WorldWideScience

Sample records for strength concrete part

  1. The maximum percentage of fly ash to replace part of original Portland cement (OPC) in producing high strength concrete

    Science.gov (United States)

    Mallisa, Harun; Turuallo, Gidion

    2017-11-01

    This research investigates the maximum percent of fly ash to replace part of Orginal Portland Cement (OPC) in producing high strength concrete. Many researchers have found that the incorporation of industrial by-products such as fly ash as in producing concrete can improve properties in both fresh and hardened state of concrete. The water-binder ratio was used 0.30. The used sand was medium sand with the maximum size of coarse aggregate was 20 mm. The cement was Type I, which was Bosowa Cement produced by PT Bosowa. The percentages of fly ash to the total of a binder, which were used in this research, were 0, 10, 15, 20, 25 and 30%; while the super platicizer used was typed Naptha 511P. The results showed that the replacement cement up to 25 % of the total weight of binder resulted compressive strength higher than the minimum strength at one day of high-strength concrete.

  2. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c compressive strength at later ages (from 3 days after casting and onwards...... the compressive strength....

  3. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  4. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  5. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  6. Ternary blended cement concrete. Part I: early age properties and mechanical strength

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-12-01

    Full Text Available While there is ample information in the literature on the mechanical performance and durability of concrete made with either limestone or granulated blast furnace slag,very little is known about the effect of the combined action of these two additions on concrete properties. The present paper evaluates the early stage properties and mechanical strength of binary and ternary cement concrete containing up to 18% limestone and 20% granulated blast furnace slag. The results show that the use of ternary cements has no substantial effect on concrete setting time, although it does reduce bleeding and enhance mechanical strength with respect to unadditioned Portland and/or binary cement concrete.En la bibliografía existe abundante información acerca del comportamiento mecánico y durable de hormigones elaborados con la incorporación individual de caliza y de escoria granulada de alto horno. Sin embargo, la modificación de las propiedades por la acción conjunta de las mismas es prácticamente desconocida. En este trabajo se evalúan las propiedades en estado fresco y el comportamiento mecánico de hormigones elaborados con cementos compuestos binarios y ternarios conteniendo hasta 18% de caliza y 20% de escoria granulada de alto horno. Los resultados indican que la utilización de cementos ternarios en hormigones no modifican sustancialmente el tiempo de fraguado, disminuyen la exudación y presentan un mejor comportamiento mecánico que los hormigones elaborados con cemento Portland sin adición y/o binarios.

  7. Using Cementitious Materials Such as Fly Ash to Replace a Part of Cement in Producing High Strength Concrete in Hot Weather

    Science.gov (United States)

    Turuallo, Gidion; Mallisa, Harun

    2018-03-01

    The use of waste materials in concrete gave many advantages to prove the properties of concrete such as its workability, strength and durability; as well to support sustaianable development programs. Fly ash was a waste material produced from coal combustion. This research was conducted to find out the effect of fly ash as a part replacement of cement to produce high strength concrete. The fly ash, which was used in this research, was taken from PLTU Mpanau Palu, Central Sulawesi. The water-binder ratio used in this research was 0.3 selected from trial mixes done before. The results of this research showed that the strength of fly ash concretes were higher than concrete with PCC only. The replacement of cement with fly ash concrete could be up to 20% to produce high strength concrete.

  8. On the Processing of Spalling Experiments. Part I: Identification of the Dynamic Tensile Strength of Concrete

    Science.gov (United States)

    Forquin, P.; Lukić, B.

    2017-11-01

    The spalling technique based on the use of a single Hopkinson bar put in contact with the tested sample has been widely adopted as a reliable method for obtaining the tensile response of concrete and rock-like materials at strain rates up-to 200 s- 1. However, the traditional processing method, based on the use of Novikov acoustic approach and the rear face velocity measurement, remains quite questionable due to strong approximations of this data processing method. Recently a new technique for deriving cross-sectional stress fields of a spalling sample filmed with an ultra-high speed camera and based on using the full field measurements and the virtual fields method (VFM) was proposed. In the present work, this topic is perused by performing several spalling tests on ordinary concrete at high acquisition speed of 1Mfps to accurately measure the tensile strength, Young's modulus, strain-rate at failure and stress-strain response of concrete at high strain-rate. The stress-strain curves contain more measurement points for a more reliable identification. The observed tensile stiffness is up-to 50% lower than the initial compressive stiffness and the obtained peak stress was about 20% lower than the one obtained by applying the Novikov method. In order to support this claim, numerical simulations were performed to show that the change of stiffness between compression and tension highly affects the rear-face velocity profile. This further suggests that the processing based only on the velocity "pullback" is quite sensitive and can produce an overestimate of the tensile strength in concrete and rock-like materials.

  9. Experimental study on the effect of ambient temperature on ready-mix concrete strength. Part 2: Industrial implementation

    Directory of Open Access Journals (Sweden)

    Puig Montraveta, J.

    2010-06-01

    Full Text Available This paper is the second part of an experimental study about the effect of environmental temperature on the concrete performance, from an industrial perspective. An earlier article on its effect on aggregate, paste, mortar and concrete workability and mechanical properties reported that high temperature had a clearly adverse impact on strength, which can generally be offset with overdoses of both cement and water to maintain the original water/cement ratio. In this second part of the paper the basis of a methodological formulation is presented, with the purpose of carry out the optimization of the overdosage of cement in concrete in hot climates, in order to be industrially implemented in ready mix concrete plants. This proposal has been successfully applied in some ready mix concrete plants of the company Promotora Mediterránea 2, S.A. (PROMSA, considering that the cement content (overdosage in concrete can be optimized without any adverse effect in its performance, reason why it is possible to reduce the production costs of concrete without reducing its quality.

    El presente artículo constituye la segunda parte de un estudio experimental sobre la influencia de la temperatura ambiental sobre las prestaciones del hormigón, desde una perspectiva industrial. En la primera, se estudió el efecto sobre las propiedades de trabajabilidad y mecánicas, en áridos, pasta, mortero y hormigones, detectando un claro efecto negativo de la temperatura elevada sobre la resistencia, que se suele solucionarcon una sobredosificación en cemento y agua, para mantenerla relación agua/cemento original.En esta segunda parte del artículo, se presentan las bases de una formulación metodológica para llevar a cabo la optimización de la sobredosificación de cemento en el hormigón en climas cálidos, para ser implementada industrialmente en plantas de hormigón preparado. Dicha propuesta se ha aplicado con éxito a escala industrial en plantas de producci

  10. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  11. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  12. Unexpectedly low tensile strength in concrete structures

    NARCIS (Netherlands)

    Siemes, A.J.M.; Han, N.; Visser, J.H.M.

    2002-01-01

    During an extensive investigation of some 25 concrete bridges and other structures suffering from alkali-silica reaction it has been found that the uniaxial tensile strength of the concrete was extremely low in relation to both the compressive strength and the splitting tensile strength. It is known

  13. Electrokinetic Strength Enhancement of Concrete

    Science.gov (United States)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  14. DETERMINATION OF FIELD STRENGTH OF CONCRETE FROM ...

    African Journals Online (AJOL)

    A maturity function valid for the Ethiopian cement and its equivalent is derived from test results of strength development of concrete in relation to temperature and time. Making use of the maturity function so obtained, the time. ·for the development of strength of concrete under prevailing field temperature is converted to an.

  15. Properties of Low Strength Concrete made with Recycled Concrete ...

    African Journals Online (AJOL)

    Conventional concrete aggregate consists of sand and various sizes of stones. In recent years, there has been a growing interest in substituting conventional aggregates with recycled materials. The present investigation has been carried out to study the effect of fly ash on the mechanical properties of low strength concrete ...

  16. The use of maturity method in estimating concrete strength

    International Nuclear Information System (INIS)

    Salama, A.E.; Abd El-Baky, S.M.; Ali, E.E.; Ghanem, G.M.

    2005-01-01

    Prediction of the early age strength of concrete is essential for modernized concrete for construction as well as for manufacturing of structural parts. Safe and economic scheduling of such critical operations as form removal and re shoring, application of post-tensioning or other mechanical treatment, and in process transportation and rapid delivery of products all should be based upon a good grasp of the strength development of the concrete in use. For many years, it has been proposed that the strength of concrete can be related to a simple mathematical function of time and temperature so that strength could be assessed by calculation without mechanical testing. Such functions are used to compute what is called the m aturity o f concrete, and the computed value is believed to obtain a correlation with the strength of concrete. With its simplicity and low cost, the application of maturity concept as in situ testing method has received wide attention and found its use in engineering practice. This research work investigates the use of M aturity method' in estimating the concrete strength. An experimental program is designed to estimate the concrete strength by using the maturity method. Using different concrete mixes, with available local materials. Ordinary Portland Cement, crushed stone, silica fume, fly ash and admixtures with different contents are used . All the specimens were exposed to different curing temperatures (10, 25 and 40 degree C), in order to get a simplified expression of maturity that fits in with the influence of temperature. Mix designs and charts obtained from this research can be used as guide information for estimating concrete strength by using the maturity method

  17. Unexpectedly low tensile strength in concrete structures

    OpenAIRE

    Siemes, A.J.M.; Han, N.; Visser, J.H.M.

    2002-01-01

    During an extensive investigation of some 25 concrete bridges and other structures suffering from alkali-silica reaction it has been found that the uniaxial tensile strength of the concrete was extremely low in relation to both the compressive strength and the splitting tensile strength. It is known that concrete with damage due to ASR has reduced mechanical properties. The literature indicates that with an expansion of 1 0/00 a reduction of 30 % may occur. The reduction found in some of the ...

  18. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  19. A new study of Brazilian concrete strength conformance

    Directory of Open Access Journals (Sweden)

    W.C. Santiago

    Full Text Available ABSTRACT This paper presents a new evaluation of the strength compliance of concretes produced in Brazil. It is based on experimental results of over twenty-seven thousand concrete samples from different parts of the country. Results show that a significant part of Brazilian concrete do not reach the characteristic strength (fck specified in design, and the percentage of nonconforming samples tend to be higher than 5%. This study also reveals the concrete produced in the South and Midwest regions have less variability than the ones produced in the other regions of the country. These results emphasize the importance of a rigorous control in manufacturing and reception of concretes in order to reduce the nonconforming cases.

  20. Strength properties of concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.; Burrow, R.C.; Debbas, E.B.

    1979-01-01

    A study is presented concerning the compressive strength, modulus of elasticity, and stress-strain relationships of concrete at elevated temperatures. A review of published results provides information for the development of upper and lower bound relationships for compressive strength and the modulus of elasticity and establishes exposure conditions for a lower bound thermal response. The relationships developed from the literature review are confirmed by the results of a verification test program. The strength and elasticity relationships provide a basis for the development of design stress-strain curves for concrete exposed to elevated temperatures

  1. Engineering Solution for the Uniform Strength of Partially Cracked Concrete

    DEFF Research Database (Denmark)

    Hansen, Elin A.; Hansen, Will; Brincker, Rune

    2005-01-01

    part of the stress-crack width relationship, controls the failure load of a partially cracked concrete slab. A unique master curve between slab strength and crack depth was developed using the results from the numerical analysis. The master curve was verified with results from laboratory testing......Significant computational resources are required to predict the remaining strength from numerical fracture analysis of a jointed plain concrete pavement that contains a partial depth crack. It is, therefore, advantageous when the failure strength can be adequately predicted with an engineering...

  2. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  3. Residual strength evaluation of concrete structural components ...

    Indian Academy of Sciences (India)

    to failure. It is of interest to characterize the material behaviour subjected to such loading and study the crack propagation, remaining life and residual strength resulting from such loading. The current approaches used to evaluate fatigue performance of concrete members are mainly empirical. Fatigue equations based on ...

  4. Residual strength evaluation of concrete structural components ...

    Indian Academy of Sciences (India)

    This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension ...

  5. High early strength latex modified concrete overlay.

    Science.gov (United States)

    1988-01-01

    This report describes the condition of the first high early strength latex modified concrete (LMC-HE) overlay to be constructed for the Virginia Department of Transportation. The overlay was prepared with type III cement and with more cement and less...

  6. Estimation of Compressive Strength of High Strength Concrete Using Non-Destructive Technique and Concrete Core Strength

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2017-12-01

    Full Text Available Estimating the compressive strength of high strength concrete (HSC is an essential investigation for the maintenance of nuclear power plant (NPP structures. This study intends to evaluate the compressive strength of HSC using two approaches: non-destructive tests and concrete core strength. For non-destructive tests, samples of HSC were mixed to a specified design strength of 40, 60 and 100 MPa. Based on a dual regression relation between ultrasonic pulse velocity (UPV and rebound hammer (RH measurements, an estimation expression is developed. In comparison to previously published estimation equations, the equation proposed in this study shows the highest accuracy and the lowest root mean square error (RMSE. For the estimation of compressive strength using concrete core specimens, three different concrete core diameters were examined: 30, 50, and 100 mm. Based on 61 measured compressive strengths of core specimens, a simple strength correction factor is investigated. The compressive strength of a concrete core specimen decreases as the core diameter reduces. Such a relation is associated with the internal damage of concrete cores and the degree of coarse aggregate within the core diameter from the extracting process of the cores. The strength estimation expressions was formulated using the non-destructive technique and the core strength estimation can be updated with further test results and utilized for the maintenance of NPP.

  7. Predictive equations for compressive strength of concrete based on ...

    African Journals Online (AJOL)

    The compressive strength of concrete is assessed to ensure uniformity of the placed concrete and adequacy of the strength. Non-destructive test (NDT) techniques of ultrasonic pulse velocity and Schmidt rebound hammer tests are commonly used to estimate concrete strength, but the applicability is dependent on ...

  8. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  9. Compressive strength of marine material mixed concrete

    Science.gov (United States)

    Adnan; Parung, H.; Tjaronge, M. W.; Djamaluddin, R.

    2017-11-01

    Many cement factories have been incorporated fly ash with clinker cement to produce blended cement. PCC is a type of blended cement incorporated fly ash that produced in Indonesia cement factories. To promote the sustainable development in the remote islands this present paper attempted to study the suitability of sea water, marine sand that available abundantly surround the remote island with Portland Composite Cement (PCC) and crushed river stone to produce concrete. Slump test was conducted to evaluate the workability of fresh concrete and also compressive strength with stress-strain relationship was carried out to evaluate the hardened concrete that cured with two curing condition (e.g. sea water curing, and tap water-wet burlap curing). Test result indicated that fresh concrete had proper workability and all hardened specimens appeared a good compaction result. Compressive strength of specimens cured which sea water was higher than the specimens which cured by tap water-wet burlap where stress-strain behavior of specimens made with sea water, marine sand, and PCC had similar behavior with specimens which made with PCC and tap water.

  10. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  11. Strength Properties of Processed Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Sivakumar Anandan

    2015-07-01

    Full Text Available The present paper reports on the mechanical treatment of fly ash for improving the delayed reactivity of fly ash with the hydration product of cement. Grinding of fly ash was carried out in a ball mill for different time durations and processing time was optimized for maximum fineness. Concrete mixes were prepared using various proportions of processed and unprocessed fly ash replacement in cement (25% and 50%. The influence of steel fiber addition on the mechanical properties of the concrete was studied for different curing periods. The test results on pozzolanic activity and lime reactivity indicate that the processed fly ash exhibited a higher strength gain than the unprocessed fly ash, with a maximum increase in compressive strength of up to 12%. Improved pozzolanic properties were noticed due to the increase in fineness of the fly ash particles.

  12. Numerical Model of High Strength Concrete

    Science.gov (United States)

    Wang, R. Z.; Wang, C. Y.; Lin, Y. L.

    2018-03-01

    The purpose of this paper is to present a three-dimensional constitutive model based on the concept of equivalent uniaxial strain. closed Menetrey-Willam (CMW) failure surfaces which combined with Menetrey-Willam meridian and the cap model are introduced in this paper. Saenz stress-strain model is applied and adjusted by the ultimate strength parameters from CMW failure surface to reflect the latest stress or strain condition. The high strength concrete (HSC) under tri-axial non-proportional loading is considered and the model in this paper performed a good prediction.

  13. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Directory of Open Access Journals (Sweden)

    Musorina Tatiana

    2018-01-01

    Full Text Available High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic – thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  14. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  15. Influence of steel fibres on the blast response of normal-strength and high-strength reinforced concrete columns

    Science.gov (United States)

    Hammoud, A.; Aoude, H.

    2017-09-01

    This paper examines the influence of steel fibres on the blast performance of normal-strength concrete and high-strength concrete columns. As part of the study, four normal-strength and high-strength concrete columns built with and without steel fibres are tested under simulated blast loads using the shock-tube facility at the University of Ottawa. The specimens include two columns built with plain concrete and two columns built with steel fibre-reinforced concrete. The results show that the addition of steel fibres in reinforced concrete columns leads to important enhancements in blast performance, with improved control of mid-span displacements at equivalent blasts and increased damage tolerance.

  16. Permeability, porosity and compressive strength of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Valcuende, M.O.

    2005-12-01

    Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.

    En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones

  17. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    parametric studies by varying the volume fraction of steel fibres. Keywords. Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete is a special type of concrete which is characterized by a low water- binder ratio, high quality pozzolanic material, and without ...

  18. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    OpenAIRE

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were...

  19. Evaluation of concrete mechanical strength through porosity

    Directory of Open Access Journals (Sweden)

    Olivares, M.

    2004-03-01

    Full Text Available The increasing on voids or pores in any material - if the rest of characteristics remains equal -always causes a decrease in their mechanical strength since the ratio volume/resistant mass is lower Following all these fact a well known conclusion rises: there is a relationship between compacity/porosity and mechanical strengths. The purpose of this research is to establish a new possible correlation between both concrete properties with independence of the proportions, type of cement, size of grain, age, use. etc. So it can be concluded that the results of this research allow the engineer or architect in charge of a restoration or reparation to determine the compression strength of a concrete element. A first step is to determine the porosity through a rather short number of tests. Subsequently, compression strength will be obtained applying just a mathematical formula.

    El aumento de huecos o poros de cualquier material, lo mismo que en otras circunstancias, redunda siempre en una merma de sus resistencias mecánicas, al haber menor volumen-masa resistente. En consecuencia, puede deducirse, que hay una relación entre la compacidad/porosidad y las resistencias mecánicas. En el presente trabajo se estudia una posible correlación entre ambas propiedades del hormigón con independencia de su dosificación, tipo de cemento, granulometría, edad, uso, etc. Las conclusiones obtenidas en la presente investigación permiten al técnico, encargado de una restauración o rehabilitación, determinar la resistencia a compresión de un elemento de hormigón, una vez hallada, de una forma sencilla, la porosidad de una muestra no muy voluminosa, mediante la aplicación de una simple fórmula matemática.

  20. Influence of additives on flexural strength of concrete

    Directory of Open Access Journals (Sweden)

    Tolmachov Sergii

    2017-01-01

    Full Text Available In earlier studies, the effect of chemical and mineral additives on the compressive strength of concretes was considered, but little attention was paid to the flexural strength of concrete. However, monolithic concretes of transport purpose, including road concretes, operate under conditions of tensile loads, which lead to their destruction. Therefore, it is actual to analyze the effect of superplasticizers, especially carboxylate type, as well as mineral additives and their complexes on the flexural strength of concrete. The article shows the results of studies for determining the influence of a superplasticizer of a carboxylate type, microfiller and fiber on the flexural strength of concrete. The influence of the time for maintaining a concrete mixture on the physical and mechanical properties of concrete is shown. The article shown that the addition of the mineral additive into the concrete mixture leads to an increase of flexural strength to 13 %. The use of an organomineral complex leads to an increase the early flexural strength of concrete to 37 %, and at the age of 28 days - to 20 %. The use of the complex of additives and polypropylene fibers results in an insignificant increase of the flexural strength in comparison with concretes containing only a complex of additives.

  1. Influence of bottom ash of palm oil on compressive strength of concrete

    Science.gov (United States)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  2. Concrete under Impact Loading, Tensile Strength and Bond

    NARCIS (Netherlands)

    Reinhardt, H.W.

    1982-01-01

    Uniaxial impact tensile tests on plain concrete were carried out with the aid of Split Hopkinson Bar equipment with stress rates of up to 60000 N/mm2. s. Various concrete mixes were investigated under. dry and wet conditions. All the concretes showed an increase in strength with increasing stress

  3. Fatigue Strength of Reinforced Concrete Flexural Members | Kuryllo ...

    African Journals Online (AJOL)

    It is well known that reinforced concrete flexural members subjected to cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of concrete and steel are well below the corresponding static strengths. But up till now ...

  4. Strength of masonry blocks made with recycled concrete aggregates

    Science.gov (United States)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  5. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  6. STRENGTH SHRINKAGE AND CREEP OF CONCRETE IN TENSION AND COMPRESSION

    Directory of Open Access Journals (Sweden)

    S A Kristiawan

    2006-01-01

    Full Text Available Strength, shrinkage and creep of concrete in tension and compression have been determined and the relationship between those properties was studied. Direct tensile tests were applied to measure those properties in tension. The relationship of creep in tension and compression was determined based on the measurement of creep at similar stress and similar stress/strength ratio. It is found that concrete deforms more in tension than in compression. Except for concrete with a higher water/cement ratio, the use of pulverised fuel ash, ground granulated blast furnace slag, superplasticizer and shrinkage reducing admixture has no effect on strength. However, they affect creep and shrinkage of concrete.

  7. Shear strength of end slabs of prestressed concrete nuclear reactor vessels

    International Nuclear Information System (INIS)

    Reins, J.D.; Quiros, J.L. Jr.; Schnobrich, W.C.; Sozen, M.A.

    1976-07-01

    The report summarizes the experimental and part of the analytical work carried out in connection with an investigation of the structural strength of prestressed concrete reactor vessels. The project is part of the Prestressed Concrete Reactor Vessel Program of the Oak Ridge National Laboratory sponsored by ERDA. The objective of the current phase of the work is to develop procedures to determine the shear strength of flat end slabs of reactor vessels with penetrations

  8. Effect of Neem Seed Husk Ash on Concrete Strength Properties ...

    African Journals Online (AJOL)

    Neem Seed Husk is a by-product obtained during industrial processing of Neem Seed to extract oil and produce fertilizer. Laboratory tests on Neem seed husk ash (NSHA) mixed with cement were conducted to find its effect on concrete strength and workability. Tests including slump test, compressive strength test, concrete ...

  9. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Keywords. Ultra high strength concrete; panel; drop weight test; impact analysis; ABAQUS. Abstract. This paper presents the results of an investigation carried out on Ultra High Strength Concrete (UHSC) panels subjected to low velocity projectile impact to assess impact resistance. UHSC panel of size 350 × 350 mm and ...

  10. Relationship between the Compressive and Tensile Strength of Recycled Concrete

    International Nuclear Information System (INIS)

    El Dalati, R.; Haddad, S.; Matar, P.; Chehade, F.H

    2011-01-01

    Concrete recycling consists of crushing the concrete provided by demolishing the old constructions, and of using the resulted small pieces as aggregates in the new concrete compositions. The resulted aggregates are called recycled aggregates and the new mix of concrete containing a percentage of recycled aggregates is called recycled concrete. Our previous researches have indicated the optimal percentages of recycled aggregates to be used for different cases of recycled concrete related to the original aggregates nature. All results have shown that the concrete compressive strength is significantly reduced when using recycled aggregates. In order to obtain realistic values of compressive strength, some tests have been carried out by adding water-reducer plasticizer and a specified additional quantity of cement. The results have shown that for a limited range of plasticizer percentage, and a fixed value of additional cement, the compressive strength has reached reasonable value. This paper treats of the effect of using recycled aggregates on the tensile strength of concrete, where concrete results from the special composition defined by our previous work. The aim is to determine the relationship between the compressive and tensile strength of recycled concrete. (author)

  11. Development of various curing effect of nominal strength Geopolymer concrete

    Directory of Open Access Journals (Sweden)

    S. Kumaravel

    2014-04-01

    Full Text Available Geopolymer concrete is an innovative method and is produced by complete elimination of ordinary Portland cement byproduced in fly ash. This study on different condition of curing in geopolymer concrete suitable for curing at ambient and heat-cured condition of temperature will widen its application to concrete structures. Low lime fly ash is used as the base material, which is reacted by alkaline solution and additional use of ground granulated blast furnace slag. Workability of fresh concrete and compressive strength of geopolymer concrete was investigated. The curing effect of geopolymer concrete is steam, hot air and ambient cubes specimens are tested in different days. Results are compared for various curing and strength of concrete.

  12. Optimum concrete compression strength using bio-enzyme

    Directory of Open Access Journals (Sweden)

    Bagio Tony Hartono

    2017-01-01

    Full Text Available To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the concrete. Concrete with bio-enzyme 200 ml/m3, 400 ml/m3, 600 ml/m3, 800 ml/m3, 1000 ml/m3 and normal concrete. Refer to the crushing test result, its tends to the mathematical model using 4th degree polynomial regression (least quartic, as represent on the attached data series, which is for the design mix fc′ = 25 MPa generate optimum value for 33,98 MPa, on the bio-additive dosage of 509 ml bio enzymes.

  13. Crushing strength of concrete using maize cob ash cement as binder

    African Journals Online (AJOL)

    Crushing strength of concrete using maize cob ash cement as binder. ... The dried product was burnt at temperature of 12500C. Four categories of MCC were prepared by ... consisting of one part maize cob ash and one part lime and this could be used for structural works in construction where low strength is required.

  14. Shear strength of steel fiber-reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Daniel de Lima Araújo

    2014-02-01

    Full Text Available This study analyzed the mechanical behavior of shear strength of steel fiber-reinforced concrete beams. Six beams subjected to shear loading were tested until failure. Additionally, prisms were tested to evaluate fiber contribution to the concrete shear strength. Steel fibers were straight, hook-ended,35 mmlong and aspect ratio equal to 65. Volumetric fractions used were 1.0 and 2.0%. The results demonstrated a great contribution from steel fibers to shear strength of reinforced concrete beams and to reduce crack width, which can reduce the amount of stirrups in reinforced concrete structures. Beam capacity was also evaluated by empirical equations, and it was found that these equations provided a high variability, while some of them have not properly predicted the ultimate shear strength of the steel fiber-reinforced concrete beams.

  15. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  16. Failure strength and elastic limit for concrete

    International Nuclear Information System (INIS)

    Robutti, G.; Ronzoni, E.; Ottosen, N.S.

    1979-01-01

    Due to increased demand for realistic analysis of structures such as prestressed concrete reactor vessels and reactor containments, the formulation of general constitutive equations for concrete is of considerable importance. In the field of constitutive equations the correct definition of the limit state represented by the concrete failure surface is a fundamental need. In this paper carried out by a Danish-Italian cooperation, several failure criteria obtained by different authors are compared with failure experimental data obtained with triaxial tests on concrete specimens. Such comparison allow to carry out conclusive considerations on the characteristics of the concrete failure surface and on the advantages and disadvantages of the different criteria. Considerations are also reported on the definition of a limit elastic surface, whose knowledge is of fundamental importance for designers of complex structures in concrete. (orig.)

  17. Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC)

    OpenAIRE

    Marara,Khaled; Erenb,Özgür; Yitmena,İbrahim

    2011-01-01

    Compression toughness tests were carried out on concrete cylinders reinforced with three different aspect ratios of hooked-end steel fibers 60, 75, and 83 and six different percentages of steel fibers 0.5, 1.0, 1.25, 1.5, 1.75, and 2.0% by volume of concrete. The w/c ratio used for the normal strength steel fiber reinforced concrete mixes (NSSFRC) was 0.55, and the water-cementitious ratio (w/c+s) for the high strength fiber reinforced concrete mixes (HSSFRC) was 0.31. For each mix, three tes...

  18. Improvement of cement concrete strength properties by carbon fiber additives

    Science.gov (United States)

    Nevsky, Andrey; Kudyakov, Konstantin; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The paper presents the results of studies of fiber-reinforced concrete with carbon fibers. The effectiveness of carbon fibers uniform distribution in the concrete was obtained as a result of its preliminary mechanical mixing in water solution with chemical additives. Additives are to be used in the concrete technology as modifiers at initial stage of concrete mix preparing. The technology of preparing of fiber-reinforced concrete mix with carbon fibers is developed. The superplasticizer is based on ether carboxylates as a separator for carbon fibers. The technology allows increasing of concrete compressive strength up to 43.4% and tensile strength up to 17.5% as well as improving stability of mechanical properties.

  19. Lightweight High Strength Concrete with Expanded Polystyrene Beads

    OpenAIRE

    Subhan, Tengku Fitriani L

    2006-01-01

    This paper is a literature study about lightweight high strength concrete by incorporating expanded polystyrene beads. Basically polystyrene is disposal material from packaging industry. However, after being processed in a special manner, polystyrene can be expanded and used as lightweight concrete making material. Therefore, the use of expanded polystyrene beads in concrete is not only beneficial for engineering studies but also provide solution for the environmental problem

  20. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Directory of Open Access Journals (Sweden)

    Hongying Dong

    2014-12-01

    Full Text Available In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  1. The optimum content of rubber ash in concrete: flexural strength

    Science.gov (United States)

    Senin, M. S.; Shahidan, S.; Shamsuddin, S. M.; Ariffin, S. F. A.; Othman, N. H.; Rahman, R.; Khalid, F. S.; Nazri, F. M.

    2017-11-01

    Discarded scrap tyres have become one of the major environmental problems nowadays. Several studies have been carried out to reuse waste tires as an additive or sand replacement in concrete with appropriate percentages of tire rubber, called as rubberized concrete to solve this problem. The main objectives of this study are to investigate the flexural strength performance of concrete when adding the rubber ash and also to analyse the optimum content of rubber ash in concrete prisms. The performance total of 30 number of concrete prisms in size of 100mm x 100mm x 500 mm were investigated, by partially replacement of rubber ash with percentage of 0%, 3%, 5%, 7% and 9% from the volume of the sand. The flexural strength is increased when percentage of rubber ash is added 3% from control concrete prism, RA 0 for both concrete prism age, 7 days and 28 days with value 1.21% and 0.976% respectively. However, for RA 5, RA 7 and RA 9, the flexural strength was decreased compared to the control for both age, 7 days and 28 days. In conclusion, 3% is the optimum content of rubber ash in concrete prism for both concrete age

  2. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  3. Application of size effect to compressive strength of concrete members

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    super-plasticizer (ratio of cement weight) to eliminate the out-of-plan size effect. The specimen thickness b is chosen to allow stable failure. The average concrete compressive strengths for the size, length and depth effect are. 52, 58, and 55 MPa respectively. 4.2 Mix design. The concrete mix proportions selected for the ...

  4. Micromechanical analysis of polyacrylamide-modified concrete for improving strengths

    International Nuclear Information System (INIS)

    Sun Zengzhi; Xu Qinwu

    2008-01-01

    This paper studies how polyacrylamide (PAM) alters the physicochemical and mechanical properties of concrete. The microstructure of PAM-modified concrete and the physicochemical reaction between PAM and concrete were studied through scanning electron microscope (SEM), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and infrared spectrum analysis. Meanwhile, the workability and strengths of cement paste and concrete were tested. PAM's modification mechanism was also discussed. Results indicate that PAM reacts with the Ca 2+ and Al 3+ cations produced by concrete hydration to form the ionic compounds and reduce the crystallization of Ca(OH) 2 , acting as a flexible filler and reinforcement in the porosity of concrete and, therefore, improving concrete's engineering properties. PAM also significantly alters the microstructure at the aggregate-cement interfacial transition zone. Mechanical testing results indicate that the fluidity of cement paste decreases initially, then increases, and decreases again with increasing PAM content. PAM can effectively improve the flexural strength, bonding strength, dynamic impact resistance, and fatigue life of concrete, though it reduces the compressive strength to some extent

  5. Effects of Elevated Temperature on Compressive Strength Of Concrete

    African Journals Online (AJOL)

    This study presents the results of investigation of the effects of elevated temperatures on the compressive strength of Grade 40 concrete. A total of thirty cube specimens were cast, cured in water at ambient temperature in the laboratory and subjected to various temperature regimes before testing. A concrete mix of 1:1:3 ...

  6. Size effect in the strength of concrete structures

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Longman) pp 151–165. Karihaloo B L 1999 Size effect in shallow and deep notched quasi-brittle structures. Int. J. Fracture. 95: 379–390. Karihaloo B L, Abdalla H M 2001 Size effect in hardened cement paste and high strength concrete. In. Fracture mechanics of concrete structures (eds) de Borst et al (Lisse: Balkema) vol.2 ...

  7. marine water effect on compressive strength of concrete

    African Journals Online (AJOL)

    hp

    was obtained from the laboratory. Concrete cubes cast and cured with seawater were observed to have a higher strength at 28 days i.e. about 115% when ... production [6-11]. However, in some communities where seawater abound, it is virtual impossible to produce concrete without seawater. This necessitates this work. 2.

  8. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  9. Evaluation of acceptance strength tests for concrete pavements.

    Science.gov (United States)

    2005-06-30

    The North Carolina Department of Transportation has used traditionally flexural strength tests for acceptance : testing of Portland cement concrete pavements. This report summarizes a research project implemented to : investigate the feasibility of u...

  10. Very-early-strength latex-modified concrete overlay.

    Science.gov (United States)

    1998-12-01

    This paper describes the installation and condition of the first two very-early-strength latex modified concrete (LMC-VE) overlays constructed for the Virginia Department of Transportation. The overlays were prepared with a special blended cement rat...

  11. Properties of normal- and high-strength concrete containing metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Balaguru, P. [Rutgers State Univ. of New Jersey, NJ (United States)

    2001-07-01

    A study was conducted which confirmed the findings of an earlier study that showed that the addition of metakaolin in concrete can improve the compressive strength of concrete and reduce its permeability. Metakaolin is made by calcining purified kaolinite at a specific temperature range. It combines with calcium hydroxide to form calcium silicate and calcium aluminate hydrates. The main objective of this study was to examine the influence of 5 and 9 per cent of metakaolin on plastic and hardened concrete properties. The independent variables were the size of the compressive strength, the type of cement, type of curing and the age at the time of testing. The specimens were cured at 100 per cent relative humidity at 22 degrees C or in warm water maintained at 50 degrees C. The response variables were slump, unit weight, air content, and concrete temperature for fresh concrete. Other variables were compressive strength, modulus of elasticity, modulus of rupture and rapid chloride permeability for hardened concrete. It was shown that air content and curing temperature was not affected by metakaolin, and the effect on unit weight was negligible. Metakaolin was found to improve early compressive strength and also improved the strength at later ages. It also enhances the modulus of elasticity and has little effect on modulus rupture. Control concretes had a low chloride ion permeability. Metakaolin reduced the permeability even further. 8 refs., 11 tabs., 7 figs.

  12. Study on the strength characteristics of High strength concrete with Micro steel fibers

    Science.gov (United States)

    Gowdham, K.; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The study of High Strength Concrete (HSC) has become interesting as concrete structures grow taller and larger. The usage of HSC in structures has been increased worldwide and has begun to make an impact in India. Ordinary cementitious materials are weak under tensile loads and fiber reinforced cementitious composites (FRCCs) have been developed to improve this weak point. High Strength concrete containing Alccofine as mineral admixture and reinforced with micro steel fibers were cast and tested to study the mechanical properties. The concrete were designed to have compressive strength of 60 MPa. Mixtures containing 0% and 10% replacement of cement by Alccofine and with 1%, 2% and 3% of micro steel fibers by weight of concrete were prepared. Mixtures incorporating Alccofine with fibers developed marginal increase in strength properties at all curing days when compared to control concrete.

  13. An Investigation of Bond Strength of Reinforcing Bars in Fly Ash and GGBS Based Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Boopalan C.

    2017-01-01

    Full Text Available Geopolymers are amorphous aluminosilicate materials. Geopolymers are binders formed by alkali activation of Geopolymer Source Materials (GSM using an alkaline activator solution. Concretes made using Geopolymer binders are excellent alternative to the Ordinary Portland Cement concretes from strength, durability, and ecological considerations. Especially, usage of industrial waste materials such as Fly Ash and Slags as GSMs considerably lower the carbon footprint of concrete and mitigate the damage due to the unscientific dumping/disposal of these materials. To use the Geopolymer concrete (GPC for reinforced structural members, the composite action of reinforcing bars with Geopolymer concrete i.e. the bond behaviour should be well understood. This paper describes the bond behaviour of 12mm and 16mm dia. bars embedded in Fly ash and GGBS based Geopolymer concrete and conventional Portland Pozzolana cement concrete specimens investigated using the pull-out tests as per Indian Standard Code IS:2770(Part-I; the bond stresses and corresponding slips were found out. The bond stress increased with increase in compressive strength. The peak bond stress was found to be 4.3 times more than the design bond stress as per IS:456-2000. The Geopolymer concretes possess higher bond strength compared to the conventional cement concretes.

  14. Strength development of pervious concrete containing engineered biomass aggregate

    Science.gov (United States)

    Sharif, A. A. M.; Shahidan, S.; Koh, H. B.; Kandash, A.; Zuki, S. S. Mohd

    2017-11-01

    Pervious concrete with high porosity has good permeability and low mechanical strengths are commonly used in controlling storm water management. It is different from normal concrete. It is only containing single size of coarse aggregate and has lower density compared with normal concrete. This study was focused on the effect of Engineered Biomass Aggregate (EBA) on the compressive strength, void ratio and water permeability of pervious concrete. EBA was prepared by coating the biomass aggregate with epoxy resin. EBA was used to replace natural coarse aggregate ranging from 0% to 25%. 150 mm cube specimens were prepared and used to study the compressive strength, void ratio and water permeability. Compressive strength was tested at 7, 14 and 28 days. Meanwhile, void ratio and permeability tests were carried out on 28 days. The experimental results showed that pervious concrete containing EBA gained lower compressive strength. The compressive strength was reduced gradually by increasing the percentage of EBA. Overall, Pervious concrete containing EBA achieved higher void ratio and permeability.

  15. Bond strength between stell-concrete and between concretes with different ages in structural rehabilitation

    Directory of Open Access Journals (Sweden)

    M. R. DORIA

    Full Text Available ABSTRACTIn inspections of buildings, it is common to find structures that, well before reaching its useful life longer require repairs and reinforcements. This study examined the bond strength between concrete of different ages and between steel and concrete, focusing on the recovery of reinforced concrete structures. To analyze the bond between concrete of different ages, trials with specimens receiving three different types of treatments at the interface between the concrete were performed: brushing; brushing and mortar equal to concrete of substrate and brushing and epoxy layer. Indirect tensile tests and oblique and vertical shear tests at the interface were made . The bond stress between steel and concrete was evaluated by pull out test under the conditions of the bar inserted in the still fresh concrete and when inserted in the hardened concrete with epoxy. Results showed increased bond strength by indirect tensile stress of 15% and 37%; 4% and 12% for the adherence test by oblique shear, and 108% and 178%, for the testing of vertical shear, respectively, for the specimens whose interfaces have received, in addition to brushing, layer of mortar and epoxy bridge, compared to those who received only brushing. Insignificant loss (about 0.52% of bond stress was noticed for pull out test of steel bar when compared with test results of the specimens that had steel bar inserted in the concrete in the hardened state with epoxy adhesion bridge, with those who had inserted steel bar in fresh concrete.

