determined that viral count data followed the Weibull distribution, the mean Gini coefficient (an index of inequality was 0.687 (0.036 SEM, and that 22.0% (0.90 SEM of the birds shed 80% of the virus across all studies, suggesting an adherence of viral shedding counts to the Pareto Principle. The relative position of a bird in a distribution of viral counts was affected by factors extrinsic to the host, such as exposure to corticosterone and to a lesser extent reduced food availability, but not to intrinsic host factors including age, sex, and migratory status. These data provide a quantitative view of heterogeneous virus shedding in birds that may be used to better parameterize epidemiological models and understand transmission dynamics.
International Nuclear Information System (INIS)
Shojaeefard, Mohammad Hasan; Behnagh, Reza Abdi; Akbari, Mostafa; Givi, Mohammad Kazem Besharati; Farhani, Foad
2013-01-01
Highlights: ► Defect-free friction stir welds have been produced for AA5083-O/AA7075-O. ► Back-propagation was sufficient for predicting hardness and tensile strength. ► A hybrid multi-objective algorithm is proposed to deal with this MOP. ► Multi-objective particle swarm optimization was used to find the Pareto solutions. ► TOPSIS is used to rank the given alternatives of the Pareto solutions. -- Abstract: Friction Stir Welding (FSW) has been successfully used to weld similar and dissimilar cast and wrought aluminium alloys, especially for aircraft aluminium alloys, that generally present with low weldability by the traditional fusion welding process. This paper focuses on the microstructural and mechanical properties of the Friction Stir Welding (FSW) of AA7075-O to AA5083-O aluminium alloys. Weld microstructures, hardness and tensile properties were evaluated in as-welded condition. Tensile tests indicated that mechanical properties of the joint were better than in the base metals. An Artificial Neural Network (ANN) model was developed to simulate the correlation between the Friction Stir Welding parameters and mechanical properties. Performance of the ANN model was excellent and the model was employed to predict the ultimate tensile strength and hardness of butt joint of AA7075–AA5083 as functions of weld and rotational speeds. The multi-objective particle swarm optimization was used to obtain the Pareto-optimal set. Finally, the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) was applied to determine the best compromised solution.
Song, Q Chelsea; Wee, Serena; Newman, Daniel A
2017-12-01
To reduce adverse impact potential and improve diversity outcomes from personnel selection, one promising technique is De Corte, Lievens, and Sackett's (2007) Pareto-optimal weighting strategy. De Corte et al.'s strategy has been demonstrated on (a) a composite of cognitive and noncognitive (e.g., personality) tests (De Corte, Lievens, & Sackett, 2008) and (b) a composite of specific cognitive ability subtests (Wee, Newman, & Joseph, 2014). Both studies illustrated how Pareto-weighting (in contrast to unit weighting) could lead to substantial improvement in diversity outcomes (i.e., diversity improvement), sometimes more than doubling the number of job offers for minority applicants. The current work addresses a key limitation of the technique-the possibility of shrinkage, especially diversity shrinkage, in the Pareto-optimal solutions. Using Monte Carlo simulations, sample size and predictor combinations were varied and cross-validated Pareto-optimal solutions were obtained. Although diversity shrinkage was sizable for a composite of cognitive and noncognitive predictors when sample size was at or below 500, diversity shrinkage was typically negligible for a composite of specific cognitive subtest predictors when sample size was at least 100. Diversity shrinkage was larger when the Pareto-optimal solution suggested substantial diversity improvement. When sample size was at least 100, cross-validated Pareto-optimal weights typically outperformed unit weights-suggesting that diversity improvement is often possible, despite diversity shrinkage. Implications for Pareto-optimal weighting, adverse impact, sample size of validation studies, and optimizing the diversity-job performance tradeoff are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
δ-Similar Elimination to Enhance Search Performance of Multiobjective Evolutionary Algorithms
Aguirre, Hernán; Sato, Masahiko; Tanaka, Kiyoshi
In this paper, we propose δ-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.
Level Diagrams analysis of Pareto Front for multiobjective system redundancy allocation
International Nuclear Information System (INIS)
Zio, E.; Bazzo, R.
2011-01-01
Reliability-based and risk-informed design, operation, maintenance and regulation lead to multiobjective (multicriteria) optimization problems. In this context, the Pareto Front and Set found in a multiobjective optimality search provide a family of solutions among which the decision maker has to look for the best choice according to his or her preferences. Efficient visualization techniques for Pareto Front and Set analyses are needed for helping decision makers in the selection task. In this paper, we consider the multiobjective optimization of system redundancy allocation and use the recently introduced Level Diagrams technique for graphically representing the resulting Pareto Front and Set. Each objective and decision variable is represented on separate diagrams where the points of the Pareto Front and Set are positioned according to their proximity to ideally optimal points, as measured by a metric of normalized objective values. All diagrams are synchronized across all objectives and decision variables. On the basis of the analysis of the Level Diagrams, we introduce a procedure for reducing the number of solutions in the Pareto Front; from the reduced set of solutions, the decision maker can more easily identify his or her preferred solution.
Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning
International Nuclear Information System (INIS)
Bokrantz, Rasmus
2013-01-01
We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained. (paper)
Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning.
Bokrantz, Rasmus
2013-06-07
We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained.
Directory of Open Access Journals (Sweden)
Ziaul Huque
2012-01-01
Full Text Available A Computational Fluid Dynamics (CFD and response surface-based multiobjective design optimization were performed for six different 2D airfoil profiles, and the Pareto optimal front of each airfoil is presented. FLUENT, which is a commercial CFD simulation code, was used to determine the relevant aerodynamic loads. The Lift Coefficient (CL and Drag Coefficient (CD data at a range of 0° to 12° angles of attack (α and at three different Reynolds numbers (Re=68,459, 479, 210, and 958, 422 for all the six airfoils were obtained. Realizable k-ε turbulence model with a second-order upwind solution method was used in the simulations. The standard least square method was used to generate response surface by the statistical code JMP. Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II was used to determine the Pareto optimal set based on the response surfaces. Each Pareto optimal solution represents a different compromise between design objectives. This gives the designer a choice to select a design compromise that best suits the requirements from a set of optimal solutions. The Pareto solution set is presented in the form of a Pareto optimal front.
Directory of Open Access Journals (Sweden)
Kangji Li
2017-02-01
Full Text Available This paper is concerned with the development of a high-resolution and control-friendly optimization framework in enclosed environments that helps improve thermal comfort, indoor air quality (IAQ, and energy costs of heating, ventilation and air conditioning (HVAC system simultaneously. A computational fluid dynamics (CFD-based optimization method which couples algorithms implemented in Matlab with CFD simulation is proposed. The key part of this method is a data interactive mechanism which efficiently passes parameters between CFD simulations and optimization functions. A two-person office room is modeled for the numerical optimization. The multi-objective evolutionary algorithm—non-dominated-and-crowding Sorting Genetic Algorithm II (NSGA-II—is realized to explore the environment/energy Pareto front of the enclosed space. Performance analysis will demonstrate the effectiveness of the presented optimization method.
Improved Shape Parameter Estimation in Pareto Distributed Clutter with Neural Networks
Directory of Open Access Journals (Sweden)
José Raúl Machado-Fernández
2016-12-01
Full Text Available The main problem faced by naval radars is the elimination of the clutter input which is a distortion signal appearing mixed with target reflections. Recently, the Pareto distribution has been related to sea clutter measurements suggesting that it may provide a better fit than other traditional distributions. The authors propose a new method for estimating the Pareto shape parameter based on artificial neural networks. The solution achieves a precise estimation of the parameter, having a low computational cost, and outperforming the classic method which uses Maximum Likelihood Estimates (MLE. The presented scheme contributes to the development of the NATE detector for Pareto clutter, which uses the knowledge of clutter statistics for improving the stability of the detection, among other applications.
The Burr X Pareto Distribution: Properties, Applications and VaR Estimation
Directory of Open Access Journals (Sweden)
Mustafa Ç. Korkmaz
2017-12-01
Full Text Available In this paper, a new three-parameter Pareto distribution is introduced and studied. We discuss various mathematical and statistical properties of the new model. Some estimation methods of the model parameters are performed. Moreover, the peaks-over-threshold method is used to estimate Value-at-Risk (VaR by means of the proposed distribution. We compare the distribution with a few other models to show its versatility in modelling data with heavy tails. VaR estimation with the Burr X Pareto distribution is presented using time series data, and the new model could be considered as an alternative VaR model against the generalized Pareto model for financial institutions.
Prediction in Partial Duration Series With Generalized Pareto-Distributed Exceedances
DEFF Research Database (Denmark)
Rosbjerg, Dan; Madsen, Henrik; Rasmussen, Peter Funder
1992-01-01
As a generalization of the common assumption of exponential distribution of the exceedances in Partial duration series the generalized Pareto distribution has been adopted. Estimators for the parameters are presented using estimation by both method of moments and probability-weighted moments......-weighted moments. Maintaining the generalized Pareto distribution as the parent exceedance distribution the T-year event is estimated assuming the exceedances to be exponentially distributed. For moderately long-tailed exceedance distributions and small to moderate sample sizes it is found, by comparing mean...... square errors of the T-year event estimators, that the exponential distribution is preferable to the correct generalized Pareto distribution despite the introduced model error and despite a possible rejection of the exponential hypothesis by a test of significance. For moderately short-tailed exceedance...
A note on the estimation of the Pareto efficient set for multiobjective matrix permutation problems.
Brusco, Michael J; Steinley, Douglas
2012-02-01
There are a number of important problems in quantitative psychology that require the identification of a permutation of the n rows and columns of an n × n proximity matrix. These problems encompass applications such as unidimensional scaling, paired-comparison ranking, and anti-Robinson forms. The importance of simultaneously incorporating multiple objective criteria in matrix permutation applications is well recognized in the literature; however, to date, there has been a reliance on weighted-sum approaches that transform the multiobjective problem into a single-objective optimization problem. Although exact solutions to these single-objective problems produce supported Pareto efficient solutions to the multiobjective problem, many interesting unsupported Pareto efficient solutions may be missed. We illustrate the limitation of the weighted-sum approach with an example from the psychological literature and devise an effective heuristic algorithm for estimating both the supported and unsupported solutions of the Pareto efficient set. © 2011 The British Psychological Society.
Directory of Open Access Journals (Sweden)
Jarosław Rudy
2015-01-01
Full Text Available In this paper the job shop scheduling problem (JSP with minimizing two criteria simultaneously is considered. JSP is frequently used model in real world applications of combinatorial optimization. Multi-objective job shop problems (MOJSP were rarely studied. We implement and compare two multi-agent nature-based methods, namely ant colony optimization (ACO and genetic algorithm (GA for MOJSP. Both of those methods employ certain technique, taken from the multi-criteria decision analysis in order to establish ranking of solutions. ACO and GA differ in a method of keeping information about previously found solutions and their quality, which affects the course of the search. In result, new features of Pareto approximations provided by said algorithms are observed: aside from the slight superiority of the ACO method the Pareto frontier approximations provided by both methods are disjoint sets. Thus, both methods can be used to search mutually exclusive areas of the Pareto frontier.
Directory of Open Access Journals (Sweden)
Yan Sun
2015-09-01
Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.
Comparative analysis of Pareto surfaces in multi-criteria IMRT planning
Energy Technology Data Exchange (ETDEWEB)
Teichert, K; Suess, P; Serna, J I; Monz, M; Kuefer, K H [Department of Optimization, Fraunhofer Institute for Industrial Mathematics (ITWM), Fraunhofer Platz 1, 67663 Kaiserslautern (Germany); Thieke, C, E-mail: katrin.teichert@itwm.fhg.de [Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
2011-06-21
In the multi-criteria optimization approach to IMRT planning, a given dose distribution is evaluated by a number of convex objective functions that measure tumor coverage and sparing of the different organs at risk. Within this context optimizing the intensity profiles for any fixed set of beams yields a convex Pareto set in the objective space. However, if the number of beam directions and irradiation angles are included as free parameters in the formulation of the optimization problem, the resulting Pareto set becomes more intricate. In this work, a method is presented that allows for the comparison of two convex Pareto sets emerging from two distinct beam configuration choices. For the two competing beam settings, the non-dominated and the dominated points of the corresponding Pareto sets are identified and the distance between the two sets in the objective space is calculated and subsequently plotted. The obtained information enables the planner to decide if, for a given compromise, the current beam setup is optimal. He may then re-adjust his choice accordingly during navigation. The method is applied to an artificial case and two clinical head neck cases. In all cases no configuration is dominating its competitor over the whole Pareto set. For example, in one of the head neck cases a seven-beam configuration turns out to be superior to a nine-beam configuration if the highest priority is the sparing of the spinal cord. The presented method of comparing Pareto sets is not restricted to comparing different beam angle configurations, but will allow for more comprehensive comparisons of competing treatment techniques (e.g. photons versus protons) than with the classical method of comparing single treatment plans.
Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.
Enns, Eva A; Cipriano, Lauren E; Simons, Cyrena T; Kong, Chung Yin
2015-02-01
To identify best-fitting input sets using model calibration, individual calibration target fits are often combined into a single goodness-of-fit (GOF) measure using a set of weights. Decisions in the calibration process, such as which weights to use, influence which sets of model inputs are identified as best-fitting, potentially leading to different health economic conclusions. We present an alternative approach to identifying best-fitting input sets based on the concept of Pareto-optimality. A set of model inputs is on the Pareto frontier if no other input set simultaneously fits all calibration targets as well or better. We demonstrate the Pareto frontier approach in the calibration of 2 models: a simple, illustrative Markov model and a previously published cost-effectiveness model of transcatheter aortic valve replacement (TAVR). For each model, we compare the input sets on the Pareto frontier to an equal number of best-fitting input sets according to 2 possible weighted-sum GOF scoring systems, and we compare the health economic conclusions arising from these different definitions of best-fitting. For the simple model, outcomes evaluated over the best-fitting input sets according to the 2 weighted-sum GOF schemes were virtually nonoverlapping on the cost-effectiveness plane and resulted in very different incremental cost-effectiveness ratios ($79,300 [95% CI 72,500-87,600] v. $139,700 [95% CI 79,900-182,800] per quality-adjusted life-year [QALY] gained). Input sets on the Pareto frontier spanned both regions ($79,000 [95% CI 64,900-156,200] per QALY gained). The TAVR model yielded similar results. Choices in generating a summary GOF score may result in different health economic conclusions. The Pareto frontier approach eliminates the need to make these choices by using an intuitive and transparent notion of optimality as the basis for identifying best-fitting input sets. © The Author(s) 2014.
Comparative analysis of Pareto surfaces in multi-criteria IMRT planning.
Teichert, K; Süss, P; Serna, J I; Monz, M; Küfer, K H; Thieke, C
2011-06-21
In the multi-criteria optimization approach to IMRT planning, a given dose distribution is evaluated by a number of convex objective functions that measure tumor coverage and sparing of the different organs at risk. Within this context optimizing the intensity profiles for any fixed set of beams yields a convex Pareto set in the objective space. However, if the number of beam directions and irradiation angles are included as free parameters in the formulation of the optimization problem, the resulting Pareto set becomes more intricate. In this work, a method is presented that allows for the comparison of two convex Pareto sets emerging from two distinct beam configuration choices. For the two competing beam settings, the non-dominated and the dominated points of the corresponding Pareto sets are identified and the distance between the two sets in the objective space is calculated and subsequently plotted. The obtained information enables the planner to decide if, for a given compromise, the current beam setup is optimal. He may then re-adjust his choice accordingly during navigation. The method is applied to an artificial case and two clinical head neck cases. In all cases no configuration is dominating its competitor over the whole Pareto set. For example, in one of the head neck cases a seven-beam configuration turns out to be superior to a nine-beam configuration if the highest priority is the sparing of the spinal cord. The presented method of comparing Pareto sets is not restricted to comparing different beam angle configurations, but will allow for more comprehensive comparisons of competing treatment techniques (e.g., photons versus protons) than with the classical method of comparing single treatment plans.
Comparative analysis of Pareto surfaces in multi-criteria IMRT planning
International Nuclear Information System (INIS)
Teichert, K; Suess, P; Serna, J I; Monz, M; Kuefer, K H; Thieke, C
2011-01-01
In the multi-criteria optimization approach to IMRT planning, a given dose distribution is evaluated by a number of convex objective functions that measure tumor coverage and sparing of the different organs at risk. Within this context optimizing the intensity profiles for any fixed set of beams yields a convex Pareto set in the objective space. However, if the number of beam directions and irradiation angles are included as free parameters in the formulation of the optimization problem, the resulting Pareto set becomes more intricate. In this work, a method is presented that allows for the comparison of two convex Pareto sets emerging from two distinct beam configuration choices. For the two competing beam settings, the non-dominated and the dominated points of the corresponding Pareto sets are identified and the distance between the two sets in the objective space is calculated and subsequently plotted. The obtained information enables the planner to decide if, for a given compromise, the current beam setup is optimal. He may then re-adjust his choice accordingly during navigation. The method is applied to an artificial case and two clinical head neck cases. In all cases no configuration is dominating its competitor over the whole Pareto set. For example, in one of the head neck cases a seven-beam configuration turns out to be superior to a nine-beam configuration if the highest priority is the sparing of the spinal cord. The presented method of comparing Pareto sets is not restricted to comparing different beam angle configurations, but will allow for more comprehensive comparisons of competing treatment techniques (e.g. photons versus protons) than with the classical method of comparing single treatment plans.
A New Generalization of the Pareto Distribution and Its Application to Insurance Data
Directory of Open Access Journals (Sweden)
Mohamed E. Ghitany
2018-02-01
Full Text Available The Pareto classical distribution is one of the most attractive in statistics and particularly in the scenario of actuarial statistics and finance. For example, it is widely used when calculating reinsurance premiums. In the last years, many alternative distributions have been proposed to obtain better adjustments especially when the tail of the empirical distribution of the data is very long. In this work, an alternative generalization of the Pareto distribution is proposed and its properties are studied. Finally, application of the proposed model to the earthquake insurance data set is presented.
DEFF Research Database (Denmark)
Andersen, Kurt Munk; Sandqvist, Allan
1997-01-01
We investigate the domain of definition and the domain of values for the successor function of a cooperative differential system x'=f(t,x), where the coordinate functions are concave in x for any fixed value of t. Moreover, we give a characterization of a weakly Pareto optimal solution.......We investigate the domain of definition and the domain of values for the successor function of a cooperative differential system x'=f(t,x), where the coordinate functions are concave in x for any fixed value of t. Moreover, we give a characterization of a weakly Pareto optimal solution....
On Usage of Pareto curves to Select Wind Turbine Controller Tunings to the Wind Turbulence Level
DEFF Research Database (Denmark)
Odgaard, Peter Fogh
2015-01-01
Model predictive control has in recently publications shown its potential for lowering of cost of energy of modern wind turbines. Pareto curves can be used to evaluate performance of these controllers with multiple conflicting objectives of power and fatigue loads. In this paper an approach...... to update an model predictive wind turbine controller tuning as the wind turbulence increases, as increased turbulence levels results in higher loads for the same controller tuning. In this paper the Pareto curves are computed using an industrial high fidelity aero-elastic model. Simulations show...
International Nuclear Information System (INIS)
Agterberg, Frits
2017-01-01
Pareto-lognormal modeling of worldwide metal deposit size–frequency distributions was proposed in an earlier paper (Agterberg in Nat Resour 26:3–20, 2017). In the current paper, the approach is applied to four metals (Cu, Zn, Au and Ag) and a number of model improvements are described and illustrated in detail for copper and gold. The new approach has become possible because of the very large inventory of worldwide metal deposit data recently published by Patiño Douce (Nat Resour 25:97–124, 2016c). Worldwide metal deposits for Cu, Zn and Ag follow basic lognormal size–frequency distributions that form straight lines on lognormal Q–Q plots. Au deposits show a departure from the straight-line model in the vicinity of their median size. Both largest and smallest deposits for the four metals taken as examples exhibit hyperbolic size–frequency relations and their Pareto coefficients are determined by fitting straight lines on log rank–log size plots. As originally pointed out by Patiño Douce (Nat Resour Res 25:365–387, 2016d), the upper Pareto tail cannot be distinguished clearly from the tail of what would be a secondary lognormal distribution. The method previously used in Agterberg (2017) for fitting the bridge function separating the largest deposit size–frequency Pareto tail from the basic lognormal is significantly improved in this paper. A new method is presented for estimating the approximate deposit size value at which the upper tail Pareto comes into effect. Although a theoretical explanation of the proposed Pareto-lognormal distribution model is not a required condition for its applicability, it is shown that existing double Pareto-lognormal models based on Brownian motion generalizations of the multiplicative central limit theorem are not applicable to worldwide metal deposits. Neither are various upper tail frequency amplification models in their present form. Although a physicochemical explanation remains possible, it is argued that
Energy Technology Data Exchange (ETDEWEB)
Agterberg, Frits, E-mail: agterber@nrcan.gc.ca [Geological Survey of Canada (Canada)
2017-07-01
Pareto-lognormal modeling of worldwide metal deposit size–frequency distributions was proposed in an earlier paper (Agterberg in Nat Resour 26:3–20, 2017). In the current paper, the approach is applied to four metals (Cu, Zn, Au and Ag) and a number of model improvements are described and illustrated in detail for copper and gold. The new approach has become possible because of the very large inventory of worldwide metal deposit data recently published by Patiño Douce (Nat Resour 25:97–124, 2016c). Worldwide metal deposits for Cu, Zn and Ag follow basic lognormal size–frequency distributions that form straight lines on lognormal Q–Q plots. Au deposits show a departure from the straight-line model in the vicinity of their median size. Both largest and smallest deposits for the four metals taken as examples exhibit hyperbolic size–frequency relations and their Pareto coefficients are determined by fitting straight lines on log rank–log size plots. As originally pointed out by Patiño Douce (Nat Resour Res 25:365–387, 2016d), the upper Pareto tail cannot be distinguished clearly from the tail of what would be a secondary lognormal distribution. The method previously used in Agterberg (2017) for fitting the bridge function separating the largest deposit size–frequency Pareto tail from the basic lognormal is significantly improved in this paper. A new method is presented for estimating the approximate deposit size value at which the upper tail Pareto comes into effect. Although a theoretical explanation of the proposed Pareto-lognormal distribution model is not a required condition for its applicability, it is shown that existing double Pareto-lognormal models based on Brownian motion generalizations of the multiplicative central limit theorem are not applicable to worldwide metal deposits. Neither are various upper tail frequency amplification models in their present form. Although a physicochemical explanation remains possible, it is argued that
Directory of Open Access Journals (Sweden)
K. Gawdzińska
2011-04-01
Full Text Available This author discusses the use of selected quality management tools, i.e. the Pareto chart and Ishikawa fishbone diagram, for the descriptionof composite casting defects. The Pareto chart allows to determine defect priority related with metallic composite castings, while theIshikawa diagram indicates the causes of defect formation and enables calculating defect weights.
K. Gawdzińska
2011-01-01
This author discusses the use of selected quality management tools, i.e. the Pareto chart and Ishikawa fishbone diagram, for the descriptionof composite casting defects. The Pareto chart allows to determine defect priority related with metallic composite castings, while theIshikawa diagram indicates the causes of defect formation and enables calculating defect weights.
Giesy, D. P.
1978-01-01
A technique is presented for the calculation of Pareto-optimal solutions to a multiple-objective constrained optimization problem by solving a series of single-objective problems. Threshold-of-acceptability constraints are placed on the objective functions at each stage to both limit the area of search and to mathematically guarantee convergence to a Pareto optimum.
