无
2001-01-01
Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elasticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.
Akaninyene Afangide Umoh
2012-12-01
Full Text Available The study examined the effect of periwinkle shell ash as supplementary cementitious material on the compressive strength and static modulus of elasticity of concrete with a view to comparing it’s established relation with an existing model. The shells were calcined at a temperature of 800oC. Specimens were prepared from a mix of designed strength 25N/mm2. The replacement of cement with periwinkle shell ash (PSA was at five levels of 0, 10, 20, 30 and 40% by volume. A total of 90 cubical and cylindrical specimens each were cast and tested at 7, 14, 28, 90, 120 and 180 days. The results revealed that the PSA met the minimum chemical and physical requirements for class C Pozzolans. The compressive strength of the PSA blended cement concrete increased with increase in curing age up to 180 days but decreased as the PSA content increased. The design strength was attained with 10%PSA content at the standard age of 28 days. The static modulus of elasticity of PSA blended cement concrete was observed to increase with increased in curing age and decreases with PSA content. In all the curing ages 0%PSA content recorded higher value than the blended cement concrete. The statistical analysis indicated that the percentage PSA replacement and the curing age have significant effect on the properties of the concrete at 95% confidence level. The relation between compressive strength and static modulus of elasticity fitted into existing model for normal-weight concrete.
Videla, C.
2002-03-01
Full Text Available The study of Structural Lightweight Concrete (SLC, which is a material generally composed of cement, water and lightweight aggregate, has been mainly focused on developing particular cases. Then, the main objective of this research was to generalise the knowledge of this type of material. Particularly, the effect of replacing conventional coarse aggregate by lightweight aggregate on mechanical properties of concrete was studied. SLC may be conceived as a two -phase material. The first phase, composed of cement, water and siliceous natural sand, is called the "resistant phase", and contributes to the structural strength. The second phase is the lightweight phase, comprised of coarse lightweight aggregate, and it is meant to decrease the concrete density. In this way it would be possible to describe the mechanical behaviour of concrete, based on lightweight aggregate and the cement mortar parameters. The obtained results allow for the proposition of relationships between mechanical properties of SLC (such as compressive strength and modulus of elasticity and the constituent materials properties and amount. At the same time, an easily measured index representing the structural capability of lightweight aggregate is also proposed, this index allows to estimate the potential mechanical properties of concrete which could be obtained by using a particular aggregate.
El estudio del Hormigón Ligero Estructural (HLE, material compuesto generalmente por cemento, agua y árido ligero, ha estado enfocado principalmente al desarrollo de casos particulares. Por lo anterior, el objetivo principal de esta investigación fue generalizar el conocimiento sobre este material. En particular, la meta de este trabajo fue estudiar el efecto que tiene el reemplazo de árido convencional por un árido ligero, en las propiedades mecánicas del hormigón. El modelo aplicado conceptualiza al HLE como un material de dos fases, una denominada "soportante", constituida
Ahmadian Khoshemehr Leila
2009-09-01
Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.
Guo, Shun; Meng, Qingkun; Zhao, Xinqing; Wei, Qiuming; Xu, Huibin
2015-10-01
Titanium and its alloys have become the most attractive implant materials due to their high corrosion resistance, excellent biocompatibility and relatively low elastic modulus. However, the current Ti materials used for implant applications exhibit much higher Young’s modulus (50 ~ 120 GPa) than human bone (~30 GPa). This large mismatch in the elastic modulus between implant and human bone can lead to so-called “stress shielding effect” and eventual implant failure. Therefore, the development of β-type Ti alloys with modulus comparable to that of human bone has become an ever more pressing subject in the area of advanced biomedical materials. In this study, an attempt was made to produce a bone-compatible metastable β-type Ti alloy. By alloying and thermo-mechanical treatment, a metastable β-type Ti-33Nb-4Sn (wt. %) alloy with ultralow Young’s modulus (36 GPa, versus ~30 GPa for human bone) and high ultimate strength (853 MPa) was fabricated. We believe that this method can be applied to developing advanced metastable β-type titanium alloys for implant applications. Also, this approach can shed light on design and development of novel β-type titanium alloys with large elastic limit due to their high strength and low elastic modulus.
Farahnaz Sharafeddin
2015-09-01
Full Text Available Statement of the Problem: Composite resin may be used in different temperatures; it is crucial to determine the effect of temperature on mechanical properties of nanohybrid and silorane-based composite. Purpose: This in vitro study compared the flexural strength and modulus of elasticity of nanohybrid and silorane-based resin composite, at 4˚C, room temperature (25˚C, and 45˚C. Materials and Method: In this experimental study, 60 specimens were prepared in a metal split mold (2×2×25mm. Two different resin composites, Filtek Z250 XT (3M/ ESPE and Filtek P90 (3M/ESPE, were evaluated. The material were inserted into split molds at room temperature, 4˚C or 45˚C and cured with LED (1200 mW/cm2 for 20 seconds in four points (n=10. Then, a three-point bending test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min for measuring the flexural strength and flexural modulus of samples. The data were analyzed by the two-way ANOVA and Tukey test (p< 0.05. Results: The mean highest flexural strength was observed at 45˚C, showing statistically significant difference with flexural strength at 4˚C (p= 0.0001 and 25˚C (p= 0.003 regardless of the type of resin composite. The flexural modulus at 45˚C was highest, showing the statistically significant difference with flexural modulus at 4˚C (p= 0.0001 and 25˚C (p= 0.002. The flexural modulus was statistically different between nanohybrid and silorane-based resin composite (p= 0.01 in 25˚C and 45˚C, but there were no statistically significant differences between flexural strength of Filtek Z250 XT and Filtek P90 regardless of the temperatures (p= 0.062. Conclusion: Preheating the resin composite at 45˚C improves flexural strength and modulus of nanohybrid and silorane-based resin composite. However, flexural strength and modulus of the tested materials were not affected by precooling. The flexural modulus of nanohybrid resin composite was significantly higher than
Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow
Hajek, Matej; Decky, Martin; Drusa, Marian; Orininová, Lucia; Scherfel, Walter
2016-10-01
Nowadays, it is necessary to develop new building materials, which are in accordance to the principles of the following provisions of the Roads Act: The design of road is a subject that follows national technical standards, technical regulations and objectively established results of research and development for road infrastructure. Foam concrete, as a type of lightweight concrete, offers advantages such as low bulk density, thermal insulation and disadvantages that will be reduced by future development. The contribution focuses on identifying the major material characteristics of foam concrete named Poroflow 17-5, in order to replace cement-bound granular mixtures. The experimental measurements performed on test specimens were the subject of diploma thesis in 2015 and continuously of the dissertation thesis and grant research project. At the beginning of the contribution, an overview of the current use of foam concrete abroad is elaborated. Moreover, it aims to determine the flexural strength of test specimens Poroflow 17-5 in combination with various basis weights of the underlying geotextile. Another part of the article is devoted to back-calculation of indicative design modulus of Poroflow based layers based on the results of static plate load tests provided at in situ experimental stand of Faculty of Civil Engineering, University of Žilina (FCE Uniza). Testing stand has been created in order to solve problems related to research of road and railway structures. Concern to building construction presents a physical homomorphic model that is identical with the corresponding theory in all structural features. Based on the achieved material characteristics, the tensile strength in bending of previously used road construction materials was compared with innovative alternative of foam concrete and the suitability for the base layers of pavement roads was determined.
Antony Finto; Lewis Jordan; Laurence R. Schimleck; Alexander Clark; Ray A. Souter; Richard F. Daniels
2011-01-01
Modulus of elasticity (MOE), modulus of rupture (MOR), and specific gravity (SG) are important properties for determining the end-use and value of a piece of lumber. This study addressed the variation in MOE, MOR, and SG with physiographic region, tree height, and wood type. Properties were measured from two static bending samples (dimensions 25.4 mm Ã 25.4 mm Ã 406.4...
Kim, Hyunok; Kimchi, Menachem
2011-08-01
This paper presents a numerical modeling approach for predicting springback by considering the variations of elastic modulus on springback in stamping AHSS. Various stamping tests and finite-element method (FEM) simulation codes were used in this study. The cyclic loading-unloading tensile tests were conducted to determine the variations of elastic modulus for dual-phase (DP) 780 sheet steel. The biaxial bulge test was used to obtain plastic flow stress data. The non-linear reduction of elastic modulus for increasing the plastic strain was formulated by using the Yoshida model that was implemented in FEM simulations for springback. To understand the effects of material properties on springback, experiments were conducted with a simple geometry such as U-shape bending and the more complex geometry such as the curved flanging and S-rail stamping. Different measurement methods were used to confirm the final part geometry. Two different commercial FEM codes, LS-DYNA and DEFORM, were used to compare the experiments. The variable elastic modulus improved springback predictions in U-shape bending and curved flanging tests compared to FEM with the constant elastic modulus. However, in S-rail stamping tests, both FEM models with the isotropic hardening model showed limitations in predicting the sidewall curl of the S-rail part after springback. To consider the kinematic hardening and Bauschinger effects that result from material bending-unbending in S-rail stamping, the Yoshida model was used for FEM simulation of S-rail stamping and springback. The FEM predictions showed good improvement in correlating with experiments.
Elastic modulus of viral nanotubes
Zhao, Yue; Ge, Zhibin; Fang, Jiyu
2008-09-01
We report an experimental and theoretical study of the radial elasticity of tobacco mosaic virus (TMV) nanotubes. An atomic force microscope tip is used to apply small radial indentations to deform TMV nanotubes. The initial elastic response of TMV nanotubes can be described by finite-element analysis in 5nm indentation depths and Hertz theory in 1.5nm indentation depths. The derived radial Young’s modulus of TMV nanotubes is 0.92±0.15GPa from finite-element analysis and 1.0±0.2GPa from the Hertz model, which are comparable with the reported axial Young’s modulus of 1.1GPa [Falvo , Biophys. J. 72, 1396 (1997)].
Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul
2017-04-01
Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Byung Jae Lee
2015-01-01
Full Text Available The primary objective of this study is to investigate the effects of cylinder size (150 by 300 mm and 100 by 200 mm on empirical equations that relate static elastic moduli and compressive strength and static and dynamic elastic moduli of concrete. For the purposes, two sets of one hundred and twenty concrete cylinders, 150 by 300 mm and 100 by 200 mm, were prepared from three different mixtures with target compressive strengths of 30, 35, and 40 MPa. Static and dynamic tests were performed at 4, 7, 14, and 28 days to evaluate compressive strength and static and dynamic moduli of cylinders. The effects of the two different cylinder sizes were investigated through experiments in this study and database collected from the literature. For normal strength concrete (≤40 MPa, the two different cylinder sizes do not result in significant differences in test results including experimental variability, compressive strength, and static and dynamic elastic moduli. However, it was observed that the size effect became substantial in high strength concrete greater than 40 MPa. Therefore, special care is still needed to compare the static and dynamic properties of high strength concrete from the two different cylinder sizes.
Computation of Modulus of Elasticity of Concrete
Onwuka, D.O
2013-09-01
Full Text Available - In this presentation, a computer based method which uses a set of algebraic equations and statistical data, were used to compute concrete mixes for prescribeable elastic concrete modulus, and vice versa. The computer programs based on Simplex and Regression theories can be used to predict several mix proportions for obtaining a desired modulus of elasticity of concrete made from crushed granite rock and other materials. The modulus of elasticity of concrete predicted by these programs agreed with experimentally obtained values. The programs are easy and inexpensive to use, and give instant and accurate results. For example, if the modulus of elasticity is specified as input, the computer instantly prints out all possible concrete mix ratios that can yield concrete having the specified elastic modulus. When the concrete mix ratio is specified as input, the computer quickly prints out the elastic modulus of the concrete obtainable from a given concrete mix ratio.
Study on elastic modulus of individual ferritin
ZHANG JinHai; CUI ChengYi; ZHOU XingFei
2009-01-01
The mechanical property of individual ferriUn was measured with force-volume mapping (FV) under contact mode of atomic force microscopy (AFM) in this work. The elastic modulus of individual ferritin was estimated by the Hertz mode. The estimated value of the elastic modulus of individual ferritin was about 250-800 MPs under a small deformation. In addition, the elastic modulus of individual ferritin was compared with that of the colloid gold nanoparticle.
Determination of Modulus of Elasticity and Shear Modulus by the Measurement of Relative Strains
Labašová, Eva
2016-12-01
This contribution is focused on determining the material properties (Young modulus and shear modulus) of the testing samples. The theoretical basis for determining material properties are the knowledge of linear elasticity and strength. The starting points are dependencies among the modulus of elasticity, shear modulus, normal stress and relative strain. The relative strains of the testing samples were obtained by measuring predefined load conditions using a strain-gauge bridge and the universal measurement system Quantum X MX 840. The integration of these tasks into the teaching process enhances practical and intellectual skills of students at secondary level technical universities.
Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete
Alireza Mohammadi Bayazidi
2014-01-01
Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.
Elastic modulus of cetacean auditory ossicles.
Tubelli, Andrew A; Zosuls, Aleks; Ketten, Darlene R; Mountain, David C
2014-05-01
In order to model the hearing capabilities of marine mammals (cetaceans), it is necessary to understand the mechanical properties, such as elastic modulus, of the middle ear bones in these species. Biologically realistic models can be used to investigate the biomechanics of hearing in cetaceans, much of which is currently unknown. In the present study, the elastic moduli of the auditory ossicles (malleus, incus, and stapes) of eight species of cetacean, two baleen whales (mysticete) and six toothed whales (odontocete), were measured using nanoindentation. The two groups of mysticete ossicles overall had lower average elastic moduli (35.2 ± 13.3 GPa and 31.6 ± 6.5 GPa) than the groups of odontocete ossicles (53.3 ± 7.2 GPa to 62.3 ± 4.7 GPa). Interior bone generally had a higher modulus than cortical bone by up to 36%. The effects of freezing and formalin-fixation on elastic modulus were also investigated, although samples were few and no clear trend could be discerned. The high elastic modulus of the ossicles and the differences in the elastic moduli between mysticetes and odontocetes are likely specializations in the bone for underwater hearing.
Ni, De Wei; Charlas, Benoit; Kwok, Kawai
2016-01-01
Solid Oxide Fuel Cells are subjected to significant stresses during production and operation. The various stress-generating conditions impose strength requirements on the cell components, and thus the mechanical properties of the critical load bearing materials at relevant operational conditions ...
Elastic bending modulus of monolayer graphene
Lu Qiang; Huang Rui [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712 (United States); Arroyo, Marino [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)
2009-05-21
An analytic formula is derived for the elastic bending modulus of monolayer graphene based on an empirical potential for solid-state carbon atoms. Two physical origins are identified for the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the bond-angle effect and the other resulting from the bond-order term associated with the dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes. (fast track communication)
Aida Rodríguez, Sara; Alcalá, Jorge; Martins Souza, Roberto
2011-03-01
Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/Ei (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, Er/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/δmax (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - δ) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/Ei , from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, Ac , and lower than 5% in the ratio H/Er . However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/Ei , the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio δe/δmax , where δe is the point corresponding to zero load of a straight line with slope S from the point (Pmax, δmax ), varied less than 5% with the ratio E/Ei . Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon's equation, did not reveal the necessity
Elastic modulus of phases in Ti–Mo alloys
Zhang, Wei-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Yong, E-mail: yonliu11@aliyun.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Wu, Hong; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhang, Tuo-yang [Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Lan, Xiao-dong; Yao, Tian-hang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)
2015-08-15
In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo, Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.
Modulus of Elasticity and Thermal Expansion Coefficient of ITO Film
Carter, Austin D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-06-24
The purpose of this experiment was to determine the modulus of elasticity (E) and thermal expansion coefficient (α) of RF sputtered Indium Tin Oxide (ITO) as a function of temperature (T), and to collect ITO film stress data. In order to accomplish that goal, the Toho FLX-2320-S thin film stress measurement machine was used to collect both single stress and stress-temperature data for ITO coated fused silica and sapphire substrates. The stress measurement function of the FLX-2320-S cannot be used to calculate the elastic modulus of the film because the Stoney formula incorporates the elastic modulus of the substrate, rather than of the film itself.
Temperature effect on elastic modulus of thin films and nanocrystals
Liang, Lihong; Li, Meizhi; Qin, Fuqi; Wei, Yueguang
2013-02-01
The stability of nanoscale devices is directly related to elasticity and the effect of temperature on the elasticity of thin films and nanocrystals. The elastic instability induced by rising temperature will cause the failure of integrated circuits and other microelectronic devices in service. The temperature effect on the elastic modulus of thin films and nanocrystals is unclear although the temperature dependence of the modulus of bulk materials has been studied for over half a century. In this paper, a theoretical model of the temperature-dependent elastic modulus of thin films and nanocrystals is developed based on the physical definition of the modulus by considering the size effect of the related cohesive energy and the thermal expansion coefficient. Moreover, the temperature effect on the modulus of Cu thin films is simulated by the molecular dynamics method. The results indicate that the elastic modulus decreases with increasing temperature and the rate of the modulus decrease increases with reducing thickness of thin films. The theoretical predictions based on the model are consistent with the results of computational simulations, semi-continuum calculations and the experimental measurements for Cu, Si thin films and Pd nanocrystals.
Device to measure elastic modulus of superconducting windings
CERN PhotoLab
1979-01-01
This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.
基于弹性模量的再生混凝土疲劳强度分析%On Fatigue Strength of Recycled Aggregate Concrete Based on Its Elastic Modulus
李宏; 肖建庄
2012-01-01
通过试验与分析,建立了再生混凝土弹性模量与其疲劳强度的回归公式,结果表明:由该回归公式计算出的再生混凝土受压疲劳强度与试验结果接近,可用来预测再生混凝土的受压疲劳强度,并指导工程实践;初步验证了GB 50010-2002《混凝土结构设计规范》中普通混凝土受压疲劳强度的取值方法对再生混凝土同样适用.%Based on the experiments and analysis, the relationship between the elastic modulus and the fatigue strength of recycled aggregate concrete(RAC) was established. The compressive fatigue strength calculated according to the formula suggested by this investigation is close to the experimental results, a reliable prediction for the compressive fatigue strength of RAC can be used to guide the engineering practice. And it is confirmed from this study that the method in code for GB 50010-2002 (Design of Concrete Structures＞ is suitable for the calculation of the compressive fatigue strength of RAC.
Elastic modulus of posts and the risk of root fracture.
Meira, Josete B C; Espósito, Camila O M; Quitero, Mayra F Z; Poiate, Isis A V P; Pfeifer, Carmem Silvia C; Tanaka, Carina B; Ballester, Rafael Y
2009-08-01
The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts' elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post's long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.
Reduction in the modulus of elasticity in orthodontic wires.
Goldberg, A J; Vanderby, R; Burstone, C J
1977-10-01
The modulus of elasticity of stainless steel orthodontic wires was found to be 20% below the normally assumed range of 19.3 to 20.0 x 10(4) MPa (28.0 to 29.0 x 10(6) psi). Use of the latter value can result in significant computational errors in orthodontic applicance mechanics. The lower modulus was attributed to severe cold drawing.
Determination of the elastic modulus of snow via acoustic measurements
Gerling, Bastian; van Herwijnen, Alec; Löwe, Henning
2016-04-01
The elastic modulus of snow is a key quantity from the viewpoint of avalanche research and forecasting, snow engineering or materials science in general. Since it is a fundamental property, many measurements have been reported in the literature. Due to differences in measurement methods, there is a lot of variation in the reported values. Especially values derived via computer tomography (CT) based numerical calculations using finite element methods are not corresponding to the results of other methods. The central issue is that CT based moduli are purely elastic whereas other methods may include viscoelastic deformation. In order to avoid this discrepancy we derived the elastic modulus of snow via wave propagation measurements and compared our results with CT based calculations. We measured the arrival times of acoustic pulses propagating through the snow samples to determine the P-wave velocity and in turn derive the elastic modulus along the direction of wave propagation. We performed a series of laboratory experiments to derive the P-wave modulus of snow in relation to density. The P-wave modulus ranged from 10 to 280 MPa for a snow density between 150 and 370 kg/m^3;. The moduli derived from the acoustic measurements correlated well with the CT-based values and both exhibited a power law trend over the entire density range. Encouraged by these results we used the acoustic method to investigate the temporal evolution of the elastic modulus. The rate of increase was very close to values mentioned in literature on the sintering rate of snow. Overall, our results are a first but important step towards a new measurement method to attain the elastic properties of snow.
Size-Dependent Elastic Modulus and Vibration Frequency of Nanocrystals
Lihong Liang
2011-01-01
Full Text Available The elastic properties and the vibration characterization are important for the stability of materials and devices, especially for nanomaterials with potential and broad application. Nanomaterials show different properties from the corresponding bulk materials; the valid theoretical model about the size effect of the elastic modulus and the vibration frequency is significant to guide the application of nanomaterials. In this paper, a unified analytical model about the size-dependent elastic modulus and vibration frequency of nanocrystalline metals, ceramics and semiconductors is established based on the inherent lattice strain and the binding energy change of nanocrystals compared with the bulk crystals, and the intrinsic correlation between the elasticity and the vibration properties is discussed. The theoretical predictions for Cu, Ag, Si thin films, nanoparticles, and TiO2 nanoparticles agree with the experimental results, the computational simulations, and the other theoretical models.
Measurement of Elastic Modulus of Collagen Type I Single Fiber.
Dutov, Pavel; Antipova, Olga; Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D
2016-01-01
Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. The longitudinal component of the single-fiber elastic modulus is between 100 MPa and 360 MPa for samples extracted from different rats and/or different parts of a single tail. Variations are also observed in the fibril-bundle/fibril diameter with an average of 325±40 nm. Since bending forces depend on the diameter to the fourth power, this variation in diameter is important for estimating the range of elastic moduli. The remaining variations in the modulus may be due to differences in composition of the fibril-bundles, or the extent of the proteoglycans constituting fibril-bundles, or that some single fibrils may be of fibril-bundle size.
Ultrasonic Measurement of Elastic Modulus of Kelvin Foam
Oh Sukwon
2016-01-01
Full Text Available Elastic modulus of 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam of 3 mm unit cell is designed and printed layer upon layer to fablicate a Kelvin foam plate of 14mm thickness by 3D CAD/printer using ABS plastic. The Kelvin foam plate is filled completely with paraffin wax for impedance matching, so that acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF method to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity.
Low elastic modulus titanium–nickel scaffolds for bone implants
Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming, E-mail: jianming@csu.edu.cn
2014-01-01
The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property.
High elastic modulus nanopowder reinforced resin composites for dental applications
Wang, Yijun
2007-12-01
Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the
Measurement of Elastic Modulus of Collagen Type I Single Fiber.
Pavel Dutov
Full Text Available Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. The longitudinal component of the single-fiber elastic modulus is between 100 MPa and 360 MPa for samples extracted from different rats and/or different parts of a single tail. Variations are also observed in the fibril-bundle/fibril diameter with an average of 325±40 nm. Since bending forces depend on the diameter to the fourth power, this variation in diameter is important for estimating the range of elastic moduli. The remaining variations in the modulus may be due to differences in composition of the fibril-bundles, or the extent of the proteoglycans constituting fibril-bundles, or that some single fibrils may be of fibril-bundle size.
LIANG Shan-qing; FU feng
2007-01-01
The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep.the ultrasonic wave modulus of elasticity, Em, the stress wave modulus of elasticity and Ef, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Ef were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.
A Jafari Malekabadi
2016-04-01
increasing deformation, apparent Poisson ratio increased. Modulus of elasticity along X and Y According to the analysis of variance (Table 2, the effects of speed and displacement of loading and directions × speed was significant in 1% probability levels. The average of the modulus of elasticity for Red onion was less than that obtained for the Yellow onion because Yellow onion has tougher and more powerful texture than Red onion. Modulus of elasticity were obtained as 2.032 to 5.449 and 1.829 to 5.311 MPa for Yellow and Red onions, respectively. The modulus of elasticity for lateral loading was less than that obtained for the axial loading. With increasing deformation, the modulus of elasticity decreased. The modulus of elasticity for lateral loading in loading speed 25 mm min-1 was less than that obtained for loading speed 15 mm min-1. Conclusions: The results were summarized as below: Loading speed, deformation value and their interaction effect were significant in different confidence levels for apparent Poisson's ratio and modulus of elasticity. The compression force of Yellow onion was more than Red onion. Thus, it can be concluded that Yellow onions have more strength against the forces and loading. The modulus of elasticity for lateral loading was less than that obtained for the axial loading. It is better to be considered for packaging of onions. The modulus of elasticity for lateral loading in loading speed 25 mm min-1 was less than that obtained for loading speed 15 mm min-1. With increasing deformation, the modulus of elasticity and apparent Poisson’s ratio decreased and increased, respectively.
Strength and elastic properties of sandstone under different testing conditions
CHEN Yun-ping; WANG Si-jing; WANG En-zhi
2007-01-01
A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10-5, 10-4 and 10-3/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa,respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant.Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level,especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric 'X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.
Reporting buckling strength and elastic properties of nanowires
Shaat, M.; Abdelkefi, A.
2016-12-01
Nanocrystalline-nanowires have been incorporated in many micro-/nano-scale applications. To design nanowires-based nano-devices, studies should be conducted on the characterization of the elastic properties and the buckling strengths of nanowires. The challenge associated with detecting the properties of nanowires is that their properties are size-dependent. This motivated us to propose a model for the mechanics of nanocrystalline nanowires. In the context of this model, new measures are incorportated to account for the nanowire material structure and size effects and to reflect the experimental observations of nanomaterials-nanowires. This model is then harnessed to report the ranges of the buckling strength and the elastic properties of nanowires made of nanocrystalline diamond, Si, Al, Cu, Ag, Au, and Pt, for the first time. First, we report the range of the grain boundary Young's modulus for the various nanocrystalline materials. Depending on the contents of the grain boundary and the amount of impurities, the grain boundary Young's modulus is likely to be within the reported ranges. Second, for each grain size (from 200 nm to 2 nm), we report the range of Young's modulus, shear modulus, bulk modulus, and mass density of the aforementioned nanocrystalline nanomaterials. Third, we report the buckling strength and the equivalent Young's modulus of nanowires with different sizes accounting for the nanowire surface effects. The reported ranges of the buckling strength and the elastic properties of nanowires are experimentally validated.
Effect of precipitation on elastic modulus of Al-Zn-Mg-Cu-Li alloys
ZHAO Zhong-kui; ZHOU Tie-tao; LIU Pei-ying; LI Huan-xi; CHEN Chang-qi
2006-01-01
Al-5.6Zn-3.0Mg-1.6Cu-1.1Li-0.24Cr alloys and Al-8.0Zn-2.4Mg-2.4Cu-1.1Li-0.18Zr alloys (mass fraction, %) were aged by different processes. The microstructure and mechanical properties were determined by transmission electron microscopy(TEM),tensile test and Vicker's hardness test. The experimental results show that the most signified hardening is obtained by double-ageing or multi-ageing for the Al-Zn-Mg-Cu-Li alloys. The yield strength and the elastic modulus of the Li-containing alloys have relationships with ageing processes. The elastic modulus of Li-containing alloys decreases with the increment of precipitates though it is higher than that of Al-Zn-Mg-Cu alloy.
Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.
1985-01-01
The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.
Study on the AFM Force Spectroscopy method for elastic modulus measurement of living cells
Demichelis, A.; Pavarelli, S.; Mortati, L.; Sassi, G.; Sassi, M.
2013-09-01
The cell elasticity gives information about its pathological state and metastatic potential. The aim of this paper is to study the AFM Force Spectroscopy technique with the future goal of realizing a reference method for accurate elastic modulus measurement in the elasticity range of living cells. This biological range has not been yet explored with a metrological approach. Practical hints are given for the realization of a Sylgard elasticity scale. Systematic effects given by the sample curing thickness and nanoindenter geometry have been found with regards of the measured elastic modulus. AFM measurement reproducibility better than 20% is obtained in the entire investigated elastic modulus scale of 101 - 104 kPa.
柴田, 信一; 曹, 勇; 福本, 功; Shibata, Shin-ichi; Cao, Yong; Fukumoto, Isao
2005-01-01
Bending modulus of elasticity of the composite material from bagasse fiber (remains after sugar cane squeezed) and biodegradable resin was investigated in view of the content of bagasse fiber and the fiber length. The result was validated by short fiber strengthen theory. The result is as followings. Bending modulus of elasticity increased with increasing the content of bagasse fiber. The increase of Bending modulus of elasticity is predicted by short fiber strengthen theory incorporated with...
Microstructure, Elastic Modulus and Tensile Properties of Ti-Nb-O Alloy System
无
2008-01-01
In the present study Ti-Nb binary alloy system was chosen because it has excellent biocompatibility as well as reasonable mechanical properties, aiming at understanding oxygen content on microstructural formation,elastic modulus and tensile properties in Ti-Nb alloy system. Small alloy buttons of 50 mm in diameter were prepared by arc melting on a water-cooled copper hearth under an argon gas atmosphere with a non-consumable tungsten electrode. The button ingots were then heat treated in a vacuum atmosphere at 1273 K for 0.5 h followed by water quenching in a specially designed heat treatment furnace. Microstructure, elastic modulus and tensile properties were investigated in order to understand the effect of oxygen content in quenched TiNb alloy system. The orthorhombic structured α″ martensite was changed to bcc structured β-phase with increasing Nb content. Interestingly, it was found that oxygen makes β-phase stable in quenched Ti-Nb alloy system. Elastic modulus values were sensitive to phase stability of constituent phases. Yield strength increased with increasing oxygen content. Details will be explained by phase formation and stability behavior.
Elastic Modulus and Stress Analysis of Porous Titanium Parts Fabricated by Selective Laser Melting
Junchao Li∗,Yanyan Zang; Wei Wang
2016-01-01
The mismatch of elasticity modulus has limited the application of titanium alloys in medical implants, and porous structures have been proved effective to deal with this problem. However, the manufacturing of porous structures has been restricted from conventional technologies. In this study, selective laser melting ( SLM) technology was employed to produce a set of Ti⁃6Al⁃4V porous samples based on cubic lattices with varying size of strut width from 200 μm to 600 μm. Then the compression tests were conducted to analyze the influence of the strut width on the elasticity modulus and the ultimate strength. The result shows both of them increases linearly with the growth of strut width or with the decrease of porosity, and the elasticity modulus of porous parts is largely reduced and actually meets the requirement of clinical application. Additionally, a finite element model was established to verify the un⁃uniform stress distribution of porous parts. It reveals that fractures always initially occur at the vertical struts along the force direction which suffer from the main deformation.
Holmes Amey J
2005-07-01
Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.
Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope
Zhou, Zhoulong
2012-04-01
The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.
If mechanics of cells can be described by elastic modulus in AFM indentation experiments?
Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia; Kalaparthi, Vivekanand
2014-03-01
We study the question if cells, being highly heterogeneous objects, can be described with an elastic modulus (the Young's modulus) in a self-consistent way. We analyze the elastic modulus using indentation done with AFM of human cervical epithelial cells. Both sharp (cone) and dull AFM probes were used. The indentation data collected were processed through different elastic models. The cell was considered as a homogeneous elastic medium which had either smooth spherical boundary (Hertz/Sneddon models) or the boundary covered with a layer of glycocalyx and membrane protrusions (``brush'' models). Validity of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrate that only one model shows consistency with treating cells as homogeneous elastic medium, the bush model when processing the indentation data collected with the dull probe. The elastic modulus demonstrates strong depth dependence in all other three models. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus in a self-consistent way when using the brush model to analyze data collected with a dull AFM probe.
Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand
Qingchun XIANG
2004-08-01
Full Text Available Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate viscoelastic properties of molding sand.
Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand
无
2004-01-01
Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate the viscoelastic properties of molding sand.
Dimas, Leon S.; Veneziano, Daniele; Buehler, Markus J.
2016-07-01
We obtain analytical approximations to the probability distribution of the fracture strengths of notched one-dimensional rods and two-dimensional plates in which the stiffness (Young's modulus) and strength (failure strain) of the material vary as jointly lognormal random fields. The fracture strength of the specimen is measured by the elongation, load, and toughness at two critical stages: when fracture initiates at the notch tip and, in the 2D case, when fracture propagates through the entire specimen. This is an extension of a previous study on the elastic and fracture properties of systems with random Young's modulus and deterministic material strength (Dimas et al., 2015a). For 1D rods our approach is analytical and builds upon the ANOVA decomposition technique of (Dimas et al., 2015b). In 2D we use a semi-analytical model to derive the fracture initiation strengths and regressions fitted to simulation data for the effect of crack arrest during fracture propagation. Results are validated through Monte Carlo simulation. Randomness of the material strength affects in various ways the mean and median values of the initial strengths, their log-variances, and log-correlations. Under low spatial correlation, material strength variability can significantly increase the effect of crack arrest, causing ultimate failure to be a more predictable and less brittle failure mode than fracture initiation. These insights could be used to guide design of more fracture resistant composites, and add to the design features that enhance material performance.
Inverse problemfor an inhomogeneous elastic beam at a combined strength
Andreev Vladimir Igorevich
2014-01-01
Full Text Available In the article the authors describe a method of optimizing the stress state of an elastic beam, subject to the simultaneous action of the central concentrated force and bending moment. The optimization method is based on solving the inverse problem of the strength of materials, consisting in defining the law of changing in elasticity modulus with beam cross-section altitude. With this changing the stress state will be preset. Most problems of the elasticity theory of inhomogeneous bodies are solved in direct formulation, the essence of which is to determine the stress-strain state of a body at the known dependences of the material elastic characteristics from the coordinates. There are also some solutions of the inverse problems of the elasticity theory, in which the dependences of the mechanical characteristics from the coordinates, at which the stress state of a body is preset, are determined. In the paper the authors solve the problem of finding a dependence modulus of elasticity, where the stresses will be constant over the beam’s cross section. We will solve the problem of combined strength (in the case of the central stretching and bending. We will use an iterative method. As the initial solution, we take the solution for a homogeneous material. As the first approximation, we consider the stress state of a beam, when the modulus of elasticity varies linearly. According to the results, it can be stated that three approximations are sufficient in the considered problem. The obtained results allow us to use them in assessing the strength of a beam and its optimization.
The bulk elastic modulus and the reversible properties of cell walls in developing Quercus leaves.
Saito, Takami; Soga, Kouichi; Hoson, Takayuki; Terashima, Ichiro
2006-06-01
We examined the relationship between the bulk elastic modulus (epsilon) of an individual leaf obtained by the pressure-volume (P-V) technique and the mechanical properties of cell walls in the leaf. The plants used were Quercus glauca and Q. serrata, an evergreen and a deciduous broad-leaved tree species, respectively. We compared epsilon and Young's modulus of leaf specimens determined by the stretch technique at various stages of their leaf development. The results showed that epsilon increased from approximately 5 to 20 MPa during leaf development, although other potential determinants of epsilon such as the apoplastic water content in the leaf and the diameter of a palisade tissue cells remained almost constant. epsilon in these two species was similar at every developmental stages, although the apparent mechanical strength of the leaf lamina and thickness of mesophyll cell walls were greater in Q. glauca. There were significant linear relationships between Young's modulus and epsilon (P < 0.01; R (2) = 0.78 and 0.84 in Q. glauca and Q. serrata, respectively) with small y-intercepts. From these results, we conclude that epsilon is closely related to the reversible properties of the cell walls. From the estimation of epsilon based on a physical model, we suggest that the effective thickness of cell walls responsible for epsilon is smaller than the observed wall thickness.
WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min
2006-01-01
In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law,the model can predict the engineering elastic constant of a composite effectively.
Singh, J.P.; Sutaria, M. [Argonne National Lab., IL (United States). Energy Technology Div.; Ferber, M. [Oak Ridge National Lab., TN (United States)
1997-01-01
Elastic modulus of an yttria partially stabilized zirconia (YSZ) thermal barrier coating (TBC) was evaluated with a Knoop indentation technique. The measured elastic modulus values for the coating ranged from 68.4 {+-} 22.6 GPa at an indentation load of 50 g to 35.7 {+-} 9.8 at an indentation load of 300 g. At higher loads, the elastic modulus values did not change significantly. This steady-state value of 35.7 GPa for ZrO{sub 2} TBC agreed well with literature values obtained by the Hertzian indentation method. Furthermore, the measured elastic modulus for the TBC is lower than that reported for bulk ZrO{sub 2} ({approx} 190 GPa). This difference is believed to be due to the presence of a significant amount of porosity and microcracks in the TBCs. Hardness was also measured.
Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation
WANG X J; CHEN X B; HODGSON P D; WEN C E
2006-01-01
The elastic modulus and hardness of several microstructure components of dry bovine vertebrae and tibia have been investigated in the longitude and transverse directions using nanoindentation. The elastic modulus for the osteons and the interstitial lamellae in the longitude direction were found to be (24.7±2.5) GPa and (30.1±2.4) GPa. As it's difficult to distinguish osteons from interstitial lamellae in the transverse direction,the average elastic modulus for cortical bovine bone in the transverse direction was (19.8±1.6) GPa. The elastic modulus for trabecular bone in the longitude and transverse direction were (20±2) GPa and (14.7±1.9) GPa respectively. The hardness also varied among the microstructure components in the range of 0.41-0.89 GPa. Analyses of variance show that the values are significantly different.
Oestreicher, J H; Frueh, B R
1995-06-01
We built an experimental apparatus to investigate the passive elastic characteristics of orbicularis oculi muscle and examined specimens from normal humans, humans with stable Graves' eye disease, and cynomolgus monkeys. Stress-strain curves were determined and found to be exponential. The elastic modulus (Young's modulus), analogous to the stiffness of the material, was calculated as a function of strain. Elastic modulus as a function of instantaneous stress was linear. Monkey elastic modulus values were determined, but did not allow meaningful interspecies comparison because of the small sample size. No significant difference was found between normal humans and humans with Graves' eye disease with respect to elastic modulus values.
Simplified prediction model for elastic modulus of particulate reinforced metal matrix composites
WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min
2006-01-01
Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal matrix Al composite was developed and improved. Expressions of rigidity and flexibility of the rule of mixing were proposed. A five-zone model for elasticity performance calculation of the composite was proposed. The five-zone model is thought to be able to reflect the effects of the MMC interface on elastic modulus of the composite. The model overcomes limitations of the currently-understood rigidity and flexibility of the rule of mixing. The original idea of a five-zone model is to propose particulate/interface interactive zone and matrix/interface interactive zone. By integrating organically with the law of mixing, the new model is found to be capable of predicting the engineering elastic constants of the MMC composite.
Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
Grant, Caroline A; Wilson, Lance J; Langton, Christian; Epari, Devakar
2014-07-01
Finite element models of bones can be created by deriving geometry from an X-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticity versus density relationship. Many elasticity-density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions - longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each direction were determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined. A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.
Determination of elastic modulus in nickel alloy from ultrasonic measurements
Nikhat Parveen; G V S Murthy
2011-04-01
Elastic constants relate technological, structural and safety aspects to various materials phenomena and to their fundamental interatomic forces. Hence, they are of fundamental importance in almost all engineering applications. Thus its determination is of utmost importance. The aim of the present investigation is to study the behaviour of elastic constants and the variation on heat treatment in a nickel base super alloy Nimonic 263 by ultrasonic velocity measurements. From the present study it is evident that the elastic moduli of the material are very sensitive to any minor compositional changes, resulting due to the formation of intermetallic phases on heat treatment and can be effectively monitored by ultrasonic.
Luiz Claudio Pardini
2002-10-01
Full Text Available Carbon fibres and glass fibres are reinforcements for advanced composites and the fiber strength is the most influential factor on the strength of the composites. They are essentially brittle and fail with very little reduction in cross section. Composites made with these fibres are characterized by a high strength/density ratio and their properties are intrisically related to their microstructure, i.e., amount and orientation of the fibres, surface treatment, among other factors. Processing parameters have an important role in the fibre mechanical behaviour (strength and modulus. Cracks, voids and impurities in the case of glass fibres and fibrillar misalignments in the case of carbon fibres are created during processing. Such inhomogeneities give rise to an appreciable scatter in properties. The most used statistical tool that deals with this characteristic variability in properties is the Weibull distribution. The present work investigates the influence of the testing gage length on the strength, Young's modulus and Weibull modulus of carbon fibres and glass fibres. The Young's modulus is calculated by two methods: (i ASTM D 3379M, and (ii interaction between testing equipment/specimen The first method resulted in a Young modulus of 183 GPa for carbon fibre, and 76 GPa for glass fibre. The second method gave a Young modulus of 250 GPa for carbon fibre and 50 GPa for glass fibre. These differences revelead differences on how the interaction specimen/testing machine can interfere in the Young modulus calculations. Weibull modulus can be a tool to evaluate the fibre's homogeneity in terms of properties and it is a good quality control parameter during processing. In the range of specimen gage length tested the Weibull modulus for carbon fibre is ~ 3.30 and for glass fibres is ~ 5.65, which indicates that for the batch of fibres tested, the glass fibre is more uniform in properties.
In-situ measurement of elastic modulus for ceramic top-coat at high temperature
齐红宇; 周立柱; 马海全; 杨晓光; 李旭
2008-01-01
The ceramic thermal barrier coatings (TBCs) play an increasingly important in advanced gas turbine engines because of their ability to further increase the engine operating temperature and reduce the cooling, thus help achieve future engine low emission, high efficiency and improve the reliability goals. Currently, there are two different processes such as the plasma spraying (PS) and the electron beam-physical vapor deposition (EB-PVD) techniques. The PS coating was selected to test the elastic modulus. Using the nanoindentation and resonant frequency method, the mechanical properties of ceramic top-coat were measured in-situ. According to the theory of the resonant frequency and composite beam, the testing system was set up including the hardware and software. The results show that the accurate characterization of the elastic properties of TBCs is important for stress-strain analysis and failure prediction. The TBCs systems are multi-layer material system. It is difficult to measure the elastic modulus of top-coat by tensile method. The testing data is scatter by nanoindentation method because of the microstructure of the ceramic top-coat. The elastic modulus of the top-coat between 20?1 150 ℃ is obtained. The elastic modulus is from 2 to 70 GPa at room temperature. The elastic modulus changes from 62.5 GPa to 18.6 GPa when the temperature increases from 20 ℃ to 1 150 ℃.
Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam
Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)
2016-02-15
The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.
Effect of Elastic Modulus on Biomechanical Properties of Lumbar Interbody Fusion Cage
Yue Zhu; Fusheng Li; Shujun Li; Yulin Hao; Rui Yang
2009-01-01
This work focuses on the influence of elastic modulus on biomechanical properties of lumbar interbody fusion cages by selecting two titanium alloys with different elastic modulus.They were made by a new β type alloy with chemical composition of Ti-24Nb-4Zr-7.6Sn having low Young's modulus ～50 GPa and by a conventional biomedical alloy Ti-6Al-4V having Young's modulus ～110 GPa.The results showed that the designed cages with low modulus (LMC) and high modulus (HMC) can keep identical compression load ～9.8 kN and endure fatigue cycles higher than 5× 106 without functional or mechanical failure under 2.0 kN axial compression.The anti-subsidence ability of both group cages were examined by axial compression of thoracic spine specimens (T9～T10) dissected freshly from the calf with averaged age of 6 months.The results showed that the LMC has better anti-subsidence ability than the HMC (p<0.05).The above results suggest that the cage with low elastic modulus has great potential for clinical applications.
Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development.
Schiele, Nathan R; von Flotow, Friedrich; Tochka, Zachary L; Hockaday, Laura A; Marturano, Joseph E; Thibodeau, Jeffrey J; Kuo, Catherine K
2015-06-01
Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Elastic Modulus of 304 Stainless Steel Coating by Cold Gas Dynamic Spraying
2012-01-01
304 stainless steel coating was deposited on the IF steel substrate by cold gas dynamic spraying （CGDS）, and the elastic modulus of the 304 stainless steel coating was studied. The elastic modulus of cold sprayed 304 stain- less steel coating was measured using the three-point bend testing and the compound beam theory, and the other me- chanic parameters （such as the equivalent flexural rigidity and the moment of inertia of area） of the coatings were also calculated using this compound beam theory. It is found that the calculated results using the above methods are accu- rate and reliable. The elastic modulus value of the cold sprayed 304 stainless steel coating is 1. 179 X 105 MPa, and it is slightly lower than the 304 stainless steel plate （about 2 X 105 MPa）. It indicates that the elastic modulus of the cold sprayed coatings was quite different from the comparable bulk materials. The main reason is that the pores and other defects are existed in the coatings, and the elastic modulus of the coatings also depends on varies parameters such as the feed stock particle size, porosity, and processing parameters.
Size dependent elastic modulus and mechanical resilience of dental enamel.
O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan
2014-03-21
Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained.
Elastic modulus of SiCw/6061Al alloy composites as-squeeze-cast
姜传海; 吴建生; 王德尊
2001-01-01
By using the system of image analyzer connected with scanning electron microscope, the whisker orientation in the SiCw/6061Al alloy composite as-squeeze-cast was measured. According to the shear lag model and the actual distribution function of whisker in composite, the inhomogeneity of elastic modulus in composite was analyzed. With the method of ultrasonic velocity, the elastic modulus of composite was measured. The results showed that, the whiskers of composite are preferred in an orientation normal to the direction of squeeze cast. The higher the volume fraction of whisker, the more extent of preferred orientation of it, and the inhomogeneity of elastic modulus is mainly due to the differences of whisker distribution in composite.
Omar, Yamila M.; Al Ghaferi, Amal, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae; Chiesa, Matteo, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae [Laboratory for Energy and Nanosciences, Institute Center for Energy (iEnergy), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates)
2015-07-20
Extensive work has been done in order to determine the bulk elastic modulus of isotropic samples from force curves acquired with atomic force microscopy. However, new challenges are encountered given the development of new materials constructed of one-dimensional anisotropic building blocks, such as carbon nanostructured paper. In the present work, we establish a reliable framework to correlate the elastic modulus values obtained by amplitude modulation atomic force microscope force curves, a nanoscopic technique, with that determined by traditional macroscopic tensile testing. In order to do so, several techniques involving image processing, statistical analysis, and simulations are used to find the appropriate path to understand how macroscopic properties arise from anisotropic nanoscale components, and ultimately, being able to calculate the value of bulk elastic modulus.
Mechanical properties of concrete with SAP. Part II: Modulus of elasticity
Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede
2010-01-01
In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...
Mechanical properties of concrete with SAP. Part II: Modulus of elasticity
Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede
2010-01-01
In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...
Mirković Nemanja
2007-01-01
Full Text Available Background/Aim. Elastic modulus of metal-ceramic systems determines their flexural strength and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metalceramic systems in making fixed partial dentures. Methods. The research was performed as an experimental study. Six metal-ceramic samples of nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C were made. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Three- point bending test was used to determine elastic modulus, recommended by the standard ISO 9693:1999. Fracture load for damaging ceramic layer was recorded on the universal testing machine (Zwick, type 1464, with the speed of 0,05 mm/min. Results. The results of this research revealed significant differences between elasticity modules of metal-ceramic samples in every examined recycle generation. Recasting had negative effect on the elastic modulus of the examined alloys. This research showed the slight linear reduction of elastic modulus up to the 6th generation of recycling. After the 6th recycling there was a sudden fall of elastic modulus. Conclusion. Recasting of nickelchromium and cobalt-chromium alloys is not recommended because of the reduced elastic modulus of these alloys. Instead of reusing previously recasted alloys, the alloy residues should be returned to the manufacturer. .
A new mechanism for low and temperature-independent elastic modulus.
Zhang, Liangxiang; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi
2015-06-25
The first Elinvar alloy, FeNiCr, which has invariant elastic modulus over a wide temperature range, was discovered almost 100 years ago by Guillaume. The physical origin of such an anomaly has been attributed to the magnetic phase transition taking place in the system. However, the recent discovery of non-magnetic Elinvar such as multi-functional β-type Ti alloys has imposed a new challenge to the existing theories. In this study we show that random field from stress-carrying defects could suppress the sharp first-order martensitic transformation into a continuous strain glass transition, leading to continued formation and confined growth of nano-domains of martensite in a broad temperature range. Accompanying such a unique transition, there is a gradual softening of the elastic modulus over a wide temperature range, which compensates the normal modulus hardening due to anharmonic atomic vibration, resulting in a low and temperature-independent elastic modulus. The abundance of austenite/martensite interfaces are found responsible for the low elastic modulus.
Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys
Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-10-01
Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.
Modelling of the Elasticity Modulus for Rock Using Genetic Expression Programming
Umit Atici
2016-01-01
Full Text Available In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity Es applying gene expression programming (GEP with nondestructive testing (NDT methods. The results obtained using GEP are compared with the results of multivariable linear regression analysis (MRA, univariate nonlinear regression analysis (URA, and the dynamic elasticity modulus (Ed. The GEP model was found to produce the most accurate calculation of Es. The proposed approach is a simple, nondestructive, and practical way to determine Es for anisotropic and heterogeneous rocks.