  16. Evaluation of crushed concrete base strength.

    Science.gov (United States)

    2012-12-01

    This research project was conducted with two primary objectives, which include: 1) determine whether current Mississippi Department of Transportation (MDOT) requirements for recycled concrete aggregates (RCA) provide adequate materials for a roadway ...

  17. The Effect of Corrosive Environment on Geopolymer Concrete Tensile Strength

    Directory of Open Access Journals (Sweden)

    Bayuaji Ridho

    2017-01-01

    Full Text Available This study has the purpose to explore the potential of geopolymer concrete tensile strength in particular on the effects of corrosive environments. Geopolymer concrete, concrete technology used no OPC that has advantages, one of which is durability, especially for corrosive seawater environment. In addition, geopolymer concrete with polymerization mechanism does not require large energy consumption or an environmentally friendly concept. Geopolymer concrete in this study is using a type C fly ash from PT. International Power Mitsui Operation & Maintenence Indonesia (IPMOMI Paiton. The type of alkaline activator used NaOH (14 molar and Na2SiO3. Coarse and fine aggregate used are local aggregate. Geopolymer concrete molded test specimen with dimensions of (10 × 20 cm cylinder, further heating and without heating, then maintained at room temperature and seawater up to 28 days. Then to determine the mechanical properties, the tensile strength testing is done with reference. This result of study indicates the curing of geopolymer concrete at 60 ° C for 24 hours to raise the tensile strength of geopolymer concrete.

  18. the response prediction of the flexural strength of concrete made ...

    African Journals Online (AJOL)

    COMPAQ

    2013-07-02

    Jul 2, 2013 ... equation was used to develop a mathematical model for predicting the flexural strength characteristics of .... The unbiased estimate of the unknown variance SY ... model for the response prediction of the flexural strength characteristics of the granite chippings concrete, based on Scheffe's (4, 2) polynomial.

  19. Strength development of concrete : balancing production requirements and ecological impact

    NARCIS (Netherlands)

    Onghena, S.; Grunewald, S.; Schutter, G; Jaime C., Galvez; Aguado de Cea, Antonio; Fernandez-Ordonez, David; Sakai, Koji; Reye s, Encarnación; Casati, Maria J .; Enfedaque, Alejandro; Alberti, Marcos G.; de la Fuente, Albert

    2016-01-01

    The effective production of concrete structures requires adequate control of
    strength development in order to realise the scheduled production cycles. Demoulding of elements can take place only when sufficient strength is gained and the production cycle has to be maintained with seasonal changes

  20. Strength characteristics for the structural assessment of existing concrete structures

    NARCIS (Netherlands)

    Vervuurt, A.; Courage, W.; Steenbergen, R.

    2013-01-01

    For the assessment of the in situ compressive strength in structures and precast concrete components EN 13791 applies. Among others, this standard may be adopted when doubt arises about the compressive strength in the structure. However, for assessing the structural safety of existing structures of

  1. Predicting Flexural Strength of Concretes Incorporating River Gravel ...

    African Journals Online (AJOL)

    In most of these cases the cause of the collapse could be traced to the strength of the construction materials which is usually concrete. Secondly, experimental ... The flexural strength predictions were compared with predictions from an alternative model based on regression analysis. The results of the study show that for the ...

  2. Predicting the Compressive Strength of Concretes Made with ...

    African Journals Online (AJOL)

    In most of these cases the cause of the collapse could be traced to the strength of the construction materials, mainly concrete. Secondly, experimental ... The compressive strength predictions were compared with predictions from an alternative model based on regression analysis. The results of the study show that for the ...

  3. Empirical Strengths of Concrete Roof Slabs After 34 Years Service ...

    African Journals Online (AJOL)

    This paper examines the strengths of four reinforced concrete roof slabs which have been in service for over 34years. The non-destructive test hammer was used to obtain data for the empirical determination of the practical strengths of the existing structures. A total of 110 tests were performed on each slab at 11 points ...

  4. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Purnomo Heru

    2017-01-01

    Full Text Available The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is studied. Sand used to coat the plastic aggregates are Merapi volcanic sand which are taken in Magelang. Three mixtures of polypropylene (PP coarse plastic aggregates, Cimangkok river sand as fine aggregates, water and Portland Cement Composite with a water-cement ratio of 0.28, 0.3 and 0.35 are conducted. Compression test are performed on concrete cylindrical specimens with a diameter of 10 cm and a height of 20 cm. The results in general show that concrete specimens using plastic aggregates coated with sand have higher compressive strength compared to those of concrete specimens using plastic aggregates without sand coating. The bond improvement is indirectly indicated by the betterment of concrete compressive strength.

  5. fatigue strength of reinforced concrete flexural members

    African Journals Online (AJOL)

    Dr Obe

    1980-03-01

    Mar 1, 1980 ... the increments in the crack height were mostly because of the reduction in height of tensile concrete between the neutral axis and the peak of the vertical Crack. Cyclic loadings did not cause new vertical cracks within the beam length of pure bending, but new inclined and vertical cracks appeared.

  6. Effect of Aggregate Mineralogy and Concrete Microstructure on Thermal Expansion and Strength Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Jinwoo An

    2017-12-01

    Full Text Available Aggregate type and mineralogy are critical factors that influence the engineering properties of concrete. Temperature variations result in internal volume changes could potentially cause a network of micro-cracks leading to a reduction in the concrete’s compressive strength. The study specifically studied the effect of the type and mineralogy of fine and coarse aggregates in the normal strength concrete properties. As performance measures, the coefficient of thermal expansion (CTE and compressive strength were tested with concrete specimens containing different types of fine aggregates (manufactured and natural sands and coarse aggregates (dolomite and granite. Petrographic examinations were then performed to determine the mineralogical characteristics of the aggregate and to examine the aggregate and concrete microstructure. The test results indicate the concrete CTE increases with the silicon (Si volume content in the aggregate. For the concrete specimens with higher CTE, the micro-crack density in the interfacial transition zone (ITZ tended to be higher. The width of ITZ in one of the concrete specimens with a high CTE displayed the widest core ITZ (approx. 11 µm while the concrete specimens with a low CTE showed the narrowest core ITZ (approx. 3.5 µm. This was attributed to early-age thermal cracking. Specimens with higher CTE are more susceptible to thermal stress.

  7. Wireless Concrete Strength Monitoring of Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; Fusiek, Grzegorz; Niewczas, Pawel; Rubert, Tim; McAlorum, Jack

    2017-12-16

    Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete's initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance.

  8. Foam concrete of increased strength with the thermomodified peat additives

    Science.gov (United States)

    Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.

    2015-01-01

    The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).

  9. Estimating the shear strength of concrete with coarse aggregate replacement

    OpenAIRE

    Folagbade Olusoga Peter ORIOLA; George MOSES; Jacob Oyeniyi AFOLAYAN; John Engbonye SANI

    2017-01-01

    For economic, environmental and practical reasons, it is desirable to replace the constituents of concrete with wastes and cheaper alternative materials. However, it is best when such replacements are done at optimum replacement levels. In view of this, a laboratory investigative test was carried out to evaluate the shear strength of concrete with coarse aggregate replacement by Coconut Shell and by Waste Rubber Tyre. The coarse aggregate replacement was done at recommended optimum proportion...

  10. PREDICTION OF BASALT FIBER REINFORCED CONCRETE PAVEMENT BENDING STRENGTH VALUES

    OpenAIRE

    Hidayet BAYRAKTAR; Ayhan SAMANDAR; Suat SARIDEMİR

    2017-01-01

    This paper proposes the potential of artificial neural network (ANN) system for estimating the bending strength values of the basalt fiber reinforced concrete pavements. Three main influential parameters; namely basalt fiber ratio, density and slump value of the fresh concrete were selected as input data. The model was trained, tested using 400 data sets which were the results of on-site experiment tests. ANN system results were also compared with the experimental test results. The research r...

  11. Bond Strength between Hybrid Fiber-Reinforced Lightweight Aggregate Concrete Substrate and Self-Compacting Concrete as Topping Layer

    OpenAIRE

    Widodo, Slamet

    2017-01-01

    Structural performance evaluation of composite concrete slabs that were constructed using partially precast concreting system which utilized Hybrid Fiber-Reinforced Lightweight Aggregate Concrete (HyFRLWAC) as stay in-place formwork and self-compacting concrete (SCC) as topping layer was conducted in this research. This paper focused on determining the appropriate strength limit criteria of interface between two different concrete layers. The tensile strength was tested using pull-off test, w...

  12. RESEARCH OF ADHESIVE STRENGTH OF NEW CONCRETE LAYER WITH A SURFACE OF OLD CONCRETE

    Directory of Open Access Journals (Sweden)

    Bulgakov Boris Igorevich

    2016-04-01

    Full Text Available Concrete is a material very commonly used in modern construction, each year over 4 billion m3 of concrete is used around the world. In the recent years high-quality fine grain and other types of concrete allow giving the modern creation city buildings new architectural expressivity, meeting the requirements of the XXI century. The trend of using of these new types of concrete is also applied in the construction of tunnel systems and the subway. The fine-grained high performance concrete obtained by using a mixture of organo-mineral additives and fiber reinforcement, compares fovourably with ordinary fine-grained concrete, namely its bending and tensile strength is higher, it has good resistance to shock impacts and fatigue, as well as crack resistance, water resistance and resistance to erosion. So this type of fine-grained high performance concrete is suitable for the construction of subway tunnels and other special objects. When evaluating the concrete performance in underground rock layers subjected to complex mechanical forces, it is important to take into account the stress of metro upon departure and stopping at the stations. The article presents a new experimental method of determining the adhesion strength of fine-grained high performance concrete layer freshly poured on the surface of old concrete in the process of construction and repair of underground. The result of this method application showed that fine-grained high performance concrete is capable of skid resistance higher than 55 % compared to regular fine-grained concrete without additives.

  13. Porosity and Mechanical Strength of an Autoclaved Clayey Cellular Concrete

    Directory of Open Access Journals (Sweden)

    P. O. Guglielmi

    2010-01-01

    Full Text Available This paper investigates the porosity and the mechanical strength of an Autoclaved Clayey Cellular Concrete (ACCC with the binder produced with 75 wt% kaolinite clay and 25 wt% Portland cement. Aluminum powder was used as foaming agent, from 0.2 wt% to 0.8 wt%, producing specimens with different porosities. The results show that the specimens with higher content of aluminum presented pore coalescence, which can explain the lower porosity of these samples. The porosities obtained with the aluminum contents used in the study were high (approximately 80%, what accounts for the low mechanical strength of the investigated cellular concretes (maximum of 0.62 MPa. Nevertheless, comparing the results obtained in this study to the ones for low temperature clayey aerated concrete with similar compositions, it can be observed that autoclaving is effective for increasing the material mechanical strength.

  14. Influence of multiaxial preloading on the strength of concrete

    International Nuclear Information System (INIS)

    Linse, D.

    1975-01-01

    In a preliminary study about the influence of the loading direction discs of 20/20/5 cm were loaded at different stress-rates in one direction, then unloaded and loaded up to failure again. Two series of each about 15 specimens were tested: the first series was reloaded in the same direction as it was loaded before. If the preloading was not greater than about 90% of the original short-term uniaxial strength βsub(p), one could achieve in the second loading a higher strength than the strength βsub(p). The second series was reloaded normal to the direction of preloading. By an other series of about 50 specimens the influence of triaxial preloading on the uniaxial strength of concrete was tested. Cubes of 10cm were loaded by brush bearing platens up to a stress which was maximally three times higher than the uniaxial short-term strength βsub(p), then unloaded and tested again under uniaxial compression. The achieved ultimate strength of the cubes at the second loading was obviously dependent upon the stress-state and the stress-rate of the preloading. Multiaxial preloading which is far below the ultimate multiaxial strength can considerably defect the remaining strength of concrete. The decrease in strength was defined by the reduction of the uniaxial strength. It can be assumed that the remaining multiaxial strength is reduced at least to the same rate. Further tests are planned

  15. Strength of concrete structures under dynamic loading

    Science.gov (United States)

    Kumpyak, O. G.; Galyautdinov, Z. R.; Kokorin, D. N.

    2016-01-01

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  16. Shear strength of palm oil clinker concrete beams

    International Nuclear Information System (INIS)

    Mohammed, Bashar S.; Foo, W.L.; Hossain, K.M.A.; Abdullahi, M.

    2013-01-01

    Highlights: ► Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ► The palm oil clinker concrete can be classified as lightweight concrete. ► Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ► The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m 3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (ρ). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ρ ⩾ 1. However, a 0.5 safety factor should be included in the formula for ρ < 1

  17. Strength and related properties of concrete: A quantitative approach

    Energy Technology Data Exchange (ETDEWEB)

    Popovics, S. [Drexel Univ., Philadelphia, PA (United States). Dept. of Civil Engineering

    1998-12-31

    The science and technology of concrete have been based almost exclusively on empirical knowledge. The description of concrete properties and behavior was therefore by necessity mostly of qualitative nature. The author, a recognized expert in the field, has attempted to present a very special state-of-the-art report in such a way that it can point in the direction of rationalizing the theory. The overall goal can be stated as follows: Given the properties of the various components of concrete, the mix proportions, etc., can one compute important properties, such as strength, of the end product? The quantitative approach mentioned in the subtitle is meant to assist in achieving this objective. It is so ambitious an undertaking that it could not succeed. In fact, judging from the preface, it can be assumed that the author himself did not expect to succeed, but rather be content with setting the stage for other researchers to take off from. The book fills an important void in the specialized concrete literature. The lack of rational relationships in this empirical science makes it very difficult to teach to students and to present it in an interesting manner. Yet, it is not written with the undergraduate student in mind. The enormous collection of data from the literature makes it a treasure trove for researchers and, to a lesser extent, for practicing engineers. For simple relationships such as those between cube strength and cylinder strength, this is the book to look for. The 75-page bibliography is impressive. The intentional limitation of the book`s scope to concrete limits its applicability, especially since it is now being recognized that properties of concrete other than strength may be equally if not more important than strength.

  18. Predicting of the compressive strength of RCA concrete

    Directory of Open Access Journals (Sweden)

    Jaskulski Roman

    2017-01-01

    Full Text Available The paper presents the results of predicting the strength of 61 concretes made with the use of recycled concrete aggregate (RCA. Five models in the form of first-order polynomials containing two to six variables characterizing the composition of the mixture were formulated for this purpose. Factors for unknowns were selected using linear regression in two variants: with and without additional coefficient. For each model, the average absolute error of the concrete strength estimation was determined. Because of the various consequences of underestimation and overestimation of the results, the analysis of models quality was carried out with the distinction of the two cases. The results indicate that the key to improving the quality of models is to take into account the quality of the aggregate expressed by the ACV parameter. Better match results were also obtained for models with more variables and the additional coefficient.

  19. Spall Strength Measurements of Concrete for Varying Aggregate Sizes

    International Nuclear Information System (INIS)

    Chhabildas, Lalit C.; Kipp, Marlin E.; Reinhart, William D.; Wilson, Leonard T.

    1999-01-01

    Controlled impact experiments have been performed to determine the spall strength of four different concrete compositions. The four concrete compositions are identified as, 'SAC-5, CSPC', (''3/4'') large, and (''3/8'') small, Aggregate. They differ primarily in aggregate size but with average densities varying by less than five percent. Wave profiles from sixteen experiments, with shock amplitudes of 0.07 to 0.55 GPa, concentrate primarily within the elastic regime. Free-surface particle velocity measurements indicate consistent pullback signals in the release profiles, denoting average span strength of approximately 40 MPa. It is the purpose of this paper to present spall measurements under uniaxial strain loading. Notwithstanding considerable wave structure that is a unique characteristic to the heterogeneous nature of the scaled concrete, the spall amplitudes appear reproducible and consistent over the pressure range reported in this study

  20. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  1. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  2. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  3. Predicting the Compressive Strength of Concretes Made with ...

    African Journals Online (AJOL)

    Compressive strength predictions were compared with alternative model based on regression analysis. Results show that for the unwashed gravel based concrete the regression model prediction has a sum of squares error of 9.808 and a mean absolute percentage (relative) error of 1.167, while the neural network model ...

  4. Axial dynamic tensile strength of concrete under static lateral compression

    NARCIS (Netherlands)

    Weerheijm, J.

    2006-01-01

    The rate effect on concrete tensile strength can be modeled by the description of crack extension in a fictitious fracture plane [1,2].The plane represents the initial, internal damage and the geometry of the final fracture plane. In the paper, the same approach is applied to model the failure

  5. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    Behaviour of high-strength concrete incorporating ground granulated blast furnace slag at high-temperature. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, ...

  6. Shear Strength of Concrete I-Beams - Contributions of Flanges

    DEFF Research Database (Denmark)

    Teoh, B. K.; Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The contribution of flanges to the shear strength of reinforced concrete beams has up to now either been neglected or evaluated by very simple empirical formulas. However, the contribution may sometimes be large, up to 20-30%. In this paper the flange contribution for shear reinforced I-beams has...

  7. Modelling of tension stiffening for normal and high strength concrete

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1998-01-01

    form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...

  8. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model is b...

  9. Application of size effect to compressive strength of concrete members

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    9, Mabuk-ri, Guseong-eup, Yongin-si, Gyeonggi-do, 449-713, Korea e-mail: kimjinkeun@kaist.ac.kr; yist@kopec.co.kr. Abstract. It is important to consider the effect of size when estimating the ultimate strength of a concrete member under ...

  10. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  11. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    oped to simulate the impact behaviour of UHSC panel. The Brittle cracking model is used to simulate the behaviour of UHSC panel under impact loading and to perform parametric studies by varying the volume fraction of steel fibres. Keywords. Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS.

  12. Size effect in the strength of concrete structures

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Karihaloo's size effect formula are also proposed. Keywords. Fictitious crack model; fracture process zone (FPZ); high strength concrete (HSC); size effect; three point bend (TPB) beam. 1. Introduction. The fracture mechanics size effect, as opposed to the Weibull statistical size effect, is a controversial topic in the fracture of ...

  13. Flexural Strength Evaluation of Reinforced Concrete Members with Ultra High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Baek-Il Bae

    2016-01-01

    Full Text Available Flexural strength evaluation models for steel fiber reinforced ultra high strength concrete were suggested and evaluated with test results. Suggested flexural strength models were composed of compression stress blocks and tension stress blocks. Rectangular stress block, triangular stress block, and real distribution shape of stress were used on compression side. Under tension, rectangular stress block distributed to whole area of tension side and partial area of tension side was used. The last model for tension side is realistic stress distribution. All these models were verified with test result which was carried out in this study. Test was conducted by four-point loading with 2,000 kN actuator for slender beam specimen. Additional verifications were carried out with previous researches on flexural strength of steel fiber reinforced concrete or ultra high strength concrete. Total of 21 test specimens were evaluated. As a result of comparison for flexural strength of section, neutral axis depth at ultimate state, models with triangular compression stress block, and strain-softening type tension stress block can be used as exact solution for ultra high performance concrete. For the conservative and convenient design of section, modified rectangular stress block model can be used with strain softening type tension stress block.

  14. Impact strength and abrasion resistance of high strength concrete with rice husk ash and rubber tires

    Directory of Open Access Journals (Sweden)

    M. B. Barbosa

    Full Text Available The paper discusses the application of High Strength Concrete (HSC technology for concrete production with the incorporation of Rice Husk Ash (RHA residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.

  15. Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC and high strength steel fiber reinforced concrete (HSSFRC

    Directory of Open Access Journals (Sweden)

    Khaled Marara

    2011-01-01

    Full Text Available Compression toughness tests were carried out on concrete cylinders reinforced with three different aspect ratios of hooked-end steel fibers 60, 75, and 83 and six different percentages of steel fibers 0.5, 1.0, 1.25, 1.5, 1.75, and 2.0% by volume of concrete. The w/c ratio used for the normal strength steel fiber reinforced concrete mixes (NSSFRC was 0.55, and the water-cementitious ratio (w/c+s for the high strength fiber reinforced concrete mixes (HSSFRC was 0.31. For each mix, three test cylinders were tested for compression specific toughness. The effect of fiber reinforcement index: volume of fibers × length/diameter ratio on compression specific toughness and also on the relationship between these two properties is presented in this paper. As a result, (a equations are proposed to quantify the effect of fibers on compression toughness ratio of concrete in terms of FRI, (b equations obtained in terms of FRI and compression specific toughness of plain concrete to estimate both compression specific toughness of NSSFRC and HSSFRC (N.m, (c equations obtained which represent the relationship between compression toughness index and FRI for NSSFRC and HSSFRC, respectively, and (d equations obtained to quantify the relationship between compression specific toughness index and fiber reinforcement index for NSSFRC and HSSFRC, respectively. The proposed equations give good correlation with the experimental values.

  16. Impact of internal water reservoirs on shrinkage of high strength concrete

    OpenAIRE

    Drčar, Grega

    2013-01-01

    High strength concrete has lower water-cement ratio compared to regular concrete, which allows higher strength of the concrete. Because of low water-cement ratio, there is a lack of water during the process of hydration.During the transport of water from the capillary pores of concrete, high forces to the structure of the hardening cement paste were created. Because of this forces, the concrete shrinks, which creates cracks and therefore reduces durability of the concrete elements. In this...

  17. Postheated Model of Confined High Strength Fibrous Concrete

    Directory of Open Access Journals (Sweden)

    Kaleem A. Zaidi

    2016-01-01

    Full Text Available HSC normally suffers from low stiffness and poor strain capacity after exposure to high temperature. High strength confined fibrous concrete (HSCFC is being used in industrial structures and other high rise buildings that may be subjected to high temperature during operation or in case of an accidental fire. The proper understanding of the effect of elevated temperature on the stress-strain relationship of HSCFC is necessary for the assessment of structural safety. Further stress-strain model of HSCFC after exposure to high temperature is scarce in literature. Experimental results are used to generate the complete stress-strain curves of HSCFC after exposure to high temperature in compression. The variation in concrete mixes was achieved by varying the types of fibre, volume fraction of fibres, and temperature of exposure from ambient to 800°C. The degree of confinement was kept constant in all the specimens. A comparative assessment of different models on the high strength confined concrete was also conducted at different temperature for the accuracy of proposed model. The proposed empirical stress-strain equations are suitable for both high strength confined concrete and HSCFC after exposure to high temperature in compression. The predictions were found to be in good agreement and well fit with experimental results.

  18. Rock Joint Asperities and Mechanical Strength of Concrete

    Science.gov (United States)

    Ficker, Tomáš; Komárková, Tereza

    2017-10-01

    Mechanical interactions between concrete foundations of large civil engineering structures (tunnels, bridges or dams) and the asperity surfaces of rock masses represent a useful topic for investigation. It is obvious that such large objects exert huge pressures on bedrocks and this might result in surprising variations of mechanical properties of the materials used in foundations. The present contribution evaluates possible changes of the compressive strength of concrete caused by the invasive acting of asperity-like needles penetrating into the volume of this material. The experimental arrangement simulates mechanical interactions between sharp asperities of bedrocks and the cement-based materials placed in the foundations of large civil engineering structures.

  19. Compressive and tensile strength for concrete containing coal bottom ash

    Science.gov (United States)

    Maliki, A. I. F. Ahmad; Shahidan, S.; Ali, N.; Ramzi Hannan, N. I. R.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Azmi, M. A. Mohammad; Rahim, M. Abdul

    2017-11-01

    The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.

  20. Behavior of Reinforced Concrete Hybrid Trapezoidal Box Girders Using Ordinary and Highly Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nameer A. Alawsh

    2018-03-01

    Full Text Available In this paper, the general behavior of reinforced concrete hybrid box girders is studied by experimental and numerical investigation. Experimental work is included casting monolithically five specimens of box girders with trapezoidal cross section and testing it as simply supported under two point loading. Two specimens were cast as homogenous box girders (full normal strength concrete (NSC (about 35 MPa and full high strength concrete (HSC (about 55 MPa and three specimens were cast as hybrid box girders (HSC in upper flange only, HSC in upper flange and half depth of webs, and HSC in bottom flange and total depth of webs. Experimental results showed significant effects of concrete hybridization on the structural behavior of box girders specimens such as: cracking loads, cracking patterns, ultimate strengths, and failure modes. The ultimate strength of Hybrid box girders increased by 23% as average when compared with the homogenous box girder (full NSC and decreased by 9% as average when compared with homogenous box girder (full HSC. In numerical investigation, the tested specimens were modeled and analyzed using three dimensional non-linear finite element analysis. The analysis was carried out by using a computer program (ANSYS V16.1. The numerical results showed an acceptable agreement with the experimental work with difference about (3.12% and 9.588% as average for ultimate load and deflection, respectively.

  1. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  2. Bond Strength between Hybrid Fiber-Reinforced Lightweight Aggregate Concrete Substrate and Self-Compacting Concrete as Topping Layer

    Directory of Open Access Journals (Sweden)

    Slamet Widodo

    2017-01-01

    Full Text Available Structural performance evaluation of composite concrete slabs that were constructed using partially precast concreting system which utilized Hybrid Fiber-Reinforced Lightweight Aggregate Concrete (HyFRLWAC as stay in-place formwork and self-compacting concrete (SCC as topping layer was conducted in this research. This paper focused on determining the appropriate strength limit criteria of interface between two different concrete layers. The tensile strength was tested using pull-off test, while concrete cohesion was investigated based on modified bisurface shear test, and dual L-shaped shear test was used to determine the effect of normal force on the shear strength of concrete interface. Sample variants were designed based on the substrate surface conditions, compressive strength of the topping layer, and magnitude of perpendicular normal force acting on interface area. The substrate surfaces were prepared in as-placed and grooved conditions for tensile test, cohesion, and shear strength test. Test results indicate that tensile strength, cohesion, and shear strength of the concrete interface are affected by surface condition of the substrate, compressive strength of the topping layer, and the normal force acting perpendicularly on the concrete interface area. Proposed formulation for bond strength prediction between HyFRLWAC as substrate and SCC as topping layer is also presented in this paper.

  3. Fundamental Studies on Tests for Tensile Strength of Concrete (II) : Unconfined Penetration Tensile Strength Test

    OpenAIRE

    尾崎, 叡司; 増川, 晋; 菊池, 一雄; 北浦, 豊明

    1985-01-01

    This paper describes the test procedures and formula to be used for determination of tensile strength of concrete by unconfined penetration method. In this test, a cylindrical specimen of concrete is placed vertically between the loading plates of the test machine and compressed by two conic steel punches located concentrically on the conic cavities on the top and bottom surface of the cylindrical specimen. The specimen splites across the virtical diametric plane in exactly similar to that ob...

  4. Effect of Silica Fume on two-stage Concrete Strength

    Science.gov (United States)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  5. Behaviour of reinforced concrete beams with confined concrete related to ultimate bending and shear strength

    Science.gov (United States)

    Tee, Horng Hean; Al-Sanjery, Kousay; Chiang, Jeffrey Choong Luin

    2017-03-01

    This research is to investigate the behaviour of over-balanced High Strength Reinforced Concrete Beams with the compression zone confined with spiral / helical steel reinforcements. The study covered beam behaviour with respect to flexural strength, shear strength, deflection and cracking related to confined concrete. Six 200mm (width) X 300mm (depth) X 3000mm (length) Reinforced Concrete (RC) Beams, the first three beams incorporating steel ratio of 1.42ρb and the remaining 1.64ρb were tested under a four point static load test. The confinement of the concrete was carried out using spiral reinforcements of diameter 6mm and yield stress of 406N/mm2 with pitches of 50mm and 100mm. Measurements of deflection, cracking, and strains on both main reinforcements and concrete of the beams were taken. At the same level of stress, beams with confined concrete strained less than control beams without confinement for both tensile strain at the main steel reinforcement and compressive strain across the compression zone of concrete. Deflections of beams with helical confinement were less than the control beams. All beams failed in shear / flexural mode and gave fair warning against failure, more specifically beams with 1.42ρb, which is not normally associated with shear-type failure of beams which are over reinforced. The early shear failure prevented the beams from achieving its full utilisation of the ultimate strength. It is recommended that for over-reinforced confined concrete beams, the shear strength of beams should be based on using the diagonal compressive strut angle (θ) of more than 22 degrees recommended in Eurocode 2 (EC2), hence giving the beam higher safety factor against shear failure. All samples exhibited flexure and shear cracks in a manner which gave a good warning against failure. The ratio of the failure load to the theoretical ultimate load for shear ranged between 0.98 and 1.25 while the ratio of the failure load to the ultimate flexural load ranged

  6. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement

    International Nuclear Information System (INIS)

    Butler, L.; West, J.S.; Tighe, S.L.

    2011-01-01

    The purpose of this study was to investigate the influence that replacing natural coarse aggregate with recycled concrete aggregate (RCA) has on concrete bond strength with reinforcing steel. Two sources of RCA were used along with one natural aggregate source. Numerous aggregate properties were measured for all aggregate sources. Two types of concrete mixture proportions were developed replacing 100% of the natural aggregate with RCA. The first type maintained the same water-cement ratios while the second type was designed to achieve the same compressive strengths. Beam-end specimens were tested to determine the relative bond strength of RCA and natural aggregate concrete. On average, natural aggregate concrete specimens had bond strengths that were 9 to 19% higher than the equivalent RCA specimens. Bond strength and the aggregate crushing value seemed to correlate well for all concrete types.

  7. Pure rate effect on compressive strength of concrete

    OpenAIRE

    Lee Sangho; Kim Kyoung-Min; Cho Jae-Yoel

    2017-01-01

    Dynamic Increase Factor (DIF) has been used to consider the compressive strength enhancement of concrete at the high and intermediate strain rates. However, DIF formulae suggested until now include the inertia effects as well as the rate effect because the DIF formulae has been assumed as a function of only the strain rate and the inertia effects cannot be avoided in tests at the high and intermediate strain rate region. Therefore, applying the DIF to design or analysis of social infrastructu...

  8. Evaluation of size effect on shear strength of reinforced concrete ...

    Indian Academy of Sciences (India)

    The lever arm, z in Eq. (3) can be expressed as z = j0d in which j0 is a constant, defining the location of the resultant of the compression force at the end of the shear span, a. According to the classical bending theory of RC beams with only tensile reinforcement and with negligible tensile strength of concrete, the neutral axis ...

  9. Study on strength characteristics of concrete using M-Sand and coconut fibers

    Science.gov (United States)

    Neeraja, D.; Wani, Amir Iqbal; Kamili, Zainulabideen; Agarwal, Krishnakant

    2017-11-01

    In the current world, concrete has become a very important part of the construction industry and the materials which are used in making concrete have evolved due to better quality of cement and better grade of coarse aggregates. The sand is an important part of concrete. It is mainly procured from natural sources. Thus the grade of sand is not under our control. The methods of removing sand from river beds are causing various environmental issues and river sand is depleting at a faster rate than it is replaced by natural methods. Hence, various replacements for the river sand are being done, one of which is manufactured-sand. It is obtained from various granite quarries. Manufactured-sand or M-sand is slowly replacing the fine aggregate in the concrete as the sand is well graded and gives higher strength of concrete. There are various fibers used for reinforcing concrete which consist mainly of artificial or steel fibers. Some of these fibers are quite costly and sometimes difficult to obtain. So there are many natural fibers which can be used in place of these fibers, one of which is coconut fiber, extracted from the shell of a coconut. Coconut fibers are used in various industries like rope making, coir mattresses etc. Since these fibers are one of the strongest fibers among naturally occuring fibers, they can be used in the concrete mix to increase the resistance in concrete. They are also light weight and easily available and thus can be used in reinforcement of concrete. The studies up till now have tested the use of coconut fibers in normal concrete involving river sand but in this study a particular ratio of M-sand and river sand is used to get the maximum possible strength. Hence, in this project an attempt was made to use M-sand and coconut fiber in concrete. Based on the test results, it can be concluded that combination of M-sand and coconut fibers gave favorable results in strength criteria.

  10. Effect on Compressive Strength of Concrete Using Treated Waste Water for Mixing and Curing of Concrete

    Directory of Open Access Journals (Sweden)

    Humaira Kanwal

    2018-04-01

    Full Text Available Effective utilization of the available resources is imperative approach to achieve the apex of productivity. The modern world is focusing on the conditioning, sustainability and recycling of the assets by imparting innovative techniques and methodologies. Keeping this in view, an experimental study was conducted to evaluate the strength of concrete made with treated waste water for structural use. In this study ninetysix cylinders of four mixes with coarse aggregates in combination with FW (Fresh Water, WW (Wastewater, TWW (Treated Wastewater and TS (Treated Sewagewere prepared. The workability of fresh concrete was checked before pouring of cylinders. The test cylinders were left for 7, 14, 21 and 28 days for curing. After curing, the compressive strength was measured on hardened concrete cylinders accordingly. Test results showed that workability of all the four mixes were between 25-50mm but ultimate compressive strength of concrete with WW was decreased and with TWW, TS at the age of 28 days do not change significantly. This research will open a new wicket in the horizon of recycling of construction materials. The conditioning and cyclic utilization will reduce the cost of the construction and building materials as well as minimize the use of natural resources. This novelty and calculating approach will save our natural assets and resources.

  11. Porosimetric, Thermal and Strength Tests of Aerated and Nonaerated Concretes

    Science.gov (United States)

    Strzałkowski, Jarosław; Garbalińska, Halina

    2017-10-01

    The paper presents the results of porosimetry tests of lightweight concretes, obtained with three research methods. Impact of different porosity structures on the basic thermal and strength properties was also evaluated. Tests were performed, using the pressure gauge method on fresh concrete mixes, as well as using the mercury porosimetry test and optic RapidAir method on specimens prepared from mature composites. The study was conducted on lightweight concretes, based on expanded clay aggregate and fly ash aggregate, in two variants: with non-aerated and aerated cement matrix. In addition, two reference concretes, based on normal aggregate, were prepared, also in two variants of matrix aeration. Changes in thermal conductivity λ and volumetric specific heat cv throughout the first three months of curing of the concretes were examined. Additionally, tests for compressive strength on cubic samples were performed during the first three months of curing. It was found that the pressure gauge method, performed on a fresh mix, gave lowered values of porosity, compared to the other methods. The mercury porosity tests showed high sensitivity in evaluation of pores smaller than 30μm. Unfortunately, this technique is not suitable for analysing pores greater than 300μm. On the other hand, the optical method proves good in evaluation of large pores, greater than 300μm. The paper also presents results of correlation of individual methods of porosity testing. A consolidated graph of the pore structure, derived from both mercury and optical methods, was presented, too. For the all of six tested concretes, differential graphs of porosity, prepared with both methods, show a very broad convergence. The thermal test results indicate usefulness of aeration of the cement matrix of the composites based on lightweight aggregates for the further reduction of the thermal conductivity coefficient λ of the materials. The lowest values of the λ coefficient were obtained for the aerated

  12. EXPERIMENTAL STUDY ON THE APPLICATION OF HIGH STRENGTH FIBER REINFORCED MORTAR TO PRESTRESSED CONCRETE STRUCTURES

    Science.gov (United States)

    Sakurada, Michihiro; Mori, Takuya; Ohyama, Hiroaki; Seki, Hiroshi

    In order to study the application of high strength fiber reinforced mortar which has design compressive strength 120N/mm2 to prestressed concrete structures, the authors carried out material tests, bending tests and shear tests of prestressed concrete beam specimens. From the material tests, we obtained material properties for the design of prestressed concrete structures such as compressive strength, tensile strength, Young's modulus, coefficient of creep, dry shrinkage and so on. The results of the bending tests and the shear tests of prestressed concrete beam specimen shows that experimental flexural strength and shear strength of prestressed concrete beam using high strength fiber reinforced mortar exceeds strength calculated by traditional design method. It is confirmed that high strength fiber reinforced mortar can be applied to prestressed concrete structures.

  13. Comparative Analysis of the Compressive Strength of Concrete with ...

    African Journals Online (AJOL)

    The research was conducted to study the possibility of utilizing the waste over burnt bricks abundantly available in most parts of Gwer-West Local Government Area of Benue State, particularly Naka, the Local Government capital, as coarse aggregates in structural concrete. Trial mixes were prepared using the crushed over ...

  14. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...

  15. Pure rate effect on compressive strength of concrete

    Directory of Open Access Journals (Sweden)

    Lee Sangho

    2017-01-01

    Full Text Available Dynamic Increase Factor (DIF has been used to consider the compressive strength enhancement of concrete at the high and intermediate strain rates. However, DIF formulae suggested until now include the inertia effects as well as the rate effect because the DIF formulae has been assumed as a function of only the strain rate and the inertia effects cannot be avoided in tests at the high and intermediate strain rate region. Therefore, applying the DIF to design or analysis of social infrastructures may be dangerous because the resistance by the inertia effects are considered repetitively. In this study, an apparent DIF formula, which includes the inertia effects, was proposed by introducing terms related with the strain acceleration, which represent the axial and radial inertia effects. Then, a nonlinear regression analysis was conducted to determine the coefficients in the apparent DIF formula with results of Split Hopkinson Pressure Bar (SHPB tests for concrete. Finally, the DIF formula excluding the axial and radial inertia effects was proposed for compressive strength of concrete at the high and intermediate strain rates.

  16. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete

    International Nuclear Information System (INIS)

    Sarker, Prabir Kumar; Kelly, Sean; Yao, Zhitong

    2014-01-01

    Highlights: • Fire endurance of fly ash geopolymer concrete has been studied. • No spalling in geopolymer concrete cylinders up to 1000 °C fire. • Less cracking and better fire endurance of geopolymer concrete than OPC concrete. • Geopolymer microstructure remained stable up to 1000 °C fire. - Abstract: Fly ash based geopolymer is an emerging alternative binder to cement for making concrete. The cracking, spalling and residual strength behaviours of geopolymer concrete were studied in order to understand its fire endurance, which is essential for its use as a building material. Fly ash based geopolymer and ordinary portland cement (OPC) concrete cylinder specimens were exposed to fires at different temperatures up to 1000 °C, with a heating rate of that given in the International Standards Organization (ISO) 834 standard. Compressive strength of the concretes varied in the range of 39–58 MPa. After the fire exposures, the geopolymer concrete specimens were found to suffer less damage in terms of cracking than the OPC concrete specimens. The OPC concrete cylinders suffered severe spalling for 800 and 1000 °C exposures, while there was no spalling in the geopolymer concrete specimens. The geopolymer concrete specimens generally retained higher strength than the OPC concrete specimens. The Scanning Electron Microscope (SEM) images of geopolymer concrete showed continued densification of the microstructure with the increase of fire temperature. The strength loss in the geopolymer concrete specimens was mainly because of the difference between the thermal expansions of geopolymer matrix and the aggregates

  17. The effect of concrete strength and reinforcement on toughness of reinforced concrete beams

    OpenAIRE

    Carneiro, Joaquim A. O.; Jalali, Said; Teixeira, Vasco M. P.; Tomás, M.