TU-C-17A-01: A Data-Based Development for Pratical Pareto Optimality Assessment and Identification
International Nuclear Information System (INIS)
Ruan, D; Qi, S; DeMarco, J; Kupelian, P; Low, D
2014-01-01
Purpose: To develop an efficient Pareto optimality assessment scheme to support plan comparison and practical determination of best-achievable practical treatment plan goals. Methods: Pareto efficiency reflects the tradeoffs among competing target coverage and normal tissue sparing in multi-criterion optimization (MCO) based treatment planning. Assessing and understanding Pareto optimality provides insightful guidance for future planning. However, current MCO-driven Pareto estimation makes relaxed assumptions about the Pareto structure and insufficiently account for practical limitations in beam complexity, leading to performance upper bounds that may be unachievable. This work proposed an alternative data-driven approach that implicitly incorporates the practical limitations, and identifies the Pareto frontier subset by eliminating dominated plans incrementally using the Edgeworth Pareto hull (EPH). The exactness of this elimination process also permits the development of a hierarchical procedure for speedup when the plan cohort size is large, by partitioning the cohort and performing elimination in each subset before a final aggregated elimination. The developed algorithm was first tested on 2D and 3D where accuracy can be reliably assessed. As a specific application, the algorithm was applied to compare systematic plan quality for lower head-and-neck, amongst 4 competing treatment modalities. Results: The algorithm agrees exactly with brute-force pairwise comparison and visual inspection in low dimensions. The hierarchical algorithm shows sqrt(k) folds speedup with k being the number of data points in the plan cohort, demonstrating good efficiency enhancement for heavy testing tasks. Application to plan performance comparison showed superiority of tomotherapy plans for the lower head-and-neck, and revealed a potential nonconvex Pareto frontier structure. Conclusion: An accurate and efficient scheme to identify Pareto frontier from a plan cohort has been
TU-C-17A-01: A Data-Based Development for Pratical Pareto Optimality Assessment and Identification
Energy Technology Data Exchange (ETDEWEB)
Ruan, D; Qi, S; DeMarco, J; Kupelian, P; Low, D [UCLA Department of Radiation Oncology, Los Angeles, CA (United States)
2014-06-15
Purpose: To develop an efficient Pareto optimality assessment scheme to support plan comparison and practical determination of best-achievable practical treatment plan goals. Methods: Pareto efficiency reflects the tradeoffs among competing target coverage and normal tissue sparing in multi-criterion optimization (MCO) based treatment planning. Assessing and understanding Pareto optimality provides insightful guidance for future planning. However, current MCO-driven Pareto estimation makes relaxed assumptions about the Pareto structure and insufficiently account for practical limitations in beam complexity, leading to performance upper bounds that may be unachievable. This work proposed an alternative data-driven approach that implicitly incorporates the practical limitations, and identifies the Pareto frontier subset by eliminating dominated plans incrementally using the Edgeworth Pareto hull (EPH). The exactness of this elimination process also permits the development of a hierarchical procedure for speedup when the plan cohort size is large, by partitioning the cohort and performing elimination in each subset before a final aggregated elimination. The developed algorithm was first tested on 2D and 3D where accuracy can be reliably assessed. As a specific application, the algorithm was applied to compare systematic plan quality for lower head-and-neck, amongst 4 competing treatment modalities. Results: The algorithm agrees exactly with brute-force pairwise comparison and visual inspection in low dimensions. The hierarchical algorithm shows sqrt(k) folds speedup with k being the number of data points in the plan cohort, demonstrating good efficiency enhancement for heavy testing tasks. Application to plan performance comparison showed superiority of tomotherapy plans for the lower head-and-neck, and revealed a potential nonconvex Pareto frontier structure. Conclusion: An accurate and efficient scheme to identify Pareto frontier from a plan cohort has been
Pareto-Efficiency, Hayek’s Marvel, and the Invisible Executor
Kakarot-Handtke, Egmont
2014-01-01
This non-technical contribution to the RWER-Blog deals with the interrelations of market clearing, efficient information processing through the price system, and distribution. The point of entry is a transparent example of Pareto-efficiency taken from the popular book How Markets Fail.
DEFF Research Database (Denmark)
Barmby, Tim; Smith, Nina
1996-01-01
This paper analyses the labour supply behaviour of households in Denmark and Britain. It employs models in which the preferences of individuals within the household are explicitly represented. The households are then assumed to decide on their labour supply in a Pareto-Optimal fashion. Describing...
Directory of Open Access Journals (Sweden)
Yang Sun
2018-01-01
Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.
Spectral-Efficiency - Illumination Pareto Front for Energy Harvesting Enabled VLC System
Abdelhady, Amr Mohamed Abdelaziz
2017-12-13
The continuous improvement in optical energy harvesting devices motivates visible light communication (VLC) system developers to utilize such available free energy sources. An outdoor VLC system is considered where an optical base station sends data to multiple users that are capable of harvesting the optical energy. The proposed VLC system serves multiple users using time division multiple access (TDMA) with unequal time and power allocation, which are allocated to improve the system performance. The adopted optical system provides users with illumination and data communication services. The outdoor optical design objective is to maximize the illumination, while the communication design objective is to maximize the spectral efficiency (SE). The design objectives are shown to be conflicting, therefore, a multiobjective optimization problem is formulated to obtain the Pareto front performance curve for the proposed system. To this end, the marginal optimization problems are solved first using low complexity algorithms. Then, based on the proposed algorithms, a low complexity algorithm is developed to obtain an inner bound of the Pareto front for the illumination-SE tradeoff. The inner bound for the Pareto-front is shown to be close to the optimal Pareto-frontier via several simulation scenarios for different system parameters.
Approximating the Pareto set of multiobjective linear programs via robust optimization
Gorissen, B.L.; den Hertog, D.
2012-01-01
We consider problems with multiple linear objectives and linear constraints and use adjustable robust optimization and polynomial optimization as tools to approximate the Pareto set with polynomials of arbitrarily large degree. The main difference with existing techniques is that we optimize a
Reddy, P.V.; Engwerda, J.C.
2011-01-01
In this article we derive necessary and sufficient conditions for the existence of Pareto optimal solutions for infinite horizon cooperative differential games. We consider games defined by non autonomous and discounted autonomous systems. The obtained results are used to analyze the regular
Kyroudi, Archonteia; Petersson, Kristoffer; Ghandour, Sarah; Pachoud, Marc; Matzinger, Oscar; Ozsahin, Mahmut; Bourhis, Jean; Bochud, François; Moeckli, Raphaël
2016-08-01
Multi-criteria optimization provides decision makers with a range of clinical choices through Pareto plans that can be explored during real time navigation and then converted into deliverable plans. Our study shows that dosimetric differences can arise between the two steps, which could compromise the clinical choices made during navigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Huang, Hui; Ning, Jixian
2017-01-01
Prederivatives play an important role in the research of set optimization problems. First, we establish several existence theorems of prederivatives for γ -paraconvex set-valued mappings in Banach spaces with [Formula: see text]. Then, in terms of prederivatives, we establish both necessary and sufficient conditions for the existence of Pareto minimal solution of set optimization problems.
Directory of Open Access Journals (Sweden)
Gökhan Gökdere
2014-05-01
Full Text Available In this paper, closed form expressions for the moments of the truncated Pareto order statistics are obtained by using conditional distribution. We also derive some results for the moments which will be useful for moment computations based on ordered data.
Approximating the Pareto Set of Multiobjective Linear Programs via Robust Optimization
Gorissen, B.L.; den Hertog, D.
2012-01-01
Abstract: The Pareto set of a multiobjective optimization problem consists of the solutions for which one or more objectives can not be improved without deteriorating one or more other objectives. We consider problems with linear objectives and linear constraints and use Adjustable Robust
Searching for the Pareto frontier in multi-objective protein design.
Nanda, Vikas; Belure, Sandeep V; Shir, Ofer M
2017-08-01
The goal of protein engineering and design is to identify sequences that adopt three-dimensional structures of desired function. Often, this is treated as a single-objective optimization problem, identifying the sequence-structure solution with the lowest computed free energy of folding. However, many design problems are multi-state, multi-specificity, or otherwise require concurrent optimization of multiple objectives. There may be tradeoffs among objectives, where improving one feature requires compromising another. The challenge lies in determining solutions that are part of the Pareto optimal set-designs where no further improvement can be achieved in any of the objectives without degrading one of the others. Pareto optimality problems are found in all areas of study, from economics to engineering to biology, and computational methods have been developed specifically to identify the Pareto frontier. We review progress in multi-objective protein design, the development of Pareto optimization methods, and present a specific case study using multi-objective optimization methods to model the tradeoff between three parameters, stability, specificity, and complexity, of a set of interacting synthetic collagen peptides.
Karanikas, Nektarios
2016-01-01
Although reengineering is strategically advantageous for organisations in order to keep functional and sustainable, safety must remain a priority and respective efforts need to be maintained. This paper suggests the combination of soft system methodology (SSM) and Pareto analysis on the scope of
A hybrid pareto mixture for conditional asymmetric fat-tailed distributions.
Carreau, Julie; Bengio, Yoshua
2009-07-01
In many cases, we observe some variables X that contain predictive information over a scalar variable of interest Y , with (X,Y) pairs observed in a training set. We can take advantage of this information to estimate the conditional density p(Y|X = x). In this paper, we propose a conditional mixture model with hybrid Pareto components to estimate p(Y|X = x). The hybrid Pareto is a Gaussian whose upper tail has been replaced by a generalized Pareto tail. A third parameter, in addition to the location and spread parameters of the Gaussian, controls the heaviness of the upper tail. Using the hybrid Pareto in a mixture model results in a nonparametric estimator that can adapt to multimodality, asymmetry, and heavy tails. A conditional density estimator is built by modeling the parameters of the mixture estimator as functions of X. We use a neural network to implement these functions. Such conditional density estimators have important applications in many domains such as finance and insurance. We show experimentally that this novel approach better models the conditional density in terms of likelihood, compared to competing algorithms: conditional mixture models with other types of components and a classical kernel-based nonparametric model.
Model-based problem solving through symbolic regression via pareto genetic programming
Vladislavleva, E.
2008-01-01
Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust
Champion, H; Fiege, J; McCurdy, B; Potrebko, P; Cull, A
2012-07-01
PARETO (Pareto-Aware Radiotherapy Evolutionary Treatment Optimization) is a novel multiobjective treatment planning system that performs beam orientation and fluence optimization simultaneously using an advanced evolutionary algorithm. In order to reduce the number of parameters involved in this enormous search space, we present several methods for modeling the beam fluence. The parameterizations are compared using innovative tools that evaluate fluence complexity, solution quality, and run efficiency. A PARETO run is performed using the basic weight (BW), linear gradient (LG), cosine transform (CT), beam group (BG), and isodose-projection (IP) methods for applying fluence modulation over the projection of the Planning Target Volume in the beam's-eye-view plane. The solutions of each run are non-dominated with respect to other trial solutions encountered during the run. However, to compare the solution quality of independent runs, each run competes against every other run in a round robin fashion. Score is assigned based on the fraction of solutions that survive when a tournament selection operator is applied to the solutions of the two competitors. To compare fluence complexity, a modulation index, fractal dimension, and image gradient entropy are calculated for the fluence maps of each optimal plan. We have found that the LG method results in superior solution quality for a spine phantom, lung patient, and cauda equina patient. The BG method produces solutions with the highest degree of fluence complexity. Most methods result in comparable run times. The LG method produces superior solution quality using a moderate degree of fluence modulation. © 2012 American Association of Physicists in Medicine.
The application of analytical methods to the study of Pareto - optimal control systems
Directory of Open Access Journals (Sweden)
I. K. Romanova
2014-01-01
Full Text Available The subject of research articles - - methods of multicriteria optimization and their application for parametric synthesis of double-circuit control systems in conditions of inconsistency of individual criteria. The basis for solving multicriteria problems is a fundamental principle of a multi-criteria choice - the principle of the Edgeworth - Pareto. Getting Pareto - optimal variants due to inconsistency of individual criteria does not mean reaching a final decision. Set these options only offers the designer (DM.An important issue when using traditional numerical methods is their computational cost. An example is the use of methods of sounding the parameter space, including with use of uniform grids and uniformly distributed sequences. Very complex computational task is the application of computer methods of approximation bounds of Pareto.The purpose of this work is the development of a fairly simple search methods of Pareto - optimal solutions for the case of the criteria set out in the analytical form.The proposed solution is based on the study of the properties of the analytical dependences of criteria. The case is not covered so far in the literature, namely, the topology of the task, in which no touch of indifference curves (lines level. It is shown that for such tasks may be earmarked for compromise solutions. Prepositional use of the angular position of antigradient to the indifference curves in the parameter space relative to the coordinate axes. Formulated propositions on the characteristics of comonotonicity and contramonotonicity and angular characteristics of antigradient to determine Pareto optimal solutions. Considers the General algorithm of calculation: determine the scope of permissible values of parameters; investigates properties comonotonicity and contraventanas; to build an equal level (indifference curves; determined touch type: single sided (task is not strictly multicriteria or bilateral (objective relates to the Pareto
Trade-off bounds for the Pareto surface approximation in multi-criteria IMRT planning
International Nuclear Information System (INIS)
Serna, J I; Monz, M; Kuefer, K H; Thieke, C
2009-01-01
One approach to multi-criteria IMRT planning is to automatically calculate a data set of Pareto-optimal plans for a given planning problem in a first phase, and then interactively explore the solution space and decide on the clinically best treatment plan in a second phase. The challenge of computing the plan data set is to ensure that all clinically meaningful plans are covered and that as many clinically irrelevant plans as possible are excluded to keep computation times within reasonable limits. In this work, we focus on the approximation of the clinically relevant part of the Pareto surface, the process that constitutes the first phase. It is possible that two plans on the Pareto surface have a small, clinically insignificant difference in one criterion and a significant difference in another criterion. For such cases, only the plan that is clinically clearly superior should be included into the data set. To achieve this during the Pareto surface approximation, we propose to introduce bounds that restrict the relative quality between plans, the so-called trade-off bounds. We show how to integrate these trade-off bounds into the approximation scheme and study their effects. The proposed scheme is applied to two artificial cases and one clinical case of a paraspinal tumor. For all cases, the quality of the Pareto surface approximation is measured with respect to the number of computed plans, and the range of values occurring in the approximation for different criteria is compared. Through enforcing trade-off bounds, the scheme disregards clinically irrelevant plans during the approximation. Thereby, the number of plans necessary to achieve a good approximation quality can be significantly reduced. Thus, trade-off bounds are an effective tool to focus the planning and to reduce computation time.
Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions
Liu, C.; Charpentier, R.R.; Su, J.
2011-01-01
Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.
Trade-off bounds for the Pareto surface approximation in multi-criteria IMRT planning.
Serna, J I; Monz, M; Küfer, K H; Thieke, C
2009-10-21
One approach to multi-criteria IMRT planning is to automatically calculate a data set of Pareto-optimal plans for a given planning problem in a first phase, and then interactively explore the solution space and decide on the clinically best treatment plan in a second phase. The challenge of computing the plan data set is to ensure that all clinically meaningful plans are covered and that as many clinically irrelevant plans as possible are excluded to keep computation times within reasonable limits. In this work, we focus on the approximation of the clinically relevant part of the Pareto surface, the process that constitutes the first phase. It is possible that two plans on the Pareto surface have a small, clinically insignificant difference in one criterion and a significant difference in another criterion. For such cases, only the plan that is clinically clearly superior should be included into the data set. To achieve this during the Pareto surface approximation, we propose to introduce bounds that restrict the relative quality between plans, the so-called trade-off bounds. We show how to integrate these trade-off bounds into the approximation scheme and study their effects. The proposed scheme is applied to two artificial cases and one clinical case of a paraspinal tumor. For all cases, the quality of the Pareto surface approximation is measured with respect to the number of computed plans, and the range of values occurring in the approximation for different criteria is compared. Through enforcing trade-off bounds, the scheme disregards clinically irrelevant plans during the approximation. Thereby, the number of plans necessary to achieve a good approximation quality can be significantly reduced. Thus, trade-off bounds are an effective tool to focus the planning and to reduce computation time.
Ranking of microRNA target prediction scores by Pareto front analysis.
Sahoo, Sudhakar; Albrecht, Andreas A
2010-12-01
Over the past ten years, a variety of microRNA target prediction methods has been developed, and many of the methods are constantly improved and adapted to recent insights into miRNA-mRNA interactions. In a typical scenario, different methods return different rankings of putative targets, even if the ranking is reduced to selected mRNAs that are related to a specific disease or cell type. For the experimental validation it is then difficult to decide in which order to process the predicted miRNA-mRNA bindings, since each validation is a laborious task and therefore only a limited number of mRNAs can be analysed. We propose a new ranking scheme that combines ranked predictions from several methods and - unlike standard thresholding methods - utilises the concept of Pareto fronts as defined in multi-objective optimisation. In the present study, we attempt a proof of concept by applying the new ranking scheme to hsa-miR-21, hsa-miR-125b, and hsa-miR-373 and prediction scores supplied by PITA and RNAhybrid. The scores are interpreted as a two-objective optimisation problem, and the elements of the Pareto front are ranked by the STarMir score with a subsequent re-calculation of the Pareto front after removal of the top-ranked mRNA from the basic set of prediction scores. The method is evaluated on validated targets of the three miRNA, and the ranking is compared to scores from DIANA-microT and TargetScan. We observed that the new ranking method performs well and consistent, and the first validated targets are elements of Pareto fronts at a relatively early stage of the recurrent procedure, which encourages further research towards a higher-dimensional analysis of Pareto fronts. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning.
Monz, M; Küfer, K H; Bortfeld, T R; Thieke, C
2008-02-21
Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle -- a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far.
Pareto navigation-algorithmic foundation of interactive multi-criteria IMRT planning
International Nuclear Information System (INIS)
Monz, M; Kuefer, K H; Bortfeld, T R; Thieke, C
2008-01-01
Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle-a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far
Rajesh Kumar; S.C. Kaushik; Raj Kumar; Ranjana Hans
2016-01-01
Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is s...
A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm
Chae, Han Gil
Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the
Craft, David
2010-10-01
A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Attractive evolutionary equilibria
Joosten, Reinoud A.M.G.; Roorda, Berend
2011-01-01
We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.
Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Directory of Open Access Journals (Sweden)
Akbar A. Tabriz
2011-07-01
Full Text Available Concurrent engineering (CE is one of the widest known techniques for simultaneous planning of product and process design. In concurrent engineering, design processes are often complicated with multiple conflicting criteria and discrete sets of feasible alternatives. Thus multi-criteria decision making (MCDM techniques are integrated into CE to perform concurrent design. This paper proposes a design framework governed by MCDM technique, which are in conflict in the sense of competing for common resources to achieve variously different performance objectives such as financial, functional, environmental, etc. The Pareto MCDM model is applied to polyethylene pipe concurrent design governed by four criteria to determine the best alternative design to Pareto-compromise design.
Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives
International Nuclear Information System (INIS)
Warmflash, Aryeh; Siggia, Eric D; Francois, Paul
2012-01-01
The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)
Houghton, J.C.
1988-01-01
The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.
Directory of Open Access Journals (Sweden)
Kristoffer Petersson
2017-07-01
Full Text Available We present a clinical distance measure for Pareto front evaluation studies in radiotherapy, which we show strongly correlates (r = 0.74 and 0.90 with clinical plan quality evaluation. For five prostate cases, sub-optimal treatment plans located at a clinical distance value of >0.32 (0.28–0.35 from fronts of Pareto optimal plans, were assessed to be of lower plan quality by our (12 observers (p < .05. In conclusion, the clinical distance measure can be used to determine if the difference between a front and a given plan (or between different fronts corresponds to a clinically significant plan quality difference.
A Pareto Algorithm for Efficient De Novo Design of Multi-functional Molecules.
Daeyaert, Frits; Deem, Micheal W
2017-01-01
We have introduced a Pareto sorting algorithm into Synopsis, a de novo design program that generates synthesizable molecules with desirable properties. We give a detailed description of the algorithm and illustrate its working in 2 different de novo design settings: the design of putative dual and selective FGFR and VEGFR inhibitors, and the successful design of organic structure determining agents (OSDAs) for the synthesis of zeolites. We show that the introduction of Pareto sorting not only enables the simultaneous optimization of multiple properties but also greatly improves the performance of the algorithm to generate molecules with hard-to-meet constraints. This in turn allows us to suggest approaches to address the problem of false positive hits in de novo structure based drug design by introducing structural and physicochemical constraints in the designed molecules, and by forcing essential interactions between these molecules and their target receptor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.
Warmflash, Aryeh; Francois, Paul; Siggia, Eric D
2012-10-01
The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.
Czech Academy of Sciences Publication Activity Database
Jordanova, P.; Dušek, Jiří; Stehlík, M.
2013-01-01
Roč. 128, OCT 15 (2013), s. 124-134 ISSN 0169-7439 R&D Projects: GA ČR(CZ) GAP504/11/1151; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : environmental chemistry * ebullition of methane * mixed poisson processes * renewal process * pareto distribution * moving average process * robust statistics * sedge–grass marsh Subject RIV: EH - Ecology, Behaviour Impact factor: 2.381, year: 2013
A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization
Czech Academy of Sciences Publication Activity Database
Hájek, J.; Szöllös, A.; Šístek, Jakub
2010-01-01
Roč. 41, 7-8 (2010), s. 1031-1057 ISSN 0965-9978 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : multi-objective optimization * micro-genetic algorithm * diversity * Pareto archive Subject RIV: BA - General Mathematics Impact factor: 1.004, year: 2010 http://www.sciencedirect.com/science/article/pii/S0965997810000451
A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization
Czech Academy of Sciences Publication Activity Database
Hájek, J.; Szöllös, A.; Šístek, Jakub
2010-01-01
Roč. 41, 7-8 (2010), s. 1031-1057 ISSN 0965-9978 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : multi-objective optimization * micro- genetic algorithm * diversity * Pareto archive Subject RIV: BA - General Mathematics Impact factor: 1.004, year: 2010 http://www.sciencedirect.com/science/article/pii/S0965997810000451
The Forbes 400, the Pareto power-law and efficient markets
Klass, O. S.; Biham, O.; Levy, M.; Malcai, O.; Solomon, S.
2007-01-01
Statistical regularities at the top end of the wealth distribution in the United States are examined using the Forbes 400 lists of richest Americans, published between 1988 and 2003. It is found that the wealths are distributed according to a power-law (Pareto) distribution. This result is explained using a simple stochastic model of multiple investors that incorporates the efficient market hypothesis as well as the multiplicative nature of financial market fluctuations.
Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.
Li, Yaohang; Rata, Ionel; Chiu, See-wing; Jakobsson, Eric
2010-07-20
Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of approximately 20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.
Liu, Xian
2010-02-10
This paper shows that optical signal transmission over intersatellite links with swaying transmitters can be described as an equivalent fading model. In this model, the instantaneous signal-to-noise ratio is stochastic and follows the reciprocal Pareto distribution. With this model, we show that the transmitter power can be minimized, subject to a specified outage probability, by appropriately adjusting some system parameters, such as the transmitter gain.
An Investigation of the Pareto Distribution as a Model for High Grazing Angle Clutter
2011-03-01
radar detection schemes under controlled conditions. Complicated clutter models result in mathematical difficulties in the determination of optimal and...a population [7]. It has been used in the modelling of actuarial data; an example is in excess of loss quotations in insurance [8]. Its usefulness as...UNCLASSIFIED modified Bessel functions, making it difficult to employ in radar detection schemes. The Pareto Distribution is amenable to mathematical
Prediction in Partial Duration Series With Generalized Pareto-Distributed Exceedances
DEFF Research Database (Denmark)
Rosbjerg, Dan; Madsen, Henrik; Rasmussen, Peter Funder
1992-01-01
As a generalization of the common assumption of exponential distribution of the exceedances in Partial duration series the generalized Pareto distribution has been adopted. Estimators for the parameters are presented using estimation by both method of moments and probability-weighted moments...... distributions (with physically justified upper limit) the correct exceedance distribution should be applied despite a possible acceptance of the exponential assumption by a test of significance....
Optimal Reinsurance Design for Pareto Optimum: From the Perspective of Multiple Reinsurers
Directory of Open Access Journals (Sweden)
Xing Rong
2016-01-01
Full Text Available This paper investigates optimal reinsurance strategies for an insurer which cedes the insured risk to multiple reinsurers. Assume that the insurer and every reinsurer apply the coherent risk measures. Then, we find out the necessary and sufficient conditions for the reinsurance market to achieve Pareto optimum; that is, every ceded-loss function and the retention function are in the form of “multiple layers reinsurance.”