Influence of punch radius on elastic modulus of three-point bending tests
Pengliang Hou; Hongwei Zhao; Zhichao Ma; Shizhong Zhang; Jianping Li; Xiaolong Dong; Yujiao Sun; Zhongwei Zhu
2016-01-01
Three-point bending is one of the most common methods of studying the mechanical performance of materials. The influence of punch radius in the measurements is not considered in the previous studies. This article focuses on the influence of the punch radius on the elastic modulus. The experiment is set up to measure the elastic modulus of 6061 aluminum alloy (6061 Al) and copper as the specimens, in which several different radii of punches are used. The maximum bending deflection of the middl...
Elastic modulus affects the growth and differentiation of neural stem cells
Xian-feng Jiang
2015-01-01
Full Text Available It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings confirm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus results in a more obvious trend of cell differentiation into astrocytes.
Elastic modulus affects the growth and differentiation of neural stem cells
Xian-feng Jiang; Kai Yang; Xiao-qing Yang; Ying-fu Liu; Yuan-chi Cheng; Xu-yi Chen; Yue Tu
2015-01-01
It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron speciifc enolase, glial ifbrillary acidic protein, and myelin basic protein expression was detected by immunolfuorescence. Moreover, lfow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These ifndings con-ifrm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re-sults in a more obvious trend of cell differentiation into astrocytes.
Elastic modulus of TiN film investigated with Kroner model and X-ray diffraction
无
2001-01-01
The four-point bending method was applied to measure X-ray elastic constants(XEC) of (422) and (331) planes of TiN coating. Elastic Modulus and XECs of all the crystal planes were calculated by Kroner method. The results from the calculation and the experiment were compared. It is concluded that the XECs values of same film prepared by different techniques scatter a little because of the effects of stoichiometric proportion and microstructure of films.
Evaluation of Compressive Strength and Stiffness of Grouted Soils by Using Elastic Waves
In-Mo Lee
2014-01-01
Full Text Available Cement grouted soils, which consist of particulate soil media and cementation agents, have been widely used for the improvement of the strength and stiffness of weak ground and for the prevention of the leakage of ground water. The strength, elastic modulus, and Poisson’s ratio of grouted soils have been determined by classical destructive methods. However, the performance of grouted soils depends on several parameters such as the distribution of particle size of the particulate soil media, grouting pressure, curing time, curing method, and ground water flow. In this study, elastic wave velocities are used to estimate the strength and elastic modulus, which are generally obtained by classical strength tests. Nondestructive tests by using elastic waves at small strain are conducted before and during classical strength tests at large strain. The test results are compared to identify correlations between the elastic wave velocity measured at small strain and strength and stiffness measured at large strain. The test results show that the strength and stiffness have exponential relationship with elastic wave velocities. This study demonstrates that nondestructive methods by using elastic waves may significantly improve the strength and stiffness evaluation processes of grouted soils.
Zuhua Zhang
2016-08-01
Full Text Available The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm is considered. This critical void model is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.
Zhang, Zuhua; Wang, Hao
2016-08-01
The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.
Palchesko, Rachelle N; Zhang, Ling; Sun, Yan; Feinberg, Adam W
2012-01-01
Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.
Evaluation the Effects of Some Relevant Parameters on Elastic Modulus of Pumpkin Seed and Its Kernel
Mohammad Hossein Abbaspour-Fard
2012-01-01
Full Text Available The elastic modulus of two varieties of Iranian pumpkin seed and its kernel (namely, Zaria and Gaboor were evaluated as a function of size (large, medium, and small, loading rate (2, 5, 8, and 10 mm/min, and moisture content (4, 7.8, 14, and 20% d.b under quasistatic compression loading. The results showed that elastic modulus of pumpkin seed and its kernel decreased with increasing moisture content and also increasing loading rate, for the varieties under study. The average modulus of elasticity of pumpkin seed from 68.86 to 46.65 Mpa and from 97.14 to 74.93 Mpa was obtained for moisture levels ranging from 4 to 20%, for Zaria and Gaboor varieties, respectively. The elastic modulus of pumpkin seed decreased from 73.55 to 43.04 Mpa and from 101.83 to 71.32 Mpa with increasing loading rate from 2 to 10 mm/min for Zaria and Gaboor varieties, respectively.
MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE
Yanhui Huang,
2012-05-01
Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.
Rachelle N Palchesko
Full Text Available Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line and C2C12 (muscle cell line were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.
Influence of punch radius on elastic modulus of three-point bending tests
Pengliang Hou
2016-05-01
Full Text Available Three-point bending is one of the most common methods of studying the mechanical performance of materials. The influence of punch radius in the measurements is not considered in the previous studies. This article focuses on the influence of the punch radius on the elastic modulus. The experiment is set up to measure the elastic modulus of 6061 aluminum alloy (6061 Al and copper as the specimens, in which several different radii of punches are used. The maximum bending deflection of the middle point is 1.0 mm. Moreover, a finite element simulation is constructed to simulate the bending process of specimen, which is consistent with the experimental results. According to the results, the punch radius has affected the measurement of elastic modulus, and the elastic modulus, the contact length, and the peak load increase with the increase in the punch radius. Combining the experiment result (E1 and the standard result (E3 of Changchun research institute for testing machines, it is found that the appropriate punch radius is in the range from 2.5 to 3.0 mm for this experiment, when the specimen’s dimension is 30.0 mm × 6.0 mm × 1.0 mm.
Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites
Zhang, Xudong; Zong, Hongxiang; Cui, Lishan; Fan, Xueling; Ding, Xiangdong; Sun, Jun
2017-04-01
An open question is the underlying mechanisms for a recent discovered nanocomposite, which composed of shape memory alloy (SMA) matrix with embedded metallic nanowires (NWs), demonstrating novel mechanical properties, such as large quasi-linear elastic strain, low Young’s modulus and high yield strength. We use finite element simulations to investigate the interplay between the superelasticity of SMA matrix and the elastic-plastic deformation of embedded NWs. Our results show that stress transfer plays a dominated role in determining the quasi-linear behavior of the nanocomposite. The corresponding microstructure evolution indicate that the transfer is due to the coupling between plastic deformation within the NWs and martensitic transformation in the matrix, i.e., the martensitic transformation of the SMA matrix promotes local plastic deformation nearby, and the high plastic strain region of NWs retains considerable martensite in the surrounding SMA matrix, thus facilitating continues martensitic transformation in subsequent loading. Based on these findings, we propose a general criterion for achieving quasi-linear elasticity.
Tiryaki, Sebahattin; Aras, Uğur; Kalaycıoğlu, Hülya; Erişir, Emir; Aydın, Aytaç
2017-07-01
Determining the mechanical properties of particleboard has gained a great importance due to its increasing usage as a building material in recent years. This study aims to develop artificial neural network (ANN) and multiple linear regression (MLR) models for predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of particleboard depending on different pressing temperature, pressing time, pressing pressure and resin type. Experimental results indicated that the increased pressing temperature, time and pressure in manufacturing process generally improved the mechanical properties of particleboard. It was also seen that ANN and MLR models were highly successful in predicting the MOR and MOE of particleboard under given conditions. On the other hand, a comparison between ANN and MLR revealed that the ANN was superior compared to the MLR in predicting the MOR and MOE. Finally, the findings of this study are expected to provide beneficial insights for practitioners to better understand usability of such composite materials for engineering applications and to better assess the effects of pressing conditions on the MOR and MOE of particleboard.
Parametric studies on effective elastic modulus of nano-clay/polymer composites
Thakur, Arvind Kumar; Srinivas, J.
2016-04-01
This paper proposes a methodology of finding effective elastic properties of nanoclay-reinforced polymer composites with aligned clay particles. When interphase regions exist between nanoclay platelets and polymer, numerical homogenization is initially required to identify the properties of effective particle consisting of both clay and interface regions. Once the elastic properties of equivalent particle are obtained, Mori-Tanaka approach is employed to identify all the effective properties of resultant composite. The methodology is implemented with a modular based computer program developed in MATLAB and the variation of longitudinal modulus as a function of weight fraction of nanoclay, aspect ratio of fibers, number of stacks, nanoclay volume fraction etc is reported. The empirical results are validated with a numerical model developed in ANSYS using a representative volume element for prediction of the elastic modulus. Results are illustrated with two cases of exfoliated morphology.
Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš
2016-12-01
Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.
High elastic modulus nanoparticles: a novel tool for subfailure connective tissue matrix damage.
Empson, Yvonne M; Ekwueme, Emmanuel C; Hong, Jung K; Paynter, Danielle M; Kwansa, Albert L; Brown, Chalmers; Pekkanen, Allison M; Roman, Maren; Rylander, Nichole M; Brolinson, Gunnar P; Freeman, Joseph W
2014-09-01
Subfailure matrix injuries such as sprains and strains account for a considerable portion of ligament and tendon pathologies. In addition to the lack of a robust biological healing response, these types of injuries are often characterized by seriously diminished matrix biomechanics. Recent work has shown nanosized particles, such as nanocarbons and nanocellulose, to be effective in modulating cell and biological matrix responses for biomedical applications. In this article, we investigate the feasibility and effect of using high stiffness nanostructures of varying size and shape as nanofillers to mechanically reinforce damaged soft tissue matrices. To this end, nanoparticles (NPs) were characterized using atomic force microscopy and dynamic light scattering techniques. Next, we used a uniaxial tensile injury model to test connective tissue (porcine skin and tendon) biomechanical response to NP injections. After injection into damaged skin and tendon specimens, the NPs, more notably nanocarbons in skin, led to an increase in elastic moduli and yield strength. Furthermore, rat primary patella tendon fibroblast cell activity evaluated using the metabolic water soluble tetrazolium salt assay showed no cytotoxicity of the NPs studied, instead after 21 days nanocellulose-treated tenocytes exhibited significantly higher cell activity when compared with nontreated control tenocytes. Dispersion of nanocarbons injected by solution into tendon tissue was investigated through histologic studies, revealing effective dispersion and infiltration in the treated region. Such results suggest that these high modulus NPs could be used as a tool for damaged connective tissue repair.
Li, Ming; Zhao, Aiwu; Jiang, Rui; Wang, Dapeng; Li, Da; Guo, Hongyan; Tao, Wenyu; Gan, Zibao; Zhang, Maofeng
2011-02-01
We studied the influence of the elastic modulus on the gecko-inspired dry adhesion by regulating the elastic modulus of bulk polyurethane combined with changing the size of microarrays. Segmented polyurethane (PU) was utilized to fabricate micro arrays by the porous polydimethyl siloxane (PDMS) membrane molding method. The properties of the micro arrays, such as the elastic modulus and adhesion, were investigated by Triboindenter. The study demonstrates that bulk surfaces show the highest elastic modulus, with similar values at around 175 MPa and decreasing the arrays radius causes a significant decrease in E, down to 0.62 MPa. The corresponding adhesion experiments show that decrease of the elastic modulus can enhance the adhesion which is consistent with the recent theoretical models.
You, J.H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany)]. E-mail: jeong-ha.you@ipp.mpg.de; Hoeschen, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany)
2006-01-01
Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.
You, J. H.; Höschen, T.; Lindig, S.
2006-01-01
Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.
Prediction of the modulus of elasticity of Eucalyptus grandis through two nondestructive techniques
Pedro Henrique Gonzalez de Cademartori
Full Text Available The present study aimed to estimate the modulus of elasticity (MOE at static bending of Rose gum (Eucalyptus grandis heartwood and sapwood through two nondestructive techniques: ultrasound and stress wave. Sixty samples of heartwood and sapwood were prepared. Nondestructive tests were performed using ultrasound and stress wave timer equipment, while destructive tests were carried out in a universal machine through static bending tests. The main results showed that the heartwood presented better behavior than the sapwood in the non-destructive tests. However, the best model was obtained considering both wood types through the ultrasonic technique. Therefore, stress wave and ultrasonic techniques could be employed to estimate the modulus of elasticity of Rose gum wood.
Li, Jiankang; Li, Liang
2017-02-01
Geometric confinement is a promising method for the reconstruction of silk fibroin to form diversified structures with excellent mechanical properties. To accomplish geometric confinement, a water vapor assistant embossing process is used with porous anodic aluminum oxide templates, yielding silk fibroin nanopillars with diameters ranging from 40 nm to 130 nm. The elastic modulus of the regenerated silk fibroin nanopillars is investigated with atomic force microscopy nanoindentation analysis. Compared to films with the same treatment conditions, geometric confinement provided a twofold increase in elastic modulus in embossed silk fibroin nanopillars, indicating that β-sheet crystal ordering occurred during the water vapor assistant embossing process. These results demonstrate the feasibility and mechanical property enhancement of the embossing method to fabricate silk nanostructures, and will be useful in designing miniaturized devices.
Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment
Soomro, Muhammad Yousuf; Hussain, Ijaz; Bano, Nargis; Broitman, Esteban; Nur, Omer; Willander, Magnus
2012-02-01
We measure the elastic modulus of a single horizontal ZnO nanorod [NR] grown by a low-temperature hydrothermal chemical process on silicon substrates by performing room-temperature, direct load-controlled nanoindentation measurements. The configuration of the experiment for the single ZnO NR was achieved using a focused ion beam/scanning electron microscope dual-beam instrument. The single ZnO NR was positioned horizontally over a hole on a silicon wafer using a nanomanipulator, and both ends were bonded with platinum, defining a three-point bending configuration. The elastic modulus of the ZnO NR, extracted from the unloading curve using the well-known Oliver-Pharr method, resulted in a value of approximately 800 GPa. Also, we discuss the NR creep mechanism observed under indentation. The mechanical behavior reported in this paper will be a useful reference for the design and applications of future nanodevices.
Soares,Priscilla Barbosa Ferreira; Nunes,Sarah Arantes; Franco,Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa,Darceny; Soares, Carlos José
2014-01-01
The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardnes...
Strain-rate Dependence of Elastic Modulus Reveals Silver Nanoparticle Induced Cytotoxicity.
Caporizzo, Matthew Alexander; Roco, Charles M; Ferrer, Maria Carme Coll; Grady, Martha E; Parrish, Emmabeth; Eckmann, David M; Composto, Russell John
Force-displacement measurements are taken at different rates with an atomic force microscope to assess the correlation between cell health and cell viscoelasticity in THP-1 cells that have been treated with a novel drug carrier. A variable indentation-rate viscoelastic analysis, VIVA, is employed to identify the relaxation time of the cells that are known to exhibit a frequency dependent stiffness. The VIVA agrees with a fluorescent viability assay. This indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. By modelling the frequency dependence of the elastic modulus, the VIVA provides three metrics of cytoplasmic viscoelasticity: a low frequency modulus, a high frequency modulus and viscosity. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent twofold increase in the elastic modulus and cytoplasmic viscosity, while the cytoskeletal relaxation time remains unchanged. This is consistent with the known toxic mechanism of silver nanoparticles, where metabolic stress causes an increase in the rigidity of the cytoplasm. A variable indentation-rate viscoelastic analysis is presented as a straightforward method to promote the self-consistent comparison between cells. This is paramount to the development of early diagnosis and treatment of disease.
Chris L. de Korte
2013-03-01
Full Text Available Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.
Study of the Effect of Temperature Changes on the Elastic Modulus of Flexible Pavement Layers
Mohd Raihan Taha
2013-02-01
Full Text Available In general, the stiffness of flexible pavement is influenced by environmental changes, whereby temperature and rainfall affect the asphalt layer and non-asphalt layer, such as the subgrade, respectively. Normally, the effect of temperature on flexible pavement can be measured using two methods. The first is a destructive test whereby core samples are tested in a laboratory using a Universal Testing Machine (UTM. The second is a non-destructive in situ test using equipment such as a Falling Weight Deflectometer (FWD and Spectral Analysis of Surface Waves (SASW. This study was conducted to investigate the effect of temperature at different tensile levels on the Soekarno-Hatta and Purwakarta Cikampek roads in Bandung, West Java, Indonesia. It is observed that different tensile levels and testing methods result in various elastic modulus values of flexible pavement. The higher the temperature applied to the flexible pavement layer, the more the elastic modulus values decrease. In contrast, the lower the temperature imposed on the flexible pavement layer, the more the elastic modulus values increase. Different testing methods (FWD, UTM and SASW on the flexible pavement layer are also affected by temperature changes.
A mechanical model to compute elastic modulus of tissues for harmonic motion imaging.
Shan, Baoxiang; Pelegri, Assimina A; Maleke, Caroline; Konofagou, Elisa E
2008-07-19
Numerous experimental and computational methods have been developed to estimate tissue elasticity. The existing testing techniques are generally classified into in vitro, invasive in vivo and non-invasive in vivo. For each experimental method, a computational scheme is accordingly proposed to calculate mechanical properties of soft biological tissues. Harmonic motion imaging (HMI) is a new technique that performs radio frequency (RF) signal tracking to estimate the localized oscillatory motion resulting from a radiation force produced by focused ultrasound. A mechanical model and computational scheme based on the superposition principle are developed in this paper to estimate the Young's modulus of a tissue mimicking phantom and bovine liver in vitro tissue from the harmonic displacement measured by HMI. The simulation results are verified by two groups of measurement data, and good agreement is shown in each comparison. Furthermore, an inverse function is observed to correlate the elastic modulus of uniform phantoms with amplitude of displacement measured in HMI. The computational scheme is also implemented to estimate 3D elastic modulus of bovine liver in vitro.
Contraction stress, elastic modulus, and degree of conversion of three flowable composites.
Cadenaro, Milena; Codan, Barbara; Navarra, Chiara O; Marchesi, Giulio; Turco, Gianluca; Di Lenarda, Roberto; Breschi, Lorenzo
2011-06-01
The aim of this study was to measure the contraction stress of three flowable resin composites and to correlate the stress with the elastic modulus and the degree of conversion. One low-shrinkage (Venus Diamond Flow) and two conventional (Tetric EvoFlow and X-Flow) flowable composites were polymerized for 40s with a light-emitting diode (LED) curing unit. Contraction force was continuously recorded for 300s using a stress-analyser, and stress values were calculated at 40s and at 300s. The maximum stress rate was also calculated for each specimen. The elastic modulus of each composite was assayed using a biaxial flexural test, and degree of conversion was analysed with Raman spectroscopy. X-Flow exhibited higher stress values than the other tested materials. Venus Diamond Flow showed the lowest stress values at 40s and at 300s, and the lowest maximum stress rate. Stress values were correlated with elastic modulus but not with degree of conversion, which was comparable among all tested materials.
Elastic buckling strength of corroded steel plates
Ahmad Rahbar-Ranji
2013-02-01
Corrosion makes structures more vulnerable to buckling and yielding failures. It is common practice to assume a uniform thickness reduction for general corrosion. To estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required, since the actual corroded structures have irregular surfaces. Elastic buckling of simply supported rectangular corroded plates are studied with one- and both-sided irregular surfaces. Eigenvalue analysis by using ﬁnite element method (FEM) is employed for computing Euler stress. The inﬂuence of various geometric and corrosion characteristics are investigated and it is found that the aspect ratio of the plate, the average thickness diminution, the standard deviation of thickness diminution and the amount of corrosion loss have inﬂuence on the reduction of buckling strength of the corroded plates. Buckling strength of one- and both-sided corroded plates are the same. In plates with low value of aspect ratio, reduction of buckling strength is negligible. Reduction of buckling strength is more prominent in plates with higher aspect ratio. Reduction of buckling strength is very sensitive to the amount of corrosion loss; the higher the amount of corrosion loss, the more reduction of buckling strength. Reduction of buckling strength is less sensitive to the standard deviation of thickness diminution.
The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head.
Brown, T D; Vrahas, M S
1984-01-01
An experiment was undertaken to obtain approximate values for the intrinsic elastic modulus of subchondral bone. Shallow spherical caps, with uniform and incrementally controlled thickness, were machined from subchondral bone in the weight-bearing regions of 11 fresh-frozen normal femoral head autopsy specimens. Under application of polar point loads, the measured deflections were compared with a corresponding analytical shell solution, thus allowing back-calculation of the apparent modulus. Analogous tests were performed on similarly shaped specimens of stock Plexiglas of known modulus in order to estimate the precision of the testing method. The aggregate results for subchondral bone showed that its intrinsic stiffness correlated inversely with nominal shell thickness, but even the thinnest (1.0 mm thick) of these shells had an apparent modulus (mean = 1.372 GN/m2, SD = 414 MN/m2) well below that generally accepted for "pure" cortical bone (about 14 GN/m2). This stiffness deficit was very likely due to the presence of histologically evident marrow spaces. However, the low apparent modulus values measured in this study may not be fully representative of complex in vivo behavior, because in the testing of excised shells there is no radial compressive stress transfer to underlying cancellous bone.
3D mapping of elastic modulus using shear wave optical micro-elastography
Zhu, Jiang; Qi, Li; Miao, Yusi; Ma, Teng; Dai, Cuixia; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Zhou, Qifa; Chen, Zhongping
2016-10-01
Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map.
Chaves, J M; Florêncio, O; Silva, P S; Marques, P W B; Afonso, C R M
2015-06-01
Recent studies in materials for biomedical applications have focused on β-titanium alloys that are highly biocompatible, free of toxic elements and with an elastic modulus close to that of human bone (10-40 GPa). Beta Ti-xNb-3Fe (x=10, 15, 20 and 25 wt%) alloys were obtained by rapid solidification and characterized by anelastic relaxation measurements at temperatures between 140 K and 770 K, using a free-decay elastometer, as well as analysis by Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The observed stabilization of the β-phase with rising Nb content was linked to the strength of the relaxation peak around 570 K. The phase transformations detected in the anelastic relaxation spectra agreed with those observed in the DSC curves. However, the results from anelastic relaxation spectra provide more detailed information about the kinetics of phase transformations. At temperatures between 140 K and 300 K, there was an indication of a reversible transformation in the alloys studied. The elastic modulus measurements showed a hardening of the material, between 400 K and 620 K, related to the ω-phase precipitation. However, the starting temperature of ω-phase precipitation was clearly influenced by the Nb content, showing a shift to high temperature with increasing percentage of Nb. At temperatures above 620 K, a fall was observed in the dynamical elastic modulus, accompanied by a relaxation peak centered at 660 K, which was attributed to the growing α-phase arising from the ω-phase, which acts as a nucleation sites or from the decomposition of the metastable β-phase. XRD patterns confirmed the formation of β, α and ω phases after mechanical relaxation measurements. A predominant β phase with dendritic morphology was observed, which became more stable with 25 wt% Nb. The lowest elastic modulus was of 65 GPa obtained in the Ti-25Nb-3Fe alloy, representing a
Li, Guang-Rong; Lv, Bo-Wen; Yang, Guan-Jun; Zhang, Wei-Xu; Li, Cheng-Xin; Li, Chang-Jiu
2015-12-01
The elastic modulus of plasma-sprayed top coating plays an important role in thermal cyclic lifetime of thermally sprayed thermal barrier coatings (TBCs), since the thermal stress is determined by the substrate/coating thermal mismatch and the elastic modulus of top coating. Consequently, much attention had been paid to understanding the relationship between elastic modulus and lamellar structure of top coating. However, neglecting the intra-splat cracks connected with inter-splat pores often leads to poor prediction in in-plane modulus. In this study, a modified model taking account of intra-splat cracks and other main structural characteristics of plasma-sprayed yttria-stabilized zirconia coating was proposed. Based on establishing the relationship between elastic modulus and structural parameters of basic unit, effects of structural parameters on the elastic modulus of coatings were discussed. The predicted results are well consistent with experimental data on coating elastic modulus in both out-plane direction and in-plane direction. This study would benefit the further comprehensive understanding of failure mechanism of TBCs in thermal cyclic condition.
Akinkurolere Olufunke Olanike
2016-07-01
Full Text Available - In this experimental investigation, an attempt is made to report the comparative analysis of the modulus of rupture and the splitting tensile strength of recycled aggregate concrete. The two properties are usually used to estimate the tensile strength of concrete; however, they don’t usually yield the same results hence need to investigate each of the properties. Taguchi optimization technique was employed to reduce the number of trials needed to get the results. The results showed that the splitting tensile strength ranges between 60-80% of the modulus of rupture which is also known as the flexural strength.
A Comparative Study of Solutions Concerning Thick Elastic Plates on Bi-modulus Foundation
Ioana Vlad
2004-01-01
Full Text Available The classical bending theory of elastic plates is based upon the assumption that the internal moments are proportional to the curvatures of the median deformed surface. This theory does not include the effects of shear and normal pressure in the plate. The model of a bi-modulus foundation is a realistic generalization of the Winkler’s classical one and is widely used to represent the subgrade of railroad systems, airport lanes [1], [2]. The derived equation of elastic thick plates on bi-modulus foundation considers shear and normal stress as linear variable across the plate thickness. This paper presents numerical solutions for thick plate resting on bi-modulus subgrade. These solutions take into account the shear distortion, and they are compared to the solution obtained by Finite Element Analysis and with the Winkler’s model. Particular solutions for the rectangular plate of clamped boundary, for the hinged rectangular plate and for a semi-elliptical plate, are discussed. The numerical solutions consist of double power series and they were obtained based on the minimum of the total strain energy [1]. Parametric studies have been performed in order to emphasize the effects of the chosen foundation and that of the geometry.
Ptak, Arkadiusz; Takeda, Seiji; Nakamura, Chikashi; Miyake, Jun; Kageshima, Masami; Jarvis, Suzanne P.; Tokumoto, Hiroshi
2001-09-01
A modified atomic force microscopy (AFM) system, based on a force modulation technique, has been used to find an approximate value for the elastic modulus of a single peptide molecule directly from a mechanical test. For this purpose a self-assembled monolayer built from two kinds of peptides, reactive (able to anchor to the AFM tip) and nonreactive, was synthesized. In a typical experiment a single C3K30C (C=cysteine, K=lysine) peptide molecule was stretched between a Au(111) substrate and the gold-coated tip of an AFM cantilever to which it was attached via gold-sulfur bonds. The amplitude of the cantilever oscillations, due to an external force applied via a magnetic particle to the cantilever, was recorded by a lock-in amplifier and recalculated into stiffness of the stretched molecule. A longitudinal Young's modulus for the α-helix of a single peptide molecule and for the elongated state of this molecule has been estimated. The obtained values; 1.2±0.3 and 50±15 GPa, for the peptide α-helix and elongated peptide backbone, respectively, seem to be reasonable comparing them to the Young's modulus of protein crystals and linear organic polymers. We believe this research opens up a means by which scientists can perform quantitative studies of the elastic properties of single molecule, especially of biologically important polymers like peptides or DNA.
Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales.
Crichton, Michael L; Chen, Xianfeng; Huang, Han; Kendall, Mark A F
2013-03-01
The recent emergence of micro-devices for vaccine delivery into upper layers of the skin holds potential for increased immune responses using physical means to target abundant immune cell populations. A challenge in doing this has been a limited understanding of the skin elastic properties at the micro scale (i.e. on the order of a cell diameter; ~10 μm). Here, we quantify skin's elastic properties at a micro-scale by fabricating customised probes of scales from sub- to super-cellular (0.5 μm-20 μm radius). We then probe full thickness skin; first with force-relaxation experiments and subsequently by elastic indentations. We find that skin's viscoelastic response is scale-independent: consistently a ~40% decrease in normalised force over the first second, followed by further 10% reduction over 10 s. Using Prony series and Hertzian contact analyses, we determined the strain-rate independent elastic moduli of the skin. A high scale dependency was found: the smallest probe encountered the highest elastic modulus (~30 MPa), whereas the 20 μm radius probe was lowest (below 1 MPa). We propose that this may be a result of the load distribution in skin facilitated by the hard corneocytes in the outermost skin layers, and softer living cell layers below. Copyright © 2012 Elsevier Ltd. All rights reserved.
赵坪锐; 刘观; 胡佳
2014-01-01
依据梁端CRTS域型板式轨道的结构受力特征，采用梁模拟钢轨、轨道板和底座板，线性弹簧模拟扣件与CA砂浆的弹性作用，采用单向受压弹簧模拟滑动层与挤塑板的支撑作用，建立梁端轨道叠合梁计算模型，分析挤塑板弹性模量对无砟轨道承受轮载以及梁端位移时的受力变化规律。分析表明：由于梁端挤塑板弹性模量相对较低，列车通过时容易引起刚度不平顺、增大轨道受力，应适当提高挤塑板弹性模量；而梁端位移作用时，较大的挤塑板弹性模量则会引起较大的附加弯矩。综合考虑两方面作用，在常用32 m梁上，挤塑板弹性模量在10~50 MPa时，轨道受力状态最佳，其他梁型应根据实际梁端位移适当调整挤塑板弹性模量。%In this research, based on structural and mechanical characteristic of CRTS-II slab track at bridge beam end, a beam-track composite model at bridge beam end was established. In this model, the rail, track slab and base plate were assumed to be beam elements; the fastener and CA mortar were assumed to be linear springs so as to simulate their elastic effect;and the sliding layer and the extruded sheet were assumed to be uniaxial compression springs so as to simulate their supporting effect. Then the change rules of the action effects of both the wheel load and bridge beam end displacement were analyzed with the change of the elastic modulus of the extruded sheet. The analysis shows that: because of the lower elastic modulus of the extruded sheet, there will be uneven stiffness and increased rail stress when train passing through, so the elastic modulus of extruded sheet should be increased appropriately;and on the other hand, because of the higher elastic modulus of the extruded sheet, there will be additional bending moment when displacement angle appearing at bridge beam end. Then this research comes to the conclusion:according to a comprehensive
Wear, strength, modulus and hardness of CAD/CAM restorative materials.
Lawson, Nathaniel C; Bansal, Ritika; Burgess, John O
2016-11-01
To measure the mechanical properties of several CAD/CAM materials, including lithium disilicate (e.max CAD), lithium silicate/zirconia (Celtra Duo), 3 resin composites (Cerasmart, Lava Ultimate, Paradigm MZ100), and a polymer infiltrated ceramic (Enamic). CAD/CAM blocks were sectioned into 2.5mm×2.5mm×16mm bars for flexural strength and elastic modulus testing and 4mm thick blocks for hardness and wear testing. E.max CAD and half the Celtra Duo specimens were treated in a furnace. Flexural strength specimens (n=10) were tested in a three-point bending fixture. Vickers microhardness (n=2, 5 readings per specimen) was measured with a 1kg load and 15s dwell time. The CAD/CAM materials as well as labial surfaces of human incisors were mounted in the UAB wear device. Cusps of human premolars were mounted as antagonists. Specimens were tested for 400,000 cycles at 20N force, 2mm sliding distance, 1Hz frequency, 24°C, and 33% glycerin lubrication. Volumetric wear and opposing enamel wear were measured with non-contact profilometry. Data were analyzed with 1-way ANOVA and Tukey post-hoc analysis (alpha=0.05). Specimens were observed with SEM. Properties were different for each material (pCAD and Celtra Duo were generally stronger, stiffer, and harder than the other materials. E.max CAD, Celtra Duo, Enamic, and enamel demonstrated signs of abrasive wear, whereas Cerasmart, Lava Ultimate, Paradigm MZ100 demonstrated signs of fatigue. Resin composite and resin infiltrated ceramic materials have demonstrated adequate wear resistance for load bearing restorations, however, they will require at least similar material thickness as lithium disilicate restorations due to their strength. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Elastic metamaterials with simultaneously negative effective shear modulus and mass density.
Wu, Ying; Lai, Yun; Zhang, Zhao-Qing
2011-09-02
We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.
Elastic superlattices with simultaneously negative effective mass density and shear modulus
Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.
2013-03-01
We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.
Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density
Wu, Ying
2011-09-02
We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.
Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles
Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.
2013-01-01
The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302
Berteau, Jean-Philippe; Baron, Cécile; Pithioux, Martine; Launay, Franck; Chabrand, Patrick; Lasaygues, Philippe
2014-07-01
The assessment of elastic properties in children's cortical bone is a major challenge for biomechanical engineering community, more widely for health care professionals. Even with classical clinical modalities such as X-ray tomography, MRI, and/or echography, inappropriate diagnosis can result from the lack of reference values for children bone. This study provides values for elastic properties of cortical bone in children using ultrasonic and mechanical measurements, and compares them with adult values. 18 fibula samples from 8 children (5-16 years old, mean age 10.6 years old ±4.4) were compared to 16 fibula samples from 3 elderly adults (more than 65 years old). First, the dynamic modulus of elasticity (Edyn) and Poisson's ratio (ν) are evaluated via an ultrasonic method. Second, the static modulus of elasticity (Esta) is estimated from a 3-point microbending test. The mean values of longitudinal and transverse wave velocities measured at 10 MHz for the children's samples are respectively 3.2mm/μs (±0.5) and 1.8mm/μs (±0.1); for the elderly adults' samples, velocities are respectively 3.5mm/μs (±0.2) and 1.9 mm/μs (±0.09). The mean Edyn and the mean Esta for the children's samples are respectively 15.5 GPa (±3.4) and 9.1 GPa (±3.5); for the elderly adults' samples, they are respectively 16.7 GPa (±1.9) and 5.8 GPa (±2.1). Edyn, ν and Esta are in the same range for children's and elderly adults' bone without any parametric statistical difference; a ranking correlation between Edyn and Esta is shown for the first time.
Lithium: Measurement of Young's Modulus and Yield Strength
Ryan P Schultz
2002-11-07
The Lithium Collection Lens is used for anti-proton collection. In analyzing the structural behavior during operation, various material properties of lithium are often needed. properties such as density, coefficient of thermal expansion, thermal conductivity, specific heat, compressability, etc.; are well known. However, to the authors knowledge there is only one published source for Young's Modulus. This paper reviews the results from the testing of Young's Modulus and the yield strength of lithium at room temperature.
Guz, Nataliia; Dokukin, Maxim; Kalaparthi, Vivekanand; Sokolov, Igor
2014-01-01
Here we investigated the question whether cells, being highly heterogeneous objects, could be described with the elastic modulus (effective Young’s modulus) in a self-consistent way. We performed a comparative analysis of the elastic modulus derived from the indentation data obtained with atomic force microscopy (AFM) on human cervical epithelial cells (both normal and cancerous). Both sharp (cone) and dull (2500-nm radius sphere) AFM probes were used. The indentation data were processed through different elastic models. The cell was approximated as a homogeneous elastic medium that had either 1), smooth hemispherical boundary (Hertz/Sneddon models) or 2), the boundary covered with a layer of glycocalyx and membrane protrusions (“brush” models). Consistency of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrated that only one model showed consistency in treating cells as a homogeneous elastic medium, namely, the brush model, when processing the indentation data collected with the dull AFM probe. The elastic modulus demonstrated strong depth dependence in all models: Hertz/Sneddon models (no brush taken into account), and when the brush model was applied to the data collected with sharp conical probes. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus, used in a self-consistent way, when using the brush model to analyze data collected with a dull AFM probe. The nature of these results is discussed. PMID:25099796
Bending elasticity modulus of giant vesicles composed of aeropyrum pernix k1 archaeal lipid.
Genova, Julia; Ulrih, Nataša Poklar; Kralj-Iglič, Veronika; Iglič, Aleš; Bivas, Isak
2015-03-26
Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl) inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon flash lamp was implemented to remove the blur effect due to the finite integration time of the camera and to obtain an instant picture of the fluctuating vesicle shape. The mean weighted value of the bending elasticity modulus kc of the archaeal membrane determined from the measurements meeting the entire set of qualification criteria was (1.89 ± 0.18) × 10-19 J, which is similar to the values obtained for a membrane composed of the eukaryotic phospholipids SOPC (1.88 ± 0.17) × 10-19 J and POPC (2.00 ± 0.21) ´ 10-19 J. We conclude that membranes composed of archaeal lipids isolated from Aeropyrum pernix K1 cells have similar elastic properties as membranes composed of eukaryotic lipids. This fact, together with the importance of the elastic properties for the normal circulation through blood system, provides further evidence in favor of expectations that archaeal lipids could be appropriate for the design of drug delivery systems.
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; Mehner, A.; Lucca, D. A.
2017-01-01
Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films. PMID:28071696
Vatankhah, Elham; Semnani, Dariush; Prabhakaran, Molamma P; Tadayon, Mahdi; Razavi, Shahnaz; Ramakrishna, Seeram
2014-02-01
Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.
The effect of elastic modulus and friction coefficient on rubber tube sealing performance
Li, Zhimiao; Xu, Siyuan; Ren, Fushen; Liu, Jubao
2015-03-01
The packer is the key element in separating geosphere layers of water injection, water plugging and fracturing operations in the oilfield. The sealing ability of the packer is depending on the contact pressure between rubber tube and the casing. The circumferential strain of casing wall was tested by the strain gauge to get the contact pressure distribution along axial direction of the tube. The friction force between the casing and the rubber tube was taken by the pressure sensor in compression process. Under the 20,60 and 100 degrees Celsius conditions, the friction forces and the contact pressure distribution were taken in work condition of single rubber tube, double rubber tubes and combination rubber tubes after oil immersion .The result shows that elastic modulus of rubber tube has little effect on the friction force and contact pressure. With elastic modulus decreasing, the friction forces has gradually decreasing trend; The friction coefficient has much impact on friction force: the friction forces under the condition of dry friction and wet friction are respectively equivalent to 48.27% and 5.38% axial compression forces. At wet friction condition, the contact pressure distribution is more uniform and the sealing effect is better.
Silver, Frederick H; Bradica, Gino; Tria, Alfred
2002-03-01
The viscoelastic mechanical properties of normal and osteoarthritic articular were analyzed based on data reported by Kempson [in: Adult Articular Cartilage (1973)] and Silver et al. (Connect. Tissue Res., 2001b). Results of the analysis of tensile elastic stress-strain curves suggest that the elastic modulus of cartilage from the superficial zone is approximately 7.0 GPa parallel and 2.21 GPa perpendicular to the cleavage line pattern. Collagen fibril lengths in the superficial zone were found to be approximately 1265 microm parallel and 668 microm perpendicular to the cleavage line direction. The values for the elastic modulus and fibril lengths decreased with increased extent of osteoarthritis. The elastic modulus of type II collagen parallel to the cleavage line pattern in the superficial zone approaches that of type I collagen in tendon, suggesting that elastic energy storage occurs in the superficial zone due to the tensile pre-tension that exists in this region. Decreases in the elastic modulus associated with osteoarthritis reflect decreased ability of cartilage to store elastic energy, which leads to cartilage fibrillation and fissure formation. We hypothesize that under normal physiological conditions, collagen fibrils in cartilage function to store elastic energy associated with weight bearing and locomotion. Enzymatic cleavage of cartilage proteoglycans and collagen observed in osteoarthritis may lead to fibrillation and fissure formation as a result of impaired energy storage capability of cartilage.
Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation
Epshtein, Svetlana A.; Borodich, Feodor M.; Bull, Steve J.
2015-04-01
The experimental and numerical techniques for evaluation of mechanical properties of highly inhomogeneous materials are discussed. The techniques are applied to coal as an example of such a material. Characterization of coals is a very difficult task because they are composed of a number of distinct organic entities called macerals and some amount of inorganic substances along with internal pores and cracks. It is argued that to avoid the influence of the pores and cracks, the samples of the materials have to be prepared as very thin and very smooth sections, and the depth-sensing nanoindentation (DSNI) techniques has to be employed rather than the conventional microindentation. It is shown that the use of the modern nanoindentation techniques integrated with transmitted light microscopy is very effective for evaluation of elastic modulus and hardness of coal macerals. However, because the thin sections are glued to the substrate and the glue thickness is approximately equal to the thickness of the section, the conventional DSNI techniques show the effective properties of the section/substrate system rather than the properties of the material. As the first approximation, it is proposed to describe the sample/substrate system using the classic exponential weight function for the dependence of the equivalent elastic contact modulus on the depth of indentation. This simple approach allows us to extract the contact modulus of the material constitutes from the data measured on a region occupied by a specific component of the material. The proposed approach is demonstrated on application to the experimental data obtained by Berkovich nanoindentation with varying maximum depth of indentation.
Kim, J.T.; Hong, S.H.; Park, H.J.; Park, G.H. [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Suh, J.Y. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoungbuk-gu, Seoul 136-791 (Korea, Republic of); Park, J.M., E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, K.B., E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)
2015-10-25
In this study, we explore the microstructural modulation and mechanical properties of Fe–Nb–B ultrafine composites by the addition of boron. According to the evolution of microstructure, mechanical properties including yield strength and plastic strain were significantly changed. With increase of boron content, Fe–B type compounds were newly formed and eutectic structured matrix was concurrently altered. Newly formed phases with high hardness/elastic modulus leads to considerably increase the yield strength up to 3110 MPa but macroscopic plasticity is deteriorated inadequately. To understand the origin of critically changed macroscopic mechanical properties, the values of hardness and elastic modulus obtained from nanoindentation test were plotted and demonstrated as a contour map. The structural characterization and nano-scale mechanical analysis are capable of providing the clear evidence to understand the relationship between microstructure and mechanical properties of the ultrafine multi-phase composites. - Highlights: • Fe–Nb–B heterogeneous ultrafine eutectic composites. • Nano-scale mechanical analysis has been performed by nanoindentation test. • Relationship between microstructural heterogeneity and mechanical coherency. • Hardness and elastic modulus were plotted as a mechanical contour map.
Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki
2017-07-01
Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Hio-Teng Leong
Full Text Available Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87-0.97 and inter-observer (ICC = 0.78-0.83 reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders.
Gömze, L. A.; Gömze, L. N.
2017-02-01
Materials with different crystalline and morphological compositions have different chemical, physical, mechanical and rheological properties, including wear protection, melting temperature, module of elasticity and viscosity. Examining the material structures and behaviors of differentceramic bodies and CMCs under high speed collisions in several years the authors have understood the advantages of hetero-modulus and hetero-viscous complex material systems to absorb and dissipate the kinetic energy of objects during high speed collisions. Applying the rheo-mechanical principles the authors successfully developed a new family of hetero-modulus and hetero-viscous alumina matrix composite materials with extreme mechanical properties including dynamic strength. These new corundum-matrix composite materials reinforced with Si2ON 2, Si3N4 , SiAlON and AlN submicron and nanoparticles have excellent dynamic strength during collisions with high density metallic bodies with speeds about 1000 m/sec or more. At the same time in the alumina matrix composites can be observed a phase transformation of submicron and nanoparticles of alpha and beta silicone-nitride crystals into cubicc-Si3N4 diamond-like particles can be observed, when the high speed collision processes are taken place in vacuum or oxygen-free atmosphere. Using the rheological principles and the energy engorgement by fractures, heating and melting of components the authors successfully developed several new hetero-modulus, hetero-viscous and hetero-plastic complex materials. These materials generally are based on ceramic matrixes and components having different melting temperatures and modules of elasticity from low values like carbon and light metals (Mg, Al, Ti, Si) up to very high values like boride, nitride and carbide ceramics. Analytical methods applied in this research were scanning electron microscopy, X-ray diffractions and energy dispersive spectrometry. Digital image analysis was applied to microscopy
Dutta, Debaditya; Lee, Kee-Won; Allen, Robert A; Wang, Yadong; Brigham, John C; Kim, Kang
2013-11-01
Mechanical strength is a key design factor in tissue engineering of arteries. Most existing techniques assess the mechanical property of arterial constructs destructively, leading to sacrifice of a large number of animals. We propose an ultrasound-based non-invasive technique for the assessment of the mechanical strength of engineered arterial constructs. Tubular scaffolds made from a biodegradable elastomer and seeded with vascular fibroblasts and smooth muscle cells were cultured in a pulsatile-flow bioreactor. Scaffold distension was computed from ultrasound radiofrequency signals of the pulsating scaffold via 2-D phase-sensitive speckle tracking. Young's modulus was then calculated by solving the inverse problem from the distension and the recorded pulse pressure. The stiffness thus computed from ultrasound correlated well with direct mechanical testing results. As the scaffolds matured in culture, ultrasound measurements indicated an increase in Young's modulus, and histology confirmed the growth of cells and collagen fibrils in the constructs. The results indicate that ultrasound elastography can be used to assess and monitor non-invasively the mechanical properties of arterial constructs. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
A β-type TiNbZr alloy with low modulus and high strength for biomedical applications
Qingkun Meng
2014-04-01
Full Text Available The effect of thermo-mechanical treatment on the mechanical properties of a novel β-type Ti–36Nb–5Zr (wt% alloy has been investigated. The solution treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa. After cold rolling at a reduction of 87.5% and subsequent annealing treatment at 698 K for 25 min, a fine microstructure with nanosized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 720 MPa and a ultimate tensile strength of 860 MPa. In spite of the formation of α precipitates, the β-stabilizers are not enriched in the parent β matrix due to the short duration and low temperature of the thermal treatment, resulting in a low chemical stability of β phase. The low stability of β phase and the small volume fraction of α precipitates produce a low Young׳s modulus of 48 GPa. Such an excellent combination of low elastic modulus and high strength in mechanical properties indicates great potential for biomedical applications.
Aβ-type TiNbZr alloy with low modulus and high strength for biomedical applications
Qingkun Meng; Shun Guo; Qing Liu; Liang Hu; Xinqing Zhao
2014-01-01
The effect of thermo-mechanical treatment on the mechanical properties of a novelβ-type Ti-36Nb-5Zr (wt%) alloy has been investigated. The solution treated alloy consists of β and α″phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa). After cold rolling at a reduction of 87.5% and subsequent annealing treatment at 698 K for 25 min, a fine microstructure with nanosized α precipitates distributed in smallβgrains as well as high density of dislocations was obtained to achieve a yield strength of 720 MPa and a ultimate tensile strength of 860 MPa. In spite of the formation ofαprecipitates, theβ-stabilizers are not enriched in the parentβmatrix due to the short duration and low temperature of the thermal treatment, resulting in a low chemical stability ofβphase. The low stability ofβphase and the small volume fraction ofαprecipitates produce a low Young's modulus of 48 GPa. Such an excellent combination of low elastic modulus and high strength in mechanical properties indicates great potential for biomedical applications.
Berdova, Maria; Liu, Xuwen; Franssila, Sami, E-mail: sami.franssila@aalto.fi [Department of Materials Science and Engineering, Aalto University, 02150 Espoo (Finland); Wiemer, Claudia; Lamperti, Alessio; Tallarida, Grazia; Cianci, Elena [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Fanciulli, Marco [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB), Italy and Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, 20126 Milano (Italy)
2016-09-15
The investigation of mechanical properties of atomic layer deposition HfO{sub 2} films is important for implementing these layers in microdevices. The mechanical properties of films change as a function of composition and structure, which accordingly vary with deposition temperature and post-annealing. This work describes elastic modulus, hardness, and wear resistance of as-grown and annealed HfO{sub 2}. From nanoindentation measurements, the elastic modulus and hardness remained relatively stable in the range of 163–165 GPa and 8.3–9.7 GPa as a function of deposition temperature. The annealing of HfO{sub 2} caused significant increase in hardness up to 14.4 GPa due to film crystallization and densification. The structural change also caused increase in the elastic modulus up to 197 GPa. Wear resistance did not change as a function of deposition temperature, but improved upon annealing.
Klöffel, Tobias; Bitzek, Erik; Meyer, Bernd
2015-06-01
Experimental and theoretical studies on nanowires have reported a size-dependence of the Young׳s modulus in the axial direction, which has been attributed to the increasing influence of surface stresses with decreasing wire diameter. Internal interfaces and their associated interface stresses could lead to similar changes in the elastic properties. In Kobler et al. [1], however, we reported results from atomistic calculations which showed for Ag that twin boundaries have a negligible effect on the Young׳s modulus. Here, we present data of density-functional theory calculations of elastic constants and Young׳s modulus for defect-free bulk Ag as well as for bulk Ag containing dense arrays of twin boundaries. It is shown that rigorous convergence tests are required in order to be able to deduce changes in the elastic properties due to bulk defects in a reliable way.
Elastic modulus of LaFe{sub 4}Sb{sub 12}
Ishii, I. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)], E-mail: ishii@hiroshima-u.ac.jp; Higaki, H.; Morita, S. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Mori, I.; Sugawara, H. [Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Suzuki, T. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)
2008-04-01
In filled skutterudite compounds and clathrate compounds, guest atoms, which are accommodated in polyhedral cages, exhibit an anharmonic oscillation so-called the rattling motion. The rattling motion is suggested by inelastic neutron scattering experiments in filled skutterudite compound LaFe{sub 4}Sb{sub 12}. To investigate an influence of rattling motion of La atoms to the lattice system, we have measured temperature dependence of elastic modulus C{sub 44} on a LaFe{sub 4}Sb{sub 12} single-crystalline sample in the T range between 4.2 and 150 K for ultrasonic frequencies from 30 to 220 MHz. We found ultrasonic frequency dependence in C{sub 44}, suggesting the rattling motion of La atoms between 30 and 80 K. We obtained a relaxation time 3.1x10{sup -11}s and an excitation energy {approx}300K of the rattling motion.