    2005-01-01

    The objective pursued with this work includes the evaluating of the strength and the total energy absorption capacity (toughness) of reinforced concrete beams using different amounts of steel-bar reinforcement. The experimental campaign deals with the evaluation of the threshold load prior collapse, ultimate load and deformation, as well as the beam total energy absorption capacity, using a three point bending test. The beam half span displacement was measured using a displacement transducer,...

  18. Shear strength of reinforced concrete circular cross-section beams

    Directory of Open Access Journals (Sweden)

    P. W. G. N. Teixeira

    Full Text Available A proposed adequation of NBR 6118, Item 7.4, related to shear strength of reinforced concrete beams is presented with aims to application on circular cross-section. The actual expressions are most suitable to rectangular cross-section and some misleading occurs when applied to circular sections at determination of VRd2, Vc and Vsw, as consequence of bw (beam width and d (effective depth definitions as well as the real effectiveness of circular stirrups. The proposed adequation is based on extensive bibliographic review and practical experience with a great number of infrastructure elements, such as anchored retaining pile walls, where the use of circular reinforced concrete members is frequent.

  19. Strength calculation for fiber concrete slabs under high velocity impact

    Science.gov (United States)

    Artem, Ustinov; Kopanica, Dmitry; Belov, Nikolay; Jugov, Nikolay; Jugov, Alexey; Koshko, Bogdan; Kopanitsa, Georgy

    2017-01-01

    The paper presents results of the research on strength of concrete slabs reinforced with steel fiber and tested under a high velocity impact. Mathematical models are proposed to describe the behavior of continua with a complex structure with consideration of porosity, non-elastic effects, phase transformations and dynamic destructions of friable and plastic materials under shock wave impact. The models that describe the behavior of structural materials were designed in the RANET-3 CAD software system. This allowed solving the tasks of hit and explosion in the full three-dimensional statement using finite elements method modified for dynamic problems. The research results demonstrate the validity of the proposed mathematical model to calculate stress-strain state and fracture of layered fiber concrete structures under high velocity impact caused by blast wave.

  20. Study on Strength and Ultrasonic Velocity of Air-Entrained Concrete and Plain Concrete in Cold Environment

    Directory of Open Access Journals (Sweden)

    Huai-shuai Shang

    2014-01-01

    Full Text Available Nondestructive testing technology is essential in the quality inspection of repair, alteration, and renovation of the existing engineering, especially for concrete structure in severe environment. The objective of this work is to deal with the behavior of ultrasonic velocity and mechanical properties of plain concrete and air-entrained concrete subjected to freeze-thaw cycles (F-T-C. The ultrasonic velocity and mechanical properties (tensile strength, compressive strength, cubic compressive strength, and splitting strength of C30 air-entrained concrete and plain concrete with different water-cement ratio (water-cement ratio was 0.55, 0.45, and 0.50, resp. after F-T cycles were measured. The influences of F-T cycles on ultrasonic velocity and mechanical properties of C30 air-entrained concrete and plain concrete were analyzed. And the relationship between mechanical properties and ultrasonic velocity was established. The experimental results can be useful for the design of new concrete structure, maintenance and life prediction of existing concrete structure such as offshore platform and concrete dock wall.

  1. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  2. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  3. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    Science.gov (United States)

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  4. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  5. Correlation between Compressive Strength and Rheological Parameters of High-Performance Concrete

    Directory of Open Access Journals (Sweden)

    Aminul Islam Laskar

    2007-01-01

    Full Text Available Compressive strength is greatly influenced by the performance of concrete in its fresh stage such as uniform mixing, proper compaction, resistance to segregation during transporting and placing. Attempt has, therefore, been made to correlate compressive strength to the rheological behavior of high performance concrete with a modified setup of parallel plate rheometer. Modified setup considers the shearing of concrete at the centre of the cylindrical container that takes into account the resistance between concrete and the vertical side of the wall. It has been observed that compressive strength increases steeply as the yield strength increases up to a certain level. Plastic viscosity, however, shows optimum value for maximum compressive strength.

  6. Shear strength of end slabs of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Cheung, K.C.; Gotschall, H.L.; Liu, T.C.

    1975-01-01

    Prestressed concrete reactor vessels (PCRV's) have been adopted for primary containments in most large high-temperature gas-cooled reactor installations. The most common configuration for PCRVs is a right-vertical cylinder with thick end slabs. In order to assess the integrity of a PCRV it is necessary to predict the ultimate strength of the end slabs. The complexity of the basic mechanism of shear failure in the PCRV end slabs has thus far prohibited the development of a completely analytical solution. However, many experimental investigations of PCRV end slabs have been conducted over the past decade. This information makes it possible to establish empirical formulae for the ultimate strength of PCRV end slabs. The basis and development of an empirical shear-flexure interaction expression is presented. (Auth.)

  7. Collapse mechanisms and strength prediction of reinforced concrete pile caps

    DEFF Research Database (Denmark)

    Jensen, Uffe G.; Hoang, Linh Cao

    2012-01-01

    This paper describes an upper bound plasticity approach for strength prediction of reinforced concrete pile caps. A number of collapse mechanisms are identified and analysed. The procedure leads to an estimate of the load-carrying capacity and an identification of the critical collapse mechanism....... Calculations have been compared with nearly 200 test results found in the literature. Satisfactory agreement has been found. The analyses are conducted on concentrically loaded caps supported by four piles. The paper briefly outlines how the approach may be extended to more complicated loadings and geometries....... It is argued that the upper bound approach may be a useful complement to the widely used lower bound strut-and-tie method. Especially when dealing with strength assessment of existing structures....

  8. Low tensile strength in older concrete structures with alkali-silica reaction

    NARCIS (Netherlands)

    Siemes, A.J.M.; Visser, J.H.M.

    2000-01-01

    During an extensive investigation of some 25 concrete bridges and other structures suffer-ing from alkali-silica reaction it has been found that the uniaxial tensile strength of the concrete was extremely low in relation to both the compressive strength and the splitting tensile strength. It is

  9. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  10. Experimental Study of Confined Low-, Medium- and High-Strength Concrete Subjected to Concentric Compression

    Directory of Open Access Journals (Sweden)

    Antonius

    2012-11-01

    Full Text Available An experimental study of 23 low-, medium- and high-strength concrete columns is presented in this paper. Square-confined concrete columns without longitudinal reinforcement were designed, and tested under concentric axial compression. The columns were made of concrete with a compressive strength ranging between 30 MPa and 70 MPa. The test parameters in the study are concrete compressive strengths and confining steel properties, i.e. spacing, volumetric ratios and configurations. The effects of these parameters on the strength and ductility of square-confined concrete were evaluated. Of the specimens tested in this study, the columns made with higher-strength concrete produced less strength enhancement and ductility than those with lower-strength concrete. The steel configurations were found to have an important role in governing the strength and ductility of the confined high-strength concrete. Moreover, several models of strength enhancement for confined concrete available in the literature turned out to be quite accurate in predicting the experimental results.

  11. Estimation of concrete compressive strength using artificial neural network

    Directory of Open Access Journals (Sweden)

    Kostić Srđan

    2015-01-01

    Full Text Available In present paper, concrete compressive strength is evaluated using back propagation feed-forward artificial neural network. Training of neural network is performed using Levenberg-Marquardt learning algorithm for four architectures of artificial neural networks, one, three, eight and twelve nodes in a hidden layer in order to avoid the occurrence of overfitting. Training, validation and testing of neural network is conducted for 75 concrete samples with distinct w/c ratio and amount of superplasticizer of melamine type. These specimens were exposed to different number of freeze/thaw cycles and their compressive strength was determined after 7, 20 and 32 days. The obtained results indicate that neural network with one hidden layer and twelve hidden nodes gives reasonable prediction accuracy in comparison to experimental results (R=0.965, MSE=0.005. These results of the performed analysis are further confirmed by calculating the standard statistical errors: the chosen architecture of neural network shows the smallest value of mean absolute percentage error (MAPE=, variance absolute relative error (VARE and median absolute error (MEDAE, and the highest value of variance accounted for (VAF.

  12. REINFORCING FIBRES AS PART OF TECHNOLOGY OF CONCRETES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-07-01

    It was identified that the basalt fibre consumption rate influences both the strength and the density of products made of cellular concrete. The length of the basalt fibre impacts the strength of products. A nomogram was developed to identify the consumption rate of the basalt fibre driven by the strength of products and the Portland cement consumption rate. The authors also studied the influence of the consumption rate of Portland cement and basalt fibre onto the structural quality ratio of the foamed fibre concrete.

  13. The Spalling of Geopolymer High Strength Concrete Wall Panels and Cylinders Under Hydrocarbon Fire

    Directory of Open Access Journals (Sweden)

    Mohd Ali Ahmad Zurisman

    2016-01-01

    Full Text Available Concrete structures were designed to withstand various types of environment conditions from mild to very severe conditions. Fire represents one of the most severe environmental conditions to which concrete structures may be subjected especially in close conduct structure like tunnel. This paper focuses on the spalling of geopolymer high strength concrete exposed to hydrocarbon fire for minimum 2 hours. From the fire test, geopolymer concrete can be classified as a good fire resistance construction materials based on spalling performance of high strength concrete when exposed to hydrocarbon fire. A maximum of 1% (excluding water moisture loss of spalling recorded for high strength geopolymer concrete wall panel. No explosive spallings were observed for high strength geopolymer concrete.

  14. Improving Fatigue Strength of polymer concrete using nanomaterials.

    Science.gov (United States)

    2016-11-30

    Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...

  15. Effect of shear span, concrete strength and strrup spacing on behavior of pre-stressed concrete beams

    International Nuclear Information System (INIS)

    Ahmad, S.; Bukhari, I.A.

    2007-01-01

    The shear strength of pre-stressed concrete beams is one of the most important factors to be considered in their design. The available data on shear behavior of pre-tensioned prestressed concrete beams is very limited. In this experimental study, pre-tensioned prestressed concrete I-beams are fabricated with normal and high- strength concretes, varying stirrup spacing and shear span-to-depth ratios. 1Wenty one I-beam specimens that are 300 mm deep and 3745-4960mm long are tested up to failure while deflections, cracking pattern, cracking and failure loads were recorded. The research results are compared with ACI 318-02 and Structure Analysis Program, Response 2000. It was observed that with the decrease in concrete strength, failure mode of prestressed concrete beams changes from flexure shear to web shear cracking for values of shear span-to-depth ratio less than 4.75. Increase in stirrup spacing decreased the effectiveness of stirrups in transmitting shear across crack as a result of which failure mode is changed to web shear cracking especially for beams with lower values of shear span-to-depth ratios. ACI code underestimates the shear carrying capacity of prestressed concrete beams with lower values of shear span- to-depth ratios. Response 2000 can be used more effectively in predicting shear behavior of normal strength prestressed concrete beams. (author)

  16. ESTIMATION OF IN-PLACE STRENGTH OF CONCRETE WITH COMBINED NONDESTRUCTIVE METHOD

    Directory of Open Access Journals (Sweden)

    İsa YÜKSEL

    2003-02-01

    Full Text Available This paper presents estimation of concrete strength by the SONREB method that is a combined non-destructive testing method and application of the method on a reinforced concrete building structure. Comparison of results of both destructive and non-destructive test results is introduced also. The SONREB method is based on evaluation of the combination of Schmidt hammer readings and ultrasonic pulse velocity measurements. The measured material properties are correlated with compressive strength of concrete by using special iso-strength curves established in the laboratory. The strength is also checked with strength of cores drilled from suitable positions on the building. In-place strength of concrete giving without any structural damage to the structure could be estimated rapidly and approximately with the SONREB method. It was concluded that the special isostrength curves increase sensitivity of in-place compressive strength estimation of concrete.

  17. Compressive strength of concrete by partial replacement of cement with metakaolin

    Science.gov (United States)

    Ganesh, Y. S. V.; Durgaiyya, P.; Shivanarayana, Ch.; Prasad, D. S. V.

    2017-07-01

    Metakaolin or calcined kaolin, other type of pozzolan, produced by calcination has the capability to replace silica fume as an alternative material. Supplementary cementitious materials have been widely used all over the world in concrete due to their economic and environmental benefits; hence, they have drawn much attention in recent years. Mineral admixtures such as fly ash, rice husk ash, silica fume etc. are more commonly used SCMs. They help in obtaining both higher performance and economy. Metakaolin is also one of such non - conventional material, which can be utilized beneficially in the construction industry. This paper presents the results of an experimental investigations carried out to find the suitability of metakaolin in production of concrete. In the present work, the results of a study carried out to investigate the effects of Metakaolin on compressive strength of concrete are presented. The referral concrete M30 was made using 43 grade OPC and the other mixes were prepared by replacing part of OPC with Metakaolin. The replacement levels were 5%, 10%, 15% and 20%(by weight) for Metakaolin. The various results, which indicate the effect of replacement of cement by metakalion on concrete, are presented in this paper to draw useful conclusions.

  18. Basic properties of high strength concrete using admixture; Bifunmatsu konwazai wo mochiita chokokyodo concrete no kihon seijo

    Energy Technology Data Exchange (ETDEWEB)

    Kono, M.; Okihashi, T.; Uenishi, T. [Okumura Corp., Osaka (Japan)

    1997-07-31

    For high strength concrete of Fc=100N/mm{sup 2} class, the effect of fine powder admixtures on reduction of concrete viscosity and improvement of strengthening property was studied. The experiment was carried out under different kinds and displacement rates of admixtures, and different water/binder ratios using specific metakaolin and silica fume as admixtures. The test items are as follows: measurement of pore size profiles, adiabatic temperature rise test, and strength test of temperature follow-up cured specimens simulating structural members. As a result, the viscosity of fresh concrete largely decreased by adding silica fume, while increased by adding specific metakaolin. The compressive strength of concrete mixed with silica fume was equal to or higher than that of non-mixture concrete. On the contrary, concrete mixed with specific metakaolin was remarkably strong in the early stage, however, growth of the strength decreased with an increase in age, and the strength was lower than that of non-mixture concrete after 91 days. 3 refs., 12 figs., 6 tabs.

  19. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  20. Dynamic Fracture of Concrete. Part 2

    Science.gov (United States)

    1990-02-14

    Instrumented Drop Weight Test .................. 13 .3 Charpy Impact Test .......................... 14 .4 Modified Charpy Test ............................ 14...reinforced concrete and conventionally reinforced concrete. 2.3.3 Charpy Impact Test The Charpy impact test is a standard impact test recommended for...metals [361 . The impact resistance is measured by the rebound height of the pendulum after impact of a notched beam. The reliability of the method

  1. Durable high strength cement concrete topping for asphalt roads

    Science.gov (United States)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  2. Phase I: Evaluation of Low Flexural Strength for Northern Nevada Concrete Paving Mixtures

    Science.gov (United States)

    2017-07-01

    Production paving grade concrete in Northern Nevada having acceptable strength is universally acknowledged to be difficult; however understanding why this is true remains elusive. Current practice is to meet flexural strength requirements by using mi...

  3. Optimization of fly ash content in concrete. Part I: Non-air-entrained concrete made without superplasticizer

    Energy Technology Data Exchange (ETDEWEB)

    N. Bouzoubaa; B. Fournier [International Centre for Sustainable Development of Cement and Concrete (ICON), Ottawa, ON (Canada)

    2003-07-01

    This paper outlines the preliminary results of a research project aimed at optimizing the fly ash content in concrete. Such fly ash concrete would develop an adequate 1-day compressive strength and would be less expensive than the normal Portland cement concrete with similar 28-day compressive strength. The results show that, in a normal Portland cement concrete having a 28-day compressive strength of 40 MPa, it is possible to replace 50% of cement by a fine fly ash (about 3000 cm{sup 2}/g) with a CaO content of about 13%, yielding a concrete of similar 28-day compressive strength. This concrete can be designed to yield an early-age strength of 10 MPa and results in a cost reduction of about 20% in comparison to the control concrete. In a case of a coarser fly ash (about 2000 cm{sup 2}/g) with a CaO content of about 4%, substitution levels of cement by this ash could be from 30% to 40%. This concrete yields a 1-day compressive strength of 10 MPa and a 28-day compressive strength similar to that of the control concrete. The total cost of this concrete is about 10% lower than that of the control concrete.

  4. Determining the in situ concrete strength of existing structures for assessing their structural safety

    NARCIS (Netherlands)

    Steenbergen, R.D.J.M.; Vervuurt, A.H.J.M.

    2012-01-01

    EN 13791 applies when assessing the in situ compressive strength of structures and precast concrete components. According to the code itself, it may be adopted when doubt arises about the compressive strength of a concrete. For assessing the structural safety of existing structures, however, the

  5. Compressive mechanical of high strength concrete (HSC) after different high temperature history

    Science.gov (United States)

    Zhao, Dongfu; Liu, Yuchen; Gao, Haijing; Han, Xiao

    2017-08-01

    The compression strength test of high strength concrete under different high-temperature conditions was carried out by universal testing machine. The friction surface of the pressure bearing surface of the specimen was composed of three layers of plastic film and glycerol. The high temperature working conditions were the combination of different heating temperature and different constant temperature time. The characteristics of failure modes and the developments of cracks were observed; the residual compressive strength and stress-strain curves were measured; the effect of different temperature and heating time on the strength and deformation of high strength concrete under uniaxial compression were analyzed; the failure criterion formula of the high strength concrete after high temperature under uniaxial compression was established. The formula of the residual compressive strength of high strength concrete under the influence of heating temperature and constant temperature time was put forward. The relationship between the residual elastic modulus and the peak strain and residual compressive strength of high strength concrete and different high temperature conditions is established. The quantitative relationship that the residual compressive strength decreases the residual elastic modulus decreases and the peak strain increases with the increase of heating temperature and the constant temperature time was given, which provides a reference for the detection and evaluation of high strength concrete structures after fire.

  6. An experimental study on flexural strength enhancement of concrete by means of small steel fibers

    OpenAIRE

    Abdoullah Namdar; Ideris Bin Zakaria; Azimah Bt Hazeli; Sayed Javid Azimi; Abdul Syukor Bin Abd. Razak; G. S. Gopalakrishna

    2013-01-01

    Cost effective improvement of the mechanical performances of structural materials is an important goal in construction industry. To improve the flexural strength of plain concrete so as to reduce construction costs, the addition of fibers to the concrete mixture can be adopted. The addition of small steel fibers with different lengths and proportion have experimentally been analyzed in terms of concrete flexural strength enhancement. The main objectives of the present study are related to the...

  7. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    Science.gov (United States)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  8. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  9. Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow

    Science.gov (United States)

    Hajek, Matej; Decky, Martin; Drusa, Marian; Orininová, Lucia; Scherfel, Walter

    2016-10-01

    Nowadays, it is necessary to develop new building materials, which are in accordance to the principles of the following provisions of the Roads Act: The design of road is a subject that follows national technical standards, technical regulations and objectively established results of research and development for road infrastructure. Foam concrete, as a type of lightweight concrete, offers advantages such as low bulk density, thermal insulation and disadvantages that will be reduced by future development. The contribution focuses on identifying the major material characteristics of foam concrete named Poroflow 17-5, in order to replace cement-bound granular mixtures. The experimental measurements performed on test specimens were the subject of diploma thesis in 2015 and continuously of the dissertation thesis and grant research project. At the beginning of the contribution, an overview of the current use of foam concrete abroad is elaborated. Moreover, it aims to determine the flexural strength of test specimens Poroflow 17-5 in combination with various basis weights of the underlying geotextile. Another part of the article is devoted to back-calculation of indicative design modulus of Poroflow based layers based on the results of static plate load tests provided at in situ experimental stand of Faculty of Civil Engineering, University of Žilina (FCE Uniza). Testing stand has been created in order to solve problems related to research of road and railway structures. Concern to building construction presents a physical homomorphic model that is identical with the corresponding theory in all structural features. Based on the achieved material characteristics, the tensile strength in bending of previously used road construction materials was compared with innovative alternative of foam concrete and the suitability for the base layers of pavement roads was determined.

  10. Strength and durability of concrete modified by sulfur-based impregnating compounds

    Directory of Open Access Journals (Sweden)

    MASSALIMOV Ismail Alexandrovich

    2015-06-01

    Full Text Available The aim of the research was to determine how sulfur-containing compound impregnation influences on concrete compressive strength and the impact resistance of concrete tiles. The results of these studies indicate that impregnation of vibropressed concrete paving tiles and concrete samples of dif-ferent strength classes with aqueous solutions based on calcium polysulfide leads to a significant increase of compressive strength and impact resistance. These data show that the strength of the products can be controlled by varying duration and frequency of the impregnation and by using pre-vacuum method. Impregnation with a solution of calcium polysulfide density of 1,23 g/cm³ can be recommended to increase strength of concrete products that are exposed to intense hydration and mechanical stress.

  11. Effect of Pelletized Coconut Fibre on the Compressive Strength of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Jaini Zainorizuan

    2016-01-01

    Full Text Available Foamed concrete is a controlled low density ranging from 400kg/m3 to 1800kg/m3, and hence suitable for the construction of buildings and infrastructures. The uniqueness of foamed concrete is does not use aggregates in order to retain low density. Foamed concrete contains only cement, sand, water and foam agent. Therefore, the consumption of cement is higher in producing a good quality and strength of foamed concrete. Without the present of aggregates, the compressive strength of foamed concrete can only achieve as high as 15MPa. Therefore, this study aims to introduce the pelletized coconut fibre aggregate to reduce the consumption of cement but able to enhance the compressive strength. In the experimental study, forty-five (45 cube samples of foamed concrete with density 1600kg/m3 were prepared with different volume fractions of pelletized coconut fibre aggregate. All cube samples were tested using the compression test to obtain compressive strength. The results showed that the compressive strength of foamed concrete containing 5%, 10%, 15% and 20% of pelletized coconut fibre aggregate are 9.6MPa, 11.4MPa, 14.6MPa and 13.4MPa respectively. It is in fact higher than the controlled foamed concrete that only achieves 9MPa. It is found that the pelletized coconut fibre aggregate indicates a good potential to enhance the compressive strength of foamed concrete.

  12. Measurement and Improvement the Quality of the Compressive Strength of Product Concrete

    Directory of Open Access Journals (Sweden)

    Zohair Hassan Abdullah

    2018-01-01

    Full Text Available The research dealt with studying path technology to manufacture of concrete cubes according to specification design of Iraq to the degree of concrete C20 No. 52 of 1984, and in which sample was cubic shape and the dimensions (150 × 150 × 150 mm for each dimensions and the proportion of mixing of the concrete is (1:2:4 using in the casting floor. For concrete resistance required that achieve the degree of confidence of 100%, were examined compressive strength 40 samples of concrete cubes of age 28 days in the Labs section of Civil Department – Technical Institute of Babylon, all made from the same mixing concrete. Where, these samples classified within the acceptable tests were adopted in the implementation of investment projects in the construction sector. The research aims first, to measure the compressive strength of concrete cubes because the decrease or increase the compressive strength from specification design contributes to the failure of investment projects in the construction sector therefore, test was classified units that produced within damaged units. Second, to study an improvement the quality of compressive strength of concrete cubes. Results show that the proportion of damaged cubes are 0.00685, compressive strength was achieve confidence level 99.5% and producing of concrete cubes within the acceptable level of quality (3 Sigma. The quality of compressive strength was improved to good level use advanced sigma  levels. DOI: http://dx.doi.org/10.25130/tjes.24.2017.20

  13. Influence of MgO and Hybrid Fiber on the Bonding Strength between Reactive Powder Concrete and Old Concrete

    Directory of Open Access Journals (Sweden)

    Mo Jinchuan

    2016-01-01

    Full Text Available The reactive powder concrete (RPC was used as concrete repair material in this paper. The influence of steel fiber, steel fiber + MgO, and steel fiber + MgO + polypropylene fiber (PPF on the mechanical properties of RPC repair materials and the splitting tensile strength between RPC and old concrete was studied. Influences of steel fiber, MgO, and PPF on the splitting tensile strength were further examined by using scanning electronic microscopy (SEM and drying shrinkage test. Results indicated that the compressive and flexural strength was improved with the increasing of steel fiber volume fraction. However, the bonding strength showed a trend from rise to decline with the increasing of steel fiber volume fraction. Although MgO caused mechanical performance degradation of RPC, it improved bonding strength between RPC and existing concrete. The influence of PPF on the mechanical properties of RPC was not obvious, whereas it further improved bonding strength by significantly reducing the early age shrinkage of RPC. Finally, the relationship of drying shrinkage and splitting tensile strength was studied, and the equation between the splitting tensile strength relative index and logarithm of drying shrinkage was obtained by function fitting.

  14. Effect of Specimen Shape and Size on the Compressive Strength of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Sudin M.A.S.

    2014-03-01

    Full Text Available Lightweight concrete, in the form of foamed concrete, is a versatile material that primarily consists of a cement based mortar, mixed with at least 20% volume of air. Its dry density is typically below 1600 kg/m3 with a maximum compressive strength of 15MPa. The ASTM standard provision specifies a correction factor for concrete strength of between 14 and 42Mpa, in order to compensate for a reduced strength, when the aspect height-to-diameter ratio of a specimen is less than 2.0. However, the CEB-FIP provision specifically mentions a ratio of 150mm dia. × 300mm cylinder strength to 150 mm cube strength; though, both provision requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength to lightweight concrete (in this case, foamed concrete. The focus of this work is to study the effect of specimen size and shape on the axial compressive strength of concrete. Specimens of various sizes and shapes were cast with square and circular cross-sections i.e., cubes, prisms, and cylinders. Their compression strength behaviours at 7 and 28 days were investigated. The results indicate that, as the CEB-FIP provision specified, even for foamed concrete, 100mm cubes (l/d = 1.0 produce a comparable compressive strength with 100mm dia. × 200mm cylinders (l/d = 2.0.

  15. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    Science.gov (United States)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  16. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2015-11-01

    Full Text Available In this study, Wood Ash (WA prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45 and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20% including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM, strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  17. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    Directory of Open Access Journals (Sweden)

    C. S. Barbosa

    Full Text Available This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm². The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and strain analyses were made based on concrete’s modulus of elasticity obtained in the sample tests as well as on measured strain in the blocks’ face-shells and webs. A peculiar stress-strain analysis, based on the superposition of effects, provided an estimation of the block load capacity based on its deformations. In addition, a tentative method to preview the block deformability from the concrete mechanical properties is described and tested. This analysis is a part of a broader research that aims to support a detailed structural analysis of blocks, prisms and masonry constructions.

  18. The Compressive Strength of High-Performance Concrete and Ultrahigh-Performance

    Directory of Open Access Journals (Sweden)

    E. H. Kadri

    2012-01-01

    Full Text Available The compressive strength of silica fume concretes was investigated at low water-cementitious materials ratios with a naphthalene sulphonate superplasticizer. The results show that partial cement replacement up to 20% produce, higher compressive strengths than control concretes, nevertheless the strength gain is less than 15%. In this paper we propose a model to evaluate the compressive strength of silica fume concrete at any time. The model is related to the water-cementitious materials and silica-cement ratios. Taking into account the author's and other researchers’ experimental data, the accuracy of the proposed model is better than 5%.

  19. COMPRESSIVE STRENGTH AND MICROSTRUCTURE STUDIES ON CEMENT ADDED GEOPOLYMER CONCRETE

    OpenAIRE

    Vanga Renuka; Kolluri Dharani

    2017-01-01

    Geopolymer results from the reaction of a source material that is rich in silica and alumina with alkaline liquid. It is essentially cement free concrete. This material is being studied extensively and shows promise as a greener substitute for Ordinary Portland Cement concrete in some applications. Research is shifting from the chemistry domain to engineering applications and commercial production of geopolymer concrete. It has been found that geopolymer concrete has good engineering properti...

  20. STRENGTH STUDIES ON FLY ASH BASED MAGNETIC WATER CONCRETE

    OpenAIRE

    Sabbani Raghu; Ch. Kireety

    2017-01-01

    The usage of concrete is growing with the exploding scope of construction industry. This called for the extensive production and usage of cement. Among all the ingredients of concrete, cement has deleterious effects on environment. As the usage of concrete is inevitable, pre-emptive measures should be taken to reduce the usage of cement in concrete while maintaining the same engineering properties. To address this cause, research has been carried out on various constituents and parameters of ...

  1. comparative analysis of the compressive strength of concrete

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... The research was conducted to study the possibility of utilizing the waste over burnt bricks abun- ... To produce the same workability, the brick aggregates concrete requires greater proportion of water than the normal gravel aggregate concrete. Use of ... of concrete are usually obtained from mix design.

  2. Evaluation of workability and strength of green concrete using waste steel scrap

    Science.gov (United States)

    Neeraja, D.; Arshad, Shaik Mohammed; Nawaz Nadaf, Alisha K.; Reddy, Mani Kumar

    2017-11-01

    This project works on the study of workability and mechanical properties of concrete using waste steel scrap from the lathe industry. Lathe industries produce waste steel scrap from the lathe machines. In this study, an attempt is made to use this waste in concrete, as accumulation of waste steel scrap cause disposal problem. Tests like compressive test, split tensile test, NDT test (UPV test) were conducted to determine the impact of steel scrap in concrete. The percentages of steel scrap considered in the study were 0%, 0.5%, 1%, 1.5%, and 2% respectively by volume of concrete, 7 day, 28 days test were conducted to find out strength of steel scrap concrete. It is observed that split tensile strength of steel scrap concrete is increased slightly. Split tensile strength of Steel scrap concrete is found to be maximum with volume fraction of 2.0% steel scrap. The steel scrap gives good result in split tensile strength of concrete. From the study concluded that steel scrap can be used in concrete to reduce brittleness of concrete to some extent.

  3. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals

    Directory of Open Access Journals (Sweden)

    Junkyeong Kim

    2017-06-01

    Full Text Available Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  4. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    Science.gov (United States)

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  5. DETERMINATION OF ADHESIVE STRENGTH LAYER’S ROLLER COMPACTED CONCRETE THE METHOD AXIAL EXTENSION

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-07-01

    Full Text Available Roller compacted concrete for the construction of hydraulic and hydroelectric buildings is a composite material, which consists of a binder, fine aggregate (sand, coarse aggregate (gravel or crushed stone, water and special additives that provide the desired concrete workability and impart the required concrete performance properties. Concrete mixture is prepared at from concrete mixing plants strictly metered quantities of cement, water, additives and graded aggregates, whereupon they are delivered to the site laying Mixer Truck and sealing layers with each stack layer. The advantages of roller compaction technology should include the reduction of construction time, which allows fast commissioning construction projects, as well as reduce the amount of investment required. One of the main problems encountered in the process of roller compaction of the concrete mix is the need to provide the required adhesion strength between layers of concrete. This paper presents a method for determining the strength of adhesion between the concrete layers of different ages roller compacted concrete using axial tension. This method makes it possible to obtain objective and accurate results with a total thickness of layers of compacted concrete of up to 300…400 mm. Results from this method, studies have shown that the value of strength between the concrete layers in addition to the composition of the concrete and adhesion depends on the quality and the parallel end surfaces of the cylinder-models, which are mounted steel plates for axial tension, as well as the state of the contact surfaces of the concrete layer. The method can be used to determine the strength of interlayer adhesion in roller compacted concrete, which are used in the construction of dams and other hydraulic structures.

  6. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.

    Science.gov (United States)

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-08-07

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.

  7. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  8. THEORETICAL ASPECTS, EXPERIMENTAL INVESTIGATIONS AND EFFICIENCY IN USAGE OF HIGH-STRENGTH CONCRETE FOR BRIDGE STRUCTURES

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2014-01-01

    Full Text Available In Belarus concrete with strength up to 60 MPA is used for construction. At the same time high strength concrete with compressive strength above 60 MPA is widely used in all industrially developed countries. High- strength concrete is included in regulatory documents of the European Union and that fact has laid a solid foundation for its application. High strength concrete is produced using highly dispersed silica additives, such as micro-silica and plasticizers (super-plasticizers with a water/cement (w/c ratio not greater than 0.4.Theoretical aspects of high-strength concrete for bridge structures have been studied in the paper. The paper shows a positive impact of highly dispersed additives on structure and physico-mechanical properties of cement compositions, namely: reduction of total porosity of a cement stone in concrete while increasing volumetric concentration and dispersion of a filler; binding of calcium hydroxide with the help of amorphised micro-silica; increased activity of mineral additives during their thin shredding; acceleration of the initial stage of chemical hardening of cement compositions with highly dispersed particle additives that serve as centers of crystallization; “binder-additive” cluster formation due to high surface energy of highly dispersed additive particles; hardening of surface area between a cement stone and aggregates in concrete; high-strength concretes are gaining strength much faster than conventional concretes.Technology of preparation and composition of high-strength concrete using highly dispersed mineral additives and super-plasticizer has been developed in the paper. This concrete will ensure a higher density, wa- ter-and gas tightness, increased resistance to aggressive environment, reduced consumption of concrete and reinforcement, reduced transport and installation weight, increased initial strength, early easing of shutters and preliminary compression, increased length of bridge spans

  9. Comparison of fine particle colemanite and boron frit in concrete for time-strength relationship

    International Nuclear Information System (INIS)

    Volkman, D.E.; Bussolini, P.L.

    1992-01-01

    This paper reports that the element boron, when added to concrete, has proved effective in shielding neutron particles by absorbing the neutron and emitting a low-energy gamma ray. The various boron additives used with concrete can severely retard the set time and strength gain. An advantage to using small particle size boron is that the smaller grain size provides better boron disbursement within the concrete matrix to absorb neutrons. However, boron additives of powder consistency are usually not used due to the greater potential of forming chemical solutions that act as a retarder in the concrete. Research has shown that the amount of boron additives in concrete can be reduced significantly if fine grain particles can be successfully incorporated into the concrete matrix. The purpose of this study is to compare strength gain characteristics of concrete mixes containing various quantities of fine grain boron additive. The boron additive colemanite, a natural mineral, is compared with two brands of manufactured aggregate, boron frit. Concrete test cylinders are molded for testing the compressive strength of the mix after 4, 7, 28, and 56 days. Tested are five different quantities of colemanite as well as five comparable amounts of boron frit for each brand of the material. The test values are compared with a control concrete specimen containing no boron additive. Results of this study can be used to optimize the cost and effectiveness of boron additives in radiation shielding concrete

  10. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand

    Science.gov (United States)

    Umara Shettima, Ali; Ahmad, Yusof; Warid Hussin, Mohd; Zakari Muhammad, Nasiru; Eziekel Babatude, Ogunbode

    2018-03-01

    River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT) as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX) were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.

  11. Effect of presaturation and seawater on strength and durability of lightweight concrete

    International Nuclear Information System (INIS)

    Haque, M.N.

    2009-01-01

    The internal curing is provided, usually, by the use of some proprietary fine aggregates which provide sufficient water from within to promote the ongoing hydration of cement and hence result in a relatively high performance concrete. Two concretes, one total lightweight concrete (TLWC) and the second sand lightweight concrete (SLWC) of 28 day cube strength of approximately 40 MPa (5800 psi) were designed. A total of six mixes were cast out of these two concretes, 4-TLWC's and 2-SLWC's. The variation in the mixes was due to moisture condition of the aggregates and the use of seawater in mixing and curing of the concretes. The effect of these variations on the cube compressive strength, water permeability, sulphate and chloride content, depth of carbonation and shrinkage of these six concretes was studied. The presaturation of the lightweight aggregates (LWA's used do not seem to have improved the compressive strength, and water permeability of these concretes. The drying shrinkage strains of the concrete using pre saturated aggregates decreased considerably. The application of seawater in making and curing these LWC's increased the compressive strength by about 15%. (author)

  12. Green options for anti-corrosion of high strength concrete incorporating ternary pozzolan materials

    Directory of Open Access Journals (Sweden)

    Chen Yuan-Yuan

    2017-01-01

    Full Text Available This paper applied the densified mixture design algorithm(DMDA method by incorporating ternary pozzolans (fly ash, slag and silica fume; mix I and mix II to design high strength concrete (HSC mixtures with w/cm ratios from 0.24 to 0.30. Concrete without pozzolans was used as a control group (mix III, w/c from 0.24 to 0.30, and silica fume (5% was added as a substitute for part of the cement and set as mix IV. Experiments performed compressive strength, four-point resistance meter to measure the conductivity, and rapid chloride ion penetrability tests (ASTM C1202 were assessed the anti-corrosion. The life cycle inventory of LEED suggested by the PCA indicated the green options for cementitious materials. Results showed that mix I and II indicated cement used, CO2 reduction, raw materials and energy consumption all decreased more 50% than mix III, and mix IV was 5% less. The compressive strength and anti-corrosion levels showed that mix I and II were better than mix III and IV, and with ternary pozzolans could enhance the long-term durability (92 days due to a resistivity greater 20 KΩ-cm and a charge passed lower than 2000 Coulombs. HSC with an appropriate design could reduce the carbon footprint and improve the durability.

  13. Compressive Strength of Bottle-Shaped Compression Fields of Fiber Reinforced Concrete Members

    Directory of Open Access Journals (Sweden)

    Hussein Al-Quraishi

    2011-11-01

    Full Text Available Applying load to a structural member may result in a bottle-shaped compression field especially when the width of the loading is less than the width of bearing concrete members. At the Building and Construction Department – the University of Technology-Iraq, series tests on fibre reinforced concrete specimens were carried out, subjected to compression forces at the top and bottom of the specimens to produce compression field. The effects of steel fibre content, concrete compressive strength, transverse tension reinforcement, the height of test specimen, and the ratio of the width of loading plate to specimen width were studied by testing a total of tenth normal strength concrete blocks with steel fibre and one normal strength concrete block without steel fibres. Based on experimental results; all the test specimens failed with the splitting of concrete directly under the loading plate. Increased the uniaxial compressive strength of concrete increases the maximum bearing capacity of compressive stresses. The load-transverse deformation initially behaves linearly and shows some nonlinearity before failure. Addition of steel fibre to normal strength concrete or presence of transverse reinforcement, delay the reaching of maximum compressive stress after the presence of the first crack.