The essence of Schumpeter's evolutionary economics
DEFF Research Database (Denmark)
Andersen, Esben Sloth
Schumpeter’s unique type of evolutionary analysis can hardly be understood unless we recognise that he developed it in relation to a study of the strength and weaknesses of the Walrasian form of neoclassical economics. The paper demonstrates that Schumpeter’s major steps were already performed in...
He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris
2012-03-01
In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. Copyright © 2011 Wiley Periodicals, Inc.
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case
Pareto-optimal multi-objective design of airplane control systems
Schy, A. A.; Johnson, K. G.; Giesy, D. P.
1980-01-01
A constrained minimization algorithm for the computer aided design of airplane control systems to meet many requirements over a set of flight conditions is generalized using the concept of Pareto-optimization. The new algorithm yields solutions on the boundary of the achievable domain in objective space in a single run, whereas the older method required a sequence of runs to approximate such a limiting solution. However, Pareto-optimality does not guarantee a satisfactory design, since such solutions may emphasize some objectives at the expense of others. The designer must still interact with the program to obtain a well-balanced set of objectives. Using the example of a fighter lateral stability augmentation system (SAS) design over five flight conditions, several effective techniques are developed for obtaining well-balanced Pareto-optimal solutions. For comparison, one of these techniques is also used in a recently developed algorithm of Kreisselmeier and Steinhauser, which replaces the hard constraints with soft constraints, using a special penalty function. It is shown that comparable results can be obtained.
Application of the Pareto principle to identify and address drug-therapy safety issues.
Müller, Fabian; Dormann, Harald; Pfistermeister, Barbara; Sonst, Anja; Patapovas, Andrius; Vogler, Renate; Hartmann, Nina; Plank-Kiegele, Bettina; Kirchner, Melanie; Bürkle, Thomas; Maas, Renke
2014-06-01
Adverse drug events (ADE) and medication errors (ME) are common causes of morbidity in patients presenting at emergency departments (ED). Recognition of ADE as being drug related and prevention of ME are key to enhancing pharmacotherapy safety in ED. We assessed the applicability of the Pareto principle (~80 % of effects result from 20 % of causes) to address locally relevant problems of drug therapy. In 752 cases consecutively admitted to the nontraumatic ED of a major regional hospital, ADE, ME, contributing drugs, preventability, and detection rates of ADE by ED staff were investigated. Symptoms, errors, and drugs were sorted by frequency in order to apply the Pareto principle. In total, 242 ADE were observed, and 148 (61.2 %) were assessed as preventable. ADE contributed to 110 inpatient hospitalizations. The ten most frequent symptoms were causally involved in 88 (80.0 %) inpatient hospitalizations. Only 45 (18.6 %) ADE were recognized as drug-related problems until discharge from the ED. A limited set of 33 drugs accounted for 184 (76.0 %) ADE; ME contributed to 57 ADE. Frequency-based listing of ADE, ME, and drugs involved allowed identification of the most relevant problems and development of easily to implement safety measures, such as wall and pocket charts. The Pareto principle provides a method for identifying the locally most relevant ADE, ME, and involved drugs. This permits subsequent development of interventions to increase patient safety in the ED admission process that best suit local needs.
Directory of Open Access Journals (Sweden)
Ajibade Oluwaseyi Ayodele
2016-01-01
Full Text Available In this attempt, which is a second part of discussions on tapped density optimisation for four agricultural wastes (particles of coconut, periwinkle, palm kernel and egg shells, performance analysis for comparative basis is made. This paper pioneers a study direction in which optimisation of process variables are pursued using Taguchi method integrated with the Pareto 80-20 rule. Negative percentage improvements resulted when the optimal tapped density was compared with the average tapped density. However, the performance analysis between optimal tapped density and the peak tapped density values yielded positive percentage improvements for the four filler particles. The performance analysis results validate the effectiveness of using the Taguchi method in improving the tapped density properties of the filler particles. The application of the Pareto 80-20 rule to the table of parameters and levels produced revised tables of parameters and levels which helped to identify the factor-levels position of each parameter that is economical to optimality. The Pareto 80-20 rule also produced revised S/N response tables which were used to know the relevant S/N ratios that are relevant to optimality.
Evolutionary molecular medicine.
Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S
2012-05-01
Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.
Numerical and Evolutionary Optimization Workshop
Trujillo, Leonardo; Legrand, Pierrick; Maldonado, Yazmin
2017-01-01
This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Throu...
Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms
Lopez, Nicolas
This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.
Directory of Open Access Journals (Sweden)
Juan Carlos Osorio
2012-12-01
Full Text Available El problema del scheduling es uno de los problemas más ampliamente tratados en la literatura; sin embargo, es un problema complejo NP hard. Cuando, además, se involucra más de un objetivo, este problema se convierte en uno de los más complejos en el campo de la investigación de operaciones. Se presenta entonces un modelo biobjetivo para el job shop scheduling que incluye el makespan y el tiempo de flujo medio. Para resolver el modelo se ha utilizado una propuesta que incluye el uso del meta-heurístico Recocido Simulado (SA y el enfoque de Pareto. Este modelo es evaluado en tres problemas presentados en la literatura de tamaños 6x6, 10x5 y 10x10. Los resultados del modelo se comparan con otros meta-heurísticos y se encuentra que este modelo presenta buenos resultados en los tres problemas evaluados.The scheduling problem is one of the most widely treated problems in literature; however, it is an NP hard complex problem. Also, when more than one objective is involved, this problem becomes one of the most complex ones in the field of operations research. A bio-objective model is then emerged for the Job-Shop Scheduling, including makespan and mean flow time. For solving the model a proposal which includes the use of Simulated Annealing (SA metaheuristic and Pareto Principle. This model is evaluated in three problems described in literature with the following sizes: 6x6, 10x5 and 10x10. Results of the model are compared to other metaheuristics and it has been found that this model shows good results in the three problems evaluated.
Safety management in NPPs using an evolutionary algorithm technique
International Nuclear Information System (INIS)
Mishra, Alok; Patwardhan, Anand; Verma, A.K.
2007-01-01
The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. The technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. Accordingly, the risk-based analysis of technical specification (RBTS) is being considered in evaluating current TS. The multi-objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper, a multi-objective evolutionary algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for loss of coolant accident (LOCA) and main steam line break (MSLB) as initiating events
An Evolutionary Approach for Bilevel Multi-objective Problems
Deb, Kalyanmoy; Sinha, Ankur
Evolutionary multi-objective optimization (EMO) algorithms have been extensively applied to find multiple near Pareto-optimal solutions over the past 15 years or so. However, EMO algorithms for solving bilevel multi-objective optimization problems have not received adequate attention yet. These problems appear in many applications in practice and involve two levels, each comprising of multiple conflicting objectives. These problems require every feasible upper-level solution to satisfy optimality of a lower-level optimization problem, thereby making them difficult to solve. In this paper, we discuss a recently proposed bilevel EMO procedure and show its working principle on a couple of test problems and on a business decision-making problem. This paper should motivate other EMO researchers to engage more into this important optimization task of practical importance.
Remembering the evolutionary Freud.
Young, Allan
2006-03-01
Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.
Directory of Open Access Journals (Sweden)
Wei Yue
2015-01-01
Full Text Available The major issues for mean-variance-skewness models are the errors in estimations that cause corner solutions and low diversity in the portfolio. In this paper, a multiobjective fuzzy portfolio selection model with transaction cost and liquidity is proposed to maintain the diversity of portfolio. In addition, we have designed a multiobjective evolutionary algorithm based on decomposition of the objective space to maintain the diversity of obtained solutions. The algorithm is used to obtain a set of Pareto-optimal portfolios with good diversity and convergence. To demonstrate the effectiveness of the proposed model and algorithm, the performance of the proposed algorithm is compared with the classic MOEA/D and NSGA-II through some numerical examples based on the data of the Shanghai Stock Exchange Market. Simulation results show that our proposed algorithm is able to obtain better diversity and more evenly distributed Pareto front than the other two algorithms and the proposed model can maintain quite well the diversity of portfolio. The purpose of this paper is to deal with portfolio problems in the weighted possibilistic mean-variance-skewness (MVS and possibilistic mean-variance-skewness-entropy (MVS-E frameworks with transaction cost and liquidity and to provide different Pareto-optimal investment strategies as diversified as possible for investors at a time, rather than one strategy for investors at a time.
Directory of Open Access Journals (Sweden)
Lina Yang
2018-02-01
Full Text Available Land-use allocation is of great significance in urban development. This type of allocation is usually considered to be a complex multi-objective spatial optimization problem, whose optimized result is a set of Pareto-optimal solutions (Pareto front reflecting different tradeoffs in several objectives. However, obtaining a Pareto front is a challenging task, and the Pareto front obtained by state-of-the-art algorithms is still not sufficient. To achieve better Pareto solutions, taking the grid-representative land-use allocation problem with two objectives as an example, an artificial bee colony optimization algorithm for multi-objective land-use allocation (ABC-MOLA is proposed. In this algorithm, the traditional ABC’s search direction guiding scheme and solution maintaining process are modified. In addition, a knowledge-informed neighborhood search strategy, which utilizes the auxiliary knowledge of natural geography and spatial structures to facilitate the neighborhood spatial search around each solution, is developed to further improve the Pareto front’s quality. A series of comparison experiments (a simulated experiment with small data volume and a real-world data experiment for a large area shows that all the Pareto fronts obtained by ABC-MOLA totally dominate the Pareto fronts by other algorithms, which demonstrates ABC-MOLA’s effectiveness in achieving Pareto fronts of high quality.
La narrazione dell’azione sociale: spunti dal Trattato di Vilfredo Pareto
Directory of Open Access Journals (Sweden)
Ilaria Riccioni
2017-08-01
Full Text Available La rilettura dei classici porta con sé sempre una duplice operazione: da una parte un ritorno a riflessioni, ritmi, storicità che spesso sembrano già superate; dall’altra la riscoperta delle origini di fenomeni contemporanei da punti di vista che ne delineano le interconnessioni profonde, non più visibili allo stato di avanzamento in cui le osserviamo oggi. Tale maggiore chiarezza è forse dovuta al fatto che ogni fenomeno nella sua fase aurorale è più chiaramente identificabile rispetto alle sue fasi successive, dove le caratteristiche primarie tendono a stemperarsi nelle cifre dominanti della contemporaneità, perdendosi nelle pratiche quotidiane che ne celano la provenienza. Se la sociologia è un processo di conoscenza della realtà dei fenomeni, il punto centrale della scienza sociale va distinto tra quelle scienze che schematizzano il reale in equazioni formali funzionali e funzionanti, il sistema economico, normativo, e le scienze sociali che si occupano della realtà e della sua complessità, che in quanto scienze si devono occupare non tanto di ciò che la realtà deve essere, bensì di ciò che la realtà è, di come si pone e di come manifesta i movimenti desideranti e profondi del vivere collettivo oltre il sistema che ne gestisce il funzionamento. Il punto che Pareto sembra scorgere, con estrema lucidità, è la necessità di ribaltare l’importanza della logica economica nell’organizzazione sociale da scienza che detta la realtà a scienza che propone uno schema di gestione di essa: da essa si cerca di dettare la realtà, ma l’economia, dal greco moderno Oikòs, Oikòsgeneia (casa e generazione, il termine utilizzato per definire l’unità famigliare non è di fatto “la realtà”, sembra dirci Pareto in più digressioni, bensì l’arte e la scienza della gestione di unità familiari e produttive. La realtà rimane in ombra e non può che essere “avvicinata” da una scienza che ne registri, ed eventualmente
Computing the Distribution of Pareto Sums Using Laplace Transformation and Stehfest Inversion
Harris, C. K.; Bourne, S. J.
2017-05-01
In statistical seismology, the properties of distributions of total seismic moment are important for constraining seismological models, such as the strain partitioning model (Bourne et al. J Geophys Res Solid Earth 119(12): 8991-9015, 2014). This work was motivated by the need to develop appropriate seismological models for the Groningen gas field in the northeastern Netherlands, in order to address the issue of production-induced seismicity. The total seismic moment is the sum of the moments of individual seismic events, which in common with many other natural processes, are governed by Pareto or "power law" distributions. The maximum possible moment for an induced seismic event can be constrained by geomechanical considerations, but rather poorly, and for Groningen it cannot be reliably inferred from the frequency distribution of moment magnitude pertaining to the catalogue of observed events. In such cases it is usual to work with the simplest form of the Pareto distribution without an upper bound, and we follow the same approach here. In the case of seismicity, the exponent β appearing in the power-law relation is small enough for the variance of the unbounded Pareto distribution to be infinite, which renders standard statistical methods concerning sums of statistical variables, based on the central limit theorem, inapplicable. Determinations of the properties of sums of moderate to large numbers of Pareto-distributed variables with infinite variance have traditionally been addressed using intensive Monte Carlo simulations. This paper presents a novel method for accurate determination of the properties of such sums that is accurate, fast and easily implemented, and is applicable to Pareto-distributed variables for which the power-law exponent β lies within the interval [0, 1]. It is based on shifting the original variables so that a non-zero density is obtained exclusively for non-negative values of the parameter and is identically zero elsewhere, a property
A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction
Danandeh Mehr, Ali; Kahya, Ercan
2017-06-01
Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.
The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space
Szekely, Pablo; Korem, Yael; Moran, Uri; Mayo, Avi; Alon, Uri
2015-01-01
When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes—phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass. PMID:26465336
A Regionalization Approach to select the final watershed parameter set among the Pareto solutions
Park, G. H.; Micheletty, P. D.; Carney, S.; Quebbeman, J.; Day, G. N.
2017-12-01
The calibration of hydrological models often results in model parameters that are inconsistent with those from neighboring basins. Considering that physical similarity exists within neighboring basins some of the physically related parameters should be consistent among them. Traditional manual calibration techniques require an iterative process to make the parameters consistent, which takes additional effort in model calibration. We developed a multi-objective optimization procedure to calibrate the National Weather Service (NWS) Research Distributed Hydrological Model (RDHM), using the Nondominant Sorting Genetic Algorithm (NSGA-II) with expert knowledge of the model parameter interrelationships one objective function. The multi-objective algorithm enables us to obtain diverse parameter sets that are equally acceptable with respect to the objective functions and to choose one from the pool of the parameter sets during a subsequent regionalization step. Although all Pareto solutions are non-inferior, we exclude some of the parameter sets that show extremely values for any of the objective functions to expedite the selection process. We use an apriori model parameter set derived from the physical properties of the watershed (Koren et al., 2000) to assess the similarity for a given parameter across basins. Each parameter is assigned a weight based on its assumed similarity, such that parameters that are similar across basins are given higher weights. The parameter weights are useful to compute a closeness measure between Pareto sets of nearby basins. The regionalization approach chooses the Pareto parameter sets that minimize the closeness measure of the basin being regionalized. The presentation will describe the results of applying the regionalization approach to a set of pilot basins in the Upper Colorado basin as part of a NASA-funded project.
The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space.
Szekely, Pablo; Korem, Yael; Moran, Uri; Mayo, Avi; Alon, Uri
2015-10-01
When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes--phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass.
Analysis of extreme drinking in patients with alcohol dependence using Pareto regression.
Das, Sourish; Harel, Ofer; Dey, Dipak K; Covault, Jonathan; Kranzler, Henry R
2010-05-20
We developed a novel Pareto regression model with an unknown shape parameter to analyze extreme drinking in patients with Alcohol Dependence (AD). We used the generalized linear model (GLM) framework and the log-link to include the covariate information through the scale parameter of the generalized Pareto distribution. We proposed a Bayesian method based on Ridge prior and Zellner's g-prior for the regression coefficients. Simulation study indicated that the proposed Bayesian method performs better than the existing likelihood-based inference for the Pareto regression.We examined two issues of importance in the study of AD. First, we tested whether a single nucleotide polymorphism within GABRA2 gene, which encodes a subunit of the GABA(A) receptor, and that has been associated with AD, influences 'extreme' alcohol intake and second, the efficacy of three psychotherapies for alcoholism in treating extreme drinking behavior. We found an association between extreme drinking behavior and GABRA2. We also found that, at baseline, men with a high-risk GABRA2 allele had a significantly higher probability of extreme drinking than men with no high-risk allele. However, men with a high-risk allele responded to the therapy better than those with two copies of the low-risk allele. Women with high-risk alleles also responded to the therapy better than those with two copies of the low-risk allele, while women who received the cognitive behavioral therapy had better outcomes than those receiving either of the other two therapies. Among men, motivational enhancement therapy was the best for the treatment of the extreme drinking behavior. Copyright 2010 John Wiley & Sons, Ltd.
The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space.
Directory of Open Access Journals (Sweden)
Pablo Szekely
2015-10-01
Full Text Available When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes--phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass.
Craft, David; Monz, Michael
2010-02-01
To introduce a method to simultaneously explore a collection of Pareto surfaces. The method will allow radiotherapy treatment planners to interactively explore treatment plans for different beam angle configurations as well as different treatment modalities. The authors assume a convex optimization setting and represent the Pareto surface for each modality or given beam set by a set of discrete points on the surface. Weighted averages of these discrete points produce a continuous representation of each Pareto surface. The authors calculate a set of Pareto surfaces and use linear programming to navigate across the individual surfaces, allowing switches between surfaces. The switches are organized such that the plan profits in the requested way, while trying to keep the change in dose as small as possible. The system is demonstrated on a phantom pancreas IMRT case using 100 different five beam configurations and a multicriteria formulation with six objectives. The system has intuitive behavior and is easy to control. Also, because the underlying linear programs are small, the system is fast enough to offer real-time exploration for the Pareto surfaces of the given beam configurations. The system presented offers a sound starting point for building clinical systems for multicriteria exploration of different modalities and offers a controllable way to explore hundreds of beam angle configurations in IMRT planning, allowing the users to focus their attention on the dose distribution and treatment planning objectives instead of spending excessive time on the technicalities of delivery.
Pareto law of the expenditure of a person in convenience stores
Mizuno, Takayuki; Toriyama, Masahiro; Terano, Takao; Takayasu, Misako
2008-06-01
We study the statistical laws of the expenditure of a person in convenience stores by analyzing around 100 million receipts. The density function of expenditure exhibits a fat tail that follows a power law. Using the Lorenz curve, the Gini coefficient is estimated to be 0.70; this implies that loyal customers contribute significantly to a store’s sales. We observe the Pareto principle where both the top 25% and 2% of the customers account for 80% and 25% of the store’s sales, respectively.
Inferring biological tasks using Pareto analysis of high-dimensional data.
Hart, Yuval; Sheftel, Hila; Hausser, Jean; Szekely, Pablo; Ben-Moshe, Noa Bossel; Korem, Yael; Tendler, Avichai; Mayo, Avraham E; Alon, Uri
2015-03-01
We present the Pareto task inference method (ParTI; http://www.weizmann.ac.il/mcb/UriAlon/download/ParTI) for inferring biological tasks from high-dimensional biological data. Data are described as a polytope, and features maximally enriched closest to the vertices (or archetypes) allow identification of the tasks the vertices represent. We demonstrate that human breast tumors and mouse tissues are well described by tetrahedrons in gene expression space, with specific tumor types and biological functions enriched at each of the vertices, suggesting four key tasks.
MATLAB implementation of satellite positioning error overbounding by generalized Pareto distribution
Ahmad, Khairol Amali; Ahmad, Shahril; Hashim, Fakroul Ridzuan
2018-02-01
In the satellite navigation community, error overbound has been implemented in the process of integrity monitoring. In this work, MATLAB programming is used to implement the overbounding of satellite positioning error CDF. Using a trajectory of reference, the horizontal position errors (HPE) are computed and its non-parametric distribution function is given by the empirical Cumulative Distribution Function (ECDF). According to the results, these errors have a heavy-tailed distribution. Sınce the ECDF of the HPE in urban environment is not Gaussian distributed, the ECDF is overbound with the CDF of the generalized Pareto distribution (GPD).
Group Acceptance Sampling Plan for Lifetime Data Using Generalized Pareto Distribution
Directory of Open Access Journals (Sweden)
Muhammad Aslam
2010-02-01
Full Text Available In this paper, a group acceptance sampling plan (GASP is introduced for the situations when lifetime of the items follows the generalized Pareto distribution. The design parameters such as minimum group size and acceptance number are determined when the consumer’s risk and the test termination time are specified. The proposed sampling plan is compared with the existing sampling plan. It is concluded that the proposed sampling plan performs better than the existing plan in terms of minimum sample size required to reach the same decision.
A Note on Parameter Estimation in the Composite Weibull–Pareto Distribution
Directory of Open Access Journals (Sweden)
Enrique Calderín-Ojeda
2018-02-01
Full Text Available Composite models have received much attention in the recent actuarial literature to describe heavy-tailed insurance loss data. One of the models that presents a good performance to describe this kind of data is the composite Weibull–Pareto (CWL distribution. On this note, this distribution is revisited to carry out estimation of parameters via mle and mle2 optimization functions in R. The results are compared with those obtained in a previous paper by using the nlm function, in terms of analytical and graphical methods of model selection. In addition, the consistency of the parameter estimation is examined via a simulation study.
Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf
Solomon, S.; Richmond, P.
2002-05-01
In recent years we have found that logistic systems of the Generalized Lotka-Volterra type (GLV) describing statistical systems of auto-catalytic elements posses power law distributions of the Pareto-Zipf type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual wealth distribution and in market returns. These power laws and their exponent α are invariant to arbitrary variations in the total wealth of the system and to other endogenously and exogenously induced variations.
Pareto-Ranking Based Quantum-Behaved Particle Swarm Optimization for Multiobjective Optimization
Directory of Open Access Journals (Sweden)
Na Tian
2015-01-01
Full Text Available A study on pareto-ranking based quantum-behaved particle swarm optimization (QPSO for multiobjective optimization problems is presented in this paper. During the iteration, an external repository is maintained to remember the nondominated solutions, from which the global best position is chosen. The comparison between different elitist selection strategies (preference order, sigma value, and random selection is performed on four benchmark functions and two metrics. The results demonstrate that QPSO with preference order has comparative performance with sigma value according to different number of objectives. Finally, QPSO with sigma value is applied to solve multiobjective flexible job-shop scheduling problems.
Finding the Pareto Optimal Equitable Allocation of Homogeneous Divisible Goods Among Three Players
Directory of Open Access Journals (Sweden)
Marco Dall'Aglio
2017-01-01
Full Text Available We consider the allocation of a finite number of homogeneous divisible items among three players. Under the assumption that each player assigns a positive value to every item, we develop a simple algorithm that returns a Pareto optimal and equitable allocation. This is based on the tight relationship between two geometric objects of fair division: The Individual Pieces Set (IPS and the Radon-Nykodim Set (RNS. The algorithm can be considered as an extension of the Adjusted Winner procedure by Brams and Taylor to the three-player case, without the guarantee of envy-freeness. (original abstract
Attractive evolutionary equilibria
Roorda, Berend; Joosten, Reinoud
2011-01-01
We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.
Polymorphic Evolutionary Games.
Fishman, Michael A
2016-06-07
In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Enrique Calderín-Ojeda
2017-11-01
Full Text Available Generalized linear models might not be appropriate when the probability of extreme events is higher than that implied by the normal distribution. Extending the method for estimating the parameters of a double Pareto lognormal distribution (DPLN in Reed and Jorgensen (2004, we develop an EM algorithm for the heavy-tailed Double-Pareto-lognormal generalized linear model. The DPLN distribution is obtained as a mixture of a lognormal distribution with a double Pareto distribution. In this paper the associated generalized linear model has the location parameter equal to a linear predictor which is used to model insurance claim amounts for various data sets. The performance is compared with those of the generalized beta (of the second kind and lognorma distributions.