Kim, Wansun; Lee, Inhwa; Kim, Dong Yoon; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Park, Weon Seo; Kim, Taek-Soo
2017-05-01
To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.
Study on Attenuation, Modulus of Elasticity and Nonlinearity in Thermowood Using Ultrasound
Hæggström, E.; Wallin, A.; Hoffren, H.; Hassinen, T.; Viitaniemi, P.
2005-04-01
We determined ultrasonically the attenuation, modulus of elasticity (MOE), and nonlinearity parameter (B/A) of dry defect-free thermally modified wood samples ("thick" 10 × 50 × 100 mm3 and "thin" 2 × 40 × 150 mm3) of Finnish pine, Pinus Sylvestris, as a function of treatment temperature (60-240 °C, three hours in protective water steam). The samples were cut as radial-tangential (RT) planes, and as longitudinal-radial (LR) planes. Two distinct regions of change in mechanical parameters were seen: one around 140 C where both the linear and nonlinear parameters increased and one around 230 C where the mechanical parameters decreased. These treatment temperatures thus serves as candidates for quality class delimiters for these soft wood samples.
Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel
2014-04-22
A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.
Day, J; Ding, Ming; van der Linden, JC
2001-01-01
In osteoarthritis, one postulate is that changes in the mechanical properties of the subchondral bone layer result in cartilage damage. The goal of this study was to examine changes in subchondral trabecular bone properties at the calcified tissue level in the early stages of cartilage damage....... Finite element models were constructed from microCT scans of trabectilar bone from the proximal tibia of donors with mild cartilage damage and from normal donors. In the donors with cartilage damage, macroscopic damage was present only in the medial compartment. The effective tissue elastic moduli were...... determined using a combination of finite element models and mechanical testing. The bone tissue modulus was reduced by 60% in the medial condyle of the cases with cartilage damage compared to the control specimens. Neither the presence of cartilage damage nor the anatomic site (medial vs. lateral) affected...
Yoneda, Akira; Fukui, Hiroshi; Gomi, Hitoshi; Kamada, Seiji; Xie, Longjian; Hirao, Naohisa; Uchiyama, Hiroshi; Tsutsui, Satoshi; Baron, Alfred Q. R.
2017-09-01
We measured the elasticity of single crystal gold (Au) and its lattice parameters under high pressure using inelastic X-ray scattering (IXS). The elastic moduli were obtained at five pressure points between 0 and 20 GPa. The pressure variation of the bulk modulus displays anomalous behavior, being nearly constant up to ˜5 GPa, and then steeply increasing at higher pressure. A similar anomaly is observed in first-principles calculations. An absolute pressure scale was derived by direct numerical integration of the bulk modulus over volume change. This yields a scale that gives slightly lower pressure values than those of previous work, about 5-10% lower at ˜20 GPa.
Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation.
Wu, Yan; Wang, Siqun; Zhou, Dingguo; Xing, Cheng; Zhang, Yang; Cai, Zhiyong
2010-04-01
Agricultural biomaterials such as crop stalks are natural sources of cellulosic fiber and have great potential as reinforced materials in bio-composites. In order to evaluate their potential as materials for reinforcement, the nano-mechanical properties of crop-stalk cell walls, i.e. those of cotton (Gossypium herbaceu) stalk, soybean (Glycine max) stalk, cassava (Manihot esculent) stalk, rice (Oryza sativa L.) straw, and wheat (Triticum aestivum L.) straw, were investigated by means of nano-indentation and atomic force microscopy (AFM). The elastic modulus of wheat straw was found to be 20.8 GPa, which was higher than that of the other four crops. The highest hardness was observed in cotton stalk at 0.85 GPa. The elastic moduli of the crop stalks were lower than those of most of the hardwood species, but higher than that of some softwoods and of lyocell fiber. The mean value of the hardness of the five crop stalks' cell walls was higher than those of wood or lyocell fiber.
Tobias Klöffel
2015-06-01
Here, we present data of density-functional theory calculations of elastic constants and Young׳s modulus for defect-free bulk Ag as well as for bulk Ag containing dense arrays of twin boundaries. It is shown that rigorous convergence tests are required in order to be able to deduce changes in the elastic properties due to bulk defects in a reliable way.
Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals
Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)
2011-10-21
Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.
Static modulus of elasticity of concrete measured by the ultrasonic method
Sena Rodrigues, S.
2003-12-01
Full Text Available Lately, a huge number of accidents caused by problems found in the durability of concrete structures due to inappropriate project design, lack of control of quality during the project s execution, inadequate maintenance practices and an aggressive environment has been reported. This finding has required from the professionals constant inspections and evaluations of the real conditions of all concrete structures. In order to perform those inspections, one should know not only the elastic modulus to analyze the concrete structural behaviour but also to investigate its performance, since the strains may yield cracks able to compromise the durability- of structures. Non-destructive testing techniques, particularly the ultrasonic testing, are performed to evaluate and determine the quality of a concrete structure or element. Currently, such essays have been widely researched and analyzed all over the world because they enable the examination of structures without damaging them. The purpose of the present study was to correlate the ultrasonic pulse velocity and the elastic modulus of several concrete specimens molded with a range of water-cement ratios, different kinds of aggregates and curing methods. All the concrete specimens were tested in different ages to determine the pulse velocity and the static modulus of elasticity standardized according to KBR 8522, through mechanical extensometers, electrical strain gauge and LVTD inductive transducer.
Recientemente se ha registrado un gran número de accidentes causados por problemas relacionados con la durabilidad de las estructuras de hormigón y debidos a un inadecuado proyecto de diseño, ausencia de control de calidad durante la ejecución del proyecto, prácticas inadecuadas de construcción y un ambiente agresivo. Este hallazgo ha dado lugar a que los ingenieros realicen constantes inspecciones y evaluaciones de la condición real de todas las estructuras de hormigón. Para llevar a cabo
Determining the elastic modulus of thin films using a buckling-based method: computational study
Zheng Xiupeng; Cao Yanping; Li Bo; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Jiang Hanqing [Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287 (United States); Huang, Yonggang Y, E-mail: caoyanping@tsinghua.edu.c, E-mail: fengxq@tsinghua.edu.c [Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)
2009-09-07
The buckling mode of a thin film lying on a soft substrate has been used to determine the elastic modulus of thin films and one-dimensional objects (e.g. nanowires and nanotubes). In this paper, dimensional analysis and three-dimensional nonlinear finite element computations have been made to investigate the buckling of a film with finite width bonded to a compliant substrate. Our study demonstrates that the effect of Poisson's ratio of the film can be neglected when its width-thickness ratio is smaller than 20. For wider films, omitting the influence of Poisson's ratio may lead to a significant systematic error in the measurement of the Young's modulus and, therefore, the film should be treated as a plate. It is also found that the assumption of the uniform interfacial normal stress along the width of the film made in the theoretical analysis does not cause an evident error, even when its width is comparable to its thickness. Based on the computational results, we further present a simple expression to correlate the buckling wavelength with the width and thickness of the film and the material properties (Young's moduli and Poisson's ratios) of the film and substrate, which has a similar form to that in the classical plane-strain problem. The fundamental solutions reported here are not only very accurate in a broad range of geometric and material parameters but also convenient for practical use since they do not involve any complex calculation.
2008-01-01
The elastic-plastic indentation properties of materials with varying ratio of hardness to Young's modulus (H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pileup and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.
Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza
2014-10-01
There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.
Impact Of Elastic Modulus Degradation On Springback In Sheet Metal Forming
Halilovič, Miroslav; Vrh, Marko; Štok, Boris
2007-05-01
Strain recovery after removal of forming loads, commonly defined as springback, is of great concern in sheet metal forming, in particular with regard to proper prediction of the final shape of the part. To control the problem a lot of work has been done, either by minimizing the springback on the material side or by increasing the estimation precision in corresponding process simulations. Unfortunately, by currently available software springback still cannot be adequately predicted, because most analyses of springback are using linear, isotropic and constant Young's modulus and Poisson's ratio. But, as it was measured and reported, none of it is true. The aim of this work is to propose an upgraded mechanical model which takes evolution of damage and related orthotropic stiffness degradation into account. Damage is considered by inclusion of ellipsoidal cavities, and their influence on the stiffness degradation is taken in accordance with the Mori-Tanaka theory, adopting the GTN model for plastic flow. In order to improve the numerical springback prediction, two major things are important: first, the correct evaluation of the stress-strain state at the end of the forming process, and second, correctness of the elastic properties used in the elastic relaxation analysis. Since in modelling of the forming process we adopt a damage constitutive model with orthotropic stiffness degradation considered, a corresponding damage parameters identification upon specific experimental tests data must be performed first, independently of the metal forming modelling. An improved identification of material parameters, which simultaneously considers tensile test results with different type of specimens and using neural network, is proposed. With regard to the case in which damage in material is neglected it is shown in the article how the springback of a formed part differs, when we take orthotropic damage evolution into consideration.
Elastic modulus in rigid Al{sub 2}O{sub 3}/ZrO{sub 2} ceramic laminates
Moya, J.S.; Sanchez-Herencia, J.A.; Bartolome, J.F. [CSIC, Madrid (Spain). Inst. de Ciencia de Materiales; Tanimoto, T. [Shonan Inst. of Tech., Fujisawa, Kanagawa (Japan)
1997-10-01
In previous works it has been shown that by making a three-layer composite in which the central region contains the matrix oxide and stabilized zirconia and the surface layers contain the matrix oxide and unstabilized zirconia, strength can be substantially enhanced relative to the monolithic materials containing the oxide matrix and either stabilized or unstabilized zirconia. The magnitude of the surface compressive stresses can be varied controlling the thickness of the outer layers and by proper thermal treatment in which the relative amounts of the monoclinic and tetragonal phases in the outer layers are controlled or by varying the volume fraction of total zirconia in the component. Often, the residual stresses are tailored to obtain high surface compression and a moderate bulk tension. In the present investigation, the authors have studied the effects of macroscopic residual stresses on stress intensities in the different layers of the Al{sub 2}O{sub 3}/ZrO{sub 2} laminates and the influence of the layered design on the elastic modulus of these materials.
On the nontrivial wave-vector dependence of the elastic modulus of glasses
Baldi, Giacomo; Giordano, Valentina M.; Ruta, Beatrice; Monaco, Giulio
2016-04-01
Recent theoretical models for the vibrations in glasses assume that the complex elastic modulus depends on frequency but not on the wave vector, q . This assumption translates in a simple q dependence of the dynamic structure factor, which can be experimentally tested. Following the suggestion of a recent paper [U. Buchenau, Phys. Rev. E 90, 062319 (2014), 10.1103/PhysRevE.90.062319], we present here a new analysis, performed in q space, of inelastic x-ray scattering data of supercooled silica. The outcome of the analysis is compared to the more common approach in the frequency domain and indicates that the mentioned theoretical assumption is consistent with the data only below the boson peak frequency. At higher frequencies it gives rise to a breakdown of the classical second moment sum rule. This violation arises from the underlying assumption of the presence of a single excitation in the spectra. A comparison with the vibrational dynamics of α -cristobalite suggests, on the contrary, that in the terahertz frequency domain the inelastic spectrum of the glass gains contributions from both acousticlike and opticlike modes. A microscopic theory of the vibrations in glasses cannot neglect the medium range order in their structure, which gives rise to dispersion curves within a pseudo-Brillouin zone.
The effect of three-dimensional postural change on shear elastic modulus of the iliotibial band.
Tateuchi, Hiroshige; Shiratori, Sakiko; Ichihashi, Noriaki
2016-06-01
To understand and treat iliotibial band (ITB) syndrome, caused by excessive compression between the ITB and lateral femoral condyle, it is important to identify factors contributing to an increase in ITB stiffness. The purpose of this study was to clarify the factors that contribute to an increase in ITB stiffness by examining the relationship between three-dimensional postural changes and ITB stiffness. Fourteen healthy individuals performed one-leg standing under 7 conditions (including normal one-leg standing as a control condition) in which the pelvic position was changed in three planes. The shear elastic modulus in the ITB was measured using shear-wave elastography, as a measure of ITB stiffness. The three-dimensional joint angles and external joint moments in the hip and knee joints were also measured to confirm the changes in joint angles and external load. Compared to the normal one-leg standing condition, ITB stiffness was significantly increased in the pelvic posterior tilted position (i.e. hip extension), contralateral pelvic dropped position (i.e. hip adduction), and contralateral pelvic posterior rotated position (i.e. hip external rotation). The findings suggest that interventions to reduce hip extension, adduction, and external rotation might be useful if these excessive positional changes are detected in patients with ITB syndrome.
Determination of the elastic modulus of fly ash-based stabilizer applied in the trackbed
Lojda, Vít; Lidmila, Martin; Pýcha, Marek
2017-09-01
This paper describes a unique application of a fly ash-based stabilizer in the trackbed of a railway main line. The key goals of the stabilizer application are to protect the subgrade against the ingress of rain water, to increase the frost resistance and to remediate the natural ground constituted of weathered rock. The stabilizer was designed as a mixture of fly ash, generated as a waste material from coal plants, gypsum, calcium oxide and water. The mixture recipe was developed in a laboratory over several years. In 2005, a trial section of a railway line with subgrade consisting of clay limestone (weathered marlite) was built in the municipality of Smiřice. Since then, periodical measurements including collection of samples for laboratory evaluation of the fly ash-based stabilizer have taken place. Over the time span of the measurements, changes in mineral composition and development of fly ash transforming structures leading to the formation of C-A-S-H gel were detected. This paper describes the experimental laboratory investigation of the influence of dynamic loading on the elastic modulus of fly ash stabilizer samples and the development of permanent deformation of the samples with increasing number of loading cycles.
Li, Zhiming; Fu, Liming; Fu, Bin; Yang, Xiaoping; Shan, Aidang
2014-10-01
To understand the nanomechanical properties of nano-grained (NG) Ti produced by combination of asymmetric and symmetric rolling, nanoindentation hardness (H(n)) and elastic modulus (E(n)) of different planes within the NG Ti specimens were measured using continuous stiffness measurement mode at room temperature. For comparison, the nanomechanical properties of the as-received hot-rolled coarse-grained (CG) Ti and ultrafine-grained (UFG) Ti with only asymmetric rolling process were also investigated. It was found that H(n) of the Ti samples increased significantly with the decrease of grain sizes, while E(n) exhibited a slight decrease as the grain sizes decreased from CG to NG regime. The increase of H(n) was expected to be caused by higher density of dislocations and finer grains attained by severer plastic deformation, while the slight decrease of E(n) was considered as a result of the increased density of lattice defects and volume fraction of the grain boundary atoms. Furthermore, the nanomechanical properties of different planes of the Ti specimen exhibited a little difference which can be expressed as H(n(RD-TD)) > H(n(N-RD)) > H(n(TD-ND)) and E(n(RD-TD)) > E(n(ND-RD)) > E(n(TD-ND)). These differences were ascribed to crystallographic textures formed by rolling deformation.
Effect of Soil Contact on the Modulus of Elasticity of Beeswax-Impregnated Wood
Róbert Németh
2015-01-01
Full Text Available The aims of this study were to use beeswax impregnation as a wood preservative method and to evaluate its suitability to protect wood species with low resistance to decay. Poplar (Populus × euramericana cv. Pannonia and beech (Fagus sylvatica samples were impregnated with beeswax and exposed to soil contact for 18 months. Impregnated samples were separated into three groups, on the basis of their degrees of pore saturation (DPS. With progressing decay, the load-bearing capacity and modulus of elasticity (MOE of the woods decreased. After one month of soil contact, there was a marked decrease in MOE, which is explained by the increase in the moisture content of the wood. After 18 months, control samples were completely decayed. Nevertheless, impregnated samples showed less decay and a noticeable remaining load-bearing capacity. Impregnation efficiency had a pronounced effect on decay resistance. In both investigated species, samples with higher DPS resulted in less of a decrease in MOE than in samples with lower DPS. Although beeswax is a bio-based material, it showed noticeable decay resistance effects against soft rot. Scanning electron microscopy investigations showed that the impregnation has a barrier effect, mostly in the longitudinal direction, against the spread of the fungi.
Kourtis, Lampros C; Carter, Dennis R; Beaupre, Gary S
2014-08-01
Three-point bending tests are often used to determine the apparent or effective elastic modulus of long bones. The use of beam theory equations to interpret such tests can result in a substantial underestimation of the true effective modulus. In this study three-dimensional, nonlinear finite element analysis is used to quantify the errors inherent in beam theory and to create plots that can be used to correct the elastic modulus calculated from beam theory. Correction plots are generated for long bones representative of a variety of species commonly used in research studies. For a long bone with dimensions comparable to the mouse femur, the majority of the error in the effective elastic modulus results from deformations to the bone cross section that are not accounted for in the equations from beam theory. In some cases, the effective modulus calculated from beam theory can be less than one-third of the true effective modulus. Errors are larger: (1) for bones having short spans relative to bone length; (2) for bones with thin vs. thick cortices relative to periosteal diameter; and (3) when using a small radius or "knife-edge" geometry for the center loading ram and the outer supports in the three-point testing system. The use of these correction plots will enable researchers to compare results for long bones from different animal strains and to compare results obtained using testing systems that differ with regard to length between the outer supports and the radius used for the loading ram and outer supports.
Sit, Arthur J; Lin, Shuai-Chun; Kazemi, Arash; McLaren, Jay W; Pruet, Christopher M; Zhang, Xiaoming
2017-08-28
Abnormal ocular biomechanical properties may be important for understanding the risk of glaucoma. However, there are no clinical methods for measuring standard material properties in patients. In this feasibility study we demonstrated proof-of-principle for a novel method, ultrasound surface wave elastography (USWE), to determine the in vivo Young's modulus of elasticity of corneas in normal human eyes. Twenty eyes of 10 healthy subjects (mean age 51.4±7.2;±SD, range 43-64 y) were studied. A spherical-tipped probe (3-mm diameter) was placed on closed eyelids and generated a gentle harmonic vibration at 100 Hz for 0.1 second. Wave speed propagation in the cornea was measured by USWE, and Young's modulus was calculated from the wave speed. Associations between Young's modulus and intraocular pressure (IOP), age, central corneal thickness, and axial length were explored by Pearson correlation. Statistical significance was determined by using generalized estimating equation models to account for possible correlation between fellow eyes. Mean IOP was 12.8±2.7 mm Hg. Mean wave speed in the cornea was 1.82±0.10 m/s. Young's modulus of elasticity was 696±113 kPa and was correlated with IOP (r=0.57; P=0.004), but none of the other variables (P>0.1). USWE is a novel non-invasive technique for measuring ocular biomechanical properties. Corneal Young's modulus in normal eyes is associated with IOP, consistent with measurements in cadaver eyes. Further work is needed to determine elasticity in other ocular tissues, particularly the sclera, and if elasticity is altered in glaucoma patients.
Kwang Liang Koh; Xianbai Ji; Aravind Dasari; Xuehong Lu; Soo Khim Lau; Zhong Chen
2017-01-01
This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading...
Arterial Elasticity, Strength, Fatigue, and Endurance in Older Women
Gary R. Hunter
2014-01-01
Full Text Available Arterial health may influence muscle function in older adults. Study purpose was to determine whether arterial elasticity is related to strength, central and peripheral fatigue, fatigue at rest, and treadmill endurance. Subjects were 91 healthy women aged >60. Treadmill endurance and maximal oxygen uptake (VO2 max were measured. Peripheral and central fatigue for the knee extensors were evaluated using two isometric fatigue tests (one voluntary and one adding electrical stimulation. Arterial elasticity was determined using radial artery pulse wave analysis. Linear multiple regression was used in statistical analysis. Large artery elasticity was associated with central fatigue (P<0.01 and treadmill endurance (P<0.02 after adjusting for VO2 max and knee extension strength. Subjective fatigue at rest was related to large artery elasticity after adjusting for ethnic origin (<0.02. Strength was significantly related to small artery elasticity after adjusting for ethnic origin, leg lean tissue, age, and blood pressure. Arterial elasticity is independently related to strength and fatigue in older women, especially in the central nervous system where arterial elasticity is independently related to perceptions of fatigue at rest and central fatigue. These results suggest that arterial health may be involved with the ability of the central nervous system to activate muscle in older women.
Elasticity and yield strength of pentagonal silver nanowires: In situ bending tests
Vlassov, Sergei, E-mail: vlassovs@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014 Tartu (Estonia); Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Polyakov, Boris [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Dorogin, Leonid M.; Antsov, Mikk [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014 Tartu (Estonia); Mets, Magnus; Umalas, Madis; Saar, Rando [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Lõhmus, Rünno; Kink, Ilmar [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014 Tartu (Estonia)
2014-02-14
This paper reports in situ mechanical characterization of silver nanowires (Ag NWs) inside a scanning electron microscope using a cantilevered beam bending technique. Measurements consisted in controlled bending of a cantilevered NW by the tip of an atomic force microscope glued to the force sensor. Relatively high degree of elasticity followed by either plastic deformation or fracture was observed in bending experiments. Experimental data were numerically fitted into the model based on the elastic beam theory and values of Young modulus and yield strength were extracted. Measurements were performed on twenty Ag NWs with diameters from 76 nm to 211 nm. Average Young modulus and yield strength were found to be 90 GPa and 4.8 GPa respectively. In addition, fatigue tests with several millions of cycles were performed and high fatigue resistance of Ag NWs was demonstrated. - Highlights: • Mechanical properties of pentagonal silver nanowires were measured. • Cantilevered beam bending technique was used. • Measurements were performed inside a scanning electron microscope. • Young's modulus and yield point were calculated. • Both plastic deformation and fracture of nanowires were observed.
Whisker Orientation Function and Elastic Modulus of the as-cast 20%SiCw/Mg Composite
无
2001-01-01
The relationship between the plane-orientation function and the space-orientation function of whiskers in whisker-reinforced metal matrix composites was analyzed theoretically. The actual orientation of whiskers in the as-cast 20%SiCw/Mg composite (SiCw content in volume fraction) were investigated, and the elastic modulus of the composite was measured with an ultrasonic velocity analyzer. Results show that there is an evident difference be-tween the plane-orientation function and the space-orientation function of whiskers and the space-orientation function can represent the actual condition of the composite. Only by using the space-orientation function of whiskers, the difference of elastic modulus of the as-cast composite in different directions can be explained reasonably.
Zhevstovskikh, Irina V.; Okulov, Vsevolod I.; Gudkov, Vladimir V.; Sarychev, Maksim N.; Medvedev, Kirill A.; Andriichuk, Myroslav D.; Paranchich, Lidiya D.
2016-12-01
Influence on elastic moduli of donor electron d-states of cobalt impurities has been investigated in mercury selenide crystals. Experiments have been carried out at the frequency of 53 MHz in the temperature interval of 1.3-100 K. Softening of the (C_{11} - C_{12})/2 modulus below 10 K has been observed in the impurity crystals in contrast with the (C_{11} + C_{12} + 2C_{44})/2 and C_{44} moduli those have exhibited hardening at cooling typical for dielectric and semiconductor crystals. The softening of the elastic modulus has been interpreted as manifestation of hybridization of the impurity d-states in the conduction band of the crystal. Comparison of theoretical calculations with experimental data has been proved to be in good agreement and has made it possible to determine the parameters characterizing the hybridized electron states.
Elastic constant versus temperature behavior of three hardened maraging steels
Ledbetter, H. M.; Austin, M. W.
1985-01-01
Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.
Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.
2011-01-01
A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.
Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ichihashi, Noriaki
2015-02-01
Regarding hamstring stretching methods, many studies have investigated the effect of stretching duration or frequency on muscle stiffness. However, the most effective stretching positions for hamstrings are unclear because it is impossible to quantify muscle elongation directly and noninvasively in vivo. Recently, a new ultrasound technology, ultrasonic shear wave elastography, has permitted noninvasive and reliable measurement of muscle shear elastic modulus, which has a strong linear relationship to the amount of muscle elongation. This study aimed to investigate the effect of hip internal and external rotation on shear elastic modulus of the lateral and medial hamstrings, respectively, during stretching in vivo using ultrasonic shear wave elastography. Twenty-three healthy men (age, 23.0 ± 2.1 years) were recruited for this study. To investigate the effect of hip rotation on the elongation of the medial and lateral hamstrings, shear elastic modulus of the biceps femoris (BF) and semitendinosus (ST) was measured at rest (a supine position with 90° knee flexion, 90° hip flexion, and hip neutral rotation) and in seven stretching positions (with 45° knee flexion and hip internal, external, and neutral rotation) using ultrasonic shear wave elastography. In both BF and ST, the shear elastic modulus in the rest position was significantly lower than that in all stretching positions. However, no significant differences were seen among stretching positions. Our results suggest that adding hip rotation at a stretching position for the hamstrings may not have a significant effect on muscle elongation of the medial and lateral hamstrings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ji Wang; Bin Zhou; Ian Parkinson; C. David L. Thomas; John G. Clement; Nick Fazzalari; X. Edward Guo
2013-01-01
Osteoporotic hip fracture is associated with significant trabecular bone loss, which is typically characterized as low bone density by dual-energy X-ray absorptiometry (DXA) and altered microstructure by micro-computed tomography (µCT). Emerging morphological analysis techniques, e.g. individual trabecula segmentation (ITS), can provide additional insights into changes in plate-like and rod-like trabeculae, two major micro-structural types serving different roles in determining bone strength. Using ITS, we evaluated trabecular microstructure of intertrochanteric bone cores obtained from 23 patients undergoing hip replacement surgery for intertrochanteric fracture and 22 cadaveric controls. Micro-finite element (µFE) analyses were performed to further understand how the abnormalities seen by ITS might translate into effects on bone strength. ITS analyses revealed that, near fracture site, plate-like trabeculae were seriously depleted in fracture patients, but trabecular rod volume was maintained. Besides, decreased plate area and rod length were observed in fracture patients. Fracture patients also showed decreased elastic moduli and shear moduli of trabecular bone. These results provided evidence that in intertrochanteric hip fracture, preferential loss of plate-like trabeculae led to more rod-like microstructure and deteriorated mechanical competence adjacent to the fracture site, which increased our understanding of the biomechanical pathogenesis of hip fracture in osteoporosis.
Darci Alberto Gatto
2012-11-01
Full Text Available This study was developed aiming at evaluating the use of constant dynamic elastic obtained by non-destructive testing, as a parameter in the estimation of mechanical properties of Eucalyptus cloeziana obtained by destructive test. With equipment emitting ultrasonicwaves from transducers adapted to dry spots of 45 kHz, we determined the ultrasonic velocity relates to distance and time of transmission of the wave along the length of specimens used in test with nominal dimensions of 2.0 x 2.0 x 30.0 cm in thickness, width and length,respectively. To assess the sensitivity of ultrasound, the samples were tested for evidencedestructively in a universal test for determining the modulus of elasticity and rupture in staticbending. The results showed that the ultrasonic method is a fast and efficient tool for inference of non-destructive wood mechanical properties. However, differences in the adjustment of statistical models showed that the best regression parameters were obtained toestimating the modulus of elasticity, compared with the modulus of rupture.
Saravana Kumar, Gurunathan; George, Subin Philip
2017-02-01
This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.
Predicting Concrete Compressive Strength and Modulus of Rupture Using Different NDT Techniques
Wilfrido Martínez-Molina
2014-01-01
Full Text Available Quality tests applied to hydraulic concrete such as compressive, tension, and bending strength are used to guarantee proper characteristics of materials. All these assessments are performed by destructive tests (DTs. The trend is to carry out quality analysis using nondestructive tests (NDTs as has been widely used for decades. This paper proposes a framework for predicting concrete compressive strength and modulus of rupture by combining data from four NDTs: electrical resistivity, ultrasonic pulse velocity, resonant frequency, and hammer test rebound with DTs data. The model, determined from the multiple linear regression technique, produces accurate indicators predictions and categorizes the importance of each NDT estimate. However, the model is identified from all the possible linear combinations of the available NDT, and it was selected using a cross-validation technique. Furthermore, the generality of the model was assessed by comparing results from additional specimens fabricated afterwards.
Measurement of the elastic modulus of spider mite silk fibers using atomic force microscopy
Hudson, Stephen D.; Zhurov, Vladimir; Grbić, Vojislava; Grbić, Miodrag; Hutter, Jeffrey L.
2013-04-01
Bio-nanomaterials are one of the fastest developing sectors of industry and technology. Spider silk, a highly attractive light-weight biomaterial, has high tensile strength and elasticity and is compatible with human tissues, allowing for many areas of application. In comparison to spider silk fibers with diameters of several micrometers, spider mite silk fibers have much smaller diameters of tens of nanometers, making conventional tensile testing methods impractical. To determine the mechanical properties of adult and larval Tetranychus urticae silk fibers, we have performed three-point bending tests with an atomic force microscope. We found that because of the small diameters of these fibers, axial tension—due to both the applied force and a pre-existing strain—has a significant effect on the fiber response, even in the small-deformation limit. As a result, the typical Euler-Bernoulli-Timoshenko theory cannot be applied. We therefore follow the approach of Heidelberg et al. to develop a mechanical model of the fiber response that accounts for bending, an initial tension in the fibers, and a tension due to elongation during testing. This model provides self-consistent results, allowing us to determine that adult and larval fibers have Young's moduli of 24±3 GPa and 15±3 GPa, respectively. Both adult and larval fibers have an estimated ultimate strength of 200-300 MPa and a toughness of order 9 MJ/m3. We note that with increasing interest in the mechanical properties of very high aspect ratio nanomaterials, the influence of pre-existing tension must be considered in any measurements involving a bending test.
Elastic Modulus and Hardness of Cr-Nb Nano-Multilayers
YANG Meng-Jin; LAI Wen-Sheng; PAN Feng
2007-01-01
Cr-Nb nano-multilayered films with various modulation wavelengths ∧ are prepared by e-gun evaporation and their mechanical properties are investigated. Cr and Nb both have bcc structures with large differences in lattice constants and Young's modulus, which are supposed to favour modulus enhancement. Nevertheless,nano-indention measurements show no enhancement for the modulus and a slight decrease for the hardness with decreasing ∧ down to 6 nm. This is mainly due to counter-contribution to modulus from adjacent layers subjected to reverse strains, in agreement with recent theoretical study, while the decrease of hardness arises from grain boundary sliding. Interestingly, at ∧ = 3 nm, the hardness of the film has an increase of 44% relative to the value of a rule of mixture, owing to the emergence of a new phase for reconciling the structure difference at the interfaces.
姚文娟; 叶志明
2004-01-01
For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.
Gaihede, Michael Lyhne; Donghua, Liao; Gregersen, H.
2007-01-01
are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between...... a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m(-1), respectively) compared to the younger group (mean = 1.066 and 1.206 kN m(-1), respectively...... finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus....
Christian Lorbach
2014-07-01
Full Text Available The bending stiffness of pulp fibers in both dry and wet states is of great importance with respect to many optical and physical paper properties. We introduce a method that evaluates fiber bending stiffness from the fibers’ Young’s modulus (E and the area moment of inertia (I from the fiber cross section. The values for E and I in the dry state are obtained from single fiber tensile testing and image analysis of the fiber cross section. The values for the wet state are estimated from literature results for decreasing elastic modulus due to wetting and by the measurement of swollen, freeze-dried fiber cross sections by serial sectioning. We show a comparison between the results from our method and the bending stiffness of individual fibers measured with other methods.
Fatih Yapıcı
2012-03-01
Full Text Available In this study, test samples prepared from Anatolian chestnut (Castanea sativa wood were first exposed to heat treatment at 130, 145, 160, 175, 190 and 205 ºC for 3, 6, 9 and 12 hours. Then the values of the samples of the modulus of rupture (MOR and modulus of elasticity (MOE were determined and evaluated by multiple variance analysis. The aim of this study was to establish the effects of heat treatment on the MOR and MOE values of wood samples by using fuzzy logic classifier. Secondly, input and output values and rule base of the fuzzy logic classifier model were built by using the results obtained from the experiment. The developed fuzzy classifier model could predict the MOR and MOE values of test samples at the accuracy levels of 92.64 % and 90.35 %, respectively. The model could be especially employed in manufacturing stages of timber industry.
Gaihede, Michael [Department of Otolaryngology, Head and Neck Surgery, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Liao Donghua [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Gregersen, Hans [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark)
2007-02-07
The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between membrane tension and change of the surface area relative to the undeformed surface area. A middle ear model determined the tension-strain relationship in vivo based on data from experimental pressure-volume deformations of the human tympanic membrane system. The areal modulus was determined in both a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m{sup -1}, respectively) compared to the younger group (mean = 1.066 and 1.206 kN m{sup -1}, respectively), though not significantly (2p = 0.10 and 0.11, respectively). Based on the model the areal modulus was established describing the summated elastic properties of the tympanic membrane system. Future model improvements include exact determination of the tympanic membrane area accounting for its shape via 3D finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus.
Yang, C.; Zhou, Z. F.; Li, J. W.; Yang, X. X.; Qin, W.; Jiang, R.; Guo, N. G.; Wang, Y.; Sun, C. Q.
2012-02-01
With structural miniaturization down to the nanoscale, the detectable quantities of solid materials no longer remain constant but become tunable. For the II-VI semiconductors example, the band gap expands, the elastic modulus increases, the melting point drops, and the Raman optical phonons experience red shift associated with creation of low frequency Raman acoustic modes that undergo blue shift with decreasing the dimensional scale. In order to understand the common origin of the size dependency of these seemingly irrelevant properties, we formulated these quantities for CdS, ZnS, and CdSe semiconductors from the perspectives of bond order-length-strength correlation and the local bond averaging approach. Consistency between the theory predictions and the measured size dependence of these quantities clarified that the undercoordination-induced local strain and quantum entrapment and the varied fraction of undercoordinated atoms of the entire solid correlate these quantities and dominate their size effect.
Wang, Dan; He, Ya-Ping; Zhang, Yi-Feng; Liu, Bo-Ji; Zhao, Chong-Ke; Fu, Hui-Jun; Wei, Qing; Xu, Hui-Xiong
2017-01-06
To evaluate the diagnostic performance of a new technique of shear wave speed (SWS) imaging for the diagnosis of thyroid nodule with elasticity modulus and SWS measurement. 322 thyroid nodules in 322 patients (216 benign nodules, 106 malignant nodules) were included in this study. All the nodules received conventional ultrasound (US) and SWS imaging (Aplio500, Toshiba Medical Systems, Japan) before fine-needle aspiration (FNA) and/or surgery. The values of E-max and E-mean with elastic modulus (61.27 ± 36.31 kPa and 31.89 ± 19.11 kPa) or SWS (4.45 ± 1.49 m/s and 3.26 ± 2.71 m/s) in malignant nodules were significantly higher than those in benign lesions (29.18 ± 18.62 kPa and 15.85 ± 6.96 kPa, or 2.98 ± 0.85 m/s and 2.19 ± 0.42 m/s, all P 0.05). In multivariate logistic regression analysis, E-max (m/s) with SWS was identified to be the strongest independent predictor for malignant nodules (odds ratio [OR] = 16.760), followed by poorly-defined margin (OR = 7.792), taller-than-wide shape (OR = 3.160), micro-calcification (OR = 2.422), and E-max (kPa) with elastic modulus (OR = 0.914). The AUC was 0.813 for E-max with SWS (m/s) and 0.796 for E-max with elastic modulus (kPa). With cut-off SWS value of 3.52 m/s in E-max, sensitivity of 69.8%, specificity of 81.5%, and accuracy of 77.6% were achieved. SWS imaging is a valuable tool in predicting thyroid malignancy. E-max with SWS measurement is the strongest independent predictor for thyroid malignancy.
Sadeghian, H.; Yang, C.K.; Goosen, J.F.L.; Van der Drift, E.; Bossche, A.; French, P.J.; Van Keulen, F.
2009-01-01
This letter presents the application of electrostatic pull-in instability to study the size-dependent effective Young’s Modulus Ẽ ( ~170–70 GPa) of [110] silicon nanocantilevers (thickness ~1019–40 nm). The presented approach shows substantial advantages over the previous methods used for
NEW TEST TECHNIQUE FOR SHEAR MODULUS AND OTHER ELASTIC CONSTANTS OF FILAMENTARY COMPOSITES,
corresponding to one tensile test . Otherwise, two tests are required to obtain those properties. The shear modulus, which is independent of the Poisson’s...ratio, can be obtained from tensile test data on a specimen having filaments oriented at any angle 0 < alpha < 90 degrees. The validity and
2014-02-01
measurements – Generally in the 230 to 250 GPa range * VTT manufacturing, 1996, ISBN 951-38-4987-2 Figure 7 Modulus measurements on 0.5-mm wafers of...Capacitors,”1998 Society of Automotive Engineers. 4. Barsoum, Michel, “Fundamentals of Ceramics,” cap.11, p. 401. 5. VTT Manufacturing, ISBN 951-38
Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study
Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E.
2013-01-01
Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity......, and the three hard phantoms were 89kPa, 153kPa, and 168kPa, respectively. The combination of ultrasound images and force measurements provided an effective way of assessing the elastic properties of the heel pad due to the internal strain estimation....
Kwang Liang Koh
2017-07-01
Full Text Available This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay and polydopamine-coated carbon nanofibres (D-CNF were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.
Koh, Kwang Liang; Ji, Xianbai; Dasari, Aravind; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong
2017-07-10
This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young's modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.
Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong
2017-01-01
This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136
Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films.
Won, Yoonjin; Gao, Yuan; Panzer, Matthew A; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W; Cai, Wei; Goodson, Kenneth E
2013-12-17
Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies--from thermal solar to automotive waste heat recovery systems--whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties.
Hussain, Sadakat
Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.
Gérrard Eddy Jai Poinern
2014-07-01
Full Text Available In this study we determine the elastic and hardness properties of electrochemically engineered porous anodic aluminium oxide (AAO membranes and AAO membranes infiltrated with Poly (2-hydroxyethylmethacrylate to form a unique biologically compatible AAO/polymer composite. The electrochemically-synthesised membranes have a nanometre scale porous oxide structure with a mean pore diameter of 100 nm. The membranes were characterized using field emission scanning electron microscopy before and after polymer infiltration. The polymer treated and untreated membranes were then examined using the nano-indentation technique to measure the hardness and subsequently determine the membrane elasticity.
Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.
Aernouts, Jef; Dirckx, Joris J J
2012-07-01
An accurate estimation of tympanic membrane stiffness is important for realistic modelling of middle ear mechanics. Tympanic membrane stiffness has been investigated extensively under either quasi-static or dynamic loading conditions. It is known that biological tissues are sensitive to strain rate. Therefore, in this work, the mechanical behaviour of the tympanic membrane was studied under both quasi-static and dynamic loading conditions. Experiments were performed on the pars tensa of four gerbil tympanic membranes. A custom-built indentation apparatus was used to perform in situ tissue indentations and testing was done applying both quasi-static and dynamic sinusoidal indentations up to 8.2 Hz. The unloaded shape of the tympanic membrane was measured and used to create specimen-specific finite element models to simulate the experiments. The frequency dependent Young's modulus of each specimen was then estimated by an inverse analysis in which the error between experimental and simulated indentation data was optimised for each indentation frequency separately. Using an 8 μm central region thickness, we found Young's moduli between 71 and 106 MPa (n = 4) at 0.2 Hz indentation frequency. A standard linear viscoelastic model and a viscoelastic model with a continuous relaxation spectrum were used to derive a complex modulus in the frequency domain. Due to experimental limitations, the indentation frequency upper limit was 8.2 Hz. The average relative modulus increase in this domain was 14% and the increase was the strongest below 6 Hz.
The effects of side-artifacts on the elastic modulus of trabecular bone.
Un, Kerem; Bevill, Grant; Keaveny, Tony M
2006-01-01
Determining accurate density-mechanical property relationships for trabecular bone is critical for correct characterization of this important structure-function relation. When testing any excised specimen of trabecular bone, an unavoidable experimental artifact originates from the sides of the specimen where peripheral trabeculae lose their vertical load-bearing capacity due to interruption of connectivity, a phenomenon denoted here as the 'side-artifact'. We sought in this study to quantify the magnitude of such side-artifact errors in modulus measurement and to do so as a function of the trabecular architecture and specimen size. Using parametric computational analysis of high-resolution micro-CT-based finite-element models of cores of elderly human vertebral trabecular bone, a specimen-specific correction factor for the side-artifact was quantified as the ratio of the side-artifact-free apparent modulus (Etrue) to the apparent modulus that would be measured in a typical experiment (Emeasured). We found that the width over which the peripheral trabeculae were mostly unloaded was between 0.19 and 0.58 mm. The side-artifact led to an underestimation error in Etrue of over 50% in some specimens, having a mean (+/-SD) of 27+/-11%. There was a trend for the correction factor to linearly increase as volume fraction decreased (p=0.001) and as mean trabecular separation increased (perror increased substantially as specimen size decreased. Two methods used for correcting for the side-artifact were both successful in bringing Emeasured into statistical agreement with Etrue. These findings have important implications for the interpretation of almost all literature data on trabecular bone mechanical properties since they indicate that such properties need to be adjusted to eliminate the substantial effects of side-artifacts in order to provide more accurate estimates of in situ behavior.
Objectification of Modulus Elasticity of Foam Concrete Poroflow 17-5 on the Subbase Layer
Hájek Matej
2016-05-01
Full Text Available Principles of sustainable development create the need to develop new building materials. Foam concrete is a type of lightweight concrete that has many advantages compared to conventional building materials, for example low density and thermal insulation characteristics. With current development level, any negatively influencing material features are constantly eliminated as well. This paper is dealing with substitution of hydraulically bound mixtures by cement foam concrete Poroflow 17-5. The executed assessment is according to the methodology of assessing the existing asphalt pavements in Slovak Republic. The ex post calculation was used to estimate modulus range for Poroflow 17-5 based on the results of static load tests conducted using the Testing Experiment Equipment.
Thermal Variation of Elastic Modulus on Nanocrystalline NiCuZn Ferrites
S. R. Murthy
2013-01-01
Full Text Available The nanopowders of Ni0.38Cu0.12Zn0.5Fe2O4 with particle size, 20 nm have been synthesised using Microwave-Hydrothermal method and characterized. Then the ferrite samples were microwave sintered at different temperatures in an air atmosphere and characterized. The magnetic properties were measured at room temperature. The dielectric constant (ɛ, initial permeability (μi and quality factor (Q has been measured on sintered samples at 1 MHz. Thermal variation of initial permeability has been measured over temperature range of 300 K–600 K. A detailed study of elastic behaviour of NiCuZn ferrites has been under taken using a composite piezoelectric oscillator method over a temperature of 300 K–600 K. The room temperature elastic moduli is found to be slightly sample dependent and decreases with increasing the temperature, except near the Curie temperature, TC, where a small anomaly is observed. The internal friction at room temperature is also found to be more particle size dependent. The temperature variation of internal friction exhibits a broad maximum around 500 K, just below Curie temperature TC 530 K. The above observations were carried on in the demagnetized state; on the application of a 400 mT magnetic field allowed us to reach the saturated state of the sample at any of the measuring temperature. The anomaly observed in the thermal variation of elastic moduli and internal friction is explained with the help of temperature variation of magneto-crystalline anisotropy constant.
W. Pabst
2004-12-01
Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.
Blaise, A.; André, S.; Delobelle, P.; Meshaka, Y.; Cunat, C.
2016-11-01
Exact measurements of the rheological parameters of time-dependent materials are crucial to improve our understanding of their intimate relation to the internal bulk microstructure. Concerning solid polymers and the apparently simple determination of Young's modulus in tensile tests, international standards rely on basic protocols that are known to lead to erroneous values. This paper describes an approach allowing a correct measurement of the instantaneous elastic modulus of polymers by a tensile test. It is based on the use of an appropriate reduced model to describe the behavior of the material up to great strains, together with well-established principles of parameter estimation in engineering science. These principles are objective tools that are used to determine which parameters of a model can be correctly identified according to the informational content of a given data set. The assessment of the methodology and of the measurements is accomplished by comparing the results with those obtained from two other physical experiments, probing the material response at small temporal and length scales, namely, ultrasound measurements with excitation at 5 MHz and modulated nanoindentation tests over a few nanometers of amplitude.
Elastic Modulus Measurements of the LHC Dipole Superconducting Coil at 300 K and at 77 K
Couturier, K; Todesco, Ezio; Tommasini, D; Scandale, Walter
2002-01-01
We present measurements of the stress-displacement relation for the superconducting coils used in the Large Hadron Collider main magnets (dipoles and quadrupoles). This mechanical property is relevant to determine the correct amount of azimuthal pre-stress to be imposed on the coil. The hysteresis pattern in the loading and unloading curves is discussed. The stress-displacement curves are used to compute the corresponding elastic moduli and deformations. Measurements are also carried out at liquid nitrogen temperature, using the same framework to interpret experimental data.
Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique
Wiedlocher, D. E.; Kinser, D. L.
1992-01-01
Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic.
Md Azree Othuman Mydin
2012-09-01
Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.
Cesar Augusto Galvão Arrais
2013-04-01
Full Text Available This study compared the volumetric shrinkage (VS, flexural strength (FS and flexural modulus (FM properties of the low-shrinkage resin composite Aelite LS (Bisco to those of Filtek LS (3M ESPE and two regular dimethacrylate-based resin composites, the microfilled Heliomolar (Ivoclar Vivadent and the microhybrid Aelite Universal (Bisco. The composites (n = 5 were placed on the Teflon pedestal of a video-imaging device, and VS was recorded every minute for 5 min after 40 s of light exposure. For the FS and FM tests, resin discs (0.6 mm in thickness and 6.0 mm in diameter were obtained (n = 12 and submitted to a piston-ring biaxial test in a universal testing machine. VS, FS, and FM data were submitted to two-way repeated measures and one-way ANOVA, respectively, followed by Tukey's post-hoc test (a = 5%. Filtek LS showed lower VS than did Aelite LS, which in turn showed lower shrinkage than did the other composites. Aelite Universal and Filtek LS exhibited higher FS than did Heliomolar and Aelite LS, both of which exhibited the highest FM. No significant difference in FM was noted between Filtek LS and Aelite Universal, while Heliomolar exhibited the lowest values. Aelite LS was not as effective as Filtek LS regarding shrinkage, although both low-shrinkage composites showed lower VS than did the other composites. Only Filtek LS exhibited FS and FM comparable to those of the regular microhybrid dimethacrylate-based resin composite.
朱剑; 贺明; 邱枫
2012-01-01
The Young＇s modulus of graphene with various rectangular and circular vacancy defects is investigated by molecular dynamics simulation. By comparing with the results calculated from an effective spring model, it is demonstrated that the Young＇s modulus of graphene is largely correlated to the size of vacancy defects perpendicular to the stretching direction. And a linear reduction of Young＇s modulus with the increasing concentration of monoatomic-vacancy defects （Le., the slope of =0.03） is also observed. The fracture behavior of graphene, including the fracture strength, crack initiation and propagation are then studied by the molecular dynamics simulation, the effective spring model, and the quantized fracture mechanics. The blunting effect of vacancy edges is demonstrated, and the characterized crack tip radius of 4.44 A is observed.
Approaches To Modelling Of Elastic Modulus Degradation In Sheet Metal Forming
Vrh, Marko; Halilovič, Miroslav; Štok, Boris
2007-04-01
Strain recovery after removal of forming loads, commonly defined as springback, is of great concern in sheet metal forming, in particular with regard to proper prediction of the final shape of the part. To control the problem a lot of work has been done, either by minimizing the springback on the material side or by increasing the estimation precision in corresponding process simulations. Unfortunately, by currently available software springback still cannot be adequately predicted, because most analyses of springback are using linear, isotropic and constant Young's modulus and Poisson's ratio. But, as it was measured and reported, none of it is true. The aim of this work is to propose an upgraded mechanical model which takes evolution of damage and related orthotropic stiffness degradation into account. Damage is considered by inclusion of ellipsoidal cavities, and their influence on the stiffness degradation is taken in accordance with the Mori-Tanaka theory, adopting the GTN model for plastic flow. With regard to the case in which damage in material is neglected it is shown in the article how the springback of a formed part differs, when we take orthotropic damage evolution into consideration.