  14. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    Science.gov (United States)

    2016-08-01

    average tensile strain of up to 5 percent (500 times higher than conventional concrete) and compressive strengths of approximately 40 MPa (5.8 ksi...produce resistance functions for a given type of support conditions. Initial test methods used positive air pressure to apply loads to masonry walls...focused on testing concrete masonry unit (CMU) walls. The CMU walls were built in place. Water is introduced simultaneously on both sides of the panel

  15. Fracture Toughness and Impact Strength of High-Volume Class-F Fly Ash Concrete Reinforced with Natural San Fibres

    Directory of Open Access Journals (Sweden)

    Rafat SIDDIQUE

    2008-06-01

    Full Text Available Results of experimental investigation carried out to study the effects of addition of natural san fibres on the fracture toughness and impact strength of high-volume fly ash concrete are presented in this paper. San fibres belong to the category of ‘Natural Bast Fibres’, also known as ‘Sunn Hemp’. Its scientific (botanical name is Crotalaria Juncea. It is mostly grown in the Indian Sub-Continent, Brazil, Eastern and Southern Africa, and in some parts of the U.S.A. Initially, a control mixture without fly ash was designed. Then, cement was replaced with three percentages (30, 40 and 50% of low-calcium (Class F fly ash. Three percentages of san fibres (0.30, 0.60 and 0.90%, having 25 mm length, were used. Tests were performed for compressive strength, fracture toughness, and impact strength at the ages of 28 and 91 days.The test results indicated that the replacement of cement with fly ash decreased the compressive strength and fracture toughness, and had no significant effect on the impact strength of plain (control concrete. Addition of san fibres did not affect significantly the compressive strength, increased the fracture toughness and impact strength of high-volume fly ash concrete as the percentage of fibres increased.

  16. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  17. Influence of superplasticizer on microstructure of a 40 MPa strength concrete

    International Nuclear Information System (INIS)

    Teixeira, Sandra M.F.; Menezes, Raquel Maria R.O.; Figueiredo, Roberto B.; Aguilar, Maria Teresa P.; Franca, Fabricio Carlos; Bezerra, Augusto Cesar da S.

    2016-01-01

    The self compacting concrete has high fluidity and deformability. Studies analyze its performance through compressive strength, mortar content and / or water cement factor, which does not allow the evaluation of superplasticante influence the microstructure of these concretes. In this work, we evaluated the influence of superplasticizer comparing the phases present in a self-compacting concrete 40 MPa and at a same conventional compressive strength, same water / cement and mortar content. Therefore, scanning techniques were employed by electron microscope low vacuum using backscattered electrons and thermal analysis. The observed results show no significant differences in the microstructure of the two composites, ie the superplasticizer does not alter the microstructure of the self-compacting concrete. However, thermal analysis indicates that the present self-compacting concrete greater calcium hydroxide content which may suggest a lower content of such dry cement concrete. (author)

  18. Effect of Waste Steel Shavings on Bond Strength between Concrete and Steel Reinforcement

    Science.gov (United States)

    Osifala, K. B.; Salau, M. A.; Obiyomi, T. H.

    2017-10-01

    The investigation was carried out to know the effect of waste steel shavings on the bond resistance between concrete and steel reinforcement using 16mm and 20mm diameter high-yield reinforcing bars. Eighty (80) RILEM specimens, made up of forty (40) cubes each of 160mm x 160mm x 160mm and 200mm x 200mm x 200mm were cast and tested with varying percentages of waste steel shavings, (0%, 1%, 1.5%, and 2%, by weight of concrete) using pull out arrangement. The normal concrete (with no steel shavings) which are ten (10) in number were used as reference. Also, twelve (12) 150mm concrete cubes were cast to monitor the compressive strength of concrete. The results showed that bond strength increased with the addition of 2%, (by weight of concrete), of waste steel shavings.

  19. Deformation Characteristics of Ultrahigh-Strength Concrete under Unrestrained and Restrained States

    Directory of Open Access Journals (Sweden)

    Joo-Ha Lee

    2017-01-01

    Full Text Available As structures like skyscrapers and long-span bridges become larger, the demand for higher strength of concrete is increasing. However, research on ultrahigh-strength concrete (UHSC is still in its infancy. In particular, UHSC is known to have a considerably higher level of autogenous shrinkage than normal strength concrete (NSC, and the possibility of cracking at an early age is very high. Therefore, in this study, shrinkage and cracking behavior of high-strength concrete (HSC, very-high-strength concrete (VHSC, and UHSC were evaluated through unrestrained shrinkage test and restrained shrinkage test (ring test. The primary experimental variables are the compressive strength level according to the water-to-binder ratio (W/B, fly ash content, and concrete specimen thickness. The experimental results demonstrated that the drying shrinkage decreased as the W/B ratio and the fly ash replacement ratio increased, and the restraint cracks appeared to be the earliest and most brittle in the UHSC with the smallest W/B. Increased concrete thickness and incorporation of fly ash were observed to inhibit crack initiation effectively.

  20. Experimental Investigation into Pull-Out Strength of Foamed Concrete Using Different Types of Screw

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available This study focuses on the results of the comprehensive strength test to quantify the mechanical properties of the screw’s pullout strength on foamed concrete. Foamed concrete is classified as lightweight concrete that been produced by cement paste or mortar in which air-voids are entrapped in the mortar by a suitable foaming agent. These days, the use of foamed concrete has been recognized in the construction industry as wall blocks, wall panels and also material floor and roof screeds. Hence, the applications of this material should be maximized as it is multi-functional. As we know, the use of screws on the wall or ceiling is common in a building. The objective of this research is to examine and determine the pullout strength of various properties and types of screws in lightweight foamed concrete with various densities that may depict the best result of the pullout strength on foamed concrete. To visualize the different results of pullout strength, screws with and without wall plug will be used as well. The pullout strength will be tested using the Universal Testing Machine where it shall measure the ultimate load of the screws attached to the foamed concrete may resist.

  1. Increasing the mechanical strength of fine-grained concrete by introducing finely dispersed mineral additives

    Science.gov (United States)

    Khakimullina, Svetlana; Il'ina, Liliia; Mukhina, Irina

    2017-01-01

    The paper investigates the influence of particles size and the quantity of mineral additives, both active and inert, on the strength of fine-grained concrete. Concentrations of fine silica fume and diopside for maximum hardening of fine-grained concrete with a given size of input particles were determined experimentally. The strength properties of fine-grained concrete were detected by testing the sample beams with dimensions of 40×40×160 mm after 28 days of hardening under normal conditions. The results show that adding silica fume in the amount of 12% increases the compressive strength of concrete up to 55%; 7% of diopside with 52.5 microns dispersion - up to 46.7%; 3% of diopside with 8.9 microns dispersion - up to 45.8%. It was found that the greater the dispersion of inert mineral additive is, the less its optimum amount providing maximum hardening of fine-grained concrete is. Thus, the optimum ratio of these two mineral additives was determined to achieve the required strength. Adding 12% of silica fume and 7% of diopside with 52.5 microns dispersion provides the highest efficiency of the concrete strength properties. The fine concrete with such relation of additives has the strength 2.5 times greater compared to the control one.

  2. Effects of heating durations on normal concrete residual properties: compressive strength and mass loss

    Science.gov (United States)

    Nazri, Fadzli Mohamed; Shahidan, Shahiron; Khaida Baharuddin, Nur; Beddu, Salmia; Hisyam Abu Bakar, Badorul

    2017-11-01

    This study investigates the effects of high temperature with five different heating durations on residual properties of 30 MPa normal concrete. Concrete cubes were being heated up to 600°C for 30, 60, 90, 120 and 150 minutes. The temperature will keep constant for 30, 60, 90, 120 and 150 minutes. The standard temperature-time curve ISO 834 is referred to. After heating the specimen were left to cool in the furnace and removed. After cooling down to ambient temperature, the residual mass and residual compressive strength were observed. The obtained result shows that, the compressive strength of concrete decrease as the heating duration increases. This heating duration influence, might affects the loss of free water present and decomposition of hydration products in concrete. As the heating duration increases, the amount of water evaporated also increases led to loss in concrete mass. Conclusively, the percentage of mass and compressive strength loss increased as the heating duration increased.

  3. Effect of Temperature and Age of Concrete on Strength – Porosity Relation

    Directory of Open Access Journals (Sweden)

    T. Zadražil

    2004-01-01

    Full Text Available The compressive strengths of unsealed samples of concrete at the age of 180 days and have been measured at temperatures 20 °C, 300 °C, 600 °C and 900 °C. All of tests were performed for cold material. We compared our results with those obtained in [10] for the same type of concrete (age 28, resp. 90 days and measured at temperature ranging from 20 °C to 280 °C. Dependencies of compressive strength and porosity were correlated together and compared for the samples of age 28, 90 and 180 days. Behaviour of concrete of the age 90, resp. 180 days confirms generally accepted hypothesis that with increasing porosity strength of the concrete decreases. It has to be stressed out, howerer, that concrete samples of the age 28 days exhibit totally opposite dependency. 

  4. Influence of Temperature on Workability and Compressive Strength of Ordinary Concrete with High Calcium Fly Ash

    Directory of Open Access Journals (Sweden)

    Gołaszewski Jacek

    2017-06-01

    Full Text Available The rheological properties of fresh ordinary concrete are closely affected by temperature and time. The paper presents the study of consistency of fresh concrete mixtures made with Portland cement and cement with calcareous fly ash. Two types of admixtures were used. It was proven that the temperature has a clear effect on workability and compressive strength concrete. Influence on workability can be reduced by selecting the appropriate superplasticizer and cement.

  5. Direct Tensile Strength of Steel Fiber Reinforced Concrete by Using Clamping Grips

    OpenAIRE

    ISHIGURO, Satoru; NAKAYA, Mitsuo

    1985-01-01

    This report presents the tensile strength behavior of steel fiber reinforced concrete (SFRC). In this experimental work, direct tensile test by using clamping grips is carried out for the prismatic mortar and concrete specimens reinforced with steel fibers. The volume content of steel fibers varies from 1.0 percent to 2.0 percent of the concrete volume. Test results for different fiber content, fiber length, and specimen size are presented. The results are compared with the results of indirec...

  6. The effect of steel slag as a coarse aggregate and Sinabung volcanic ash a filler on high strength concrete

    Science.gov (United States)

    Karolina, R.; Putra, A. L. A.

    2018-02-01

    The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.

  7. CONTACT STRENGTH OF MECHANOACTIVATED FINE CONCRETES FROM GRANULATED BLAST-FURNACE SLAGS

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2014-10-01

    Full Text Available Purpose. Strengthening of fine concrete contact zone by mechanical processing of all components of the concrete mix in a mixer-activator and aggregate application with rough surface. Methodology. Rotary activator PC-06, developed by Scientific and Research Institute of Construction Technology, was used as a mixer-activator to achieve this purpose. Granulated blast furnace slag, having a more developed rough surface than sand, was used as fine aggregate. This apparatus provides intensive homogeneous mixing of concrete mix components, processing of raw materials (purification of their particles from contaminants, and mechanical destruction of granulated blast furnace slag surface layers and other components of the mix. Findings. During the preparation work, experimental research of new formations composition of fine concretes, using differential thermal and x-ray phase analysis methods, and physical-mechanical properties of fine concretes in accordance with the applicable standards of Ukraine, were carried out. It is established that the phase composition of new formations of fine concretes made from activated and non-activated mixes, is not changed. Their main difference is the size of generated effects and temperature intervals of occurrence of these peaks. Thus, in fine concretes made on the basis of the activated mixes, magnitude of effects is less, indicating a higher hydration degree of its components. Besides, TG curves of concrete specimens show that weight loss of gel calcium hydrosilicate of concrete from a mechanically activated mix is 0.5...0.7 % more than of concrete from a non-activated mix, which indicates a larger number of these formations in concrete from activated mixes. In general, concretes of different composition, made from a mix, processed in the mixer-activator, have higher mechanical strength. Originality. Ideas about the influence of mechanical activation of components of fine concrete mixes with forming humidity in a

  8. Diagonal Cracking and Shear Strength of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Zhang, Jin-Ping

    1997-01-01

    The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...

  9. Optimization of the compressive strength of five-component-concrete ...

    African Journals Online (AJOL)

    The paper presents the report of an investigation carried out to optimize some mechanical properties of a five-component-concrete mix. Mound soil (MS), randomly selected from some habitats of a common tropical specie of termites from Iyeke-Ogba, Nigeria was investigated as a fifth component in concrete. The work ...

  10. The Statistical Analysis of Relation between Compressive and Tensile/Flexural Strength of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Kępniak M.

    2016-12-01

    Full Text Available This paper addresses the tensile and flexural strength of HPC (high performance concrete. The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.

  11. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and : corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the pro...

  12. Effect of gamma-irradiation on strength of concrete for nuclear-safety structures

    Czech Academy of Sciences Publication Activity Database

    Vodák, F.; Trtík, K.; Sopko, V.; Kapičková, O.; Demo, Pavel

    2005-01-01

    Roč. 35, - (2005), s. 1447-1451 ISSN 0008-8846 Institutional research plan: CEZ:AV0Z10100521 Keywords : concrete * gamma - irradiation * strength * porosity Subject RIV: JF - Nuclear Energetics Impact factor: 0.727, year: 2005

  13. Shear Response of Fibrous High Strength Concrete Beams without Web Reinforcement

    Directory of Open Access Journals (Sweden)

    Gunneswara Rao, T.D.

    2011-01-01

    Full Text Available The use of steel fibers to improve the mechanical properties of concrete has been the ongoing interest in the research work. This paper deals with one such improvement in the mechanical property of concrete, which is the shear strength. In this paper an attempt has been made to study the improvement of shear strength of high strength concrete beams (70 MPa with different shear span to depth ratios (a/d = 1, 2, 3, and 4 and various dosages of fibers (0.4%, 0.8%, and 1.2% by volume of concrete, without shear reinforcement. The experimental work revealed that steel fiber volume has different influence at different shear span to depth ratios (a/d. The test results indicated an increase in the cracking shear resistance noticeably and ultimate shear strength moderately.

  14. Effect of re-vibration on the compressive strength and surface hardness of concrete

    Science.gov (United States)

    Koh, H. B.; Yeoh, D.; Shahidan, S.

    2017-11-01

    This paper reports the results of experimental investigations carried out on the effect of re-vibration on the compressive strength and surface hardness of normal weight concrete. Five different concrete mixes with varying water cement ratio ranging from 0.35 to 0.7 were prepared. The compacted concrete was subjected to re-vibration during the initial setting time period. During the initial setting time, the compacted concrete was re-vibrated at the time of 30 minutes up to 150 minutes of an interval of 30 minutes. The compressive strength and surface hardness of re-vibrated concrete were tested at the age of 35 days. The experimental results showed a significant increment of compressive strength and surface hardness in all re-vibrated concrete. In general, the maximum gain in compressive strength and surface hardness was when the re-vibration occurred at the initial setting time of 2 hours. The average increasing of the compressive strength of concrete by re-vibration is ranging from 3.5% to 21.8%.

  15. Properties of Fresh and Hardened High Strength Steel Fibres Reinforced Self-Compacted Concrete

    Directory of Open Access Journals (Sweden)

    Saad Ali Al-Ta'an

    2016-10-01

    Full Text Available Fresh and hardened properties of high strength steel fibrous self-compacted concrete were studied in this investigation. One reference high strength self-compacted concrete mix is used, with five percent (by weight of cement silica fume and eight percent of the cement replaced by limestone powder. Three steel fibres percentages by volume of concrete are used (0.4, 0.8, and 1.2. The used steel fibres were a shelled Harex type with irregular cross-section, equivalent diameter of 0.9278 mm, and 32 mm long. Super plasticizer was used to improve the workability and flow ability of the mixes. The test results showed that the presence of steel fibres decrease the flow ability, and increase the time of spreading, segregation, and passing ability of the fresh concrete. For the fibres percentages used, the fresh properties were within the recommended specifications for the self-compacted concrete. The test results showed an early strength development rate more than that for plain normal concrete due to the presence of the fine materials. As for normal concrete, the test results showed also that the increase in the splitting strength is more than the increase in the compressive strength due to the presence of the steel fibres. The brittle mode of failure of the plain unreinforced specimens changed to a ductile one due to the presence of the steel fibres.

  16. Production of high strength concrete by use of industrial by-products

    Energy Technology Data Exchange (ETDEWEB)

    Demirboga, Ramazan; Guel, Ruestem [Civil Engineering Department, Engineering Faculty, Atatuerk University, 25240- Erzurum (Turkey)

    2006-08-15

    Blast furnace slag aggregates (BFSA) were used to produce high-strength concretes (HSC). These concretes were made with total cementitious material content of 460-610kg/m{sup 3}. Different water/cement ratios (0.30, 0.35, 0.40, 0.45 and 0.50) were used to carry out 7- and 28-day compressive strength and other properties. Silica fume and a superplasticizer were used to improve BFSA concretes. Slump was kept constant throughout this study. Ten percent silica fume was added as a replacement for ordinary portland cement (OPC) in order to obtain HSC. The silica fume was used as highly effective micro-filler and pozzolanic admixture. Superplasticizer at dosages of 2%, 1.5%, 1%, 0.5% and 0% by OPC weight for 0.30, 0.35, 0.40, 0.45 and 0.50 w/c ratios, respectively, were adopted. Results showed that compressive strength of BFSA concretes were approximately 60-80% higher than traditional (control) concretes for different w/c ratios. These concretes also had low absorption and high splitting tensile strength values. It is concluded that BFSA, in combination with other supplementary cementitious materials, can be utilized in making high strength concretes. (author)

  17. Changes of strength characteristics of pervious concrete due to variations in water to cement ratio

    Science.gov (United States)

    Kovac, M.; Sicakova, A.

    2017-10-01

    Pervious concrete is considered to be a sustainable pavement material due to high water permeability. The experiment presented in this paper was aimed at study the influence of water to cement ratio on both the compressive and splitting tensile strength of pervious concrete. Typically, less water content in concrete mixture leads to less porosity of cement paste and thus it provides desirable mechanical properties. In case of conventional dense concrete, the lower is the water to cement ratio, the higher or better is the strength, density and durability of concrete. This behaviour is not quite clear in case of pervious concrete because of low amount of cement paste present. Results of compressive and splitting tensile strength of pervious concrete are discussed in the paper while taking into account values measured after 2 and 28 days of hardening and variations in water to cement ratio. The results showed that changes of water to cement ratio from 0.25 to 0.35 caused only slight differences in strength characteristics, and this applied to both types of tested strength.

  18. Influence of microwave irradiation of cement mixtures on the strength of cement stone and concrete

    Science.gov (United States)

    Dmitriev, M. S.; Dyakonov, M. V.; Krasnokutskiy, R. A.; Kolyaskin, A. D.; Dmitriev, S. A.

    2017-12-01

    The influence of microwave irradiation of mixtures on the strength of cement stone and concrete was studied. Created at NRNU MEPHI experimental installation for the investigation of microwave effects on imperfect dielectrics and semiconductor materials was the source of radiation. It is shown that on the twenty-eighth day after mixing, the strength of the cement stone increases by 1.2 times, and that of concrete by 2.2 times.

  19. Prediction of fire spalling in fibre-reinforced high strength concrete

    Directory of Open Access Journals (Sweden)

    Mugume R.B.

    2013-09-01

    Full Text Available This paper presents results of a study which investigates spalling in small scale specimens of fibre-reinforced high strength concrete exposed to elevated temperatures. A relationship to predict relative maximum pressures was developed, which takes into account parameters such as concrete strength, fibre type and fibre geometry. Also, a blowtorch spalling test method was utilized to investigate spalling in small scale specimens, and a clear relationship between relative maximum pore pressures and spalling was observed.

  20. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bars...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  1. High-strength self-consolidating concrete (SCC) and high-volume fly ash concrete (HVFAC) for infrastructure elements : implementation.

    Science.gov (United States)

    2014-08-01

    Because of its unique nature, high-strength self-consolidating concrete (HS-SCC) has the potential to significantly reduce costs : associated with transportation-related infrastructure, benefiting both MoDOT and the residents of Missouri. HS-SCC is a...

  2. Influence of loading-rate and steel fibers on the shear strength of ultra high performance concrete

    Directory of Open Access Journals (Sweden)

    Bratislav Lukic

    2015-01-01

    Full Text Available The paper describes quasi-static and dynamic experimental methods used to examine the confined shear strength of an Ultra High Performance Concrete, with and without the presence of steel fibers in the concrete composition. An experimental setup was created to investigate the concrete shear strength under quasi-static loading regime using a hydraulic press Schenk while dynamic shear strength was characterized by subjecting concrete samples to dynamic loading through a modified Split Hopkinson Pressure Bar. Both methods are based on a Punch Through Shear (PTS test with a well-instrumented aluminum passive confinement ring that allows measuring the change of radial stress in the shear ligament throughout the test. Firstly, four equally distributed radial notches have been performed in order to deduce the radial stress by suppressing a self-confinement of the sample peripheral part. However, by analyzing the strain gauge data from the confinement ring, it has been noticed that these were apparently insufficient, especially for fiber-reinforced samples, resulting in subsequently practicing eight radial notches through the sample peripheral part. The results obtained from both procedures are reported and discussed.

  3. Influence of loading-rate and steel fibers on the shear strength of ultra high performance concrete

    Science.gov (United States)

    Bratislav, Lukic; Pascal, Forquin

    2015-09-01

    The paper describes quasi-static and dynamic experimental methods used to examine the confined shear strength of an Ultra High Performance Concrete, with and without the presence of steel fibers in the concrete composition. An experimental setup was created to investigate the concrete shear strength under quasi-static loading regime using a hydraulic press Schenk while dynamic shear strength was characterized by subjecting concrete samples to dynamic loading through a modified Split Hopkinson Pressure Bar. Both methods are based on a Punch Through Shear (PTS) test with a well-instrumented aluminum passive confinement ring that allows measuring the change of radial stress in the shear ligament throughout the test. Firstly, four equally distributed radial notches have been performed in order to deduce the radial stress by suppressing a self-confinement of the sample peripheral part. However, by analyzing the strain gauge data from the confinement ring, it has been noticed that these were apparently insufficient, especially for fiber-reinforced samples, resulting in subsequently practicing eight radial notches through the sample peripheral part. The results obtained from both procedures are reported and discussed.

  4. Diagonal Cracking and Shear Strength of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Zhang, Jin-Ping

    1997-01-01

    The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...... found by the usual plastic theory, a physical explanation is given for this phenomenon and a way to estimate the shear capacity of reinforced concrete beams, based on the theory of plasticity, is described. The theoretical calculations are shown to be in fairly good agreement with test results from...

  5. Evaluation of in-place concrete strength by core testing.

    Science.gov (United States)

    2016-11-01

    The overall objective of the work contained in this report is to develop an ALDOT procedure to evaluate core strength results obtained under various conditions. Since there are many factors that influence the apparent strength of cores, strength corr...

  6. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    Science.gov (United States)

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  7. Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques.

    Science.gov (United States)

    Nagwani, Naresh Kumar; Deo, Shirish V

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm.

  8. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  9. Aspects of flexural behavior of high strength concrete elements with or without steel fibers

    Directory of Open Access Journals (Sweden)

    Gheorghe-Alexandru Bărbos

    2013-06-01

    Full Text Available Steel fiber reinforced high strength concrete (SFRHSC is concrete made of hydraulic cements containing fine or fine and coarse aggregate and discontinuous discrete steel fibers. In tension, SFRHSC fails only after the steel fiber breaks or is pulled out of the cement matrix. A more general and current approach to the mechanics of fiber reinforcing assumes a crack arrest mechanism based on fracture mechanics. In this model, the energy to extend a crack and debond the fibers in the matrix relates to the properties of the composite. The designers may best view SFRHSC as a concrete with increased strain capacity, impact resistance, energy absorption, fatigue endurance and tensile strength.

  10. Utilization of fly ash and ultrafine GGBS for higher strength foam concrete

    Science.gov (United States)

    Gowri, R.; Anand, K. B.

    2018-02-01

    Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.

  11. Effect of magnetic water on strength and workability of high performance concrete

    Directory of Open Access Journals (Sweden)

    Moosa Mazloom

    2016-09-01

    Full Text Available Nowadays, concrete is one of the most important and widely used human product. Improving concrete characteristics have always been one of the fundamental subjects for engineers. Improve the physical properties of water, as one of the main elements of concrete, is one way to improve the characteristics of the concrete. When water passes through the magnetic field, its physical quality has changed, it is called Magnetic water. This study examines the effect of the use of magnetized water (MW with a solenoid current-carrying, on the compressive strength and workability of high performance concrete. The variables of this study were the intensity of magnetic field, the silica fume replacement level and water to cement ratio in different mixes. The results show that using MW increases the workability of concrete about 36% in average.MW in combination with superplasticizer is more effective than MW on workability and compressive strength of concrete. MW had more positive effects on the samples without silica fume. Increasing the intensity of magnetic field improved the workability, 28 and 90 days compressive strength concrete.

  12. Corrosion of Steel in High-Strength Self-Compacting Concrete Exposed to Saline Environment

    Directory of Open Access Journals (Sweden)

    Hana A. Yousif

    2014-01-01

    Full Text Available A research work was carried out to investigate the effectiveness of high-strength self-compacting concrete (SF-R in controlling corrosion of embedded steel. Reinforced concrete cylinders and plain cubes were subjected to 5% NaCl solution. Slump flow, J-ring, V-funnel, compressive strength, electrical resistance, and electrochemical tests were conducted. Corrosion resisting characteristics of steel were examined by monitoring corrosion potential, polarization resistance, corrosion currents, and Tafel plots. The relationship between corrosion current density and corrosion potential was established. Results were compared with characteristics of a grade 40 MPa reference concrete (R and grade 70 MPa conventional self-compacting concrete (SP. Results indicated that at 270 days of exposure, the corrosion currents for steel in SF-R were 63- and 16-fold lower compared to those of steel in R and SP concretes, respectively. This concrete showed a considerable increase in electrical resistance and compressive strength of 96 MPa at 28 days of exposure. Relying on corrosion risk classification based on corrosion current densities and corrosion potentials, the steel in SF-R concrete is definitely in the passive condition. The splendid durability performance of steel in SF-R concrete linked to adorable self-compacting features could furnish numerous opportunities for future structural applications in severe environmental conditions.

  13. Research on strength attenuation law of concrete in freezing - thawing environment

    Science.gov (United States)

    Xiao, qianhui; Cao, zhiyuan; Li, qiang

    2018-03-01

    By rapid freezing and thawing method, the experiments of concrete have been 300 freeze-thaw cycles specimens in the water. The cubic compression strength value under different freeze-thaw cycles was measured. By analyzing the test results, the water-binder ratio of the concrete under freeze-thaw environments, fly ash and air entraining agent is selected dosage recommendations. The exponential attenuation prediction model and life prediction model of compression strength of concrete under freezing-thawing cycles considering the factors of water-binder ratio, fly ash content and air-entraining agent dosage were established. The model provides the basis for predicting the durability life of concrete under freezing-thawing environment. It also provides experimental basis and references for further research on concrete structures with antifreeze requirements.

  14. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  15. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  16. Strength Deterioration of Concrete in Sulfate Environment: An Experimental Study and Theoretical Modeling

    Directory of Open Access Journals (Sweden)

    Yingwu Zhou

    2015-01-01

    Full Text Available Sulfate corrosion is one of the most important factors responsible for the performance degradation of concrete materials. In this paper, an accelerated corrosion by a sulfate solution in a dry-wet cycle was introduced to simulate the external sulfate corrosion environment. The deterioration trend of concrete strength and development law of sulfate-induced concrete corrosion depth under sulfate attacks were experimentally studied. The damaged concrete section is simply but reasonably divided into uncorroded and corroded layers and the two layers can be demarcated by the sulfate corrosion depth of concrete. The accelerated corrosion test results indicated that the strength degradation of concrete by sulfate attack had a significant relation with the corrosion depth. Consequently, this paper aims to reveal such relation and thus model the strength degradation law. A large amount of experimental data has finally verified the validity and applicability of the models, and a theoretical basis is thus provided for the strength degradation prediction and the residual life assessment of in-service concrete structures under sulfate attacks.

  17. An Experimental Study on Strength and Durability for Utilization of Fly Ash in Concrete Mix

    Directory of Open Access Journals (Sweden)

    Abdulhalim Karaşin

    2014-01-01

    Full Text Available The intention of this study is to discuss the variation of concrete exposed to high sulfate environment of a specific region with respect to strength and durability. Secondly, it is aimed to discuss the possibility of reducing the cement amount in construction of concrete structures. For this purpose, laboratory tests were conducted to investigate compressive strength and sulfate resisting capacity of concrete by using 20% fly ash as mineral additives, waste materials, instead of cement. As a case study the soil samples, received from Siirt Province areas which contain high sulfate rate, have been compared with respect to sulfate standard parameters of TS 12457-4. In such regions contact of underground water seep into hardened concrete substructures poses a risk of concrete deterioration. In order to determine the variation of strength and durability for concrete exposed to such aggressive environment, the samples were rested in a solution of Na2SO4 (150 g/lt in accordance with ASTM C 1012 for the tests. As a result of this experimental study, it is noted that the use of 20% fly ash, replacement material instead of cement, has no significant effect on compressive strength of concrete over time.

  18. Consideration on punching shear strength of steel-fiber-reinforced concrete slabs

    Directory of Open Access Journals (Sweden)

    Hyunjin Ju

    2015-05-01

    Full Text Available The flat plate slab system is widely used in construction fields due to its excellent constructability and savings in story height compared to the conventional beam-column moment-resisting system. Many researchers are, however, concerned about the punching shear failure that can happen in a two-way flat plate slab system, for which many shear-strength-enhancement techniques have been suggested. One of the effective alternatives is the application of steel-fiber-reinforced concrete. However, most previous studies on the punching shear strength of steel-fiber-reinforced concrete flat slabs had presented empirical formulas based on experimental results. On the other hand, theoretical models proposed in previous studies are difficult to be applied to practical situations. Therefore, in this study, a punching shear strength model of the steel-fiber-reinforced concrete two-way flat slab is proposed. In this model, the total shear resistance of the steel-fiber-reinforced concrete flat slab is expressed by sum of the shear contribution of steel fibers in the cracked tension region and that of intact concrete in the compression zone. A total of 91 shear test data on steel-fiber-reinforced concrete slab–column connection were compared to the analysis results, and the proposed model provided a good accuracy on estimating the punching shear strength of the steel-fiber-reinforced concrete flat slabs.

  19. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC Concrete

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone is widely used in the construction industry to produce Portland limestone cement (PLC concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  20. Analytical model for shear strength of end slabs of prestressed concrete nuclear reactor vessels

    International Nuclear Information System (INIS)

    Abdulrahman, H.O.; Sozen, M.A.; Schnobrich, W.C.

    1979-04-01

    The results are presented of an investigation of the behavior and strength of flat end slabs of cylindrical prestressed concrete nuclear reactor vessels. The investigation included tests of ten small-scale pressure vessels and development of a nonlinear finite-element model to simulate the deformation response and strength of the end slabs. Because earlier experimental studies had shown that the flexural strength of the end slab could be calculated using intelligible procedures, the emphasis of this investigation was on shear strength

  1. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  2. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Kovler, Konstantin

    2012-01-01

    The paper “Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks” deals with different aspects of using superabsorbent polymers (SAP) in concrete to mitigate self-desiccation. The paper concludes that “Addition of SAP...... leads to a significant reduction of mechanical strength”. The experimental results are in contradiction with several publications and question the appropriateness of using SAP as internal curing agent. However, the observed strength loss – and possibly also other observations – seems to be caused...... by overestimation of SAP water absorption. This results in an increase in water/cement ratio (w/c) for concrete with SAP. It is misleading to conclude on how SAP influences concrete properties, based on comparison of concrete mixes with SAP and reference concrete without SAP, if SAP mixes have higher w/c than...

  3. Evaluation of capillary pore size characteristics in high-strength concrete at early ages

    International Nuclear Information System (INIS)

    Igarashi, Shin-ichi; Watanabe, Akio; Kawamura, Mitsunori

    2005-01-01

    The quantitative scanning electron microscope-backscattered electron (SEM-BSE) image analysis was used to evaluate capillary porosity and pore size distributions in high-strength concretes at early ages. The Powers model for the hydration of cement was applied to the interpretation of the results of image analysis. The image analysis revealed that pore size distributions in concretes with an extremely low water/binder ratio of 0.25 at early ages were discontinuous in the range of finer capillary pores. However, silica-fume-containing concretes with a water/binder ratio of 0.25 had larger amounts of fine pores than did concretes without silica fume. The presence of larger amounts of fine capillary pores in the concretes with silica fume may be responsible for greater autogenous shrinkage in the silica-fume-containing concretes at early ages

  4. Study on conversion relationships of compressive strength indexes for recycled lightweight aggregate concrete

    Science.gov (United States)

    Zhang, Xiang-gang; Yang, Jian-hui; Kuang, Xiao-mei

    2017-01-01

    In order to study cube compressive strength and axial compressive strength of recycled lightweight aggregate concrete(RLAC), and conversion relationship between the two, with the replacement rate of recycled lightweight coarse aggregate as change parameters, 15 standard cube test specimens and 15 standard prism test specimens were produced to carry out the test. Then compressive strength of test specimens were measured, and the law of different replacement rate of recycled lightweight coarse aggregate influencing compressive strength of RLAC was analyzed, as the method of statistical regression adopted, the conversion relationships between of cube compressive strength and axial compressive strength of RLAC was obtained. It is shown that compressive strength of RLAC are lower than compressive strength of ordinary concrete; and that compressive strength of RLAC gradually decreases as replacement rate of recycled lightweight coarse aggregate increases; as well as, the conversion relationship between axial compressive strength and cube compressive strength of RLAC is different from ordinary concrete; based on the experimental data, conversion relationship formula between compressive strength indexes of RLAC was established. It is suggested that the replacement rate of recycled lightweight aggregate should be controlled within 25%.

  5. Experimental Study on the Compressive Strength of Big Mobility Concrete with Nondestructive Testing Method

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2012-01-01

    Full Text Available An experimental study of C20, C25, C30, C40, and C50 big mobility concrete cubes that came from laboratory and construction site was completed. Nondestructive testing (NDT was carried out using impact rebound hammer (IRH techniques to establish a correlation between the compressive strengths and the rebound number. The local curve for measuring strength of the regression method is set up and its superiority is proved. The rebound method presented is simple, quick, and reliable and covers wide ranges of concrete strengths. The rebound method can be easily applied to concrete specimens as well as existing concrete structures. The final results were compared with previous ones from the literature and also with actual results obtained from samples extracted from existing structures.

  6. Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN

    Directory of Open Access Journals (Sweden)

    E. Gülbandılar

    2017-01-01

    Full Text Available This study was designed to investigate with two different artificial neural network (ANN prediction model for the behavior of concrete containing zeolite and diatomite. For purpose of constructing this model, 7 different mixes with 63 specimens of the 28, 56 and 90 days splitting tensile strength experimental results of concrete containing zeolite, diatomite, both zeolite and diatomite used in training and testing for ANN systems was gathered from the tests. The data used in the ANN models are arranged in a format of seven input parameters that cover the age of samples, Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer and an output parameter which is splitting tensile strength of concrete. In the model, the training and testing results have shown that two different ANN systems have strong potential as a feasible tool for predicting 28, 56 and 90 days the splitting tensile strength of concrete containing zeolite and diatomite.

  7. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    Science.gov (United States)

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    Science.gov (United States)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  9. Influences of cement source and sample of cement source on compressive strength variability of gravel aggregate concrete.

    Science.gov (United States)

    2013-06-01

    The strength of concrete is influenced by each constituent material used in the concrete : mixture and the proportions of each ingredient. Water-cementitious ratio, cementitious materials, air : content, chemical admixtures, and type of coarse aggreg...

  10. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  11. Ternary blend cements concrete. Part II: Transport mechanism

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2007-03-01

    Full Text Available With today’s extensive use of cements containing two or more additions (blended cements, predicting concrete durability on the grounds of its strength alone leads to errors that may affect the service life of the resulting structures. Indeed, concrete of a given strength class can be made from different materials and proportions of widely varying durability. The present study evaluated water absorption, sorptivity and initial surface absorption in concrete made with unadditioned Portland, binary (limestone and ternary (limestone and granulated slag blend cement.En la actualidad con la utilización de cementos con dos o más adiciones (cementos compuestos predecir la durabilidad del hormigón a partir sólo de su resistencia conduce a cometer errores que pueden afectar la vida útil de las construcciones de hormigón. Pues es bien conocido que se pueden elaborar hormigones de una misma clase resistente con distintos materiales y proporciones, que podrán presentar un comportamiento durable totalmente diferente. En este trabajo se evalúa la absorción de agua, la capacidad de absorción, la absorción inicial superficial de hormigones elaborados con cemento Portland sin adición, cementos compuestos binario (caliza y ternario (escoria granulada y caliza.

  12. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending branch...... is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...

  13. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending branch...... is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...

  14. Compressive Strength of Post Fire Exposed Concrete Column Wrapped with Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Dwi Agus Setiawan Wardaya

    2017-09-01

    Full Text Available In this study, behaviour of reinforced concrete columns strengthened using fiber reinforced polymer (FRP; glass fiber and carbon fiber after fire exposure are discussed. After being exposed to fire as high as 720oC for 180 minutes, the specimens showed concrete and  reinforcement strength degradation, even though there was no carbonation. It was found that specimens wrapped by carbon fiber showed better compressive strength but less ductility compared to specimens wrapped by glass fiber. It was also found that the low initial compressive strength did not decrease FRP confinement effectiveness. Increase of wrapped concrete com­pressive strength was evident despite the low initial strength (<17 MPa. Strength esti­mation using ACI 440.2R-08 formula, which is originally for wrapped plain concrete without fire heat exposure, underestimated the compressive strength. In the proposed formula, the initial compressive strength (f’co should be adjusted by considering the modulus elasticity and strain limitation to have more precise estimation.

  15. High strength fibre reinforced concrete : Static and fatigue behaviour in bending

    NARCIS (Netherlands)

    Lappa, E.S.

    2007-01-01

    Recently, a number of high strength and ultra high strength steel fibre concretes have been developed. Since these materials seem very suitable for structures that might be prone to fatigue failure, such as bridge decks, the understanding of the static and fatigue bending behaviour is vital. In

  16. Influence of aggregate characteristics on the compressive strength of normal weight concrete

    International Nuclear Information System (INIS)

    Qureshi, M.A.; Aslam, M.

    2015-01-01

    Experimental investigations on the properties of concrete have been performed around the globe and their correlation is interpreted in relevant design codes. The structural behavior of cement concrete significantly relies on the material resources, properties of the aggregates constituting the concrete and the local construction practice. These factors vary from place to place. Therefore, the compressive strength of concrete prepared from the aggregates available in one locality may not be directly applicable to the other areas. The purpose of this study is to evaluate the Influence of locally available coarse aggregates on the compressive strength of normal weight concrete (NWC) prepared under local environmental conditions of district Khairpur Mir's, Sindh, Pakistan. The coarse aggregates were collected from five different quarries in the vicinity of Khairpur Mir's, Pakistan. In total; 180 cubes were tested. 10 different batches were formed in order to arrange individual characterization of concrete. Each batch was contained of 18 cubes and each quarry contains 2 batches making a total of 36 cube with four different ratios for each quarry. Dry density and compressive strength of concrete was calculated and a comparison is provided as a guideline for the future construction work in the local community. (author)

  17. The effect of various pozzolanic additives on the concrete strength index

    Science.gov (United States)

    Vitola, L.; Sahmenko, G.; Erdmane, D.; Bumanis, G.; Bajare, D.