Graham, John H; Robb, Daniel T; Poe, Amy R
2012-01-01
Distributed robustness is thought to influence the buffering of random phenotypic variation through the scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN) distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law tails. If our assumptions are true, the DPLN distribution should provide a better fit to random phenotypic variation in a large series of single-gene knockout lines than other skewed or symmetrical distributions. We fit a large published data set of single-gene knockout lines in Saccharomyces cerevisiae to seven different probability distributions: DPLN, right Pareto-lognormal (RPLN), left Pareto-lognormal (LPLN), normal, lognormal, exponential, and Pareto. The best model was judged by the Akaike Information Criterion (AIC). Phenotypic variation among gene knockouts in S. cerevisiae fits a double Pareto-lognormal (DPLN) distribution better than any of the alternative distributions, including the right Pareto-lognormal and lognormal distributions. A DPLN distribution is consistent with the hypothesis that developmental stability is mediated, in part, by distributed robustness, the resilience of gene regulatory, metabolic, and protein-protein interaction networks. Alternatively, multiplicative cell growth, and the mixing of
Directory of Open Access Journals (Sweden)
Jorge Caldera-Serrano
2015-09-01
Full Text Available Se analiza la reutilización de las colecciones audiovisuales de las cadenas de televisión con el fin de detectar si se cumple el Índice de Pareto, facilitando mecanismos para su control y explotación de la parte de la colección audiovisual menos utilizada. Se detecta que la correlación de Pareto se establece no sólo en el uso sino también en la presencia de elementos temáticos y elementos onomásticos en el archivo y en la difusión de contenidos, por lo que se plantea formas de control en la integración de información en la colección y de recursos en la difusión. Igualmente se describe el Índice de Pareto, los Media Asset Management y el cambio de paradigma al digital, elementos fundamentales para entender los problemas y las soluciones para la eliminación de problemas en la recuperación y en la conformación de la colección. Abstract: Reuse of audiovisual collections television networks in order to detect whether the Pareto index, providing mechanisms for control and exploitation of the least used part of the audiovisual collection holds analyzed. It is found that the correlation of Pareto is established not only in the use but also the presence of thematic elements and onomastic elements in the file and in the distribution of content, so forms of control arises in the integration of information collection and distributing resources. Likewise, the Pareto index, the Media Asset Management and the paradigm shift to digital, essential to understanding the problems and solutions to eliminate problems in recovery and in the establishment of collection elements described. Keywords: Information processing. Television. Electronic media. Information systems evaluation.
Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.
Salvat, Regina S; Parker, Andrew S; Choi, Yoonjoo; Bailey-Kellogg, Chris; Griswold, Karl E
2015-01-01
The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical application. As a result, there is a growing need for improved deimmunization technologies. We have recently described algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico analysis of this dual objective design space reveals that there is no single global optimum with respect to protein deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein performance were found to map a functional sequence space that correlated well with computational predictions. These results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and de-risking experimental deimmunization efforts.
Single Cell Dynamics Causes Pareto-Like Effect in Stimulated T Cell Populations.
Cosette, Jérémie; Moussy, Alice; Onodi, Fanny; Auffret-Cariou, Adrien; Neildez-Nguyen, Thi My Anh; Paldi, Andras; Stockholm, Daniel
2015-12-09
Cell fate choice during the process of differentiation may obey to deterministic or stochastic rules. In order to discriminate between these two strategies we used time-lapse microscopy of individual murine CD4 + T cells that allows investigating the dynamics of proliferation and fate commitment. We observed highly heterogeneous division and death rates between individual clones resulting in a Pareto-like dominance of a few clones at the end of the experiment. Commitment to the Treg fate was monitored using the expression of a GFP reporter gene under the control of the endogenous Foxp3 promoter. All possible combinations of proliferation and differentiation were observed and resulted in exclusively GFP-, GFP+ or mixed phenotype clones of very different population sizes. We simulated the process of proliferation and differentiation using a simple mathematical model of stochastic decision-making based on the experimentally observed parameters. The simulations show that a stochastic scenario is fully compatible with the observed Pareto-like imbalance in the final population.
Klammer, Martin; Dybowski, J Nikolaj; Hoffmann, Daniel; Schaab, Christoph
2015-01-01
Multivariate biomarkers that can predict the effectiveness of targeted therapy in individual patients are highly desired. Previous biomarker discovery studies have largely focused on the identification of single biomarker signatures, aimed at maximizing prediction accuracy. Here, we present a different approach that identifies multiple biomarkers by simultaneously optimizing their predictive power, number of features, and proximity to the drug target in a protein-protein interaction network. To this end, we incorporated NSGA-II, a fast and elitist multi-objective optimization algorithm that is based on the principle of Pareto optimality, into the biomarker discovery workflow. The method was applied to quantitative phosphoproteome data of 19 non-small cell lung cancer (NSCLC) cell lines from a previous biomarker study. The algorithm successfully identified a total of 77 candidate biomarker signatures predicting response to treatment with dasatinib. Through filtering and similarity clustering, this set was trimmed to four final biomarker signatures, which then were validated on an independent set of breast cancer cell lines. All four candidates reached the same good prediction accuracy (83%) as the originally published biomarker. Although the newly discovered signatures were diverse in their composition and in their size, the central protein of the originally published signature - integrin β4 (ITGB4) - was also present in all four Pareto signatures, confirming its pivotal role in predicting dasatinib response in NSCLC cell lines. In summary, the method presented here allows for a robust and simultaneous identification of multiple multivariate biomarkers that are optimized for prediction performance, size, and relevance.
Directory of Open Access Journals (Sweden)
J. S. Sadaghiani
2014-04-01
Full Text Available Flexible job shop scheduling problem is a key factor of using efficiently in production systems. This paper attempts to simultaneously optimize three objectives including minimization of the make span, total workload and maximum workload of jobs. Since the multi objective flexible job shop scheduling problem is strongly NP-Hard, an integrated heuristic approach has been used to solve it. The proposed approach was based on a floating search procedure that has used some heuristic algorithms. Within floating search procedure utilize local heuristic algorithms; it makes the considered problem into two sections including assigning and sequencing sub problem. First of all search is done upon assignment space achieving an acceptable solution and then search would continue on sequencing space based on a heuristic algorithm. This paper has used a multi-objective approach for producing Pareto solution. Thus proposed approach was adapted on NSGA II algorithm and evaluated Pareto-archives. The elements and parameters of the proposed algorithms were adjusted upon preliminary experiments. Finally, computational results were used to analyze efficiency of the proposed algorithm and this results showed that the proposed algorithm capable to produce efficient solutions.
A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices
International Nuclear Information System (INIS)
Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene
2016-01-01
Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.
The Reduction of Modal Sensor Channels through a Pareto Chart Methodology
Directory of Open Access Journals (Sweden)
Kaci J. Lemler
2015-01-01
Full Text Available Presented herein is a new experimental sensor placement procedure developed to assist in placing sensors in key locations in an efficient method to reduce the number of channels for a full modal analysis. It is a fast, noncontact method that uses a laser vibrometer to gather a candidate set of sensor locations. These locations are then evaluated using a Pareto chart to obtain a reduced set of sensor locations that still captures the motion of the structure. The Pareto chart is employed to identify the points on a structure that have the largest reaction to an input excitation and thus reduce the number of channels while capturing the most significant data. This method enhances the correct and efficient placement of sensors which is crucial in modal testing. Previously this required the development and/or use of a complicated model or set of equations. This new technique is applied in a case study on a small unmanned aerial system. The test procedure is presented and the results are discussed.
van de Schoot, A J A J; Visser, J; van Kesteren, Z; Janssen, T M; Rasch, C R N; Bel, A
2016-02-21
The Pareto front reflects the optimal trade-offs between conflicting objectives and can be used to quantify the effect of different beam configurations on plan robustness and dose-volume histogram parameters. Therefore, our aim was to develop and implement a method to automatically approach the Pareto front in robust intensity-modulated proton therapy (IMPT) planning. Additionally, clinically relevant Pareto fronts based on different beam configurations will be derived and compared to enable beam configuration selection in cervical cancer proton therapy. A method to iteratively approach the Pareto front by automatically generating robustly optimized IMPT plans was developed. To verify plan quality, IMPT plans were evaluated on robustness by simulating range and position errors and recalculating the dose. For five retrospectively selected cervical cancer patients, this method was applied for IMPT plans with three different beam configurations using two, three and four beams. 3D Pareto fronts were optimized on target coverage (CTV D(99%)) and OAR doses (rectum V30Gy; bladder V40Gy). Per patient, proportions of non-approved IMPT plans were determined and differences between patient-specific Pareto fronts were quantified in terms of CTV D(99%), rectum V(30Gy) and bladder V(40Gy) to perform beam configuration selection. Per patient and beam configuration, Pareto fronts were successfully sampled based on 200 IMPT plans of which on average 29% were non-approved plans. In all patients, IMPT plans based on the 2-beam set-up were completely dominated by plans with the 3-beam and 4-beam configuration. Compared to the 3-beam set-up, the 4-beam set-up increased the median CTV D(99%) on average by 0.2 Gy and decreased the median rectum V(30Gy) and median bladder V(40Gy) on average by 3.6% and 1.3%, respectively. This study demonstrates a method to automatically derive Pareto fronts in robust IMPT planning. For all patients, the defined four-beam configuration was found optimal
International Nuclear Information System (INIS)
Van de Schoot, A J A J; Visser, J; Van Kesteren, Z; Rasch, C R N; Bel, A; Janssen, T M
2016-01-01
The Pareto front reflects the optimal trade-offs between conflicting objectives and can be used to quantify the effect of different beam configurations on plan robustness and dose-volume histogram parameters. Therefore, our aim was to develop and implement a method to automatically approach the Pareto front in robust intensity-modulated proton therapy (IMPT) planning. Additionally, clinically relevant Pareto fronts based on different beam configurations will be derived and compared to enable beam configuration selection in cervical cancer proton therapy. A method to iteratively approach the Pareto front by automatically generating robustly optimized IMPT plans was developed. To verify plan quality, IMPT plans were evaluated on robustness by simulating range and position errors and recalculating the dose. For five retrospectively selected cervical cancer patients, this method was applied for IMPT plans with three different beam configurations using two, three and four beams. 3D Pareto fronts were optimized on target coverage (CTV D 99% ) and OAR doses (rectum V 30Gy ; bladder V 40Gy ). Per patient, proportions of non-approved IMPT plans were determined and differences between patient-specific Pareto fronts were quantified in terms of CTV D 99% , rectum V 30Gy and bladder V 40Gy to perform beam configuration selection. Per patient and beam configuration, Pareto fronts were successfully sampled based on 200 IMPT plans of which on average 29% were non-approved plans. In all patients, IMPT plans based on the 2-beam set-up were completely dominated by plans with the 3-beam and 4-beam configuration. Compared to the 3-beam set-up, the 4-beam set-up increased the median CTV D 99% on average by 0.2 Gy and decreased the median rectum V 30Gy and median bladder V 40Gy on average by 3.6% and 1.3%, respectively. This study demonstrates a method to automatically derive Pareto fronts in robust IMPT planning. For all patients, the defined four-beam configuration was found optimal in
International Nuclear Information System (INIS)
Gollub, C; De Vivie-Riedle, R
2009-01-01
A multi-objective genetic algorithm is applied to optimize picosecond laser fields, driving vibrational quantum processes. Our examples are state-to-state transitions and unitary transformations. The approach allows features of the shaped laser fields and of the excitation mechanisms to be controlled simultaneously with the quantum yield. Within the parameter range accessible to the experiment, we focus on short pulse durations and low pulse energies to optimize preferably robust laser fields. Multidimensional Pareto fronts for these conflicting objectives could be constructed. Comparison with previous work showed that the solutions from Pareto optimizations and from optimal control theory match very well.
Reddy, P.V.; Engwerda, J.C.
2010-01-01
In this article we derive necessary and sufficient conditions for the existence of Pareto optimal solutions for an N player cooperative infinite horizon differential game. Firstly, we write the problem of finding Pareto candidates as solving N constrained optimal control subproblems. We derive some
Origins of evolutionary transitions
Indian Academy of Sciences (India)
2014-03-15
Mar 15, 2014 ... ... of events: 'Entities that were capable of independent replication ... There have been many major evolutionary events that this definition of .... selection at level x to exclusive selection at x – will probably require a multiplicity ...
Evolutionary relationships among Astroviridae
Lukashov, Vladimir V.; Goudsmit, Jaap
2002-01-01
To study the evolutionary relationships among astroviruses, all available sequences for members of the family Astroviridae were collected. Phylogenetic analysis distinguished two deep-rooted groups: one comprising mammalian astroviruses, with ovine astrovirus being an outlier, and the other
Evolutionary Multiplayer Games
Gokhale, Chaitanya S.; Traulsen, Arne
2014-01-01
Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\\ increase less than linear wi...
Directory of Open Access Journals (Sweden)
I. K. Romanova
2015-01-01
Full Text Available The article research concerns the multi-criteria optimization (MCO, which assumes that operation quality criteria of the system are independent and specifies a way to improve values of these criteria. Mutual contradiction of some criteria is a major problem in MCO. One of the most important areas of research is to obtain the so-called Pareto - optimal options.The subject of research is Pareto front, also called the Pareto frontier. The article discusses front classifications by its geometric representation for the case of two-criterion task. It presents a mathematical description of the front characteristics using the gradients and their projections. A review of current domestic and foreign literature has revealed that the aim of works in constructing the Pareto frontier is to conduct research in conditions of uncertainty, in the stochastic statement, with no restrictions. A topology both in two- and in three-dimensional case is under consideration. The targets of modern applications are multi-agent systems and groups of players in differential games. However, all considered works have no task to provide an active management of the front.The objective of this article is to discuss the research problem the Pareto frontier in a new production, namely, with the active co-developers of the systems and (or the decision makers (DM in the management of the Pareto frontier. It notes that such formulation differs from the traditionally accepted approach based on the analysis of already existing solutions.The article discusses three ways to describe a quality of the object management system. The first way is to use the direct quality criteria for the model of a closed system as the vibrational level of the General form. The second one is to study a specific two-loop system of an aircraft control using the angular velocity and normal acceleration loops. The third is the use of the integrated quality criteria. In all three cases, the selected criteria are
Periaux, Jacques; Lee, Dong Seop Chris
2015-01-01
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...
Arkell, Karolina; Knutson, Hans-Kristian; Frederiksen, Søren S; Breil, Martin P; Nilsson, Bernt
2018-01-12
With the shift of focus of the regulatory bodies, from fixed process conditions towards flexible ones based on process understanding, model-based optimization is becoming an important tool for process development within the biopharmaceutical industry. In this paper, a multi-objective optimization study of separation of three insulin variants by reversed-phase chromatography (RPC) is presented. The decision variables were the load factor, the concentrations of ethanol and KCl in the eluent, and the cut points for the product pooling. In addition to the purity constraints, a solubility constraint on the total insulin concentration was applied. The insulin solubility is a function of the ethanol concentration in the mobile phase, and the main aim was to investigate the effect of this constraint on the maximal productivity. Multi-objective optimization was performed with and without the solubility constraint, and visualized as Pareto fronts, showing the optimal combinations of the two objectives productivity and yield for each case. Comparison of the constrained and unconstrained Pareto fronts showed that the former diverges when the constraint becomes active, because the increase in productivity with decreasing yield is almost halted. Consequently, we suggest the operating point at which the total outlet concentration of insulin reaches the solubility limit as the most suitable one. According to the results from the constrained optimizations, the maximal productivity on the C 4 adsorbent (0.41 kg/(m 3 column h)) is less than half of that on the C 18 adsorbent (0.87 kg/(m 3 column h)). This is partly caused by the higher selectivity between the insulin variants on the C 18 adsorbent, but the main reason is the difference in how the solubility constraint affects the processes. Since the optimal ethanol concentration for elution on the C 18 adsorbent is higher than for the C 4 one, the insulin solubility is also higher, allowing a higher pool concentration
Directory of Open Access Journals (Sweden)
Vimal Savsani
2017-01-01
Full Text Available Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS algorithm, which is based on the search technique of heat transfer search (HTS algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA, and combined PSO-GA based MOEA.
Application of Pareto optimization method for ontology matching in nuclear reactor domain
International Nuclear Information System (INIS)
Meenachi, N. Madurai; Baba, M. Sai
2017-01-01
This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.
Estimations of parameters in Pareto reliability model in the presence of masked data
International Nuclear Information System (INIS)
Sarhan, Ammar M.
2003-01-01
Estimations of parameters included in the individual distributions of the life times of system components in a series system are considered in this paper based on masked system life test data. We consider a series system of two independent components each has a Pareto distributed lifetime. The maximum likelihood and Bayes estimators for the parameters and the values of the reliability of the system's components at a specific time are obtained. Symmetrical triangular prior distributions are assumed for the unknown parameters to be estimated in obtaining the Bayes estimators of these parameters. Large simulation studies are done in order: (i) explain how one can utilize the theoretical results obtained; (ii) compare the maximum likelihood and Bayes estimates obtained of the underlying parameters; and (iii) study the influence of the masking level and the sample size on the accuracy of the estimates obtained
Coordinated Pitch & Torque Control of Large-Scale Wind Turbine Based on Pareto Eciency Analysis
DEFF Research Database (Denmark)
Lin, Zhongwei; Chen, Zhenyu; Wu, Qiuwei
2018-01-01
For the existing pitch and torque control of the wind turbine generator system (WTGS), further development on coordinated control is necessary to improve effectiveness for practical applications. In this paper, the WTGS is modeled as a coupling combination of two subsystems: the generator torque...... control subsystem and blade pitch control subsystem. Then, the pole positions in each control subsystem are adjusted coordinately to evaluate the controller participation and used as the objective of optimization. A two-level parameters-controllers coordinated optimization scheme is proposed and applied...... to optimize the controller coordination based on the Pareto optimization theory. Three solutions are obtained through optimization, which includes the optimal torque solution, optimal power solution, and satisfactory solution. Detailed comparisons evaluate the performance of the three selected solutions...
Pareto-optimal electricity tariff rates in the Republic of Armenia
International Nuclear Information System (INIS)
Kaiser, M.J.
2000-01-01
The economic impact of electricity tariff rates on the residential sector of Yerevan, Armenia, is examined. The effect of tariff design on revenue generation and equity measures is considered, and the combination of energy pricing and compensatory social policies which provides the best mix of efficiency and protection for poor households is examined. An equity measure is defined in terms of a cumulative distribution function which describes the percent of the population that spends x percent or less of their income on electricity consumption. An optimal (Pareto-efficient) tariff is designed based on the analysis of survey data and an econometric model, and the Armenian tariff rate effective 1 January 1997 to 15 September 1997 is shown to be non-optimal relative to this rate. 22 refs
Higher moments method for generalized Pareto distribution in flood frequency analysis
Zhou, C. R.; Chen, Y. F.; Huang, Q.; Gu, S. H.
2017-08-01
The generalized Pareto distribution (GPD) has proven to be the ideal distribution in fitting with the peak over threshold series in flood frequency analysis. Several moments-based estimators are applied to estimating the parameters of GPD. Higher linear moments (LH moments) and higher probability weighted moments (HPWM) are the linear combinations of Probability Weighted Moments (PWM). In this study, the relationship between them will be explored. A series of statistical experiments and a case study are used to compare their performances. The results show that if the same PWM are used in LH moments and HPWM methods, the parameter estimated by these two methods is unbiased. Particularly, when the same PWM are used, the PWM method (or the HPWM method when the order equals 0) shows identical results in parameter estimation with the linear Moments (L-Moments) method. Additionally, this phenomenon is significant when r ≥ 1 that the same order PWM are used in HPWM and LH moments method.
Statistical inferences with jointly type-II censored samples from two Pareto distributions
Abu-Zinadah, Hanaa H.
2017-08-01
In the several fields of industries the product comes from more than one production line, which is required to work the comparative life tests. This problem requires sampling of the different production lines, then the joint censoring scheme is appeared. In this article we consider the life time Pareto distribution with jointly type-II censoring scheme. The maximum likelihood estimators (MLE) and the corresponding approximate confidence intervals as well as the bootstrap confidence intervals of the model parameters are obtained. Also Bayesian point and credible intervals of the model parameters are presented. The life time data set is analyzed for illustrative purposes. Monte Carlo results from simulation studies are presented to assess the performance of our proposed method.
Risk finance for catastrophe losses with Pareto-calibrated Lévy-stable severities.
Powers, Michael R; Powers, Thomas Y; Gao, Siwei
2012-11-01
For catastrophe losses, the conventional risk finance paradigm of enterprise risk management identifies transfer, as opposed to pooling or avoidance, as the preferred solution. However, this analysis does not necessarily account for differences between light- and heavy-tailed characteristics of loss portfolios. Of particular concern are the decreasing benefits of diversification (through pooling) as the tails of severity distributions become heavier. In the present article, we study a loss portfolio characterized by nonstochastic frequency and a class of Lévy-stable severity distributions calibrated to match the parameters of the Pareto II distribution. We then propose a conservative risk finance paradigm that can be used to prepare the firm for worst-case scenarios with regard to both (1) the firm's intrinsic sensitivity to risk and (2) the heaviness of the severity's tail. © 2012 Society for Risk Analysis.
Pareto genealogies arising from a Poisson branching evolution model with selection.
Huillet, Thierry E
2014-02-01
We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.
Application of Pareto optimization method for ontology matching in nuclear reactor domain
Energy Technology Data Exchange (ETDEWEB)
Meenachi, N. Madurai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Planning and Human Resource Management Div.; Baba, M. Sai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Resources Management Group
2017-12-15
This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.
Use of multiple objective evolutionary algorithms in optimizing surveillance requirements
International Nuclear Information System (INIS)
Martorell, S.; Carlos, S.; Villanueva, J.F.; Sanchez, A.I; Galvan, B.; Salazar, D.; Cepin, M.
2006-01-01
This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.
Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang
2015-02-01
To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.
McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George
2017-03-01
Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
Proteomics in evolutionary ecology.
Baer, B; Millar, A H
2016-03-01
Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein
Applying evolutionary anthropology.
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.
Applying Evolutionary Anthropology
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561
Archaeogenetics in evolutionary medicine.
Bouwman, Abigail; Rühli, Frank
2016-09-01
Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.
Part E: Evolutionary Computation
DEFF Research Database (Denmark)
2015-01-01
of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...
Evolutionary Statistical Procedures
Baragona, Roberto; Poli, Irene
2011-01-01
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a
EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE
Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.
2015-01-01
Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168
Evolutionary trends in Heteroptera
Cobben, R.H.
1968-01-01
1. This work, the first volume of a series dealing with evolutionary trends in Heteroptera, is concerned with the egg system of about 400 species. The data are presented systematically in chapters 1 and 2 with a critical review of the literature after each family.
2. Chapter 3 evaluates facts
Evolutionary mysteries in meiosis
Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E.; Wijnker, Erik; Haag, Christoph R.
2016-01-01
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these
Applications of Evolutionary Computation
Mora, Antonio M.; Squillero, Giovanni; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Smith, Stephen L; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Mora, Antonio M.; Squillero, Giovanni; Jan, Mathieu; Matthias, M; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Esparcia-Alcazar, Anna I; Silva, Sara; Agapitos, Alexandros; Cotta, Carlos; De Falco, Ivanoe; Cioppa, Antonio Della; Diwold, Konrad; Ekart, Aniko; Tarantino, Ernesto; Vega, Francisco Fernandez De; Burelli, Paolo; Sim, Kevin; Cagnoni, Stefano; Simoes, Anabela; Merelo, J.J.; Urquhart, Neil; Haasdijk, Evert; Zhang, Mengjie; Squillero, Giovanni; Eiben, A E; Tettamanzi, Andrea G B; Glette, Kyrre; Rohlfshagen, Philipp; Schaefer, Robert; Caserta, Marco; Ramirez, Adriana; Voß, Stefan
2015-01-01
The application of genetic and evolutionary computation to problems in medicine has increased rapidly over the past five years, but there are specific issues and challenges that distinguish it from other real-world applications. Obtaining reliable and coherent patient data, establishing the clinical
Evolutionary perspectives on ageing.
Reichard, Martin
2017-10-01
From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.
Editorial overview: Evolutionary psychology
Gangestad, S.W.; Tybur, J.M.