Eva Wahyu Indriyati
2013-06-01
Full Text Available The increasing demand of crude oil will increase the price of petroleum asphalt. Indonesia has imported asphalt to meet the need for the annually road construction and maintenance. One solution to improving the rheological properties of bitumen is by adding the harder bitumen or other chemical compound to reduce dependence to petroleum asphalt. In Indonesia there is a source of natural asphalt in Buton Island, Sulawesi with huge amount of deposit that potentially could improve the rheological properties of Pen 60/70 Petroleum Asphalt. In order to obtain a better understanding on the contribution of Asbuton to the improvement of performance on rheological properties, this research used 19 variations of Asbuton and pen 60/70 petroleum bitumen. This variation is then subjected to the basic rheology test and the mechanistic test using Dynamic Shear Rheometer. The conclusion of basic rheological performance is obtained that mixture (Asbuton and 60/70 petroleum bitumen will increase hardness of bitumen. Conclusion on mechanistic rheological performance is that mixture (Asbuton and 60/70 petrol bitumen will increase Performance Grade (PG and Complex Shear Modulus (G*. The results from the analysis of Master Curve and Black Diagram, it is shown that the increasing proportion of bitumen Asbuton will decrease the phase angle (δ but its temperature susceptibility is worse.
Zaragoza, J.; Chang, A.; Asuri, P.
2017-01-01
Polymer hydrogelshave shown to exhibit improved properties upon the addition of nanoparticles; however, the mechanical underpinnings behind these enhancements have not been fully elucidated. Moreover, fewer studies have focused on developing an understanding of how polymer parameters affect the nanoparticle-mediated enhancements. In this study, we investigated the elastic properties of silica nanoparticle-reinforced poly(acrylamide) hydrogels synthesized using crosslinkers of various lengths. Crosslinker length positively affected the mechanical properties of hydrogels that were synthesized with or without nanoparticles. However the degree of nanoparticle enhancement was negatively correlated to crosslinker length. Our findings enable the understanding of the respective roles of nanoparticle and polymer properties on nanoparticle-mediated enhancement of hydrogels and thereby the development of next-generation nanocomposite materials.
Thornton, Gail M; Bailey, Soraya J
2012-10-11
Healing ligaments have decreased strength compared to normal ligaments, leaving healing ligaments vulnerable to damage accumulation during normal daily activities at functional stresses. Rabbit medial collateral ligament gap scars after 14 weeks of healing were exposed to long-term creep and fatigue loading over a range of functional stresses. In addition to the 58 healing ligaments that underwent in vitro creep and fatigue testing, seven healing ligaments underwent only monotonic failure tests for comparison with residual strength tests that followed creep and fatigue testing. When exposed to repetitive loading during fatigue testing, healing ligaments exhibited modulus reduction earlier than when exposed to sustained loading during creep testing that was occasionally interrupted with unloading/reloading cycles to measure modulus. In other words, after the same loading duration, repetitive loading was more damaging than sustained loading. At modulus reduction, the increase in strain during fatigue was greater than or similar to that during creep. Healing ligaments that were damaged during long-term loading exhibited decreased strength and increased toe-region strain during subsequent residual strength tests. Normal daily activities that result in repetitive loading of a ligament healing from an injury will likely cause damage to accumulate faster than activities that result in sustained loading.
Elastic Modulus of Foamcrete in Compression and Bending at Elevated Temperatures
Md Azree Othuman Mydin
2012-09-01
Full Text Available This paper will presents the experimental results that have been performed to examine and characterize the mechanical properties of foamcrete at elevated temperatures. Foamcrete of 650 and 1000 kg/m 3 density were cast and tested under compression and bending. The tests were done at room temperature, 100, 200, 300, 400, 500, and 600°C. The results of this study consistently demonstrated that the loss in stiffness for cement based material like foamcrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffnesstemperature relationships are very similar.
Elastic-plastic fracture mechanics of strength-mismatching
Parks, D.M.; Ganti, S.; McClintock, F.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)
1996-12-31
Approximate solutions to stress-fields are provided for a strength-mismatched interface crack in small-scale yielding (SSY) for non-hardening and low hardening materials. Variations of local deformation intensities, characterized by a J-type contour integral, are proposed. The softer material experiences a higher deformation intensity level, J{sub S}, while the harder material sees a much lower deformation intensity level, J{sub H}, compared to that obtained from the applied J near the respective homogeneous crack-tips. For a low hardening material, the stress fields are obtained by scaling from an elastic/perfectly-plastic problem, based on an effective mismatch, M{sub eff}, which is a function of mismatch, M, and the hardening exponent, n. Triaxial stress build-up is discussed quantitatively in terms of M. The influence of strength-mismatch on cleavage fracture is discussed using Weibull statistics.
Spicer, James B [Johns Hopkins University; Zeng, Fan W [Johns Hopkins University; Han, Karen [Johns Hopkins University; Olasov, Lauren R [Johns Hopkins University; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL
2014-01-01
Laser ultrasonic techniques can be used to study the ultrasonic properties of nuclear graphites and can serve as tools in establishing relationships between materials microstructure and the macroscopic stiffnesses of graphite. Establishing structure-property relationships permits improved ultrasonic sensing of graphite microstructural changes related to service-induced degradation. Laser ultrasonic measurements were made using a pulsed Nd:YAG laser source and detection was performed using a Michelson-type interferometer. This source-receiver combination provides for non-contacting, highly linear transduction of broadbanded, ultrasonic pulses permitting simultaneous determination of longitudinal and shear stiffnesses. Measurements show that among the graphites examined, a change in density of 0.26 g/cm3 (average 1.8 g/cm3) results in a change in the longitudinal elastic stiffness of 9.2 GPa (average 11.3 GPa) and 3.2 GPa (average 4.3 GPa) for the shear stiffness. Larger variations in density were produced by controlled oxidation of IG-110 and NBG-18. Shear wave birefringence measurements using laser line sources in IG-110 and PCEA indicate that IG-110 behaves isotropically while PCEA displays texture characteristic of transversely isotropic materials.
Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase.
Wilhelm, Kristina R; Roan, Esra; Ghosh, Manik C; Parthasarathi, Kaushik; Waters, Christopher M
2014-02-01
Patients with acute lung injury are administered high concentrations of oxygen during mechanical ventilation, and while both hyperoxia and mechanical ventilation are necessary, each can independently cause additional injury. However, the precise mechanisms that lead to injury are not well understood. We hypothesized that alveolar epithelial cells may be more susceptible to injury caused by mechanical ventilation because hyperoxia causes cells to be stiffer due to increased filamentous actin (f-actin) formation via the GTPase RhoA and its effecter Rho kinase (ROCK). We examined cytoskeletal structures in cultured murine lung alveolar epithelial cells (MLE-12) under normoxic and hyperoxic (48 h) conditions. We also measured cell elasticity (E) using an atomic force microscope in the indenter mode. Hyperoxia caused increased f-actin stress fibers and bundle formation, an increase in g- and f-actin, an increase in nuclear area and a decrease in nuclear height, and cells became stiffer (higher E). Treatment with an inhibitor (Y-27632) of ROCK significantly decreased E and prevented the cytoskeletal changes, while it did not influence the nuclear height and area. Pre-exposure of cells to hyperoxia promoted detachment when cells were subsequently stretched cyclically, but the ROCK inhibitor prevented this effect. Hyperoxia caused thickening of vinculin focal adhesion plaques, and inhibition of ROCK reduced the formation of distinct focal adhesion plaques. Phosphorylation of focal adhesion kinase was significantly reduced by both hyperoxia and treatment with Y-27632. Hyperoxia caused increased cell stiffness and promoted cell detachment during stretch. These effects were ameliorated by inhibition of ROCK.
Xingxia Ma; Grant T. Kirker; Carol A. Clausen; Mingliang Jiang; Haibin Zhou
2017-01-01
The modulus of elasticity (MOE) of wood is a sensitive indicator of rotfungal attack. To develop an alternative method of rapid assessment of fungal decay in the laboratory, changes in static MOE of untreated and preservative-treated wood were measured during exposure to the brownrot fungus, Gloeophyllum trabeum, and the white-rot fungus, Trametes...
Bakker, D.P.; Huijs, F.M.; Vries, J. de; Klijnstra, J.W.; Busscher, H.J.; Mei, H.C. van der
2003-01-01
Deposition of three marine bacterial strains with different cell surface hydrophobicities from artificial seawater to polyurethane coatings on glass with different surface tensions and elastic modulus was studied in situ in a parallel plate (PP) and stagnation point (SP) flow chamber. Different surf
Elastic properties, strength and damage tolerance of pultruded composites
Saha, Mrinal Chandra
Pultruded composites are candidate materials for civil engineering infrastructural applications due their higher corrosion resistance and lower life cycle cost. Efficient use of materials like structural members requires thorough understanding of the mechanism that affects their response. The present investigation addresses the modeling and characterization of E-glass fiber/polyester resin matrix pultruded composites in the form of sheets of various thicknesses. The elastic constants were measured using static, vibration and ultrasonic methods. Two types of piezoelectric crystals were used in ultrasonic measurements. Finally, the feasibility of using a single specimen, in the form of a circular disk, was shown in measuring all the elastic constants using ultrasonic technique. The effects of stress gradient on tensile strength were investigated. A large number of specimens, parallel and transverse to the pultrusion direction, were tested in tension, 3-point flexure, and 4-point flexure. A 2-parameter Weibull model was applied to predict the tensile strength from the flexure tests. The measured and Weibull-predicted ratios did not show consistent agreement. Microstructural observations suggested that the flaw distribution in the material was not uniform, which appears to be a basic requirement for the Weibull distribution. Compressive properties were measured using a short-block compression test specimen of 44.4-mm long and 25.4-mm wide. Specimens were tested at 0°, 30°, 45°, 60° and 90° orientations. The compression test specimen was modeled using 4-noded isoparametric layered plate and shell elements. The predicted elastic properties for the roving layer and the continuous strand mat layer was used for the finite element study. The damage resistance and damage tolerance were investigated experimentally. Using a quasi-static indentation loading, damage was induced at various incrementally increased force levels to investigate the damage growth process. Damage
Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl
2016-01-01
Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing...... was removed by either burning at 565◦C or soxhlet extraction with acetone. It was found that the density and the stiffness increased after removing the sizing by the two removal treatments whereas the diameter did not change significantly. The strength of the fibres decreased after burning as the sizing......, protecting against water and fibre-fibre damage, had been removed. The strength of the fibres after extraction was not significantly different from the strength of the pristine fibres despite removing the sizing. This indicates that the bonded part of sizing is still protecting the glass fibre surface....
Michal Sarna
Full Text Available During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned 'ventral' stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.
Sarna, Michal; Wojcik, Katarzyna A; Hermanowicz, Pawel; Wnuk, Dawid; Burda, Kvetoslava; Sanak, Marek; Czyż, Jarosław; Michalik, Marta
2015-01-01
During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned 'ventral' stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.
Soares, Priscilla Barbosa Ferreira; Nunes, Sarah Arantes; Franco, Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa, Darceny; Soares, Carlos José
2014-01-01
The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.
Hinterhofer, Christine; Apprich, Veronika; Ferguson, James C; Stanek, Christian
2007-11-01
The mechanical properties of horn samples from 22 hind claws with chronic laminitis were determined in adult Austrian Fleckvieh cows. The resistance to deformation was quantified as the modulus of elasticity (E). Tension tests revealed mean E values of 520MPa for the dorsal wall, 243MPa for the abaxial wall, 339MPa for the axial wall and 97MPa for the sole. E tended to be lower in laminitic horn than in sound horn in all segments tested, with the difference being largest in the abaxial wall. The mean dry-matter content (DMC) of the laminitic claws was 75.8% in the dorsal wall, 75.86% in the abaxial wall, 71.15% in the axial wall and 69.28% in the sole. These values are generally comparable to those for sound claws except in the axial wall. Further, E and DMC were only correlated in the axial wall. Chronic laminitis leads to a low resistance of claw horn to mechanical insults in the dorsal wall, abaxial wall and sole, and to the loss of a correlation between the E and DMC in these segments. The reason for these alterations is therefore not increased ingress of moisture, but must be due to changes in the microstructure, biochemical components and/or horn formation by the diseased dermis.
刘绍娜; 李书伟; 汤沛; 李鹏飞; 张英
2011-01-01
弹性模量是表征材料弹性性质的特征物理量,在工程应用中具有重要的作用.设计了基于声卡和Adobe Audition的材料动弹性模量测定的测试系统,基于声卡的数据采集系统由传感器、调理装置、计算机组成.对不同长度的等强度悬臂梁进行实验,利用Matlab软件进行实验数据分析,得到悬臂梁的固有频率,从而根据理论公式计算出材料的动弹性模量,并与有限元分析结果进行比较.实验结果表明该测试系统测量精度较高,该试验方法简单易行,具有较强的实用性.%Elastic modulus is a physical quantity representing the elastic properties of the material, which is very important in engineering application.A test system of dynamic elastic modulus is proposed based on sound card and Adobe Audition,ire which the data acquisition system based on sound card is composed of a sensor,a processing device and a computer.Meanwhile different lengths of equal strength cantilever beams are experimented, which empirical data obtained are analyzed by using Mal\\ah.Thus the natural frequencies of cantilever beams are gained, and then dynamic elastic modulus is worked out based on the theoretical formula,which is compared with the finite element analysis.The results indicate that the test system is simple and feasible with high precise in me as wing, therefore it is practicable.
Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.
2014-07-01
The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were
Dowling, Adam H
2011-06-01
The aim was to investigate the influence of number average molecular weight and concentration of the poly(acrylic) acid (PAA) liquid constituent of a GI restorative on the compressive fracture strength (σ) and modulus (E).
饱和混凝土有效模量及有效抗拉强度研究%Research on the effective modulus and tensile strength of saturated concrete
杜修力; 金浏
2012-01-01
The existence of pore water has great influence on the mechanical properties of concrete, such as effective elastic modulus and strength, et al. Based on the three-phase sphere model, the quantitative relationship between the bulk modulus of saturated concrete and porosity was derived. The effective elastic modulus and Poisson＇s ratio of saturated wet concrete were deduced without considering the shear capacity of the pore water. According to the maximum tensile stress failure criterion, the quantitative relationship be- tween porosity and effective tensile strength and tensile peak-strain of saturated concrete were presented in this paper. Theoretical analysis results agree well with Yaman＇s experimental results, which demonstrate that the present method could be used to predict the elastic modulus of saturated concrete. Besides, it is found from the analysis results that the presence of pore water make the effective elastic modulus and ten- sile strength of saturated concrete improved compared with dry concrete.%孔隙水的存在对混凝土的有效弹性模量及强度等力学性能产生很大的影响。采用三相球模型理论分析得到了饱和混凝土的有效体积模量与孔隙率之间的定量关系；不考虑孔隙水的抗剪能力，获得了饱和混凝土的有效弹性模量、泊松比与孔隙率的定量关系。基于最大拉应力准则，推导得到了饱和混凝土的有效抗拉强度及其峰值应变与孔隙率之间的关系。理论分析结果与Yaman等的试验结果吻合良好，表明本文方法能够用来预测饱和混凝土的有效弹性模量；与干燥混凝土相比，孔隙水的存在使得饱和混凝土弹性模量和有效抗拉强度均有所提高。
JUAN LIZARAZO-MARRIAGA
2011-01-01
Full Text Available Considerando la creciente utilización de hormigón de alta resistencia como material estructural, este artículo presenta los resultados de un trabajo experimental llevado a cabo con el fin de investigar el efecto de diferentes tipos de agregados gruesos sobre el módulo estático elástico, la resistencia a la compresión, la densidad del hormigón y la velocidad del pulso. Para lograr esto, se usaron diferentes relaciones agua cementante (a/c (0.36, 0.32, y 0.28 y cuatro tipos de agregados diferentes, todos del área de influencia de Bogotá, Colombia. Como materiales cementantes se usaron cemento Portland y microsílice (SF. Los resultados experimentales fueron analizados estadísticamente, de donde se encontró que todos los ensayos se comportan siguiendo una distribución de frecuencia normal. De los datos experimentales obtenidos se concluyó que las ecuaciones propuestas en los códigos obreestiman el módulo de elasticidad del hormigón de alta resistencia, por lo que se proponen ecuaciones empíricas como alternativa.
Nour M. Ajaj-ALKordy
2014-01-01
Conclusion: Within the limitations of this study, it can be concluded that the high-impact acrylic resin is a suitable denture base material for patients with clinical fracture of the acrylic denture.
Asmussen, Erik; Peutzfeldt, Anne
2008-01-01
was that the marginal stresses would decrease with increasing modulus of elasticity of the restoration. METHODS: A cylindrical tooth was modelled in enamel and dentin and fitted with a Class I or a Class II restoration of resin composite. In one scenario the restoration was bonded to the tooth, in another...... the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. RESULTS: In the bonded scenario, the maximum stresses...... in the enamel were located at the occlusal margins (range 7-11 MPa), and in the dentin centrally at the pulpal floor (range 3.4-5.5MPa). The stresses decreased with increasing modulus of elasticity of the resin composite. In the nonbonded scenario, the stresses were higher in the dentin and lower in the enamel...
S. Shahbazi
2007-06-01
Full Text Available Introduction: Based on the invasive studies it has been shown that factors such as age, the progress of eye disorders, lens fibers compression and the biochemical changes of ocular matrix alter the physical characteristics and elastic properties of eye. In this study, a noninvasive method of estimating human eye elasticityis proposed and its relation with age and gender is evaluated using ultrasound images. Materials and Methods: To estimate eye elasticity, an especial loading system was designed and an external stress of 2614 ± 146 Pa which is less than the intraocular pressure of eye was applied to 20 eyes in an in vivo study. The pressure was measured using digital force gauge. The ultrasound images of B-mode were acquired prior to and post applying the stress. For the offline study throughout the loading process, the ultrasound images were saved as multi-frames into the computer by video grabber board. Monitoring, saving and further study of images were provided for the extraction of eye axial length and posterior wall thickness (PWT. The elasticity was estimated by measuring the relative changes of the axial length of eye, the posterior wall thickness and the applied stress. The statistical correlation of elastic modulus was analyzed based on age and gender. Results: The elastic modulus of the eye and the posterior wall thickness was estimated to be 51,777 ± 27304 and 14603 ± 4636 Pa, respectively. The obtained results indicated that there was no significant difference between the elastic parameters of the eye and the posterior wall thickness based on gender in both male and female group. The correlation analysis of the elastic parameter showed that there was significant difference between the eye and the posterior wall thickness based on age with a 95% confidence interval. Discussion and Conclusion: Based on the results obtained in this study the ultrasonic instruments might be used to estimate the hardness of eye lesions as well as eye
Oliveira, M.R.; Garcia, G.C.R.; Claudinei, S.; Ribeiro, S., E-mail: mroliveira@ppgem.eel.usp.br [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia. Departamento de Engenharia de Materiais; Resende, W.S. [Industrias Brasileiras de Artigos Refratarios (IBAR), Lorena, SP (Brazil)
2011-07-01
The studied castable contain andalusite aggregates, and when sintered in temperatures above 1280 deg C, transformed into mullite improving the properties of concrete due to its low expansion and thermal conductivity, creep resistance and thermal shock. The refractory was homogenized in a mixer with 5.5% m/m of water and poured into a metal mold resulting in prismatic bars. After curing for 48 hours, were sintered at 1450 ° C for 0 h, 1 h, 2.5 h and 10 h with heating and cooling rates of 2 ° C / min. The results of elastic modules were, respectively, in GPa: 25.75±1.75, 37.79±0.36, 39.03±1.97 and 54.47±4.01, and rupture, MPa: 8.40±0.78, 11.94±0.68, 10.91±0.91 and 11,34±1.16, showing the increase in elastic modulus for longer times and for times exceeding one hour, no significant changes in results of the modulus of rupture , stabilizing the change of this refractory's properties after the first hour of sintering. (author)
Neilson, Henry J., E-mail: hjn2@case.edu [Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH (United States); Petersen, Alex S.; Cheung, Andrew M.; Poon, S. Joseph; Shiflet, Gary J. [University of Virginia, 395 McCormick Road, P.O. Box 400745, Charlottesville, VA 22904 (United States); Widom, Mike [Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213 (United States); Lewandowski, John J. [Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH (United States)
2015-05-14
In this study, the variations in mechanical properties of Ni−Co−Ta-based metallic glasses have been analyzed. Three different chemistries of metallic glass ribbons were analyzed: Ni{sub 45}Ta{sub 35}Co{sub 20}, Ni{sub 40}Ta{sub 35}Co{sub 20}Nb{sub 5}, and Ni{sub 30}Ta{sub 35}Co{sub 30}Nb{sub 5}. These alloys possess very high density (approximately 12.5 g/cm{sup 3}) and very high strength (e.g. >3 GPa). Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) were used to characterize the amorphicity of the ribbons. Mechanical properties were measured via a combination of Vickers hardness, bending strength, and tensile strength for each chemistry. At least 50 tests were conducted for each chemistry and each test technique in order to quantify the variability of properties using both 2- and 3-parameter Weibull statistics. The variability in properties and their source(s) were compared to that of other engineering materials, while the nature of deformation via shear bands as well as fracture surface features have been determined using scanning electron microscopy (SEM). Toughness, the role of defects, and volume effects are also discussed.
Effects of preform architecture on modulus and strength of 2-D triaxially braided textile composites
Masters, John E.; Naik, Rajiv; Minguet, Pierre J.
1995-01-01
Laminates formed using braided fibrous preforms have been extensively investigated during the course of the past few years as alternatives to unidirectional prepreg tape systems. This paper focused on one aspect of that work. It defined the role of the fibrous preform architecture in controlling a laminate's mechanical properties. The presentation was divided into four sections as the outline listed above illustrates. The presentation began with a brief introduction which defined the objectives of the study and detailed the materials studied. This was followed by a review of empirical test results. The materials' moduli and strengths were measured in both tension and compression. Their shear moduli were also experimentally determined. The review of the empirical data comprised the bulk of the presentation. A comparison of the experimental data to results predicted analytically was then presented. The presentation concluded with a few summary remarks. The specimens studied in this investigation featured 2-D triaxially braided AS4 graphite fiber preforms impregnated with Shell 1895 epoxy resin.
张杨; 马岩; 杨春梅
2013-01-01
In modern biomedical technology,it is a more cutting-edge research to use biomedical materials as alternative materials for making medical assistance implements.In this paper,under the theory of modern cervical splint design,we researched the sliced veneer laminated timber cervical splint characteristics from micro-structure,and constructed a new sliced veneer laminated timber cervical splint.The paper gave the optimal size of sliced veneer of the molded cervical splint,and calculated the theoretical elastic modulus and its correlation coefficient which would impact its strength.Furthermore,we got the mechanical expression by deducing these the quantitative mathematical relation between the elastic modulus of coefficients and sliced veneer laminated timber cervical splint.This provided a basis for the micromechanics theory of cervical splint composite elastic mechanics,and provided experimental proofs.%采用现代颈椎夹板设计理论,从微观结构研究薄木层积材特性,构造新型薄木层积材颈椎夹板.文中给出模压颈椎夹板的薄木最优尺寸,求出其理论弹性模量,给出对强度产生影响的相关系数,并推导出这些系数和薄木层积材颈椎夹板的弹性模量之间定量的数学关系和力学表达式,为颈椎夹板复合弹性力学的微观力学理论提供基础,并给出试验证明.
Pease, Bradley Justin; Michel, Alexander; Thybo, Anna Emilie A.;
2012-01-01
A combined experimental and numerical approach for estimating the elastic modulus of reinforcement corrosion products is presented. Deformations between steel and mortar were measured using digital image correlation during accelerated corrosion testing at 100 μA/cm2 (~1.16 mm/year). Measured...... deformations were compared to a numerical corrosion model that considers electrochemical, transport, and mechanical processes, including penetration of corrosion products into a ‘corrosion-accommodating region,’ provided by the mortar’s capillary porosity, directly surrounding the steel. Comparing model...... and experimental results provides an order-of-magnitude approximation of corrosion product stiffness of 2.0 GPa....
邓嘉胤; 崔春翔; 刘双进; 戚玉敏; 杨薇; 高平; 彭诚; 宫崎隆
2009-01-01
BACKGROUND: As dental implants, pure titanium and Ti-6Al-4V has achieved broad clinical applications, but they also contain toxic vanadium and aluminum element. Moreover, their elastic modulus is so high as to produce stress shield. OBJECTIVE: To examine the micro-hardness and elastic modulus of the self-made Ti-30Nb-8Zr-2Mo titanium alloy. DESIGN, TIME AND SETTING: An observational experiment was performed at the laboratory of College of Material Science and Engineering at Hebei University of Technology between March 2003 and February 2006. MATERIALS: Titanium alloy was prepared using titanium sponge (≥ 99% purify), niobium strip (≥ 99.9% purify), molybdenum powder (≥ 99% purify) and zirconium sponge (≥ 99.4% purify).METHODS: The micro-hardness of the specimens was determined after uniformly annealing, hot-forging and solution. Compression test was conducted on post-aging samples. MAIN OUTCOME MEASURES: Hardness and stress-strain curve.RESULTS: The maximal alloy strength was obtained after solution under 800 ℃ for 0.5 hours. Post-aging alloy's hardness was improved significantly although little change occurred on solution alloy. Compressive strength of alloy samples was 1 054 MPa, while elastic modulus reached 16.5 GPa. CONCLUSION: Both micro-hardness and elastic modulus of the self-made Ti-30Nb-8Zr-2Mo titanium alloy have satisfied performance requirements for dental implant materials.%背景:目前广泛应用于临床的纯钛和Ti-6AI-4V种植体材料中存在着铝和钒的潜在毒性及弹性模量太大易造成界面应力屏障等问题.目的:对自行研制的新型钛合金Ti-30Nb-8Zr-2Mo进行硬度及弹性模量性能测试.设计、时间及地点:观察实验,于2003-03/2006-02在河北工业大学材料学实验室完成.材料:钛合金制备用原材料海绵钛纯度≥99%、钼粉纯度≥99%、铌条≥99.9%、海绵锆≥99.4%.方法:在均匀化退火、热煅、固溶后对试样显微硬度进行测量,对时效后的样品
Protasio F Castro
1997-06-01
Full Text Available Um estudo experimental foi realizado com o objetivo de contribuir com o desenvolvimento de métodos de ensaios de avaliação das características mecânicas das barras de plástico reforçado com fibra (FRP a serem utilizadas como armadura nas obras de engenharia civil. Comparou-se o módulo de elasticidade estático, obtido por ensaio de tração em uma máquina universal, com o módulo de elasticidade dinâmico, obtido por ensaios não destrutivos. O módulo de elasticidade dinâmico foi determinado utilizando-se dois métodos de propagação de ondas: o pulso ultra-sônico e a freqüência de ressonância. Os valores do módulo de elasticidade dinâmico e os valores do módulo de elasticidade estático obtidos a partir da curva tensão-deformação dos ensaios de tração são significativamente semelhantes. Os resultados mostram que os ensaios de módulo de elasticidade dinâmico possuem potencial para serem utilizados na linha de fabricação das barras de FRP como controle da produção.An experimental study was carried out to support the development of standards test methods for fiber reinforced plastic (FRP bars used as concrete reinforcement. In addition, this study compares the elastic modulus values from tensile stress-strain curves with the dynamic values obtained nondestructively. Dynamic modulus of elasticity was determined using two stress wave propagation methods: ultrasonic pulse velocity and resonant frequency. The dynamic values compared favorably with values obtained from tensile stress-strain curves. The results showed the feasibility of using nondestructive methods, as control test, to estimate FRP bars elastic modulus in a manufacture process.
Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction
Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)
2009-09-07
Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.
Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.
2008-07-01
Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs.
Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.
2008-07-01
Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs.
Rohini, Rani; Bose, Suryasarathi
2015-03-28
In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 °C and post-curing at 120 °C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.
Fábio B. Vicente
2014-01-01
Full Text Available The mechanical properties of Ti alloys are changed significantly with the addition of interstitial elements, such as oxygen. Because oxygen is a strong stabilizer of the α phase and has an effect on hardening in a solid solution, it has aroused great interest in the biomedical area. In this paper, Ti-Zr alloys were subjected to a doping process with small amounts of oxygen. The influence of interstitial oxygen in the structure, microstructure and some selected mechanical properties of interest for use as biomaterial and biocompatibility of the alloys were analyzed. The results showed that in the range of 0.02 wt% to 0.04 wt%, oxygen has no influence on the structure, microstructure or biocompatibility of the studied alloys, but causes hardening of the alloys, increasing the values of the microhardness and causing variation in the elasticity modulus values.
Mojzeš Marcel
2015-03-01
Full Text Available The Gabčíkovo hydroelectric power plant is located in a complicated geological environment (gravel sub-soil and a high groundwater level. Excavation work started after the withdrawal of water in the autumn of 1984 and lasted until the autumn of 1986. A basic geodetic control network with a special monument was founded before the excavation work began. This network served for the setting-out of the hydroelectric power plant as well as for the control of the excavation work. The repeated geodetic control measurements have been evaluated and presented at many seminars and conferences. Monitoring the horizontal and vertical stability of the geodetic control network during the general site excavation showed significant horizontal and vertical deformations. The paper is focused on an estimation of an effective Young's modulus of elasticity in the area studied.
陈渊召; 李振霞
2013-01-01
为对橡胶颗粒沥青混合料弹性模量进行预估,分别建立单夹杂复合材料两层嵌入式模型和多步骤多相细观力学模型,得到橡胶颗粒沥青混合料弹性模量预测方法,对橡胶颗粒沥青混合料弹性模量进行预测；将弹性模量预测结果与实测结果进行对比分析,研究橡胶颗粒沥青混合料弹性模量影响因素,并对低温条件下弹性衰减进行分析.研究结果表明:该细观力学模型方法是有效的和可靠的,可用于预先评估橡胶颗粒沥青路面在低温下的力学性能和除冰能力；沥青胶浆的弹性模量对橡胶颗粒沥青混合料弹性模量的影响较大,且随沥青胶浆弹性模量的增大而增大；橡胶颗粒用量变化对混合料弹性模量的影响比较大,随着橡胶颗粒用量的增加,混合料弹性模量逐渐减小；在低温下,混合料的弹性模量显著增大,橡胶颗粒沥青路面的除冰效果将大大减弱.%In order to predict elastic modulus of crumb rubber asphalt mixture,two-layer embedded model of single inclusion composite and multi-step multiphase micro-mechanical model were established.Prediction method of elastic modulus for crumb rubber asphalt mixture was gotten.Elastic modulus of crumb rubber asphalt mixture was predicted,and elastic modulus comparative analysis of prediction results and measured results was carried out.Influencing factors of elastic modulus for crumb rubber asphalt mixture were researched,and deep analysis on elasticity attenuation under low temperature was carried out.The results show that the micro-mechanical model method is effective and reliable,and can be used to predict mechanical properties and deicing ability of crumb rubber asphalt mixture under low temperature.The effect of elastic modulus for asphalt mortar on elastic modulus for asphalt mixture is big,and elastic modulus of crumb rubber asphalt mixture increases with the increase of the asphalt mortar.The effect of crumb rubber
Modeling of elastic-strength properties of elastomers
O. V. Karmanova
2016-01-01
Full Text Available Model "structure-property", which takes into account the structural heterogeneity of polymer compositions has been developed. Experimental compositions based on styrene-butadiene rubber SCS 30ARK and crosslinked, high viscosity polymer (high-molecular filler - VMN in different proportions, as well as softeners (industrial oil I-12A, oil PN-6, low-molecular polybutadiene PBN were investigated. Samples that differ significantly in viscosity were obtained. The rubber blends and vulcanizates, based on the experimental of polymer compositions, were prepared. Physico-mechanical properties - tensile strength, elongation at break, Shore A. A hardness were determined. For describe the physical and mechanical properties of polymers logarithmic additivity rule was used. The properties of the polymer composition (PС were determined by a single dominant component (resin composition consisting of a high rubber and a filler and further components (softeners. Identification algorithm consists of four steps. The implementation of this algorithm is carried out using experimental design techniques. Estimation of the unknown parameters in the equation was carried out using the method of least squares. Quality evaluation of the model was conducted with the criteria Fisher, turning points, the Durbin-Watson, R / S-criterion. It is found that the model adequately describes the change of physicomechanical properties depending on the composition of polymer compositions. 3d graphics of the physical-mechanical properties of the polymer compositions were built. This allowed us to estimate the contribution of the dominant component and optional components (including combinations thereof to change the parameters. It has been established that the introduction of rubber in total more than 50% of the components (BMH and softeners reduced conventional tensile strength and dramatically increases the relative error of model calculations. (BMH and softeners
In Vivo Measures of Shear Wave Speed as a Predictor of Tendon Elasticity and Strength.
Martin, Jack A; Biedrzycki, Adam H; Lee, Kenneth S; DeWall, Ryan J; Brounts, Sabrina H; Murphy, William L; Markel, Mark D; Thelen, Darryl G
2015-10-01
The purpose of this study was to assess the potential for ultrasound shear wave elastography (SWE) to measure tissue elasticity and ultimate stress in both intact and healing tendons. The lateral gastrocnemius (Achilles) tendons of 41 New Zealand white rabbits were surgically severed and repaired with growth factor coated sutures. SWE imaging was used to measure shear wave speed (SWS) in both the medial and lateral tendons pre-surgery, and at 2 and 4 wk post-surgery. Rabbits were euthanized at 4 wk, and both medial and lateral tendons underwent mechanical testing to failure. SWS significantly (p tendons. SWS was significantly (p tendon elastic modulus (r = 0.52) and ultimate stress (r = 0.58). Thus, ultrasound SWE is a potentially promising non-invasive technology for quantitatively assessing the mechanical integrity of pre-operative and post-operative tendons. Published by Elsevier Inc.
Effects of kinesio tape compared with non-elastic tape on hand grip strength.
Kim, Ji Young; Kim, Seong Yeol
2016-05-01
[Purpose] Many assumptions have been made about taping and several studies have considered tape application methods; however, the true effect of taping on muscle strength remains unclear. Most previous studies compared application techniques using Kinesio tape (KT), but studies that compared muscle strength using non-elastic tape (NT) are limited. Moreover, no studies have applied KT and NT in the same way to assess grip strength in normal subjects. The purpose of this study was to evaluate the immediate effect of application of two tapes with different elastic properties on maximal grip strength in healthy adults. [Subjects and Methods] Twenty healthy adults were divided into two groups (KT and NT). Maximal grip strength was measured with a dynamometer. Forearm extensor muscles of the dominant hand were then taped and subjects were immediately asked to perform hand grip movement with maximum strength in the same standardized manner. [Results] In the KT group, maximal grip strength was significantly increased compared to the initial value; however, in the NT group, there was no significant difference in maximal grip strength. [Conclusion] This study suggests that only Kinesio tape can increase maximal grip strength immediately after application on the extensor region of the forearm.
Effects of kinesio tape compared with non-elastic tape on hand grip strength
Kim, Ji Young; Kim, Seong Yeol
2016-01-01
[Purpose] Many assumptions have been made about taping and several studies have considered tape application methods; however, the true effect of taping on muscle strength remains unclear. Most previous studies compared application techniques using Kinesio tape (KT), but studies that compared muscle strength using non-elastic tape (NT) are limited. Moreover, no studies have applied KT and NT in the same way to assess grip strength in normal subjects. The purpose of this study was to evaluate the immediate effect of application of two tapes with different elastic properties on maximal grip strength in healthy adults. [Subjects and Methods] Twenty healthy adults were divided into two groups (KT and NT). Maximal grip strength was measured with a dynamometer. Forearm extensor muscles of the dominant hand were then taped and subjects were immediately asked to perform hand grip movement with maximum strength in the same standardized manner. [Results] In the KT group, maximal grip strength was significantly increased compared to the initial value; however, in the NT group, there was no significant difference in maximal grip strength. [Conclusion] This study suggests that only Kinesio tape can increase maximal grip strength immediately after application on the extensor region of the forearm. PMID:27313372
Cojocaru, C. V.; Kruger, S. E.; Moreau, C.; Lima, R. S.
2011-01-01
Si-based ceramics (e.g., SiC and Si3N4) are known as promising high-temperature structural materials in various components where metals/alloys reached their ultimate performances (e.g., advanced gas turbine engines and structural components of future hypersonic vehicles). To alleviate the surface recession that Si-based ceramics undergo in a high-temperature environmental attack (e.g., H2O vapor), appropriate refractory oxides are engineered to serve as environmental barrier coatings (EBCs). The current state-of-the-art EBCs multilayer system comprises a silicon (Si) bond coat, mullite (3Al2O3·2SiO2) interlayer and (1 - x)BaO· xSrO·Al2O3·2SiO2, 0 ≤ x ≤ 1 (BSAS) top coat. In this article, the role of high-temperature exposure (1300 °C) performed in H2O vapor environment (for time intervals up to 500 h) on the elastic moduli of air plasma sprayed Si/mullite/BSAS layers deposited on SiC substrates was investigated via depth-sensing indentation. Laser-ultrasonics was employed to evaluate the E values of as-sprayed BSAS coatings as an attempt to validate the indentation results. Fully crystalline, crack-free, and near-crack-free as-sprayed EBCs were engineered under controlled deposition conditions. The absence of phase transformation and stability of the low elastic modulus values (e.g., ~60-70 GPa) retained by the BSAS top layers after harsh environmental exposure provides a plausible explanation for the almost crack-free coatings observed. The relationships between the measured elastic moduli of the EBCs and their microstructural behavior during the high-temperature exposure are discussed.
Influence of structural parameters of the masonry on effective elastic properties and strength
А.I. Grishchenko
2014-08-01
Full Text Available Two phase masonry model, which contains elastic mortar and elastic bricks, is analyzed numerically in order to evaluate sensitivity of effective elastic moduli and strength properties to a deviation in the masonry structural parameters. Different methods of masonry homogenization are studied. Effective elastic moduli of the masonry representative volume element are obtained by means of direct finite element simulation and homogenization procedure. Influence of variation in the heterogeneous material microstructure characteristics (influence of brick aspect ratio and orientation angle on the local stress-strain state and mechanical properties of the representative volume element of the composite considered is analyzed. Mechanical properties obtained by direct finite element modeling and other methods in various literary sources are compared. These studies are relevant for the design of composite materials with a structure similar to masonry.
Antony, S. J.; Kruyt, N. P.
2009-03-01
The interlink between particle-scale properties and macroscopic behavior of three-dimensional granular media subjected to mechanical loading is studied intensively by scientists and engineers, but not yet well understood. Here we study the role of key particle-scale properties, such as interparticle friction and particle elastic modulus, in the functioning of dual contact force networks, viz., strong and weak contacts, in mobilizing shear strength in dense granular media subjected to quasistatic shearing. The study is based on three-dimensional discrete element method in which particle-scale constitutive relations are based on well-established nonlinear theories of contact mechanics. The underlying distinctive contributions of these force networks to the macroscopic stress tensor of sheared granular media are examined here in detail to find out how particle-scale friction and particle-scale elasticity (or particle-scale stiffness) affect the mechanism of mobilization of macroscopic shear strength and other related properties. We reveal that interparticle friction mobilizes shear strength through bimodal contribution, i.e., through both major and minor principal stresses. However, against expectation, the contribution of particle-scale elasticity is mostly unimodal, i.e., through the minor principal stress component, but hardly by the major principal stress. The packing fraction and the geometric stability of the assemblies (expressed by the mechanical coordination number) increase for decrease in interparticle friction and elasticity of particles. Although peak shear strength increases with interparticle friction, the deviator strain level at which granular systems attain peak shear strength is mostly independent of interparticle friction. Granular assemblies attain peak shear strength (and maximum fabric anisotropy of strong contacts) when a critical value of the mechanical coordination number is attained. Irrespective of the interparticle friction and elasticity
Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region
Gac, Sébastien; Klitzke, Peter; Minakov, Alexander; Faleide, Jan Inge; Scheck-Wenderoth, Magdalena
2016-11-01
Interpretation of tomography data indicates that the Barents Sea region has an asymmetric lithospheric structure characterized by a thin and hot lithosphere in the west and a thick and cold lithosphere in the east. This suggests that the lithosphere is stronger in the east than in the west. This asymmetric lithosphere strength structure may have a strong control on the lithosphere response to tectonic and surface processes. In this paper, we present computed strength and effective elastic thickness maps of the lithosphere of the Barents Sea and Kara Sea region. Those are estimated using physical parameters from a 3D lithospheric model of the Barents Sea and Kara Sea region. The lithospheric strength is computed assuming a temperature-dependent ductile and brittle rheology for sediments, crust and mantle lithosphere. Results show that lithospheric strength and elastic thickness are mostly controlled by the lithosphere thickness. The model generally predicts much larger lithospheric strength and elastic thickness for the Proterozoic parts of the East Barents Sea and Kara Sea. Locally, the thickness and lithology of the continental crust disturb this general trend. At last, the gravitational potential energy (GPE) is computed. Our results show that the difference in GPE between the Barents Sea and the Mid-Atlantic Ridge provides a net horizontal force large enough to cause contraction in the western and central Barents Sea.
微米木纤维颈椎夹板的制备及其弹性模量模型%Preparation of micron wood ifbre cervical splint and its elastic modulus model
张杨; 马岩
2015-01-01
In order to meet the medical criteria in the strength of cervical splints, with micron grade wood ifber as the material, the micron wood ifbre cervical splint was prepared. Through the micro-organisational observation on Populus tomentosa wood ifbre (its density was 0.439 g/cm3 and its moisture content was between12% ~ 15%, it was found that the interior structure of the wood ifbre showed a stable honeycombed unidirectional spongy structure. The wood ifbre had good toughness and intensity when it was cut into the micron wood ifbre (average thickness 52mm) and it can be uses in medical cervical splint manufacturing after molded. By calculating the elastic modulus values under the different pavement states of wood ifbers, it also could be found that in the molding process, the ifber size, density, amount of compression, amount of glue, gluing effect and other factors all will cause influences to the elastic modulus of the cervical splint.%为制备出在强度上满足医用条件的颈椎夹板，以微米级的木纤维为材料，通过对密度0.439 g/cm3、含水率12%～15%的毛白杨进行微观组织观察，发现木材内部呈现稳定的蜂窝状单向多孔结构，用其切削出平均厚度为52 mm的木纤维，具有良好的韧性和强度，经过模压可用于制造医用颈椎夹板。对木纤维不同铺装状态下的弹性模量进行计算，得出了在模压过程中纤维尺寸、密度、压缩量、施胶量、胶合程度等因素都会对夹板弹性模量产生一定的影响。
Paredes, V; Salvagni, E; Rodríguez-Castellon, E; Gil, F J; Manero, J M
2015-04-01
A biocompatible new titanium alloy Ti-16Hf-25Nb with low elastic modulus (45 GPa) and the use of short bioadhesive peptides derived from the extracellular matrix have been studied. In terms of cell adhesion, a comparative study with mixtures of short peptides as RGD (Arg-Gly-Asp)/PHSRN (Pro-His-Ser-Arg-Asn) and RGD (Arg-Gly-Asp)/FHRRIKA (Phe-His-Arg-Arg-Ile-Lys-Ala) have been carried out with rat mesenchymal cells. The effect of these mixtures of short peptides have already been studied but there are no comparative studies between them. Despite the wide variety of silane precursors available for surface modification in pure titanium, the majority of studies have used aminosilanes, in particular 3-minopropyltriethoxysilane (APTES). Nevertheless, the 3-chloropropyltriethoxysilane (CPTES) is, recently, proposed by other authors. Unlike APTES, CPTES does not require an activation step and offers the potential to directly bind the nucleophilic groups present on the biomolecule (e.g., amines or thiols). Since the chemical surface composition of this new alloy could be different to that pure titanium, both organosilanes have been compared and characterized by means of a complete surface characterization using contact angle goniometry and X-ray photoelectron spectroscopy.
吕毅刚; 韩伟威; 吕健鸣; 刘云峰
2016-01-01
为弥补传统测试方法的不足,建立暴露试验站,开展了自然暴露环境下的桥梁混凝土长期静、动弹性模量试验研究.运用超声波平测法,取不同测距的接收波波峰相关散点进行回归计算,获取桥梁混凝土的纵波波速及表面波波速,根据动弹性模量与波速的数学关系,计算出混凝土的动弹性模量.基于一批碎石混凝土试件的试验结果,分析了混凝土动弹性模量随时间发展的规律,构建了5~20 mm和5~30 mm两种连续级配碎石混凝土试件的静、动弹性模量换算公式.结合钢筋混凝土构件的试验研究,验证了该静、动弹性模量换算公式的适用性.本试验方法和研究成果为桥梁工程的长期弹性模量无损快速跟踪测试奠定了基础.%In order to remedy the deficiencies of traditional detection methods, an exposure experiment station is established, and the experimental research on the long-term static and dynamic elastic moduli of bridge concrete in natural exposure environment is carried out. By use of ultrasonic plane testing method, the longitudinal and surface wave velocities of bridge concrete are obtained through regression calculation of correlative points of the received wave crests of different ranges. The dynamic elastic modulus of concrete is calculated according to the mathematical relationship between dynamic elastic modulus and wave velocity. Based on the experimental results of a group of gravel concrete specimens, the rule of dynamic elastic modulus of concrete developing with time is analyzed, and the conversion formulas between static elastic modulus and dynamic elastic modulus of the concrete specimens with 5-20 mm and 5-30 mm gravels are set up. The applicability of the conversion formulas is verified by experimental research of reinforced concrete members. The detection methods and findings can lay the foundations of fast nondestructive follow - up detection of the long-term elastic modulus of
International Organization for Standardization. Geneva
1997-01-01
Fibre-reinforced plastic composites - Determination of the in-plane shear stress/shear strain response, including the in-plane shear modulus and strength, by the plus or minus 45 degree tension test method
Mebs, R W; Mcadam, D J
1947-01-01
A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were
Pereira, A. H. A.
2012-06-01
Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens.
The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.
En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido
Study of low elastic modulus expandable screws in osteoporotic sheep in vivo%低弹性模量膨胀螺钉在骨质疏松绵羊的体内研究
石磊; 王陵; 雷伟; 郭征; 吴子祥; 刘达
2011-01-01
Objective To observe the biological performance of the low elastic modulus expandable screw in osteoporotic sheep in vivo and to find out whether the stability of the screw can be improved. Methods Four adult female sheep were ovariectomized. After 12 months, the bone mineral density of the lumber vertebra was determined using dual energy X-ray absorptiometry to confirm the establishment of the osteoporosis model. Bilateral pedicles of the lumbar vertebrae ( L, -L, ) were random fixed with two different elastic modulus expendable screws, low elastic module expandable screws (42GPa) for the experiment group and ordinary expandable screws (HOGPa) for the control group. All the animals were sacrificed 3 months after the implantation. Maximal force testing, micro-CT measurement, and histology analysis were performed. Results BMD of the lumbar vertebrae of the sheep decreased significantly 1 year after ovariectomy ( P 0. 05 ) . Histological observation showed that newly formed bone around the screws was more in the experimental group than in the controlgroup. Meanwhile more tight contact and less fibrous connective tissue were observed on the screw-boneinterface in the experimental group. Conclusion The low elastic modulus expandable screws can furtherimprove the biomechanioal fixation strength in osteoporotk: sheep and reduce the failure of the screwfixation, through reduction of the difference of elastic modulus between the screws and the surrounding bonetissue.%目的 观察应力作用下低弹性模量膨胀螺钉在骨质疏松绵羊体内生物学表现,探讨其是否能在普通膨胀螺钉的基础上进一步提高螺钉的稳定性.方法 选用4只成年雌性绵羊,行去势手术12月后,以双能X线骨密度测量仪测定去势前后腰椎骨密度,确定骨质疏松模型建立成功.于L1-L5脊椎两侧椎弓根内随机植入两种弹性模量的膨胀螺钉,低弹膨胀螺钉(42GPa)为实验组,普通膨胀螺钉(110GPa)为对照组,术后3月处
Lee, Jong-Won; Harris, Charles E.
1990-01-01
A mathematical model based on the Euler-Bermoulli beam theory is proposed for predicting the effective Young's moduli of piecewise isotropic composite laminates with local ply curvatures in the main load-carrying layers. Strains in corrugated layers, in-phase layers, and out-of-phase layers are predicted for various geometries and material configurations by assuming matrix layers as elastic foundations of different spring constants. The effective Young's moduli measured from corrugated aluminum specimens and aluminum/epoxy specimens with in-phase and out-of-phase wavy patterns coincide very well with the model predictions. Moire fringe analysis of an in-phase specimen and an out-of-phase specimen are also presented, confirming the main assumption of the model related to the elastic constraint due to the matrix layers. The present model is also compared with the experimental results and other models, including the microbuckling models, published in the literature. The results of the present study show that even a very small-scale local ply curvature produces a noticeable effect on the mechanical constitutive behavior of a laminated composite.