    2017-10-01

    The concrete industry is searching continuously for new effective mineral additives to improve the concrete properties. Replacing cement with the pozzolanic additives in most cases has resulted not only in positive impact on the environment but also has improved strength and durability of the concrete. Effective pozzolanic additives can be obtained from natural resources such as volcanic ashes, kaolin and other sediments as well as from different production industries that create various by-products with high pozzolanic reactivity. Current research deals with effectiveness evaluation of various mineral additives/wastes, such as coal combustion bottom ash, barley bottom ash, waste glass and metakaolin containing waste as well as calcined illite clays as supplementary cementitious materials, to be used in concrete production as partial cement replacement. Most of the examined materials are used as waste stream materials with potential reactive effect on the concrete. Milling time and fineness of the tested supplementary material has been evaluated and effectiveness was detected. Results indicate that fineness of the tested materials has crucial effect on the concrete compressive strength index. Not in all cases the prolonged milling time can increase fineness and reactivity of the supplementary materials; however the optimal milling time and fineness of the pozolanic additives increased the strength index of concrete up to 1.16 comparing to reference, even in cases when cement was substituted by 20 w%.

  18. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeong Hwan; Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of); Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook [Sungshin Cement Co., Ltd, Sejong (Korea, Republic of)

    2016-12-15

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of {sup 137}Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m{sup -3}. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m{sup -3}, which was lower than the maximum unit weight condition by 123 kg·m{sup -3}, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

  19. ZrO2 nanoparticles' effects on split tensile strength of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In the present study, split tensile strength of self compacting concrete with different amount of ZrO2 nanoparticles has been investigated. ZrO2 nanoparticles with the average particle size of 15 nm were added partially to cement paste (Portland cement together with polycarboxylate superplasticizer and split tensile strength of the specimens has been measured. The results indicate that ZrO2 nanoparticles are able to improve split tensile strength of concrete and recover the negative effects of polycarboxylate superplasticizer. ZrO2 nanoparticle as a partial replacement of cement up to 4 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration. The increased the ZrO2 nanoparticles' content more than 4 wt. (%, causes the reduced the split tensile strength because of unsuitable dispersion of nanoparticles in the concrete matrix.

  20. Investigation of the rebound number and compressive strength of concrete with quarry dust as fine aggregate

    Directory of Open Access Journals (Sweden)

    Sinthaworn Suppachai

    2017-01-01

    Full Text Available This article presents the consideration of relation between compressive strength and rebound number of concrete cooperating with quarry dust as fine aggregate (natural river sand was replaced by quarry dust at the rate of 0%, 25%, 50%, 75% and 100% by weight of fine aggregate. The properties of the tested concrete samples are w/c = 0.6, maximum size of coarse aggregate is 20 mm., cement contents are between 308 and 348 kg/m3, slumps range from 0 to 100 mm., the 28-day compressive strength from 14 to 30 MPa. It was found that the rebound number results were affected by quarry dust especially the standard deviator of rebound number. The cube compressive strength at 28 days and the supplementary curve from the instruction manual were discussed. Moreover, the prediction equation is proposed to estimate the compressive strength of concrete cooperating with quarry dust as fine aggregate.

  1. The application of strength grouts to the rehabilitation of existing concrete gravity dams

    International Nuclear Information System (INIS)

    Birch, K.J.; Lo, K.Y.

    1998-01-01

    A new way of improving the stability of concrete dams on rock foundations was investigated involving the development of cohesion in the unbonded contacts of the dam foundation interface by specifically designed strength grouts, using Type 10 Portland cement and MC 900 cement. It was shown that cement based grouts, having low bleed at small viscosities, develop tensile strengths within concrete-rock contacts that exceed 0.4 MPa. This paper presents a methodology to assess the suitability of increasing the stability of a concrete gravity dam through the injection of these specifically-designed strength grouts into the dam-foundation interface. It was shown that strength grouting can be carried out using current grouting practices that are familiar to contractors and engineers. Similarly, it was demonstrated that adequate increases in the safety factor can be obtained even if field grouting achieves only a relatively low penetration ratio in the unbonded interface. 6 refs., 1 tab., 6 figs

  2. Changes in the Strength of the Polymer Concrete Used in the Electroplating Vats Under Operational Load

    Directory of Open Access Journals (Sweden)

    Radna Lidia

    2017-12-01

    Full Text Available Due to the strong and aggressive electrolyte media and thermal load, design of the electroplating vats in the copper industry often relies on the resin concrete. The article presents the results of the strength tests of the polymer concrete based on the "Derakane" resin, used in the construction of electroplating vats. Samples were taken from the real vats - both new and 17-year old. Strength tests included compression and bending tensile strength test. To assess the effect of operational conditions the tests were performed on the same-age vats, some of which were never used while others were subjected to the operational load. During the operation, the vats sustained load of the anode and cathode weights, cyclic electrolyte loading with a temperatures up to 60°C. As a result, it was noted that the operational conditions led to the increased strength of the polymer concrete material.

  3. Changes in the Strength of the Polymer Concrete Used in the Electroplating Vats Under Operational Load

    Science.gov (United States)

    Radna, Lidia; Sakharov, Volodymyr

    2017-12-01

    Due to the strong and aggressive electrolyte media and thermal load, design of the electroplating vats in the copper industry often relies on the resin concrete. The article presents the results of the strength tests of the polymer concrete based on the "Derakane" resin, used in the construction of electroplating vats. Samples were taken from the real vats - both new and 17-year old. Strength tests included compression and bending tensile strength test. To assess the effect of operational conditions the tests were performed on the same-age vats, some of which were never used while others were subjected to the operational load. During the operation, the vats sustained load of the anode and cathode weights, cyclic electrolyte loading with a temperatures up to 60°C. As a result, it was noted that the operational conditions led to the increased strength of the polymer concrete material.

  4. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete.

    Science.gov (United States)

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng

    2014-10-10

    With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration.

  5. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete

    Directory of Open Access Journals (Sweden)

    Wu-Jian Long

    2014-10-01

    Full Text Available With the extensive use of self-consolidating concrete (SCC worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration.

  6. Compressive and flexural strength of concrete containing palm oil biomass clinker and polypropylene fibres

    Science.gov (United States)

    Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.

    2017-11-01

    This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.

  7. Isolation and identification of bacteria to improve the strength of concrete.

    Science.gov (United States)

    Krishnapriya, S; Venkatesh Babu, D L; G, Prince Arulraj

    2015-05-01

    The objective of this research work is to isolate and identify calcite precipitating bacteria and to check the suitability of these bacteria for use in concrete to improve its strength. Bacteria to be incorporated in concrete should be alkali resistant to endure the high pH of concrete and endospore forming to withstand the mechanical stresses induced in concrete during mixing. They must exhibit high urease activity to precipitate calcium carbonate in the form of calcite. Bacterial strains were isolated from alkaline soil samples of a cement factory and were tested for urease activity, potential to form endospores and precipitation of calcium carbonate. Based on these results, three isolates were selected and identified by 16S rRNA gene sequencing. They were identified as Bacillus megaterium BSKAU, Bacillus licheniformis BSKNAU and Bacillus flexus BSKNAU. The results were compared with B. megaterium MTCC 1684 obtained from Microbial Type Culture Collection and Gene Bank, Chandigarh, India. Experimental work was carried out to assess the influence of bacteria on the compressive strength and tests revealed that bacterial concrete specimens showed enhancement in compressive strength. The efficiency of bacteria toward crack healing was also tested. Substantial increase in strength and complete healing of cracks was observed in concrete specimens cast with B. megaterium BSKAU, B. licheniformis BSKNAU and B. megaterium MTCC 1684. This indicates the suitability of these bacterial strains for use in concrete. The enhancement of strength and healing of cracks can be attributed to the filling of cracks in concrete by calcite which was visualized by scanning electron microscope. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. effect of curing methods on the compressive strength of concrete

    African Journals Online (AJOL)

    Department of Civil Engineering, Federal University of Technology Yola, Nigeria. aEmail: gadzymo@yahoo.com (corresponding author). Abstract. Different curing methods are .... ing materials are commonly used for concrete curing. [6] stated that as hydration progresses, the amount of water in mortar pores reduces and.

  9. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  10. A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    2016-01-01

    Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.

  11. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  12. Early-Age Concrete Strength Estimation Technique using Embedded Piezoelectric self-sensing impedance

    OpenAIRE

    Kim , Junkyeong; Kim , Ju-Won; Park , Seunghee

    2014-01-01

    International audience; Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical....

  13. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    Science.gov (United States)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  14. Increasing the compressive strength of portland cement concrete using flat glass powder

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, Edson Jansen Pedrosa de; Bezerra, Helton de Jesus Costa Leite; Politi, Flavio Salgado; Paiva, Antonio Ernandes Macedo, E-mail: edson.jansen@ifma.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranha (IFMA), Sao Luis, MA (Brazil). Dept. de Mecanica e Materiais

    2014-08-15

    This paper analyzes the compressive strength of Portland cement concrete in response to the incorporation of 5%, 10% and 20% of flat glass powder in place of sand, at w/c (water/cement) ratios of 0.50, 0.55 and 0.58. A statistical analysis of variance (ANOVA) was performed after 7, 14 and 28 days of curing. The compressive strength test results indicate that the concrete containing a w/c ratio of 0.50 can be used for structural applications, regardless of the waste glass content, as can that with a w/c ratio of 0.55 containing 20% of waste glass. We suggest that the use of flat glass powder in place of sand in the above mentioned percentages is feasible for the production of an environmentally appropriate and structurally applicable concrete. However, the concrete's fluidity and void content must be taken into account. (author)

  15. Use of triangular membership function for prediction of compressive strength of concrete containing nanosilica

    Directory of Open Access Journals (Sweden)

    Sakshi Gupta

    2015-12-01

    Full Text Available In this paper, application of fuzzy logic technique using triangular membership function for developing models for predicting compressive strength of concrete with partial replacement of cement with nanosilica has been carried out. For this, the data have been taken from various literatures and help in optimizing the constituents available and reducing cost and efforts in studying design to develop mixes by predefining suitable range for experimenting. The use of nanostructured materials in concrete can add many benefits that are directly related to the durability of various cementitious materials, besides the fact that it is possible to reduce the quantities of cement in the composite. Successful prediction by the model indicates that fuzzy logic could be a useful modelling tool for engineers and research scientists in the area of cement and concrete. Compressive strength values of concrete can be predicted in fuzzy logic models without attempting any experiments in a quite short period of time with tiny error rates.

  16. Topology optimization of reinforced concrete structures considering control of shrinkage and strength failure

    DEFF Research Database (Denmark)

    Luo, Yangjun; Wang, Michael Yu; Zhou, Mingdong

    2015-01-01

    -dependent force. Under multi-axial stress conditions, the concrete failure surface is well fitted by two Drucker-Prager yield functions. The optimization problem aims at minimizing the cost function under yield strength constraints on concrete elements and a structural shrinkage volume constraint. In conjunction......To take into account the shrinkage effect in the early stage of Reinforced Concrete (RC) design, an effective continuum topology optimization method is presented in this paper. Based on the power-law interpolation, shrinkage of concrete is numerically simulated by introducing an additional design...... with the adjoint-variable sensitivity information, the enhanced aggregation method is utilized to efficiently reduce the computational effort arisen from large-scale strength constraints. Numerical results reveal that the proposed approach can produce a reasonable solution with the least steel reinforcements...

  17. Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking

    Science.gov (United States)

    Gholamhoseini, Alireza

    2018-02-01

    Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.

  18. Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking

    Science.gov (United States)

    Gholamhoseini, Alireza

    2018-03-01

    Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.

  19. Evaluation of methods for estimating prestress losses in high-strength structural concrete

    OpenAIRE

    Carrillo, Mayren Yelitza Mata

    2014-01-01

    The purpose of this study was to evaluate the applicability of several current approaches used to estimate losses in prestressed concrete members with compressive strengths greater than 15ksi. The scope of the study focused on time-dependent losses for normal weight concrete bonded applications. The approaches evaluated were the PCI Design Handbook (2010) method, the AASHTO Specifications (2012) refined method, the PCI Bridge Design Manual (2003) time-dependent analysis using both the AASHTO ...

  20. Bridge across Guadalete river built of prefabricated beams of prestressed high strength concrete

    OpenAIRE

    Hue Garcia, Fernando; Ontañón Carrera, Guillermo; Rodriguez Santiago, Jesús

    1997-01-01

    Project and construction of a bridge across Guadalete river which construction project is based on the use of prefabricated prestressed beams of High Strength Concrete (HSC). Starting from the different project solutions, the description develops aspects such as foundations, piles, buttresses, beams, slabs, etc., and continues with prefabrication, calculus and construction. It also describes the tests carried out on the beams, and the concrete that has been used in this work.

  1. Experimental analysis of the concrete contribution to shear strength beams without shear reinforcement

    Directory of Open Access Journals (Sweden)

    M. S. Samora

    Full Text Available Abstract There are many theories and empirical formulas for estimating the shear strength of reinforced concrete structures without transverse reinforcement. The security factor of any reinforced concrete structure, against a possible collapse, is that it does not depend on the tensile strength of the concrete and the formation of any collapse is ductile, thus giving advance warning. The cracking from tensile stress can cause breakage of the concrete and should be avoided at all cost, with the intent that any such breakage does not incur any type of failure within the structure. In the present research study, experiments were performed in order to analyze the complementary mechanisms of the shear strength of lattice beams of reinforced concrete frames without transverse reinforcement. The experimental program entails the testing of eight frames that were subjected to a simple bending process. Two concrete resistance classes for analyzing compressive strength were considered on the construction of frames, 20 MPa and 40 MPa. To resist the bending stresses, the beams of the frames are designed in domain 3 of the ultimate limit states. Different rates and diameters of longitudinal reinforcement were used, 1.32% and 1.55% with 12.5 mm diameter and 16.0 mm in longitudinal tensile reinforcement. From the obtained results, an analysis was made of the criteria already proposed for defining the norms pertinent to the portion of relevant contribution for the shear resistance mechanisms of concrete without the use of transverse reinforcement and the influence of the concrete resistance and longitudinal reinforcement rates established in the experimental numerical results.

  2. Compressive Strength of Concrete made from Natural Fine Aggregate Sources in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    M. Abdullahi

    2017-12-01

    Full Text Available This work presented an investigation of concrete developed from five fine aggregate sources in Minna, Niger state, Nigeria. Tests conducted on the fine aggregate samples included specific gravity, sieve analysis, bulk density and moisture content. The concrete mix design was done using absolute volume method at various mix proportion of 1:2:4, 1:2:3 and 1:1:2 and water-cement ratios of 0.4, 0.45, 0.5, 0.55 and 0.6. The compressive strengths of concrete were determined at 28-day curing age. Test results revealed that the specific gravities of the aggregate were between 2.60 to 2.70, compacted bulk densities also ranged from 1505.18 to 1701.15kg/m3, loose bulk densities ranged from 1379.32 to 1478.17kg/m3, and moisture content ranged from 0.93 to 2.47%. All the fine aggregate samples satisfied the overall and medium grading limits for natural fine aggregates. The coarse aggregate used fairly followed the grading limit for aggregate size of 20 to 5 mm. The compressive strength of the concrete obtained using the aggregate samples A, B, C, D, and Eall within the ranges of 18.97 to 34.98 N/mm2. Statistical models were developed for the compressive strength of concrete as a function of water-cement ratio for various fine aggregate sources and mix proportions. The models were found to have good predictive the capabilities of the compressive strength of concrete for given water-cement ratio. The properties of fine aggregates and the resulting concrete characteristics showed that all the fine aggregate samples are suitable to be used for concrete production.

  3. Investigation into the strength of reinforced concrete containment shell

    International Nuclear Information System (INIS)

    Tokmachev, G.V.

    1989-01-01

    Results of testing of the PWR reactor containment shell model produced of reinforced concrete at 1:6 scale are discussed. The model is of a cylindrical form with a hemisphere dome and is constructed on a plane base. The model is equipped with 1200 units of instrumentation. Nitrogen leakage was observed with interval pressure growth. During the examination it was detected that a narrow vertical 0.5 m long break of a steel liner appeared to be the main type of destruction. The concrete surface was covered with a network of cracks their thickness being no more than 3 mm. The model has endured a three-fold design pressure and the destructions thereby have not been disastrous. According to evaluations the design destruction is going to take place at 0.9-1.3 MPa

  4. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    Two series of tests were carried out on concrete incorporating Ground Granulated Blast Furnace Slag (GGBFS) of “Mittal steel Annaba” (Algeria) with and without polypropylene fibre additions were realized. Samples were subjected to various temperatures (20°C , 100°C, 300 °C, 500°C and 700°C), a stability of one hour ...

  5. Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams

    OpenAIRE

    Khoa Tan Nguyen; Tuan Anh Le; Kihak Lee

    2016-01-01

    This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occ...

  6. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    OpenAIRE

    Barbosa, C. S.; Hanai, J.B.

    2009-01-01

    This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm²). The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and str...

  7. Optimization of a Hybrid-Fiber-Reinforced High-Strength Concrete

    Science.gov (United States)

    Ferreira, L. E. T.; de Hanai, J. B.; Ferrari, V. J.

    2016-07-01

    The fracture performance of a high-strength concrete reinforced with steel fibers was studied. Tests of notched beams subjected to fracture in the three-point bend configuration were conducted in accordance with RILEM recommendations TC 162-TDF. The R-curve concepts based on load-CMOD responses and the RILEM criteria were used for the performance evaluation of concrete beams reinforced with steel fiber mixtures and loaded up to fracture. Steel fibers of different types (regular and microfibers), in different proportions were employed as the reinforcement. The hybrid-fiber-reinforced concrete demonstrated a superior performance regarding their resistance and toughness properties as a result of interaction between the fibers.

  8. Effect Of Crumb Rubber On Compressive Strength Of Fly Ash Based Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Azmi Ahmad Azrem

    2016-01-01

    Full Text Available This study explores the effect of different percentage of crumb rubber on compressive strength of fly ash based geopolymer concrete. This research attempted to produce rubberized geopolymer concrete as an environmentally friendly, lightweight and durable product. Crumb rubber with ranged size from 73 μm to 375 μm was used in order to replace fine aggregates in geopolymer concrete. The replacements of crumb rubber were 0%, 5%, 10%, 15% and 20% in the fly ash based geopolymer concrete. The ratio of fly ash to alkaline activator was 2.5 and the ratio of Na2SiO3 to NaOH was fixed at 2.0. After the curing process, the strengths of the samples were tested on days 7 and 28. The results show that there is a reduction in all compressive strength for crumb rubber mixture, but still higher than normal rubberized concrete. Rubberized geopolymer concrete is a suitable solution in some non structural applications.

  9. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  10. Compressive and Tensile Strength of Expanded Polystyrene Beads Concrete

    OpenAIRE

    Subhan, Tengku Fitriani L

    2005-01-01

    Penelitian ini betujuan untuk mempelajari property dari beton ringan yang mengandung expanded polystyrene beads, yaitu kuat tekan (compressive strength) dan kuat tarik (tensile strength). Property tersebut kemudian dibandingkan dengan beton normal (beton tanpa expanded polystyrene beads) sebagai campuran pengontrol. Hasil penelitian ini menunjukkan bahwa jumlah polystyrene beads yang dimasukkan sebagai campuran beton mempengaruhi property beton; yaitu dapat menurunkan kuat tekan beton. Tetapi...

  11. Effect of mixing methods and aggregate type on strength of hardened concrete

    International Nuclear Information System (INIS)

    Elhadi, S.

    2006-01-01

    The objective of the research contained in this paper is to study the effect on strength of concrete which can be caused by changing method of concrete mix with or without changing aggregate crushing value under hand or mechanical compaction, and to compare results obtained when nondestructive testing techniques are used. It has been found that all methods of mix design are nearly identical in predicting the strength under a known value of w/c ratio. Up to strength of about 30 N/mm 2 , hand and mechanical compaction seems to be identical in all methods of concrete mixing. Important results regarding destructive and non-destructive testing has been drawn from the study.(Author)

  12. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  13. Coefficient αcc in design value of concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2016-01-01

    Full Text Available Coefficient αcc introduces the effects of rate and duration of loading on compressive strength of concrete. These effects may be partially or completely compensated by the increase in concrete strength over time. Selection of the value of this coefficient, in recommended range between 0.8 and 1.0, is carried out through the National Annexes to Eurocode 2. This paper presents some considerations related to the introduction of this coefficient and its value adopted in some European countries. The article considers the effect of the adoption of conservative value αcc=0.85 on design value of compressive and flexural resistance of rectangular cross-section made of normal and high strength concrete. It analyzes the influence of different values of coefficient αcc on the area of reinforcement required to achieve the desired resistance of cross-section.

  14. Nursing as concrete philosophy, Part II: Engaging with reality.

    Science.gov (United States)

    Theodoridis, Kyriakos

    2018-04-01

    This is the second paper of an essay in two parts. The first paper (Part I) is a critical discussion of Mark Risjord's conception of nursing knowledge where I argued against the conception of nursing knowledge as a kind of nursing science. The aim of the present paper (Part II) is to explicate and substantiate the thesis of nursing as a kind of concrete philosophy. My strategy is to elaborate upon certain themes from Wittgenstein's Tractatus in order to canvass a general scheme of philosophy based on a distinction between reality and the world. This distinction will be employed in the appropriation of certain significant features of nursing and nursing knowledge. By elaborating on the contrast between the abstract and the concrete, I will suggest that nursing may be seen as a kind of concrete philosophy, being primarily concerned with reality (and secondarily with the world). This thesis, I will argue, implies that philosophy is the kind of theory that is essential to nursing (which is not so much a theory than a certain kind of activity). © 2017 John Wiley & Sons Ltd.

  15. Mixture proportioning of fly ash-concretes based on mortar strength and flow data

    International Nuclear Information System (INIS)

    Nusrat, A.; Tahir, M.A.

    2008-01-01

    A method of mixture proportioning of fly ash concretes is presented. The method is based on the strength and flow data of a minimum of nine fly ash-cement mortars. The essence of the method is that three fly ash-binder ratios are to be combined with three water-binder ratios in the range of interest. The strength and water demand data are analyzed for constructing mixture proportion charts. The strength vs. water-binder ratio charts are prepared by down-scaling the 50-mm mortar strength to the 150-mm standard concrete cylinders. The method is illustrated with the help of examples. The trial mixtures proportioned using the proposed methods have reasonably achieved the 28 day target strengths. (author)

  16. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  17. Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash.

    Science.gov (United States)

    Golewski, Grzegorz Ludwik

    2017-12-06

    The paper presents the results of tests on the effect of the low calcium fly ash (LCFA) addition, in the amounts of: 0% (LCFA-00), 20% (LCFA-20) and 30% (LCFA-30) by weight of cement, on fracture processes in structural concretes. In the course of the experiments, compressive strength of concrete and fracture toughness for: I (tensile), II (in-plane shear) and III (anti-plane shear) models of cracking were measured. The tests determined the effect of age of concretes modified with LCFA on the analyzed parameters. The experiments were carried out after: 3, 7, 28, 90, 180 and 365 days of curing. Fracture toughness of concretes was determined in terms of the critical stress intensity factors: K I c S , K I I c , K I I I c and then a generalized fracture toughness K c was specified. The obtained results are significant for the analysis of concrete structures subjected to complex loading. The properties of composites with the additive of LCFA depend on the age of the concrete tested. Mature concretes exhibit high fracture toughness at 20% additive of LCFA, while the additive of LCFA in the amount of 30% weight of cement has a beneficial effect on the parameters of concrete only after half a year of curing.

  18. Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash

    Directory of Open Access Journals (Sweden)

    Grzegorz Ludwik Golewski

    2017-12-01

    Full Text Available The paper presents the results of tests on the effect of the low calcium fly ash (LCFA addition, in the amounts of: 0% (LCFA-00, 20% (LCFA-20 and 30% (LCFA-30 by weight of cement, on fracture processes in structural concretes. In the course of the experiments, compressive strength of concrete and fracture toughness for: I (tensile, II (in-plane shear and III (anti-plane shear models of cracking were measured. The tests determined the effect of age of concretes modified with LCFA on the analyzed parameters. The experiments were carried out after: 3, 7, 28, 90, 180 and 365 days of curing. Fracture toughness of concretes was determined in terms of the critical stress intensity factors: K I c S , K I I c , K I I I c and then a generalized fracture toughness K c was specified. The obtained results are significant for the analysis of concrete structures subjected to complex loading. The properties of composites with the additive of LCFA depend on the age of the concrete tested. Mature concretes exhibit high fracture toughness at 20% additive of LCFA, while the additive of LCFA in the amount of 30% weight of cement has a beneficial effect on the parameters of concrete only after half a year of curing.

  19. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J.

    1995-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  20. Interaction processes at the concrete-bentonite interface after 13 years of FEBEX-Plug operation. Part I: Concrete alteration

    Science.gov (United States)

    Alonso, María Cruz; García Calvo, José Luis; Cuevas, Jaime; Turrero, María Jesús; Fernández, Raúl; Torres, Elena; Ruiz, Ana I.

    2017-06-01

    This paper evaluates the modifications created in the concrete of the FEBEX shotcreted concrete plug after 13 years in the Grimsel Test Site conditions. During this time the concrete interacted with granite groundwater and also with bentonite porewater at the concrete/bentonite contact. Three long cores and 6 small cores from different parts of the concrete plug were evaluated. Mechanical performance was not modified during this time but hydraulic conductivity increased. The main transport mechanisms involved in the alteration of the concrete were groundwater flow from the host rock to the concrete and diffusion at the concrete/bentonite interface. Leaching occurred in the concrete parts near the host rock due to the action of granite water with further portlandite dissolution. The joint action of granite groundwater and bentonite porewater has caused many changes to the concrete matrix which was located at a depth lower than 5 cm from the bentonite-concrete interface. In the first centimetre C-S-H was significantly altered, incorporating elements like Al, S and Mg which change the initial microstructure by loss of compactness. The ettringite content was very high along the length of the concrete plug due to the shotcreting technique which made use of accelerator additives that caused the formation of ettringite. An increase in the ettringite content is also shown near the bentonite barrier. Therefore, sulphate diffused from the bentonite into the concrete, causing the massive formation of new ettringite. Chloride also diffused from the bentonite barrier deeper into the concrete by up to 4-5 cm from where the formation of Friedel's salt was detected.

  1. Investigation of the Strength Properties of Palm Kernel Shell Ash Concrete

    Directory of Open Access Journals (Sweden)

    F. A. Olutoge

    2012-01-01

    Full Text Available Many researchers have studied the use of agro-waste ashes as constituents in concrete. These agro-waste ashes are siliceous or aluminosiliceous materials that, in finely divided form and in the presence of moisture, chemically react with the calcium hydroxide released by the hydration of Portland cement to form calcium silicate hydrate and other cementitious compounds. Palm kernel shell ash (PKSA is a by-product in palm oil mills. This ash has pozzolanic properties that enables it as a partial replacement for cement but also plays an important role in the strength and durability of concrete. The use of palm kernel shell ash (PKSA as a partial replacement for cement in concrete is investigated. The objective of this paper is to alleviate the increasing challenges of scarcity and high cost of construction materials used by the construction industry in Nigeria and Africa in general, by reducing the volume of cement usage in concrete works. Collected PKSA was dried and sieved through a 45um sieve. The fineness of the PKSA was checked by sieving through 45um sieve. The chemical properties of the ash are examined whereas physical and mechanical properties of varying percentage of PKSA cement concrete and 100% cement concrete of mix 1:2:4 and 0.5 water-cement ratios are examined and compared. A total of 72 concrete cubes of size 150 × 150 × 150 mm³ with different volume percentages of PKSA to Portland cement in the order 0:100, 10:90 and 30:70 and mix ratio of 1:2:4 were cast and their physical and mechanical properties were tested at 7, 14, 21 and 28 days time. Although the compressive strength of PKSA concrete did not exceed that of OPC, compressive strength tests showed that 10% of the PKSA in replacement for cement was 22.8 N/mm2 at 28 days; which was quite satisfactory with no compromise in compressive strength requirements for concrete mix ratios 1:2:4. This research showed that the use of PKSA as a partial replacement for cement in concrete

  2. Experimental research on fire resistance of circular steel tube column filled with steel-reinforced high-strength concrete

    Directory of Open Access Journals (Sweden)

    ZHU Siyi

    2014-06-01

    Full Text Available Circular steel tube filled with steel-reinforced high-strength concrete is a new model of composite column design.The fire resistance of this composite column was investigated experimentally.One circular steel tube column filled with steel-reinforced high-strength concrete and one circular steel tube column filled with high- strength concrete were tested under axial load and fire.The test results show that the axial deformations of both kinds of the composite columns under the same load level have experienced three stages variation:the initial expansion deformation stage,the compression deformation gradual growth stage and the damage stage with the dramatic increasing in compression deformation.The second compression stable development stage of the circular steel tube filled with steel-reinforced high-strength concrete is much longer than that of the circular steel tube column filled with high-strength concrete.Thus the fire endurance of the circular steel tube filled with steel-reinforced high-strength concrete reaches 166 minutes while the fire endurance of the circular steel tube column filled with high-strength concrete only reaches 46 minutes.Thus encasig section steel can remarkably improve the fire endurance of the circular steel tube filled with high-strength concrete.The research results can provide beneficial reference for the fire design of circular steel tube composite columns filled with steel-reinforced concrete.

  3. Fatigue strength in polymer-reinforced concrete beams under cyclic loading

    International Nuclear Information System (INIS)

    Kwak, K.H.; Kim, J.J.

    1995-01-01

    This research focuses on producing an inexpensive polymer, and also on experiments for producing various colors of the high strength polymer concrete in concrete structures. At present, only a few tests on the shear behavior of polymer-reinforced concrete (PRC) beams have been reported. Even fewer experiments on fatigue loading have been carried out to date. In the current experiments, reinforced concrete beams with a polymer fraction are investigated. The beams in this study are reinforced with conventional stirrups at appropriate intervals, and are designed to take static and fatigue loads. The strength of the beams is measured and the behavior of the beams under each loading are observed to determine the advantages of adding a polymer to reinforced concrete beams. Since the shear-fatigue behavior of PRC beams is not well understood, the appropriate limit state model of PRC beams subjected to shear-fatigue loading is developed in this research by incorporating the uncertainties which are assessed based on fatigue test results. Using specimens of reinforced concrete or PRC beams with and without stirrups, compression and split cylinder tests, as well as fatigue tests, were performed. The static test data consist of load, displacement and strain measurements at specified reinforcement locations. In this study, mean regression S-N curves are obtained to investigate the shear-fatigue characteristics that the test results are distributed over a wide fatigue life range at the same fatigue load level but, in general, the mean shear-fatigue strength of PRC beams with stirrups is higher than for PRC beams without stirrups. In the static tests, it has been observed that the beams have the same fracture modes as those of reinforced concrete. In the fatigue tests, the PRC beams were observed to perform rather poorly with regard to impact load, but it can be said that the increase in strength and excellent repair performance of the beams were verified. (orig.)

  4. The influence of plain bar on bond strength of geopolymer concrete

    Science.gov (United States)

    Dewi, Evrianti Syntia; Ekaputri, Januarti Jaya

    2017-06-01

    This paper presents some results of experimental study of bond strength of plain bar embedded in geopolymer concrete. Fly ash class F was used as a raw material activated with alkali solutions. The combination of 8 Molar of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as alkali activators was examined in the mixture with ratio of 2.5 by weight. Nine cubical specimens with a size of 150 × 150 × 150 mm were prepared to measure bond strength and slip between reinforcement and concrete. The influential factors studied for the experimental investigation were the diameter of reinforcement bar, bond area, and concrete cover to diameter (c/d) of reinforcement. The result showed that the average bond strength decreased as the diameter of plain bar and bonded length were increased from 16 mm to 19 mm. However, the 12 mm showed the different result allegedly caused by the effect of bond area and the passive confined provided by the concrete. Based on several equations used to compare the bond strength, it is clear that deformed bar of 12 mm in diameter is potential to increase the bond strength.

  5. Evaluation of strength parameters of concrete-rock interface for dam safety assessment

    International Nuclear Information System (INIS)

    Lo, K.Y.; Ogawa, T.; Lukajic, B.; Tsui, K.K.; Wang, S.

    1990-01-01

    An intense program of assessment of safety of dams has been initiated by Ontario Hydro. Many of the existing dams are of the concrete gravity type founded on rock, with heights ranging from 10-72 m, constructed during the period 1910-1975. The methods of stability analysis of concrete dams on rock foundations used in several organizations, including Chinese organizations, the U.S Bureau of Reclamation, and the Federal Energy Regulatory Committee, are reviewed and compared. The design issues are discussed, with the shear strength of the rock-to-concrete contact identified as being critical. Laboratory tests for the measurement of the complete strength envelope for bonded contact from tensile to compressive stress region as well as for unbonded concrete have been developed. Based on the results of these strength measurements, analyses of the performance of existing dams are presented. The issue of the use of tensile strength and cohesion in stability analysis is addressed. It is shown that the well bonded contacts can sustain significant tension and neglecting the cohesion component of shear strength is, in general, unnecessarily conservative. 8 refs., 12 figs., 6 tabs

  6. Effect of tension lap splice on the behavior of high strength concrete (HSC beams

    Directory of Open Access Journals (Sweden)

    Ahmed El-Azab

    2014-12-01

    Full Text Available In the recent years, many research efforts have been carried out on the bond strength between normal strength concrete (NSC and reinforcing bars spliced in tension zones in beams. Many codes gave a minimum splice length for tension and compression reinforcement as a factor of the bar diameter depending on many parameters such as concrete strength, steel yield stress, shape of bar end, shape of bar surface and also bar location. Also, codes gave another restriction about the percentage of total reinforcement to be spliced at the same time. Comparatively limited attention has been directed toward the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. HSC has high modulus of elasticity, high density and long-term durability. This research presents an experimental study on the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. It reports the influence of several parameters on bond in splices. The parameters covered are casting position, splice length as a factor of bar diameter, bar diameter and reinforcement ratio. The research involved tests on sixteen simply-supported beams of 1800 mm span, 200 mm width and 400 mm thickness made of HSC. In each beam, the total tensile steel bars were spliced in the constant moment zone. Crack pattern, crack propagation, cracking load, failure load and mi span deflection were recorded and analyzed to study the mentioned parameters effect.

  7. Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures

    Directory of Open Access Journals (Sweden)

    S. Karthik

    2017-10-01

    Full Text Available In a quest to ensure sustainability of the future generation, various research attempts are focusing on the use of alternative materials for construction. In this study, bamboo strips were used as reinforcement in a concrete that was made with supplementary cementitious materials and partial replacement of river sand with manufactured sand (m-sand. Cement was partially replaced by 25% of combination of admixtures such as fly ash and Ground Granulated Blast Furnace Slag (GGBS. In alignment with standard requirements, concrete samples such as cubes, cylinders and beams were produced and tested at stipulated periods. Micro scale analysis was performed on the bamboo using SEM and FTIR, and its tensile strength was also determined. The results of the micro scale and tensile strength tests revealed that bamboo is a strong and ductile material. The study showed that a combination of fly ash, GGBS and m-sand used as alternative materials in concrete improves the compressive and split tensile strengths. Under flexural loading, performance of bamboo reinforced concrete (BRC made with alternative materials (fly ash, GGBS, and m-sand was significantly low compared to BRC containing conventional materials. In addition, BRC made with conventional materials developed more flexural strength than the SRC, with a variation representing 6.5% strength gain.

  8. Experimental Study on the Strength Characteristics and Water Permeability of Hybrid Steel Fibre Reinforced Concrete.

    Science.gov (United States)

    Singh, M P; Singh, S P; Singh, A P

    2014-01-01

    Results of an investigation conducted to study the effect of fibre hybridization on the strength characteristics such as compressive strength, split tensile strength, and water permeability of steel fibre reinforced concrete (SFRC) are presented. Steel fibres of different lengths, that is, 12.5 mm, 25 mm, and 50 mm, having constant diameter of 0.6 mm, were systematically combined in different mix proportions to obtain mono, binary, and ternary combinations at each of 0.5%, 1.0%, and 1.5% fibre volume fraction. A concrete mix containing no fibres was also cast for reference purpose. A total number of 1440 cube specimens of size 100∗100∗100 mm were tested, 480 each for compressive strength, split tensile strength, and water permeability at 7, 28, 90, and 120 days of curing. It has been observed from the results of this investigation that a fibre combination of 33% 12.5 mm + 33% 25 mm + 33% 50 mm long fibres can be adjudged as the most appropriate combination to be employed in hybrid steel fibre reinforced concrete (HySFRC) for optimum performance in terms of compressive strength, split tensile strength and water permeability requirements taken together.

  9. Experimental Study on the Strength Characteristics and Water Permeability of Hybrid Steel Fibre Reinforced Concrete

    Science.gov (United States)

    Singh, M. P.; Singh, S. P.; Singh, A. P.

    2014-01-01

    Results of an investigation conducted to study the effect of fibre hybridization on the strength characteristics such as compressive strength, split tensile strength, and water permeability of steel fibre reinforced concrete (SFRC) are presented. Steel fibres of different lengths, that is, 12.5 mm, 25 mm, and 50 mm, having constant diameter of 0.6 mm, were systematically combined in different mix proportions to obtain mono, binary, and ternary combinations at each of 0.5%, 1.0%, and 1.5% fibre volume fraction. A concrete mix containing no fibres was also cast for reference purpose. A total number of 1440 cube specimens of size 100∗100∗100 mm were tested, 480 each for compressive strength, split tensile strength, and water permeability at 7, 28, 90, and 120 days of curing. It has been observed from the results of this investigation that a fibre combination of 33% 12.5 mm + 33% 25 mm + 33% 50 mm long fibres can be adjudged as the most appropriate combination to be employed in hybrid steel fibre reinforced concrete (HySFRC) for optimum performance in terms of compressive strength, split tensile strength and water permeability requirements taken together. PMID:27379298

  10. Experimental Study on Ultrahigh Strength Concrete Filled Steel Tube Short Columns under Axial Load

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhou

    2017-01-01

    Full Text Available Based on the project of Modaoxi Bridge, an experimental study on the compressive behavior of ultrahigh strength concrete filled steel tube (UHSCFST short column was conducted. A total of 9 UHSCFST specimens were tested, and the cube strength (fcu of the core concrete reached 115.4 MPa. Main parameters were the confining factor (ξ=0.608, 0.919, and 1.015, steel ratio (α=14.67%, 20.02%, and 21.98%, and steel strength (fy = 349 MPa, 352 MPa, and 427 MPa. The axially loading test results showed that the visible damage of steel tube occurred under the ultimate load. The higher the confining effect, the less the damage features. And all specimens basically presented a drum-type failure mode. The confining effect of steel tube effectively changed the brittle failure mode of ultrahigh strength concrete (UHSC and tremendously improved the load bearing capacity and ductility of specimens. Moreover, the higher the steel ratio and steel strength of the specimens, the stronger the confining effect. Meanwhile the excellent mechanical properties will be obtained. Also it is recommended that the UHSCFST prefers Q345 or above strength steel tube to ensure sufficient ductility, and the steel ratio should be more than 20%. Furthermore, the confining effect of steel tubes can improve the ultimate bearing capacity of the ultrahigh strength CFST short columns.