2016-01-01
Functional approaches in psychology - which ask what behavior is good for - are almost as old as scientific psychology itself. Yet sophisticated, generative functional theories were not possible until developments in evolutionary biology in the mid-20th century. Arising in the last three decades,
Biochemistry and evolutionary biology
Indian Academy of Sciences (India)
Biochemical information has been crucial for the development of evolutionary biology. On the one hand, the sequence information now appearing is producing a huge increase in the amount of data available for phylogenetic analysis; on the other hand, and perhaps more fundamentally, it allows understanding of the ...
Indian Academy of Sciences (India)
Hindi and English. Port 1. Resonance, Vo1.7 ... they use. Of course, many evolutionary biologists do work with fossils or DNA, or both, but there are also large numbers of ... The first major division that I like to make is between studies focussed ...
Learning: An Evolutionary Analysis
Swann, Joanna
2009-01-01
This paper draws on the philosophy of Karl Popper to present a descriptive evolutionary epistemology that offers philosophical solutions to the following related problems: "What happens when learning takes place?" and "What happens in human learning?" It provides a detailed analysis of how learning takes place without any direct transfer of…
Complex systems, evolutionary planning?
Bertolini, L.; de Roo, G.; Silva, E.A.
2010-01-01
Coping with uncertainty is a defining challenge for spatial planners. Accordingly, most spatial planning theories and methods are aimed at reducing uncertainty. However, the question is what should be done when this seems impossible? This chapter proposes an evolutionary interpretation of spatial
Molluscan Evolutionary Development
DEFF Research Database (Denmark)
Wanninger, Andreas Wilhelm Georg; Koop, Damien; Moshel-Lynch, Sharon
2008-01-01
Brought together by Winston F. Ponder and David R. Lindberg, thirty-six experts on the evolution of the Mollusca provide an up-to-date review of its evolutionary history. The Mollusca are the second largest animal phylum and boast a fossil record of over 540 million years. They exhibit remarkable...
Directory of Open Access Journals (Sweden)
Raffaele Federici
2017-08-01
Full Text Available In questa ricerca di senso fra la fine di un'epoca e la nuova visione del mondo, c’è, nei due Autori, quello che potrebbe chiamarsi una betweenness: Pareto, quasi un franco-italiano, e Michels, un italiano-tedesco, anzi un più che italiano. Nella linea di faglia rappresentata dal primo conflitto mondiale, i due sociologi sono in una doppia relazione interiore appunto franco-italiana Pareto e italo-tedesca Michels e una relazione esteriore fra il mondo di ieri e il mondo successivo al cataclisma che fu la prima guerra mondiale, quando ben quattro imperi colossali erano stati smembrati (l’Impero Russo, l’Impero Tedesco, l’Impero Austro-ungarico e l’Impero ottomano, nello stesso tempo in cui Emile Durkheim guardava con inquietudine alla disgregazione delle vecchie comunità tradizionali, dove il senso della crisi del tempo investe non solo le persone e i comportamenti, ma il mondo logico stesso. Lo scambio epistolare avviene nella stessa terra: Pareto a Celigny, sul lago di Ginevra , e Michels a Basilea , lungo le rive del Reno. Vi è, fra i due sociologi un profondo rispetto, che vedrà Robert Michels dedicare allo “scienziato e amico Vilfredo Pareto con venerazione” un’opera importante come “Problemi di sociologia applicata” pubblicata solo tre anni dopo il Trattato di Sociologia Generale del Maestro. In questa antologia di saggi Robert Michels, probabilmente composti fra il 1914 e il 1917, negli anni del grande cataclisma, anzi concepiti prima «dell’insediamento di questa terribile corte suprema di cassazione di tutte le nostre ideologie, che è la guerra» , quindi contemporanea al Trattato, il Maestro viene citato tre volte, come Max Weber, ma, de facto, la presenza di Pareto è continua. In particolare, il richiamo al Maestro è iscritto a due piste di ricerca: da una parte la realtà della ricerca sociologica e del suo amplissimo spettro di analisi e dall’altra la teoria della circolazione delle elités. È proprio
Directory of Open Access Journals (Sweden)
Anat Lerner
2014-04-01
Full Text Available We characterize the efficiency space of deterministic, dominant-strategy incentive compatible, individually rational and Pareto-optimal combinatorial auctions in a model with two players and k nonidentical items. We examine a model with multidimensional types, private values and quasilinear preferences for the players with one relaxation: one of the players is subject to a publicly known budget constraint. We show that if it is publicly known that the valuation for the largest bundle is less than the budget for at least one of the players, then Vickrey-Clarke-Groves (VCG uniquely fulfills the basic properties of being deterministic, dominant-strategy incentive compatible, individually rational and Pareto optimal. Our characterization of the efficient space for deterministic budget constrained combinatorial auctions is similar in spirit to that of Maskin 2000 for Bayesian single-item constrained efficiency auctions and comparable with Ausubel and Milgrom 2002 for non-constrained combinatorial auctions.
Suarez, R
2001-01-01
In this paper an alternative non-parametric historical simulation approach, the Mixing Unconditional Disturbances model with constant volatility, where price paths are generated by reshuffling disturbances for S&P 500 Index returns over the period 1950 - 1998, is used to estimate a Generalized Extreme Value Distribution and a Generalized Pareto Distribution. An ordinary back-testing for period 1999 - 2008 was made to verify this technique, providing higher accuracy returns level under upper ...
Evolutionary constrained optimization
Deb, Kalyanmoy
2015-01-01
This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...
International Nuclear Information System (INIS)
Amanifard, N.; Nariman-Zadeh, N.; Borji, M.; Khalkhali, A.; Habibdoust, A.
2008-01-01
Three-dimensional heat transfer characteristics and pressure drop of water flow in a set of rectangular microchannels are numerically investigated using Fluent and compared with those of experimental results. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks are then obtained for modelling of both pressure drop (ΔP) and Nusselt number (Nu) with respect to design variables such as geometrical parameters of microchannels, the amount of heat flux and the Reynolds number. Using such obtained polynomial neural networks, multi-objective genetic algorithms (GAs) (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism is then used for Pareto based optimization of microchannels considering two conflicting objectives such as (ΔP) and (Nu). It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of microchannels can be discovered by Pareto based multi-objective optimization of the obtained polynomial metamodels representing their heat transfer and flow characteristics. Such important optimal principles would not have been obtained without the use of both GMDH type neural network modelling and the Pareto optimization approach
TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.
Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald
2018-01-01
Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.
Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.
Directory of Open Access Journals (Sweden)
Sophie Bertrand
Full Text Available How organisms move and disperse is crucial to understand how population dynamics relates to the spatial heterogeneity of the environment. Random walk (RW models are typical tools to describe movement patterns. Whether Lévy or alternative RW better describes forager movements is keenly debated. We get around this issue using the Generalized Pareto Distribution (GPD. GPD includes as specific cases Normal, exponential and power law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively. Whereas previous studies typically confronted a limited set of candidate models, GPD lets the most likely RW model emerge from the data. We illustrate the wide applicability of the method using GPS-tracked seabird foraging movements and fishing vessel movements tracked by Vessel Monitoring System (VMS, both collected in the Peruvian pelagic ecosystem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a synoptic characterization of the observed movement in terms of characteristic scale and diffusive property. They reveal and quantify the variability, among species and individuals, of the spatial strategies selected by predators foraging on a common prey field. The GPD parameters constitute relevant metrics for (1 providing a synthetic and pattern-oriented description of movement, (2 using top predators as ecosystem indicators and (3 studying the variability of spatial behaviour among species or among individuals with different personalities.
Entropies of negative incomes, Pareto-distributed loss, and financial crises.
Gao, Jianbo; Hu, Jing; Mao, Xiang; Zhou, Mi; Gurbaxani, Brian; Lin, Johnny
2011-01-01
Health monitoring of world economy is an important issue, especially in a time of profound economic difficulty world-wide. The most important aspect of health monitoring is to accurately predict economic downturns. To gain insights into how economic crises develop, we present two metrics, positive and negative income entropy and distribution analysis, to analyze the collective "spatial" and temporal dynamics of companies in nine sectors of the world economy over a 19 year period from 1990-2008. These metrics provide accurate predictive skill with a very low false-positive rate in predicting downturns. The new metrics also provide evidence of phase transition-like behavior prior to the onset of recessions. Such a transition occurs when negative pretax incomes prior to or during economic recessions transition from a thin-tailed exponential distribution to the higher entropy Pareto distribution, and develop even heavier tails than those of the positive pretax incomes. These features propagate from the crisis initiating sector of the economy to other sectors.
Directory of Open Access Journals (Sweden)
Enrique Carlos Canessa-Terrazas
2016-01-01
Full Text Available Se presenta el uso de Análisis Envolvente de Datos (AED para priorizar y seleccionar soluciones encontradas por un Algoritmo Genético de Pareto (AGP a problemas de diseño robusto en sistemas multirespuesta con muchos factores de control y ruido. El análisis de eficiencia de las soluciones con AED muestra que el AGP encuentra una buena aproximación a la frontera eficiente. Además, se usa AED para determinar la combinación del nivel de ajuste de media y variación de las respuestas del sistema, y con la finalidad de minimizar el costo económico de alcanzar dichos objetivos. Al unir ese costo con otras consideraciones técnicas y/o económicas, la solución que mejor se ajuste con un nivel predeterminado de calidad puede ser seleccionada más apropiadamente.
PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar
Energy Technology Data Exchange (ETDEWEB)
Sen, Satyabrata [ORNL
2014-01-01
We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.
Sensitivity analysis for decision-making using the MORE method-A Pareto approach
International Nuclear Information System (INIS)
Ravalico, Jakin K.; Maier, Holger R.; Dandy, Graeme C.
2009-01-01
Integrated Assessment Modelling (IAM) incorporates knowledge from different disciplines to provide an overarching assessment of the impact of different management decisions. The complex nature of these models, which often include non-linearities and feedback loops, requires special attention for sensitivity analysis. This is especially true when the models are used to form the basis of management decisions, where it is important to assess how sensitive the decisions being made are to changes in model parameters. This research proposes an extension to the Management Option Rank Equivalence (MORE) method of sensitivity analysis; a new method of sensitivity analysis developed specifically for use in IAM and decision-making. The extension proposes using a multi-objective Pareto optimal search to locate minimum combined parameter changes that result in a change in the preferred management option. It is demonstrated through a case study of the Namoi River, where results show that the extension to MORE is able to provide sensitivity information for individual parameters that takes into account simultaneous variations in all parameters. Furthermore, the increased sensitivities to individual parameters that are discovered when joint parameter variation is taken into account shows the importance of ensuring that any sensitivity analysis accounts for these changes.
Extending the Generalised Pareto Distribution for Novelty Detection in High-Dimensional Spaces.
Clifton, David A; Clifton, Lei; Hugueny, Samuel; Tarassenko, Lionel
2014-01-01
Novelty detection involves the construction of a "model of normality", and then classifies test data as being either "normal" or "abnormal" with respect to that model. For this reason, it is often termed one-class classification. The approach is suitable for cases in which examples of "normal" behaviour are commonly available, but in which cases of "abnormal" data are comparatively rare. When performing novelty detection, we are typically most interested in the tails of the normal model, because it is in these tails that a decision boundary between "normal" and "abnormal" areas of data space usually lies. Extreme value statistics provides an appropriate theoretical framework for modelling the tails of univariate (or low-dimensional) distributions, using the generalised Pareto distribution (GPD), which can be demonstrated to be the limiting distribution for data occurring within the tails of most practically-encountered probability distributions. This paper provides an extension of the GPD, allowing the modelling of probability distributions of arbitrarily high dimension, such as occurs when using complex, multimodel, multivariate distributions for performing novelty detection in most real-life cases. We demonstrate our extension to the GPD using examples from patient physiological monitoring, in which we have acquired data from hospital patients in large clinical studies of high-acuity wards, and in which we wish to determine "abnormal" patient data, such that early warning of patient physiological deterioration may be provided.
Modeling air quality in main cities of Peninsular Malaysia by using a generalized Pareto model.
Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Latif, Mohd Talib
2016-01-01
The air pollution index (API) is an important figure used for measuring the quality of air in the environment. The API is determined based on the highest average value of individual indices for all the variables which include sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and suspended particulate matter (PM10) at a particular hour. API values that exceed the limit of 100 units indicate an unhealthy status for the exposed environment. This study investigates the risk of occurrences of API values greater than 100 units for eight urban areas in Peninsular Malaysia for the period of January 2004 to December 2014. An extreme value model, known as the generalized Pareto distribution (GPD), has been fitted to the API values found. Based on the fitted model, return period for describing the occurrences of API exceeding 100 in the different cities has been computed as the indicator of risk. The results obtained indicated that most of the urban areas considered have a very small risk of occurrence of the unhealthy events, except for Kuala Lumpur, Malacca, and Klang. However, among these three cities, it is found that Klang has the highest risk. Based on all the results obtained, the air quality standard in urban areas of Peninsular Malaysia falls within healthy limits to human beings.
Wu, Hao; Ihme, Matthias
2017-11-01
The modeling of turbulent combustion requires the consideration of different physico-chemical processes, involving a vast range of time and length scales as well as a large number of scalar quantities. To reduce the computational complexity, various combustion models are developed. Many of them can be abstracted using a lower-dimensional manifold representation. A key issue in using such lower-dimensional combustion models is the assessment as to whether a particular combustion model is adequate in representing a certain flame configuration. The Pareto-efficient combustion (PEC) modeling framework was developed to perform dynamic combustion model adaptation based on various existing manifold models. In this work, the PEC model is applied to a turbulent flame simulation, in which a computationally efficient flamelet-based combustion model is used in together with a high-fidelity finite-rate chemistry model. The combination of these two models achieves high accuracy in predicting pollutant species at a relatively low computational cost. The relevant numerical methods and parallelization techniques are also discussed in this work.
Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.
Bertrand, Sophie; Joo, Rocío; Fablet, Ronan
2015-01-01
How organisms move and disperse is crucial to understand how population dynamics relates to the spatial heterogeneity of the environment. Random walk (RW) models are typical tools to describe movement patterns. Whether Lévy or alternative RW better describes forager movements is keenly debated. We get around this issue using the Generalized Pareto Distribution (GPD). GPD includes as specific cases Normal, exponential and power law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively. Whereas previous studies typically confronted a limited set of candidate models, GPD lets the most likely RW model emerge from the data. We illustrate the wide applicability of the method using GPS-tracked seabird foraging movements and fishing vessel movements tracked by Vessel Monitoring System (VMS), both collected in the Peruvian pelagic ecosystem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a synoptic characterization of the observed movement in terms of characteristic scale and diffusive property. They reveal and quantify the variability, among species and individuals, of the spatial strategies selected by predators foraging on a common prey field. The GPD parameters constitute relevant metrics for (1) providing a synthetic and pattern-oriented description of movement, (2) using top predators as ecosystem indicators and (3) studying the variability of spatial behaviour among species or among individuals with different personalities.
International Nuclear Information System (INIS)
Kang, Seunghoon; Lim, Woochul; Cho, Su-gil; Park, Sanghyun; Lee, Tae Hee; Lee, Minuk; Choi, Jong-su; Hong, Sup
2015-01-01
In order to perform estimations with high reliability, it is necessary to deal with the tail part of the cumulative distribution function (CDF) in greater detail compared to an overall CDF. The use of a generalized Pareto distribution (GPD) to model the tail part of a CDF is receiving more research attention with the goal of performing estimations with high reliability. Current studies on GPDs focus on ways to determine the appropriate number of sample points and their parameters. However, even if a proper estimation is made, it can be inaccurate as a result of an incorrect threshold value. Therefore, in this paper, a GPD based on the Akaike information criterion (AIC) is proposed to improve the accuracy of the tail model. The proposed method determines an accurate threshold value using the AIC with the overall samples before estimating the GPD over the threshold. To validate the accuracy of the method, its reliability is compared with that obtained using a general GPD model with an empirical CDF
Energy Technology Data Exchange (ETDEWEB)
Kang, Seunghoon; Lim, Woochul; Cho, Su-gil; Park, Sanghyun; Lee, Tae Hee [Hanyang University, Seoul (Korea, Republic of); Lee, Minuk; Choi, Jong-su; Hong, Sup [Korea Research Insitute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)
2015-02-15
In order to perform estimations with high reliability, it is necessary to deal with the tail part of the cumulative distribution function (CDF) in greater detail compared to an overall CDF. The use of a generalized Pareto distribution (GPD) to model the tail part of a CDF is receiving more research attention with the goal of performing estimations with high reliability. Current studies on GPDs focus on ways to determine the appropriate number of sample points and their parameters. However, even if a proper estimation is made, it can be inaccurate as a result of an incorrect threshold value. Therefore, in this paper, a GPD based on the Akaike information criterion (AIC) is proposed to improve the accuracy of the tail model. The proposed method determines an accurate threshold value using the AIC with the overall samples before estimating the GPD over the threshold. To validate the accuracy of the method, its reliability is compared with that obtained using a general GPD model with an empirical CDF.
Pareto frontier analyses based decision making tool for transportation of hazardous waste
International Nuclear Information System (INIS)
Das, Arup; Mazumder, T.N.; Gupta, A.K.
2012-01-01
Highlights: ► Posteriori method using multi-objective approach to solve bi-objective routing problem. ► System optimization (with multiple source–destination pairs) in a capacity constrained network using non-dominated sorting. ► Tools like cost elasticity and angle based focus used to analyze Pareto frontier to aid stakeholders make informed decisions. ► A real life case study of Kolkata Metropolitan Area to explain the workability of the model. - Abstract: Transportation of hazardous wastes through a region poses immense threat on the development along its road network. The risk to the population, exposed to such activities, has been documented in the past. However, a comprehensive framework for routing hazardous wastes has often been overlooked. A regional Hazardous Waste Management scheme should incorporate a comprehensive framework for hazardous waste transportation. This framework would incorporate the various stakeholders involved in decision making. Hence, a multi-objective approach is required to safeguard the interest of all the concerned stakeholders. The objective of this study is to design a methodology for routing of hazardous wastes between the generating units and the disposal facilities through a capacity constrained network. The proposed methodology uses posteriori method with multi-objective approach to find non-dominated solutions for the system consisting of multiple origins and destinations. A case study of transportation of hazardous wastes in Kolkata Metropolitan Area has also been provided to elucidate the methodology.
Modelling road accident blackspots data with the discrete generalized Pareto distribution.
Prieto, Faustino; Gómez-Déniz, Emilio; Sarabia, José María
2014-10-01
This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ+1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Entropies of negative incomes, Pareto-distributed loss, and financial crises.
Directory of Open Access Journals (Sweden)
Jianbo Gao
Full Text Available Health monitoring of world economy is an important issue, especially in a time of profound economic difficulty world-wide. The most important aspect of health monitoring is to accurately predict economic downturns. To gain insights into how economic crises develop, we present two metrics, positive and negative income entropy and distribution analysis, to analyze the collective "spatial" and temporal dynamics of companies in nine sectors of the world economy over a 19 year period from 1990-2008. These metrics provide accurate predictive skill with a very low false-positive rate in predicting downturns. The new metrics also provide evidence of phase transition-like behavior prior to the onset of recessions. Such a transition occurs when negative pretax incomes prior to or during economic recessions transition from a thin-tailed exponential distribution to the higher entropy Pareto distribution, and develop even heavier tails than those of the positive pretax incomes. These features propagate from the crisis initiating sector of the economy to other sectors.
Pareto-Optimal Evaluation of Ultimate Limit States in Offshore Wind Turbine Structural Analysis
Directory of Open Access Journals (Sweden)
Michael Muskulus
2015-12-01
Full Text Available The ultimate capacity of support structures is checked with extreme loads. This is straightforward when the limit state equations depend on a single load component, and it has become common to report maxima for each load component. However, if more than one load component is influential, e.g., both axial force and bending moments, it is not straightforward how to define an extreme load. The combination of univariate maxima can be too conservative, and many different combinations of load components can result in the worst value of the limit state equations. The use of contemporaneous load vectors is typically non-conservative. Therefore, in practice, limit state checks are done for each possible load vector, from each time step of a simulation. This is not feasible when performing reliability assessments and structural optimization, where additional, time-consuming computations are involved for each load vector. We therefore propose to use Pareto-optimal loads, which are a small set of loads that together represent all possible worst case scenarios. Simulations with two reference wind turbines show that this approach can be very useful for jacket structures, whereas the design of monopiles is often governed by the bending moment only. Even in this case, the approach might be useful when approaching the structural limits during optimization.
Introduction to Evolutionary Algorithms
Yu, Xinjie
2010-01-01
Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti
Szabó, György; Fáth, Gábor
2007-07-01
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.
Evolutionary mysteries in meiosis.
Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R
2016-10-19
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
McAvoy, Alex; Hauert, Christoph
2015-01-01
Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326
Helminths and Cancers From the Evolutionary Perspective.
Scholte, Larissa L S; Pascoal-Xavier, Marcelo A; Nahum, Laila A
2018-01-01
Helminths include free-living and parasitic Platyhelminthes and Nematoda which infect millions of people worldwide. Some Platyhelminthes species of blood flukes ( Schistosoma haematobium, Schistosoma japonicum , and Schistosoma mansoni ) and liver flukes ( Clonorchis sinensis and Opisthorchis viverrini ) are known to be involved in human cancers. Other helminths are likely to be carcinogenic. Our main goals are to summarize the current knowledge of human cancers caused by Platyhelminthes, point out some helminth and human biomarkers identified so far, and highlight the potential contributions of phylogenetics and molecular evolution to cancer research. Human cancers caused by helminth infection include cholangiocarcinoma, colorectal hepatocellular carcinoma, squamous cell carcinoma, and urinary bladder cancer. Chronic inflammation is proposed as a common pathway for cancer initiation and development. Furthermore, different bacteria present in gastric, colorectal, and urogenital microbiomes might be responsible for enlarging inflammatory and fibrotic responses in cancers. Studies have suggested that different biomarkers are involved in helminth infection and human cancer development; although, the detailed mechanisms remain under debate. Different helminth proteins have been studied by different approaches. However, their evolutionary relationships remain unsolved. Here, we illustrate the strengths of homology identification and function prediction of uncharacterized proteins from genome sequencing projects based on an evolutionary framework. Together, these approaches may help identifying new biomarkers for disease diagnostics and intervention measures. This work has potential applications in the field of phylomedicine (evolutionary medicine) and may contribute to parasite and cancer research.
Helminths and Cancers From the Evolutionary Perspective
Directory of Open Access Journals (Sweden)
Larissa L. S. Scholte
2018-04-01
Full Text Available Helminths include free-living and parasitic Platyhelminthes and Nematoda which infect millions of people worldwide. Some Platyhelminthes species of blood flukes (Schistosoma haematobium, Schistosoma japonicum, and Schistosoma mansoni and liver flukes (Clonorchis sinensis and Opisthorchis viverrini are known to be involved in human cancers. Other helminths are likely to be carcinogenic. Our main goals are to summarize the current knowledge of human cancers caused by Platyhelminthes, point out some helminth and human biomarkers identified so far, and highlight the potential contributions of phylogenetics and molecular evolution to cancer research. Human cancers caused by helminth infection include cholangiocarcinoma, colorectal hepatocellular carcinoma, squamous cell carcinoma, and urinary bladder cancer. Chronic inflammation is proposed as a common pathway for cancer initiation and development. Furthermore, different bacteria present in gastric, colorectal, and urogenital microbiomes might be responsible for enlarging inflammatory and fibrotic responses in cancers. Studies have suggested that different biomarkers are involved in helminth infection and human cancer development; although, the detailed mechanisms remain under debate. Different helminth proteins have been studied by different approaches. However, their evolutionary relationships remain unsolved. Here, we illustrate the strengths of homology identification and function prediction of uncharacterized proteins from genome sequencing projects based on an evolutionary framework. Together, these approaches may help identifying new biomarkers for disease diagnostics and intervention measures. This work has potential applications in the field of phylomedicine (evolutionary medicine and may contribute to parasite and cancer research.
Studies in evolutionary agroecology
DEFF Research Database (Denmark)
Wille, Wibke
of population performance will increase in frequency. Yield, one of the fundamental agronomic variables, is not an individual, but a population characteristic. A farmer wants a high yield per hectare; he is not interested in the performance of individual plants. When individual selection and population...... of Evolutionary Agroecology that the highest yielding individuals do not necessarily perform best as a population. The investment of resources into strategies and structures increasing individual competitive ability carries a cost. If a whole population consists of individuals investing resources to compete...