Soutas-Little, Robert William
2010-01-01
According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke
Fritsch, Andreas; Dormieux, Luc; Hellmich, Christian; Sanahuja, Julien
2009-01-01
Hydroxyapatite (HA) biomaterials production has been a major field in biomaterials science and biomechanical engineering. As concerns prediction of their stiffness and strength, we propose to go beyond statistical correlations with porosity or empirical structure-property relationships, as to resolve the material-immanent microstructures governing the overall mechanical behavior. The macroscopic mechanical properties are estimated from the microstructures of the materials and their composition, in a homogenization process based on continuum micromechanics. Thereby, biomaterials are envisioned as porous polycrystals consisting of HA needles and spherical pores. Validation of respective micromechanical models relies on two independent experimental sets: biomaterial-specific macroscopic (homogenized) stiffness and uniaxial (tensile and compressive) strength predicted from biomaterial-specific porosities, on the basis of biomaterial-independent ("universal") elastic and strength properties of HA, are compared with corresponding biomaterial-specific experimentally determined (acoustic and mechanical) stiffness and strength values. The good agreement between model predictions and the corresponding experiments underlines the potential of micromechanical modeling in improving biomaterial design, through optimization of key parameters such as porosities or geometries of microstructures, in order to reach the desired values for biomaterial stiffness or strength.
孙燕良; 张厚江; 朱磊; 王喜平; 闫海成; 廖春晖
2012-01-01
以落叶松(Larix gmelinii)新鲜材、古建筑旧材为试验材料,运用微钻阻力仪对其内部的微钻阻力进行了快速检测,分析微钻阻力与两种落叶松材弹性模量之间的相关性及利用微钻阻力快速评估木材弹性模量的可行性.结果表明,对于新鲜落叶松材料,其微钻阻力检测值与弹性模量呈显著线性相关,可以利用微钻阻力较好地评估其弹性模量,且二者相关系数为0.831 9；对于古建筑的落叶松材料,利用微钻阻力快速检测弹性模量的精度则相对较差,二者相关系数为0.341 5,需结合其他检测指标综合进行判断.%Aimed at finding the correlation between the micro-drilling resistance and modulus of elasticity of two larch wood and the feasibility to rapid assessment of the modulus of elasticity, the micro-drilling resistance meter was adopted to detect the internal situation of new and old larch wood. The results showed that the micro-drilling resistance detection value and e-lastic modulus presented a significant linear correlation for general larch materials. The micro-drilling could be used to better assess the modulus of elasticity, and the correlation coefficient were 0.831 9 between them. However, for the old larch, the precision of ueing micro-drilling resistance for rapid detection of the elastic modulus were relatively poor with the correlation coefficient of 0.341 5, it should combine with other testing indicators to get the reliable data.
Kesteven, Jazmin [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Walter, Rhys; Khakbaz, Hadis [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Choe, Han-Choel [Department of Dental Materials, Chosun University, Gwangju 501-759 (Korea, Republic of)
2015-01-01
In this study, the in vitro degradation behaviour of titanium–tantalum (Ti–Ta) alloys (10–30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium–aluminium–vanadium (Ti6Al4V) alloy. Among the three Ti–Ta alloys studied, the Ti20Ta (6.3 × 10{sup −4} mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2 × 10{sup −3} mm/y) and Ti10Ta (1.4 × 10{sup −3} mm/y). All the Ti–Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8 × 10{sup −3} mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1 × 10{sup −4} mm/y), the degradation rate of Ti20Ta alloy was lower by ∼ 22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ∼ 48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8 × 10{sup −3} mm/y) showed ∼ 53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. - Highlights: • In vitro degradation of titanium–tantalum (Ti–Ta) alloys was studied. • Ta addition to Ti is beneficial for better degradation resistance. • Ti–Ta alloys perform better than commercially pure Ti. • Calcium phosphate coated Ti–Ta alloy is superior to Ti6Al4V alloy.
许松; 唐晓明; 苏远大
2015-01-01
The effective modulus of transversely isotropic compound material containing aligned ellipsoidal inhomogeneity is derived using the method of sphere-equivalency of effective scattering. Based on this approach, we derive the integral solution of the Eshelby tensor for the anisotropic medium, allowing for numerically evaluating the effects of anisotropy for the solution. The numerical results show that the effective modulus of the medium decreases monotonically with increasing the concentration of the inhomogeneties. The anisotropy increases if the inhomogeneity alignment direction is perpendicular to the TI symmetry axis of the background medium. By reducing the numbers of matrix elastic modulus from 5 to 2, we calculate the slowness surfaces for the three modes of propagation in an isotropic medium containing aligned ellipsoidal inhomogeneity. The results are the same as the existing ones, which validates the exactness of our theory. The modeling results can be used to evaluate elastic property of an anisotropic medium with aligned inclusions, such as earth formation shale rocks containing aligned cracks.
Residual Tensile Strength of Plain Concrete Under Tensile Fatigue Loading
无
2007-01-01
The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus.The relationship between the residual secant elastic modulus and number of cycles was also established.
Oriele Palumbo
2015-05-01
Full Text Available Amorphous (Ni0.6Nb0.41−xZrx membranes were investigated by means of X-ray diffraction, thermogravimetry, differential thermal analysis and tensile modulus measurements. Crystallization occurs only above 673 K, and even after hydrogenation the membranes retain their mainly amorphous nature. However, after exposure to gaseous hydrogen, the temperature dependence of the tensile modulus, M, displays large variations. The modulus of the hydrogen reacted membrane is higher with respect to the pristine samples in the temperature range between 298 K and 423 K. Moreover, a sharp drop in M is observed upon heating to approximately 473 K, well below the glass transition temperature of these glasses. We propose that the changes in the moduli as a function of temperature on the hydrogenated samples are due to the formation of nanocrystalline phases of Zr hydrides in (Ni0.6Nb0.41−xZrx-H membanes.
亚斌; 周秉文; 黄炳坤; 贾非; 丁旭; 任志原; 张兴国
2015-01-01
碳纳米管具有优异的力学、电学、光学和磁学等性能，是聚合物复合材料理想的增强体。弹性模量是材料重要的力学性能参数之一，本文介绍了近年来碳纳米管聚合物复合材料弹性模量的研究状况，综述了混合法则、Hashin-Shtrikman 模型、Cox 模型、Halpin-Tsai模型和数值模拟法预测碳纳米管聚合物复合材料弹性模量的方法，并提出了研究中面临的一些问题以及发展方向。%Carbon nanotubes have been considered as an ideal reinforcement for polymer composites owing to their outstanding mechanical,electrical,optical and magnetic properties.Elastic modulus is an important pa-rameter of mechanical properties of materials.The research progress of the study of the elastic modulus of car-bon nanotubes reinforced polymer composites was reviewed in this paper.Different method of predicting the elastic modulus of carbon nanotube/polymer composites,rule of Mixtures,Hashin-Shtrikman model,Cox model Halpin-Tsai model and numerical simulation were introduced.In addition,the problems and the develo-ping prospect in this field were discussed and previewed.
李元元; 邹黎明; 杨超
2012-01-01
为探寻有效的高强低模医用钛合金制备方法,采用机械合金化方法制备了不同Fe含量的(Ti69.7Nb23.7Zr4.9Ta1.7)100-xFex非晶/纳米晶合金粉末,随后采用放电等离子烧结-非晶晶化法得到了高强低模的超细晶钛基复合材料.结果表明:(1)机械合金化过程中,Fe含量对合金的非晶形成能力影响显著,文中实验条件下,只有当x增大至10时才能形成全非晶相的非晶粉末；(2)Fe含量也明显影响合成的块体钛合金的力学性能,合成的不同Fe含量合金中,只有(Ti69.7Nb23.7Zr4.9Ta1.7)94 Fe6合金具有高强度和显著塑性,其压缩屈服强度为2425 MPa,断裂强度为2650 MPa,断裂应变为0.0691,平均弹性模量仅为52 GPa,接近第三代生物医用钛合金的最低值.将所合成的超细晶钛合金与常用的两种生物钛合金(Ti-6Al-4V和Ti-13Nb-13Zr)进行抗摩擦磨损性能对比,发现所合成的钛合金具有最佳的耐磨性.%In order to explore an effective method to fabricate biomedical Ti alloy with high strength and low modulus, amorphous/nanocrystallized (Ti69.7Nb23.7Zr4.9Ta1.7) 100_x.Fe;c alloy powders with different Fe contents were synthesized via mechanical alloying, and, subsequently, ultrafine-grained Ti-based composites with high strength and low modulus were fabricated via the spark plasma sintering-amorphous crystallization. The results show that, during the performed mechanical alloying, Fe content significantly affects the glass-forming ability of the alloy system, concretely, fully amorphous structure forms only when x reaches 10; and that Fe content also has an obvious effect on the mechanical properties of the bulk composites, only the bulk composite at a x value of 6 possesses high strength and distinct plasticity, with the corresponding compressive yield stress, fracture stress and fracture strain respectively being 2425 MPa, 2650 MPa and 0. 069 1, and with an average elastic modulus of 52 GPa that is close to the minimum
秦向辉; 谭成轩; 孙进忠; 陈群策; 安美建
2012-01-01
在北京某深孔原岩应力测量和原岩应力测量段同等深度单轴及不同围压下的三轴岩石力学试验的基础上,结合统计的钻孔岩体结构参数,分析了原岩应力测量段深度处修正前、后的岩石弹性模量,进而探讨了地应力与岩石弹性模量间关系.结果表明,在花岗岩中,主应力大小与修正前、后的岩石弹性模量间均呈正相关关系,而在灰岩中,主应力大小与修正前、后岩石弹性模量间的关系不明确,需要进一步研究;在花岗岩中,主应力大小与修正后的岩石弹性模量间的相关性系数高于主应力大小与修正前的岩石弹性模量间的相关性系数:各向同性高的岩体(如花岗岩),实测地应力大小与岩石力学试验结果相关性好,而各向异性大的岩体(如沉积岩),实测地应力大小与岩石力学试验结果相关性较差.%An in-situ stress measurement and a rock mechanical test under different confining pressures and statistics of structure properties of rock mass in a deep borehole in Beijing have been carried out to research the relation between in-situ stress and rock elastic modulus thoroughly. The results are as follows: the relation between principal stress magnitude and rock elastic modulus shows a positive correlation in granite, but not clear in limestone. In granite, the relative coefficient between principal stress magnitude and revised rock elastic modulus exceeds the relative coefficient between principal stress magnitude and rock elastic modulus. The correlation between in-situ crustal stress magnitude and results of rock mechanical test in high-isotropic rock (e.g. granite) is high, but the correlation in low-isotropic rock (e.g. sedimentary rock) is low.
Indentation of elastically soft and plastically compressible solids
Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.
2015-01-01
The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...... the ratio of nominal indentation hardness to yield strength. A linear relation is found between the nominal indentation hardness and the logarithm of the ratio of Young's modulus to yield strength, but with a different coefficient than reported in previous studies. The nominal indentation hardness decreases...
任艳玲; 卢立新
2012-01-01
应用复合材料细观力学分析方法,推导了4层瓦楞纸板的复合瓦楞纸的弹性模量。考虑2层瓦楞原纸间粘合剂的影响,分析了复合瓦楞纸纵向弹性模量与粘合剂体积分数及其纵向弹性模量的关系,并用实验进行了验证。为4层瓦楞纸板进一步的相关理论分析奠定基础。%Elastic modulus of corrugated laminated paper for four-ply corrugated board was deduced based on micromechanics analysis of composite material.Considering the effect of adhesive between two layers of base paper,the relationship between corrugated laminated paper＇s longitudinal elastic modulus and volume fraction as well as of the adhesive was analyzed.Verification experiments were carried out.The purpose was to provide reference for further theoretical analysis of four-ply corrugated paperboard.
岑朝正; 蒋永芳; 蒋朝军
2015-01-01
The elasticity modulus of coal-body is related to the water quantity contained in the coal, due to the geology condition under which coal is deposited varies considerably, the water quantity is unconstant in the coal so that the elasticity modulus of coal-body is also different. To get a full understanding of the elasticity modulus of coal-body varying with water contained in the coal experiment relevant is carried out with the RMT-150B rock mechanism device before and after the coal in a degree of different waterlogged, the coal sample taken from Xinmi Coal Field.The elasticity modulus of coal-body changing with different water contained in the coal is learned, and the consequence of which is also analysed based on the acting mechanisation between the coal and the water contained in it. In the end, an conclusion can be drawn from the experiment that the elasticity modulus of coal has become samller and smaller according to the quantity of water-contained in the coal. The most important reason of that result is because the water occurring in the coal change the original colloid connection manner among coal matrix to that of water and colloid, with the connection force being dropped ,so that the capacity of the coal-body resistible to formation from out-side power become less.%煤岩体内通常含有一定的水份，由于煤岩体所处地质环境的差异，会造成煤岩体含水量不同，进而影响煤岩体的弹性模量。为了解不同含水率下煤岩体弹性模量变化规律，实验采取新密矿区煤样，通过在RMT-150B岩石力学试验装置上对浸泡前后煤样进行三轴应力加载实验，得出浸泡前后煤样的弹性模量变化，进而根据水与煤样之间的作用关系，分析了引起煤岩弹性模量变化的原因。实验结果显示经过浸泡后煤样的弹性模量降低，并且含水率增加越大，弹性模量降低越大。分析认为煤样弹性模量降低主要是由于水的存在是使颗粒之
Phase stability, elasticity, and theoretical strength of polonium from first principles
Legut, Dominik; Friák, Martin; Šob, Mojmír
2010-06-01
Employing full-potential linearized augmented plane-wave method, we investigate the stability of Po in its ground-state simple cubic structure (α-Po) with respect to the trigonal spiral structure exhibited by Se and Te and to the displacive phase transformations into either tetragonal or trigonal phases. The origin of the phase stability of α-Po is analyzed with the help of densities of states, electronic band structures, and total energies of competing higher-energy structures corresponding to selected stationary points of the total energy. The electronic structures and total energies are calculated both within the generalized gradient approximation and local-density approximation (LDA) to the exchange-correlation energy as well as with and without inclusion of the spin-orbit (SO) coupling. The total energies are displayed in contour plots as functions of selected structural parameters and atomic volume. It turns out that the LDA calculation with SO interaction incorporated provides best agreement with existing experimental data and that the simple cubic structure of α-Po is stabilized by relativistic effects of core electrons. High elastic anisotropy of α-Po is explained as a consequence of its simple cubic structure and is compared with elastic properties of other crystal structures. Finally, an uniaxial tensile test for loading along the [001] and [111] directions is simulated; the corresponding theoretical tensile strengths calculated within the LDA+SO approach amount to 4.2 GPa and 4.7 GPa, respectively, which are the lowest values predicted in an element so far. According to Pugh and Frantsevich criteria, α-Po is predicted to be ductile. Also a positive value of the Cauchy pressure confirms the metallic type of interatomic bonding.
Elastic properties of suspended black phosphorus nanosheets
Wang, Jia-Ying; Li, Yang; Zhen, Liang; Xu, Cheng-Yan, E-mail: cy-xu@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China); Zhan, Zhao-Yao [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Li, Tie [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)
2016-01-04
The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.
王平; 王杰民; 刘红玫; 王谦
2011-01-01
A series of studies on dynamic elasticity modulus and damping ratio of highly weathered rock which covered by loess are conducted with small strain ed, using triaxial shear equipment and their dynamics properties are analyzed. The results show that the dynamic stress and strain relation of highly weathered rock is nonlinear elastic relations, and fit the model of hyperbolic type with small strain ed. Within the same strain range, the mudstone's damping ratio is greater than the red sandstone's. In the same consolidation condition, the initial elastic modulus of red sandstone is greater than the one of mudstone. The research provides experimental technology and dynamic property parameters to dynamic response analysis and seismic deformation mechanism study for highly weathered rock which covered by thick layer of loess.%运用扭剪仪对小应变εd时黄土层下覆强风化岩的动模量和阻尼比进行了系列研究,分析了其动力学特性.结果表明,在小应变情况下风化岩体的动应力与动应变关系为非线性弹性关系,基本符合双曲线型模型；在相同应变范围内,泥岩阻尼比大于红砂岩的阻尼比；在相同固结条件下,红砂岩的初始动弹模大于泥岩初始动弹模.研究为厚覆盖层黄土场地及其下覆强风化岩层、隧道、高边坡动力反应分析和地震后土体变形机理研究提供了必要试验技术和参数.
Solenir Ruffato
2001-04-01
Full Text Available Neste trabalho investigou-se a viabilidade de se obter o módulo de compressão de grãos de milho, utilizando-se dados experimentais de força versus tempo, provenientes de testes de impacto, juntamente com uma análise estrutural elástica do processo. Os módulos de elasticidade foram determinados para grãos, a diferentes teores de umidade, submetidos a impactos de diferentes velocidades, e obtidos por um processo de otimização por meio da técnica de elementos finitos. Dois tipos de módulo foram avaliados: (a um módulo efetivo para todo o grão e (b um módulo para cada uma das três regiões, com diferentes características, segundo as quais o grão foi dividido. O teor de umidade e a velocidade de impacto influenciaram nos valores dos módulos. Módulos para grãos a 13,4% base úmida (b.u. foram maiores do que para aqueles a 20,0% b.u. A análise realizada (elástica mostrou-se ser mais adequada na obtenção de módulos de elasticidade de grãos a 13,4% b.u.; neste teor, os grãos apresentam características elásticas mais pronunciadas que quando a 20,0% b.u. e, nos grãos com altos teores de umidade, as características viscoelásticas tornam-se predominantes.In this study the viability of obtaining the corn compression modulus through an elastic structural analysis was investigated using force versus time data from grain impact tests. The moduli of elasticity of shelled corn at different moisture contents submitted to various impact velocities were determined. The moduli were obtained through an optimization process using the finite element technique. Two kinds of modulus were obtained: (a an effective modulus for the grain and (b a modulus for each one of the three regions, with different characteristics, in which the grain was divided. The moisture content and the impact velocity affected the modulus values. The moduli values for grains at 13.4% wet basis (w.b. were higher than those for grains at 20.0% w.b. The analysis used
梁思; 钱林学; 刘冬
2015-01-01
目的：研究静态弹性成像操作对正常乳腺组织弹性模量造成的影响。方法：①对15个正常腺体型乳腺同一位置进行静态超声弹性检测，截取未压缩时的图像及最大压缩图像，测量乳腺厚度(h，cm)，计算最小伸长比(λ)，得出静态弹性成像正常操作对正常乳腺组织造成的变形；②对50个正常腺体型乳腺采集未进行压缩时弹性模量(E0，kPa)及压缩所致伸长比达到第一部分所得λ时的弹性模量(Em，kPa)。分别计算弹性模量改变比(Rm/0)，得出静态弹性成像正常操作时正常乳腺组织弹性模量的改变。结果：静态弹性成像操作中对正常腺体型乳腺造成的最小伸长比λ=0.74±0.07，静态弹性成像中正常操作造成的变形使正常乳腺组织弹性模量增加4.38倍。结论：静态弹性成像造成正常乳腺组织弹性模量增加4.38倍。%Objective:To investigate the effects of static ultrasound elastography on the elastic modulus of normal breast tissue.Methods: (1)Fifteen cases of normal breasts was tested by static ultrasound elastography at the same locations. Intercepted two pictures each time with one stress-free and the other compressed the maximum amount. For these two cases we measured the breast thickness and calculated the minimum stretch ratios(λ). (2)Fifty breasts with no breast nodules were prospectively enrolled in the study. Intercepted two pictures each time with one stress-free and the other compressed to the minimum stretch ratios(λ). For these two cases we measured the Elastic modulus (E0, Em, kPa). Calculate the elastic modulus change ratio (Rm/0).Results: (1)The minimum stretch ratio caused by static ultrasound elastography was 0.74±0.07. (2)The elastic modulus change ratio of static ultrasound elastography was 4.38±1.72. Conclusion: The normal operation of static ultrasound elastography caused 74 percent deformation in normal breast tissue. There was 4.38 times elastic
梁建国; 龙腾
2012-01-01
灌孔混凝土砌块砌体是由砌体和灌孔混凝土两部分组合而成，为了得到竖向压力作用下两种材料的相互作用机理，该文基于最小势能原理推导了砌体对灌孔混凝土的套箍系数以及灌孔混凝土砌块砌体内的应力分布，得到了灌孔混凝土砌块砌体的弹性模量可近似按材料力学组合截面公式进行计算，其计算结果与收集的全国65组281个试件试验结果符合良好，并通过试验结果统计得到了灌孔混凝土砌块砌体弹性模量的建议公式。理论分析和试验结果表明，我国现行规范中灌孔混凝土砌块砌体弹性模量取值偏低，将使配筋砌块砌体结构的设计计算结果偏于不安全。%In order to obtain the interaction mechanism between the grout and masonry in grouted concrete block masonry structures under vertical load, the hooping factor which denotes the hooping action of the masonry to the grouted concrete and the stress distribution in the grouted concrete block masonry is studied based on the minimum potential energy principle. The elastic modulus of grouted concrete block masonry can be approximately calculated according to the assembled section formula in material mechanics, and the calculation results of this formula agree well with the test results of 281 specimens in 65 groups. Another proposed formula to calculate the elastic modulus of the grouted concrete block is derived base on the test results by regression analysis method. Theoretical analysis and test results show that the value of elastic modulus of grouted concrete block masonry in our current code is low, indicating it is unsafe to guide the design of reinforced concrete block masonry structures.
Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert
2016-08-01
We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.
On strength of porous material
Nielsen, Lauge Fuglsang
1999-01-01
The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...... to the theoretical research on non-destructive testing of such materials relating strength to stiffness and pore geometry.It is demonstrated that solutions for stiffness, tensile strength, and pore strength (damaging pore pressure, frost, fire) for some ideal porous materials can be determined theoretically only...... from knowing about pore geometry, solid phase stiffness, and zero-porosity strength. Pore geometry is the very important common denominator which controls both both stiffness and strength.The accurate results obtained are finally used to suggest generalizations with respect to strength in general...
Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q
2012-01-21
From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.
André L. Christoforo
2012-10-01
. The use of round timber as a beam is very attractive, since it does not need to be processed, such as lumber. The design of structural timber elements requires the determination of its physical and mechanical properties in which are obtained based on the recommendations of engineering standards. In case of round timber, the national standards dealing with the determination of strength and stiffness properties are in term for more than twenty years with no technical review. Overall, both national and international standards consider truncated-cone geometry for cylindrical logs of wood, resulting in simplified equations unable to predict the effect of shape irregularities on the longitudinal modulus of elasticity. This paper aims to evaluate the effect of shape irregularity of round timber of Corymbia citriodora and Pinus caribaea to determine the longitudinal modulus of elasticity. The three-point bending test is used to determine the modulus, considering a simplified analytical model, with constant circular section for the element. The irregularities of the wood are considered in the numerical models based on a beam and three-dimensional finite elements. The results showed statistical equivalence between the modulus of elasticity for both methods of calculation, indicating that the constant circular section is a reasonable assumption for the wooden here evaluated.
Konovalenko, Igor S.; Shilko, Evgeny V.; Konovalenko, Ivan S.; Vodopjyanov, Egor M.
2016-11-01
A two-scale mechanical model of brittle porous material partially filled with plastic filler (inclusions) was developed within the framework of the formalism of movable cellular automaton method. The model was applied to study the mechanical properties of mesoscopic samples with a linear distribution of the local porosity in the depth of the material. Calculation results showed essentially nonlinear dependence of their elastic and strength properties on the degree of pore space filling. It is found that depending on the sign of the gradient of porosity the value of shear strength of partially filled samples can significantly increase or remain constant with increase in the value of the degree of filling.
Low modulus Ti–Nb–Hf alloy for biomedical applications
González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)
2014-09-01
β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.
杨国良; 钟雯; 黄晓韵; 梁思敏; 何慧慧; 陈家驹
2015-01-01
Based on layered elastic theory,the elastic modulus of asphalt course in asphalt pavement was predicted using BP artificial neural network.According to the types of pavement structure in common use,the database of surface deflections with their corresponding structural parameters of asphalt course based on layered elastic theory was established.The elastic modulus backcalculation model of asphalt course in asphalt pavement was developed using BP artificial neural network to predict.The predictive results of asphalt course elastic modulus backcalculation using theoretical deflection basin and measured deflection basin indicate that the elastic modulus backcalculation model of asphalt course in asphalt pavement is of good predictive accuracy and reliability.It would provide the references with the elastic modulus backcalculation model of asphalt course to accurately and quickly estimate the conditions of asphalt course in asphalt pavement.%基于层状弹性体系理论,建立BP人工神经网络反演沥青路面沥青面层弹性模量预测模型,利用BP人工神经网络预测沥青路面沥青面层弹性模量.理论弯沉盆和实测弯沉盆反演沥青面层弹性模量的结果表明,建立的BP人工神经网络反演沥青路面沥青面层弹性模量模型具有良好的预测精度和可靠性,为评价沥青路面的沥青面层性能状况提供了参考.
Dong, Haini; He, Duanwei; Duffy, Thomas S.; Zhao, Yusheng
2009-01-01
The stress behavior of nanocrystalline cubic boron carbon nitride (c-BC2N) was investigated using radial and axial x-ray diffractions in the diamond-anvil cell under nonhydrostatic compression up to ~100 GPa. The radial x-ray diffraction (RXRD) data yield a bulk modulus K0=276±20GPa with a fixed pressure derivative K0'=3.4 at ψ=54.7° , which corresponds to the hydrostatic compression curve. The bulk modulus obtained from axial x-ray diffraction (AXRD) gives a value of 420±11GPa . A comparative study of the observed compression curves from radial and axial diffractions shows that the ruby-fluorescence pressure scale may reflect the maximum stress under nonhydrostatic compression. It was found that nanocrystalline c-BC2N sample could support a maximum differential stress of ~38 GPa when it started to yield at ~66 GPa under uniaxial compression. Moreover, the aggregate elastic moduli of the nanocrystalline c-BC2N have been determined from the RXRD data at high pressures.
Köhn, D.; Wilken, D.; Rabbel, W.
2012-04-01
The FINO3 project is aimed at the construction of an offshore research platform in the north-sea, hosting research projects dealing with offshore wind energy topics. As part of FINO3 our sub-project deals with the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. We are focussed on the determination of seismic parameters and structural information of the building plot of the platform. Possible changes of the shear modulus of the sediments in the vicinity of the FINO3 monopile due to mechanic loads on the platform are estimated by a tube-waveform tomography. The tube-waves are excited by a hammer blow at the internal wall of the FINO3 monopile above the water line. The tube-waves are propagating through the water column and the sediments and are measured in situ by hydrophones at the external wall of the monopile. Homogenous long wavelength starting models for the waveform tomography are estimated using simple 2D finite difference models. Possible shear-wave velocity starting models range from 150-300 m/s. The resolution of the tube-waveform tomography is estimated by simple chequerboard and random media models. Additionally first results of the data application in the vicinity of the monopile are presented.
Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María
2017-08-01
Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.
Modulus-Pressure Equation for Confined Fluids
Gor, Gennady Y; Shen, Vincent K; Bernstein, Noam
2016-01-01
Ultrasonic experiments allow one to measure the elastic modulus of bulk solid or fluid samples. Recently such experiments have been carried out on fluid-saturated nanoporous glass to probe the modulus of a confined fluid. In our previous work [J. Chem. Phys., (2015) 143, 194506], using Monte Carlo simulations we showed that the elastic modulus $K$ of a fluid confined in a mesopore is a function of the pore size. Here we focus on modulus-pressure dependence $K(P)$, which is linear for bulk materials, a relation known as the Tait-Murnaghan equation. Using transition-matrix Monte Carlo simulations we calculated the elastic modulus of bulk argon as a function of pressure and argon confined in silica mesopores as a function of Laplace pressure. Our calculations show that while the elastic modulus is strongly affected by confinement and temperature, the slope of the modulus versus pressure is not. Moreover, the calculated slope is in a good agreement with the reference data for bulk argon and experimental data for ...
张新; 程华; 王仲刚; 叶敏
2015-01-01
The finite element method (FEM) of 3D homogenization theory is derived through the homogenization theory in multi⁃scale to predict the equivalent elastic modulus of composite material. It is supposed that porous concrete consists of mortar ma⁃trix and identical smooth balls. To generate the random unit⁃cell model of porous concrete, an improved numerical method of ran⁃dom pores is presented. The expanded polystyrene (EPS) concrete is taken as an example. Six groups of random unit⁃cell models of different volume fractions of EPS concrete are generated, and its equivalent elastic modulus is calculated by FEM of 3D homogeniza⁃tion theory. It is shown that random unit⁃cell model can express both the nonuniform in mesoscale and the equivalent elastic modu⁃lus calculated by FEM of 3D homogenization theory is consistent with Miled’s test.%应用多尺度渐进展开的均匀化理论，推导三维均匀化理论的有限元解法，求解复合材料等效弹性系数。假设多孔混凝土由光滑均匀一致的球孔与水泥石基质组成，提出改进的随机投放方法，生成三维均匀化理论求解的随机单胞模型。以聚苯乙烯泡沫（EPS）混凝土为数值算例，生成6组不同体积分数的EPS混凝土随机单胞模型，通过三维均匀化理论的有限元法计算得到其等效弹性模量。计算结果表明：随机单胞模型能反映细观的非均质性，三维均匀化理论的有限元法计算得到的等效弹性模量变化趋势比较符合Miled的试验结果。
张涛; 刘松玉; 蔡国军
2015-01-01
小应变剪切模量和无侧限抗压强度是表征固化土刚度和强度特性的两个重要参数.简要介绍了弯曲元测试技术的原理及其在试验中存在的问题,采用压电陶瓷弯曲元测试技术对水泥和木质素固化剂固化粉土试样在不同养护龄期下的小应变剪切模量进行了测试,同时对相应龄期下试样进行了常规无侧限抗压强度试验,通过引入归一化参数G28和 UCS28对不同固化土的小应变剪切模量和无侧限抗压强度之间的相关关系进行分析,提出了固化土刚度与强度的相关性模型,可为地基处理中固化土的无损测试与加固效果评价提供新的方法.结果表明,水泥、木质素固化粉土的小应变剪切模量随养护龄期增加而增加,养护龄期28 d内增长显著,28 d后增长趋于平稳;相同类型固化土不论固化剂掺量多少,其小应变剪切模量随养护时间的发展在本质上是相同的;固化土归一化无侧限抗压强度表现出与小应变剪切模量相似的发展趋势;提出的固化土归一化模型可作为一种土体强度无损检测的新方法.%The small-strain shear modulus and unconfined compressive strength are two important parameters to characterize the stiffness and strength of stabilized soils. The fundamental and the main problems existing in the experiment of bender element technique are briefly reviewed. The small-strain shear modulus of cement and lignin stabilized silt are tested under different curing time by piezoelectric bender element technique. The conventional unconfined compressive strength test is also carried out on stabilized samples under different curing time. The relationships between the small-strain shear modulus and unconfined compressive strength of different stabilized soils are analyzed by introducing the normalized parametersG28 and UCS28. A stabilization model for the stiffness and strength of stabilized soils is proposed to provide a new method for
Experimental Study on Elastic-Plastic Behavior of SRC Columns with High Strength Steel
2006-01-01
The demand to use high strength and high performance material because of large span and high rise of building in recent years. As to use of high-strength steel in composite steel and reinforced concrete structures, it remains to be clarified whether the ductile behavior can be ensured, especially when the high-strength steel is used in combination with High-strength concrete. This paper describes the test results on the elasto-plastic behavior of SRC column using high strength steel, and disc...
王勇; 王艳丽
2011-01-01
With the GDS dynamic triaxial system, undrained dynamic triaxial tests on the saturated sand of different fines contents were performed; and effects of fines content on the dynamic elastic modulus and damping ratio were analyzed. Results show that the dynamic elastic modulus of sand decreases with increasing of fines content; but the trend is reversed beyond the critical value of fines content of 30%. The damping ratio of sand firstly increases and then decreases with increasing fines content at the same critical value of fines content of 30%. When fines content is less than 30%, the dynamic characteristics of sand is determined mainly by the coarse grains; the skeleton void ratio between coarse grains increases with the increase of fines content; and the ability to resist deformation under the same strain level weakens so that the elastic modulus decreases. Meanwhile, the stress wave propagation speed slows down because of the reduction of contact points between soil particles, hysteresis quality of the soil dynamic load response strengthens and the damping ratio increases; when the fines content is greater than 30%, the dynamic characteristics of sand is determined mainly by the fine grains; the interfine void ratio decreases with increasing of fines content; so that the dynamic properties of sand shows a reverse trend.%利用GDS循环三轴试验系统,进行一系列不同细粒含量砂土的不排水动三轴试验,研究细粒含量对饱和砂土动弹性模量与阻尼比的影响.试验结果表明,砂土的动弹性模量随细粒含量的增加而减小,但当超过细粒含量的临界值30％后,变化趋势则相反;阻尼比随着细粒含量的增加呈现先增大后减小的趋势,其细粒含量的临界值也为30％.当细粒含量小于30％时,砂土的动力特性主要由粗粒决定,粗粒间形成的骨架孔隙比随细粒含量的增加而增大,相同应变水平下抵抗变形的能力随之减弱,从而使动弹性模量减小.同
杜修力; 金浏
2012-01-01
Concrete was assumed to compose of aggregate particles and a mortar matrix, and the concrete unit was processed equivalently based on the Voigt parallel model in the paper. The distribution of equivalent elastic modulus of a meso-unit was studied, based on the Weibull distribution, and a graphical method and the stepwise regression were applied to optimizing the estimated parameters. Furthermore, the validity of the assumed distribution was examined by the Kolmogorov test. The statistical parameter of element Young's modulus with different element-scale, and the spatial distribution randomness of aggregate were studied in the paper. The problem on material characteristic element scale of concrete of different grade-level was analyzed at the end of the paper. The analytical results indicate that: l) the form and the parameters of random distribution of elastic modulus of a concrete meso-scale unit have size effects, and not fully obey the Weibull distribution. 2) the variability of elastic modulus of a concrete meso-element associates with scales; and the variability increases firstly and tends to be stable gradually with the decrease of element size, which reflects the facts that there exists a reasonable representation of non-uniform degree of concrete at meso level. The reasonable scale, i.e. the variation coefficients tending to the inflection point of a smooth transition to the corresponding scale, is defined as a characteristic element scale. 3) The characteristic element scale of concrete material on two-grade, three-grade and four-grade are 10mm, 15mm and 18mm, respectively. 4) The spatial distribution randomness of aggregate has little effects on random distribution properties of elastic modulus of a concrete meso-unit.%假定混凝土是由骨料颗粒及砂浆基质组成的复合材料,基于Voigt并联模型对混凝土细观单元进行等效化,对单元的等效弹性模量进行统计分析。以Weibull分布为假设分布,
Guilherme P. T. Areas
2013-12-01
Full Text Available BACKGROUND: Elastic resistance bands (ERB combined with proprioceptive neuromuscular facilitation (PNF are often used in resistance muscle training programs, which have potential effects on peripheral muscle strength. However, the effects of the combination of ERB and PNF on respiratory muscle strength warrant further investigation. OBJECTIVES: The assessment of the effects of PNF combined with ERB on respiratory muscle strength. METHOD: Twenty healthy, right-handed females were included. Subjects were randomized to either the resistance training program group (TG, n=10 or the control group (CG, n=10. Maximal expiratory pressure (MEP and inspiratory pressure (MIP were measured before and after four weeks of an upper extremity resistance training program. The training protocol consisted of upper extremity PNF combined with ERB, with resistance selected from 1 repetition maximum protocol. RESULTS: PNF combined with ERB showed significant increases in MIP and MEP (p<0.05. In addition, there were significant differences between the TG and CG regarding ∆MIP (p=0.01 and ∆MEP (p=0.04. CONCLUSIONS: PNF combined with ERB can have a positive impact on respiratory muscle strength. These results may be useful with respect to cardiopulmonary chronic diseases that are associated with reduced respiratory muscle strength.
André L. Christoforo
2011-10-01
Full Text Available Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.Atualmente, os documentos normativos que tratam da determinação das propriedades de rigidez e resistência para elementos estruturais roliços de madeira, não levam em consideração em seus cálculos e modelos matemáticos a influência das irregularidades existentes na geometria dessas peças. Este trabalho tem como objetivo determinar o efetivo valor do módulo de elasticidade longitudinal para peças estruturais roliças de madeira do gênero Eucalyptus citriodora, por intermédio de uma técnica de otimização aliada ao Método da Análise Inversa, ao Método dos Elementos Finitos e ao Método dos Mínimos Quadrados.
Raju, S.V., E-mail: sraju@fiu.edu [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States); Oni, A.A. [Department of Materials Science and Engr., North Carolina State University, Raleigh, NC 27695 (United States); Godwal, B.K. [Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720 (United States); Yan, J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94730 (United States); Earth and Planetary Sciences Department, University of California, Santa Cruz, CA 95064 (United States); Drozd, V. [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States); Srinivasan, S. [Department of Materials Science and Engg., Iowa State University, Iowa, IA (United States); LeBeau, J.M. [Department of Materials Science and Engr., North Carolina State University, Raleigh, NC 27695 (United States); Rajan, K. [Department of Materials Science and Engg., Iowa State University, Iowa, IA (United States); Saxena, S.K. [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States)
2015-01-15
Highlights: • Ni{sub 3}Al, Ni{sub 3}Al:B and Ni-Al-Cr alloys were prepared by Bridgman-Stockburger technique. • Crystal structures confirmed by XRD and Electron microscopy studies. • Bulk modulus from XRD studies under pressure and Young’s modulus from nano-indentation were determined. • Combining the above results enabled shear modulus and Poisson’s ratio. • K/G ratio suggests that Ni{sub 3}Al doped with B (500 ppm) has the highest hardness with ductility. - Abstract: Samples of Ni{sub 3}Al, Ni{sub 3}Al:B and Ni–Al–Cr super alloys were prepared by directional solidification method and their effect of alloying with ternary elements on the mechanical properties was investigated. In-situ X-ray diffraction studies were carried out on undoped Ni{sub 3}Al, Ni{sub 3}Al:B with boron 500 ppm and Ni–Al–Cr with 7.5 at.% of chromium super alloys at high pressure using diamond anvil cell. The results indicate that micro-alloying with B forms γ′-phase (L1{sub 2} structure), similar to the pure Ni {sub 3}Al, while Ni–Al–Cr alloy consists of γ′ precipitates in a matrix of γ-phase (Ni-FCC structure). The crystal structure of all three alloys was stable up to 20 GPa. Micro alloying with boron increases bulk modulus of Ni{sub 3}Al by 8% whereas alloying with chromium has the opposite effect decreasing the modulus by 11% when compared to undoped alloy. Further, the elastic modulus and hardness of Ni{sub 3}Al, Ni{sub 3}Al:B and Ni–Al–Cr alloys were determined using the nano-indentation technique, in combination with compressibility data which enabled the estimation of shear modulus and Poisson’s ratio of these alloys.
Characterizing the elasticity of hollow metal nanowires
Ji Changjiang; Park, Harold S [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235 (United States)
2007-03-21
We have performed atomistic simulations on solid and hollow copper nanowires to quantify the elastic properties of hollow nanowires (nanoboxes). We analyse variations in the modulus, yield stress and strain for <100> and <110> nanoboxes by varying the amount of bulk material that is removed to create the nanoboxes. We find that, while <100> nanoboxes show no improvement in elastic properties as compared to solid <100>nanowires, <110> nanoboxes can show enhanced elastic properties as compared to solid <110> nanowires. The simulations reveal that the elastic properties of the nanoboxes are strongly dependent on the relative strength of the bulk material that has been removed, as well as the total surface area of the nanoboxes, and indicate the potential of ultralight, high-strength nanomaterials such as nanoboxes.
Janusevicius, Donatas; Snieckus, Audrius; Skurvydas, Albertas; Silinskas, Viktoras; Trinkunas, Eugenijus; Cadefau, Joan Aureli; Kamandulis, Sigitas
2017-06-01
Hamstring muscle injuries occur during high-speed activities, which suggests that muscular strength at high velocities may be more important than maximal strength. This study examined hamstring adaptations to training for maximal strength and for strength at high velocities. Physically active men (n = 25; age, 23.0 ± 3.2 years) were randomly divided into: (1) a resistance training (RT, n = 8) group, which performed high-load, low-velocity concentric-eccentric hamstring contractions; (2) a resistance training concentric (RTC; n = 9) group, which performed high-load, low-velocity concentric-only hamstring contractions; and (3) a high-velocity elastic band training (HVT, n = 8) group, which performed low-load, high-velocity concentric-eccentric hamstring contractions. Pre- and posttraining tests included hamstring strength on a hamstring-curl apparatus, concentric knee extension-flexion at 60°/s, 240°/s, and 450°/s, eccentric knee flexion at 60°/s and 240°/s, hamstring and quadriceps coactivation, knee flexion and extension frequency in the prone position, and 30-m sprint running speed from a stationary start and with a running start. Knee flexor torque increased significantly by 21.1% ± 8.1% in the RTC group and 16.2% ± 4.2% in the RT group (p training at high velocities is superior to traditional heavy resistance training for increasing knee flexor strength at high velocities, movement frequency, and sprint running performance. These findings also indicate that traditional training approaches are effective for increasing knee flexor strength and reducing knee extensor coactivation, but this outcome is limited to low and moderate speeds.
Ultra-high Modulus Nano-Fluoroelastomers
Pan, David H.
2004-03-01
The cross-linking densities, glass transition temperatures, and physical properties of fluoroelastomers filled with a nanometer-size particle have been determined as a function of filler concentration and co-solvent using both dry and wet filler incorporation methodologies. Addition of alcohol to the casting solvent such as methyl isobutyl ketone results in about a factor of 1.5-3 increase in elastic modulus for elastomer of the same filler concentration. It is discovered that a properly prepared nano-fluoroelastomer can exhibit as much as a two-order-of-magnitude increase in elastic modulus as the filler concentration increases from zero to 35 parts per hundred of rubber (phr) by weight while the glass transition temperature does not change substantially with filler concentration. The effect of cross-linking density on the elastic modulus for these materials will be discussed in this paper.
范春芝; 安力春; 徐建红; 王真; 孙静; 唐杰; 温朝阳
2011-01-01
目的 研究声束平行于肌纤维(纵切面)和声束垂直于肌纤维(横切面)时肱二头肌的杨氏模量值差异.方法 141例男性志愿者,年龄16～34岁,平均22岁,均无上肢外伤史、重症肌无力、进行性肌营养不良、周期性瘫痪、代谢性肌病等病史.使用法国Supersonic Imagine公司的AixPlore型实时定量剪切波超声弹性成像超声诊断仪,L4-15线阵探头.探头平行于肱二头肌肌纤维(纵切面)和垂直于肱二头肌肌纤维(横切面)时分别测量肱二头肌杨氏模量值并进行比较.结果 松弛状态下,肱二头肌纵切面杨氏模量值为(45.658±13.479)kPa,横切面杨氏模量值为(7.334±1.612) kPa,差异有统计学意义(P=0.0000);收缩状态下,肱二头肌纵切面杨氏模量值为(123.658±31.392) kPa,横切面杨氏模量值为(13.261±4.045)kPa,差异有统计学意义(P=0.0000).结论 肱二头肌纵切面杨氏模量值明显大于横切面杨氏模量值;肱二头肌弹性模量的各向异性,提示在检查心肌、肾脏等组织结构具有各向异性的脏器时,应注意到超声检查切面角度可能会影响其杨氏模量测量值大小;横切面检查和纵切面检查相结合也许能为疾病的诊断提供更多的信息和依据.%Objective To assess the elastic modulus difference of the ultrasonic beam parallel to the biceps brachii fiber( longitudinal section )and the ultrasonic beam perpendicular to the biceps brachii fibers( cross section ). Methods A total of 141 male volunteers aged 16 to 34 years ( mean 22 years old ), who had no history of upper extremity trauma, myasthenia gravis, progressive muscular dystrophy, periodic paralysis and metabolic myopathy were included in the study. A shear-wave elasto-sonography ( AixPlorer model, Supersonic Imagine, Aix en Provence, France ) coupled with a linear array transducer array ( 4-15 MHz ) was employed. The ultrasound transducer was parallel to the biceps brachii muscle fiber and then it was
Farsi, A.; Pullen, A. D.; Latham, J. P.; Bowen, J.; Carlsson, M.; Stitt, E. H.; Marigo, M.
2017-04-01
New engineered materials have critical applications in different fields in medicine, engineering and technology but their enhanced mechanical performances are significantly affected by the microstructural design and the sintering process used in their manufacture. This work introduces (i) a methodology for the calculation of the full deflection profile from video recordings of bending tests, (ii) an optimisation algorithm for the characterisation of Young’s modulus, (iii) a quantification of the effects of optical distortions and (iv) a comparison with other standard tests. The results presented in this paper show the capabilities of this procedure to evaluate the Young’s modulus of highly stiff materials with greater accuracy than previously possible with bending tests, by employing all the available information from the video recording of the tests. This methodology extends to this class of materials the possibility to evaluate both the elastic modulus and the tensile strength with a single mechanical test, without the need for other experimental tools.
Knipfer, T; Fei, J; Gambetta, G A; Shackel, K A; Matthews, M A
2014-10-21
The cell-pressure-probe is a unique tool to study plant water relations in-situ. Inaccuracy in the estimation of cell volume (νo) is the major source of error in the calculation of both cell volumetric elastic modulus (ε) and cell hydraulic conductivity (Lp). Estimates of νo and Lp can be obtained with the pressure-clamp (PC) and pressure-relaxation (PR) methods. In theory, both methods should result in comparable νo and Lp estimates, but this has not been the case. In this study, the existing νo-theories for PC and PR methods were reviewed and clarified. A revised νo-theory was developed that is equally valid for the PC and PR methods. The revised theory was used to determine νo for two extreme scenarios of solute mixing between the experimental cell and sap in the pressure probe microcapillary. Using a fully automated cell-pressure-probe (ACPP) on leaf epidermal cells of Tradescantia virginiana, the validity of the revised theory was tested with experimental data. Calculated νo values from both methods were in the range of optically determined νo (=1.1-5.0nL) for T. virginiana. However, the PC method produced a systematically lower (21%) calculated νo compared to the PR method. Effects of solute mixing could only explain a potential error in calculated νo of cell turgor) of 19%, which is a fundamental parameter in calculating νo. It followed from the revised theory that the ratio of ΔV/ΔP was inversely related to the solute reflection coefficient. This highlighted that treating the experimental cell as an ideal osmometer in both methods is potentially not correct. Effects of non-ideal osmotic behavior by transmembrane solute movement may be minimized in the PR as compared to the PC method.
Young's modulus and hardness of shark tooth biomaterials.
Whitenack, Lisa B; Simkins, Daniel C; Motta, Philip J; Hirai, Makoto; Kumar, Ashok
2010-03-01
To date, the majority of studies on feeding mechanics in sharks have focused on the movement of cranial components and muscle function, with little attention to tooth properties or function. Attributes related to mechanical properties, such as structural strength, may also be subjected to natural selection. Additionally it is necessary to characterize these properties in order to construct biomechanical models of tooth function. The goal of this study was to determine hardness and elastic modulus for the shark tooth materials enameloid, osteodentine, and orthodentine. Five teeth each from one carcharhiniform species, the bonnethead Sphyrna tiburo, and one lamniform, the sand tiger shark Carcharias taurus, were utilized for nanoindentation testing. Each tooth was sectioned transversely, air-dried, and polished. Both enameloid and dentine were tested on each tooth via a Berkovich diamond tip, with nine 2 microm deep indentations per material. t-Tests were used to determine if there were differences in hardness and Young's modulus between the tooth materials of the two species. There was no significant difference between the two species for the material properties of enameloid, however both hardness and Young's modulus were higher for osteodentine than for orthodentine. This may be due to differences in microanatomy and chemical composition, however this needs to be studied in greater detail. Copyright 2010 Elsevier Ltd. All rights reserved.
Low modulus Ti-Nb-Hf alloy for biomedical applications.
González, M; Peña, J; Gil, F J; Manero, J M
2014-09-01
β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37°C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress-strain curves showed the lowest elastic modulus (42GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (EOCP), but was similar in terms of corrosion current density (iCORR) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response.
Mechanical strength of additive manufactured carbon fiber reinforced polyetheretherketone
Chumaevskii, A. V.; Tarasov, S. Yu.; Filippov, A. V.; Kolubaev, E. A.; Rubtsov, V. E.; Eliseev, A. A.
2016-11-01
Mechanical properties of both pure and chopped carbon fiber reinforced polyetheretherketone samples have been carried out. It was shown that the reinforcement resulted in increasing the elasticity modulus, compression and tensile ultimate strength by a factor of 3.5, 2.9 and 2.8, respectively. The fracture surfaces have been examined using both optical and scanning electron microscopy.