  11. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  12. The Effect of Different Shape and Perforated rHDPE in Concrete Structures on Flexural Strength

    Science.gov (United States)

    Yuhazri, MY; Hafiz, KM; Myia, YZA; Jia, CP; Sihombing, H.; Sapuan, SM; Badarulzaman, NA

    2017-10-01

    This research was carried out to develop a reinforcing structure from recycled HDPE plastic lubricant containers to be embedded in concrete structure. Different forms and shapes of recycled HDPE plastic are designed as reinforcement incorporate with cement. In this study, the reinforcing structure was prepared by washing, cutting, dimensioning and joining of the waste HDPE containers (direct technique without treatment on plastic surface). Then, the rHDPE reinforced concrete was produced by casting based on standard of procedure in civil engineering technique. Eight different shapes of rHDPE in concrete structure were used to determine the concrete’s ability in terms of flexural strength. Embedded round shape in solid and perforated of rHDPE in concrete system drastically improved flexural strength at 17.78 % and 13.79 %. The result would seem that the concrete with reinforcing rHDPE structure exhibits a more gradual or flexible properties than concrete beams without reinforcement that has the properties of fragile.

  13. The influence of aggregates type on W/C ratio on the strength and other properties of concrete

    Science.gov (United States)

    Malaiskiene, J.; Skripkiunas, G.; Vaiciene, M.; Karpova, E.

    2017-10-01

    The influence of different types of aggregates and W/C ratio on concrete properties is analysed. In order to achieve this aim, lightweight (with expanded clay aggregate) and normal concrete (with gravel aggregate) mixtures are prepared with different W/C ratios. Different W/C ratios are selected by reducing the amount of cement when the amount of water is constant. The following properties of concrete have been determined: density, compressive strength and water absorption. Additionally, the statistical data analysis is performed and influence of aggregate type and W/C ratio on concrete properties is determined. The empirical equations indicating dependence between concrete strength and W/C and strength of aggregate are obtained for normal concrete and light-weight concrete.

  14. Drying of concrete. Part II: The drying time of concrete structures

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Christensen, Søren Lolk

    1998-01-01

    . In the paper the effects of the air content and the silica fume content on the drying time are investigated on two concrete mixes having different water/cement ratios. One concrete represents a normal concrete and the other represents a selfdesiccation concrete.......The composition of a concrete mix has a significant influence on the drying time to reach a given relative humidity in the concrete pores. Knowledge of the influence on the drying of a specific component in the concrete makes it possible to design a concrete mix having a predetermined drying time...

  15. Study on the compressive strength of fly ash based geo polymer concrete

    Science.gov (United States)

    Anand Khanna, Pawan; Kelkar, Durga; Papal, Mahesh; Sekar, S. K.

    2017-11-01

    Introduction of the alternative materials for complete replacement of cement in ordinary concrete will play an important role to control greenhouse gas and its effect. The 100% replacement of binder with fly ash (in integration with potassium hydroxide (koh) and potassium silicate (k2sio3) solutions) in concrete gives a significant alternative to conventional cement concrete. This paper focuses on the effect of alkaline solutions koh and k2sio3 on strength properties of fly ash based geo polymer concrete (fgpc); compared the strength at different molarities of alkaline activator koh at different curing temperature. Fly ash based geo polymer concrete was produced from low calcium fly ash, triggered by addition of koh and k2sio3 solution and by assimilation of superplasticizer for suitable workability. The molarities of potassium hydroxide as 8m, 10m and 12m molarities were used at various curing temperatures such as 60°c, 70 °c and 80°c. Results showed that for given proportion to get maximum compressive strength the optimum molarity of alkaline solution is 12m and optimum curing temperature is 70 °c.

  16. An experimental study on flexural strength enhancement of concrete by means of small steel fibers

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2013-10-01

    Full Text Available Cost effective improvement of the mechanical performances of structural materials is an important goal in construction industry. To improve the flexural strength of plain concrete so as to reduce construction costs, the addition of fibers to the concrete mixture can be adopted. The addition of small steel fibers with different lengths and proportion have experimentally been analyzed in terms of concrete flexural strength enhancement. The main objectives of the present study are related to the evaluation of the influence of steel fibers design on the increase of concrete flexural characteristics and on the mode of failure. Two types of beams have been investigated. The force level, deflection and time to failure of beams have been measured. The shear crack, flexural crack and intermediate shear-flexural crack have been studied. The steel fiber content controlled crack morphology. Flexural strength and time to failure of fiber reinforce concrete could be further enhanced if, instead of smooth steel fibers, corrugated fibers were used.

  17. Ultimate strength capacity of a square hollow section filled with fibrous foamed concrete

    Science.gov (United States)

    Amirah Azra Khairuddin, Siti; Rahman, Norashidah Abd; Jamaluddin, Norwati; Jaini, Zainorizuan Mohd; Ali, Noorwirdawati

    2017-11-01

    Concrete-filled sections used as building columns have become popular due to their architectural and structural elements. In recent years, there has been a renewed call for the improvement of materials used as concrete to fill the composite columns. Among these materials, foamed concrete has received great attention due to its structural characteristics and its potential as a construction material used in hollow sections. However, its behaviors as infill material in a hollow section, such as its strength and failure mode, should be investigated. In this study, experimental research was conducted to compare the experimental and theoretical values of its ultimate strength capacity. Eight specimens of hollow steel sections with two different thicknesses were filled with fibrous foamed concrete and then subjected to compression load. The obtained results were compared with those obtained from a hollow section with the same thicknesses, but were filled with normal foamed concrete. Results show that the ultimate strength capacity of the experimental value is the same as that of the theoretical value based on Eurocode 4. The largest percentage values between theoretical and experimental results for thicknesses of 2 and 4 mm are 58% and 55%, respectively.

  18. Strength and deformation characteristics of reinforced concrete shell elements subjected to in-plane forces

    International Nuclear Information System (INIS)

    Aoyagi, Yukio; Yamada, Kazuie.

    1983-01-01

    Reactor containment vessels have been made of steel so far, but since it was decided to adopt a prestressed concrete vessel in the Tsuruga No. 2 plant of Japan Atomic Power Co., the construction of the containment vessels made of prestressed concrete and reinforced concrete has been studied by various electric power companies. However in Japan, there is no standard for the design and construction of concrete structures of this kind. In the standard of foreign countries used for reference, the basis of the stipulation concerning the aseismatic design of concrete containment vessels is not distinct. In this study, the clarification of the strength and deformation when RC vessels are subjected to seismic force only or to internal pressure and seismic force was aimed at, and the result of the loading test by one or two-direction in-plane forces on RC shell elements was examined. Based on this, the method of estimating the strength and deformation of RC shell elements was proposed. The orthogonal reinforcement was adopted, and the strength of shell elements was determined by the yielding of reinforcing bars. (Kako, I.)

  19. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    Science.gov (United States)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  20. Advantage of using high strength self compacting concrete for precast product

    Science.gov (United States)

    Murdono, Ferryandy; Agustin, Winda; Soeprapto, Gambiro; Sunarso, Mukhlis

    2017-11-01

    According to the development in the world of construction, the need for precast concrete also increases. Now the day there are many products with narrow range reinforcement and difficult dimensions. The ordinary concrete is difficult to pour in a mold with narrow range reinforcement inside without vibrator because the concrete can't fill in the gaps between the bars. SCC (Self Compacting Concrete) is a concrete that precast concrete industry needs to. The using of SCC also supports the green construction through the cement reducing and reducing the use of vibrator that requires not less energy. This research is using EFNARC standard as a condition of admission SCC (filling ability, passing ability, segregation resistance), and performed well against the application of the product by the production of Railway Sleeper without using a vibrator. The results of this study, the LB-2 and LB-3 qualified as SCC and compressive strength is expected that greater than 70 MPa, as well as products quality, is equal to standard and can be mass produced with the efficiency of the price of concrete up to 11%.

  1. On void structure and strength of foamed concrete made without/with additives

    OpenAIRE

    Hilal, Ameer Abdulrahman; Thom, Nicholas; Dawson, Andrew

    2015-01-01

    A study has been undertaken to investigate the effect of different additives on the strength foamed concrete by characterising air-void size and shape parameters and identifying the influence of these parameters and changes to cement paste microstructure on strength. Nine different mixes, made using a pre-formed foam, were investigated with varying density (nominally 1300, 1600 and 1900 kg/m3) without/with additives (silica fume, fly ash and superplasticizer), used either individually or toge...

  2. The influence of using accelerator addition on High strength self-compacting concrete (HSSCC) in case of enhancement early compressive strength and filling ability parameters

    Science.gov (United States)

    Wibowo; Fadillah, Y.

    2018-03-01

    Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.

  3. Evaluation of Shear Strength of Concrete Flat Plates Reinforced with GFRP Plates

    Directory of Open Access Journals (Sweden)

    Min Sook Kim

    2017-01-01

    Full Text Available The shear performance of concrete flat plates with glass fiber-reinforced polymer (GFRP plate shear reinforcement was investigated through punching shear tests. Each GFRP plate was embedded in the concrete and included openings to permit the flow of concrete during fabrication. Punching shear tests were conducted on a total of 8 specimens, and the resulting crack and fracture formations, strains, and load-displacement curves were analyzed and compared. The experimental variables considered were the types of shear reinforcement, including steel stirrups or GFRP plates, and the shear reinforcement spacing. The experimental results show that the GFRP shear reinforcement effectively increased the shear strengths of flat plates. Furthermore, the applicability of two formulas was investigated: a modified version of a shear strength formula from ACI 318-14 and the ACI 318-14 fracture prediction formula.

  4. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    Directory of Open Access Journals (Sweden)

    W. H. Kwan

    2018-02-01

    Full Text Available The durability of the alkali-resistant (AR glass fiber reinforced concrete (GFRC in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD and scanning electron microscopy examination (SEM. The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability.

  5. Experimental Analysis of Concrete Strength at High Temperatures and after Cooling

    Directory of Open Access Journals (Sweden)

    E. Klingsch

    2009-01-01

    Full Text Available In recent years, the cement industry has been criticized for emitting large amounts of carbon dioxide; hence it is developing environment-friendly cement, e.g., blended, supersulfated slag cement (SSC. This paper presents an experimental analysis of the compressive strength development of concrete made from blended cement in comparison to ordinary cement at high temperature. Three different types of cement were used during these tests, an ordinary portland cement (CEM I, a portland limestone cement (CEM II-A-LL and a new, supersulfated slag cement (SSC. The compressive strength development for a full thermal cycle, including cooling down phase, was investigated on concrete cylinders. It is shown that the SSC concrete specimens perform similar to ordinary cement specimens. 

  6. Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis

    Directory of Open Access Journals (Sweden)

    González-Taboada, I.

    2016-09-01

    Full Text Available This work studies the physical and mechanical properties of recycled concrete aggregate (recycled aggregate from concrete waste and their influence in structural recycled concrete compressive strength. For said purpose, a database has been developed with the experimental results of 152 works selected from over 250 international references. The processed database results indicate that the most sensitive properties of recycled aggregate quality are density and absorption. Moreover, the study analyses how the recycled aggregate (both percentage and quality and the mixing procedure (pre-soaking or adding extra water influence the recycled concrete strength of different categories (high or low water to cement ratios. When recycled aggregate absorption is low (under 5%, pre-soaking or adding extra water to avoid loss in workability will negatively affect concrete strength (due to the bleeding effect, whereas with high water absorption this does not occur and both of the aforementioned correcting methods can be accurately employed.El estudio analiza las propiedades físico-mecánicas de los áridos reciclados de hormigón (procedentes de residuos de hormigón y su influencia en la resistencia a compresión del hormigón reciclado estructural. Para ello se ha desarrollado una base de datos con resultados de 152 trabajos seleccionados a partir de más de 250 referencias internacionales. Los resultados del tratamiento de la base indican que densidad y absorción son las propiedades más sensibles a la calidad del árido reciclado. Además, este estudio analiza cómo el árido reciclado (porcentaje y calidad y el procedimiento de mezcla (presaturación o adición de agua extra influyen en la resistencia del hormigón reciclado de diferentes categorías (alta o baja relación agua-cemento. Cuando la absorción es baja (inferior al 5% presaturar o añadir agua para evitar pérdidas de trabajabilidad afectan negativamente a la resistencia (debido al bleeding

  7. Prediction the effects of ZnO2 nanoparticles on splitting tensile strength and water absorption of high strength concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2012-06-01

    Full Text Available In the present paper, two models based on artificial neural networks (ANN and gene expression programming (GEP for predicting splitting tensile strength and water absorption of concretes containing ZnO2 nanoparticles at different ages of curing have been developed. To build these models, training and testing using experimental results for 144 specimens produced with 16 different mixture proportions were conducted. The used data in the multilayer feed forward neural networks models and input variables of genetic programming models are arranged in a format of eight input parameters that cover the cement content (C, nanoparticle content (N, aggregate type (AG, water content (W, the amount of superplasticizer (S, the type of curing medium (CM, Age of curing (AC and number of testing try (NT. According to these input parameters, in the neural networks and genetic programming models, the splitting tensile strength and water absorption values of concretes containing ZnO2 nanoparticles were predicted. The training and testing results in these two models have shown the strong potential of the models for predicting the splitting tensile strength and water absorption values of concretes containing ZnO2 nanoparticles. Although neural networks have predicted better results, genetic programming is able to predict reasonable values with a simpler method rather than neural networks.

  8. Prediction of compression strength of high performance concrete using artificial neural networks

    Science.gov (United States)

    Torre, A.; Garcia, F.; Moromi, I.; Espinoza, P.; Acuña, L.

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94.

  9. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete

    Directory of Open Access Journals (Sweden)

    Van Lam Tang

    2018-01-01

    Full Text Available The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA and fly ash (FA, which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA and x2 (amount of FA. The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.

  10. Experimental and statistical investigation of the compressive strength anisotropy in structural concrete

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Lauridsen, Jørgen Trankjær; Hoang, Linh Cao

    2018-01-01

    This paper offers a new and closer look into the strength anisotropy of concrete by presenting the so far largest experimental programme (290 tests) and by presenting an advanced statistical analysis of the results. The experimental investigation sheds light on the influence of several important...

  11. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete

    Science.gov (United States)

    Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc

    2018-03-01

    The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.

  12. Prediction of compression strength of high performance concrete using artificial neural networks

    International Nuclear Information System (INIS)

    Torre, A; Moromi, I; Garcia, F; Espinoza, P; Acuña, L

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94

  13. Hydrate failure in ITZ governs concrete strength: A micro-to-macro validated engineering mechanics model

    Czech Academy of Sciences Publication Activity Database

    Königsberger, M.; Hlobil, Michal; Delsaute, B.; Staquet, S.; Hellmich, C.; Pichler, B.

    2018-01-01

    Roč. 103, č. 1 (2018), s. 77-94 ISSN 0008-8846 Institutional support: RVO:68378297 Keywords : compressive strength * micromechanics * cement paste * concrete * modeling Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 4.762, year: 2016 http://www.sciencedirect.com/science/article/pii/S0008884617302934?via%3Dihub

  14. Durability of precast prestressed concrete piles in marine environment : reinforcement corrosion and mitigation - Part 1.

    Science.gov (United States)

    2011-06-01

    Research conducted in Part 1 has verified that precast prestressed concrete piles in : Georgias marine environment are deteriorating. The concrete is subjected to sulfate and : biological attack and the prestressed and nonprestressed reinforcement...

  15. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    Science.gov (United States)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  16. The effect of slag addition on strength development of Class C fly ash geopolymer concrete at normal temperature

    Science.gov (United States)

    Wardhono, Arie; Law, David W.; Sutikno, Dani, Hasan

    2017-09-01

    This paper presents the effect of slag addition on strength development and workability of fly ash/slag based geopolymer (FASLG) concrete cured at normal temperature. Class C fly ash with high ferrite (Fe) content was used as the primary material. The proportions of fly ash (FA) to slag (SL) are: 1 FA : 0 SL, 0.9 FA : 0.1 SL, 0.7 FA : 0.3 SL, and 0.5 FA : 0.5 SL. The workability and strength properties were determined by slump, vikat, and compressive strength tests. The result shows that the highest compressive strength was achieved by FASLG-3 concrete with 30% slag addition and exhibited a comparable strength to that normal concrete at 28 days. The 30% slag addition also improve the workability and increase the setting time of FASLG concrete specimens. It can be concluded that the slag inclusion on fly ash will improve the performance of geopolymer concrete at normal temperature.

  17. Compressive Strength of Fly ash-based Geopolymer Concrete with a Variable of Sodium Hydroxide (NaOH Solution Molarity

    Directory of Open Access Journals (Sweden)

    Herwani

    2018-01-01

    Full Text Available Geopolymer concrete is a new material made by activating the raw materials which contain many elements of silica and alumina. Compressive strength of geopolymer concrete produced was influenced by the concentration of the activator solution. This paper presents an experimental investigation into fly ash-based geopolymer concrete. Research objective was to investigate the effects of alkaline activator solution (AAS molarity on compressive strength of geopolymer concrete. Variable of the test were a solution to sodium hydroxide was chosen as the activator solution. Concentration of sodium hydroxide solution used was 10 M, 12 M and 14 M with ambient curing. The specimen is made of concrete cylinder with diameter 10 cm and height 20 cm as many as 9 pieces each variable. Compressive strength tests is performed when the concrete is 7, 14, and 28 days old. Results of the test are indicated that the increasing of sodium hydroxide (NaOH solution concentration leads to improve the compressive strength of geopolymer concrete. The optimal compressive strength of geopolymer concrete was achieved at a concentration of sodium hydroxide solution (NaOH of 12 M. Geopolymer concretes compressive strength only achieves around 50-60% of the planned.

  18. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    The fibers used were fine polypropylene monofilaments. They were cylindrical of 12 mm length with a nominal diameter of 30 μm. The PP-F density was 0.9 g/cm3 and the melting temperature was 160-165°C. The tensile strength was 300 MPa. The modulus of elasticity of polypropylene fibres was 3 GPa. 2.2. Cure condition.

  19. Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars

    Science.gov (United States)

    Thomas, Job; Ramadass, S.

    2016-09-01

    Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.

  20. Strength Enhancement of Prestressed Concrete Dapped-End Girders

    Directory of Open Access Journals (Sweden)

    Shatha Dhia Mohammed

    2015-10-01

    Full Text Available This paper presents the application of nonlinear finite element models in the analysis of dapped-ends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped. The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the numerical model was stiffer than the experimental, but; there were a good agreements in both trends and values. The difference varies in the range (5-12% for the deflection. Results have shown that the pre-stress force has increased the static ultimate load capacity by (35% in case of straight strand and by (97% in case of draped strand

  1. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  2. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yi-Fan Shih

    2015-10-01

    Full Text Available Non-destructive testing (NDT methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method yield better estimations than single NDT methods. The results also show that the SVM model is more accurate than the statistical regression model.

  3. Study on Strength and Durability Characteristics of Concrete with Ternary Blend

    Science.gov (United States)

    Nissi Joy, C.; Ramakrishnan, K.; Snega, M.; Ramasundram, S.; Venkatasubramanian, C.; Muthu, D.

    2017-07-01

    In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of Ordinary Portland Cement (OPC) and different mineral admixtures is the wise choice for the construction industry. In this research work, M20 grade mix of concrete (with water - binder ratio as 0.48) is adopted with glass powder (GP) and Sugar Cane Bagasse Ash (SCBA) as partial replacement of cement. GP is an inert material, they occupy the landfill space for considerable amount of time unless there is a potential for recycling. Such glass wastes in the crushed form have a good potential in the infrastructure industry. Replacement of cement by GP from 30% to 0% by weight of cement in step of 5% and by SCBA from 0% to 30% in step of 5% respectively was adopted. In total, seven different combinations of mixes were studied at two different ages of concrete namely 7 and 28 days. Compressive strength of cubes for various percentage of replacement were investigated and compared with conventional concrete to find out the maximum mix ratio. Flexural strength of concrete for the maximum mix ratio was found out and durability parameters viz., water absorption and sorptivity were studied. From the experimental study, 20% SCBA and 10% GP combination was found to be the maximum mix ratio.

  4. Strengths and Failure Characteristics of Self-Compacting Concrete Containing Recycled Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Rahman Khaleel AL-Bawi

    2017-01-01

    Full Text Available The effects of different proportions of green-colored waste glass (WG cullet on the mechanical and fracture properties of self-compacting concrete (SCC were experimentally investigated. Waste bottles were collected, washed, crushed, and sieved to prepare the cullet used in this study. Cullet was incorporated at different percentages (0%, 20%, 40%, 60%, 80%, and 100% by weight instead of natural fine aggregate (NFA and/or natural coarse aggregate (NCA. Three SCC series were designed with a constant slump flow of 700±30 mm, total binder content of 570 kg/m3 and at water-to-binder (w/b ratio of 0.35. Moreover, fly ash (FA was used in concrete mixtures at 20% of total binder content. Mechanical aspects such as compressive, splitting tensile, and net flexural strengths and modulus of elasticity of SCC were investigated and experimentally computed at 28 days of age. Moreover, failure characteristics of the concretes were also monitored via three-point bending test on the notched beams. The findings revealed that the mechanical properties as well as fracture parameters were adversely influenced by incorporating of WG cullet. However, highest reduction of compressive strength did not exceed 43% recorded at 100% WG replacement level. Concretes containing WG showed less brittle behavior than reference concrete at any content.

  5. Compressive strength and ductility of short concrete columns reinforced by bamboo

    Directory of Open Access Journals (Sweden)

    Satjapan Leelatanon

    2010-08-01

    Full Text Available The paper presents the structural and environmentally sustainable aspects of bamboo as a reinforcing material insteadof steel reinforcement in concrete columns. Seven small-scale short columns (125 mm x 125 mm x 600 mm with different typeof reinforcements were tested under concentric loading to investigate strength capacity and ductility. The results showedthat the strength capacity of short columns reinforced by bamboo without surface treatment could resist the axial load asstructurally required by ACI318-05, but ductility was rather low especially the column that was reinforced by 1.6 percent ofreinforcing bamboo which showed brittle behavior similar to that of plain concrete column. This was thought to be an effectof water absorption and a loss of bonding strength between concrete and bamboo. On the other hand, columns reinforcedby bamboo treated with water-repellent substance, Sikadur-31CFN, showed higher strength and ductility than columnsreinforced by untreated bamboo. The result also showed that 1.6 % of steel reinforcement, in relation to the column crosssection,could be replaced by 3.2% of treated reinforcing bamboo, for similar behavior, strength and ductility.

  6. Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending

    Science.gov (United States)

    Filatov, V. B.

    2017-11-01

    The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.

  7. Behavior of bonded and unbonded prestressed normal and high strength concrete beams

    Directory of Open Access Journals (Sweden)

    O.F. Hussien

    2012-12-01

    This paper presents an experimental program conducted to study the behavior of bonded and unbounded prestressed normal strength (NSC and high strength concrete (HSC beams. The program consists of a total of nine beams; two specimens were reinforced with non-prestressed reinforcement, four specimens were reinforced with bonded tendons, and the remaining three specimens were reinforced with unbonded tendons. The overall dimensions of the beams are 160 × 340 × 4400-mm. The beams were tested under cyclic loading up to failure to examine its flexural behavior. The main variables in this experimental program are nominal concrete compressive strength (43, 72 and 97 MPa, bonded and unbonded tendons and prestressing index (0%, 70% and 100%. Theoretical analysis using rational approach was also carried out to predict the flexural behavior of the specimens. Evaluation of the analytical work is introduced and compared to the results of the experimental work.

  8. Influence of seawater mixing and curing on strength characteristics and porosity of ground granulated blast-furnace slag concrete

    Science.gov (United States)

    Adiwijaya; Hamada, H.; Sagawa, Y.; Yamamoto, D.

    2017-11-01

    Generally, in the concrete industry, several billion tons of fresh water are annually used for mixing water, curing water and cleaning water. Nevertheless, the utilization of seawater in the concrete industry is prohibited, because it increases the risk of corrosion of steel bars in concrete. This study presents strength characteristics and porosity of seawater mixed concrete and tap water mixed concrete incorporating Ground Granulated Blast-Furnace Slag (GGBS) with water-binder ratio (W/B) of 40%, 50% and 60%. The influence of seawater mixing, GGBS and curing conditions such as tap water curing (TC), seawater curing (SC) and air curing (AC) on the strength and porosity of concrete were evaluated. Based on investigation result, it was shown that there is no significant influence of seawater mixing in improving strength of GGBS concrete up to 365 days in TC and SC. Effectiveness of seawater-mixing on strength enhancement of GGBS concrete is larger in air curing than in water curing. Porosity of seawater-mixed concrete is decreased compared to tap water-mixed concrete in all curing conditions.

  9. Evaluation of the Strength Variation of Normal and Lightweight Self-Compacting Concrete in Full Scale Walls

    DEFF Research Database (Denmark)

    Hosseinali, M.; Ranjbar, M. M.; Rezvani, S. M.

    2011-01-01

    The strength of cast concrete along the height and length of large structural members might vary due to inadequate compaction, segregation, bleeding, head pressure, and material type. The distribution of strength within a series of full scale reinforced concrete walls was examined using non......-destructive testing. Self-compacting concrete (SCC) and lightweight self-compacting concrete (LWSCC) with different admixtures were tested and compared with normal concrete (NC). The results were also compared with results for standard cubic samples. The results demonstrate the effect of concrete type on the in situ...... between mixtures along the length of the walls. Furthermore, different admixture replacements did not have a meaningful effect on the strength distribution....

  10. Macro-mechanical strut and tie model for analysis of fibrous high-strength concrete corbels

    Directory of Open Access Journals (Sweden)

    E.S. Khalifa

    2012-12-01

    Full Text Available Reinforced concrete (RC corbels becoming a frequent attribute in the building construction with the increasing use of pre-cast high-strength concrete (HSC. The use of fibrous high-strength concrete (FHSC, increases corbel ductility and thus defines the mode of failure of the corbels, depending on the fiber parameters. In this paper a macro-mechanical strut and tie model is proposed for analysis of fibrous high-strength concrete corbels. In this model the fibers can be used as a replacement of horizontal stirrups, due to increasing of shear friction of (FHSC. The analytical macro-mechanical model takes into consideration the effect of fiber volume, fiber length, and fiber diameter, random distribution of fibers, fiber HSC interface and shear span-to-depth ratio, respectively. This model is compared with available experimental results found in literature and a good agreement is obtained. The parametric study is performed to examine for different parameters affecting the analysis of (FHSC corbels using the proposed macro-mechanical strut and tie model.

  11. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... tests of tensile specimens consisting of reinforcing bars embedded in Densit Joint Cast ®. The objective of these fatigue tests is to show that the system / connection can presumably also be used in structures subjected to dominant time- varying loads and thus for example in earthquake regions....

  12. Punching strength of reinforced concrete flat slabs without shear reinforcement

    Directory of Open Access Journals (Sweden)

    P. V. P. Sacramento

    Full Text Available Punching strength is a critical point in the design of flat slabs and due to the lack of a theoretical method capable of explaining this phenomenon, empirical formulations presented by codes of practice are still the most used method to check the bearing capacity of slab-column connections. This paper discusses relevant aspects of the development of flat slabs, the factors that influence the punching resistance of slabs without shear reinforcement and makes comparisons between the experimental results organized in a database with 74 slabs carefully selected with theoretical results using the recommendations of ACI 318, EUROCODE 2 and NBR 6118 and also through the Critical Shear Crack Theory, presented by Muttoni (2008 and incorporated the new fib Model Code (2010.

  13. Nondestructive Wireless Monitoring of Early-Age Concrete Strength Gain Using an Innovative Electromechanical Impedance Sensing System

    Directory of Open Access Journals (Sweden)

    C. P. Providakis

    2013-01-01

    Full Text Available Monitoring the concrete early-age strength gain at any arbitrary time from a few minutes to a few hours after mixing is crucial for operations such as removal of frameworks, prestress, or cracking control. This paper presents the development and evaluation of a potential active wireless USB sensing tool that consists of a miniaturized electromechanical impedance measuring chip and a reusable piezoelectric transducer appropriately installed in a Teflon-based enclosure to monitor the concrete strength development at early ages and initial hydration states. In this study, the changes of the measured electromechanical impedance signatures as obtained by using the proposed sensing system during the whole early-age concrete hydration process are experimentally investigated. It is found that the proposed electromechanical impedance (EMI sensing system associated with a properly defined statistical index which evaluates the rate of concrete strength development is very sensitive to the strength gain of concrete structures from their earliest stages.

  14. Effect of confinement on bond strength of hot-dip galvanized lap splices in concrete structures

    International Nuclear Information System (INIS)

    Fakhran, Mazen

    2004-01-01

    Galvanizing the reinforcing steel is one of the methods used to protect bars against corrosion. Galvanizing is a hot dip process where the reinforcing bars are immersed in an aqueous pre flux solution of zinc ammonium chloride at a controlled temperature between 840 and 850 degrees F. In 2001, a research program was started at AUB to evaluate experimentally the effect of hot dip galvanizing on the bond capacity of tension lap splices anchored in full-scale beam specimens designed to fail in bond splitting mode. The test results indicated that the use of galvanized bars had a negligible effect on bond strength of reinforcement in normal strength. However, galvanizing caused an average of 20 percent decrease in bond strength of reinforcement in high strength concrete. The primary objective of research reported in this thesis, is the need to find a solution to eliminate the bond reduction of galvanized bars in high strength concrete. It is significant to evaluate the positive effect of the addition of transverse reinforcement in the splice region. The hypothesis to be tested is that such transverse reinforcement will insure uniform bond stress distribution over the entire splice region, thus mobilizing all bar lugs along the splice in the stress transfer mechanism between the bar and the surrounding concrete. Such mechanism might reduce the significant decrease in bond strength in high strength concrete due to galvanizing. To achieve this objective, eighteen full-scale beam specimens were tested in positive bending. Each beam was reinforced with bars spliced in a constant moment region at midspam. The splice length was chosen in such a way that the beams failed in bond splitting of the concrete cover in the splice region. The main variables were type of coating (black or galvanized bars), bar size (20, 25 and 32 mm), and amount of transverse reinforcement in the splice region (0, 2 or 4 stirrups). The test results indicated that confinement did not have a significant

  15. High strength oil palm shell concrete beams reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    S. Poh-Yap

    2017-10-01

    Full Text Available The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC. The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.

  16. Assessment and optimization of thermal and fluidity properties of high strength concrete via genetic algorithm

    Directory of Open Access Journals (Sweden)

    Barış Şimşek

    2016-12-01

    Full Text Available This paper proposes a Response Surface Methodology (RSM based Genetic Algorithm (GA using MATLAB® to assess and optimize the thermal and fluidity of high strength concrete (HSC. The overall heat transfer coefficient, slump-spread flow and T50 time was defined as thermal and fluidity properties of high strength concrete. In addition to above mentioned properties, a 28-day compressive strength of HSC was also determined. Water to binder ratio, fine aggregate to total aggregate ratio and the percentage of super-plasticizer content was determined as effective factors on thermal and fluidity properties of HSC. GA based multi-objective optimization method was carried out by obtaining quadratic models using RSM. Having excessive or low ratio of water to binder provides lower overall heat transfer coefficient. Moreover, T50 time of high strength concrete decreased with the increasing of water to binder ratio and the percentage of superplasticizer content. Results show that RSM based GA is effective in determining optimal mixture ratios of HSC.

  17. Prediction of Ultimate Strain and Strength of FRP-Confined Concrete Cylinders Using Soft Computing Methods

    Directory of Open Access Journals (Sweden)

    Iman Mansouri

    2017-07-01

    Full Text Available This paper investigates the effectiveness of four different soft computing methods, namely radial basis neural network (RBNN, adaptive neuro fuzzy inference system (ANFIS with subtractive clustering (ANFIS-SC, ANFIS with fuzzy c-means clustering (ANFIS-FCM and M5 model tree (M5Tree, for predicting the ultimate strength and strain of concrete cylinders confined with fiber-reinforced polymer (FRP sheets. The models were compared according to the root mean square error (RMSE, mean absolute relative error (MARE and determination coefficient (R2 criteria. Similar accuracy was obtained by RBNN and ANFIS-FCM, and they provided better estimates in modeling ultimate strength of confined concrete. The ANFIS-SC, however, performed slightly better than the RBNN and ANFIS-FCM in estimating ultimate strain of confined concrete, and M5Tree provided the worst strength and strain estimates. Finally, the effects of strain ratio and the confinement stiffness ratio on strength and strain were investigated, and the confinement stiffness ratio was shown to be more effective.

  18. Non-destructive concrete strength evaluation using smart piezoelectric transducer—a comparative study

    Science.gov (United States)

    Lim, Yee Yan; Zee Kwong, Kok; Liew, Willey Yun Hsien; Kiong Soh, Chee

    2016-08-01

    Concrete strength monitoring, providing information related to the readiness of the structure for service, is important for the safety and resource planning in the construction industry. In this paper, a semi-analytical model of surface bonded piezoelectric (lead zirconate titanate) based wave propagation (WP) technique was developed for strength evaluation of mortar with different mix, throughout the curing process. Mechanical parameters of the mortar specimen were mathematically evaluated from the surface wave (R-wave) and pressure wave (P-wave) using elastic wave equations. These parameters were then empirically correlated to the strength. The model was found to be very robust as it could be generalized to account for different water to cement (W/C) ratio. The performance of the WP technique was then compared to the electromechanical impedance technique and other conventional techniques, such as the ultrasonic pulse velocity (UPV) test and the rebound hammer test. Results showed that the WP technique performed equally well as the conventional counterparts. The proposed technique is also advantageous over embedded WP technique and the UPV test, in terms of its capability to capture two types of waves for the evaluation of dynamic modulus of elasticity and Poisson’s ratio. A separate study was finally conducted to verify the applicability of this technique on heterogeneous concrete specimen. With the inherent capability of the WP technique in enabling autonomous, real-time, online and remote monitoring, it could potentially replace its conventional counterparts, in providing a more effective technique for the monitoring of concrete strength.

  19. Effect of silica fume on compressive strength of oil-polluted concrete in different marine environments

    Science.gov (United States)

    Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed

    2017-12-01

    In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.

  20. Confinement of NORMAL- AND HIGH-STRENGTH CONCRETE by Shape Memory Alloy (SMA) Spirals

    Science.gov (United States)

    Gholampour, A.; Ozbakkaloglu, T.

    2018-01-01

    This paper presents the results of an experimental study on the axial compressive behaviour of normal- and high-strength concrete (NSC and HSC) confined by shape memory alloy (SMA) spirals. A spiral pitch space of 36 and 20 mm was used for SMA confinement of NSC and HSC columns, respectively. The confining pressure was applied on the concrete cylinders by SMA spirals that were prestrained at 0, 5.5, and 9.5%. The compression test results on the SMA-confined specimens indicate that the prestrain level of SMA significantly affects the axial compressive behaviour of both NSC and HSC. An increase in the level of prestrain leads to an increase in the peak axial stress and corresponding strain of SMA-confined concrete.

  1. Rendering the loss of strength in dry concretes with addition of milled asphalt through microscopic analysis

    Directory of Open Access Journals (Sweden)

    T. Sachet

    Full Text Available Milled asphalt removed from old pavement carpets requires tenable handling easily reachable through its incorporation within other paving materials. This work deals with the effects of such incorporation to dry compacted concretes. Fine, intermediate, coarse and whole portions of milled asphalts were blended to a reference concrete. Mechanical tests disclosed remarkable losses on its strengths and modulus of elasticity; for the stereoscope and scanning microscopy pointed out impaired transition zones between the cement paste and the milled aggregates involved by thin asphalt films. Nevertheless, the mechanical results shown that the concretes with incorporated milled asphalt aggregates are suitable for use in pavement layers as bases and sub-bases even with reduced mechanical parameters.

  2. Test method research on weakening interface strength of steel - concrete under cyclic loading

    Science.gov (United States)

    Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan

    2018-02-01

    The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.

  3. Corrosion of Steel in Concrete, Part I – Mechanisms

    DEFF Research Database (Denmark)

    Küter, André; Møller, Per; Geiker, Mette Rica

    2006-01-01

    Throughout the world reinforced concrete is the most widely used construction material for buildings and civil engineering structures. Most reinforced concrete structures have performed satisfactory over many decades, but there still is an unacceptable large number of structures that deteriorate ...

  4. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    Science.gov (United States)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  5. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  6. Optimum Mix for Pervious Geopolymer Concrete (GEOCRETE Based on Water Permeability and Compressive Strength

    Directory of Open Access Journals (Sweden)

    Abdulsalam Arafa Salaheddin

    2017-01-01

    Full Text Available The production of ordinary Portland cement (OPC consumes considerable natural resources and energy, and it also affects the emission of a significant quantity of CO2 in the atmosphere. This pervious geopolymer concrete study aims to explore an alternative binder without OPC. Pervious geopolymer concretes were prepared from fly ash (FA, sodium silicate (NaSiO3, sodium hydroxide (NaOH solution, and coarse aggregate (CA. The effects of pervious geopolymer concrete parameters that affect water permeability and compressive strength are evaluated. The FA to CA ratios of 1:6, 1:7,1:8, and 1:9 by weight, CA sizes of 5–10, 10–14, and 14–20 mm, constant NaSiO3/NaOH ratio of 2.5, alkaline liquid to fly ash (AL/FA ratios of 0.4, 0.5, and 0.6, and NaOH concentrations of 8, 10, and 12 M were the pervious geopolymer concrete mix proportions. The curing temperature of 80 °C for 24 h was used. The results showed that a pervious geopolymer concrete with CA of 10 mm achieved water permeability of 2.3 cm/s and compressive strength of 20 MPa with AL/FA ratio of 0.5, NaOH concentration of 10 M, and FA:CA of 1:7. GEOCRETE is indicated to have better engineering properties than does pervious concrete that is made of ordinary Portland cement.