Towards Adaptive Evolutionary Architecture
DEFF Research Database (Denmark)
Bak, Sebastian HOlt; Rask, Nina; Risi, Sebastian
2016-01-01
This paper presents first results from an interdisciplinary project, in which the fields of architecture, philosophy and artificial life are combined to explore possible futures of architecture. Through an interactive evolutionary installation, called EvoCurtain, we investigate aspects of how...... to the development of designs tailored to the individual preferences of inhabitants, changing the roles of architects and designers entirely. Architecture-as-it-could-be is a philosophical approach conducted through artistic methods to anticipate the technological futures of human-centered development within...
Howe, Lauren C; Krosnick, Jon A
2017-01-03
Attitude strength has been the focus of a huge volume of research in psychology and related sciences for decades. The insights offered by this literature have tremendous value for understanding attitude functioning and structure and for the effective application of the attitude concept in applied settings. This is the first Annual Review of Psychology article on the topic, and it offers a review of theory and evidence regarding one of the most researched strength-related attitude features: attitude importance. Personal importance is attached to an attitude when the attitude is perceived to be relevant to self-interest, social identification with reference groups or reference individuals, and values. Attaching personal importance to an attitude causes crystallizing of attitudes (via enhanced resistance to change), effortful gathering and processing of relevant information, accumulation of a large store of well-organized relevant information in long-term memory, enhanced attitude extremity and accessibility, enhanced attitude impact on the regulation of interpersonal attraction, energizing of emotional reactions, and enhanced impact of attitudes on behavioral intentions and action. Thus, important attitudes are real and consequential psychological forces, and their study offers opportunities for addressing behavioral change.
Langenbrunner, B.; Neelin, J. D.
2016-12-01
Despite increasing complexity and process representation in global climate models (GCMs), accurate climate simulation is limited by uncertainties in sub-grid scale model physics, where cloud processes and precipitation occur, and the interaction with large-scale dynamics. Identifying highly sensitive parameters and constraining them against observations is therefore a valuable step in narrowing uncertainty. However, changes in parameterizations often improve some variables or aspects of the simulation while degrading others. This analysis addresses means of improving GCM simulation of present-day tropical Pacific climate in the face of these tradeoffs. Focusing on the deep convection scheme in the fully coupled Community Earth System Model (CESM) version 1, four parameters were systematically sampled, and a metamodel or model emulator was used to reconstruct the parameter space of this perturbed physics ensemble. Using this metamodel, a Pareto front is constructed to visualize multiobjective tradeoffs in model performance, and results highlight the most important aspects of model physics as well as the most sensitive parameter ranges. For example, parameter tradeoffs arise in the tropical Pacific where precipitation cannot improve without sea surface temperature getting worse. Tropical precipitation sensitivity is found to be highly nonlinear for low values of entrainment in convecting plumes, though it is fairly insensitive at the high end of the plausible range. Increasing the adjustment timescale for convective closure causes the centroid of tropical precipitation to vary as much as two degrees latitude, highlighting the effect these physics can have on large-scale features of the hydrological cycle. The optimization procedure suggests that simultaneously increasing the maximum downdraft mass flux fraction and the adjustment timescale can yield improvements to surface temperature and column water vapor without degrading the simulation of precipitation. These
Penrod, Nadia M; Greene, Casey S; Moore, Jason H
2014-01-01
Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced tumor adaptation. We use this approach to identify tumor-essential genes as druggable candidates. We apply our method to a set of ER(+) breast tumor samples, collected before (n = 58) and after (n = 60) neoadjuvant treatment with the aromatase inhibitor letrozole, to prioritize genes as targets for combination therapy with letrozole treatment. We validate letrozole-induced tumor adaptation through coexpression and pathway analyses in an independent data set (n = 18). We find pervasive differential coexpression between the untreated and letrozole-treated tumor samples as evidence of letrozole-induced tumor adaptation. Based on patterns of coexpression, we identify ten genes as potential candidates for combination therapy with letrozole including EPCAM, a letrozole-induced essential gene and a target to which drugs have already been developed as cancer therapeutics. Through replication, we validate six letrozole-induced coexpression relationships and confirm the epithelial-to-mesenchymal transition as a process that is upregulated in the residual tumor samples following letrozole treatment. To derive the greatest benefit from molecularly targeted drugs it is critical to design combination
Using the Pareto principle in genome-wide breeding value estimation.
Yu, Xijiang; Meuwissen, Theo H E
2011-11-01
Genome-wide breeding value (GWEBV) estimation methods can be classified based on the prior distribution assumptions of marker effects. Genome-wide BLUP methods assume a normal prior distribution for all markers with a constant variance, and are computationally fast. In Bayesian methods, more flexible prior distributions of SNP effects are applied that allow for very large SNP effects although most are small or even zero, but these prior distributions are often also computationally demanding as they rely on Monte Carlo Markov chain sampling. In this study, we adopted the Pareto principle to weight available marker loci, i.e., we consider that x% of the loci explain (100 - x)% of the total genetic variance. Assuming this principle, it is also possible to define the variances of the prior distribution of the 'big' and 'small' SNP. The relatively few large SNP explain a large proportion of the genetic variance and the majority of the SNP show small effects and explain a minor proportion of the genetic variance. We name this method MixP, where the prior distribution is a mixture of two normal distributions, i.e. one with a big variance and one with a small variance. Simulation results, using a real Norwegian Red cattle pedigree, show that MixP is at least as accurate as the other methods in all studied cases. This method also reduces the hyper-parameters of the prior distribution from 2 (proportion and variance of SNP with big effects) to 1 (proportion of SNP with big effects), assuming the overall genetic variance is known. The mixture of normal distribution prior made it possible to solve the equations iteratively, which greatly reduced computation loads by two orders of magnitude. In the era of marker density reaching million(s) and whole-genome sequence data, MixP provides a computationally feasible Bayesian method of analysis.
David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera
2017-04-01
This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Core principles of evolutionary medicine
Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E
2018-01-01
Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660
Practical advantages of evolutionary computation
Fogel, David B.
1997-10-01
Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
International Nuclear Information System (INIS)
Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.
2006-01-01
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature
International Nuclear Information System (INIS)
Toffolo, A.; Lazzaretto, A.
2002-01-01
Thermoeconomic analyses in thermal system design are always focused on the economic objective. However, knowledge of only the economic minimum may not be sufficient in the decision making process, since solutions with a higher thermodynamic efficiency, in spite of small increases in total costs, may result in much more interesting designs due to changes in energy market prices or in energy policies. This paper suggests how to perform a multi-objective optimization in order to find solutions that simultaneously satisfy exergetic and economic objectives. This corresponds to a search for the set of Pareto optimal solutions with respect to the two competing objectives. The optimization process is carried out by an evolutionary algorithm, that features a new diversity preserving mechanism using as a test case the well-known CGAM problem. (author)
Wang, Chun; Ji, Zhicheng; Wang, Yan
2017-07-01
In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.
A Hybrid Multiobjective Evolutionary Approach for Flexible Job-Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Jian Xiong
2012-01-01
Full Text Available This paper addresses multiobjective flexible job-shop scheduling problem (FJSP with three simultaneously considered objectives: minimizing makespan, minimizing total workload, and minimizing maximal workload. A hybrid multiobjective evolutionary approach (H-MOEA is developed to solve the problem. According to the characteristic of FJSP, a modified crowding distance measure is introduced to maintain the diversity of individuals. In the proposed H-MOEA, well-designed chromosome representation and genetic operators are developed for FJSP. Moreover, a local search procedure based on critical path theory is incorporated in H-MOEA to improve the convergence ability of the algorithm. Experiment results on several well-known benchmark instances demonstrate the efficiency and stability of the proposed algorithm. The comparison with other recently published approaches validates that H-MOEA can obtain Pareto-optimal solutions with better quality and/or diversity.
Directory of Open Access Journals (Sweden)
M. Frutos
2013-01-01
Full Text Available Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
Energy Technology Data Exchange (ETDEWEB)
Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es
2006-09-15
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.
Directory of Open Access Journals (Sweden)
Владимир Геннадьевич Иванов
2015-12-01
Full Text Available The given article presents research of the evolution of the Russian party system. The chosen methodology is based on the heuristic potential of agent-based modelling. The author analyzes various scenarios of parties’ competition (applying Pareto distribution in connection with recent increase of the number of political parties. In addition, the author predicts the level of ideological diversity of the parties’ platforms (applying the principles of Hotelling distribution in order to evaluate their potential competitiveness in the struggle for voters.
Directory of Open Access Journals (Sweden)
Rica Gonen
2013-11-01
Full Text Available We analyze the space of deterministic, dominant-strategy incentive compatible, individually rational and Pareto optimal combinatorial auctions. We examine a model with multidimensional types, nonidentical items, private values and quasilinear preferences for the players with one relaxation; the players are subject to publicly-known budget constraints. We show that the space includes dictatorial mechanisms and that if dictatorial mechanisms are ruled out by a natural anonymity property, then an impossibility of design is revealed. The same impossibility naturally extends to other abstract mechanisms with an arbitrary outcome set if one maintains the original assumptions of players with quasilinear utilities, public budgets and nonnegative prices.
Directory of Open Access Journals (Sweden)
Alexandr Victorovich Budylskiy
2014-06-01
Full Text Available This article considers the multicriteria optimization approach using the modified genetic algorithm to solve the project-scheduling problem under duration and cost constraints. The work contains the list of choices for solving this problem. The multicriteria optimization approach is justified here. The study describes the Pareto principles, which are used in the modified genetic algorithm. We identify the mathematical model of the project-scheduling problem. We introduced the modified genetic algorithm, the ranking strategies, the elitism approaches. The article includes the example.
Cilla, Savino; Ianiro, Anna; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Valentini, Vincenzo; Morganti, Alessio G
2017-11-27
We explored the Pareto fronts mathematical strategy to determine the optimal block margin and prescription isodose for stereotactic body radiotherapy (SBRT) treatments of liver metastases using the volumetric-modulated arc therapy (VMAT) technique. Three targets (planning target volumes [PTVs] = 20, 55, and 101 cc) were selected. A single fraction dose of 26 Gy was prescribed (prescription dose [PD]). VMAT plans were generated for 3 different beam energies. Pareto fronts based on (1) different multileaf collimator (MLC) block margin around PTV and (2) different prescription isodose lines (IDL) were produced. For each block margin, the greatest IDL fulfilling the criteria (95% of PTV reached 100%) was considered as providing the optimal clinical plan for PTV coverage. Liver D mean , V7Gy, and V12Gy were used against the PTV coverage to generate the fronts. Gradient indexes (GI and mGI), homogeneity index (HI), and healthy liver irradiation in terms of D mean , V7Gy, and V12Gy were calculated to compare different plans. In addition, each target was also optimized with a full-inverse planning engine to obtain a direct comparison with anatomy-based treatment planning system (TPS) results. About 900 plans were calculated to generate the fronts. GI and mGI show a U-shaped behavior as a function of beam margin with minimal values obtained with a +1 mm MLC margin. For these plans, the IDL ranges from 74% to 86%. GI and mGI show also a V-shaped behavior with respect to HI index, with minimum values at 1 mm for all metrics, independent of tumor dimensions and beam energy. Full-inversed optimized plans reported worse results with respect to Pareto plans. In conclusion, Pareto fronts provide a rigorous strategy to choose clinical optimal plans in SBRT treatments. We show that a 1-mm MLC block margin provides the best results with regard to healthy liver tissue irradiation and steepness of dose fallout. Copyright © 2017 American Association of Medical Dosimetrists
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Mann, Jakob; Rathmann, Ole
2015-01-01
This study examines the various sources to the uncertainties in the application of two widely used extreme value distribution functions, the generalized extreme value distribution (GEVD) and the generalized Pareto distribution (GPD). The study is done through the analysis of measurements from...... as a guideline for applying GEVD and GPD to wind time series of limited length. The data analysis shows that, with reasonable choice of relevant parameters, GEVD and GPD give consistent estimates of the return winds. For GEVD, the base period should be chosen in accordance with the occurrence of the extreme wind...
Directory of Open Access Journals (Sweden)
Sergey E. Bukhtoyarov
2005-05-01
Full Text Available A multicriterion linear combinatorial problem with a parametric principle of optimality is considered. This principle is defined by a partitioning of partial criteria onto Pareto preference relation groups within each group and the lexicographic preference relation between them. Quasistability of the problem is investigated. This type of stability is a discrete analog of Hausdorff lower semi-continuity of the multiple-valued mapping that defines the choice function. A formula of quasistability radius is derived for the case of the metric l∞. Some known results are stated as corollaries. Mathematics Subject Classification 2000: 90C05, 90C10, 90C29, 90C31.
Complexity in Evolutionary Processes
International Nuclear Information System (INIS)
Schuster, P.
2010-01-01
Darwin's principle of evolution by natural selection is readily casted into a mathematical formalism. Molecular biology revealed the mechanism of mutation and provides the basis for a kinetic theory of evolution that models correct reproduction and mutation as parallel chemical reaction channels. A result of the kinetic theory is the existence of a phase transition in evolution occurring at a critical mutation rate, which represents a localization threshold for the population in sequence space. Occurrence and nature of such phase transitions depend critically on fitness landscapes. The fitness landscape being tantamount to a mapping from sequence or genotype space into phenotype space is identified as the true source of complexity in evolution. Modeling evolution as a stochastic process is discussed and neutrality with respect to selection is shown to provide a major challenge for understanding evolutionary processes (author)
Spore: Spawning Evolutionary Misconceptions?
Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.
2010-10-01
The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.
Evolutionary games under incompetence.
Kleshnina, Maria; Filar, Jerzy A; Ejov, Vladimir; McKerral, Jody C
2018-02-26
The adaptation process of a species to a new environment is a significant area of study in biology. As part of natural selection, adaptation is a mutation process which improves survival skills and reproductive functions of species. Here, we investigate this process by combining the idea of incompetence with evolutionary game theory. In the sense of evolution, incompetence and training can be interpreted as a special learning process. With focus on the social side of the problem, we analyze the influence of incompetence on behavior of species. We introduce an incompetence parameter into a learning function in a single-population game and analyze its effect on the outcome of the replicator dynamics. Incompetence can change the outcome of the game and its dynamics, indicating its significance within what are inherently imperfect natural systems.
Strength and tempo of directional selection in the wild
Hoekstra, H. E.; Hoekstra, J. M.; Berrigan, D.; Vignieri, S. N.; Hoang, A.; Hill, C. E.; Beerli, P.; Kingsolver, J. G.
2001-01-01
Directional selection is a major force driving adaptation and evolutionary change. However, the distribution, strength, and tempo of phenotypic selection acting on quantitative traits in natural populations remain unclear across different study systems. We reviewed the literature (1984–1997) that reported the strength of directional selection as indexed by standardized linear selection gradients (β). We asked how strong are viability and sexual selection, and whether strength of selection is ...
Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto
2016-04-01
Estimation of extreme rainfall from data constitutes one of the most important issues in statistical hydrology, as it is associated with the design of hydraulic structures and flood water management. To that extent, based on asymptotic arguments from Extreme Excess (EE) theory, several studies have focused on developing new, or improving existing methods to fit a generalized Pareto (GP) distribution model to rainfall excesses above a properly selected threshold u. The latter is generally determined using various approaches, such as non-parametric methods that are intended to locate the changing point between extreme and non-extreme regions of the data, graphical methods where one studies the dependence of GP distribution parameters (or related metrics) on the threshold level u, and Goodness of Fit (GoF) metrics that, for a certain level of significance, locate the lowest threshold u that a GP distribution model is applicable. In this work, we review representative methods for GP threshold detection, discuss fundamental differences in their theoretical bases, and apply them to 1714 daily rainfall records from the NOAA-NCDC open-access database, with more than 110 years of data. We find that non-parametric methods that are intended to locate the changing point between extreme and non-extreme regions of the data are generally not reliable, while methods that are based on asymptotic properties of the upper distribution tail lead to unrealistically high threshold and shape parameter estimates. The latter is justified by theoretical arguments, and it is especially the case in rainfall applications, where the shape parameter of the GP distribution is low; i.e. on the order of 0.1 ÷ 0.2. Better performance is demonstrated by graphical methods and GoF metrics that rely on pre-asymptotic properties of the GP distribution. For daily rainfall, we find that GP threshold estimates range between 2÷12 mm/d with a mean value of 6.5 mm/d, while the existence of quantization in the
Open Issues in Evolutionary Robotics.
Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.
Evolutionary economics and industry location
Boschma, R.A.; Frenken, K.
2003-01-01
This paper aims to provide the outlines of an evolutionary economic geography of industry location. We discuss two evolutionary explanations of industry location, that is, one that concentrates on spin-offs, and one that focuses attention on knowledge and agglomeration economies. We claim that both
Contemporary issues in evolutionary biology
Indian Academy of Sciences (India)
These discussions included, among others, the possible consequences of nonDNA-based inheritance—epigenetics and cultural evolution, niche construction, and developmental mechanisms on our understanding of the evolutionary process, speciation, complexity in biology, and constructing a formal evolutionary theory.
Contemporary issues in evolutionary biology
Indian Academy of Sciences (India)
We are delighted to bring to the readers, a set of peer-reviewed papers on evolutionary biology, published as a special issue of the Journal of Genetics. These papers emanated from ruminations upon and discussions at the Foundations of. Evolutionary Theory: the Ongoing Synthesis meeting at Coorg, India, in February ...
Fixation Time for Evolutionary Graphs
Nie, Pu-Yan; Zhang, Pei-Ai
Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.
Applications of evolutionary economic geography
Boschma, R.A.; Frenken, K.; Puranam, Krishna Kishore; Ravi Kumar Jain B., xx
2008-01-01
This paper is written as the first chapter of an edited volume on evolutionary economics and economic geography (Frenken, K., editor, Applied Evolutionary Economics and Economic Geography, Cheltenham: Edward Elgar, expected publication date February 2007). The paper reviews empirical applications of
Evolutionary Explanations of Eating Disorders
Directory of Open Access Journals (Sweden)
Igor Kardum
2008-12-01
Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.
Lechner, Wolfgang; Kragl, Gabriele; Georg, Dietmar
2013-12-01
To investigate the differences in treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts, for two treatment sites of different anatomic complexity. Pareto optimal fronts (POFs) were generated for six prostate and head-and-neck cancer patients by stepwise reduction of the constraint (during the optimization process) of the primary organ-at-risk (OAR). 9-static field IMRT and 360°-single-arc VMAT plans with flattening filter (FF) and without flattening filter (FFF) were compared. The volume receiving 5 Gy or more (V5 Gy) was used to estimate the low dose exposure. Furthermore, the number of monitor units (MUs) and measurements of the delivery time (T) were used to assess the efficiency of the treatment plans. A significant increase in MUs was found when using FFF-beams while the treatment plan quality was at least equivalent to the FF-beams. T was decreased by 18% for prostate for IMRT with FFF-beams and by 4% for head-and-neck cases, but increased by 22% and 16% for VMAT. A reduction of up to 5% of V5 Gy was found for IMRT prostate cases with FFF-beams. The evaluation of the POFs showed an at least comparable treatment plan quality of FFF-beams compared to FF-beams for both treatment sites and modalities. For smaller targets the advantageous characteristics of FFF-beams could be better exploited. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Enrique Canessa
2014-01-01
Full Text Available Se presenta un Algoritmo Genético de Pareto (AGP, que encuentra la frontera de Pareto en problemas de diseño robusto para sistemas multiobjetivo. El AGP fue diseñado para ser aplicado usando el método de Diseño de Parámetros de Taguchi, el cual es el método más frecuentemente empleado por profesionales para ejecutar diseño robusto. El AGP se probó con datos obtenidos de un sistema real con una respuesta y de un simulador de procesos multiobjetivo con muchos factores de control y ruido. En todos los casos, el AGP entregó soluciones óptimas que cumplen con los objetivos del diseño robusto. Además, la discusión de resultados muestra que tener dichas soluciones ayuda en la selección de las mejores a ser implementadas en el sistema bajo estudio, especialmente cuando el sistema tiene muchos factores de control y salidas.
Directory of Open Access Journals (Sweden)
A. P. Karpenko
2015-01-01
Full Text Available We consider the relatively new and rapidly developing class of methods to solve a problem of multi-objective optimization, based on the preliminary built finite-dimensional approximation of the set, and thereby, the Pareto front of this problem as well. The work investigates the efficiency of several modifications of the method of adaptive weighted sum (AWS. This method proposed in the paper of Ryu and Kim Van (JH. Ryu, S. Kim, H. Wan is intended to build Pareto approximation of the multi-objective optimization problem.The AWS method uses quadratic approximation of the objective functions in the current sub-domain of the search space (the area of trust based on the gradient and Hessian matrix of the objective functions. To build the (quadratic meta objective functions this work uses methods of the experimental design theory, which involves calculating the values of these functions in the grid nodes covering the area of trust (a sensing method of the search domain. There are two groups of the sensing methods under consideration: hypercube- and hyper-sphere-based methods. For each of these groups, a number of test multi-objective optimization tasks has been used to study the efficiency of the following grids: "Latin Hypercube"; grid, which is uniformly random for each measurement; grid, based on the LP sequences.
Pluijm, van der R.; Vermeltfoort, A.Th.
1992-01-01
Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial
Mukhopadhyay, Somparna; Hazra, Lakshminarayan
2015-11-01
Resolution capability of an optical imaging system can be enhanced by reducing the width of the central lobe of the point spread function. Attempts to achieve the same by pupil plane filtering give rise to a concomitant increase in sidelobe intensity. The mutual exclusivity between these two objectives may be considered as a multiobjective optimization problem that does not have a unique solution; rather, a class of trade-off solutions called Pareto optimal solutions may be generated. Pareto fronts in the synthesis of lossless phase-only pupil plane filters to achieve superresolution with prespecified lower limits for the Strehl ratio are explored by using the particle swarm optimization technique.
Importance of tie strengths in the prisoner's dilemma game on social networks
Xu, Bo; Liu, Lu; You, Weijia
2011-06-01
Though numerous researches have shown that tie strengths play a key role in the formation of collective behavior in social networks, little work has been done to explore their impact on the outcome of evolutionary games. In this Letter, we studied the effect of tie strength in the dynamics of evolutionary prisoner's dilemma games by using online social network datasets. The results show that the fraction of cooperators has a non-trivial dependence on tie strength. Weak ties, just like previous researches on epidemics and information diffusion have shown, play a key role by the maintenance of cooperators in evolutionary prisoner's dilemma games.
Aristotelous, Andreas C; Durrett, Richard
2014-05-01
Inspired by the use of hybrid cellular automata in modeling cancer, we introduce a generalization of evolutionary games in which cells produce and absorb chemicals, and the chemical concentrations dictate the death rates of cells and their fitnesses. Our long term aim is to understand how the details of the interactions in a system with n species and m chemicals translate into the qualitative behavior of the system. Here, we study two simple 2×2 games with two chemicals and revisit the two and three species versions of the one chemical colicin system studied earlier by Durrett and Levin (1997). We find that in the 2×2 examples, the behavior of our new spatial model can be predicted from that of the mean field differential equation using ideas of Durrett and Levin (1994). However, in the three species colicin model, the system with diffusion does not have the coexistence which occurs in the lattices model in which sites interact with only their nearest neighbors. Copyright © 2014 Elsevier Inc. All rights reserved.
Evolutionary and developmental modules.
Lacquaniti, Francesco; Ivanenko, Yuri P; d'Avella, Andrea; Zelik, Karl E; Zago, Myrka
2013-01-01
The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates.
Industrial Applications of Evolutionary Algorithms
Sanchez, Ernesto; Tonda, Alberto
2012-01-01
This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the
Pardo-Montero, Juan; Fenwick, John D
2010-06-01
The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape
Islamic medicine and evolutionary medicine: a comparative analysis.
Saniotis, Arthur
2012-01-01
The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings' susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration.
Cognition and Culture in Evolutionary Context.