High breakdown-strength composites from liquid silicone rubbers
Vudayagiri, Sindhu; Zakaria, Shamsul Bin; Yu, Liyun
2014-01-01
available fillers (an anatase TiO2, a core–shell TiO2-SiO2 and a CaCu3Ti4O12 filler) are evaluated with respect to dielectric permittivity, elasticity (Young’s modulus) and electrical breakdown strength. Film formation properties are also evaluated. The best-performing formulations are those with anatase Ti...
Interfacial Modulus Mapping during Structural Transformation in Shape Memory Alloys
Wan, Jianfeng; Cui, Shushan; Zhang, Jihua; Rong, Yonghua
2017-10-01
Through the modified phase-field model the local soft mode mechanism of nucleation during martensitic transformation was confirmed in shape memory alloys. It was discovered that the modulus loss (8 pct) depended on the martensitic nucleation exceeding the loss (1 pct) during the martensitic growth. The elastic modulus and the stress across the martensite/parent interface differed from those across the martensitic twin boundary. The modulus losses in systems with three variants, two variants, and one variant were compared.
Pengaruh Variasisilica Fumedan Perubahan Faktor Air Semen Terhadap Modulus Elastisitas Beton
Nor Intang Setyo H.
2005-08-01
Full Text Available The aim of this research is to know influence of addition silica fume and variation of water cement ratio (w/c, also interaction of between both to elasticity modulus of concrete. Independent variable in this research is variation of silica fume and water cement ratio. Dependent variable is compression strength and strain for result of elasticity modulus. The sample test of cylinder concrete with diameter 15 cm and high 30 cm, with the variation of w/c 0,3 ; 0,35 ; 0,4 ; 0,45 ; and 0,5, and also variation of silica fume 0,5%, 10%, 15%, and 20% cement weight. Each treatment made by 10 samples with of volume comparison of mixer concrete 1 : 1,5 : 2,5. The result of samples test carried out 28th days of age obtained optimum rate silica fume 9,328% with w/c 0,35 giving influence to increase of concrete elasticity modulus of concrete to 4,191% of normal concrete
Kopova, Ivana; Stráský, Josef; Harcuba, Petr; Landa, Michal; Janeček, Miloš; Bačákova, Lucie
2016-03-01
Beta titanium alloys are promising materials for load-bearing orthopaedic implants due to their excellent corrosion resistance and biocompatibility, low elastic modulus and moderate strength. Metastable beta-Ti alloys can be hardened via precipitation of the alpha phase; however, this has an adverse effect on the elastic modulus. Small amounts of Fe (0-2 wt.%) and Si (0-1 wt.%) were added to Ti-35Nb-7Zr-6Ta (TNZT) biocompatible alloy to increase its strength in beta solution treated condition. Fe and Si additions were shown to cause a significant increase in tensile strength and also in the elastic modulus (from 65 GPa to 85 GPa). However, the elastic modulus of TNZT alloy with Fe and Si additions is still much lower than that of widely used Ti-6Al-4V alloy (115 GPa), and thus closer to that of the bone (10-30 GPa). Si decreases the elongation to failure, whereas Fe increases the uniform elongation thanks to increased work hardening. Primary human osteoblasts cultivated for 21 days on TNZT with 0.5Si+2Fe (wt.%) reached a significantly higher cell population density and significantly higher collagen I production than cells cultured on the standard Ti-6Al-4V alloy. In conclusion, the Ti-35Nb-7Zr-6Ta-2Fe-0.5Si alloy proves to be the best combination of elastic modulus, strength and also biological properties, which makes it a viable candidate for use in load-bearing implants.
Capecchi, Danilo
2015-01-01
This book examines the theoretical foundations underpinning the field of strength of materials/theory of elasticity, beginning from the origins of the modern theory of elasticity. While the focus is on the advances made within Italy during the nineteenth century, these achievements are framed within the overall European context. The vital contributions of Italian mathematicians, mathematical physicists, and engineers in respect of the theory of elasticity, continuum mechanics, structural mechanics, the principle of least work, and graphical methods in engineering are carefully explained and discussed. The book represents a work of historical research that primarily comprises original contributions and summaries of work published in journals. It is directed at those graduates in engineering, but also in architecture, who wish to achieve a more global and critical view of the discipline and will also be invaluable for all scholars of the history of mechanics.
MENG Xian-hong; SONG Yu-pu
2008-01-01
To investigate the residual strength of concrete under fatigue loading, experiments were conducted to determine the functional relation between residual strength and the number of cycles. 80 100mm×100mm×100ram specimens of plain concrete were tested under uniaxial compressive fatigue loading. Based on probabili-ty distribution of the residual strength of concrete under fatigue loading, the empirical expressions of the residual strength corresponding to the number of cycles were obtained. There is a good correlation between residual strength and residual secant elastic modulus. Thus the relationship between residual secant elastic modulus and the number of cycles is established. A damage variable based on the longitudinal maximum strain is defined, and a good linearity relationship between residual strength and damage is found out.
李真; 吕恒勇; 任泽阳; 梁晓宁; 贾晓霞; 李硕; 牛雅莉; 李迎新; 郭瑞君
2016-01-01
Objective To investigate the clinical diagnostic value of elastography in myofascial pain syndrome by measuring the elastic properties of myofascial trigger points.Methods The elastic modulus of 30 myofascial trigger points from 15 female patients with myofascial pain syndrome and 8 normal points from 8 female healthy volunteers were measured by shear wave elastography.The mean,min,max,and standard deviation (SD) of elastic modulus in lesions,surrounding tissue of myofascial trigger point and normal points were recorded and compared,and the correlation between elasticity of myofascial trigger points and age,location were analyzed.Results The mean,min,max,and standard deviation of elastic modulus in lesion area of myofascial trigger point were significantly higher than that in surrounding tissue and normal points (P＜0.05).There were no significant differences between lesion area of myofascial trigger point and normal points (P＞0.05),and elastic modulus of myofascial trigger points bore no relation to age and location (P＞0.05).Conclusions Shear wave elastic modulus can be used to differentiate lesion area and its adjacent area of trigger points and normal points,which will provide a new way to identify myofascial trigger point and new basis for palpation,thus has higher application value in clinical and research prospect.%目的 通过剪切波弹性成像(SWE)技术研究肌筋膜疼痛综合征激痛点的弹性特征,探索弹性超声技术在肌筋膜疼痛综合征临床诊断中的应用价值.方法 对8例女性健康志愿者的8个正常点和15例女性肌筋膜疼痛综合征患者腰背部30个激痛点行弹性超声检查,分别获得正常点、激痛点病灶区及邻近区定量分析取样框(Q-box)内弹性模量的均值(Mean)、最小值(Min)、最大值(Max)及标准差(SD);比较正常点、激痛点病灶区及临近区的弹性模量差异,探索激痛点弹性模量与患者年龄、所在部位的关系.结果 激痛点病灶区弹
Experimental Study on Low-Strength Similar-Material Proportioning and Properties for Coal Mining
Shaojie Chen
2015-01-01
Full Text Available Similar-material simulation test is an effective tool to study the practical problems in mining and civil engineering. This paper conducts an orthogonal study on low-strength similar materials comprising sand, fly ash, and plaster and analyses the sensitivity of the materials. The mechanical properties of the similar materials strongly depend on the proportioning ratio, and they can satisfy different similar-material simulation tests. The compression strength and elastic modulus of the similar material decrease as the sand-binder ratio or cement ratio increases. There are approximately linear relations between the compression strength/elastic modulus and sand-binder ratio and approximately power relations between the compression strength/elastic modulus and sand-binder ratio. Sensitivity analysis employing the range method shows that the effects of the cement ratio on the compression strength and elastic modulus are more obvious than the effects of the sand-binder ratio. Finally, one of similar materials is used in a simulation test of coal backfill mining.
Yongli Huang; Xiaofang Liu; Yichun Zhou; Zengsheng Ma; Chunsheng Lu
2011-01-01
The reverse analysis provides a convenient method to determine four elastic-plastic parameters through an indentation curve such as Young s modulus E, hardness H, yield strength σy and strain hardening exponent n. In this paper, mathematical analysis on a
Murthy, A. Ramachandra; Iyer, Nagesh R.; Raghu Prasad, B. K.
2016-09-01
This work presents the details of characterization and micro-mechanical properties of ultra high strength concrete. Characterization was carried out for High Strength Concrete (HSC, HSC1) and Ultra High Strength Concrete (UHSC). Various mechanical properties, namely, compressive strength, split tensile strength and modulus of elasticity have been estimated for HSC, HSC1 and UHSC. It was observed from characterization studies that the split tensile strength is high in the case of UHSC compared to HSC and HSC1. X-ray diffraction analysis has been performed for cement, silica fume and quartz powder to know the chemical composition. The amount of quantified phases has been estimated. Micro indentation technique has been employed to evaluate the micromechanical properties such as modulus of elasticity and hardness. Oliver and Pharr method has been used to compute modulus of elasticity and hardness. It is observed that the value of modulus of elasticity obtained from the micro indentation test is in very good agreement with that of the value obtained from uniaxial compression test data of a cylindrical specimen. Finally micro-structure of the specimen has been obtained for various magnifications to examine the voids/pores in the UHSC matrix.
陶国运; 张丽; 孙昳; 郑慧珂; 艾莉莎; 梁运光
2015-01-01
ObjectiveTo explore the application of real-time shear wave elasticity imaging to detect the liver elastic modulus and serum liver fibrosis indexes and liver fibrosis.Methods In Pingdingshan Coal Group General Hospital 68 patients who were diagnosed as chronic liver disease, were detected the serum indices of liver fibrosis, liver biopsy and SWE test, analyzed the liver elastic modulus values correlated with serum liver fibrosis indexes and liver pathology.ResultsIn group G0/G1, HA, PCⅢ, LN,ⅣC and S5 segments of the elastic value and S6 segment of elasticity values were not correlated; in group G2, HA and S6 segments of the elasticity value was positively correlated (r=0.58,P0.05); PCⅢ and S5, S6 segment of the elasticity value were positively correlated (r=0.65,P0.05);ⅣC and S5 segment of the elasticity value was positively correlated (r=0.91,P0.05); in group S0/S1, HA, PCⅢ, LN,ⅣC and S5 segments of the elastic value and S6 segment of elasticity values were not correlated; S2 in group A, HA and S6 segments of the elasticity value was positively correlated (r=0.54,P0.05); PCⅢ and S5, S6 segment of the elasticity value were positively correlated (r=0.72,P0.05);PCⅢ与S5、S6段的弹性值呈正相关(r=0.65,P0.05);ⅣC与S5段的弹性值呈正相关(r=0.91,P0.05);S0/S1组中,HA、PCⅢ、LN、ⅣC与S5段的弹性值及S6 段的弹性值均无相关关系;S2 组中, HA与S6段的弹性值呈正相关(r=0.54,P0.05);PCⅢ与S5、S6段的弹性值呈正相关(r=0.72,P<0.05;r=0.65,P<0.05);ⅣC与S5、S6段的弹性值呈正相关(r=0.66,P<0.05;r=0.52,P<0.05);S3/S4组中,HA、PCⅢ、LN、ⅣC与S5段的弹性值及S6段的弹性值均无相关性.肝组织炎症分级与纤维化分期有显著相关性(r=0.512,P<0.05).结论 实时剪切波弹性成像测得肝脏硬度与血清肝纤维化指标及肝脏病理有较好的相关性,实时剪切波弹性成像可动态监测肝纤维化进展,评估肝纤维化程度.
杨欢; 邢玲玲; 张穗萌; 吴兴举; 袁好
2015-01-01
Based on the interaction potential among particles and the isothermal bulk modulus ,we had discussed the rule of pres‐sure dependence of the isothermal bulk modulus with Born‐Mie potential and Born‐Mayer potential and Harrison potential .The conclusions shows that calculated results with Harrison potential were in good agreement with the available experimental data .%从体积弹性模量与原子相互作用势的关系出发，分别利用Born‐Mie势、Born‐Mayer势和 Harrison交叉排斥势函数来讨论弹性模量随压强变化的规律，结果表明，用Harrison交叉排斥势函数得到的理论预测值与实验结果吻合得很好。
Mechanical properties of low modulus beta titanium alloys designed from the electronic approach.
Laheurte, P; Prima, F; Eberhardt, A; Gloriant, T; Wary, M; Patoor, E
2010-11-01
Titanium alloys dedicated to biomedical applications may display both clinical and mechanical biocompatibility. Based on nontoxic elements such as Ti, Zr, Nb, Ta, they should combine high mechanical resistance with a low elastic modulus close to the bone elasticity (E=20 GPa) to significantly improve bone remodelling and osseointegration processes. These elastic properties can be reached using both lowering of the intrinsic modulus by specific chemical alloying and superelasticity effects associated with a stress-induced phase transformation from the BCC metastable beta phase to the orthorhombic alpha(″) martensite. It is shown that the stability of the beta phase can be triggered using a chemical formulation strategy based on the electronic design method initially developed by Morinaga. This method is based on the calculation of two electronic parameters respectively called the bond order (B(o)) and the d orbital level (M(d)) for each alloy. By this method, two titanium alloys with various tantalum contents, Ti-29Nb-11Ta-5Zr and Ti-29Nb-6Ta-5Zr (wt%) were prepared. In this paper, the effect of the tantalum content on the elastic modulus/yield strength balance has been investigated and discussed regarding the deformation modes. The martensitic transformation beta-->alpha(″) has been observed on Ti-29Nb-6Ta-5Zr in contrast to Ti-29Nb-11Ta-5Zr highlighting the chemical influence of the Ta element on the initial beta phase stability. A formulation strategy is discussed regarding the as-mentioned electronic parameters. Respective influence of cold rolling and flash thermal treatments (in the isothermal omega phase precipitation domain) on the tensile properties has been investigated.
石茂林; 李洪友; 陈梦月
2014-01-01
A two-section model of titanium alloy dental implant and bone issue was established by 3-D software Pro/E and meshed by Ansys Workbench 14.5.The influence of components of different elastic modulus and their combinations on implant-bone interface stress distribution was studied after setting material properties,constraints and loading.The method to improve dental implant system was studied.The result shows that the dental implant system of lower elastic modulus implants was with better biomechanical compatibility.A dental implant system using suitable modulus abutment and dental implant combination can reduce implant-bone interface stress effectively.%采用Pro/E三维构图软件及Ansys Workbench 14．5建立二段式钛合金种植牙系统模型，并进行网格划分．设定材料属性、约束和加载条件，分析种植牙系统不同弹性模量组件及其组合对骨界面应力分布的影响，研究种植牙系统的改进方法．结果表明：低模量值种植体具有更好的生物力学相容性，种植牙系统采用适宜模量值基台和种植体组合能够有效地降低骨界面应力．
Mechanical properties of high-strength concrete
Mokhtarzadeh, Alireza
This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.
高祖安
2012-01-01
综述分析了石棉及其石棉行业存在严重危害性等实际情况,对国外开发的各种石棉替代品的试验、试用和实际应用情况进行了对比。结果表明,聚乙烯醇（PVA）纤维具有高强高模、低伸长、耐酸碱、抗溶剂、耐老化、水泥粘着力好、性价比高等优良特点,以及国外近20年的基础研究和工程应用实践证明,被国际公认为替代石棉的最理想材料。最后提出在我国加快PVA纤维代替石棉的迫切性与必要性。%This paper summarizes and analyzes the serious harm to human health caused by asbestos and asbestos industry and other actual situations, then have a comparison through experiment, trial and practical application of various kinds of asbestos substitutes developed abroad. The results indicate that PVA fibers have good performances of high strength and high modulus, low elongation, acid and alkali resistant, anti-solvent, anti-aging, good cement adhesiveness, cost effective and etc. On basis of the nearly 20 years＇ basic research and engineering practice in abroad, PVA is considered to be the optimal substitute for asbestos. Finally the paper leads to a conclusion that it＇s urgent and necessary to accelerate the development of PVA alternative technology of asbestos.
Cerpakovska, D.; Kalnins, M.
2012-09-01
The relationship between the strength-deformation properties and certain structural characteristics (volume content of polymer and voids, orientation of fibers) of composites prepared by impregnation of cellulose fiber nonwovens (CFNs) with poly(vinyl alcohol) water solutions is discussed. With growth in the volume fraction of polymer to 0.25-0.30, the tensile elastic modulus and ultimate strength of the composites increase compared with those of CFN. As a consequence of enhanced adhesion among the cellulose fibers, the relative values of tensile strength and elastic modulus in the main orientation direction of the fibers is higher than in the perpendicular one. Therefore, with increasing content of polymer in the composite, its degree of anisotropy diminishes significantly. The punching strength almost linearly correlates with the tensile strength. The breaking strain in tension increases considerably with growing content of polymer, but the tearing strength changes only slightly.
Estimates of the Elastic Characteristics of a Composite with Short Anisotropic Fibers
Zarubin, V. S.; Kuvyrkin, G. N.; Savelyeva, I. Y.
2017-09-01
A composite with chaotically oriented fibers with different elongations and different anisotropy of elastic characteristics is considered. A mathematical model of interaction of such fibers and matrix particles with an isotropic elastic medium whose elastic moduli have to be found as required characteristics of the composite is constructed. The relations derived by the self-consistency method determine the moduli of the composite as functions of the volume concentration, elongations, and elastic properties of each type of fibers, and also of the elastic characteristics of the isotropic matrix. A quantitative analysis of the mathematical model is carried out, and boundaries of the domains of determining parameters within which the effect of fiber elongation is considerable are found. The relations presented allow one to estimate the elastic characteristics of a composite reinforced with various types of short fibers (in particular, high-strength and high-modulus needle-shaped and thread-like crystals, and nanostructural elements).
Determination of Young's modulus by nanoindentation
MA Dejun; Chung Wo Ong; LIU Jianmin; HE Jiawen
2004-01-01
A methodology for determining Young's modulus of materials by non-ideally sharp indentation has been developed. According to the principle of the same area-to-depth ratio, a non-ideally pyramidal indenter like a Berkovich one can be approximated by a non-ideally conical indenter with a spherical cap at the tip. By applying dimensional and finite element analysis to the non-ideally conical indentation, a set of approximate one-to-one relationships between the ratio of nominal hardness/reduced Young's modulus and the ratio of elastic work/total work, which correspond to different tip bluntness, have been revealed. The nominal hardness is defined as the maximum indentation load divided by the cross-section area of the conical indenter specified at the maximum indentation depth. As a consequence, Young's modulus can be determined from a nanoindentation test only using the maximum indentation load and depth, and the work done during loading and unloading processes. The new method for determining Young's modulus is referred to as "pure energy method". The validity of the method was examined by performing indentation tests on five materials. The experimental results and the standard reference values are in good agreement, indicating that the proposed pure energy method is a promising substitution for the most widely used analysis models at present.
On strength of porous material
Nielsen, Lauge Fuglsang
1999-01-01
quality without damaging or destroying the material or the building component considered. The efficiency of MOE-MOR relations for this purpose depends very much on the homogeneity of porous material considered. For building materials like wood and concrete of normal or lower quality with a number......The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...... of irregularities only scattered MOE-MOR relations (clouds) can be established from which no really results can be read.For homogeneously produced porous materials, however, like modern ceramics and high performance concretes MOE-MOR relations can be presented which are reliable. The present paper contributes...
Hardness and yield strength of dentin from simulated nano-indentation tests.
Toparli, M; Koksal, N S
2005-03-01
The finite element method (FEM) is applied for studying the hardness (H) and yield strength (Y) of dentin subjected to a nano-indentation process. The nano-indentation experiments were simulated with the ABAQUS finite element software package. This test, performed with a spherical indenter, was simulated by axisymmetric finite element analysis. The load versus displacement was calculated during loading-unloading sequence for different elastic modulus (E) and yield strength. Hardness and maximum principal compressive and tensile stresses were plotted for different elastic modulus depending on yield strength. The dentin was assumed to be isotropic, homogenous and elasto-plastic. The theoretical results outlined in this study were compared with the experimental works reported in the literature and then hardness and yield strength of dentin was estimated.
Application of ultrasonic in strength measurement of similar materials of limestone
LIU Tie-xiong; PENG Zhen-bin; HAN Jin-tian
2005-01-01
Similar materials such as cement, gypsum and sand are options for simulating limestone characteristic.A series of reasonable proportions are chosen to do similar experiments of Karst roof based on the proportions testing of small samples indoors. Applying on ultrasonic, the velocities of transverse wave and vertical wave of similar samples have been inspected with the sound wave instrument. Dynamic modulus of elasticity and Poisson's ratio of the samples have been educed. According to the testing data, the relationship between the transverse wave and vertical wave velocity, compressive strength and anti-bend strength are analyzed. It has been proved that the vertical wave velocity is better for reflecting compressive strength and anti-bend strength of similar materials than the transverse wave velocity. The vertical wave velocity increases with the strengthand dynamic modulus of elasticity.
Elastic moduli of pyrope rich garnets
Pandey, B. K.; Pandey, A. K.; Singh, C. K.
2013-06-01
The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.
Effect of thermo-mechanical treatment on mechanical and elastic properties of Ti–36Nb–5Zr alloy
Qingkun Meng
2015-06-01
Full Text Available The evolutions of phase constitutions and mechanical properties of a β-phaseTi–36Nb–5Zr (wt% alloy during thermo-mechanical treatment were investigated. The alloy consisted of dual (β+α″ phase and exhibited a double yielding phenomenon in solution treated state. After cold rolling and subsequent annealing at 698 K for 20 min, an excellent combination of high strength (833 MPa and low modulus (46 GPa was obtained. The high strength can be attributed to high density of dislocations, nanosized α phase and grain refinement. On the other hand, the low Young׳s modulus originates from the suppression of chemical stabilization of β phase during annealing, which guarantees the low β-phase stability. Furthermore, the single-crystal elastic constants of the annealed Ti–36Nb–5Zr alloy were extracted from polycrystalline alloy using an in-situ synchrotron X-ray technique. The results indicated that the low shear modulus C44 contributes to the low Young׳s modulus for the Ti–36Nb–5Zr alloy, suggesting that reducing C44 through thermo-mechanical treatment might be an efficient approach to realize low Young׳s modulus in β-phase Ti alloys. The results achieved in this study could be helpful to elucidate the origin of low modulus and sheds light on developing novel biomedical Ti alloys with both low modulus and high strength.
Effect of thermo-mechanical treatment on mechanical and elastic properties of Ti-36Nb-5Zr alloy
Qingkun Meng; Qing Liu; Shun Guo; Yongqi Zhu; Xinqing Zhao
2015-01-01
The evolutions of phase constitutions and mechanical properties of aβ-phaseTi–36Nb–5Zr (wt%) alloy during thermo-mechanical treatment were investigated. The alloy consisted of dual (βþα″) phase and exhibited a double yielding phenomenon in solution treated state. After cold rolling and subsequent annealing at 698 K for 20 min, an excellent combination of high strength (833 MPa) and low modulus (46 GPa) was obtained. The high strength can be attributed to high density of dislocations, nanosizedαphase and grain refinement. On the other hand, the low Young's modulus originates from the suppression of chemical stabilization of β phase during annealing, which guarantees the low β-phase stability. Furthermore, the single-crystal elastic constants of the annealed Ti–36Nb–5Zr alloy were extracted from polycrystalline alloy using an in-situ synchrotron X-ray technique. The results indicated that the low shear modulus C44 contributes to the low Young's modulus for the Ti–36Nb–5Zr alloy, suggesting that reducing C44 through thermo-mechanical treatment might be an efficient approach to realize low Young's modulus in β-phase Ti alloys. The results achieved in this study could be helpful to elucidate the origin of low modulus and sheds light on developing novel biomedical Ti alloys with both low modulus and high strength.
EFFECTS OF VARYING CURING AGE AND WATER/CEMENT RATIO ON THE ELASTIC PROPERTIES OF LATERIZED CONCRETE
Ata Olugbenga
2007-01-01
Full Text Available This paper reports the results of investigations carried out on the effect of varying curing age and water/cement ratio on the modulus of elasticity and modulus of deformability of laterized concrete. The test specimens were made with sieved samples of selected grain size ranges of laterite used as fine aggregates to replace sand in normal concrete. Batching was by weight. Three mix ratios of (1:1Â½:3, (1:2:4 and (1:3:6 were used. Water/cement ratio of 0.5, 0.6, 0.7 and 0.75 were used for each of the mix ratios. The specimens were tested at curing ages of seven to 28 days. The results showed that there was a corresponding increase in both modulus of elasticity and modulus of deformability of laterized concrete due to increase in curing ages. The mix proportion, compressive strength and water/cement ratio were found to have significant effects on both modulus of elasticity and modulus of deformability of laterized concrete.
STRENGTH AND SORPTION PROPERTIES OF BAMBOO (Bambusa vulgaris WOOD-PLASTIC COMPOSITES
Babajide Charles FALEMARA
2015-09-01
Full Text Available The study investigated the strength and water sorption properties of plastic composites produced from the sawdust of bamboo and recycled Low Density Polyethylene (LDPE. Three levels of board density (500kg/m3 , 600kg/m3 and 700kg/m3 and three levels of plastic/fibre mixing ratio (1:1, 2:1 and 3:1 were adopted. The thickness swelling (TS, water absorption (WA, tensile strength, modulus of elasticity (MOE and modulus of rupture (MOR were investigated. The sorption properties were measured after 24hour water-soak test exposure. The mean values of the properties ranged from 4.15% to 1.40% for thickness swelling; 31.96% to 4.83% for water absorption; and 2.55Mpa to 6.98Mpa, 5564.11Mpa to 10771.65Mpa and 0.60Mpa to 4.29Mpa for tensile strength, modulus of elasticity and modulus of rupture respectively. The result revealed that as the plastic/fibre mixing ratio and board density increased the tensile strength, MOE and MOR increased, while TS and WA decreased. Strength properties of composites boards produced with the higher production variables had higher strength properties and decreased sorption assessment. Bamboo particles are suitable for the manufacturing of Wood Plastic Composites (WPC using LDPE
Labonte, David; Lenz, Anne-Kristin; Oyen, Michelle L
2017-07-15
The remarkable mechanical performance of biological materials is based on intricate structure-function relationships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical background and associated interpretation of the parameters measured via indentation derives largely from research on 'traditional' engineering materials such as metals or ceramics. Here, we discuss the functional relevance of indentation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish criteria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is related to the ratio between irreversible and reversible deformation during indentation, the material's yield strength, and the resistance to irreversible deformation, a material property which represents the energy required to create a unit volume of purely irreversible deformation. Indentation hardness generally increases upon material dehydration, however to a larger extent than expected from accompanying changes in indentation modulus, indicating that water acts as a 'plasticiser'. A detailed discussion of the role of indentation hardness, modulus and toughness in damage control during sharp or blunt indentation yields comprehensive guidelines for a performance-based ranking of biological materials, and suggests that quasi-plastic deformation is a frequent yet poorly understood damage mode, highlighting an important area of future research. Instrumented
Adriano W. Ballarin
2005-04-01
Full Text Available A madeira de Pinus sp. tem utilização crescente na indústria madeireira brasileira. O decréscimo constante do suprimento de árvores adultas com grandes diâmetros, provenientes de florestas naturais, tornou comum a produção de madeira em ciclos curtos, com grande proporção de madeira juvenil. Resultados de diversas pesquisas têm reportado que o módulo de elasticidade e a resistência a diferentes solicitações mecânicas são seriamente afetados pela presença de madeira juvenil. Este trabalho teve por objetivo determinar o módulo de elasticidade da madeira juvenil e adulta de Pinus taeda L. a partir da constante dinâmica C LL, obtida em ensaios não-destrutivos de ultra-som. A madeira de P. taeda era originária de plantios da Estação Experimental de Itapeva - SP, sendo amostrados seis indivíduos arbóreos com 34 anos de idade. Os corpos-de-prova (4 cm x 4 cm x 45 cm foram obtidos separadamente das regiões de madeira juvenil e adulta da prancha central, previamente submetida à secagem industrial (umidade final de 12%, para a determinação da constante dinâmica por meio de ensaios de ultra-som. Para avaliar a sensibilidade do método do ultra-som, os corpos-de-prova foram ensaiados destrutivamente à compressão paralela. Os resultados mostraram boa sensibilidade do método do ultra-som (R² » 0,90 na avaliação desse parâmetro mecânico da madeira juvenil e adulta.Pinus sp. wood has an increasing importance on supplying brazilian wood industry. The diminution of adult and large diameter trees supply deriving from natural tropical forests, became usual the production of wood on short rotation plantation, with considerable proportion of juvenil wood. Results from several researches have been demonstrated that MOE and mechanical strength are strongly affected by juvenile wood occurrence. This research was developed with the main objective of correlating dynamic modulus of elasticity (non-destructive ultrasound tests and MOE
Compressive mechanical of high strength concrete (HSC) after different high temperature history
Zhao, Dongfu; Liu, Yuchen; Gao, Haijing; Han, Xiao
2017-08-01
The compression strength test of high strength concrete under different high-temperature conditions was carried out by universal testing machine. The friction surface of the pressure bearing surface of the specimen was composed of three layers of plastic film and glycerol. The high temperature working conditions were the combination of different heating temperature and different constant temperature time. The characteristics of failure modes and the developments of cracks were observed; the residual compressive strength and stress-strain curves were measured; the effect of different temperature and heating time on the strength and deformation of high strength concrete under uniaxial compression were analyzed; the failure criterion formula of the high strength concrete after high temperature under uniaxial compression was established. The formula of the residual compressive strength of high strength concrete under the influence of heating temperature and constant temperature time was put forward. The relationship between the residual elastic modulus and the peak strain and residual compressive strength of high strength concrete and different high temperature conditions is established. The quantitative relationship that the residual compressive strength decreases the residual elastic modulus decreases and the peak strain increases with the increase of heating temperature and the constant temperature time was given, which provides a reference for the detection and evaluation of high strength concrete structures after fire.
Duffy, Thomas S. [Department of Geosciences, Princeton University, Princeton, New Jersey 08544 (United States); Shen, Guoyin [Consortium for Advanced Radiation Sources, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States); Shu, Jinfu [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); Mao, Ho-Kwang [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); Hemley, Russell J. [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); Singh, Anil K. [Materials Science Division, National Aerospace Laboratories, Bangalore 5600 17, (India)
1999-12-15
Lattice strains were measured as a function of the angle {psi} between the diffracting plane normal and the stress axis of a diamond anvil cell in a layered sample of molybdenum and gold. The sample was compressed over the range 5-24 GPa and the lattice strains were measured using energy-dispersive x-ray diffraction. As {psi} is varied from 0 degree sign to 90 degree sign , the mean lattice parameter of molybdenum increases by up to 1.2% and that of gold increases by up to 0.7%. A linear relationship between Q(hkl), which is related to the slope of the measured d spacing versus 1-3 cos{sup 2} {psi} relation, and 3{gamma}(hkl), a function of the Miller indices of the diffracting plane, is observed for both materials as predicted by theory. The pressure dependence of the uniaxial stress t for gold from this and other recent studies is given by t=0.06+0.015P, where P is the pressure in GPa. The uniaxial stress in molybdenum can be described by t=0.46+0.13P. Using gold as an internal pressure standard, the equation of state of molybdenum depends strongly on {psi}. The bulk modulus obtained from a Birch-Murnaghan fit varies from 210 to 348 GPa as {psi} varies from 0 degree sign to 90 degree sign . However, an equation of state in good agreement with shock and ultrasonic isotherms is obtained for {psi}=54.7 degree sign where the deviatoric contribution to the lattice strain vanishes. Second-order elastic moduli for gold and molybdenum are obtained from the data. The results are generally consistent with an earlier x-ray study and with extrapolations of low-pressure ultrasonic data. The pressure dependence of the shear modulus C{sub 44} is smaller for the x-ray data than predicted by extrapolation of ultrasonic data. (c) 1999 American Institute of Physics.
Olimpia-Minerva ȚURCAȘ (DIACONU)
2015-01-01
This paper presents the results of the experimental research concerning the modulus of elasticity and the average value of the bending strength in case of beech (Fagus sylvatica L.) wood. The investigations were performed according to SR EN 408-2004. The results of the research have been analysed in order to establish the variable parameters to be considered for the final experimental research focused on beech wood floor structures that meet the necessary requirements for the spor...
Experimental and Theoretical Study of Young Modulus in Micromachined Polysilicon Films
丁建宁; 孟永钢; 温诗铸
2002-01-01
The elastic modulus is a very important mechanical property in micromachined structures. Several design issues such as resonant frequencies and stiffness in the micromachined structures are related to the elastic modulus. In addition, the accuracy of results from finite element models is highly dependent upon the elastic modulus. In this study, the Young modulus of micromachined thin polysilicon films has been investigated with a new tensile test machine using a magnetic-solenoid force actuator with linear response, low hysteresis, no friction and direct electrical control. The tensile test results show that the measured average value of Young modulus for a typical sample, (164±1.2) GPa, falls within the theoretical bounds of the texture model. These results will provide more reliable design of polysilicon microelectromechanical systems (MEMS).
Polymerization Shrinkage and Flexural Modulus of Flowable Dental Composites
Janaína Cavalcanti Xavier
2010-09-01
Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of low-viscosity resin composites (Admira Flow™, Grandio Flow™/VOCO; Filtek Z350 Flow™/3M ESPE; Tetric Flow™/Ivoclar-Vivadent was evaluated using a well-established conventional micro-hybrid composite as a standard (Filtek Z250™/3M ESPE. For the measurement of LPS, composites were applied to a cylindrical metallic mould and polymerized (n = 8. The gap formed at the resin/mould interface was observed using SEM (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. The conventional resin presented significantly lower LPS associated with high FS and ME, but only the ME values of the conventional resin differed significantly from the low-viscosity composites. The relationship between ME and LPS of low-viscosity resin composites when used as restorative material is a critical factor in contraction stress relief and marginal leakage.
Tensile strength of woven yarn kenaf fiber reinforced polyester composites
A.E. Ismail
2015-12-01
Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.
Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix
O'Keeffe, Stephen G.
2013-11-01
We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.
Experiment Study and Interpretation on Relation between Modulus of Rock and Strain Amplitude
Bao Xueyang; Shi Xingjue; Wen Dan; Li Chengbo; Wang Xingzhou
2006-01-01
Nonlinear elasticity of the earth medium produces a numerical difference between the dynamic and the static modulus of rock. The dynamic modulus is calculated with the ultrasonic velocity measurement, the small-cycle modulus is calculated with small cycles in the load-unload experiment, the static modulus is calculated from the slope of the stress-strain curve in the large cycle, the Young' s modulus is obtained from the ratio of stress to strain in the measured point.The relationship between the modulus and the strain amplitudes is studied by changing the strain amplitude in the small cycles. The moduli obtained from different measuring methods are thus compared. The result shows that the dynamic modulus is the largest, the small-cycle modulus takes the second place, the static modulus of bigger-cycle is the third, and finally the Young's modulus is the smallest. Nonlinear modulus of rock is a function of the strain level and strain amplitude. The modulus decreases exponentially with the ascending of the strain amplitude, while increases with the ascending of the strain level. Finally, the basic concept of the P-M model is briefly introduced and the relationship between the modulus and strain amplitude is explained by the rock having different distribution densities and the different open-and-close stresses of the micro-cracks.
Estimation of the Young’s modulus of cellulose Iß by MM3 and quantum mechanics
Young’s modulus provides a measure of the resistance to deformation of an elastic material. In this study, modulus estimations for models of cellulose Iß relied on calculations performed with molecular mechanics (MM) and quantum mechanics (QM) programs. MM computations used the second generation emp...
Eskin, D.G. (A.A. Baikov Institute of Metallurgy, Russian Academy of Sciences, 49, Leninskii prosp., Moscow 117334 (Russian Federation)); Toropova, L.S. (A.A. Baikov Institute of Metallurgy, Russian Academy of Sciences, 49, Leninskii prosp., Moscow 117334 (Russian Federation))
1994-06-15
In this study we investigated the tensile and elastic properties of deformed binary Al-Ni, Al-Fe, and Al-Cu alloys containing 10-25 vol.% of second phase. Sheets and rods of the alloys exhibit an increase in Young''s modulus of 15%-25%, and tensile properties at room and elevated temperatures comparable with those of conventional medium-strength wrought aluminum alloys. The elastic moduli of the phases were estimated. ((orig.)). Letter-to-the-editor
Quantitative photoacoustic elastography of Young's modulus in humans
Hai, Pengfei; Zhou, Yong; Gong, Lei; Wang, Lihong V.
2017-03-01
Elastography can noninvasively map the elasticity distribution of biological tissue, which is often altered in pathological states. In this work, we report quantitative photoacoustic elastography (QPAE), capable of measuring Young's modulus of human tissue in vivo. By combining photoacoustic elastography with a stress sensor having known stress-strain behavior, QPAE can simultaneously measure strain and stress, from which Young's modulus is calculated. We first applied QPAE to quantify the Young's modulus of tissue-mimicking agar phantoms with different concentrations. The measured values fitted well with both the empirical expectations based on the agar concentrations and those measured in independent standard compression tests. We then demonstrated the feasibility of QPAE by measuring the Young's modulus of human skeletal muscle in vivo. The data showed a linear relationship between muscle stiffness and loading. The results proved that QPAE can noninvasively quantify the absolute elasticity of biological tissue, thus enabling longitudinal imaging of tissue elasticity. QPAE can be exploited for both preclinical biomechanics studies and clinical applications.
Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie
2015-07-01
A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
张云秀; 关小平
2012-01-01
The features of wood packaging material were studied in microstructure view according to the theory of modern packaging material design.A new wood packaging material,heterotype molded packaging material,with independent intellectual property was developed.The causes of changes of physical and mechanical parameters of the material after molded were analyzed qualitatively.The influences of shaving size,micron degree,veneer condition,and glue condition on the material were given quantitatively.The theoretical formulas were validated with experiments,which confirmed the advantages of heterotype molded packaging material and gave the quantitative demarcation in strength.%应用现代包装材料设计理论,从微观角度研究了木质包装材料的特性,构造出了具有自主知识产权的新型木质包装材料———异型模压包装材料。定性地分析了异型模压包装材料形成后,物理和力学参数变化的本质原因,定量地给出了刨花尺寸、微米化程度、铺装状态、施胶状态等因素对异型模压包装材料弹性模量的影响。通过对理论公式进行试验验证分析,证明了异型模压包装材料性能的优越性,并对其强度的提高做出了定量的标定。
What controls the strength and brittleness of shale rocks?
Rybacki, Erik; Reinicke, Andreas; Meier, Tobias; Makasi, Masline; Dresen, Georg
2014-05-01
With respect to the productivity of gas shales, in petroleum science the mechanical behavior of shales is often classified into rock types of high and low 'brittleness', sometimes also referred to as 'fraccability'. The term brittleness is not well defined and different definitions exist, associated with elastic properties (Poisson's ratio, Young's modulus), with strength parameters (compressive and tensile strength), frictional properties (cohesion, friction coefficient), hardness (indentation), or with the strain or energy budget (ratio of reversible to the total strain or energy, respectively). Shales containing a high amount of clay and organic matter are usually considered as less brittle. Similarly, the strength of shales is usually assumed to be low if they contain a high fraction of weak phases. We performed mechanical tests on a series of shales with different mineralogical compositions, varying porosity, and low to high maturity. Using cylindrical samples, we determined the uniaxial and triaxial compressive strength, static Young's modulus, the tensile strength, and Mode I fracture toughness. The results show that in general the uniaxial compressive strength (UCS) linearly increases with increasing Young's modulus (E) and both parameters increase with decreasing porosity. However, the strength and elastic modulus is not uniquely correlated with the mineral content. For shales with a relatively low quartz and high carbonate content, UCS and E increase with increasing quartz content, whereas for shales with a relatively low amount for carbonates, but high quartz content, both parameters increase with decreasing fraction of the weak phases (clays, kerogen). In contrast, the average tensile strength of all shale-types appears to increase with increasing quartz fraction. The internal friction coefficient of all investigated shales decreases with increasing pressure and may approach rather high values (up to ≡ 1). Therefore, the mechanical strength and
Ultrasonic measurement of the elastic properties of ultra-high performance concrete (UHPC)
Washer, Glenn; Fuchs, Paul; Rezai, Ali; Ghasemi, Hamid
2005-05-01
This paper discusses research to develop ultrasonic methods for materials characterization of an innovative new material known as Reactive Powder Concrete (RPC). Also known as Ultra-high performance concrete (UHPC), this relatively new material has been proposed for the construction of civil structures. UHPC mix designs typically include no aggregates larger than sand, and include steel fibers 0.2 mm in diameter and 12 mm in length. These steel fibers increase the strength and toughness of the UHPC significantly relative to more traditional concretes. Compressive strengths of 200 to 800 MPa have been achieved with UHPC, compared with maximum compressive strength of 50 to 100 MPa for more traditional concrete materials. Young"s modulus of 50 to 60 GPa are common for UHPC. However, the curing methods employed have a significant influence on the strength and modulus of UHPC. This paper reports on the development of ultrasonic methods for monitoring the elastic properties of UHPC under a series of curing scenarios. Ultrasonic velocity measurements are used to estimate the bulk elastic modulus of UHPC and results are compared with traditional, destructive methods. Measurements of shear moduli and Poisson's ratio based on ultrasonic velocity are also reported. The potential for the development of quality control techniques for the future implementation of UHPC is discussed.
Santosh Metgud
2015-06-01
Full Text Available Introduction: Quadriceps is one of the strongest muscle of the body that is required for knee mobility. Quadriceps plays a crucial role in many daily activities such as walking, twisting, running, jumping, and controlling the movement of knee. Since it’s a two joint muscle, they tend to become very to tight leading to imbalance, which can give rise to a number of postural problems and common musculoskeletal disorder causing pain in the knee joint. It could be acute, subacute and chronic in its clinical presentation. Hence strengthening of quadriceps femoris is necessary. Materials and Methods: a total of 90 participants within age of 21 to 29 years and BMI 19.9 to 24.9 having no neurological, cardiopulmonary and musculoskeletal disease were selected. Results: of the total 90 subjects, the mean age of the participants in group A 21.67±0.88 the mean age of participants in group B was 22.23±1.33 and the mean age of participants in the group C was 22.03±1.27. The result showed high significance in the group B. Conclusion: the study showed increase in the quadriceps muscle strength in group B.
Bond strength of binary titanium alloys to porcelain.
Yoda, M; Konno, T; Takada, Y; Iijima, K; Griggs, J; Okuno, O; Kimura, K; Okabe, T
2001-06-01
The purpose of this study was to investigate the bond strength between porcelain and experimental cast titanium alloys. Eleven binary titanium alloys were examined: Ti-Cr (15, 20, 25 wt%), Ti-Pd (15, 20, 25 wt%), Ti-Ag (10, 15, 20 wt%), and Ti-Cu (5, 10 wt%). As controls, the bond strengths for commercially pure titanium (KS-50, Kobelco, Japan) and a high noble gold alloy (KIK, Ishifuku, Japan) were also examined. Castings were made using a centrifugal casting unit (Ticast Super R, Selec Co., Japan). Commercial porcelain for titanium (TITAN, Noritake, Japan) was applied to cast specimens. The bond strengths were evaluated using a three-point bend test according to ISO 9693. Since the elastic modulus value is needed to evaluate the bond strength, the modulus was measured for each alloy using a three-point bend test. Results were analyzed using one-way ANOVA/S-N-K test (alpha = 0.05). Although the elastic moduli of the Ti-Pd alloys were significantly lower than those of other alloys (p = 0.0001), there was a significant difference in bond strength only between the Ti-25Pd and Ti-15Ag alloys (p = 0.009). The strengths determined for all the experimental alloys ranged from 29.4 to 37.2MPa, which are above the minimum value required by the ISO specification (25 MPa).
Psiachos, D., E-mail: dpsiachos@gmail.com [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Hammerschmidt, T., E-mail: thomas.hammerschmidt@icams.rub.de [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Drautz, R., E-mail: ralf.drautz@icams.rub.de [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany)
2011-06-15
The effect of hydrostatic strain and of interstitial hydrogen on the elastic properties of {alpha}-iron is investigated using ab initio density-functional theory calculations. We find that the cubic elastic constants and the polycrystalline elastic moduli to a good approximation decrease linearly with increasing hydrogen concentration. This net strength reduction can be partitioned into a strengthening electronic effect which is overcome by a softening volumetric effect. The calculated hydrogen-dependent elastic constants are used to determine the polycrystalline elastic moduli and anisotropic shear moduli. For the key slip planes in {alpha}-iron, [11-bar0] and [112-bar], we find a shear modulus reduction of approximately 1.6% per at.% H.
T. M. Souza
2012-09-01
Full Text Available Considerando-se as dificuldades para a utilização de MgO em concretos refratários, técnicas anti-hidratação têm sido propostas com o objetivo de minimizar os efeitos deletérios causados pela reação da magnésia com a água. Em paralelo, surge a necessidade de investigar novas metodologias que permitam melhor avaliar os danos causados pela hidratação. Neste sentido, uma técnica promissora consiste no acompanhamento do módulo de Young durante as etapas de cura e secagem dos concretos. No presente trabalho, concretos refratários contendo magnésia cáustica ou sínter de MgO foram avaliados por meio do acompanhamento do módulo elástico utilizando-se o método de ressonância de barras. A avaliação das etapas iniciais de processamento (cura e secagem dos concretos por meio do uso desta técnica apresentou-se como uma alternativa adequada para detecção dos efeitos causados pela hidratação do MgO. Os resultados obtidos também destacam que, em comparação com outras técnicas comumente empregadas, as medidas do módulo elástico permitem delinear com maior precisão a evolução da microestrutura em função do tempo, além de detectar antecipadamente os danos relacionados à formação de brucita, garantindo-se assim maior sensibilidade no monitoramento de tal reação.Considering the difficulties related to the use of MgO in refractory castables, anti-hydration techniques have been proposed, in order to minimize the drawbacks as a result of the magnesia hydration. In parallel, new methodologies should be investigated, aiming better evaluation of the damage caused by the hydration. In this context, a promising technique is the Young's modulus measurement during curing and drying processing steps of refractory castables. In this work, caustic magnesia-containing castables and dead-burned magnesia-containing ones were evaluated by following the elastic modulus profile using the resonance bar method. The evaluation of the initial
Residual stress in high modulus carbon fibers
Chen, K. J.; Diefendorf, R. J.
1982-01-01
The modulus and residual strain in carbon fibers are measured by successively electrochemically milling away the fiber surface. Electrochemical etching is found to remove the carbon fiber surface very uniformly, in contrast to air and wet oxidation. The precision of fiber diameter measurements is improved by using a laser diffraction technique instead of optical methods. More precise diameter measurements reveal that past correlations of diameter and fiber modulus are largely measurement artifact. The moduli of most carbon fibers decrease after the outer layers of the fibers are removed. Owing to experimental difficulties, the moduli and strengths of the fibers at their centers are not determined, and moduli are estimated on the basis of microstructure. The calculated residual stresses are found to be insensitive to these moduli estimates as well as the exact form of regression equation used to describe the moduli and residual strain distributions. Axial compressive residual stresses are found to be very high for some higher modulus carbon fibers. It is pointed out that the compressive stress makes the fibers insensitive to surface flaws when loaded in tension but it may initiate failure by buckling when loaded in compression.
Pedro Gutemberg de Alcântara Segundinho
2012-12-01
Full Text Available Existem diversas técnicas para caracterização do módulo de elasticidade de madeiras e, dentre as atualmente empregadas, destacam-se aquelas que utilizam as frequências naturais de vibração, por serem técnicas não destrutivas e, portanto, apresentarem resultados que podem ser repetidos e comparados ao longo do tempo. Este trabalho teve como objetivo avaliar a eficácia, dos métodos de ensaios baseados nas frequências naturais de vibração comparando-os aos resultados obtidos na flexão estática na obtenção das propriedades elásticas em peças estruturais de madeira de reflorestamento que são usualmente empregadas na construção civil. Foram avaliadas 24 vigas de Eucalyptus sp. com dimensões nominais (40 x 60 x 2.000 mm e 14 vigas de Pinus oocarpa com dimensões nominais (45 x 90 x 2.300 mm, ambas sem tratamento; 30 pranchas com dimensões nominais (40 x 240 x 2.010 mm e 30 pranchas com dimensões nominais (40 x 240 x 3.050 mm, ambas de Pinnus oocarpa e com tratamento preservativo à base de Arseniato de Cobre Cromatado - CCA. Os resultados obtidos apresentaram boa correlação quando comparados aos resultados obtidos pelo método mecânico de flexão estática, especialmente quando empregada a frequência natural de vibração longitudinal. O emprego da frequência longitudinal mostrou-se confiável e prático, portanto recomendada para a determinação do módulo de elasticidade de peças estruturais de madeira. Verificou-se ainda que, empregando a frequência longitudinal, não há necessidade de um suporte específico para os corpos de prova ou calibrações prévias, reduzindo assim o tempo de execução e favorecendo o ensaio de grande quantidade de amostras.There are several techniques to characterize the elastic modulus of wood and those currently using the natural frequencies of vibration stand out as they are non-destructive techniques, producing results that can be repeated and compared over time. This study reports
Multiphase composites with extremal bulk modulus
Gibiansky, L. V.; Sigmund, Ole
2000-01-01
This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable......, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites...... are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...
ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD
Adriano Wagner Ballarin
2003-01-01
Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Ferraris, Monica; Katoh, Yutai
2015-06-30
The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes since SiC and SiC-composites used in fission or fusion environments require joining methods for assembling systems. Torsion specimens fail out-of-plane when joints are strong and when elastic moduli are comparable to SiC, which causes difficulties in determining shear strengths for many joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed to treat elastic joints such as SiC/Ti3SiC2+SiC and elastic-plastic joints such as SiC/epoxy and steel/epoxy. The model uses constitutive shear data and is validated using epoxy joint data. The elastic model indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. Lower modulus epoxy joints always fail in plane and provide good model validation.
Statistical Tensile Strength for High Strain Rate of Aramid and UHMWPE Fibers
YANG Bin; XIONG Tao; XIONG Jie
2006-01-01
Dynamic tensile impact properties of aramid (Technora(R)) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns at different strain rates were obtained. Experimental results show that the initial elastic modulus, failure strength and unstable strain of aramid fiber yarns are strain rate insensitive, whereas the initial elastic modulus and unstable strain of UHMWPE fiber yarns are strain rate sensitive. A fiber-bundle statistical constitutive equation was used to describe the tensile behavior of aramid and UHMWPE fiber bundles at high strain rates. The good consistency between the simulated results and experimental data indicates that the modified double Weibull function can represent the tensile strength distribution of aramid and UHMWPE fibers and the method of extracting Weibull parameters from fiber bundles stress-strain data is valid.
Usoltseva, OM; Tsoi, PA; Semenov, VN
2017-02-01
The laboratory tests on uniaxial and triaxial (Karman scheme) compression of bedded specimens (made of equivalent man-made geomaterial, meta-siltstone and shale) has allowed deriving relations between the strength and deformation characteristics and the bedding angle of the specimens. The elasticity and strength are assessed in accordance with the theoretical model by Salamon–Tien and the Hoek–Brown failure criterion. For the bedded geomedia (man-made geomaterial), the Salamon–Tien model yields a satisfactory estimate of the elastic characteristics (elasticity modulus, Poisson’s ratio). Based on the use of the Hoek–Brown criterion, the authors have derived a strength parameter independent of the lateral pressure.
Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede;
2014-01-01
Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permi......-4-nitrobenzene. Here, a high increase in dielectric permittivity (similar to 70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength. © 2014 Elsevier Ltd. All rights reserved....
Property Evaluation Method Using Spherical Indentation for High-Yield Strength Materials
Choi, Youngsick; Marimuthu, Karuppasamy Pandian; Lee, Hyungyil [Sogang Univ., Seoul (Korea, Republic of); Lee, Jin Haeng [KAERI, Daejeon (Korea, Republic of)
2015-11-15
In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.
Property evaluation method using spherical indentation for high-yield strength materials
Choi, Young Sick; Marimuthu, Karuppasamy Pandian; Lee, Hyung Yil [Dept. of Mechanical Engineering, Sogang University, Seoul (Korea, Republic of); Lee, Jin Haeng [Reactor Mechanical Engineering Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-11-15
In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10 GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.
Pengukuran Modulus Elastisitas Dinamis Batuan dengan Metode Seismik Refraksi
Ashadi Salim
2012-12-01
Full Text Available The seismic wave velocity in rock formation depends on the elastic modulus and mass density of rock where the wave travels. The velocity measurement of P and S waves on rock formation and the mass density in the laboratory can be used for calculating the elastic modulus of rock formation. The elastic modulus is part of rock mechanical parameter needed in geological engineering researches. The velocity measurement of P and S waves by the seismic refraction method was done on a tunnel with 11 spreads of measurement. From the resultsof the measurement, three groups of rock formation could be identified. The first is rock formation with Ed=8.890-12.68 MPa and G=3.306-4.830MPa; the second group is rock formation with Ed=8.890-12.68 MPa and G=3.306-4.830MPa; and the third group is with Ed=18.520-21.120MPa and G=6.724-7.744MP. The first group is clay formation while the second and third groups are andesitic stone formation.
Effects of Manufactured-sand on Dry Shrinkage and Creep of High-strength Concrete
ZHOU Mingkai; WANG Jiliang; ZHU Lide; HE Tusheng
2008-01-01
The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength concrete (HSC) were tested and compared. The results show that the reasonable content (7%-10.5%) of SD in MS will not deteriorate the workability of MS-HSC. It could even improve the workability. Moreover, the compressive strength increases gradually with the increasing SD content,and the MS-HSC with low SD content (smaller than 7%) has the elastic modulus which approaches that of the natural sand HSC, but the elastic modulus reduces when the SD content is high. The influence of the SD content on drying shrinkage performance of MS-HSC is closely related to the hydration age. The shrinkage rate of MS-HSC in the former 7 d age is higher than that of the natural sand HSC, but the difference of the shrinkage rate in the late age is not marked. Meanwhile the shrinkage rate reduces as the fly ash is added; the specific creep and creep coefficient of MS-HSC with 7% SD are close to those of the natural sand HSC.
温朝阳; 范春芝; 安力春; 徐建红; 陈浩; 王月香; 唐杰
2011-01-01
Objective To explore the difference of Young' s modulus in the biceps brachii during muscle relaxation and tension. Methods A total of 141 healthy male volunteers with age range from 16 to 34 years ( mean 22 years old ) were included in the study. A shear-wave elasto-sonography ( AixPlorer model, Supersonic Imagine,Aix en Provence, France ) coupled with a linear array transducer array ( 4-15 MHz )was used. The scanner was set at the SWE mode and then at Q-BOX mode and the ultrasound transducer was placed directly above the biceps brachii belly and carefully aligned with the muscle bundle. The elastic moduli of the biceps brachii were measured during muscle relaxation and tension in all 141 volunteers. Results The Young ' s modulus of biceps brachii was 123. 658 ± 31. 392 kPa during muscle tension and 45. 658 ± 13. 479 kPa during muscle relaxation, respectively with statistical significance ( P ＝0. 0000 ), Conclusion The Young' s modulus of the biceps brachii was higher during muscle tension than those during muscle relaxation.%目的 研究松弛和紧张状态下肱二头肌肌腹的杨氏模量值差异.方法 141例男性健康志愿者,年龄16～34岁, 中位年龄22岁.使用法国Supersonic 公司的AixPlore型实时定量剪切波弹性成像超声诊断仪,L4-15线阵探头沿肱二头肌肌腹肌束方向检查,启动超声仪器弹性成像模式(SWE)模式,然后使用其定量分析系统Q-BOX分别测量二头肌处于松弛与紧张状态下的杨氏模量值.结果 紧张状态下肱二头肌肌腹杨氏模量值为(123.658±31.392) kPa,松弛状态下杨氏模量值为(45.658±13.479) kPa,两者比较差异具有统计学意义(P=0.0000).结论 剪切波弹性成像技术可检测肱二头肌肌腹在松弛和紧张状态下杨氏模量值差异,紧张状态下较松弛状态下模量值大;定量超声弹性成像技术用于肌肉组织疾病检查,使提供常规超声之外的诊断信息成为可能.
Elastic properties of Nb-based alloys by using the density functional theory
Liu Zeng-Hui; Shang Jia-Xiang
2012-01-01
A first-principles density functional approach is used to study the electronic and the elastic properties of Nb15X (X =Ti,Zr,Hf,V,Ta,Cr,Mo,and W) alloys.The elastic constants c11 and c12,the shear modulus C′,and the elastic modulus E〈100〉 are found to exhibit similar tendencies,each as a function of valence electron number per atom (EPA),while c44 seems unclear.Both c11 and c12 of Nb15X alloys increase monotonically with the increase of EPA.The C′ and E〈100〉 also show similar tendencies.The elastic constants (except c44) increase slightly when alloying with neighbours of a higher d-transition series.Our results are supported by the bonding density distribution.When solute atoms change from Ti(Zr,Hf) to V(Ta) then to Cr(Mo,W),the bonding electron density between the central solute atom and its first neighbouring Nb atoms is increased and becomes more anisotropic,which indicates the strong interaction and thus enhances the elastic properties of Nb-Cr(Mo,W) alloys.Under uniaxial (100) tensile loading,alloyed elements with less (more) valence electrons decrease (increase) the ideal tensile strength.
1947-03-01
and 18:8 Cr-Ni steel crystals, however, are probably similar to that for gold (fig. 31). The diagram for a body-centered cubic metal, alpha iron , is...32). The directional variation of the shearing modulus (G-), as illus- trated by the diagram for alpha iron in figure 3*1-, is opposite to that of...of aluminum. ^ m OJ > O > tea o o o Figure 33.- Directional variation of the tensile modulus of elastioity of a crystal of alpha iron . Figure
Ab-initio study of electronic structure and elastic properties of ZrC
Mund, H. S.; Ahuja, B. L.
2016-05-01
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Ferraris, Monica; Ventrella, Andrea; Katoh, Yutai
2015-03-01
The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.
Wilson, Leslie Hoipkemeier
Biofouling is the accumulation of biological matter on a substrate. It is essential to elucidate and model the major factors that affect both biological settlement and adhesion to substrates in order to develop coatings that minimize initial fouling or ease the removal of this fouling. To date, models that have estimated adhesion strength to coatings primarily included bulk elastic modulus and surface energy. Topography, however, has been found to dominate both these terms in the reduction of settlement and has been found to affect the adhesion strength as well. Silicone foul release coatings have demonstrated moderate success in the prevention of marine biofouling because of their low modulus and low surface energy. Problems exist with durability and eventual fouling of the coating due to the overgrowth of foulants that prefer hydrophobic substrates. This research details the characterization and the surface and bulk modification of a commercially available silicone elastomer. The modifications include bulk additives, surface topography, and surface graft copolymers. The effect of these modifications on biological response was then assayed using the alga Ulva as a model for marine biofouling. The unmodified silicone elastomer has a bulk modulus of approximately 1 MPa. The addition of vinyl functional polydimethylsiloxane oils allowed for a greater than 200% increase or a 90% decrease in the bulk modulus of the material. The addition of non-reactive polydimethylsiloxane oils allowed for a change in the surface lubricity of the elastomer without a significant change in the mechanical properties. Topographical modifications of the surface show a profound effect on the bioresponse. Appropriately scaled engineered microtopographies replicated in the silicone elastomer can produce a 250% increase in algal zoospore fouling or an 85% reduction in settlement relative to a smooth silicone elastomer. Finally, the modification of the surface energy of this material was
Evaluation of Concrete Compressive Strength by incorporating Used Foundry Sand
Khuram Rashid
2016-07-01
Full Text Available The main objective of this study was to evaluate the compressive strength of concrete by utilizing three types of used foundry sand; with bentonite clay, with sodium silicate & with phenolic resin as partial replacement of fine aggregates. To accomplish the research an experimental program was conducted in which ten concrete mixtures were casted, by keeping all other parameters for concrete proportioning as constant and only change made was in the amount of fine aggregates. Ten, Twenty and Thirty percent replacement level of river sand by used foundry sands was maintained in this study. All fine aggregates were selected after achieving desired physical and chemical tests. Work ability, compressive strength and modulus of elasticity were measured and compared with the conventional concrete termed as control mixture. It was observed that work ability increased with replacement levels. The cubes were crushed at 7, 28 and 63 days of standard moist curing. The compressive strength of all concrete specimens increased with increase in curing age. With exception to foundry sand with phenolic resin, compressive strength of concrete mixtures was decreased with increase in replacement level at all ages. Similar trends were observed in modulus of elasticity of concrete.
Belli, Renan; Petschelt, Anselm; Lohbauer, Ulrich
2014-04-01
The aim of this study was to measure the linear elastic material properties of direct dental resin composites and correlate them with their fatigue strength under cyclic loading. Bar specimens of twelve resin composites were produced according to ISO 4049 and tested for elastic modulus (Emod) in 3-point bending (n=10), flexural strength (FS) (n=15) and single-edge-notch-beam fracture toughness (FT) (n=15), both in 4-point bending. Using the same specimen geometry, the flexural fatigue strength (FFS) was determined using the staircase approach after 10(4) cycles at 0.5 Hz in 4-point bending (n=25). The observation of the fracture surface and fracture profiles was conducted using a scanning electron microscope in order to evaluate the respective fracture mechanisms according to the two different loading conditions. Materials were ranked differently according to the tested parameters. Only weak correlations were found between any of the initial properties and FFS or strength loss. The best correlation to FFS was found to be the Emod (r(2)=0.679), although only slightly. Crack path in both loading conditions was mainly interparticle, with the crack propagating mainly within the matrix phase for fatigued specimens and eventually through the filler/matrix interface for statically loaded specimens. Fracture of large particles or prepolymerized fillers was only observed in specimens of FS and FT. Initial properties were better associated with microstructural features, whereas the fatigue resistance showed to be more dependent on aspects relating to the matrix phase. Our results show that linear elastic properties such as elastic modulus, flexural strength and fracture toughness are not good descriptors of the fatigue resistance of dental resin composite under cyclic bending, and may therefore have limited clinical relevance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Cold Resistant Properties of High Modulus Polyurethane
LI Minghua; XIA Ru; ZHANG Yuchuan; HUANG Zhifang; YAO Heping; HUANG Wanli; WANG Yifeng; HUI Jianqiang; WU Chunyu
2009-01-01
Six kinds of polyurethane(PU)elastomers were prepared based on different poly-esters,polyethers and chain extenders.The structure,mechanical properties and cold resistant proper-ties of PU were systematically investigated by FTIR,XRD,DMTA,universal testing machine and flex ductility machine.The results show that T_g of soft segment is the main factor of the cold resistant properties of polyurethane elastomer.Compared with the same relative molecular mass of the polyester and the polyether,the polyether flexibility is better,the glass transition temperature(T_g)is lower and the cold resistant properties is remarkable,for example the cold resistant properties of PU based on poly(tetramethylene glycol),1,4-BG and MDI achieves the fifth level.The physics performances of polyurethane elastomers,such as breakdown strength,Young's modulus and the cold resistant prop-erties,are all superior.
Ultra-high modulus organic fiber hybrid composites
Champion, A. R.
1981-01-01
An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.
Lersow, M
2001-01-01
For the stabilization of dumps with the construction of hidden dams and for building ground improvement, for instance for traffic lines over dumps, nearly all applied compaction methods have the aim to reduce the pore volume in the loose rock. With these methods, a homogenization of the compacted loose rock will be obtained too. The compaction methods of weight compaction by falling weight, compaction by vibration and compaction by blasting have been introduced, and their applications and efficiencies have been shown. For the estimation of the effective depth of the compaction and for a safe planning of the bearing layer, respectively, the necessary material parameters have to be determined for each deep compaction method. Proposals for the determination of these parameters have been made within this paper. In connection with the stabilization of flow-slide-prone dump slopes, as well as for the improvement of dump areas for the use as building ground, it is necessary to assess the deformation behavior and the bearing capacity. To assess the resulting building ground improvement, deformation indexes (assessment of the flow-prone layer) and strength indexes (assessment of the bearing capacity) have to be determined with soil mechanical tests. Förster and Lersow, [Patentschrift DE 197 17 988. Verfahren, auf der Grundlage last- und/oder weggesteuerter Plattendruckversuche auf der Bohrlochsohle, zur Ermittlung des Spannungs-Verformungs-Verhaltens und/oder von Deformationsmoduln und/oder von Festigkeitseigenschaften in verschiedenen Tiefen insbesondere von Lockergesteinen und von Deponiekörpern in situ; Förster W, Lersow M. Plattendruckversuch auf der Bohrlochsohle, Ermittlung des Spannungs-Verformungs-Verhaltens von Lockergestein und Deponiematerial Braunkohle--Surface Mining, 1998;50(4): 369-77; Lersow M. Verfahren zur Ermittlung von Scherfestigkeitsparametern von Lockergestein und Deponiematerial aus Plattendruckversuchen auf der Bohrlochsohle. Braunkohle
Research on spring-back behavior of high strength steel sheets
Zhang Junping; Fang Gang; Ma Mingtu; Jin Qingsheng
2014-01-01
To investigate the spring-back behavior of dual-phase (DP) steel,V-shape spring-back experiments with different bending angles,relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force,the spring-back of DP steel sheets de-creases;while raising fillet radius of punch,which has the most apparent effects on spring-back,advances spring-back angle. Among DP590,DP780 and DP980,higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstruc-ture and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corre-sponding to the applied load to the modulus of elasticity.
Multi-spectral photoacoustic elasticity tomography
Liu, Yubin; Yuan, Zhen
2016-01-01
The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101
袁应龙; 卢子兴
2004-01-01
The elastic properties of syntactic foams with coated hollow spherical inclusions have been studied by means of Mori and Tanaka' s concept of average stress in the matrix and Eshelby' s equivalent inclusion theories. Some formulae to predict the effective modulus of this material have been derived theoretically. Based on these formulae, the influences of coating parameters such as the thickness and Poisson' s ratio on the modulus of the syntactic foams have been discussed at the same time.
Mechanical Strength Properties of RCA Concrete Made by a Modified EMV Method
Namho Kim
2016-09-01
Full Text Available This study used two types of Recycled Concrete Aggregates (RCAs with the same original virgin aggregate, but with different amounts of residual mortars. To verify that the mechanical properties of the concrete were affected by changing the unit volume of residual mortar, fresh mortar, and total mortar of the concrete, a series of paving concrete mixes were made using a modified equivalent mortar volume (EMV mix design, along with a conventional American Concrete Institute (ACI mix design. The test results showed that the RCA concrete with the conventional mix design, which led to a prominent decrease in compressive strength and elastic modulus at each age, had 10% greater total mortar volume than that with the modified EMV mix design. As for the conventional ACI mix, it appears that the replacement ratio of RCA and the volume of the residual mortar in RCA directly affect the modulus of elasticity as well as the compressive strength of concrete. However, for the modified EMV mix, the modulus of elasticity of the concrete may be increased to be equivalent to the companion concrete with natural aggregate by controlling the new mortar volume so that the total mortar volume remains the same regardless of the RCA replacement ratio. It was observed that the smaller new volume requirement makes the RCA paving concrete more environmentally friendly and economically profitable.
Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses
Afifi, Hesham; Marzouk, Samier
2003-05-26
Longitudinal and transverse ultrasonic waves velocities in lead tungsten tellurite glasses have been measured using the pulse-echo method at 5 MHz frequency and at room temperature (300 K). The elastic properties; longitudinal modulus, shear modulus, Young's modulus, bulk modulus and Poisson's ratio together with the microhardness, softening temperature, and Debye temperature are found to be rather sensitive to the glass composition. Information about the structure of the glass can be deduced after calculating the average stretching force constant and the average ring size. A comparison between the experimental elastic moduli data obtained in this study and those calculated theoretically by other models has been discussed.
胡敏; 徐国元; 胡盛斌
2013-01-01
Sandy pebble soil is a granular media, and the physico-mechanical properties of sandy pebble soil are different from those of sandy soil and intact rock mass. Here sandy pebble soil is considered as a simplified material, namely a two-phase composite material consists of sandy soil as matrix and pebble as ellipsoid inclusion. This paper presents the theoretical derivation of equivalent elastic matrix calculation equation. The derivation process is based on Eshelby tensors and Mori-Tanaka equivalent method within small deformation condition. The process is also considered pebble’s content and distribution, using replacement iterative method. This paper focuses on the calculation of sandy pebble soil equivalent elastic modulus using numerical solution through compile program. Comparison is made between numerical solution and theoretical result. The result shows that the theoretical calculation method has better calculation accuracy than the earlier calculation methods of previous experiment and theory. When the pebble volume fraction less than 50%, the result of theoretical calculation coincides with experiment result, thus the presented method can be used to predict sandy pebble soil’s macroscopic mechanical properties, and it is beneficial to underground engineering application;when the volume fraction more than 50%, the theoretical calculation result may have some error with the experiment result.% 砂卵石土是物理力学性质既不同于砂土也不同于完整岩体的离散体，将其简化为砂土为基体，卵石为椭球形夹杂的两相复合材料。在小变形条件下，考虑卵石的含量和分布，采用Eshelby张量和Mori-Tanaka等效方法，运用替换迭代方式，从理论上推导出等效柔度张量一般性计算方程；重点研究卵石为球形时（椭球的一种特殊情况）砂卵石土等效弹性模量，通过编写程序求得其数值解，并与相关数值试验和理论进行对比。结果表明，
[Progress on cervical muscle strength and soft tissue stiffness testing].
Ma, Ming; Zhang, Shi-min
2015-08-01
Biomechanical evaluation of neck muscles has important significance in the diagnosis and treatment for cervical spondylosis, the neck muscle strength and soft tissue stiffness test is two aspects of biomechanical testing. Isometric muscle testing operation is relatively simple, the cost is lower, which can evaluate the muscle force below grade 3. However, isokinetic muscle strength testing can assess the muscle strength of joint motion in any position. It is hard to distinguish stiffness difference in different soft tissues when the load-displacement curve is used to evaluate the local soft tissue stiffness. Elasticity imaging technique can not only show the elastic differences of different tissues by images, but also quantify the elastic modulus of subcutaneous tissues and muscles respectively. Nevertheless, it is difficult to observe the flexibility of the cervical spine by means of the analysis of the whole neck stiffness. In a word, a variety of test method will conduce not only the biomechanical evaluation of neck muscles, but also making an effective biomechanics mathematical model of neck muscles. Besides, isokinetic muscle testing and the elasticity imaging technology still need further validation and optimization before they are better applied to neck muscles biomechanical testing.
ANALYTICAL SOLUTION OF BENDING-COMPRESSION COLUMN USING DIFFERENT TENSION-COMPRESSION MODULUS
姚文娟; 叶志明
2004-01-01
Based on elastic theory of different tension-compression modulus, the analytical solution was deduced for bending-compression column subject to combined loadings by the flowing coordinate system and phased integration method. The formulations for the neutral axis, stress, strain and displacement were developed, the finite element program was compiled for calculation, and the comparison between the result of finite element and analytical solution were given too. Finally, compare and analyze the result of different modulus and the same modulus, obtain the difference of two theories in result, and propose the reasonable suggestion for the calculation of this structure.
Elastic properties of superconductors and materials with weakly correlated spins.
Binek, Christian
2017-07-07
It is shown that in the ergodic regime, the temperature dependence of Young's modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young's modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Constant diamagnetic susceptibility gives rise to a temperature independent elastic modulus for ceramic and single crystalline superconductors alike. The thermodynamic approach established in this report, paves the way to tailor elastic material parameters through the design of magnetic properties.
姚文娟; 叶志明
2004-01-01
For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.
On strength of porous material - simple systems and densified systems
Nielsen, Lauge Fuglsang
1997-01-01
The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus Of Rupture) of materials have been established in order to control...... quality without damaging or destroying the material or the building component considered. The efficiency of MOE-MOR relations for this purpose depends very much on the homogeneity of porous material considered. For building materials like wood and concrete of normal or lower quality with a number...... of irregularities only scattered MOE-MOR relations (clouds) can be established from which no really reliable results can be read.For homogeneously produced porous materials, however, like modern ceramics and high performance concretes MOE-MOR relations can be presented which are reliable. The present paper...
On strength of porous material - simple systems and densified systems
Nielsen, Lauge Fuglsang
1997-01-01
quality without damaging or destroying the material or the building component considered. The efficiency of MOE-MOR relations for this purpose depends very much on the homogeneity of porous material considered. For building materials like wood and concrete of normal or lower quality with a number......The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus Of Rupture) of materials have been established in order to control...... of irregularities only scattered MOE-MOR relations (clouds) can be established from which no really reliable results can be read.For homogeneously produced porous materials, however, like modern ceramics and high performance concretes MOE-MOR relations can be presented which are reliable. The present paper...
The ideal strength and mechanical hardness of solids
Krenn, Christopher Robert [Univ. of California, Berkeley, CA (United States)
2000-04-01
Relationships between intrinsic mechanical hardness and atomic-scale properties are reviewed, Hardness scales closely and linearly with shear modulus for a given class of material (covalent, ionic or metallic). A two-parameter fit and a Peierls-stress model produce a more universal scaling relationship, but no model can explain differences in hardness between the transition metal carbides and nitrides. Calculations of ''ideal strength'' (defined by the limit of elastic stability of a perfect crystal) are proposed. The ideal shear strengths of fcc aluminum and copper are calculated using ab initio techniques and allowing for structural relaxation of all five strain components other than the imposed strain. The strengths of Al and Cu are similar (8-9% of the shear modulus), but the geometry of the relaxations in Al and Cu is very different. The relaxations are consistent with experimentally measured third-order elastic constants. The general thermodynamic conditions of elastic stability that set the upper limits of mechanical strength are derived. The conditions of stability are shown for cubic (hydrostatic), tetragonal (tensile) and monoclinic (shear) distortions of a cubic crystal. The implications of this stability analysis to first-principles calculations of ideal strength are discussed, and a method to detect instabilities orthogonal to the direction of the applied stress is identified. The relaxed ideal shear and tensile strengths of bcc tungsten are also calculated using ab initio techniques and are favorably compared to recent nano-indentation measurements. The {100} tensile strength (29.5 GPa) is governed by the Bain instability. The shear strengths in the weak directions on {110}, {112}, and {123} planes are very nearly equal (~ 18 GPa) and occur at approximately the same strain (17-18%). This isotropy is a function of the linear elastic isotropy for shear in directions containing <111> in bcc and of the atomic configurations of
The ideal strength and mechanical hardness of solids
Krenn, Christopher
2000-04-01
Relationships between intrinsic mechanical hardness and atomic-scale properties are reviewed, Hardness scales closely and linearly with shear modulus for a given class of material (covalent, ionic or metallic). A two-parameter fit and a Peierls-stress model produce a more universal scaling relationship, but no model can explain differences in hardness between the transition metal carbides and nitrides. Calculations of ''ideal strength'' (defined by the limit of elastic stability of a perfect crystal) are proposed. The ideal shear strengths of fcc aluminum and copper are calculated using ab initio techniques and allowing for structural relaxation of all five strain components other than the imposed strain. The strengths of Al and Cu are similar (8-9% of the shear modulus), but the geometry of the relaxations in Al and Cu is very different. The relaxations are consistent with experimentally measured third-order elastic constants. The general thermodynamic conditions of elastic stability that set the upper limits of mechanical strength are derived. The conditions of stability are shown for cubic (hydrostatic), tetragonal (tensile) and monoclinic (shear) distortions of a cubic crystal. The implications of this stability analysis to first-principles calculations of ideal strength are discussed, and a method to detect instabilities orthogonal to the direction of the applied stress is identified. The relaxed ideal shear and tensile strengths of bcc tungsten are also calculated using ab initio techniques and are favorably compared to recent nano-indentation measurements. The {l_brace}100{r_brace} tensile strength (29.5 GPa) is governed by the Bain instability. The shear strengths in the weak directions on {l_brace}110{r_brace}, {l_brace}112{r_brace}, and {l_brace}123{r_brace} planes are very nearly equal ({approx} 18 GPa) and occur at approximately the same strain (17-18%). This isotropy is a function of the linear elastic isotropy for shear in
Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.
2010-01-01
Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.
Peng, Qing; De, Suvranu
2014-10-21
Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers.
Elasticity reconstructive imaging by means of stimulated echo MRI.
Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y
1998-03-01
A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation.
Elasticity of DNA and the effect of Dendrimer Binding
Mogurampelly, Santosh; Netz, Roland R; Maiti, Prabal K
2013-01-01
Negatively charged DNA can be compacted by positively charged dendrimers and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. We report various elastic properties of short double stranded DNA (dsDNA) and the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations. In equilibrium at room temperature, the contour length distribution P(L) and end-to-end distance distribution P(R) are nearly Gaussian, the former gives an estimate of the stretch modulus {\\gamma}_1 of dsDNA in quantitative agreement with the literature value. The bend angle distribution P({\\theta}) of the dsDNA also has a Gaussian form and allows to extract a persistence length, L_p of 43 nm. When the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant but the effective bending rigidity estimated from the end-to-end distance distribution decreases dramatically due to backbone charge neutralization...
Mesoscale elastic properties of marine sponge spicules.
Zhang, Yaqi; Reed, Bryan W; Chung, Frank R; Koski, Kristie J
2016-01-01
Marine sponge spicules are silicate fibers with an unusual combination of fracture toughness and optical light propagation properties due to their micro- and nano-scale hierarchical structure. We present optical measurements of the elastic properties of Tethya aurantia and Euplectella aspergillum marine sponge spicules using non-invasive Brillouin and Raman laser light scattering, thus probing the hierarchical structure on two very different scales. On the scale of single bonds, as probed by Raman scattering, the spicules resemble a combination of pure silica and mixed organic content. On the mesoscopic scale probed by Brillouin scattering, we show that while some properties (Young's moduli, shear moduli, one of the anisotropic Poisson ratios and refractive index) are nearly the same as those of artificial optical fiber, other properties (uniaxial moduli, bulk modulus and a distinctive anisotropic Poisson ratio) are significantly smaller. Thus this natural composite of largely isotropic materials yields anisotropic elastic properties on the mesoscale. We show that the spicules' optical waveguide properties lead to pronounced spontaneous Brillouin backscattering, a process related to the stimulated Brillouin backscattering process well known in artificial glass fibers. These measurements provide a clearer picture of the interplay of flexibility, strength, and material microstructure for future functional biomimicry.
Hyperlipidemia affects multiscale structure and strength of murine femur.
Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce
2014-07-18
To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction.
High Strength/High Modulus Aromatic Heterocyclic ABA Block Copolymers
1987-05-01
stream and when condensed with 3,4- diaminotoluene , a quantitative yield of the model imidazole oligomer was obtained. HS’ NH$CII+. HCO2 -(jCO 2 H PPA...isolated by precipitation into water . Composition of the (B) blocks could be varied by the weight of AB-monomer used in the copolymer- izations. Intrinsic...outlet N2 stream through a barium hydroxide solution. The dark solution was poured into water to give a colorless precipitate. With the aid of a
Analysis of Apparent Elasticity Constants of Woven Fabrics
董侠; 张建春; 张燕
2001-01-01
The woven fabric can be defined as orthogonal elastomer if the extension force that puts on the fabric is very small. Based on the precondition, the apparent elasticity constants of a woven fabric were analyzed theoretically in the paper. The bias angle (which is between weft yarns and extension direction ) affects apparent elasticity modulus and elasticity coefficient of the fabric in the extension direction. And the experiment describes fluxes of elasticity constants going with the bias angle of the fabric.
Xu, Yang; Li, Shunlong; Li, Hui; Yan, Weiming
2013-04-01
Cables are always a critical and vulnerable type of structural components in a long-span cable-stayed bridge in normal operation conditions. This paper presents the surface characteristics and mechanical performance of high-strength steel wires in simulated corrosive conditions. Four stress level (0MPa, 300MPa, 400MPa and 500MPa) steel wires were placed under nine different corrosive exposure periods based on the Salt Spray Test Standards ISO 9227:1990. The geometric feathers of the corroded steel wire surface were illustrated by using fractal dimension analysis. The mechanical performance index including yielding strength, ultimate strength and elastic modulus at different periods and stress levels were tested. The uniform and pitting corrosion depth prediction model, strength degradation prediction model as well as the relationship between strength degradation probability distribution and corrosion crack depth would be established in this study.
Cerpakovska, D.; Kalnins, M.
2012-03-01
The results of a study on the strength-deformation characteristics (tensile elastic modulus, ultimate strength, elongation at break, and punching and tearing strengths) of two kinds of cellulose fiber nonwovens (CFNs) with dissimilar void content and different geometrical parameters of cellulose fibers are discussed. The structural characteristics of composites prepared by impregnation with poly(vinyl alcohol) water solutions are analyzed, too. Composites with volume fractions of polymer up to 0.4% and volume fractions of voids up to 0.3% were prepared. Filling of voids by the polymer occurred without significant changes in the structure of CFNs. The fraction of closed voids increased with polymer content.
PAGOSA Sample Problem. Elastic Precursor
Weseloh, Wayne N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clancy, Sean Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-03
A PAGOSA simulation of a flyer plate impact which produces an elastic precursor wave is examined. The simulation is compared to an analytic theory for the Mie-Grüneisen equation of state and an elastic-perfectly-plastic strength model.
Detail of photo 7903109 stack of superconducting cables in the modulus measuring device
1979-01-01
The picture shows an assembly of insulated superconducting cables of the type used in the Po dipole magnet inserted in the elastic modulus measuring device (photos 7903547X and 7903169) in order to measures its mechanical properties under azimuthal compression. See also 7903547X, 7903169, 8307552X.
Measuring Young's Modulus the Easy Way, and Tracing the Effects of Measurement Uncertainties
Nunn, John
2015-01-01
The speed of sound in a solid is determined by the density and elasticity of the material. Young's modulus can therefore be calculated once the density and the speed of sound in the solid are measured. The density can be measured relatively easily, and the speed of sound through a rod can be measured very inexpensively by setting up a longitudinal…
An autonomic self-healing organogel with a photo-mediated modulus.
Xiong, Yubing; Chen, Zhijun; Wang, Hong; Ackermann, Lisa-Maria; Klapper, Markus; Butt, Hans-Jürgen; Wu, Si
2016-12-01
A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel.
Factors Determining the Stability of a Gas Cell in an Elastic Medium
Fyrillas, M.M.; Kloek, W.; van Vliet, T.; Mellema, J.
1999-01-01
In this paper we consider the stability of a gas cell embedded in an infinite elastic medium. The stability criterion obtained extends the classical result by Gibbs, y < 2E, to include the shear modulus of the elastic material. Interestingly, besides the shear modulus another parameter appears which
Factors Determining the Stability of a Gas Cell in an Elastic Medium
Fyrillas, M.M.; Kloek, W.; Vliet, van T.; Mellema, J.
1999-01-01
In this paper we consider the stability of a gas cell embedded in an infinite elastic medium. The stability criterion obtained extends the classical result by Gibbs, y < 2E, to include the shear modulus of the elastic material. Interestingly, besides the shear modulus another parameter appears whic
Are the dynamics of silicate glasses and glass-forming liquids embedded in their elastic properties?
Smedskjær, Morten Mattrup; Mauro, John C.
According to the elastic theory of the glass transition, the dynamics of glasses and glass-forming liquids are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms, ...... of the silicate glass transition are governed by additional factors beyond the evolution of the shear modulus....
Dey, Mohar; Bandyopadhyay, Dipankar; Sharma, Ashutosh; Qian, Shizhi; Joo, Sang Woo
2012-10-01
We explore the electric-field-induced interfacial instabilities of a trilayer composed of a thin elastic film confined between two viscous layers. A linear stability analysis (LSA) is performed to uncover the growth rate and length scale of the different unstable modes. Application of a normal external electric field on such a configuration can deform the two coupled elastic-viscous interfaces either by an in-phase bending or an antiphase squeezing mode. The bending mode has a long-wave nature, and is present even at a vanishingly small destabilizing field. In contrast, the squeezing mode has finite wave-number characteristics and originates only beyond a threshold strength of the electric field. This is in contrast to the instabilities of the viscous films with multiple interfaces where both modes are found to possess long-wave characteristics. The elastic film is unstable by bending mode when the stabilizing forces due to the in-plane curvature and the elastic stiffness are strong and the destabilizing electric field is relatively weak. In comparison, as the electric field increases, a subdominant squeezing mode can also appear beyond a threshold destabilizing field. A dominant squeezing mode is observed when the destabilizing field is significantly strong and the elastic films are relatively softer with lower elastic modulus. In the absence of liquid layers, a free elastic film is also found to be unstable by long-wave bending and finite wave-number squeezing modes. The LSA asymptotically recovers the results obtained by the previous formulations where the membrane bending elasticity is approximately incorporated as a correction term in the normal stress boundary condition. Interestingly, the presence of a very weak stabilizing influence due to a smaller interfacial tension at the elastic-viscous interfaces opens up the possibility of fabricating submicron patterns exploiting the instabilities of a trilayer.
Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui
2015-05-01
Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior.
Elasticity of some mantle crystal structures. II.
Wang, H.; Simmons, G.
1973-01-01
The single-crystal elastic constants are determined as a function of pressure and temperature for rutile structure germanium dioxide (GeO2). The data are qualitatively similar to those of rutile TiO2 measured by Manghnani (1969). The compressibility in the c direction is less than one-half that in the a direction, the pressure derivative of the shear constant is negative, and the pressure derivative of the bulk modulus has a relatively high value of about 6.2. According to an elastic strain energy theory, the negative shear modulus derivative implies that the kinetic barrier to diffusion decreases with increasing pressure.
Various Expressions for Modulus of Random Convexity
Xiao Lin ZENG
2013-01-01
We first prove various kinds of expressions for modulus of random convexity by using an Lo(F,R)-valued function's intermediate value theorem and the well known Hahn-Banach theorem for almost surely bounded random linear functionals,then establish some basic properties including continuity for modulus of random convexity.In particular,we express the modulus of random convexity of a special random normed module Lo(F,X) derived from a normed space X by the classical modulus of convexity of X.
Elastic properties of fly ash-stabilized mixes
Sanja Dimter
2015-12-01
Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].
Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour.
Bechtle, Sabine; Özcoban, Hüseyin; Lilleodden, Erica T; Huber, Norbert; Schreyer, Andreas; Swain, Michael V; Schneider, Gerold A
2012-06-07
Hard, biological materials are generally hierarchically structured from the nano- to the macro-scale in a somewhat self-similar manner consisting of mineral units surrounded by a soft protein shell. Considerable efforts are underway to mimic such materials because of their structurally optimized mechanical functionality of being hard and stiff as well as damage-tolerant. However, it is unclear how different hierarchical levels interact to achieve this performance. In this study, we consider dental enamel as a representative, biological hierarchical structure and determine its flexural strength and elastic modulus at three levels of hierarchy using focused ion beam (FIB) prepared cantilevers of micrometre size. The results are compared and analysed using a theoretical model proposed by Jäger and Fratzl and developed by Gao and co-workers. Both properties decrease with increasing hierarchical dimension along with a switch in mechanical behaviour from linear-elastic to elastic-inelastic. We found Gao's model matched the results very well.
2015-01-01
[Purpose] This study examined the effects of a resistance exercise programs aiming to improve muscular function in order to prevent and treat Alzheimer’s disease in elderly people. [Subjects and Methods] Elderly patients with mild dementia were randomly assigned to an elastic band resistance exercise group (74.21±6.09 years). The experimental group (n=23) performed upper and lower extremity exercises three times per week for five months. Physical fitness was measured according to chair leg sq...
A Prediction Method of Tensile Young's Modulus of Concrete at Early Age
Isamu Yoshitake
2012-01-01
Full Text Available Knowledge of the tensile Young's modulus of concrete at early ages is important for estimating the risk of cracking due to restrained shrinkage and thermal contraction. However, most often, the tensile modulus is considered equal to the compressive modulus and is estimated empirically based on the measurements of compressive strength. To evaluate the validity of this approach, the tensile Young's moduli of 6 concrete and mortar mixtures are measured using a direct tension test. The results show that the tensile moduli are approximately 1.0–1.3-times larger than the compressive moduli within the material's first week of age. To enable a direct estimation of the tensile modulus of concrete, a simple three-phase composite model is developed based on random distributions of coarse aggregate, mortar, and air void phases. The model predictions show good agreement with experimental measurements of tensile modulus at early age.
Elastic Properties of Sedimentary Rocks
Melendez Martinez, Jaime
Sedimentary rocks are an important research topic since such rocks are associated to sources of ground water as well as oil, gas, and mineral reservoirs. In this work, elastic and physical properties of a variety of sedimentary samples that include glacial sediments, carbonates, shales, one evaporite, and one argillite from a variety of locations are investigated. Assuming vertical transverse isotropy, ultrasonic compressional- and shear-waves (at 1 MHz central frequency) were measured as a function of confining pressure on all samples with the exception of glacial samples which were tested assuming isotropy. Tensile strength tests (Brazilian test) were also carried out on selected glacial samples and, in addition, static-train measurements were conducted on shales and argillite samples. Lithological and textural features of samples were obtained through thin section techniques, scanning electron microscopy images and micro-tomography images. X-ray diffraction and X-Ray fluorescence provided the mineralogical oxides content information. Porosity, density, and pore structure were studied by using a mercury intrusion porosimeter and a helium pycnometer. The wide range of porosities of the studied samples (ranging from a minimum of 1% for shales to a maximum 45% for some glacial sediments) influence the measured velocities since high porosity sample shows an noticeable velocity increment as confining pressure increases as a consequence of closure of microcracks and pores, unlike low porosity samples where increment is quasi-lineal. Implementation of Gassmann's relation to ultrasonic velocities obtained from glacial samples has negligible impact on them when assuming water saturated samples, which suggests that state of saturation it is no so important in defining such velocities and instead they are mainly frame-controlled. On the other hand, velocities measured on carbonate and evaporite samples show that samples are at best weak anisotropic, thus the intrinsic
Steuer, A; Wende, K; Babica, P; Kolb, J F
2017-09-01
Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.
Development of New Elastomers and Elastic Nanocomposites from Plant Oils
Zhu, Lin; Wool, Richard
2006-03-01
Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.
Balloon Type Elasticity Sensing of Left Ventricular Tissue for Small Experimental Animals
Higashimori, Mitsuru; Ishii, Ryohei; Tadakuma, Kenjiro; Kaneko, Makoto; Tamaki, Syunsuke; Sakata, Yasushi; Yamamoto, Kazuhiro
This paper describes an elasticity sensing system for a left ventricular tissue of small experimental animal. We first show the basic concept of the proposed method, where a ring shaped specimen is dilated by a balloon type probe with pressure based control and the elasticity is estimated by using the stress and strain information. We introduce the dual cylinder model for approximating the strengths of material of the specimen and the balloon. Based on this model, we can derive the Young's modulus of the specimen. After showing the developed experimental system, we show basic experiments using silicone specimens. We finally show a couple of experimental results using rat and mouse, where specimens with HFPEF (Heart Failure with Preserved Ejection Fraction) can be separated from normal specimens.
Twelve Elastic Constants of Betula platyphylla Suk.
Wang Liyu; Lu Zhenyou
2004-01-01
Wood elastic constants are needed to describe the elastic behaviors of wood and be taken as an important design parameter for wood-based composite materials and structural materials. This paper clarified the relationships between compliance coefficients and engineering elastic constants combined with orthotropic properties of wood, and twelve elastic constants of Betula platyphylla Suk. were measured by electrical strain gauges. Spreading the adhesive quantity cannot be excessive or too little when the strain flakes were glued. If excessive, the glue layer was too thick which would influence the strain flakes' performance, and if too little, glues plastered were not firm, which could not accurately transmit the strain. Wood as an orthotropic material, its modulus of elasticity and poisson's ratios are related by two formulas:μij /Ei =μji /Ej and μij 0.95) between the reciprocal of elastic modulus MOE-1 and the square of the ratio of depth to length (h/l)2, which indicate that shear modulus values measured were reliable by three point bending experiment.
Behavior of steel fiber-reinforced high-strength concrete at medium strain rate
Chujie JIAO; Wei SUN; Shi HUAN; Guoping JIANG
2009-01-01
Impact compression experiments for the steel fiber-reinforced high-strength concrete (SFRHSC) at medium strain rate were conducted using the split Hopkinson press bar (SHPB) testing method. The volume fractions of steel fibers of SFRHSC were between 0 and 3%. The experimental results showed that, when the strain rate increased from threshold value to 90 s-1, the maximum stress of SFRHSC increased about 30%, the elastic modulus of SFRHSC increased about 50%, and the increase in the peak strain of SFRHSC was 2-3 times of that in the matrix specimen. The strength and toughness of the matrix were improved remarkably because of the superposition effect of the aggregate high-strength matrix and steel fiber high-strength matrix. As a result, under impact loading, cracks developed in the SFRHSC specimen, but the overall shape of the specimen remained virtually unchanged. However, under similar impact loading, the matrix specimens were almost broken into small pieces.
THE INFLUENCE OF CATIONIZED BIRCH XYLAN ON WET AND DRY STRENGTH OF FINE PAPER
Janne Kataja-aho,
2012-02-01
Full Text Available Cationized birch xylan was prepared and its use as a papermaking chemical was evaluated. The focus was on studying the effects of cationized birch xylan on the wet and dry strength of fine paper. The results of the laboratory experiments show that the addition of 3 percent of cationized birch xylan to birch kraft pulp improved the initial wet strength of the web by 30 percent compared to base stock at a solids content of 55%. Furthermore, the tensile stiffness of the wet web increased by approximately a third and the dry tensile strength improved by 26%, while the dry elastic modulus was not changed. The improvements in the strength properties were clear when compared to the base stock, but not as high as achieved with conventionally used cationized starch. The difference between the xylan and starch is most likely due to the shorter polymer chain length of the cationized xylan.
COMPARISON OF ELASTIC OF POROUS CORDIERITE BY FLEXURE AND DYNAMIC TEST METHODS
Stafford, Randall [Cummins, Inc; Golovin, K. B. [Cummins, Inc; Dickinson, A. [Cummins, Inc; Watkins, Thomas R [ORNL; Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL
2012-01-01
Previous work showed differences in apparent elastic modulus between mechanical flexure testing and resonance methods. Flexure tests have been conducted using non-contact optical systems to directly measure deflection for calculation of elastic modulus. Dynamic test methods for elastic modulus measurement were conducted on the same material for comparison. The results show significant difference in the apparent elastic modulus for static flexure versus dynamic methods. The significance of the difference in apparent elastic modulus on thermal stress and the hypotheses for these differences will be discussed. Dynamic measurement (resonance) and static measurement (mechanical) produce different values for elastic modulus of porous cordierite ceramic. The elastic modulus from resonance is a measure of the material response at very low strain which is different from the material response in a mechanical test with relatively large strain. The apparent elastic moduli for dynamic versus static test methods in this study are different by a factor of two. This result has significant impact on calculated stress and life in an aftertreatment component.
Wang, You-Yuan; Yang, Tao; Tian, Miao; Liao, Rui-Jin
2013-09-01
The degree of polymerization (DP) has been regarded as an important symbol of mechanical strength, reflecting the aging condition of transformer insulation paper. In this article, a new concept called fracture degree is proposed on the basis of DP. First, nine cellulose Iβ crystal models with different fracture degrees were built. Then relevant mechanical parameters and hydrogen bond numbers were calculated by molecular dynamics (MD) simulation. Results showed that during the aging process of insulation paper with fracture of cellulose chain, the elastic constant C33 produces appreciable impact on the Young's modulus (E). With the decrease of DP and increase of fracture degree, the Young's modulus step decreases. To the 50% and 100% fracture degree models respectively, the relationship between their different degrees of polymerization and Young's modulus is subjected to similar exponential distributions. With the increase of the fracture degree, the average hydrogen bond number drops, and the change rules apply to the Young's modulus. Since hydrogen bond is the main factor of mechanical strength, it can be inferred that the fracture degree influences mechanical strength seriously.
Elastic Properties of the Annular Ligament of the Human Stapes—AFM Measurement
Kwacz, Monika; Rymuza, Zygmunt; Michałowski, Marcin; Wysocki, Jarosław
2015-01-01
Elastic properties of the human stapes annular ligament were determined in the physiological range of the ligament deflection using atomic force microscopy and temporal bone specimens. The annular ligament stiffness was determined based on the experimental load-deflection curves. The elastic modulus (Young’s modulus) for a simplified geometry was calculated using the Kirchhoff–Love theory for thin plates. The results obtained in this study showed that the annular ligament is a linear elastic ...
Regulating the modulus of a chiral liquid crystal polymer network by light.
Kumar, Kamlesh; Schenning, Albertus P H J; Broer, Dirk J; Liu, Danqing
2016-04-01
We report a novel way to modulate the elastic modulus of azobenzene containing liquid crystal networks (LCNs) by exposure to light. The elastic modulus can cycle between different levels by controlling the illumination conditions. Exposing the polymer network to UV light near the trans absorption band of azobenzene gives a small reduction of the glass transition temperature thereby lowering the modulus. The addition of blue light addressing the cis absorption band surprisingly amplifies this effect. The continuous oscillatory effects of the trans-to-cis isomerization of the azobenzene overrule the overall net cis conversion. The influence on the chain dynamics of the network is demonstrated by dynamic mechanical thermal analysis which shows a large shift of the glass transition temperature and a modulus decrease by more than two orders of magnitude. The initial high modulus and the glassy state are recovered within a minute in the dark by switching off the light sources, despite the observation that azobenzene is still predominantly in its cis state. Based on these new findings, we are able to create a shape memory polymer LCN film at room temperature using light.