  7. The influence of recycled expanded polystyrene (EPS) on concrete properties: Influence on flexural strength, water absorption and shrinkage

    Science.gov (United States)

    Elsalah, Jamaleddin; Al-Sahli, Yosra; Akish, Ahmed; Saad, Omar; Hakemi, Abdurrahman

    2013-12-01

    Expanded polystyrene waste in a granular form was used as a lightweight aggregate in order to produce lightweight concretë Lightweight EPS concrete composites were produced by replacing the coarse aggregate, either partially or fully with equal volume of EPS aggregates. The coarse aggregate replacements levels used were 25, 50, 75, and 100%, which corresponded to (9.20, 18.40, 27.60, and 36.8%) from total volume. The investigation is directed towards the development and performance evaluation of the concrete composites containing EPS aggregates, without addition of either bonding additives, or super-plasticizers on some concrete properties such as flexure strength, water absorption and change in length (or shrinkage). Experimental results showed that a density reduction of 12% caused flexure strength to decrease by 25.3% at a replacement level of 25% EPS. However, the reduction percentage strongly depends upon the replacement level of EPS granules. Moreover, the lower strength concretes showed a higher water absorption values compared to higher strength concrete, i.e., increasing the volume percentage of EPS increases the water absorption as well as the negative strain (shrinkage). The negative strain was higher at concretes of lower density (containing a high amount of EPS aggregate). The water to cement ratio of EPS aggregate concrete is found to be slightly lower than that of conventional concrete.

  8. Permeability and pore size distribution in medium strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Fernández Cánovas, M.

    2010-09-01

    Full Text Available The use of self-compacting concrete (SCC has been on the rise in recent years. Research on this type of concrete has focused primarily on determining optimal dosage, while durability, particularly for medium strength SCC, has received much less attention. The present study explored the permeability of a number of medium strength (characteristic strength, 30 MPa self-compacting concretes, including SCCs made with common cement, in pursuit of a balance between performance and cost. Pressurised water and mercury intrusion porosimetry tests were conducted to determine concrete behaviour when exposed to aggressive agents. The findings showed that the capillary networks of these concretes are essentially impermeable to aggressive agents.

    El hormigón autocompactante ha experimentado un amplio desarrollo en los últimos años. Los estudios sobre este hormigón se han centrado en obtener dosificaciones óptimas, mientras los relativos a su durabilidad son escasos, especialmente en el caso de hormigones de resistencia moderada. Este trabajo se centra en el estudio de la permeabilidad de distintos hormigones autocompactantes de resistencia moderada (resistencia característica 30 MPa. El estudio incluye hormigones fabricados con cementos comunes, en los que se ha buscado un equilibrio entre prestaciones y precio. Con el fin de estudiar su comportamiento frente a la penetración de agentes agresivos, se han realizado los ensayos de permeabilidad al agua bajo presión y estudio de la porosimetría por intrusión de mercurio. Los resultados de los ensayos ponen de manifiesto el buen comportamiento de estos hormigones frente a la posible penetración de agentes agresivos por la red capilar.

  9. Effect of high volume of fly ash from 5 sources on compressive strength and acid resistance of concrete

    Directory of Open Access Journals (Sweden)

    Vivatanachang, N.

    2004-03-01

    Full Text Available The purpose of this research was to examine the effect of high volume of fly ash from various sources on compressive strength and acid resistance of concrete. Fly ashes from 5 sources were collected and classified by an air classifier into 3 groups of different degree of fineness; low, medium, and high fineness. Portland cement type I was replaced by fly ash at the rate of 50% by weight of cementitious materials (Portland cement type I and fly ash to cast concrete cylinders of 10 cm in diameter and 20 cm in height. After fly ash concreteswere cured in water for 28 days, they were tested to determine the compressive strength. In addition, the specimens were immersed in 3% of sulfuric acid solution and the weight losses of concretes were measured from 3 to 90 days. It was found that the compressive strengths of fly ash concretes were more than 77% of the control concrete when the high fineness fly ashes were used. Each source of the fly ash had different effect on the compressive strength as well as on the sulfuric acid resistance of concrete. The compressive strength of fly ash concrete was improved with the use of high fineness fly ash; however, the sulfuric acid resistance of the concrete tended to decrease as the fineness of fly ash increased.

  10. Influence of the waste glass in the axial compressive strength of Portland cement concrete

    International Nuclear Information System (INIS)

    Miranda Junior, E.J.P.; Paiva, A.E.M.

    2012-01-01

    In this work, was studied the influence of the incorporation of waste glass, coming from the stage of thinning and polishing of a company of thermal glass treatments, in the axial compressive strength of Portland cement concrete. The coarse and ground aggregates used was crushed stone and sand, respectively. For production of the concrete, percentages of glass residues of 5%, 10% and 20% had been used in substitution to the sand, and relations water/cement (a/c) 0,50, 0,55 and 0,58. The cure of the test bodies was carried through in 7, 14 and 28 days. The statistics analysis of the results was carried out through of the analysis of variance for each one of the cure times. From the results of the compressive strength of the concrete, it could be observed that the concrete has structural application for the relation a/c 0,5, independently of waste glass percentage used, and for the relation a/c 0,55 with 20% of waste glass. (author)

  11. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete.

    Science.gov (United States)

    Vashisht, Rajneesh; Attri, Sampan; Sharma, Deepak; Shukla, Abhilash; Goel, Gunjan

    2018-03-01

    The present study reports the potential of newly isolated calcite precipitating bacteria isolated from alluvial soil to improve the strength and durability of concrete. A total of sixteen samples of alluvial soil and sewage were collected from the different locations of province Solan (India). For isolation, enrichment culture technique was used to enrich calcite precipitating strains in Urea broth. After enrichment, fourteen distinct bacterial strains were obtained on Urea agar. Based on qualitative and quantitative screening for urease activity, five isolates were obtained possessing higher calcite formation and urease activities (38-77 μmhos/cm) as compared with standard strain of Bacillus megaterium MTCC 1684 (77 μmhos/cm). An isolate I13 identified as Lysinibacillus sp. was selected for self healing property in the concrete mix of M20. An improved compressive strength of 1.5 fold was observed in concrete samples amended with Lysinibacillus sp. over the concrete amended with B. megaterium MTCC 1684 after 28 days of curing. The higher calcite precipitation activity was indicated in Lysinibacillus sp. by FE-SEM micrographs and EDX analysis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Experimental research on fire resistance of circular steel tube column filled with steel-reinforced high-strength concrete

    OpenAIRE

    ZHU Siyi; ZHU Meichun; ZHENG Lilan; YANG Jinghua; WANG Lvyi

    2014-01-01

    Circular steel tube filled with steel-reinforced high-strength concrete is a new model of composite column design.The fire resistance of this composite column was investigated experimentally.One circular steel tube column filled with steel-reinforced high-strength concrete and one circular steel tube column filled with high- strength concrete were tested under axial load and fire.The test results show that the axial deformations of both kinds of the composite columns under the same load level...

  13. Performance Based Evaluation of Concrete Strength under Various Curing Conditions to Investigate Climate Change Effects

    Directory of Open Access Journals (Sweden)

    Tae-Kyun Kim

    2015-07-01

    Full Text Available Recently, the manifestation of global warming-induced climate change has been observed through super typhoons, heavy snowfalls, torrential rains, and extended heat waves. These climate changes have been occurring all over the world and natural disasters have caused severe damage and deterioration of concrete structures and infrastructure. In an effort to deal with these problems due to extreme and abnormal climate changes, studies have been conducted to develop construction technologies and design guidelines. Nevertheless, study results applicable to construction sites continue to be ineffective and insufficient. Therefore, this study proposes ways to cope with climate change by considering the effect of concrete curing condition variations on concrete material performance. More specifically, the 3-, 7- and 28-day compressive and split tensile strength properties of concrete mix cured under various climatic factors including temperature, relative humidity, wind speed, and sunlight exposure time were evaluated to determine whether the concrete meets the current design requirements. Thereafter, a performance based evaluation (PBE was performed using satisfaction probabilities based on the test values to understand the problems associated with the current mix proportion design practice and to identify countermeasures to deal with climate change-induced curing conditions.

  14. Effect of the Aggregate Size on Strength Properties of Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Ma Kang

    2018-01-01

    Full Text Available The study on preparation technology of recycled concrete with economical and technical feasibility has gained more serious attention in each country due to its involvement and effect on the environment protection and the sustainable development of human society. In this study, we conducted a control variable test to investigate and assess the influence of the aggregate size on the strength characteristics of concrete with different diameters of recycled aggregates. Concrete with recycled aggregates of 5∼15 mm (A, 15∼20 mm (B, 20∼30 mm (C, and their combinations were subjected to a series of unconfined pressure tests after curing for 28 days. Based on the results obtained from the tests, an effort was made to study the relationship between the mechanical characteristics of recycled aggregate concrete and aggregate particle size. Also, a regression model of recycled concrete was proposed to predict the elasticity modulus and to adjust the design of mixture proportion. It is believed that these experiment results would contribute to adjust the remediation mixture for recycling plants by considering the influence of recycled aggregate size.

  15. Concretes with ternary composite cements. Part III: multicriteria optimization

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2007-06-01

    Full Text Available Optimization methods are tools of vital importance in composite material design, where large numbers of components and design criteria must be taken into account. The formulation of today’s separately milled custommade cements is a clear example of just such a case, for the components must be proportioned to yield mortars and concretes with the proper balance of durability, strength, financial and environmental features. Multicriteria optimization has been used to develop many materials, although its application in cement formulation has yet to be explored. The present paper discusses the use of an objective function to jointly optimize sorptivity and compressive strength in limestone- (up to 20% and/or granulated blast furnace slag- (up to 20% additioned Portland cement concrete.Los métodos de optimización constituyen una herramienta de vital importancia en el diseño de materiales compuestos, donde la cantidad de componentes de la mezcla y los criterios de diseño que deben tenerse en cuenta en el proceso de fabricación son numerosos. En la actualidad, la formulación de un cemento a medida (tailor made a partir del proceso de molienda separada es un claro ejemplo de ello, pues las proporciones relativas de las componentes de la mezcla deben permitir luego obtener morteros y hormigones con el equilibrio justo entre los requerimientos durables, mecánicos, económicos y ecológicos que se soliciten. La optimización por multicriterios ha sido empleada en el desarrollo de diversos materiales, sin embargo, su aplicación en la formulación del cemento no ha sido aún explorada. En este trabajo se presenta la optimización conjunta de la capacidad de absorción y la resistencia a compresión de hormigones elaborados con cemento Portland con caliza (hasta un 20% y/o escoria granulada de alto horno (hasta un 20% utilizando la función objetivo.

  16. Predicting Concrete Compressive Strength and Modulus of Rupture Using Different NDT Techniques

    Directory of Open Access Journals (Sweden)

    Wilfrido Martínez-Molina

    2014-01-01

    Full Text Available Quality tests applied to hydraulic concrete such as compressive, tension, and bending strength are used to guarantee proper characteristics of materials. All these assessments are performed by destructive tests (DTs. The trend is to carry out quality analysis using nondestructive tests (NDTs as has been widely used for decades. This paper proposes a framework for predicting concrete compressive strength and modulus of rupture by combining data from four NDTs: electrical resistivity, ultrasonic pulse velocity, resonant frequency, and hammer test rebound with DTs data. The model, determined from the multiple linear regression technique, produces accurate indicators predictions and categorizes the importance of each NDT estimate. However, the model is identified from all the possible linear combinations of the available NDT, and it was selected using a cross-validation technique. Furthermore, the generality of the model was assessed by comparing results from additional specimens fabricated afterwards.

  17. Using the Maturity Method in Predicting the Compressive Strength of Vinyl Ester Polymer Concrete at an Early Age

    Directory of Open Access Journals (Sweden)

    Nan Ji Jin

    2017-01-01

    Full Text Available The compressive strength of vinyl ester polymer concrete is predicted using the maturity method. The compressive strength rapidly increased until the curing age of 24 hrs and thereafter slowly increased until the curing age of 72 hrs. As the MMA content increased, the compressive strength decreased. Furthermore, as the curing temperature decreased, compressive strength decreased. For vinyl ester polymer concrete, datum temperature, ranging from −22.5 to −24.6°C, decreased as the MMA content increased. The maturity index equation for cement concrete cannot be applied to polymer concrete and the maturity of vinyl ester polymer concrete can only be estimated through control of the time interval Δt. Thus, this study introduced a suitable scaled-down factor (n for the determination of polymer concrete’s maturity, and a factor of 0.3 was the most suitable. Also, the DR-HILL compressive strength prediction model was determined as applicable to vinyl ester polymer concrete among the dose-response models. For the parameters of the prediction model, applying the parameters by combining all data obtained from the three different amounts of MMA content was deemed acceptable. The study results could be useful for the quality control of vinyl ester polymer concrete and nondestructive prediction of early age strength.

  18. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    Science.gov (United States)

    Hidayat, Irpan; Siauwantara, Alice

    2014-03-01

    The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  19. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Hidayat Irpan

    2014-03-01

    Full Text Available The value of the density normal concrete which ranges between 2200–2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 “Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture”. The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS’s compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  20. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Ming Kun Yew

    2014-01-01

    Full Text Available The objective of this study was to investigate the effects of different species of oil palm shell (OPS coarse aggregates on the properties of high strength lightweight concrete (HSLWC. Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera, in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old. The results showed that the workability and dry density of the oil palm shell concrete (OPSC increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV results showed that the OPS HSLWC attain good condition at the age of 3 days.

  1. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete.

    Science.gov (United States)

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.

  2. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen.

    Science.gov (United States)

    Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S

    2017-08-01

    In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.

  3. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  4. Effect of Mix Parameters on the Strength Performance of Waste Plastics Incorporated Concrete Mixes

    Directory of Open Access Journals (Sweden)

    Santhosh M. Malkapur

    2014-01-01

    Full Text Available Disposal of solid wastes has been a major problem all over the world. Out of all the different types of solid wastes, the major challenge of disposal is posed by the ever increasing volumes of plastic wastes. While several methods are in practice, producing newer useful materials by recycling of such plastic wastes is, by far, the best method of their disposal. One such possible method is to use the waste plastics as an ingredient in the production of the concrete mixes in the construction industry. The present study aims to investigate the relative contributions of the various mix parameters to the mechanical properties of concrete mixes produced with waste plastics as partial replacement (10–30% by volume to coarse aggregates. Initially, strength test results of a set of trial mixes, selected based on Taguchi’s design of experiments (DOE method are obtained. A detailed analysis of the experimental results is carried out to study the effect of using waste plastics as a partial replacement to coarse aggregates on the strength parameters of these concrete mixes. It is found that all these trial mixes have performed satisfactorily in terms of workability in the fresh state and strength properties in their hardened state.

  5. Strength Prediction and Failure Modes of Concrete Specimens Subjected to the Split Test

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Andersen, M.E.; Hansen, N.T.

    2014-01-01

    This paper deals with modelling and test of concrete specimens subjected to the Brazilian split test. Based on the fictitious crack concept, a simple model for the crack propagation process in the splitting plane is developed. From the model, it is possible to determine the distribution of residual...... tensile strength as crack propagation take place. The residual tensile strength is thereafter used in a rigid plastic analysis of the splitting failure. Based on this combined approach, the ultimate load may either be governed by crack propagation or by a plastic failure, which then terminates the crack...

  6. Compressive Strength and Water Absorption of Pervious Concrete that Using the Fragments of Ceramics and Roof Tiles

    Directory of Open Access Journals (Sweden)

    Prahara E.

    2014-03-01

    Full Text Available Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.

  7. Effect of high temperature curing on the compressive strength of concrete incorporating large volumes of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Villarreal, R. [Universidad Autonoma de Nuevo Leon, Monterrey (Mexico)

    2001-07-01

    The effect of using different types of heat treatment on the compressive strength of concrete with and without large volumes of fly ash was studied. Curing of concrete is important to obtain a good quality concrete, but it is important to keep concrete from drying until the originally water-filled space in fresh cement paste has been filled to the desired extent by the products of hydration. In hot weather, high temperature promotes faster drying of concrete so a given degree of hydration is reached more rapidly than at lower temperatures. The provision of moist curing is advantageous because of a gradual gain in strength and because of reduced plastic shrinkage and drying shrinkage-cracking. The portland cement content in all the mixtures used in this study was 200 kg per cubic metre and the amount of fly ash varied from 0 to 33, 43, 50 and 56 per cent by mass of the total binder. A superplasticizer was used to obtain 200-220 mm slump. The compressive strength was tested at 3, 7, 14, 28, 56 days and at 6 months. Results showed that, using ASTM standard curing, the compressive strength of portland cement concrete made at 35 degrees C was reduced by about 12 per cent at 28 days compared to that of the concrete made at 23 degrees C. The AASHTO curing strength was found to be a bit higher than with the ASTM curing. The concrete made at 35 degrees C showed no loss of strength when continuous moist-curing was applied. The fly ash concrete mixtures that were cast at 35 degrees C were cured by covering them with membrane curing compounds and placed under ambient conditions. It was crucial to allow enough curing water to promote the pozzolanic reaction. The membrane curing did not allow the ingress of water to the concrete mass. 6 refs., 4 tabs., 13 figs.

  8. Copper slag concrete admixed with polypropylene fibres

    OpenAIRE

    Chakrawarthi, Vijayaprabha; Darmar, Brindha; Elangovan, Ashokkumar

    2016-01-01

    A sustainable concrete design has become an imperative requirement for the present-day concrete industry. A part of an extensive research project aimed at studying possibilities for using copper slag (CS) and polypropylene (PP) fibres in concrete is presented and analysed. Measurements were conducted to investigate the workability, density, compressive strength, tensile strength, and micro-structural properties of concrete, as well as the ultimate load carrying capacity of reinforced-concrete...

  9. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  10. Evaluation of the effects of strain rate on material properties of the high strength concrete used in nuclear facilities

    International Nuclear Information System (INIS)

    Kawaguchi, Shohei; Shirai, Koji; Takayanagi, Hideaki

    2011-01-01

    Concrete physical properties (compressive strength, tensile strength, initial elastic modulus and maximum strain) affected by strain rate weren't fully utilize for material model in dynamic response analysis for seismic and impact load because of few reports and various difficulties of impact tests. Split Hopkinson Pressure Bar (SHPB) methods are the most popular high-speed material testing and were also applied for composite material. We applied SHPB for concrete specimen and reported the strain rate effect to the concrete physical property. We used hydraulic testing device for 10 -5 /s to 10 0 /s strain rate and SHPB methods for over 10 1 /s. Four cases of concrete tests (high (50MPa at 28days)/low (35MPa at 28days) compressive strength (based on the test of exiting nuclear power facilities) and dry/wet condition) were done. And we formulated strain rate effect about compressive strength and initial elastic modulus from comparing with previous studies. (author)

  11. Effect of total cementitious content on shear strength of high-volume fly ash concrete beams

    International Nuclear Information System (INIS)

    Arezoumandi, Mahdi; Volz, Jeffery S.; Ortega, Carlos A.; Myers, John J.

    2013-01-01

    Highlights: ► Existing design standards conservatively predicted the capacity of the HVFAC beams. ► In general, the HVFAC beams exceeded the code predicted shear strengths. ► The cementitious content did not have effect on the shear behavior of the HVFAC beams. - Abstract: The production of portland cement – the key ingredient in concrete – generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. This paper compares two experimental studies that were conducted to investigate the shear strength of full-scale beams constructed with high-volume fly ash concrete (HVFAC) – concrete with at least 50% of the cement replaced with fly ash. The primary difference between the two studies involved the amount of cementitious material, with one mix having a relatively high total cementitious content (502 kg/m 3 ) and the other mix having a relatively low total cementitious content (337 kg/m 3 ). Both mixes utilized a 70% replacement of portland cement with a Class C fly ash. Each of these experimental programs consisted of eight beams (six without shear reinforcing and two with shear reinforcing in the form of stirrups) with three different longitudinal reinforcement ratios. The beams were tested under a simply supported four-point loading condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (US, Australia, Canada, Europe, and Japan) and a shear database of conventional concrete (CC) specimens. Furthermore, statistical data analyses (both parametric and nonparametric) were performed to evaluate whether or not there is any statistically significant difference between the shear strength of both mixes. Results of these

  12. Compressive strength of a concrete mix for pavement blocks incorporating industrial by-product

    CSIR Research Space (South Africa)

    Mokoena, Refiloe

    2017-07-01

    Full Text Available Concrete block paving for roads has been proposed as part of a concept on sustainable infrastructure. In an effort to respond to sustainability and environmental awareness, the use of industrial by-products has been employed in the mix design...

  13. Strength of Short Concrete Filled Steel Tube Columns with Spiral Reinforcement

    Science.gov (United States)

    Krishan, A. L.; Troshkina, E. A.; Astafyeva, M. A.

    2017-11-01

    To further increase the bearing capacity and survivability of reinforced concrete filled steel tube (RCFT) columns, it is offered to supply their concrete core with additional spiral reinforcement. Such reinforcement also has a positive effect on the fire resistance of the columns. The practical use of compressed RCFT elements is restrained by the absence of procedures for determining their bearing capacity. A calculation procedure for determining the strength of short centrally compressed RCFT columns is offered. It is rather easy in terms of application and it allows one to take into account the main features of power resistance of such columns. The results of comparison of the calculated strength with experimental data are presented. The analysis of these results testifies that the accuracy of calculation of RCFT columns strength is sufficient for practice. The offered calculation procedure allows to provide the wider use of RCFT columns in construction practice as heavy loaded bearing elements of buildings and structures. It is recommended to use high-strength longitudinal reinforcement for further increase of the efficiency of these columns.

  14. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature Development of High-Performance Concrete

    Science.gov (United States)

    Kaszynska, Maria; Skibicki, Szymon

    2017-12-01

    High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (tconcrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.

  15. EFFECT ON COMPRESSIVE STRENGTH OF CONCRETE WITH PARTIAL REPLACEMENT OF CEMENT BY MUNICIPAL SOLID WASTE INCINERATION ASH

    OpenAIRE

    V. Alivelu Mangamma

    2016-01-01

    The municipal solid waste incineration ash reduces are worldwide studied topic over the last decades, so that utilize the municipal solid waste is the one of the possibilities is to use MSWI in concrete production as it is done the bottom ash features the most convenient composition in concrete and it is a available in highest amounts among the MSWI ashes the bottom ash was used as partial replacement of cement of cement in concrete strength has to find ,if the prepared concrete will get suff...

  16. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Science.gov (United States)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  17. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Directory of Open Access Journals (Sweden)

    Zuhua Zhang

    2016-08-01

    Full Text Available The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm is considered. This critical void model is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  18. Durability and Strength of Sustainable Self-Consolidating Concrete Containing Fly Ash

    Science.gov (United States)

    Mohamed, O.; Hawat, W. Al

    2018-03-01

    In this paper, the durability and strength of self-consolidating concrete (SCC) is assessed through development and testing of six binary mixes at fixed water-to-binder (w/b) ratio of 0.36. In each of the six SCC mixes, a different percentage of cement is replaced with fly ash. The development of compressive strength for each of the mixes is assessed by testing samples after 3, 7, and 28 days of curing. Durability of each of the six SCC mixes is assessed by measuring the charge passed in Rapid Chloride Permeability (RCP) test. Charge passed was measured in samples cured for 1, 3, 7, 14, 28, and 40 days of curing. All mixes out-performed the control mix in terms of resistance to chloride penetration. Binary mix in which 20% of cement is replaced with fly ash exhibited 28-day strength slightly surpassing the control mix.

  19. Estimating Compressive Strength of High Performance Concrete with Gaussian Process Regression Model

    Directory of Open Access Journals (Sweden)

    Nhat-Duc Hoang

    2016-01-01

    Full Text Available This research carries out a comparative study to investigate a machine learning solution that employs the Gaussian Process Regression (GPR for modeling compressive strength of high-performance concrete (HPC. This machine learning approach is utilized to establish the nonlinear functional mapping between the compressive strength and HPC ingredients. To train and verify the aforementioned prediction model, a data set containing 239 HPC experimental tests, recorded from an overpass construction project in Danang City (Vietnam, has been collected for this study. Based on experimental outcomes, prediction results of the GPR model are superior to those of the Least Squares Support Vector Machine and the Artificial Neural Network. Furthermore, GPR model is strongly recommended for estimating HPC strength because this method demonstrates good learning performance and can inherently express prediction outputs coupled with prediction intervals.

  20. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  1. The improved design method of shear strength of reinforced concrete beams without transverse reinforcement

    Directory of Open Access Journals (Sweden)

    Vegera Pavlo

    2017-12-01

    Full Text Available In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.

  2. Nonlinear analysis of RC cylindrical tank and subsoil accounting for a low concrete strength

    Directory of Open Access Journals (Sweden)

    Lewiński Paweł M.

    2017-01-01

    Full Text Available The paper discusses deformational and incremental approaches to a nonlinear FE analysis of soil-structure interaction including the description of behaviour of the RC structure and the subsoil under short-term loading. Two kinds of constitutive models for ground and structure were adopted for a nonlinear interaction analysis of the RC cylindrical tank with subsoil. The constitutive laws for concrete and subsoil were developed in compliance with the deformational and flow theories of plasticity. Moreover, a non-linear elastic-brittle-plastic analysis of RC axi-symmetric structures using finite element iterative techniques is presented. The results of the two types of FE analysis of soil-structure interaction are compared taking into account a low concrete strength of tank structure.

  3. Sustainable monitoring of concrete structures : strength and durability performance of polymer-modified self-sensing concrete

    OpenAIRE

    Torgal, Fernando Pacheco; Gonzalez, J.; Jalali, Said

    2012-01-01

    Concrete structures all over the world are reaching the end of their service life sooner than expected. This is due to the fact that ordinary Portland cement-based concrete deteriorates under environmental actions and also that structural inspections and conservation actions are expensive. Besides, as they consume energy and non-renewable resources, they have negative environmental impacts. Self-sensing concrete provides an alternative way of monitoring concrete-reinforced structures...

  4. Production of Controlled Low Strength Material Utilizing Waste Paper Sludge Ash and Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Azmi A. N.

    2016-01-01

    Full Text Available Recently, the best method to make the concrete industry more sustainable was using the waste materials to replace the natural resources. Currently waste paper sludge is a major economic and environmental problem in this country. In this research, the alternative method is to dwindle the usage of natural resources and the usage of cement in the construction. This method is to replace the usage of cement with the waste paper sludge ash (WPSA and to use the recycle aggregate collected from the construction is used. The WPSA has ingredient likely cement such as self-cementation but for a low strength. The research was conducted at heavy laboratory UITM Pulau Pinang. Meanwhile, the WPSA is collected at MNI Industries at Mentakab, Pahang. The recycle aggregate is a separated half, which were fine aggregate and the coarse aggregate with the specific size. In this research, the ratio is divided into two (2 which is 1:1 and 1:2 for the aggregate and difference percentage levels of WPSA. The percentage levels of WPSA that use in this research are 10%, 20%, 30%, 40%, 50%, and 60%. A total of 36 cubes were prepared. Aim of this research is to develop a simple design approach for the mixture proportioning of WPSA and recycle concrete aggregate (RCA within the concrete and to assess the effect of concrete mix with different percentage of WPSA and RCA ratio on the properties. It is found that the best design mix that achieves control low strength material (CLSM is on 30% of WPSA with the ratio 1:2 on day 28 of compression test.

  5. Applications of high-strength concrete to the development of the prestressed concrete reactor vessel (PCRV) design for an HTGR-SC/C plant

    International Nuclear Information System (INIS)

    Naus, D.J.

    1984-01-01

    The PCRV research and development program at ORNL consists of generic studies to provide technical support for ongoing PCRV-related studies, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities under this program have concentrated on the development of high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C plant, and the testing of models to both evaluate the behavior of high-strength concretes (plain and fibrous) and to develop model testing techniques. A test program to develop and evaluate high-strength (greater than or equal to 63.4 MPa) concretes utilizing materials from four sources which are in close proximity to potential sites for an HTGR plant is currently under way. The program consists of three phases. Phase I involves an evaluation of the cement, fly ash, admixtures and aggregate materials relative to their capability to produce concretes having the desired strength properties. Phase II is concerned with the evaluation of the effects of elevated temperatures (less than or equal to 316 0 C) on the strength properties of mixes selected for detailed evaluation. Phase III involves a determination of the creep characteristics and thermal properties of the selected mixes. An overview of each of these phases is presented as well as results obtained to date under Phase I which is approximately 75% completed

  6. Predictive equations for compressive strength of concrete based on Schmidt hammer rebound and ultrasonic pulse velocity data

    International Nuclear Information System (INIS)

    Arum, C; Omoare, A.

    2013-01-01

    The compressive strength of concrete is assessed to ensure uniformity of the placed concretc and adequacy of thc strcngth. Non-destructive test (NDT) techniques of ultrasonic pulse velocity and Schmidt rebound hammer tests are commonly used to estimate concrete strength, but the applicability is dependent on correlation of the data with the compressive strength of concrete, the equipment calibration and interpretation of the data. Twenty four standard concrcte cubes were cast respectively from 3 concrete mixes, and tested after 28 days of curing by ultrasonic velocity, rebound hammer and crushing tests. The data were analysed by regression methods to obtain equations for predicting the compression strength of concrete based on the ultrasonic pulse velocity and rebound number. Accurate prediction of the strength of concrete was made when the ultrasonic pulse velocity and the rebound hammer data were combined than when used separately, as the standard error was least. Comparison on the calibration curves of the prediction equations with published plots showed very good agreement. (au)

  7. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  8. ANALYSIS OF MECHANICAL PROPERTIES OF HYDROTHERMALLY CURED HIGH STRENGTH CEMENT MATRIX FOR TEXTILE REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Ondřej Holčapek

    2015-10-01

    Full Text Available The main objective of this article is to describe the influence of hydrothermal curing conditions in an autoclave device (different pressure and temperature, which took place at various ages of a fresh mixture (cement matrix – CM, and fibre-reinforced cement matrix – FRCM, on textile reinforced concrete production. The positive influence of autoclaving has been evaluated through the results of physical and mechanical testing – compressive strength, flexural strength, bulk density and dynamic modulus of elasticity, which have been measured on specimens with the following dimensions: 40×40×160mm3. In addition, it has been found that increasing the pressure and temperature resulted in higher values of measured characteristics. The results indicate that the most suitable surrounding conditions are 0.6MPa, and 165 °C at the age of 21 hours; the final compressive strength of cement matrix is 134.3MPa and its flexural strength is 25.9MPa (standard cured samples achieve 114.6MPa and 15.7MPa. Hydrothermal curing is even more effective for cement matrix reinforced by steel fibres (for example, the compressive strength can reach 177.5MPa, while laboratory-cured samples achieve a compressive strength of 108.5MPa.

  9. Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Z. H. Xie

    2015-01-01

    Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.

  10. Enhancement of shear strength and ductility for reinforced concrete wide beams due to web reinforcement

    Directory of Open Access Journals (Sweden)

    M. Said

    2013-12-01

    Full Text Available The shear behavior of reinforced concrete wide beams was investigated. The experimental program consisted of nine beams of 29 MPa concrete strength tested with a shear span-depth ratio equal to 3.0. One of the tested beams had no web reinforcement as a control specimen. The flexure mode of failure was secured for all of the specimens to allow for shear mode of failure. The key parameters covered in this investigation are the effect of the existence, spacing, amount and yield stress of the vertical stirrups on the shear capacity and ductility of the tested wide beams. The study shows that the contribution of web reinforcement to the shear capacity is significant and directly proportional to the amount and spacing of the shear reinforcement. The increase in the shear capacity ranged from 32% to 132% for the range of the tested beams compared with the control beam. High grade steel was more effective in the contribution of the shear strength of wide beams. Also, test results demonstrate that the shear reinforcement significantly enhances the ductility of the wide beams. In addition, shear resistances at failure recorded in this study are compared to the analytical strengths calculated according to the current Egyptian Code and the available international codes. The current study highlights the need to include the contribution of shear reinforcement in the Egyptian Code requirements for shear capacity of wide beams.

  11. Production and quality control of concrete for the Rajasthan Atomic Power Station - [Part 1

    International Nuclear Information System (INIS)

    Singha Roy, P.K.; Sukhtankar, K.D.; Prasad, K.

    1975-01-01

    The production and quality control of concrete and concrete materials for the construction of the twin-reactor Rajasthan Atomic Power Station with its 400 MW net capacity posed many challenges since many of the requirements for the properties of concrete were new and were being laid down for the first time in India. Some of the conditions for the concrete included leak-tightness against gas pressure, total absence of shrinkage in the containment even when the ambient temperature during concreting was as high as 45degC, placing concrete at a temperature as low as 8degC, the use of non-shrink and high strength grout, absolute impermeability against water, high density for radiation shielding, controlled modulus of elasticity for large machine foundations, high strength with high slump for the prestressed concrete dome, etc. Though the total quantity of concrete was not very much compared with a large river valley or steel plant project, (e.g., about 1.2 X 10 6 m 3 for a 2-million tonne steel plant) it was quite significant, being about 70,000 m 3 of normal density and 2,100 m 3 of high density concrete. The production of these quantities entailed intensive material study and investigation, development of new mixes with additives not tried out before in the country, and design and quality control techniques which were unique in many respects. The paper deals with the production and quality control of concrete, including grouts used in the projects, but the actual concreting and construction operations are not discussed. (author)

  12. Nursing as concrete philosophy, Part I: Risjord on nursing knowledge.

    Science.gov (United States)

    Theodoridis, Kyriakos

    2018-04-01

    This essay addresses the problem of the essentiality of nursing knowledge and what kind of theory, if any, is essential to nursing practice. The overarching aim of the essay was to argue for the thesis that nursing may be described as a kind of philosophical activity, and, consequently, that philosophy is the kind of "theory" that is essential to nursing practice and to the nursing discipline at large. The essay consists of two papers. The present paper, Part I, is a critical examination of Mark Risjord's discussion of the problem of the theory-practice gap in his Nursing Knowledge: Practice, Science, Philosophy, from 2010. According to Risjord, the cause of the theory-practice gap originates in an erroneous conception of science (logical positivism) which had a decisive influence upon the way nursing scholars appropriated theoretical frameworks for the nursing discipline. This philosophical influence is considered in effect to have generated the theory-practice gap. In order to bridge the gap, Risjord suggests, the nursing discipline needs to adopt a standpoint epistemology conjoined with a postpositivist conception of scientific theory. In this way, a legitimate brand of nursing science may be developed and the theory-practice gap overcome. I will argue that neither Risjord's diagnosis of the problem, nor his recommended cure, may succeed in rescuing the nursing discipline from the theory-practice gap. Rather, the real cause of the theory-practice gap, I will claim, derives from an erroneous conception of nursing (not of science), namely the conception of nursing as a kind of science (roughly speaking). On my view, to overcome the gap, the nursing discipline needs to make salient the inherently philosophical character of nursing. In the second paper (Part II), I will continue the discussion of nursing knowledge and delineate the thesis of nursing as a kind of concrete philosophy. © 2017 John Wiley & Sons Ltd.

  13. Durability of precast prestressed concrete piles in marine environment, part 2. Volume 1 : concrete.

    Science.gov (United States)

    2012-06-01

    The overall purpose of this research was to determine methods which may be applied : economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in : Georgias marine environments. The research was divided into two par...

  14. Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Sonebi [University of Paisley, Paisley (United Kingdom). Advanced Concrete and Masonry Centre

    2004-07-01

    This investigation aims to develop medium strength self-compacting concrete (MS-SCC). The cost of materials will be decreased by reducing the cement content and by using pulverised fuel ash (PFA) with a minimum amount of superplasticizer (SP). A factorial design was carried out to mathematically model the influence of five key parameters on filling and passing abilities, segregation and compressive strength, which are important for the successful development of medium strength self-compacting concrete incorporating PFA. The parameters considered in the study were the contents of cement and PFA, water-to-powder (cement+PFA) ratio (W/P) and dosage of SP. The responses of the derived statistical models are slump flow, fluidity loss, Orimet time, V-funnel time, L-box, JRing combined to the Orimet, JRing combined to cone, rheological parameters, segregation and compressive strength at 7, 28 and 90 days. Twenty-one mixes were prepared to derive the statistical models, and five were used for the verification and the accuracy of the developed models. The models are valid for mixes made with 0.38 to 0.72 W/P, 60 to 216 kg/m{sup 3} of cement content, 183 to 317 kg/m{sup 3} of PFA and 0% to 1% of SP, by mass of powder. The influences of W/P, cement and PFA contents, and the dosage of SP were characterised and analysed using polynomial regression, which can identify the primary factors and their interactions on the measured properties. The results show tha MS-SCC can be achieved with a 28-day compressive strength of 30 to 35 MPa by using up to 210 kg/m{sup 3} of PFA.

  15. Strength Design of Reinforced-Concrete Hydraulic Structures. Report 6. Analytical Study of the Ultimate Behavior of Model Reinforced-Concrete Circular Conduits.

    Science.gov (United States)

    1987-07-01

    Washington, DC 20314-1000 ELEMENT NO. NO NO ACCESSION NO 11. TITLE (kclud Secunity Clasif cation) 4 Strength Design of Reinforced-Concrete Hydraulic Structures...3a. The corresponding strain increments, Ac , are computed from these stress increments, AU 3 3 , according to elastic theory. 11. Steel is assumed to...of the steel tests that the measured yield strengths for the DI and D3 reinforcement varied over a wide range, so the average values given in Table 2

  16. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa [Korea Institute Construction Technology, Goyang (Korea, Republic of)

    2013-06-15

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

  17. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    International Nuclear Information System (INIS)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa

    2013-01-01

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates

  18. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets.

    Science.gov (United States)

    Lu, Liulei; Ouyang, Dong

    2017-07-20

    In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0-0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.

  19. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets

    Directory of Open Access Journals (Sweden)

    Liulei Lu

    2017-07-01

    Full Text Available In this work, the effect of graphene oxide nanosheet (GONS additives on the properties of cement mortar and ultra-high strength concrete (UHSC is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0–0.03% by weight of cement. Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.

  20. Development of Lateral Prestress in High-Strength Concrete-Filled FRP Tubes

    Science.gov (United States)

    Vincent, T.; Ozbakkaloglu, T.

    2018-02-01

    This paper reports on an experimental investigation into the axial and lateral strain development of fiber reinforced polymer (FRP) confined high-strength concrete (HSC) with prestressed FRP shells. A total of 24 aramid FRP (AFRP)-confined concrete specimens were manufactured as concrete-filled FRP tubes (CFFTs) with instrumentation to measure the strain variations during application of prestress, removal of end constraints and progressive prestress losses. Prestressed CFFT specimens were prepared with three different dose rates of expansive mineral admixture to create a range of lateral prestress applied to AFRP tubes manufactured with sheet thicknesses of 0.2 or 0.3 mm/ply and referred to as lightly- or well-confined, respectively. In addition to these three levels of prestress, non-prestressed companion specimens were manufactured and tested to determine baseline performance. The experimental results from this study indicate that lateral prestressing of CFFTs manufactured with HSC can be achieved by varying the expansive mineral admixture dose rate with a lateral prestress of up to 7.3 MPa recorded in this study. Significant strain variations were measured during removal of the end constraints with up to 700 microstrain recorded in the axial direction. Finally, the measurement of prestress losses for the month following prestress application revealed minimal progressive losses, with only 250 and 100 με recorded for the axial and hoop strains, respectively.