Colmenares, Fernando; Hernández-Lloreda, María Victoria
2017-01-09
In humans and other animals, the individuals' ability to adapt efficiently and effectively to the niches they have actively contributed to construct relies heavily on an evolved psychology which has been shaped by biological, social, and cultural processes over evolutionary time. As expected, although many of the behavioral and cognitive components of this evolved psychology are widely shared across species, many others are species-unique. Although many animal species are known to acquire group-specific traditions (or cultures) via social learning, human culture is unique in terms of its contents and characteristics (observable and unobservable products, cumulative effects, norm conformity, and norm enforcement) and of its cognitive underpinnings (imitation, instructed teaching, and language). Here we provide a brief overview of some of the issues that are currently tackled in the field. We also highlight some of the strengths of a biological, comparative, non-anthropocentric and evolutionarily grounded approach to the study of culture. The main contributions of this approach to the science of culture are its emphasis (a) on the integration of information on mechanisms, function, and evolution, and on mechanistic factors located at different levels of the biological hierarchy, and (b) on the search for general principles that account for commonalities and differences between species, both in the cultural products and in the processes of innovation, dissemination, and accumulation involved that operate during developmental and evolutionary timespans.
Collective influence in evolutionary social dilemmas
Szolnoki, Attila; Perc, Matjaž
2016-03-01
When evolutionary games are contested in structured populations, the degree of each player in the network plays an important role. If they exist, hubs often determine the fate of the population in remarkable ways. Recent research based on optimal percolation in random networks has shown, however, that the degree is neither the sole nor the best predictor of influence in complex networks. Low-degree nodes may also be optimal influencers if they are hierarchically linked to hubs. Taking this into account leads to the formalism of collective influence in complex networks, which as we show here, has far-reaching implications for the favorable resolution of social dilemmas. In particular, there exists an optimal hierarchical depth for the determination of collective influence that we use to describe the potency of players for passing their strategies, which depends on the strength of the social dilemma. Interestingly, the degree, which corresponds to the baseline depth zero, is optimal only when the temptation to defect is small. Our research reveals that evolutionary success stories are related to spreading processes which are rooted in favorable hierarchical structures that extend beyond local neighborhoods.
Molluscan Evolutionary Genomics
Energy Technology Data Exchange (ETDEWEB)
Simison, W. Brian; Boore, Jeffrey L.
2005-12-01
In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.
Evolutionary disarmament in interspecific competition.
Kisdi, E; Geritz, S A
2001-12-22
Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.
Evolutionary computation for reinforcement learning
Whiteson, S.; Wiering, M.; van Otterlo, M.
2012-01-01
Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,
Evolutionary genetics: the Drosophila model
Indian Academy of Sciences (India)
Unknown
Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.
Integrating genomics into evolutionary medicine.
Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi
2014-12-01
The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolutionary robotics – A review
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
a need for a technique by which the robot is able to acquire new behaviours automatically .... Evolutionary robotics is a comparatively new field of robotics research, which seems to ..... Technical Report: PCIA-94-04, Institute of Psychology,.
Evolutionary Game Theory: A Renaissance
Directory of Open Access Journals (Sweden)
Jonathan Newton
2018-05-01
Full Text Available Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences.
Freud: the first evolutionary psychologist?
LeCroy, D
2000-04-01
An evolutionary perspective on attachment theory and psychoanalytic theory brings these two fields together in interesting ways. Application of the evolutionary principle of parent-offspring conflict to attachment theory suggests that attachment styles represent context-sensitive, evolved (adaptive) behaviors. In addition, an emphasis on offspring counter-strategies to adult reproductive strategies leads to consideration of attachment styles as overt manifestations of psychodynamic mediating processes, including the defense mechanisms of repression and reaction formation.
Stress-strength reliability for general bivariate distributions
Directory of Open Access Journals (Sweden)
Alaa H. Abdel-Hamid
2016-10-01
Full Text Available An expression for the stress-strength reliability R=P(X1
International Nuclear Information System (INIS)
Van Kesteren, Z; Janssen, T M; Damen, E; Van Vliet-Vroegindeweij, C
2012-01-01
To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V 95% was reduced by 0.02 using the thin MLC. The V 65% of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V 95% was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains to be proven
van Kesteren, Z; Janssen, T M; Damen, E; van Vliet-Vroegindeweij, C
2012-05-21
To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V(95%) was reduced by 0.02 using the thin MLC. The V(65%) of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V(95%) was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains
Kudo, Fumiya; Yoshikawa, Tomohiro; Furuhashi, Takeshi
Recentry, Multi-objective Genetic Algorithm, which is the application of Genetic Algorithm to Multi-objective Optimization Problems is focused on in the engineering design field. In this field, the analysis of design variables in the acquired Pareto solutions, which gives the designers useful knowledge in the applied problem, is important as well as the acquisition of advanced solutions. This paper proposes a new visualization method using Isomap which visualizes the geometric distances of solutions in the design variable space considering their distances in the objective space. The proposed method enables a user to analyze the design variables of the acquired solutions considering their relationship in the objective space. This paper applies the proposed method to the conceptual design optimization problem of hybrid rocket engine and studies the effectiveness of the proposed method.
Bíró, Gábor; Barnaföldi, Gergely Gábor; Biró, Tamás Sándor; Shen, Keming
2018-02-01
The latest, high-accuracy identified hadron spectra measurements in highenergy nuclear collisions led us to the investigation of the strongly interacting particles and collective effects in small systems. Since microscopical processes result in a statistical Tsallis - Pareto distribution, the fit parameters q and T are well suited for identifying system size scalings and initial conditions. Moreover, parameter values provide information on the deviation from the extensive, Boltzmann - Gibbs statistics in finite-volumes. We apply here the fit procedure developed in our earlier study for proton-proton collisions [1, 2]. The observed mass and center-of-mass energy trends in the hadron production are compared to RHIC dAu and LHC pPb data in different centrality/multiplicity classes. Here we present new results on mass hierarchy in pp and pA from light to heavy hadrons.
Nursamsiah; Nugroho Sugianto, Denny; Suprijanto, Jusup; Munasik; Yulianto, Bambang
2018-02-01
The information of extreme wave height return level was required for maritime planning and management. The recommendation methods in analyzing extreme wave were better distributed by Generalized Pareto Distribution (GPD). Seasonal variation was often considered in the extreme wave model. This research aims to identify the best model of GPD by considering a seasonal variation of the extreme wave. By using percentile 95 % as the threshold of extreme significant wave height, the seasonal GPD and non-seasonal GPD fitted. The Kolmogorov-Smirnov test was applied to identify the goodness of fit of the GPD model. The return value from seasonal and non-seasonal GPD was compared with the definition of return value as criteria. The Kolmogorov-Smirnov test result shows that GPD fits data very well both seasonal and non-seasonal model. The seasonal return value gives better information about the wave height characteristics.
Directory of Open Access Journals (Sweden)
Arnaut Dierck
2015-01-01
Full Text Available Designing textile antennas for real-life applications requires a design strategy that is able to produce antennas that are optimized over a wide bandwidth for often conflicting characteristics, such as impedance matching, axial ratio, efficiency, and gain, and, moreover, that is able to account for the variations that apply for the characteristics of the unconventional materials used in smart textile systems. In this paper, such a strategy, incorporating a multiobjective constrained Pareto optimization, is presented and applied to the design of a Galileo E6-band antenna with optimal return loss and wide-band axial ratio characteristics. Subsequently, different prototypes of the optimized antenna are fabricated and measured to validate the proposed design strategy.
Energy Technology Data Exchange (ETDEWEB)
Leimbach, Marian [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany); Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics and Statistics
2008-11-15
In this paper we present an algorithm that deals with trade interactions within a multi-region model. In contrast to traditional approaches this algorithm is able to handle spillover externalities. Technological spillovers are expected to foster the diffusion of new technologies, which helps to lower the cost of climate change mitigation. We focus on technological spillovers which are due to capital trade. The algorithm of finding a pareto-optimal solution in an intertemporal framework is embedded in a decomposed optimization process. The paper analyzes convergence and equilibrium properties of this algorithm. In the final part of the paper, we apply the algorithm to investigate possible impacts of technological spillovers. While benefits of technological spillovers are significant for the capital-importing region, benefits for the capital-exporting region depend on the type of regional disparities and the resulting specialization and terms-of-trade effects. (orig.)
Rozenberg, P
2017-06-01
Ultrasound measurement of cervical length in the general population enables the identification of women at risk for spontaneous preterm delivery. Vaginal progesterone is effective in reducing the risk of preterm delivery in this population. This screening associated with treatment by vaginal progesterone is cost-effective. Universal screening of cervical length can therefore be considered justified. Nonetheless, this screening will not appreciably reduce the preterm birth prevalence: in France or UK, where the preterm delivery rate is around 7.4%, this strategy would make it possible to reduce it only to 7.0%. This small benefit must be set against the considerable effort required in terms of screening ultrasound scans. Universal ultrasound screening of cervical length is the inverse of Pareto's principle: a small benefit against a considerable effort. © 2016 Royal College of Obstetricians and Gynaecologists.
Directory of Open Access Journals (Sweden)
Achi Rinaldi
2016-06-01
Full Text Available Extreme event such as extreme rainfall have been analyzed and most concern for the country all around the world. There are two common distribution for extreme value which are Generalized Extreme Value distribution and Generalized Pareto distribution. These two distribution have shown good performace to estimate the parameter of extreme value. This research was aim to estimate parameter of extreme value using GEV distribution and GP distribution, and also to characterized effect of extreme event such as flood. The rainfall data was taken from BMKG for 5 location in DKI Jakarta. Both of distribution shown a good perfromance. The resut showed that Tanjung Priok station has biggest location parameter for GEV and also the biggest scale parameter for GP, that mean the biggest probability to take flood effect of the extreme rainfall.
Directory of Open Access Journals (Sweden)
José Raúl Castro
2016-02-01
Full Text Available This paper presents an efficient algorithm to solve the multi-objective (MO voltage control problem in distribution networks. The proposed algorithm minimizes the following three objectives: voltage variation on pilot buses, reactive power production ratio deviation, and generator voltage deviation. This work leverages two optimization techniques: fuzzy logic to find the optimum value of the reactive power of the distributed generation (DG and Pareto optimization to find the optimal value of the pilot bus voltage so that this produces lower losses under the constraints that the voltage remains within established limits. Variable loads and DGs are taken into account in this paper. The algorithm is tested on an IEEE 13-node test feeder and the results show the effectiveness of the proposed model.
Solomon, Sorin; Levy, Moshe
2001-06-01
The LLS stock market model (see Levy Levy and Solomon Academic Press 2000 "Microscopic Simulation of Financial Markets; From Investor Behavior to Market Phenomena" for a review) is a model of heterogeneous quasi-rational investors operating in a complex environment about which they have incomplete information. We review the main features of this model and several of its extensions. We study the effects of investor heterogeneity and show that predation, competition, or symbiosis may occur between different investor populations. The dynamics of the LLS model lead to the empirically observed Pareto wealth distribution. Many properties observed in actual markets appear as natural consequences of the LLS dynamics: - truncated Levy distribution of short-term returns, - excess volatility, - a return autocorrelation "U-shape" pattern, and - a positive correlation between volume and absolute returns.
Hurford, Anthony; Harou, Julien
2014-05-01
Water related eco-system services are important to the livelihoods of the poorest sectors of society in developing countries. Degradation or loss of these services can increase the vulnerability of people decreasing their capacity to support themselves. New approaches to help guide water resources management decisions are needed which account for the non-market value of ecosystem goods and services. In case studies from Brazil and Kenya we demonstrate the capability of many objective Pareto-optimal trade-off analysis to help decision makers balance economic and non-market benefits from the management of existing multi-reservoir systems. A multi-criteria search algorithm is coupled to a water resources management simulator of each basin to generate a set of Pareto-approximate trade-offs representing the best case management decisions. In both cases, volume dependent reservoir release rules are the management decisions being optimised. In the Kenyan case we further assess the impacts of proposed irrigation investments, and how the possibility of new investments impacts the system's trade-offs. During the multi-criteria search (optimisation), performance of different sets of management decisions (policies) is assessed against case-specific objective functions representing provision of water supply and irrigation, hydropower generation and maintenance of ecosystem services. Results are visualised as trade-off surfaces to help decision makers understand the impacts of different policies on a broad range of stakeholders and to assist in decision-making. These case studies show how the approach can reveal unexpected opportunities for win-win solutions, and quantify the trade-offs between investing to increase agricultural revenue and negative impacts on protected ecosystems which support rural livelihoods.
Directory of Open Access Journals (Sweden)
Carlos Pozo
Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study
Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano
2012-01-01
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the
International Nuclear Information System (INIS)
Park, Jungsoo; Song, Soonho; Lee, Kyo Seung
2015-01-01
Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions
Directory of Open Access Journals (Sweden)
Qianwang Deng
2017-01-01
Full Text Available Flexible job-shop scheduling problem (FJSP is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II for multiobjective FJSP (MO-FJSP with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting
Sharma, Deepak; Barakat, Nada
2018-02-01
An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.
Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Directory of Open Access Journals (Sweden)
Hui Lu
2014-01-01
Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.
International Nuclear Information System (INIS)
Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim
2012-01-01
A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.
Evolutionary foundations for cancer biology.
Aktipis, C Athena; Nesse, Randolph M
2013-01-01
New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.
DEFF Research Database (Denmark)
Ledertoug, Mette Marie
In the Ph.D-project ͚Strengths-based Learning - Children͛s character strengths as a means to their learning potential͛ 750 Danish children have assessed ͚The Strength Compass͛ in order to identify their strengths and to create awareness of strengths. This was followed by a strengths......-based intervention program in order to explore the strengths. Finally different methods to apply the strength in everyday life at school were applied. The paper presentation will show the results for strengths display for children aged 6-16 in different categories: Different age groups: Are the same strengths...... present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...
Evolutionary engineering for industrial microbiology.
Vanee, Niti; Fisher, Adam B; Fong, Stephen S
2012-01-01
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
Evolutionary Aesthetics and Print Advertising
Directory of Open Access Journals (Sweden)
Kamil Luczaj
2015-06-01
Full Text Available The article analyzes the extent to which predictions based on the theory of evolutionary aesthetics are utilized by the advertising industry. The purpose of a comprehensive content analysis of print advertising is to determine whether the items indicated by evolutionists such as animals, flowers, certain types of landscapes, beautiful humans, and some colors are part of real advertising strategies. This article has shown that many evolutionary hypotheses (although not all of them are supported by empirical data. Along with these hypotheses, some inferences from Bourdieu’s cultural capital theory were tested. It turned out that advertising uses both biological schemata and cultural patterns to make an image more likable.
The evolutionary psychology of hunger.
Al-Shawaf, Laith
2016-10-01
An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diversity-Guided Evolutionary Algorithms
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær
2002-01-01
Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...
2006-05-15
of different evolutionary approaches to multiobjective optimal design are given by Van Veldhuizen ,7 Van Veldhuizen and Lamont,8 and Zitzler and Thiele...and Machine Learning, Addison-Wesley, Boston, 1989. 7. D. A. Van Veldhuizen , "Multiobjective Evolutionary Algorithms: Classifications, Analyses, and...New Innovations," Ph.D. Dissertation, Air Force Institute of Technology, 1999. 39 8. D. A. Van Veldhuizen and G. B. Lamont, "Multiobjective
Evolutionary Psychology and Intelligence Research
Kanazawa, Satoshi
2010-01-01
This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative…
Darwinian foundations for evolutionary economics
Stoelhorst, J.W.
2008-01-01
This paper engages with the methodological debate on the contribution of Darwinism to Veblen's (1898) evolutionary research program for economics. I argue that ontological continuity, generalized Darwinism, and multi-level selection are necessary building blocks for an explanatory framework that can
Ernst Mayr and Evolutionary Biology
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology. Renee M Borges. General Article Volume 10 Issue 7 July 2005 pp 21-33. Fulltext. Click here to view fulltext PDF. Permanent link:
Evolutionary Biology Research in India
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...
Realism, Relativism, and Evolutionary Psychology
Derksen, M.
Against recent attempts to forge a reconciliation between constructionism and realism, I contend that, in psychology at least, stirring up conflict is a more fruitful strategy. To illustrate this thesis, I confront a school of psychology with strong realist leanings, evolutionary psychology, with
Ancient Biomolecules and Evolutionary Inference
DEFF Research Database (Denmark)
Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando
2018-01-01
Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleo...
Genetical Genomics for Evolutionary Studies
Prins, J.C.P.; Smant, G.; Jansen, R.C.
2012-01-01
Genetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome
Evolutionary trends in directional hearing
DEFF Research Database (Denmark)
Carr, Catherine E; Christensen-Dalsgaard, Jakob
2016-01-01
Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds...
Evolutionary dynamics of mammalian karyotypes
Directory of Open Access Journals (Sweden)
Carlo Alberto Redi
2012-12-01
Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....
Haldane and modern evolutionary genetics
Indian Academy of Sciences (India)
Brian Charlesworth
2017-11-24
Nov 24, 2017 ... q(t) of an allele at a locus among the gametes produced at time t, to its .... the importance of disease as an evolutionary factor, which is now a ..... VII. Selection intensity as a function of mortality rate. Proc. Camb. Philos. Soc.
DEFF Research Database (Denmark)
Ledertoug, Mette Marie
of agreement/disagreement. Also the child/teacher is asked whether the actual strength is important and if he or she has the possibilities to apply the strength in the school. In a PhDproject ‘Strengths-based Learning - Children’s Character Strengths as Means to their Learning Potential’ 750 Danish children......Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... Psychological Publishing Company. ‘The Strength Compass’ is a computer/Ipad based qualitative tool to identify the strengths of a child by a self-survey or a teacher’s survey. It is designed as a visual analogue scale with a statement of the strength in which the child/teacher may declare the degree...
Wang, Yibing; Breedveld, Sebastiaan; Heijmen, Ben; Petit, Steven F
2016-06-07
IMRT planning with commercial Treatment Planning Systems (TPSs) is a trial-and-error process. Consequently, the quality of treatment plans may not be consistent among patients, planners and institutions. Recently, different plan quality assurance (QA) models have been proposed, that could flag and guide improvement of suboptimal treatment plans. However, the performance of these models was validated using plans that were created using the conventional trail-and-error treatment planning process. Consequently, it is challenging to assess and compare quantitatively the accuracy of different treatment planning QA models. Therefore, we created a golden standard dataset of consistently planned Pareto-optimal IMRT plans for 115 prostate patients. Next, the dataset was used to assess the performance of a treatment planning QA model that uses the overlap volume histogram (OVH). 115 prostate IMRT plans were fully automatically planned using our in-house developed TPS Erasmus-iCycle. An existing OVH model was trained on the plans of 58 of the patients. Next it was applied to predict DVHs of the rectum, bladder and anus of the remaining 57 patients. The predictions were compared with the achieved values of the golden standard plans for the rectum D mean, V 65, and V 75, and D mean of the anus and the bladder. For the rectum, the prediction errors (predicted-achieved) were only -0.2 ± 0.9 Gy (mean ± 1 SD) for D mean,-1.0 ± 1.6% for V 65, and -0.4 ± 1.1% for V 75. For D mean of the anus and the bladder, the prediction error was 0.1 ± 1.6 Gy and 4.8 ± 4.1 Gy, respectively. Increasing the training cohort to 114 patients only led to minor improvements. A dataset of consistently planned Pareto-optimal prostate IMRT plans was generated. This dataset can be used to train new, and validate and compare existing treatment planning QA models, and has been made publicly available. The OVH model was highly accurate
Towards a mechanistic foundation of evolutionary theory.
Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt
2017-02-15
Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.
Applied evolutionary economics and economic geography
Frenken, K.
2007-01-01
Applied Evolutionary Economics and Economic Geography" aims to further advance empirical methodologies in evolutionary economics, with a special emphasis on geography and firm location. It does so by bringing together a select group of leading scholars including economists, geographers and
Evolutionary biology of bacterial and fungal pathogens
National Research Council Canada - National Science Library
Baquero, F
2008-01-01
... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...
Ayadi, Omar; Felfel, Houssem; Masmoudi, Faouzi
2017-07-01
The current manufacturing environment has changed from traditional single-plant to multi-site supply chain where multiple plants are serving customer demands. In this article, a tactical multi-objective, multi-period, multi-product, multi-site supply-chain planning problem is proposed. A corresponding optimization model aiming to simultaneously minimize the total cost, maximize product quality and maximize the customer satisfaction demand level is developed. The proposed solution approach yields to a front of Pareto-optimal solutions that represents the trade-offs among the different objectives. Subsequently, the analytic hierarchy process method is applied to select the best Pareto-optimal solution according to the preferences of the decision maker. The robustness of the solutions and the proposed approach are discussed based on a sensitivity analysis and an application to a real case from the textile and apparel industry.
Setiawan, R.
2018-05-01
In this paper, Economic Order Quantity (EOQ) of the vendor-buyer supply-chain model under a probabilistic condition with imperfect quality items has been analysed. The analysis is delivered using two concepts in game theory approach, which is Stackelberg equilibrium and Pareto Optimal, under non-cooperative and cooperative games, respectively. Another result is getting acomparison of theoptimal result between integrated scheme and game theory approach based on analytical and numerical result using appropriate simulation data.
The citation field of evolutionary economics
Dolfsma, Wilfred; Leydesdorff, Loet
2010-01-01
Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal
Essays on nonlinear evolutionary game dynamics
Ochea, M.I.
2010-01-01
Evolutionary game theory has been viewed as an evolutionary repair of rational actor game theory in the hope that a population of boundedly rational players may attain convergence to classic rational solutions, such as the Nash Equilibrium, via some learning or evolutionary process. In this thesis
Soriano-Hernández, P.; del Castillo-Mussot, M.; Campirán-Chávez, I.; Montemayor-Aldrete, J. A.
2017-04-01
Forbes Magazine published its list of leading or strongest publicly-traded two thousand companies in the world (G-2000) based on four independent metrics: sales or revenues, profits, assets and market value. Every one of these wealth metrics yields particular information on the corporate size or wealth size of each firm. The G-2000 cumulative probability wealth distribution per employee (per capita) for all four metrics exhibits a two-class structure: quasi-exponential in the lower part, and a Pareto power-law in the higher part. These two-class structure per capita distributions are qualitatively similar to income and wealth distributions in many countries of the world, but the fraction of firms per employee within the high-class Pareto is about 49% in sales per employee, and 33% after averaging on the four metrics, whereas in countries the fraction of rich agents in the Pareto zone is less than 10%. The quasi-exponential zone can be adjusted by Gamma or Log-normal distributions. On the other hand, Forbes classifies the G-2000 firms in 82 different industries or economic activities. Within each industry, the wealth distribution per employee also follows a two-class structure, but when the aggregate wealth of firms in each industry for the four metrics is divided by the total number of employees in that industry, then the 82 points of the aggregate wealth distribution by industry per employee can be well adjusted by quasi-exponential curves for the four metrics.
International Nuclear Information System (INIS)
Zio, E.; Bazzo, R.
2010-01-01
In this paper, a framework is developed for identifying a limited number of representative solutions of a multiobjective optimization problem concerning the inspection intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are first clustered into 'families', which are then synthetically represented by a 'head of the family' solution. Three clustering methods are analyzed. Level Diagrams are then used to represent, analyse and interpret the Pareto Fronts reduced to their head-of-the-family solutions. Two decision situations are considered: without or with decision maker preferences, the latter implying the introduction of a scoring system to rank the solutions with respect to the different objectives: a fuzzy preference assignment is then employed to this purpose. The results of the application of the framework of analysis to the problem of optimizing the inspection intervals of a nuclear power plant safety system show that the clustering-based reduction maintains the Pareto Front shape and relevant characteristics, while making it easier for the decision maker to select the final solution.