Electronic and elastic properties of MoS{sub 2}
Li Wei, E-mail: tolwwt@163.co [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou (China); Chen Junfang; He Qinyu [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou (China); Wang Teng [School of Computer, South China Normal University, 510631, Guangzhou (China)
2010-05-15
The electronic structures and elastic properties of molybdenum disulfide are studied using first-principles calculations. The energy band structure and density of state (DOS) of MoS{sub 2} at 0 GPa are calculated. The band gap energy of MoS{sub 2} versus the pressure 0-40 GPa is obtained. We find that the band gap energy decreases as the pressure increases. The geometry optimized structural parameters for lithium nitride under different pressures are listed. The parameters a, c, and E (the enthalpy) all decrease with increasing pressure. However, parameter B (the bulk modulus), S (the shear modulus) and Y (the Young's modulus) increase with pressure. The normalized lattice constants and the elastic modulus as two functions of pressure from 0-40 GPa are obtained. All the calculated elastic constants C{sub ij} increase by different rates with increasing pressure.
Analytical Solution for Wave-Induced Response of Seabed with Variable Shear Modulus
无
2007-01-01
A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus. By employing integral transform and Frobenius methods, the transient and steady solutions for the wave-induced pore water pressure, effective stresses and displacements are analytically derived in detail. Verification is available through the reduction to the simple case of homogeneous seabed. The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.
Monte Carlo study of the shear modulus at the surface of a Lennard-Jones crystal
Eerden, J. P. v. d.; Knops, H. J. F.; Roos, A.
1992-01-01
In this paper, we give a microscopic definition of local elastic constants. We apply this to the numerical evaluation of the shear modulus of an interface which is sharp as compared with the interaction range. The algorithm is applied to a study of the (001) face of a face-centered-cubic (fcc) Lennard-Jones crystal. The vanishing of the shear modulus gives an estimate of the melting temperature of the first layer which is well below the bulk triple point. Some theoretical aspects of surface melting are briefly discussed.
Elastic and thermal expansion asymmetry in dense molecular materials.
Burg, Joseph A; Dauskardt, Reinhold H
2016-09-01
The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.
Elastic and thermal expansion asymmetry in dense molecular materials
Burg, Joseph A.; Dauskardt, Reinhold H.
2016-09-01
The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.
Elastic Comparison Between Human and Bovine Femural Bone
Mohamed S. Gaith
2012-12-01
Full Text Available In this study, the elastic stiffness and the degree of anisotropy will be compared for the femur human and bovine bones are presented. A scale for measuring the overall elastic stiffness of the bone at different locations is introduced and its correlation with the calculated bulk modulus is analyzed. Based on constructing orthonormal tensor basis elements using the form-invariant expressions, the elastic stiffness for orthotropic system materials is decomposed into two parts; isotropic (two terms and anisotropic parts. The overall elastic stiffness is calculated and found to be directly proportional to bulk modulus. A scale quantitative comparison of the contribution of the anisotropy to the elastic stiffness and to measure the degree of anisotropy in an anisotropic material is proposed using the Norm Ratio Criteria (NRC. It is found that bovine femure plexiform has the largest overall elastic stiffness and bovine has the most isotropic (least anisotropic symmetry.
Sinha, S
2003-01-01
In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.
Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region
Nishiyama, N.; Inoue, A.; Jiang, Jianzhong
2001-01-01
In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus, and L...
Flexural modulus identification of thin polymer sheets
Gluhihs, S.; Kovalovs, A.; Tishkunovs, A.; Chate, A.
2011-06-01
The method of determination of the flexural Young's modulus is based on a solution to the problem of compression of a thin-walled cylindrical specimen by two parallel planes (TWCS method). This method was employed to calculate the flexural modulus for PET polymer compositions. The flexural modules received by TWCS method were verified by comparing the experimentally measured eigenfrequencies by Polytec vibrometer with numerical results from ANSYS program.
Flexural modulus identification of thin polymer sheets
Gluhihs, S; Kovalovs, A; Tishkunovs, A; Chate, A, E-mail: s_gluhih@inbox.lv [Riga Technical University, Institute of Materials and Structures, Azenes 16/22, LV-1048, Riga (Latvia)
2011-06-23
The method of determination of the flexural Young's modulus is based on a solution to the problem of compression of a thin-walled cylindrical specimen by two parallel planes (TWCS method). This method was employed to calculate the flexural modulus for PET polymer compositions. The flexural modules received by TWCS method were verified by comparing the experimentally measured eigenfrequencies by Polytec vibrometer with numerical results from ANSYS program.
Modulus and yield stress of drawn LDPE
Thavarungkul, Nandh
Modulus and yield stress were investigated in drawn low density polyethylene (LDPE) film. Uniaxially drawn polymeric films usually show high values of modulus and yield stress, however, studies have normally only been conducted to identify the structural features that determine modulus. In this study small-angle x-ray scattering (SAXS), thermal shrinkage, birefringence, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) were used to examine, directly and indirectly, the structural features that determine both modulus and yield stress, which are often closely related in undrawn materials. Shish-kebab structures are proposed to account for the mechanical properties in drawn LDPE. The validity of this molecular/morphological model was tested using relationships between static mechanical data and structural and physical parameters. In addition, dynamic mechanical results are also in line with static data in supporting the model. In the machine direction (MD), "shish" and taut tie molecules (TTM) anchored in the crystalline phase account for E; whereas crystal lamellae with contributions from "shish" and TTM determine yield stress. In the transverse direction (TD), the crystalline phase plays an important roll in both modulus and yield stress. Modulus is determined by crystal lamellae functioning as platelet reinforcing elements in the amorphous matrix with an additional contributions from TTM and yield stress is determined by the crystal lamellae's resistance to deformation.
Development of a multivariate empirical model for predicting weak rock mass modulus
Kallu Raj R.; Keffeler Evan R.; Watters Robert J.; Agharazi Alireza
2015-01-01
Estimating weak rock mass modulus has historically proven difficult although this mechanical property is an important input to many types of geotechnical analyses. An empirical database of weak rock mass modulus with associated detailed geotechnical parameters was assembled from plate loading tests per-formed at underground mines in Nevada, the Bakhtiary Dam project, and Portugues Dam project. The database was used to assess the accuracy of published single-variate models and to develop a multivari-ate model for predicting in-situ weak rock mass modulus when limited geotechnical data are available. Only two of the published models were adequate for predicting modulus of weak rock masses over lim-ited ranges of alteration intensities, and none of the models provided good estimates of modulus over a range of geotechnical properties. In light of this shortcoming, a multivariate model was developed from the weak rock mass modulus dataset, and the new model is exponential in form and has the following independent variables:(1) average block size or joint spacing, (2) field estimated rock strength, (3) dis-continuity roughness, and (4) discontinuity infilling hardness. The multivariate model provided better estimates of modulus for both hard-blocky rock masses and intensely-altered rock masses.
Traveling Lamb wave in elastic metamaterial layer
Shu, Haisheng; Xu, Lihuan; Shi, Xiaona; Zhao, Lei; Zhu, Jie
2016-10-01
The propagation of traveling Lamb wave in single layer of elastic metamaterial is investigated in this paper. We first categorized the traveling Lamb wave modes inside an elastic metamaterial layer according to different combinations (positive or negative) of effective medium parameters. Then the impacts of the frequency dependence of effective parameters on dispersion characteristics of traveling Lamb wave were studied. Distinct differences could be observed when comparing the traveling Lamb wave along an elastic metamaterial layer with one inside the traditional elastic layer. We further examined in detail the traveling Lamb wave mode supported in elastic metamaterial layer, when the effective P and S wave velocities were simultaneously imaginary. It was found that the effective modulus ratio is the key factor for the existence of special traveling wave mode, and the main results were verified by FEM simulations from two levels: the level of effective medium and the level of microstructure unit cell.
Young’s modulus of [111] germanium nanowires
M. Maksud
2015-11-01
Full Text Available This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs. When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.
Young’s modulus of [111] germanium nanowires
Maksud, M.; Palapati, N. K. R.; Subramanian, A., E-mail: asubramanian@vcu.edu [Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Yoo, J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Harris, C. T. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2015-11-01
This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.
M. Boudjema
2003-01-01
Full Text Available The elastic response of many rocks to quasistatic stress changes is highly nonlinear and hysteretic, displaying discrete memory. Rocks also display unusual nonlinear response to dynamic stress changes. A model to describe the elastic behavior of rocks and other consolidated materials is called the Preisach-Mayergoyz (PM space model. In contrast to the traditional analytic approach to stress-strain, the PM space picture establishes a relationship between the quasistatic data and a number density of hysteretic mesoscopic elastic elements in the rock. The number density allows us to make quantitative predictions of dynamic elastic properties. Using the PM space model, we analyze a complex suite of quasistatic stress-strain data taken on Berea sandstone. We predict a dynamic bulk modulus and a dynamic shear modulus surface as a function of mean stress and shear stress. Our predictions for the dynamic moduli compare favorably to moduli derived from time of flight measurements. We derive a set of nonlinear elastic constants and a set of constants that describe the hysteretic behavior of the sandstone.
On a thickness free expression for the shear modulus of carbon nanotubes
Ghadyani, Ghasem; Soufeiani, Leila; Öchsner, Andreas
2016-11-01
The thickness of carbon nanotubes is an important issue for the characterization and design of these structures. In this article, thickness free expressions for the shear modulus of single-walled carbon nanotubes have been developed by finite element simulations on the minimum potential energy circle. As a part of this work, some equations have been obtained to define the relation between the thickness and the shear modulus, which are in good agreement with previous studies. Moreover, these expressions are in good agreement with both continuum and quantum mechanics and capable to support "Yakobson's paradox," that the scattering data for the elastic properties of carbon nanotubes are due to the not-well-defined thickness for these structures. Furthermore, these expressions can provide a tool for the prediction of the shear modulus of single-walled carbon nanotubes in regards to any thickness assumption when the experimental investigations are too difficult to realize.
Optical, elastic and thermal properties of ZB-AlN semiconductor from first-principle calculations
Kumar, V.; Singh, Bhanu P.; Chandra, Satish
2016-12-01
The optical, elastic and thermal properties of zincblende aluminium nitride have been studied. The refractive index, absorption coefficient, reflectivity, dielectric constant, extinction coefficient, and energy-loss spectrum have been calculated using the pseudo-potential method under density functional theory at different pressures. The heat capacity, Debye temperature and phonon frequencies have been calculated using CASTEP code at 0 GPa. The elastic stiffness constants, bulk modulus, Young's modulus, shear modulus and pressure derivatives of elastic constants have also been calculated. The calculated results are compared with the available experimental and theoretical data. Reasonably good agreement has been found between them.
Low-modulus PMMA bone cement modified with castor oil.
López, Alejandro; Hoess, Andreas; Thersleff, Thomas; Ott, Marjam; Engqvist, Håkan; Persson, Cecilia
2011-01-01
Some of the current clinical and biomechanical data suggest that vertebroplasty causes the development of adjacent vertebral fractures shortly after augmentation. These findings have been attributed to high injection volumes as well as high Young's moduli of PMMA bone cements compared to that of the osteoporotic cancellous bone. The aim of this study was to evaluate the use of castor oil as a plasticizer for PMMA bone cements. The Young's modulus, yield strength, maximum polymerization temperature, doughing time, setting time and the complex viscosity curves during curing, were determined. The cytotoxicity of the materials extracts was assessed on cells of an osteoblast-like cell line. The addition of up to 12 wt% castor oil decreased yield strength from 88 to 15 MPa, Young's modulus from 1500 to 446 MPa and maximum polymerization temperature from 41.3 to 25.6°C, without affecting the setting time. However, castor oil seemed to interfere with the polymerization reaction, giving a negative effect on cell viability in a worst-case scenario.
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai
2014-05-01
We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.
An autonomic self-healing organogel with a photo-mediated modulus
Xiong, Yubing
2016-11-15
A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.
Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations
Cornwell, Charles F.; Welch, Charles R.
2011-05-01
The mechanical properties of carbon nanotubes such as low density, high stiffness, and exceptional strength make them ideal candidates for reinforcement material in a wide range of high-performance composites. Molecular dynamics simulations are used to predict the tensile response of fibers composed of aligned carbon nanotubes with intermolecular bonds of interstitial carbon atoms. The effects of bond density and carbon nanotube length distribution on fiber strength and stiffness are investigated. The interstitial carbon bonds significantly increase load transfer between the carbon nanotubes over that obtained with van der Waals forces. The simulation results indicate that fibers with tensile strengths to 60 GPa could be produced by employing interstitial cross-link atoms. The elastic modulus of the fibers is also increased by the bonds.
Elastic property ratios of a triple-stranded stainless steel arch wire.
Kusy, R P; Dilley, G J
1984-09-01
The general elastic property ratio equations for nth-stranded wires are derived and then specified for the case of a triple-stranded arch wire. Several parameters are defined, including the modulus of elasticity (E) and the helical spring (kappa) and bending plane (lambda) shape factors. Thereafter, the elastic property ratios of a wide range of compositional/configurational combinations are determined, using a representative triple-stranded 0.0175 inch (3 X 0.008 inch) stainless steel wire as the base line. These results show that the particular 3 X 0.008 inch wire studied possesses the stiffness of an 0.010 inch stainless steel wire but has at least 20% more strength and range. Furthermore, the stiffness of the 3 X 0.008 inch multistranded wire is similar to an 0.016 inch nickel-titanium wire but only 40% that of an 0.016 inch beta titanium wire. When these elastic property ratios are compared with the previous results reported by Thurow, Burstone, and Kusy, differences are noted which can be explained on the basis of the mechanical property values and/or the geometric modeling assumed.
孙伟; 庞俊蕊; 苏龙; 孙建生
2014-01-01
Combined with engineering requirements of the Qingyu Reservoir,the ANSYS finite element software was used to establish overflow grav-ity dam deep sliding stability elastic-plastic calculation model which considered the mechanical properties of weak structural plane of rock in the dam foundation. An analysis of the continuous variation of the distribution of horizontal displacement of dam foundation rock,the characteristics of the magnitude of change of feature points’displacement and the process of the dam foundation rock plastic zones developing to through the founda-tion was took to get the deep sliding stability safety factor of gravity dam by gradually increasing the shear strength reduction coefficient. The safety factor of Qingyu gravity dam analyzed by the strength reducing elastic-plastic finite element method is 3. 0-3. 2,and it is consistent with the limit equilibrium dual ramp stability calculation results 3. 039-3. 667 recommended by specifications. It shows that taking the slip plane displacement mutation and plastic zone perforation as the criterion to judge dam foundation instability and failure is reasonable.%结合清峪水库实际工程设计要求，运用ANSYS有限元软件，建立考虑坝基岩体软弱结构面力学特性的溢流重力坝深层抗滑稳定弹塑性计算模型。通过逐步增大抗剪强度的折减系数，分析研究坝基岩体的水平位移分布连续性变化规律、特征点位移变化幅度特性和坝基岩体塑性区域发展贯通过程。清峪水库重力坝深层抗滑稳定使用强度折减弹塑性有限元分析得到的安全系数为3．0～3．2，与规范推荐的刚体极限平衡双斜面稳定计算结果3．039～3．667具有一致性，表明采用滑移面上位移发生突变及塑性区贯通作为坝基失稳破坏的判断准则是合理的。
Effects of the temperature dependence of the bulk modulus on magnetic exchange-entropy
Silva, J.A. da [Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE (Brazil); Plaza, E.J.R., E-mail: ejrplaza@gmail.com [Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE (Brazil); Campoy, J.C.P. [Departamento de Ciências Naturais, Universidade Federal de São João del Rei, 36301-160 São João del Rei, MG (Brazil)
2015-05-25
Highlights: • A thermodynamic route for the field-induced additional exchange-entropy was studied. • The temperature dependence of bulk modulus leads to the additional exchange-entropy. • The total entropy change matches with the sum of conventional and additional terms. • We obtained analytical expressions for deformation and additional exchange-entropy. - Abstract: We have studied the field-induced additional exchange-entropy on an elastic ferromagnet as a response effect of the dependence of its bulk modulus with temperature. We consider that the temperature dependence of the bulk modulus follows a linear behavior or a Wachtman-type equation. Our analysis is based on a free energy model containing exchange, Zeeman and elastic terms. From the deduced expressions for the exchange parameter, the additional exchange-entropy was obtained. This quantity must be the difference between the conventional and the total entropy change which were calculated from well-established thermodynamic expressions, i.e., configurational spin disorder and Maxwell’s equation, respectively. In addition, we established an analytical relation between the field-induced additional exchange-entropy and the temperature dependence of the bulk modulus.
Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste.
Wang, Xiaojun; Subramaniam, Kolluru V; Lin, Fengbao
2010-06-01
A test procedure for measuring changes in amplitude and phase of SH ultrasonic waves from the interface between fused-quartz and cement paste samples is presented. The phase change is determined from the temporal shift in the reflected signal relative to the incident signal. The sensitivity of the measured parameters to changes in acoustic impedance of the materials in contact with fused-quartz is evaluated for different angles of incidence. It is shown that a reflection measurement at normal incidence at nano-second temporal resolution does not provide sufficient sensitivity to measure the viscous component of shear modulus of low viscosity fluids and cannot be applied to cement paste while it is in a fluid state. Monitoring the measured amplitude and phase at oblique angle of incidence allows for measuring fluids with acoustic impedance comparable to cement paste. The reflection measurements are used to determine the evolution of elastic and viscous components of shear modulus cement paste with time. Influence of sampling rate and temperature effects on the phase measurements are evaluated and shown to be significant. It is shown that the initial loss of workability of cement paste through setting process is associated with a larger relative increase in the viscous component of shear modulus. Following the initial rapid rise of the viscous component of shear modulus, there is a larger relative increase in the elastic component, which can be related to the emergence of a solid structure capable of retaining an imprint.
Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.
1990-01-01
A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.
Andriollo, Tito; Hattel, Jesper
2016-01-01
particle strength. It is shown that if the nodule internal structure is considered, the traditional isotropy assumption leads to the definition of a domain of admissible values for the effective elastic constants. However, micromechanical calculations indicate that values within the domain do not provide....... In the present paper, the nodules’ elastic properties are thoroughly investigated by means of both analytical and numerical techniques. The analysis takes into account the influence of several non-linear phenomena, as local residual stresses arising during solid-state cooling, interface debonding and limited...... mesoscopic moduli in agreement with Young's modulus and Poisson's ratio recorded for common ferritic ductile iron grades. This suggests that graphite nodules may not be considered isotropic at the microscopic scale, at least from a mechanical viewpoint....
Dentinogenesis imperfecta - hardness and Young's modulus of teeth.
Wieczorek, Aneta; Loster, Jolanta; Ryniewicz, Wojciech; Ryniewicz, Anna M
2013-01-01
Dentinogenesis imperfecta type II (DI-II) is the most common dental genetic disease with reported incidence 1 in 8000. Elasticity and hardness of the enamel of teeth are important values which are connected with their resistance to attrition. It is hypothesized that values of physical properties for healthy teeth and teeth with DI-II are different. The aim of the study was to investigate some physical properties of teeth extracted from patients with DI-II in comparison with normal teeth. The material of the study was six teeth: three lower molars, with clinical signs of DI-II, which were extracted due to complications of pulp inflammation and three other lower molars which were extracted for orthodontic reasons - well formed, without any signs of pathology. The surfaces of DI-II and normal teeth were tested on the CSM Instruments Scratch Tester machine (producer CSEM Switzerland) by Oliver and Pharr method. The indenter used was Vicker's VG-73 diamond indenter. Additionally, the Scanning Electron Microscopy (SEM) analysis of the surface of the teeth with DI-II was made. Vickers hardness of the teeth with dental pathology (DI-II) was seven times smaller, and Young's modulus six times smaller than those of healthy teeth. The parameters of hardness and elasticity of enamel of teeth with clinical diagnosis of DI-II were very much smaller than in normal teeth and because of that can be responsible for attrition.
Ledbetter, H.M.; Austin, M.W.
1985-01-01
Nine AISI type 304 stainless steel alloys were studied at room temperature. The carbon-plus-nitrogen contents of these alloys ranged from 0.067 to 0.325 wt.% (from 0.3 to 1.3 at. %). Five elastic constants (the longitudinal modulus, Young's modulus, the shear modulus, the bulk modulus and Poisson's ratio) were determined by a pulse echo ultrasonic method.
Remarks on orthotropic elastic models applied to wood
Nilson Tadeu Mascia
2006-09-01
Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.
Vliet, Jurg; Wel, Steven; Dowd, Dara
2011-01-01
While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots
Revisiting Fermat's Factorization for the RSA Modulus
Gupta, Sounak
2009-01-01
We revisit Fermat's factorization method for a positive integer $n$ that is a product of two primes $p$ and $q$. Such an integer is used as the modulus for both encryption and decryption operations of an RSA cryptosystem. The security of RSA relies on the hardness of factoring this modulus. As a consequence of our analysis, two variants of Fermat's approach emerge. We also present a comparison between the two methods' effective regions. Though our study does not yield a new state-of-the-art algorithm for integer factorization, we believe that it reveals some interesting observations that are open for further analysis.
Approaching the ideal elastic limit of metallic glasses
Tian, Lin; Cheng, Yong-Qiang; Shan, Zhi-Wei; Li, Ju; Cheng-cai WANG; Han, Xiao-dong; Sun, Jun; Ma, Evan
2012-01-01
The ideal elastic limit is the upper bound to the stress and elastic strain a material can withstand. This intrinsic property has been widely studied for crystalline metals, both theoretically and experimentally. For metallic glasses, however, the ideal elastic limit remains poorly characterized and understood. Here we show that the elastic strain limit and the corresponding strength of submicron-sized metallic glass specimens are about twice as high as the already impressive elastic limit ob...
无
2010-01-01
The unified solutions are presented for stresses and displacements around a circular tunnel subjected to a hydrostatic stress field.The rock mass is assumed to be elastic-brittle-plastic and governed by the Unified Strength Theory.The displacements are obtained accounting for three different definitions for elastic strains and different Young’s modulus in the plastic zone.The unified solutions obtained in this paper are especially versatile in reflecting the intermediate principal stress effect to different extents for different materials.The conventional solutions,based on the Mohr-Coulomb failure criterion and the Generalized Twin Shear Stress yield criterion,are special cases of the present unified solutions.The new unified solutions can compare with those computed by the latest generalized Hoek-Brown failure criterion.The results obtained demonstrate the importance of the intermediate principal stress influence for the stresses and displacements analysis.The effects of different definitions for elastic strains and different Young’s modulus in the plastic zone on the displacements are significant.
ANALYTICAL SOLUTION FOR BENDING BEAM SUBJECT TO LATERAL FORCE WITH DIFFERENT MODULUS
姚文娟; 叶志明
2004-01-01
A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.
XU Dong-xuan; CHENG Xiang-rong; ZHANG Yu-feng; WANG Jun; CHENG Han-ting
2003-01-01
Denture base made from acrylic resin (polymethyl methacrylate,PMMA) was reinforced by different contents of ultrahigh-modulus polyethylene fiber (UHMPEF).The flexural strength of the denture base was tested,the failure modes and microstructures were investigated with a scanning electron microscope(SEM).The results indicate that 3.5wt%UHMPEF increased the ultimate flexural strength of the denture base.
STRENGTH AND RELATED PROPERTIES OF WHITE FIR,
WOOD, PHYSICAL PROPERTIES, TREES, STRENGTH (PHYSIOLOGY), GROWTH(PHYSIOLOGY), MECHANICAL PROPERTIES, ELASTIC PROPERTIES, HARDNESS, TOUGHNESS, SHEAR STRESSES, COMPRESSIVE PROPERTIES, TABLES(DATA), CALIFORNIA, OREGON.
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
Structural relaxation monitored by instantaneous shear modulus
Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil
1998-01-01
This paper reports on aging of the silicone oil MS704 for sudden changes of temperature from 210.5 to 209.0 K and from 207.5 to 209.0 K studied by continuously monitoring the instantaneous shear modulus G [infinity]. The results are interpreted within the Tool-Narayanaswamy formalism with a reduc...
Loading Rate for Modulus of Rupture Test
QUMing; ZHANGYong－fang
1996-01-01
Relationship among load rate,strain rate and stress rate for modulus of ruptue test,the way of applying load with stress rate using both hydraulic compression testing machine and nechanical compression testing machine have been described.The test results are identical with selected strain rate loading and stress rate loading.
Elasticity anlysis of texture for titanium and niobium plate
Hongsum, C.; Shiwu, Y.; Lin, M.; Lubin, H.; Shuqian, W. (Northwest Institute for Nonferrous Metal Research, Shaanxi (China))
1991-04-01
The new texture analysis method was proposed as substitute for X-ray diffractometry with which the essential information on texture can be estimated through elastic anisotropic patterns of crystals derived from measured elastic modulus distributions on plates. Anisotropy expressions of single crystals such as an anisotropy stereogram of monocrystal (ASC) and anisotropy diagram of crystallographic plane (ADCP) were used as a fundamental reference to analyze texture through the new method. The anisotropy of plates was numerically characterized with polar coordinates diagrams, Fourier series and characteristic parameters. Some information on texture could be estimated from Young {prime} s modulus distributions on plates, and the method was, in particular, efficient in the case where the elastic anisotropy of monocrystals is large. The method was also superior in estimating texture components qualitatively from the Young {prime} s modulus distribution. Analytical results of texture for Ti and Nb plate specimens well agreed with those obtained through X-ray diffractometry. 7 refs., 10 figs., 2 tabs.
Said, Ghada; Vray, Didier; Liebgott, Herve; Brusseau, Elisabeth; Basset, Olivier
2005-04-01
Strain imaging is useful for visualizing information related to tissue stiffness. However, strain is a parameter that depends on the boundary conditions, tissue connectivity and geometry. As a result, tissue hardness cannot be quantitatively evaluated from the strain distribution. Therefore, reconstruction of the elastic modulus (Young's Modulus) distribution has been investigated for quantitative evaluation of tissue hardness. A method has been recently proposed [NITT 00] to calculate locally the Young's modulus of tissues from the estimations of 3D displacement field within the medium. This approach requires a specific annular ultrasonic probe. The aim of our work, based on Nitta's approach, is to build a Young modulus mapping using clinical ultrasonic equipment. Results from finite-element simulations and a physical phantom are presented.
Elastic properties of superconductors and materials with weakly correlated spins
Binek, Christian
2017-01-01
It is shown that in the ergodic regime, the temperature dependence of Young?s modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young?s modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Const...
Effect of dynamic visco-elasticity on vertical and torsional vibrations of a half-space
Prakash Chandra Pal
2001-08-01
By expressing the dynamic visco-elastic characteristic of a material in terms of the complex shear modulus, the vertical vibrations of a visco-elastic half-space as well as that of a mass in visco-elastic half-space are considered here. Torsional vibrations of a visco-elastic half-space is also considered. Numerical results are derived for two cases and shown graphically.
Ibrahim Tunde Yusuf
2016-06-01
Full Text Available This paper presents the determination of an appropriate compressive–flexural strength model of palm kernel shell concrete (PKSC. The direct and indirect Ultrasonic Pulse Velocity (UPV measurements, with respective to mechanical properties of compression (cube and flexural (slab elements, of concrete at various mixes and water/cement (w/c ratios were made. A total of 225 cubes and 15 slabs of the PKSC were casted for nominal mixes of 1:1:1, 1:1:2 and 1:11/2:3, and varying (w/c ratios of 0.3–0.7 at interval of 0.1. The test elements were cured for 3, 7, 14, 28, 56 and 91 days in water at laboratory temperature. The elements were then subjected to nondestructive testing using the Pundit apparatus for determination of direct ultrasonic wave velocity and the elastic modulus at the various ages. The cubes were subsequently subjected to destructive compressive test. The 28-day compressive strength–UPV and strength–age statistical relationships at w/c ratio of 0.5 determined from the velocity–strength data set in linear, power, logarithm, exponential and polynomial trend forms. The polynomial trend line in the form y = aln(x at R2 value of 0.989, found appropriate, among others, was proposed for the formulation of the compressive strength–flexural strength model of PKSC at w/c ratio of 0.5.
First-principles study of structural, elastic and thermodynamic properties of AuIn2
Wu, Hai Ying; Chen, Ya Hong; Deng, Chen Rong; Yin, Peng Fei; Cao, Hong
2015-12-01
The structural, elastic and thermodynamic properties of AuIn2 in the CaF2 structure under pressure have been investigated using ab initio plane wave pseudopotential method within the generalized gradient approximation. The calculated structural parameters and equation of state are in excellent agreement with the available experimental and theoretical results. The elastic constants of AuIn2 at ambient condition are calculated, and the bulk modulus obtained from these calculated elastic constants agrees well with the experimental data. The pressure dependence of the elastic constants, bulk modulus, shear modulus and Young’s modulus has also been investigated. The Debye temperature presents a slight increase with pressure. AuIn2 exhibits ductibility and low hardness characteristics, the ductibility increases while the hardness decreases with the increasing of pressure. The pressure effect on the heat capacity and thermal expansion coefficient for AuIn2 is much larger.
Coupling of elasticity to capillarity in soft aerated materials.
Ducloué, Lucie; Pitois, Olivier; Goyon, Julie; Chateau, Xavier; Ovarlez, Guillaume
2014-07-28
We study the elastic properties of soft solids containing air bubbles. Contrary to standard porous materials, the softness of the matrix allows for a coupling of the matrix elasticity to surface tension forces acting on the bubble surface. Thanks to appropriate experiments on model systems, we demonstrate how the elastic response of the soft porous solid is governed by two dimensionless parameters: the gas volume fraction and a capillary number comparing the elasticity of the matrix with the stiffness of the bubbles. Furthermore, we show that our experimental results are accurately predicted by computations of the shear modulus through a micro-mechanical approach.
Some Modulus and Normal Structure in Banach Space
Zhanfei Zuo
2009-01-01
Full Text Available We present some sufficient conditions for which a Banach space X has normal structure in terms of the modulus of U-convexity, modulus of W∗-convexity, and the coefficient R(1,X, which generalized some well-known results. Furthermore the relationship between modulus of convexity, modulus of smoothness, and Gao's constant is considered, meanwhile the exact value of Milman modulus has been obtained for some Banach space.
Strength of tungsten triboride under pressure up to 86 GPa from radial X-ray diffraction
Xiong, Lun, E-mail: xionglun@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Jing, E-mail: liuj@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Bai, Ligang; Lin, Chuanlong [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); He, Duanwei [Institute of Atomic and Molecular Physics, Sichun University, Chengdu 610065 (China); Zhang, Xinxin [State Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, TX 78712 (United States)
2015-02-05
Highlights: • Tungsten triboride (WB{sub 3}) powder synthesized under high pressure–temperature condition shows to be highly crystalline and phase pure. • The complete elastic constant tensor of WB{sub 3} at high pressures up to 90 GPa are firstly calculated from density-functional theory (DFT) based on first principles. • We have investigated strength of WB{sub 3} under nonhydrostatic compression up to 86 GPa. - Abstract: The strength of tungsten triboride (WB{sub 3}) was determined under nonhydrostatic compression up to 86 GPa using an angle-dispersive radial X-ray diffraction technique in a diamond-anvil cell (DAC). Analyze of diffraction data using lattice strain theory indicate that the ratio of differential stress to shear modulus (t/G) changes from 0.004 at ambient conditions to 0.078 at 86 GPa. Together with theoretical results on the high-pressure shear modulus, our results here show that WB{sub 3} under uniaxial compression can support a differential stress of 26 GPa when it starts to yield to the plastic deformation at 40 GPa. The yield strength of WB{sub 3} increases with increasing pressure, reaching a maximum value of 30 GPa at 77 GPa. By comparison, we find that the high-pressure strength of WB{sub 3} is comparable to those of c-BC{sub 2}N, B{sub 6}O, and γ-Si{sub 3}N{sub 4}.
A method to determine Young's modulus of soft gels for cell adhesion
Xiaoling Peng; Jianyong Huang; Lei Qin; Chunyang Xiong; Jing Fang
2009-01-01
A convenient technique is reported in this note for measuring elastic modulus of extremely soft material for cellular adhesion. Specimens of bending cylinder under gravity are used to avoid contact problem between testing device and sample, and a beam model is presented for evaluating the curvatures of gel beams with large elastic deformation. A self-adaptive algorithm is also proposed to search for the best estimation of gels' elastic moduli by comparing the experimental bending curvatures with those computed from the beam model with preestimated moduli. Application to the measurement of the property of polyacrylamide gels indicates that the material compliance varies with the concentrations of bis-acrylamide, and the gels become softer after being immersed in a culture medium for a period of time, no matter to what extent they are polymerized.
Elastic Constants of Na and K from Non-parameter Perturbation Calculation
陈军; 经福谦; 陈栋泉; 张景琳; 段素清
2001-01-01
Combining a linear muffin-tin orbital method, which can be used to calculate the total energy and pressure of solids in a self-consistent manner, with a generalized elastic energy equation, a non-parameter perturbation method has been proposed to compute the elastic constant for cubic metals. The pressure dependence of the shear modulus and bulk modulus forNa and K was calculated. It was found that the computed results agree well with experiments.
A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials
TANG Yi-Zhe; ZHENG Zhi-Jun; XIA Meng-Fen; BAI Yi-Long
2009-01-01
The microstructural variation near surface of nano elastic materials is analyzed based on different potentials.The atomic/molecular mechanism underlying the variation and its effect on elastic modulus are such that the nature of long-range interactions(attractive or repulsive)in the atomic/molecular potentials essentially governs the variation near surface(looser or tighter)and results in two opposite size effects(decreasing or increasing modulus)with decreasing size.
Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock
Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.
2015-12-01
Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.
Caravaca, M A; Miño, J C; Pérez, V J; Casali, R A; Ponce, C A
2009-01-07
In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C(ij) are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C(11), C(22) and C(33) elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2(1)/c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C(44), C(55) and C(66) are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B(0) and its pressure derivatives B'(0). In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO(2) and HfO(2). Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.
Nonlinear elastic response in solid helium: critical velocity or strain?
Day, James; Syshchenko, Oleksandr; Beamish, John
2010-02-19
Torsional oscillator experiments show evidence of mass decoupling in solid 4He. This decoupling is amplitude dependent, suggesting a critical velocity for supersolidity. We observe similar behavior in the elastic shear modulus. By measuring the shear modulus over a wide frequency range, we can distinguish between an amplitude dependence which depends on velocity and one which depends on some other parameter such as displacement. In contrast with the torsional oscillator behavior, the modulus depends on the magnitude of stress, not velocity. We interpret our results in terms of the motion of dislocations which are weakly pinned by 3He impurities but which break away when large stresses are applied.
Elastic Properties of Liquid Surfaces Coated with Colloidal Particles
Edward Bormashenko
2015-01-01
Full Text Available The physical mechanism of elasticity of liquid surfaces coated with colloidal particles is proposed. It is suggested that particles are separated by water clearings and the capillary interaction between them is negligible. The case is treated when the colloidal layer is deformed normally to its surface. The elasticity arises as an interfacial effect. The effective Young modulus of a surface depends on the interfacial tension, equilibrium contact angle, radius of colloidal particles, and their surface density. For the nanometrically scaled particles the line tension becomes essential and has an influence on the effective Young modulus.
Probing hysteretic elasticity in weakly nonlinear materials
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
The Elastic Constants for Wrought Aluminum Alloys
Templin, R L; Hartmann, E C
1945-01-01
There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.
胡勐乾; 周群; 纪忠华; 李亮
2015-01-01
通过利用我国部分核电厂核岛区岩体原位测试获得的动、静模量，对动、静模量之间的关系进行对比研究。结果表明，微风化岩体的动、静模量比值Ed／Es 分布在0.56～3.0之间，中风化岩体的动、静模量比值Ed／Es 分布在1.84～9.32之间。由一元线性回归分析可得动、静模量的关系式，表明动、静模量之间具有较好的相关性。%It was studied the relationship of the dynamic elastic modulus and static modulus using the data getting from in situ testing of rock of island of partial nuclear power plants.The results showed that the ratio of dynamic elastic modulus and static modulus of slightly weathered rock was 0.56 to 3.0, and the ratio of dynamic elastic modulus and static modulus of moderately weathered rock was 1.84 to 9.32.The relationship of the dynamic elastic modulus and static modulus from linear regression analysis indicated that they have a good correlation.
An Improved Singularity Computing Algorithm Based on Wavelet Transform Modulus Maxima Method
ZHAO Jian; XIE Duan; FAN Xun-li
2006-01-01
In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.
Ran, Jiabing; Hu, Jingxiao; Sun, Guanglin; Chen, Si; Jiang, Pei; Shen, Xinyu; Tong, Hua
2016-12-01
Currently, great efforts have been made to enhance the mechanical strength of bone tissue engineering (BTE) scaffolds, which are composed of biopolymeric matrices and inorganic nano-fillers. But the tunability of mechanical strength in a wide range for BTE scaffolds has seldom been investigated in spite of the great importance of this performance. In this work, a chitosan-tussah silk fibroin/hydroxyapatite (CS-TSF/HAp) hydrogel was synthesized by using a novel in situ precipitation method. Through in situ inducing the conformation transition of TSF in the CS-TSF/HAp hydrogel, which could be monitored by XRD, FT-IR, TGA, and DTA, the elastic modulus and fracture strength of the final CS-TSF/HAp composite could be tailored in a wide range without changing its composition, morphology, roughness, and crystal structures. The elastic modulus of the CS-TSF/HAp composite ranged from ∼250 to ∼400MPa while its fracture strength ranged from ∼45 to ∼100MPa. In order to clarify the rationale behind this process, a speculative explanation was provided. In vitro cell culture indicated that MC3T3-E1 cells cultured on the CS-TSF/HAp composite had positive adhesion, proliferation, and differentiation potential. We believed that the CS-TSF/HAp composite could be used as an ideal scaffold platform for cell culture and implantation of bone reconstruction.
Improvement of Sub grade Strength by Partial Replacement of M-Sand
Mr. Suvid Raj Jain K M
2016-07-01
Full Text Available Pavements are conglomeration of materials. These materials, their associated properties, and their interactions determine the properties of the resultant pavement. The performance of pavements depends to a large extent on the strength and stiffness of the subgrade. Among the various methods of determining the strength of sub grade the CBR test is very important. California Bearing Ratio (CBR is a commonly used indirect method to assess the stiffness modulus and shear strength of sub grade in pavement design work. In many situations, soils in natural state do not present adequate geotechnical properties to be used as road service layers. In order to improve their geotechnical parameters to meet the requirements of technical specifications of construction industry, soil stabilization techniques are normally emphasized. This study aims to improve sub grade CBR value by using Manufactured sand(including M-sand <150 microns which is not used for making concrete at varying percentages respectively and to find out the optimum percentage of M-sand beyond which CBR value of soil decreases. From the experimental results optimum percentage of M-sand is found to be 45% to attain maximum CBR. After getting the CBR values for different percentage of addition, analysis is carried out and relationships are established between CBR and all the fundamental properties of soil to overcome one of the limitations of CBR method. In order to determine which properties of soil has more or less influence on CBR mathematical concepts of linear regression analysis, Power series, Exponential Series, Linear series are applied to establish the relationship between CBR and properties of the soil. Here experimental CBR is considered as dependent variable and other properties of soil are considered as independent variables. In order to test the validation of the model, the chi-squared test, F-test, t-test, evaluation fit test are carried out. By keeping factors such as Present
Strength study of carbon dioxide under high pressures
Kaci, L.; Shieh, S. R.; Kiefer, B.
2011-12-01
Carbon dioxide (CO2) is one of the greenhouse gases that can be readily found in the Earth's atmosphere and possibly inside the Earth. The strength and elasticity study of carbon dioxide (CO2) under high pressures is important to understand the rheological behavior of CO2 that may be relevant to the CO2 storage issue within the Earth and also the evolution of other planets. Quantitative measurements of the strength of CO2 were achieved in a diamond anvil cell using x-ray diffraction in a radial geometry. CO2 sample was cryogenically loaded into a beryllium gasket and a thin foil of gold about 20 x 20 um2 was placed at the center of the gasket hole to serve as a pressure standard. The x-ray diffraction data were collected at beamline X17C of National Synchrotron Light Source, Brookhaven National Laboratory. We have determined the strength using three different methods. We analyze the peak broadening measurements in the axial direction, peak shifts in radial direction associated with lattice strains theory and also we measured pressure gradient of the CO2 under stress using ruby florescence method. Our results show that the ratios of differential stress to shear modulus are ranging from 0.006(5) to 0.04(18), exhibiting a positive slope within the applied pressure to 12 GPa. The differential stress was calculated as 0.029(3)-0.224(28) GPa, with the inputs of shear module from theoretical calculations. Our differential stress values are close to those of argon data at low pressures. In addition, our results show no pressure gradient of CO2 below 20 GPa. This fact suggests that up to 20GPa the differential stress supported by CO2 is mainly arising from elastic deformation. This is also supported by the linear positive trend of differential strain demonstrating the elastic regime up to 12 GPa.
Microscopic origin of volume modulus inflation
Cicoli, Michele [ICTP, Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Pedro, Francisco Gil [Departamento de Fisica Teórica UAM and Instituto de Fisica Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
2015-12-21
High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.
Microscopic Origin of Volume Modulus Inflation
Cicoli, Michele; Pedro, Francisco Gil
2015-01-01
High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.
Fibonacci difference sequence spaces for modulus functions
Kuldip Raj
2015-05-01
Full Text Available In the present paper we introduce Fibonacci difference sequence spaces l(F, Ƒ, p, u and l_∞(F, Ƒ, p, u by using a sequence of modulus functions and a new band matrix F. We also make an effort to study some inclusion relations, topological and geometric properties of these spaces. Furthermore, the alpha, beta, gamma duals and matrix transformation of the space l(F, Ƒ, p, u are determined.
Shear modulus of neutron star crust
Baiko, D A
2011-01-01
Shear modulus of solid neutron star crust is calculated by thermodynamic perturbation theory taking into account ion motion. At given density the crust is modelled as a body-centered cubic Coulomb crystal of fully ionized atomic nuclei of one type with the uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative $\\propto T$ contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behavior is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for li...
High-pressure elastic properties of cubic Ir2P from ab initio calculations
Sun, Xiao-Wei; Bioud, Nadhira; Fu, Zhi-Jian; Wei, Xiao-Ping; Song, Ting; Li, Zheng-Wei
2016-10-01
A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C11, C12 and C44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time.
STM verification of the reduction of the Young's modulus of CdS nanoparticles at smaller sizes
Hazarika, A.; Peretz, E.; Dikovsky, V.; Santra, P. K.; Shneck, R. Z.; Sarma, D. D.; Manassen, Y.
2014-12-01
We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E ~ 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response.
Elastic response of filamentous networks with compliant crosslinks.
Sharma, A; Sheinman, M; Heidemann, K M; MacKintosh, F C
2013-11-01
Experiments have shown that elasticity of disordered filamentous networks with compliant crosslinks is very different from networks with rigid crosslinks. Here, we model and analyze filamentous networks as a collection of randomly oriented rigid filaments connected to each other by flexible crosslinks that are modeled as wormlike chains. For relatively large extensions we allow for enthalpic stretching of crosslink backbones. We show that for sufficiently high crosslink density, the network linear elastic response is affine on the scale of the filaments' length. The nonlinear regime can become highly nonaffine and is characterized by a divergence of the elastic modulus at finite strain. In contrast to the prior predictions, we do not find an asymptotic regime in which the differential elastic modulus scales linearly with the stress, although an approximate linear dependence can be seen in a transition from entropic to enthalpic regimes. We discuss our results in light of recent experiments.
Elastic response of filamentous networks with compliant crosslinks
Sharma, A; Heidemann, K M; MacKintosh, F C
2013-01-01
Experiments have shown that elasticity of disordered filamentous networks with compliant crosslinks is very different from networks with rigid crosslinks. Here, we model and analyze filamentous networks as a collection of randomly oriented rigid filaments connected to each other by flexible crosslinks that are modeled as worm-like chains. For relatively large extensions we allow for enthalpic stretching of crosslinks' backbones. We show that for sufficiently high crosslink density, the network linear elastic response is affine on the scale of the filaments' length. The nonlinear regime can become highly nonaffine and is characterized by a divergence of the elastic modulus at finite strain. In contrast to the prior predictions, we do not find an asymptotic regime in which the differential elastic modulus scales linearly with the stress, although an approximate linear dependence can be seen in a transition from entropic to enthalpic regimes. We discuss our results in light of the recent experiments.
Model-Based Reconstructive Elasticity Imaging Using Ultrasound
Salavat R. Aglyamov
2007-01-01
Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.
Nonlinear surface waves in soft, weakly compressible elastic media.
Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F
2007-04-01
Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.
Mendapatkan Young’s Modulus Fasa Cu6Sn5 dengan Teknik Ultrasonik dan Teori Komposit
Ellyza Herda
2015-09-01
Full Text Available The purpose of this study is to obtain the Young’s Modulus (elastic property of Cu6Sn5 phase by using ultrasonic technique and composite theory. Alloy with the following composition (weight percent = wt%: 15.00 % Cu and 85 % Sn was fabricated by casting method. Phases identification were determined by using X-ray Diffraction (XRD, Differential Scanning Calorimeter (DSC, and Scanning Electron Microscope (SEM + EDAX (Energy Dispersive X-ray Analysis. A non destructive technique is preferable evaluation method for evaluation the elastic property of material, that is by utilizing longitudinal and transversal waves velocity employed by ultrasonic pulse-echo method. X-ray diffraction, DSC, and SEM+EDAX analysis indicate that the fabricated Cu-85%Sn alloy produce a composite in situ material which consist of Sn as a matrix (0.67 volume fraction and Cu6Sn5 phase as a reinforcing material (0.33 volume fraction. The Young’s Modulus value of Cu-85%Sn is 67.7 GPa. This value is base on the calculating result on the longitudinal and transversal waves velocity. In order to obtain the Young’s Modulus of reinforcement (Cu6Sn5 phase the composite theory was applied to this material (Cu-85%Sn, and the resulted value is 103.8 GPa.
A Model of Temperature-Dependent Young's Modulus for Ultrahigh Temperature Ceramics
Weiguo Li
2011-01-01
Full Text Available Based on the different sensitivities of material properties to temperature between ultrahigh temperature ceramics (UHTCs and traditional ceramics, the original empirical formula of temperature-dependent Young's modulus of ceramic materials is unable to describe the temperature dependence of Young's modulus of UHTCs which are used as thermal protection materials. In this paper, a characterization applied to Young's modulus of UHTC materials under high temperature which is revised from the original empirical formula is established. The applicable temperature range of the characterization extends to the higher temperature zone. This study will provide a basis for the characterization for strength and fracture toughness of UHTC materials and provide theoretical bases and technical reserves for the UHTC materials' design and application in the field of spacecraft.
Mohammad Rezaei; Mostafa Asadizadeh; Abbas Majdi; Mohammad Farouq Hossaini
2015-01-01
Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc-tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weathering and overburden height, respectively.
In vitro evaluation of flexural strength of different brands of expansion screws
Kádna Fernanda Mendes de Oliveira
2012-06-01
Full Text Available OBJECTIVE: The objective of this study was to compare the flexural strength of the stems of three maxillary expanders screws of Morelli, Forestadent and Dentaurum brands. METHODS: The sample consisted of nine expander screws (totalizing of 36 stems, three from each brand, all stainless steel and 12 mm of expansion capacity. The stems of the expander screws were cut with cutting pliers close to the weld region with screw body, then fixed in a universal testing machine Instron 4411 for tests of bending resistance of three points. The ultimate strength in kgF exerted by the machine to bend the stem of the 5 mm screw was recorded and the flexural strength was calculated using a mathematical formula. During the flexural strength test it was verified the modulus of elasticity of the stems by means of Bluehill 2 software. The flexural strength data were subjected to ANOVA with one criterion and Tukey's test, with significance level of 5%. RESULTS: Forestadent screw brand showed the greatest bending strength, significantly higher than Dentaurum. Morelli showed the lowest resistance. CONCLUSION: The flexural strength of the screws varied according to the brand. Forestadent screw showed the greatest resistance and Morelli the lowest. All the three screws were found adequate for use in procedures for rapid maxillary expansion.