Sun, Kaibiao; Kasperski, Andrzej; Tian, Yuan
2014-10-01
The aim of this study is the optimization of a product-driven self-cycling bioprocess and presentation of a way to determine the best possible decision variables out of a set of alternatives based on the designed model. Initially, a product-driven generalized kinetic model, which allows a flexible choice of the most appropriate kinetics is designed and analysed. The optimization problem is given as the bi-objective one, where maximization of biomass productivity and minimization of unproductive loss of substrate are the objective functions. Then, the Pareto fronts are calculated for exemplary kinetics. It is found that in the designed bioprocess, a decrease of emptying/refilling fraction and an increase of substrate feeding concentration cause an increase of the biomass productivity. An increase of emptying/refilling fraction and a decrease of substrate feeding concentration cause a decrease of unproductive loss of substrate. The preferred solutions are calculated using the minimum distance from an ideal solution method, while giving proposals of their modifications derived from a decision maker's reactions to the generated solutions.
International Nuclear Information System (INIS)
Atashkari, K.; Nariman-Zadeh, N.; Goelcue, M.; Khalkhali, A.; Jamali, A.
2007-01-01
The main reason for the efficiency decrease at part load conditions for four-stroke spark-ignition (SI) engines is the flow restriction at the cross-sectional area of the intake system. Traditionally, valve-timing has been designed to optimize operation at high engine-speed and wide open throttle conditions. Several investigations have demonstrated that improvements at part load conditions in engine performance can be accomplished if the valve-timing is variable. Controlling valve-timing can be used to improve the torque and power curve as well as to reduce fuel consumption and emissions. In this paper, a group method of data handling (GMDH) type neural network and evolutionary algorithms (EAs) are firstly used for modelling the effects of intake valve-timing (V t ) and engine speed (N) of a spark-ignition engine on both developed engine torque (T) and fuel consumption (Fc) using some experimentally obtained training and test data. Using such obtained polynomial neural network models, a multi-objective EA (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism are secondly used for Pareto based optimization of the variable valve-timing engine considering two conflicting objectives such as torque (T) and fuel consumption (Fc). The comparison results demonstrate the superiority of the GMDH type models over feedforward neural network models in terms of the statistical measures in the training data, testing data and the number of hidden neurons. Further, it is shown that some interesting and important relationships, as useful optimal design principles, involved in the performance of the variable valve-timing four-stroke spark-ignition engine can be discovered by the Pareto based multi-objective optimization of the polynomial models. Such important optimal principles would not have been obtained without the use of both the GMDH type neural network modelling and the multi-objective Pareto optimization approach
Schroedinger operators and evolutionary strategies
International Nuclear Information System (INIS)
Asselmeyer, T.
1997-01-01
First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution
Exponential Expansion in Evolutionary Economics
DEFF Research Database (Denmark)
Frederiksen, Peter; Jagtfelt, Tue
2013-01-01
This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...
Preventive evolutionary medicine of cancers.
Hochberg, Michael E; Thomas, Frédéric; Assenat, Eric; Hibner, Urszula
2013-01-01
Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high-risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.
Passivity and Evolutionary Game Dynamics
Park, Shinkyu; Shamma, Jeff S.; Martins, Nuno C.
2018-01-01
This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.
Passivity and Evolutionary Game Dynamics
Park, Shinkyu
2018-03-21
This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.
[Evolutionary perspective in precocious puberty].
Hochberg, Ze'ev
2014-10-01
Pubertal development is subject to substantial heritability, but much variation remains to be explained, including fast changes over the last 150 years, that cannot be explained by changes of gene frequency in the population. This article discusses the influence of environmental factors to adjust maturational tempo in the service of fitness goals. Utilizing evolutionary development thinking (evo-devo), the author examines adolescence as an evolutionary life-history stage in its developmental context. The transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, social needs of adolescence and maturation toward youth and adulthood. Using Belsky's evolutionary theory of socialization, I show that familial psychosocial environment during the infancy-childhood and childhood-juvenility transitions foster a fast life-history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. The implications of the evo-devo framework for theory building, illuminates new directions in the understanding of precocious puberty other than a diagnosis of a disease.
Incorporating Development Into Evolutionary Psychology
Directory of Open Access Journals (Sweden)
David F. Bjorklund
2016-09-01
Full Text Available Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants’ and children’s behavior/cognition/brains. The concept of evolved probabilistic cognitive mechanisms is introduced, defined as information processing mechanisms evolved to solve recurrent problems faced by ancestral populations that are expressed in a probabilistic fashion in each individual in a generation and are based on the continuous and bidirectional interaction over time at all levels of organization, from the genetic through the cultural. Early perceptual/cognitive biases result in behavior that, when occurring in a species-typical environment, produce continuous adaptive changes in behavior (and cognition, yielding adaptive outcomes. Examples from social learning and tool use are provided, illustrating the development of adaptations via evolved probabilistic cognitive mechanisms. The integration of developmental concepts into mainstream evolutionary psychology (and evolutionary concepts into mainstream developmental psychology will provide a clearer picture of what it means to be human.
Testing evolutionary convergence on Europa
Energy Technology Data Exchange (ETDEWEB)
Chela-Flores, Julian [Instituto de Estudios Avanzados, Caracas (Venezuela); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2002-11-01
A major objective in solar system exploration is the insertion of appropriate biology-oriented experiments in future missions. We discuss various reasons for suggesting that this type of research be considered a high priority for feasibility studies and, subsequently, for technological development of appropriate melters and submersibles. Based on numerous examples, we argue in favour of the assumption that Darwin's theory is valid for the evolution of life anywhere in the universe. We have suggested how to obtain preliminary insights into the question of the distribution of life in the universe. Universal evolution of intelligent behaviour is at the end of an evolutionary pathway, in which evolution of ion channels in the membrane of microorganisms occurs in its early stages. Further, we have argued that a preliminary test of this conjecture is feasible with experiments on the Europan surface or ocean, involving evolutionary biosignatures (ion channels). This aspect of the exploration for life in the solar system should be viewed as a complement to the astronomical approach for the search of evidence of the later stages of the evolutionary pathways towards intelligent behaviour. (author)
Evolutionary ecology of virus emergence.
Dennehy, John J
2017-02-01
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.
Detecting evolutionary forces in language change.
Newberry, Mitchell G; Ahern, Christopher A; Clark, Robin; Plotkin, Joshua B
2017-11-09
Both language and genes evolve by transmission over generations with opportunity for differential replication of forms. The understanding that gene frequencies change at random by genetic drift, even in the absence of natural selection, was a seminal advance in evolutionary biology. Stochastic drift must also occur in language as a result of randomness in how linguistic forms are copied between speakers. Here we quantify the strength of selection relative to stochastic drift in language evolution. We use time series derived from large corpora of annotated texts dating from the 12th to 21st centuries to analyse three well-known grammatical changes in English: the regularization of past-tense verbs, the introduction of the periphrastic 'do', and variation in verbal negation. We reject stochastic drift in favour of selection in some cases but not in others. In particular, we infer selection towards the irregular forms of some past-tense verbs, which is likely driven by changing frequencies of rhyming patterns over time. We show that stochastic drift is stronger for rare words, which may explain why rare forms are more prone to replacement than common ones. This work provides a method for testing selective theories of language change against a null model and reveals an underappreciated role for stochasticity in language evolution.
Geometry, packing, and evolutionary paths to increased multicellular size
Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.
2018-05-01
The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.
DEFF Research Database (Denmark)
Ledertoug, Mette Marie
-being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...
Importance of tie strengths in the prisoner's dilemma game on social networks
International Nuclear Information System (INIS)
Xu, Bo; Liu, Lu; You, Weijia
2011-01-01
Though numerous researches have shown that tie strengths play a key role in the formation of collective behavior in social networks, little work has been done to explore their impact on the outcome of evolutionary games. In this Letter, we studied the effect of tie strength in the dynamics of evolutionary prisoner's dilemma games by using online social network datasets. The results show that the fraction of cooperators has a non-trivial dependence on tie strength. Weak ties, just like previous researches on epidemics and information diffusion have shown, play a key role by the maintenance of cooperators in evolutionary prisoner's dilemma games. -- Highlights: → Tie strength is used to measure heterogeneous influences of different pairs of nodes. → Weak ties play a role in maintaining cooperation in prisoner's dilemma games. → Micro-dynamics of nodes are illustrated to explain the conclusion.
Importance of tie strengths in the prisoner's dilemma game on social networks
Energy Technology Data Exchange (ETDEWEB)
Xu, Bo, E-mail: xubosuper@163.com [Department of Information Systems, School of Economics and Management, Beihang University (China); Liu, Lu; You, Weijia [Department of Information Systems, School of Economics and Management, Beihang University (China)
2011-06-13
Though numerous researches have shown that tie strengths play a key role in the formation of collective behavior in social networks, little work has been done to explore their impact on the outcome of evolutionary games. In this Letter, we studied the effect of tie strength in the dynamics of evolutionary prisoner's dilemma games by using online social network datasets. The results show that the fraction of cooperators has a non-trivial dependence on tie strength. Weak ties, just like previous researches on epidemics and information diffusion have shown, play a key role by the maintenance of cooperators in evolutionary prisoner's dilemma games. -- Highlights: → Tie strength is used to measure heterogeneous influences of different pairs of nodes. → Weak ties play a role in maintaining cooperation in prisoner's dilemma games. → Micro-dynamics of nodes are illustrated to explain the conclusion.
Annotation of selection strengths in viral genomes
DEFF Research Database (Denmark)
McCauley, Stephen; de Groot, Saskia; Mailund, Thomas
2007-01-01
Motivation: Viral genomes tend to code in overlapping reading frames to maximize information content. This may result in atypical codon bias and particular evolutionary constraints. Due to the fast mutation rate of viruses, there is additional strong evidence for varying selection between intra......- and intergenomic regions. The presence of multiple coding regions complicates the concept of Ka/Ks ratio, and thus begs for an alternative approach when investigating selection strengths. Building on the paper by McCauley & Hein (2006), we develop a method for annotating a viral genome coding in overlapping...... may thus achieve an annotation both of coding regions as well as selection strengths, allowing us to investigate different selection patterns and hypotheses. Results: We illustrate our method by applying it to a multiple alignment of four HIV2 sequences, as well as four Hepatitis B sequences. We...
Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.
Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D
2017-10-01
Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.
Top predators induce the evolutionary diversification of intermediate predator species.
Zu, Jian; Yuan, Bo; Du, Jianqiang
2015-12-21
We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Introduced species as evolutionary traps
Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.
2005-01-01
Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.
Multidimensional extended spatial evolutionary games.
Krześlak, Michał; Świerniak, Andrzej
2016-02-01
The goal of this paper is to study the classical hawk-dove model using mixed spatial evolutionary games (MSEG). In these games, played on a lattice, an additional spatial layer is introduced for dependence on more complex parameters and simulation of changes in the environment. Furthermore, diverse polymorphic equilibrium points dependent on cell reproduction, model parameters, and their simulation are discussed. Our analysis demonstrates the sensitivity properties of MSEGs and possibilities for further development. We discuss applications of MSEGs, particularly algorithms for modelling cell interactions during the development of tumours. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feminist Encounters with Evolutionary Psychology
O'Neill, Rachel
2016-01-01
This Section of Australian Feminist Studies is the product of an event that took place at King’s College London in January 2015, hosted as part of the UK-based ‘Critical Sexology’ seminar series. Participants at this event – feminist scholars working across the fields of lin- guistics, cultural studies, sociology, and psychology – were invited to reflect on their encounters with evolutionary psychology (EP). As the event organiser, I was interested to prompt a discussion about how EP shapes t...
Improving processes through evolutionary optimization.
Clancy, Thomas R
2011-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies on complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 18th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, I discuss methods to optimize complex healthcare processes through learning, adaptation, and evolutionary planning.
Historical change and evolutionary theory.
Masters, Roger D
2007-09-01
Despite advances in fields like genetics, evolutionary psychology, and human behavior and evolution--which generally focus on individual or small group behavior from a biological perspective--evolutionary biology has made little impact on studies of political change and social history. Theories of natural selection often seem inapplicable to human history because our social behavior is embedded in language (which makes possible the concepts of time and social identity on which what we call "history" depends). Peter Corning's Holistic Darwinism reconceptualizes evolutionary biology, making it possible to go beyond the barriers separating the social and natural sciences. Corning focuses on two primary processes: "synergy" (complex multivariate interactions at multiple levels between a species and its environment) and "cybernetics" (the information systems permitting communication between individuals and groups over time). Combining this frame of reference with inclusive fitness theory, it is possible to answer the most important (and puzzling) question in human history: How did a species that lived for millennia in hunter-gatherer bands form centralized states governing large populations of non-kin (including multi-ethnic empires as well as modern nation-states)? The fragility and contemporary ethnic violence in Kenya and the Congo should suffice as evidence that these issues need to be taken seriously. To explain the rise and fall of states as well as changes in human laws and customs--the core of historical research--it is essential to show how the provision of collective goods can overcome the challenge of self-interest and free-riding in some instances, yet fail to do so in others. To this end, it is now possible to consider how a state providing public goods can--under circumstances that often include effective leadership--contribute to enhanced inclusive fitness of virtually all its members. Because social behavior needs to adapt to ecology, but ecological
Institute of Scientific and Technical Information of China (English)
维拉
1996-01-01
Mort had an absolutely terrible day at the office.Everythingthat could go wrong did go wrong.As he walked home he could beheard muttering strange words to himself:“Oh,give me strength,give me strength.”Mort isn’t asking for the kind of strength thatbuilds strong muscles:he’s asking for the courage or ability to
Directory of Open Access Journals (Sweden)
Rajesh Kumar
2016-06-01
Full Text Available Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is selected using Fuzzy, TOPSIS, LINMAP and Shannon’s entropy decision making methods. Triple objective evolutionary approach applied to the proposed model gives power output, thermal efficiency, ecological function as (53.89 kW, 0.1611, −142 kW which are 29.78%, 25.86% and 21.13% lower in comparison with reversible system. Furthermore, the present study reflects the effect of various heat capacitance rates and component efficiencies on triple objectives in graphical custom. Finally, with the aim of error investigation, average and maximum errors of obtained results are computed.
Energy Technology Data Exchange (ETDEWEB)
Daneshmand, Morteza [University of Tartu, Tartu (Estonia); Saadatzi, Mohammad Hossein [Colorado School of Mines, Golden (United States); Kaloorazi, Mohammad Hadi [École de Technologie Supérieur, Montréal (Canada); Masouleh, Mehdi Tale [University of Tehran, Tehran (Iran, Islamic Republic of); Anbarjafari, Gholamreza [Hasan Kalyoncu University, Gaziantep (Turkmenistan)
2016-03-15
This study aims to provide an optimal design for a Spherical parallel manipulator (SPM), namely, the Agile Eye. This aim is approached by investigating kinetostatic performance and workspace and searching for the most promising design. Previously recommended designs are examined to determine whether they provide acceptable kinetostatic performance and workspace. Optimal designs are provided according to different kinetostatic performance indices, especially kinematic sensitivity. The optimization process is launched based on the concept of the genetic algorithm. A single-objective process is implemented in accordance with the guidelines of an evolutionary algorithm called differential evolution. A multi-objective procedure is then provided following the reasoning of the nondominated sorting genetic algorithm-II. This process results in several sets of Pareto points for reconciliation between kinetostatic performance indices and workspace. The concept of numerous kinetostatic performance indices and the results of optimization algorithms are elaborated. The conclusions provide hints on the provided set of designs and their credibility to provide a well-conditioned workspace and acceptable kinetostatic performance for the SPM under study, which can be well extended to other types of SPMs.
Directory of Open Access Journals (Sweden)
Hanning Chen
2014-01-01
Full Text Available The development of radio frequency identification (RFID technology generates the most challenging RFID network planning (RNP problem, which needs to be solved in order to operate the large-scale RFID network in an optimal fashion. RNP involves many objectives and constraints and has been proven to be a NP-hard multi-objective problem. The application of evolutionary algorithm (EA and swarm intelligence (SI for solving multiobjective RNP (MORNP has gained significant attention in the literature, but these algorithms always transform multiple objectives into a single objective by weighted coefficient approach. In this paper, we use multiobjective EA and SI algorithms to find all the Pareto optimal solutions and to achieve the optimal planning solutions by simultaneously optimizing four conflicting objectives in MORNP, instead of transforming multiobjective functions into a single objective function. The experiment presents an exhaustive comparison of three successful multiobjective EA and SI, namely, the recently developed multiobjective artificial bee colony algorithm (MOABC, the nondominated sorting genetic algorithm II (NSGA-II, and the multiobjective particle swarm optimization (MOPSO, on MORNP instances of different nature, namely, the two-objective and three-objective MORNP. Simulation results show that MOABC proves to be more superior for planning RFID networks than NSGA-II and MOPSO in terms of optimization accuracy and computation robustness.
Directory of Open Access Journals (Sweden)
Jie Zhang
2013-01-01
Full Text Available In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.
Zhang, Jie; Wang, Yuping; Feng, Junhong
2013-01-01
In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.
Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm
International Nuclear Information System (INIS)
Sayyaadi, Hoseyn; Amlashi, Emad Hadaddi; Amidpour, Majid
2009-01-01
Thermodynamic and thermoeconomic optimization of a vertical ground source heat pump system has been studied. A model based on the energy and exergy analysis is presented here. An economic model of the system is developed according to the Total Revenue Requirement (TRR) method. The objective functions based on the thermodynamic and thermoeconomic analysis are developed. The proposed vertical ground source heat pump system including eight decision variables is considered for optimization. An artificial intelligence technique known as evolutionary algorithm (EA) has been utilized as an optimization method. This approach has been applied to minimize either the total levelized cost of the system product or the exergy destruction of the system. Three levels of optimization including thermodynamic single objective, thermoeconomic single objective and multi-objective optimizations are performed. In Multi-objective optimization, both thermodynamic and thermoeconomic objectives are considered, simultaneously. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from available optimal points on Pareto frontier is presented. The results obtained using the various optimization approaches are compared and discussed. Further, the sensitivity of optimized systems to the interest rate, to the annual number of operating hours and to the electricity cost are studied in detail.
Conceptual Barriers to Progress Within Evolutionary Biology.
Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy
2009-08-01
In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.
Evolutionary epistemology a multiparadigm program
Pinxten, Rik
1987-01-01
This volume has its already distant origin in an international conference on Evolutionary Epistemology the editors organized at the University of Ghent in November 1984. This conference aimed to follow up the endeavor started at the ERISS (Epistemologically Relevant Internalist Sociology of Science) conference organized by Don Campbell and Alex Rosen berg at Cazenovia Lake, New York, in June 1981, whilst in jecting the gist of certain current continental intellectual developments into a debate whose focus, we thought, was in danger of being narrowed too much, considering the still underdeveloped state of affairs in the field. Broadly speaking, evolutionary epistemology today con sists of two interrelated, yet qualitatively distinct inves tigative efforts. Both are drawing on Darwinian concepts, which may explain why many people have failed to discriminate them. One is the study of the evolution of the cognitive apparatus of living organisms, which is first and foremost the province of biologists and...
Evolutionary potential games on lattices
International Nuclear Information System (INIS)
Szabó, György; Borsos, István
2016-01-01
Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.
Evolutionary potential games on lattices
Energy Technology Data Exchange (ETDEWEB)
Szabó, György, E-mail: szabo@mfa.kfki.hu; Borsos, István, E-mail: borsos@mfa.kfki.hu
2016-04-05
Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.
The Evolutionary Puzzle of Suicide
Directory of Open Access Journals (Sweden)
Henri-Jean Aubin
2013-12-01
Full Text Available Mechanisms of self-destruction are difficult to reconcile with evolution’s first rule of thumb: survive and reproduce. However, evolutionary success ultimately depends on inclusive fitness. The altruistic suicide hypothesis posits that the presence of low reproductive potential and burdensomeness toward kin can increase the inclusive fitness payoff of self-removal. The bargaining hypothesis assumes that suicide attempts could function as an honest signal of need. The payoff may be positive if the suicidal person has a low reproductive potential. The parasite manipulation hypothesis is founded on the rodent—Toxoplasma gondii host-parasite model, in which the parasite induces a “suicidal” feline attraction that allows the parasite to complete its life cycle. Interestingly, latent infection by T. gondii has been shown to cause behavioral alterations in humans, including increased suicide attempts. Finally, we discuss how suicide risk factors can be understood as nonadaptive byproducts of evolved mechanisms that malfunction. Although most of the mechanisms proposed in this article are largely speculative, the hypotheses that we raise accept self-destructive behavior within the framework of evolutionary theory.
Evolutionary potential games on lattices
Szabó, György; Borsos, István
2016-04-01
Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the "equilibrium state" by adding non-potential components representing games of cyclic dominance.
Ancient Biomolecules and Evolutionary Inference.
Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando; Welker, Frido; Pedersen, Mikkel Winther; Allentoft, Morten E; de Barros Damgaard, Peter; Gutenbrunner, Petra; Dunne, Julie; Hammann, Simon; Roffet-Salque, Mélanie; Ilardo, Melissa; Moreno-Mayar, J Víctor; Wang, Yucheng; Sikora, Martin; Vinner, Lasse; Cox, Jürgen; Evershed, Richard P; Willerslev, Eske
2018-04-25
Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Evolutionary Models for Simple Biosystems
Bagnoli, Franco
The concept of evolutionary development of structures constituted a real revolution in biology: it was possible to understand how the very complex structures of life can arise in an out-of-equilibrium system. The investigation of such systems has shown that indeed, systems under a flux of energy or matter can self-organize into complex patterns, think for instance to Rayleigh-Bernard convection, Liesegang rings, patterns formed by granular systems under shear. Following this line, one could characterize life as a state of matter, characterized by the slow, continuous process that we call evolution. In this paper we try to identify the organizational level of life, that spans several orders of magnitude from the elementary constituents to whole ecosystems. Although similar structures can be found in other contexts like ideas (memes) in neural systems and self-replicating elements (computer viruses, worms, etc.) in computer systems, we shall concentrate on biological evolutionary structure, and try to put into evidence the role and the emergence of network structure in such systems.
Regional systems of innovation: an evolutionary perspective
P Cooke; M G Uranga; G Etxebarria
1998-01-01
The authors develop the concept of regional systems of innovation and relate it to preexisting research on national systems of innovation. They argue that work conducted in the 'new regional science' field is complementary to systems of innovation approaches. They seek to link new regional work to evolutionary economics, and argue for the development of evolutionary regional science. Common elements of interest to evolutionary innovation research and new regional science are important in unde...
Evolutionary Acquisition and Spiral Development Tutorial
National Research Council Canada - National Science Library
Hantos, P
2005-01-01
.... NSS Acquisition Policy 03-01 provided some space-oriented customization and, similarly to the original DOD directives, also positioned Evolutionary Acquisition and Spiral Development as preferred...
Energy Technology Data Exchange (ETDEWEB)
Kirlik, G; Zhang, H [University of Maryland School of Medicine, Baltimore, MD (United States)
2015-06-15
Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates well-dispersed representation of the Pareto front for radiation treatment planning. Methods: Different algorithms have been proposed and implemented in commercial planning software to generate MCO plans for external-beam radiation therapy. These algorithms consider convex optimization problems. We propose a grid-based algorithm to generate well-dispersed treatment plans over Pareto front. Our method is able to handle nonconvexity in the problem to deal with dose-volume objectives/constraints, biological objectives, such as equivalent uniform dose (EUD), tumor control probability (TCP), normal tissue complication probability (NTCP), etc. In addition, our algorithm is able to provide single MCO plan when clinicians are targeting narrow bounds of objectives for patients. In this situation, usually none of the generated plans were within the bounds and a solution is difficult to identify via manual navigation. We use the subproblem formulation utilized in the grid-based algorithm to obtain a plan within the specified bounds. The subproblem aims to generate a solution that maps into the rectangle defined by the bounds. If such a solution does not exist, it generates the solution closest to the rectangle. We tested our method with 10 locally advanced head and neck cancer cases. Results: 8 objectives were used including 3 different objectives for primary target volume, high-risk and low-risk target volumes, and 5 objectives for each of the organs-at-risk (OARs) (two parotids, spinal cord, brain stem and oral cavity). Given tight bounds, uniform dose was achieved for all targets while as much as 26% improvement was achieved in OAR sparing comparing to clinical plans without MCO and previously proposed MCO method. Conclusion: Our method is able to obtain well-dispersed treatment plans to attain better approximation for convex and nonconvex Pareto fronts. Single treatment plan can