  1. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    Science.gov (United States)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  2. Effect of Alkali-Silica Reaction on Shear Strength of Reinforced Concrete Structural Members

    Energy Technology Data Exchange (ETDEWEB)

    Hariri-Ardebili, Mohammad [Univ. of Colorado, Boulder, CO (United States); Saouma, Victor [Univ. of Colorado, Boulder, CO (United States); Le Pape, Yann [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Alkali-silica reaction (ASR) was discovered in the early 40s by Stanton (1940) of the California Division of Highways. Since, it has been recognized as a major degradation mechanism for concrete dams and transportation infrastructures. Sometimes described as the ’cancer of concrete’, this internal swelling mechanism causes expansion, cracking and loss of mechanical properties. There are no known economically viable solutions applicable to massive concrete to prevent the reaction once initiated. The e ciency of the mitigation strategies for ASR subjected structures is limited. Several cases of ASR in nuclear generating stations have been disclosed in Japan (Takatura et al. 2005), Canada at Gentilly 2 NPP (Tcherner and Aziz 2009) 1, and more recently, in the United States for which the U.S. Nuclear Regulatory Commission issued Information Notice (IN) 2011-20, ’Concrete Degradation by Alkali Silica Reaction,’ on November 18, 2011, to provide the industry with information related to the ASR identified at Seabrook. Considering that US commercial reactors in operation enter the age when ASR degradation can be visually detected and that numerous non nuclear infrastructures (transportation, energy production) have already experienced ASR in a large majority of the States (e.g., Department of Transportation survey reported by Touma (Touma 2000)), the susceptibility and significance of ASR for nuclear concrete structures must be addressed in the perspective of license renewal and long-term operation beyond 60 years. The aim of this report is to perform an extensive parametric series of 3D nonlinear finite element analyses of three di erent “beam-like” geometries, including two di erent depths, three di erent types of boundary conditions, and four other parameters: namely, the ASR volumetric expansion, the reinforcement ratio, the loss of elastic modulus induced by ASR and the loss of tensile strength caused by ASR.

  3. Factors affecting early compressive strength of alkali activated fly ash (OPC-free concrete

    Directory of Open Access Journals (Sweden)

    Palomo, A.

    2007-08-01

    Full Text Available This paper presents the findings of experimental research into the chief characteristics of a new type of concrete made solely with alkali activated fly ash (AAFA: i.e., free of ordinary Portland cement (OPC. The results of testing to determine specific properties of the fresh concrete and the development of its mechanical strength showed that most of the factors that affect the manufacture and final properties of Portland cement concrete (water/cement ratio, curing conditions, etc. also impact the preparation and final quality of this new material. A number of parameters specific to AAFA concrete (nature and concentration of alkali present in the system were also explored to determine their role in the setting and hardening process.Este trabajo presenta los resultados de una investigación experimental llevada a cabo para evaluar las principales características de un nuevo tipo de hormigón fabricado solamente con ceniza volante activada alcalinamente (AAFA; es decir, sin cemento Portland comercial (OPC. Los resultados de los ensayos realizados para determinar las propiedades específicas del hormigón fresco y el desarrollo de resistencias mecánicas mostraron que la mayoría de los factores que afectan al proceso de fabricación y a las propiedades finales de los hormigones de cemento Portland (relación agua/cemento, condiciones de curado, etc. también afectan a la preparación y calidad final de estos nuevos materiales. También fueron estudiados otros parámetros específicos de los hormigones de AAFA (la naturaleza y concentración del álcali presente en el sistema para determinar su papel en el proceso de fraguado y endurecimiento.

  4. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    International Nuclear Information System (INIS)

    Mohammadhassani, Mohammad; Jumaat, Mohd Zamin; Jameel, Mohammed; Badiee, Hamid; Arumugam, Arul M.S.

    2012-01-01

    Highlights: ► Ductility decreased with increase in tensile reinforcement ratio. ► The width of the load point and the support point influences premature failure. ► Load–deflection relationship is linear till 85% of the ultimate load. ► The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load–deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  5. Lightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early age

    Directory of Open Access Journals (Sweden)

    S. Kitouni

    2013-12-01

    Full Text Available The mechanical characteristics of the lightweight aggregate concretes (LWAC strongly depend on the proportions of aggregates in the formulation. In particular, because of their strong porosity, the lightweight aggregates are much more deformable than the cementations matrix and their influence on concrete strength is complex. This paper focuses on studying the physical performance of concrete formulated with substitution of 30% of coarse aggregates by limestone dust. In this article an attempt is made to provide information on the elastic properties of lightweight concrete (LWC from tests carried out under uniaxial compression conditions. The results of Young modulus, Poisson's ratio, and compressive and flexural tensile strength tests on concrete are presented. The concretes obtained present good mechanical performances reaching 34.99 MPa compressive strength, 6.39 MPa flexural tensile strength and in front of 36 MPa Young modulus.

  6. Statistical analysis of the strength of the contact between concrete dams and rock foundations

    International Nuclear Information System (INIS)

    Lo, K.Y.; Hefny, A.

    1998-01-01

    A new methodology developed for assessing the safety of Ontario Hydro's existing dams is described. The components of the new methodology are summarized, accompanied by a discussion of the results of laboratory tests on contact samples from 38 dams. The operational strength parameters for the entire dam-foundation interface and major rock discontinuities in the foundation controlling stability for the 38 dams are also described. The probability distributions of the shear strength parameters of the interface was also studied. Simple shear tests on unbonded concrete-rock contacts showed that the variation of the basic friction angle is very small and that the basic friction angle can be considered as a constant. It was concluded that the variance of the tensile strength almost reached a constant value when the number of samples was larger than 44. It is reasonable to assume that for the reliability analysis of dams, the variance of the tensile strength of bonded contact should be equal to the population variance. The large data base that has been created as a result of this study, makes it possible to adopt a rational probabilistic approach to safety assessment. 9 refs., 7 tabs., 5 figs

  7. Evaluating The Effects of Using Superplasticizer RHEOBUILD® 600 on the Workability and Compressive Strength of Normal Concrete

    Directory of Open Access Journals (Sweden)

    Mayadah Waheed Falah

    2018-03-01

    Full Text Available This study has been undertaken as an attempt to examine the use of different super plasticizer dosage (0.5, 0.7, 0.9, 1.1 and 1.2 percentage of the weight of cement on the performance of the concrete and estimate the best ratio of super plasticizer. The laboratory experiments for both plastic and hardened properties of concrete for concrete mix grade 25 were determined and the effects were contrasted against normal concrete mixture. The tests performed for this study are slump test and compressive strength test .The findings demonstrate that with the raise of superplasticizer dose in concrete will lead to an improvement in the properties of concrete. The experimental calculations display a significant increase in the rate of compressive strength in comparison with the normal mix. The compressive strength increased about (47.43 % in comparison with the normal mix. Also, the experimental results showed the optimum ratio of the superplasticizer is (0.7% of the weight of cement.

  8. Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Bali Ika

    2016-01-01

    Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.

  9. Effects of Elevated Temperatures on the Compressive Strength Capacity of Concrete Cylinders Confined with FRP Sheets: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Sherif El-Gamal

    2015-01-01

    Full Text Available Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with glass and carbon FRP sheets. Test specimens consisted of 30 unwrapped and 60 wrapped concrete cylinders. All specimens were exposed to temperatures of 100, 200, and 300°C for periods of 1, 2, and 3 hours. The compressive strengths of the unwrapped concrete cylinders were compared with their counterparts of the wrapped cylinders. For the unwrapped cylinders, test results showed that the elevated temperatures considered in this study had almost no effect on their compressive strength; however, the wrapped specimens were significantly affected, especially those wrapped with GFRP sheets. The compressive strength of the wrapped specimens decreased as the exposure period and the temperature level increased. After three hours of exposure to 300°C, a maximum compressive strength loss of about 25.3% and 37.9%, respectively, was recorded in the wrapped CFRP and GFRP specimens.

  10. Strength and Durability of Fly Ash-Based Fiber-Reinforced Geopolymer Concrete in a Simulated Marine Environment

    Science.gov (United States)

    Martinez Rivera, Francisco Javier

    This research is aimed at investigating the corrosion durability of polyolefin fiberreinforced fly ash-based geopolymer structural concrete (hereafter referred to as GPC, in contradistinction to unreinforced geopolymer concrete referred to as simply geopolymer concrete), where cement is completely replaced by fly ash, that is activated by alkalis, sodium hydroxide and sodium silicate. The durability in a marine environment is tested through an electrochemical method for accelerated corrosion. The GPC achieved compressive strengths in excess of 6,000 psi. Fiber reinforced beams contained polyolefin fibers in the amounts of 0.1%, 0.3%, and 0.5% by volume. After being subjected to corrosion damage, the GPC beams were analyzed through a method of crack scoring, steel mass loss, and residual flexural strength testing. Fiber reinforced GPC beams showed greater resistance to corrosion damage with higher residual flexural strength. This makes GPC an attractive material for use in submerged marine structures.

  11. Behavior of steel fiber high strength concrete under impact of projectiles

    Directory of Open Access Journals (Sweden)

    Cánovas, M. F.

    2012-09-01

    Full Text Available This paper presents the results of the investigation carried out by the authors about the behavior of 80 MPa characteristic compression strength concrete reinforced with different amount of high carbon content steel fiber, submit to impact of different caliber projectiles, determining the thickness of this type of concrete walls needs to prevent no perforation, as well as the maximum penetration to reach into them, so that in the event of no perforation and only penetration, "scabbing" phenomena does not take place on the rear surface of the wall. Prior to ballistic testing was necessary to design the high-strength concrete with specific mechanical properties, especially those related to ductility, since these special concrete must absorb the high energy of projectiles and also the shock waves that accompany them.Este trabajo presenta los resultados de la investigación llevada a cabo por los autores sobre el comportamiento de hormigón de 80 MPa de resistencia característica a compresión reforzado con diferentes cuantías de fibras de acero de alto contenido en carbono sometido al impacto de proyectiles de distintos calibres, determinando el espesor de muros de este tipo de hormigón que sería preciso disponer para impedir su perforación por dichos proyectiles, así como los valores máximos de penetración, para que en el caso de no producirse perforación y sólo penetración, no se genera cráter, “scabbing”, en el trasdós de los mismos. Previamente a los ensayos balísticos fue preciso diseñar los hormigones para que, presentaran determinadas características mecánicas, especialmente las relacionadas con la ductilidad, dado que estos hormigones especiales deben absorber la elevada energía que le transmiten los proyectiles y las ondas de choque que los acompañan.

  12. Evaluation of bent caps in reinforced concrete deck girder bridges : part 2.

    Science.gov (United States)

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  13. Evaluation of bent caps in reinforced concrete deck girder bridges : part 1.

    Science.gov (United States)

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  14. Estimation of compressive strength based on Pull-Out bond test results for on-site concrete quality control

    Directory of Open Access Journals (Sweden)

    M. S. Lorrain

    Full Text Available Quality control of structural concrete has been conducted for several decades based mainly on the results of axial compression tests. This kind of test, although widely used, is not exempt from errors and has some considerable drawbacks that may affect its reliability, such as the need for appropriate and careful specimen conditioning and adoption of adequate capping techniques. For these reasons, it would be useful to have complementary or alternative ways to check compressive strength, in order to improve concrete quality control. The use of a bond test to monitor concrete strength is being proposed by an international group of researchers from France, Tunisia and Brazil as a potential means to this end. Given the fact that the link between bond resistance and concrete strength is already well established, this type of test seems to be a viable alternative to traditional methods. Nonetheless, to check if the underlying principle is sound when used in different circumstances, the group has been gathering data from several studies conducted by different researchers in various countries, with distinct concretes and rebar types. An analysis of the data collected shows that there is a clear and strong correlation between bond resistance and compressive strength, no matter the influence of other variables. This result validates the basic idea of using an Appropriate Pull-Out (APULOT bond test to assess concrete strength. If the general principle is valid for random data obtained from different studies, the definition of a clear and appropriate test will probably lead to the reduction of experimental noise and increase the precision of the strength estimates obtained using this method.

  15. Compressive strength behaviour of low- and medium-strength concrete specimens confined with carbon fibres in defective implementation conditions: an experimental study

    Directory of Open Access Journals (Sweden)

    M. Fernández-Cánovas

    2016-10-01

    Full Text Available This behaviour of low- and medium-strength concrete specimens confined with carbon fibre-reinforced polymer (CFRP was analysed in three loading cycles. In some cases, stress levels were achieved that produced intemal microcracks, which allowed residual rigidity and the behaviour of completely microcraked concrete specimens to be studied. The specimens were subsequently tested to compression to the fracture point. Specimens reinforced in accordance with no manufacturing defects (100% CFRP reinforcement and major manufacturing defects (50% CFRP reinforcement were assessed for effectiveness and behaviour of the confined elements in less than ideal conditions. Results show that confinement was higher in low-resistance concretes, that the behaviour of reinforced specimens was unaffected by defective implementation conditions and that the reinforced specimens were less rigid than the non-reinforced specimens when tested up to 40% of ultimate fracture strength.

  16. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    of air voids. Second, SAP addition may at the same time lead to increased compressive strength (as shown in [5]) and reduced E-modulus. A prediction based solely on compressive strength therefore overrates the modulus of elasticity, so the empirical models are unsafe to use for concrete with SAP......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... of a mechanical property, and the same methodology can probably be applied to other mechanical properties. It is often assumed that a range of mechanical properties of concrete can be derived if the compressive strength is known. The link between the compressive strength and other mechanical properties is often...

  17. Span-to-depth ratio effect on shear strength of steel fiber-reinforced high-strength concrete deep beams using ANN model

    Science.gov (United States)

    Naik, Uday; Kute, Sunil

    2013-12-01

    The paper predicts the shear strength of high-strength steel fiber-reinforced concrete deep beams. It studies the effect of clear span-to-overall depth ratio on shear capacity of steel fiber high-strength deep beams using artificial neural network (ANN8). The three-layered model has eight input nodes which represent width, effective depth, volume fraction, fiber aspect ratio and shear span-to-depth ratio, longitudinal steel, compressive strength of concrete, and clear span-to-overall depth ratio. The model predicts the shear strength of high-strength steel fiber deep beams to be reasonably good when compared with the results of proposed equations by researchers as well as the results obtained by neural network (ANN7) which is developed for seven inputs excluding span-to-depth ratio. The developed neural network ANN8 proves the versatility of artificial neural networks to establish the relations between various parameters affecting complex behavior of steel fiber-reinforced concrete deep beams and costly experimental processes.

  18. Flexural Strength Of Prestressed Concrete Beams With Openings And Strengthened With CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Dr. Mustafa B. Dawood

    2015-06-01

    Full Text Available Abstract This paper presents an experimental investigation of flexural strength of pretensioned prestressed concrete beams with openings and strengthened with CFRP sheets tested as simply supported span subjected under two-point loading. The experimental work includes testing of nine prestressed concrete beams specimens with dimensions effective length 1800mm depth 300mm width 130mm two of which were without openings as a control beams one without and the other with strengthening by CFRP three were with openings and the remaining four with openings and strengthened with CFRP sheets. The opening was made at square shape 100100 mm in flexure zone at mid span of beam. Several design parameters were varied such as opening width opening depth and strengthening of openings of beams by CFRP sheets at compression and tension zone. Experimental results showed that the presence of square opening with ratio hH 0.333 and rectangular opening with ratio hH from 0.333-0.5 at mid span of beams decreased the ultimate load about 5.5 and 5.5-33.1 respectively when compared with beam without openings control beam. The externally strengthened prestressed concrete beams with bonded CFRP sheets showed a significant increase at the ultimate load this increase was about 10.9-28.8 for flexure beams when compared with the unstrengthened beams. Moreover the load-deflection curves for flexure beams strengthened with CFRP sheets were stiffer than the unstrengthened beams. Therefore this results gave a good indication about using CFRP sheets in improvement of deflection.

  19. Effects of Calcined clay minerals and Silica fume on the compressive strength of concrete

    Directory of Open Access Journals (Sweden)

    Abolfazl Soltani

    2017-05-01

    Full Text Available Pozzolanic materials are well known as potential replacements for cement manufacturing in order to increase compressive strength and improve durability of concrete in different environments and leading to save energy particularly reducing global warming effect. The present study reveals the effect of calcined clay minerals as natural pozzolanic material, separately and in combination with and without silica fume. To achieve this aim, 15 mixed designs with a constant water to cementitious ratio of  0.38 is made. In six mixed designs only metakaolin, zeolite or silica fume  and in eight other designs metakaolin and silica fume or zeolite and silica fume have been combined. Mixes containing metakaolin or zeolite with ratio of 10 or 20 percent and silica fume with 7 or 10 percent show significant increasing in compressive strength and improving durability, being valuable replacement for cement (in percentages. In particular, the best practice is attributed to the age of 28 days for compressive strength the replacement of the composition is 10% zeolite with 7% of silica fume and for electrical resistance the replacement of the composition is 10% zeolite with 7% of silica fume.

  20. Shear strength of reinforced concrete beams strengthened by P.B.O. fiber mesh under loading

    Directory of Open Access Journals (Sweden)

    Blikharskyy Zinoviy

    2017-01-01

    Full Text Available This article presents experimental study of sheer strength of reinforced concrete beams without transverse steel reinforcement, which strengthened by composite materials. The feature of tests is that the beams’ strengthening is made under simultaneous action of loading. The research program involves a series of test beams with size 2100 × 200 × 100 mm and which contains control sample and three reinforced samples by reinforcing FRCM system. FRCM system consisting of two components: mineral mortar based on modified cement Ruredil X Mesh M750 and reinforcing P.B.O. fiber mesh Ruredil X Mesh Gold (Italy. The strength research of test samples was carried out with the shear distance to effective depth ratio a/d = 2. The strengthening loading levels were selected at 0.0, 0.3, 0.5 from shear strength of non strengthened control sample. As a result of experimental studies we found that during strengthening design the inclined cross section of beams we should take into account the existing level of loading. Using the strengthening system Ruredil X Mesh Gold the strengthening effect is reduced at 2.8 to 2.9 times while the existing level of loading increase from 0 to 50%.

  1. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    Lu, Liulei; Ouyang, Dong; Xu, Weiting

    2016-05-27

    In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension.

  2. A New Pull-Out Technique for In-Place Estimation of Concrete Compressive Strength

    Directory of Open Access Journals (Sweden)

    F. Latte Bovio

    2014-01-01

    Full Text Available A new type of postinstalled wedge anchor (B15G is presented. A refined geometry of the anchor bolt and a careful choice of all the technical details allow the insert to work also in tensile stress states and to avoid much of the practical uncertainties that affect the commonly used procedures. The calibration of the procedure has been performed on 3 classes of concrete and for 5 stress distributions (medium and low compression, vanishing stress states, inhomogeneous compressive stresses, and inhomogeneous tensile stresses. It has been found that the correlation curves, pull-out force versus compressive strength, are not linear and depend on the stress state; besides, the statistical scattering of the calibration tests never exceeds 7-8% of the average values.

  3. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  4. Study on effects of different patterns and cracking for wastes FRP (used banner) wrapping on compressive strength of confined concrete

    Science.gov (United States)

    Syazani Leman, Alif; Shahidan, Shahiron; Azmi, M. A. M.; Syamir Senin, Mohamad; Ali, N.; Abdullah, S. R.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Nazri, Fadzli Mohamed

    2017-11-01

    Previous researches have shown that FRP are being introduce into wide variety of civil engineering applications. Fibre Reinforce Concrete (FRP) are also used as repairing method in concrete structures. FRP such as S-glass, AR-glass, E-glass, C-glass, and Aramid Fibre are the common material used in industry. The FRP strips provide the necessary longitudinal and hoop reinforcement. However, there are lots waste materials that can be form as fibre and used in repairing. Banner is a type of waste material fibre that can be used in repairing. In this study, banner will be used as the replacement of the common FRP. The confined concrete (cylinder) of 300mm height and 150mm diameter were cast with M35 grade concrete and tested until it is crack. Next banner are used as the wrapping along the cracking of the concrete with three different pattern that are full wrapping, two band wrapping and cross wrapping using epoxy. Epoxy is a common name for a type of strong adhesive used for sticking things together and covering surface. The objective of this study is to determine the maximum strength and the effect of different patterns wrapping of FRP (banner) on the compressive strength of confined concrete. The results are shows that banner are suitable as a replacement of material for FRP.

  5. The influence of the scale effect and high temperatures on the strength and strains of high performance concrete

    Directory of Open Access Journals (Sweden)

    Korsun Vladimyr Ivanovych

    2014-03-01

    Full Text Available The most effective way to reduce the structure mass, labor input and expenses for its construction is to use modern high-performance concrete of the classes С50/60… С90/105, which possess high physical and mathematic characteristics. One of the constraints for their implementation in mass construction in Ukraine is that in design standards there are no experimental data on the physical and mathematic properties of concrete of the classes more than С50/60. Also there are no exact statements on calculating reinforced concrete structures made of high-performance concretes.The authors present the results of experimental research of the scale effect and short-term and long-term heating up to +200 ° C influence on temperature and shrinkage strain, on strength and strain characteristics under compression and tensioning of high-strength modified concrete of class C70/85. The application of high performance concretes is challenging in the process of constructing buildings aimed at operating in high technological temperatures: smoke pipes, coolers, basins, nuclear power plants' protective shells, etc. Reducing cross-sections can lead to reducing temperature drops and thermal stresses in the structures.

  6. The influence of kind of coating additive on the compressive strength of RCA-based concrete prepared by triple-mixing method

    Science.gov (United States)

    Urban, K.; Sicakova, A.

    2017-10-01

    The paper deals with the use of alternative powder additives (fly ash and fine fraction of recycled concrete) to improve the recycled concrete aggregate and this occurs directly in the concrete mixing process. Specific mixing process (triple mixing method) is applied as it is favourable for this goal. Results of compressive strength after 2 and 28 days of hardening are given. Generally, using powder additives for coating the coarse recycled concrete aggregate in the first stage of triple mixing resulted in decrease of compressive strength, comparing the cement. There is no very important difference between samples based on recycled concrete aggregate and those based on natural aggregate as far as the cement is used for coating. When using both the fly ash and recycled concrete powder, the kind of aggregate causes more significant differences in compressive strength, with the values of those based on the recycled concrete aggregate being worse.

  7. Isolation of Sulphate Reduction Bacteria (SRB to Improve Compress Strength and Water Penetration of Bio-Concrete

    Directory of Open Access Journals (Sweden)

    Alshalif A. Faisal

    2016-01-01

    Full Text Available The objective of this study is to isolate sulphate reduction bacteria (SRB from acid mire water collected at Sg Pelepah Kota Tinggi, Johor Malaysia. The isolation process was conducted in high alkaline and anaerobic conditions to sustain the bacteria in concrete environment. Properties tests such as compressive strength and water penetration were conducted. The result showed that optimal growth condition of sulphate reduction bacteria is pH 9-10. It was also observed that the bacteria is a coccus shape after gram staining process. The bacteria was used after 10 days of culturing prior to growth curve measurement. The liquid culture containing sulphate reduction bacteria were used at 1%, 3% and 5% as replacement ratio of water content. Concrete specimens were cured in the air conditions for 7, 14 and 28 days. Maximum increment on compressive strength was 13.0% and decrement in water penetration was 8.5% occurred with 5% of SRB. The enhancement in compressive strength and water penetration performance was due to calcium precipitation within concrete pores. Image of scanning electronic microscopy (SEM showed bacteria sustained and survived in concrete environment by reducing diameter of pores in concrete specimens.

  8. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  9. Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete

    Science.gov (United States)

    Jhatial, Ashfaque Ahmed; Inn, Goh Wan; Mohamad, Noridah; Johnson Alengaram, U.; Mo, Kim Hung; Abdullah, Redzuan

    2017-11-01

    As almost half of the world’s population now lives in the urban areas, the raise in temperature in these areas has necessitated the development of thermal insulating material. Conventional concrete absorbs solar radiation during the daytime while releasing it at night causing raise in temperature in urban areas. The thermal conductivity of 2200 kg/m3 density conventional concrete is 1.6 W/mK. Higher the thermal conductivity value, greater the heat flow through the material. To reduce this heat transfer, the construction industry has turned to lightweight foamed concrete. Foamed concrete, due to its air voids, gives excellent thermal properties and sound absorption apart from fire-resistance and self-leveling properties. But due to limited studies on different densities of foamed concrete, the thermal properties are not understood properly thus limiting its use as thermal insulating material. In this study, thermal conductivity is determined for 1400, 1600 and 1800 kg/m3 densities of foamed concrete. 0.8% of Polypropylene fibres (PP) is used to reinforce the foamed concrete and improve the mechanical properties. Based upon the results, it was found that addition of PP fibres enhances the tensile strength and slightly reduced the thermal conductivity for lower densities, while the reverse affect was noticed in 1800 kg/m3 density.

  10. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  11. Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength.

    Science.gov (United States)

    Aiello, M A; Leuzzi, F; Centonze, G; Maffezzoli, A

    2009-06-01

    The increasing amount of waste tyres worldwide makes the disposition of tyres a relevant problem to be solved. In the last years over three million tons of waste tyres were generated in the EU states [ETRA, 2006. Tyre Technology International - Trends in Tyre Recycling. http://www.etra-eu.org]; most of them were disposed into landfills. Since the European Union Landfill Directive (EU Landfill, 1999) aims to significantly reduce the landfill disposal of waste tyres, the development of new markets for the tyres becomes fundamental. Recently some research has been devoted to the use of granulated rubber and steel fibres recovered from waste tyres in concrete. In particular, the concrete obtained by adding recycled steel fibres evidenced a satisfactory improvement of the fragile matrix, mostly in terms of toughness and post-cracking behaviour. As a consequence RSFRC (recycled steel fibres reinforced concrete) appears a promising candidate for both structural and non-structural applications. Within this context a research project was undertaken at the University of Salento (Italy) aiming to investigate the mechanical behaviour of concrete reinforced with RSF (recycled steel fibres) recovered from waste tyres by a mechanical process. In the present paper results obtained by the experimental work performed up to now are reported. In order to evaluate the concrete-fibres bond characteristics and to determine the critical fibre length, pull-out tests were initially carried out. Furthermore compressive strength of concrete was evaluated for different volume ratios of added RSF and flexural tests were performed to analyze the post-cracking behaviour of RSFRC. For comparison purposes, samples reinforced with industrial steel fibres (ISF) were also considered. Satisfactory results were obtained regarding the bond between recycled steel fibres and concrete; on the other hand compressive strength of concrete seems unaffected by the presence of fibres despite their irregular

  12. Heavy density concrete for nuclear radiation shielding and power stations: [Part]2

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the second part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. In this part, some of the important properties of heavy density concrete are discussed. They include density, water retentivity, air content, permeability with special reference to concrete mixes used in India's nuclear power reactors. All these properties are affected to various extents by heating. Indian shield concrete is rarely subjected to temperatures above 60degC during its life, because of thermal shield protection. During placement, the maximum anticipated rise in temperature due to heat of hydration is restricted to around 45degC by chilling, if necessary to reduce shrinkage stresses and cracks. (M.G.B.)

  13. A new way to increase the long-term bond strength of new-to-old concrete by the use of fly ash

    International Nuclear Information System (INIS)

    Li Gengying

    2003-01-01

    The short-term and long-term bond strengths of new-to-old concrete were experimentally investigated with an emphasis on the influence of new concretes and binders. These new concretes included ordinary Portland cement concrete, expansive concrete and high-volume fly ash concrete, while the binders included pure cement paste (C-binder), expansive binder (E-binder) and fly ash mortar (F-binder). The results showed that the short-term bond strength of all specimens with fly ash concrete was lower than that with ordinary Portland cement concrete, which in turn was lower than that with expansive concrete. The bond strength of the specimens with F-binder was the lowest at the age of 7 days. However, the long-term bond strength of all specimens with added fly ash was the highest and strength losses were observed in the specimens repaired with expansive concrete or E-binder at the age of 3 years. The microstructure of the transition zone with F-binder was also studied by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) at the ages of 28 days and 1 year, respectively

  14. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    Science.gov (United States)

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  15. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    Science.gov (United States)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  16. Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures

    Energy Technology Data Exchange (ETDEWEB)

    Demirboga, R.; Guel, R. [Atarturk Univ., Erzurum (Turkey). Dept. of Civil Engineering

    2003-12-01

    This paper studies the influence of two admixtures on expanded perlite aggregate concrete. Both silica fume and fly ash were added as replacement for cement by decreasing the cement weights in the ratios of 10, 20 and 30% by weight. The binder dosage was kept constant at 200 kg/m{sup 3} throughout this study. Superplasticizer was used 1.5% by weight of Portland cement to reduce w/c ratios. The obtained results showed that: the thermal conductivity decreased with the increase of silica fume and fly ash as replacement for portland cement up to 14 and 18%, respectively. Densities of all samples decreased from 522 to 483 kg/m{sup 3} with the increase of both admixtures. Silica fume and fly ash decreased the density of samples. The compressive strengths decreased 12, 19, 29 for 7 days, and increased 9, 13%, 4%, for 28 days due to 10, 20 and 30% silica fume, respectively. Fly ash induced to reductions in the compressive strength up to 36% at 7 days and 27% at 28 days. (Author)

  17. Improved strength and durability of concrete through metabolic activity of ureolytic bacteria.

    Science.gov (United States)

    Alonso, Maria Jose Castro; Ortiz, Carlos Eloir Lopez; Perez, Sixto Omar Garcia; Narayanasamy, Rajeswari; Fajardo San Miguel, Gerardo Del Jesús; Hernández, Héctor Herrera; Balagurusamy, Nagamani

    2017-06-07

    In recent years, biomineralization process is being employed in development of bioconcrete, which is emerging as a sustainable method to enhance the durability of concrete by way of increasing compressive strength and reducing the chloride permeability. In this study, different bacterial strains isolated from the soils of the Laguna Region of Mexico were selected for further study. ACRN5 strain demonstrated higher urease activity than other strains, and the optimum substrate concentration, pH, and temperature were 120 mM, pH 8, and 25 °C, respectively. Further, Km and Vmax of urease activity of ACRN5 were 21.38 mM and 0.212 mM min -1 , respectively. It was observed that addition of ACRN5 at 10 5  cells ml -1 to cement-water mixture significantly increased (14.94%) in compressive strength after 36 days of curing and reduced chloride penetration. Deposition of calcite in bio-mortars was observed in scanning electron microscopy and energy dispersive X-ray diffraction spectrometry analyses. Results of this study demonstrated the role of microbially induced calcium carbonate precipitation in improving the physico-mechanical properties of bio-mortars.

  18. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  19. Drop weight impact strengths of porous concretes investigated with a measurement technique using laser doppler velocimetry

    NARCIS (Netherlands)

    Ozbek, A.S.A.; Weerheijm, J.; Schlangen, E.; Breugel, K. van

    2013-01-01

    Porous concrete is used in many applications that require permeability, noise absorption or thermal insulation. However, its response under dynamic loading is generally not considered. Porous concrete has a characteristic of forming multiple cracks and subsequently fracturing into small fragments

  20. Laboratory investigation of nanomaterials to improve the permeability and strength of concrete.

    Science.gov (United States)

    2010-02-01

    Concretes containing various supplementary cementitious materials (SCMs) such as silica fume, fly ash, and slag have improved properties. Nanomaterials (a nanometer, nm, is 10-9 m), new SCMs with possible applications in concrete, have the smallest p...

  1. Improving resistance of high strength concrete (HSC) bridge beams to frost and defrosting salt attack by application of hydrophobic agent

    Science.gov (United States)

    Kolisko, Jiri; Balík, Lukáš; Kostelecka, Michaela; Pokorný, Petr

    2017-09-01

    HSC (High Strength Concrete) is increasingly used for bearing bridge structures nowadays. Bridge structures in the Czech Republic are exposed to severe conditions in winter time and durability of the concrete is therefore a crucial requirement. The high strength and low water absorption of HSC suggests that the material will have high durability. However, the situation may not be so straightforward. We carried out a study of the very poor durability of HSC concrete C70/85 used to produce prestresed beams 37.1 m in length to build a 6-span highway bridge. After the beams were cast, a production control test indicated some problems with the durability of the concrete. There was a danger that 42 of the beams would not be suitable for use. All participants in the bridge project finally decided, after extensive discussions, to attempt to improve the durability of the concrete by applying a hydrophobic agent. Paper will present the results of comparative tests of four hydrophobic agents in order to choose one for real application and describes this application on construction site.

  2. Embedded NMR Sensor to Monitor Compressive Strength Development and Pore Size Distribution in Hydrating Concrete

    Science.gov (United States)

    Díaz-Díaz, Floriberto; de J. Cano-Barrita, Prisciliano F.; Balcom, Bruce J.; Solís-Nájera, Sergio E.; Rodríguez, Alfredo O.

    2013-01-01

    In cement-based materials porosity plays an important role in determining their mechanical and transport properties. This paper describes an improved low–cost embeddable miniature NMR sensor capable of non-destructively measuring evaporable water loss and porosity refinement in low and high water-to-cement ratio cement-based materials. The sensor consists of two NdFeB magnets having their North and South poles facing each other, separated by 7 mm to allow space for a Faraday cage containing a Teflon tube and an ellipsoidal RF coil. To account for magnetic field changes due to temperature variations, and/or the presence of steel rebars, or frequency variation due to sample impedance, an external tuning circuit was employed. The sensor performance was evaluated by analyzing the transverse magnetization decay obtained with a CPMG measurement from different materials, such as a polymer phantom, fresh white and grey cement pastes with different w/c ratios and concrete with low (0.30) and high (0.6) w/c ratios. The results indicated that the sensor is capable of detecting changes in water content in fresh cement pastes and porosity refinement caused by cement hydration in hardened materials, even if they are prepared with a low w/c ratio (w/c = 0.30). The short lifetime component of the transverse relaxation rate is directly proportional to the compressive strength of concrete determined by destructive testing. The r2 (0.97) from the linear relationship observed is similar to that obtained using T2 data from a commercial Oxford Instruments 12.9 MHz spectrometer.

  3. Embedded NMR Sensor to Monitor Compressive Strength Development and Pore Size Distribution in Hydrating Concrete

    Directory of Open Access Journals (Sweden)

    Floriberto Díaz-Díaz

    2013-11-01

    Full Text Available In cement-based materials porosity plays an important role in determining their mechanical and transport properties. This paper describes an improved low–cost embeddable miniature NMR sensor capable of non-destructively measuring evaporable water loss and porosity refinement in low and high water-to-cement ratio cement-based materials. The sensor consists of two NdFeB magnets having their North and South poles facing each other, separated by 7 mm to allow space for a Faraday cage containing a Teflon tube and an ellipsoidal RF coil. To account for magnetic field changes due to temperature variations, and/or the presence of steel rebars, or frequency variation due to sample impedance, an external tuning circuit was employed. The sensor performance was evaluated by analyzing the transverse magnetization decay obtained with a CPMG measurement from different materials, such as a polymer phantom, fresh white and grey cement pastes with different w/c ratios and concrete with low (0.30 and high (0.6 w/c ratios. The results indicated that the sensor is capable of detecting changes in water content in fresh cement pastes and porosity refinement caused by cement hydration in hardened materials, even if they are prepared with a low w/c ratio (w/c = 0.30. The short lifetime component of the transverse relaxation rate is directly proportional to the compressive strength of concrete determined by destructive testing. The r2 (0.97 from the linear relationship observed is similar to that obtained using T2 data from a commercial Oxford Instruments 12.9 MHz spectrometer.

  4. Mix design for improved strength and freeze-thaw durability of pervious concrete fill in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Kevern, John T.; Schaefer, Vernon R.

    2017-01-01

    Pearl-Chain Bridges are an innovative precast arch bridge technology which can utilize pervious concrete as fill material. The present study investigates how the mix design of the pervious concrete fill can be influenced by use of an air-entraining admixture, a high-range water reducing admixture......, fibers, and by internal curing using lightweight aggregate to best possibly meet the requirements for a fill material in Pearl-Chain Bridges. The 28-day compressive strength, splitting tensile strength, shear strength, permeability, and freeze-thaw durability were determined and compared for eight...... different mixture proportions using two different sizes of granite coarse aggregate and at two different water-to-cement ratios. The specimens had an average void content of 24-28 %. Specimens containing air entraining and high-range water reducing admixtures were most workable, as determined by fresh...

  5. Statistical analysis of the effective factors on the 28 days compressive strength and setting time of the concrete.

    Science.gov (United States)

    Abolpour, Bahador; Mehdi Afsahi, Mohammad; Hosseini, Saeed Gharib

    2015-09-01

    In this study, the effects of various factors (weight fraction of the SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, Cl, SO3, and the Blaine of the cement particles) on the concrete compressive strength and also initial setting time have been investigated. Compressive strength and setting time tests have been carried out based on DIN standards in this study. Interactions of these factors have been obtained by the use of analysis of variance and regression equations of these factors have been obtained to predict the concrete compressive strength and initial setting time. Also, simple and applicable formulas with less than 6% absolute mean error have been developed using the genetic algorithm to predict these parameters. Finally, the effect of each factor has been investigated when other factors are in their low or high level.

  6. THE STRENGTH OF REINFORCED CONCRETE BEAM ELEMENTS UNDER CYCLIC ALTERNATING LOADING AND LOW CYCLE LOAD OF CONSTANT SIGN

    Directory of Open Access Journals (Sweden)

    Semina Yuliya Anatol'evna

    2015-09-01

    Full Text Available The behavior of reinforced concrete elements under some types of cyclic loads is described in the paper. The main aim of the investigations is research of the stress-strain state and strength of the inclined sections of reinforced concrete beam elements in conditions of systemic impact of constructive factors and the factor of external influence. To spotlight the problem of cyclic loadings three series of tests were conducted by the author. Firstly, the analysis of the tests showed that especially cyclic alternating loading reduces the bearing capacity of reinforced concrete beams and their crack resistance by 20 % due to the fatigue of concrete and reinforcement. Thus the change of load sign creates serious changes of stress-strain state of reinforced concrete beam elements. Low cycle loads of constant sign effect the behavior of the constructions not so adversely. Secondly, based on the experimental data mathematical models of elements’ strength were obtained. These models allow evaluating the impact of each factor on the output parameter not only separately, but also in interaction with each other. Furthermore, the material spotlighted by the author describes stress-strain state of the investigated elements, cracking mechanism, changes of deflection values, the influence of mode cyclic loading during the tests. Since the data on the subject are useful and important to building practice, the ultimate aim of the tests will be working out for improvement of nonlinear calculation models of span reinforced concrete constructions taking into account the impact of these loads, and also there will be the development of engineering calculation techniques of their strength, crack resistance and deformability.

  7. Strength and fracture energy of foamed concrete incorporating rice husk ash and polypropylene mega-mesh 55

    Science.gov (United States)

    Jaini, Z. M.; Rum, R. H. M.; Boon, K. H.

    2017-10-01

    This paper presents the utilization of rice husk ash (RHA) as sand replacement and polypropylene mega-mesh 55 (PMM) as fiber reinforcement in foamed concrete. High pozzolanic reaction and the ability to become filler make RHA as a strategic material to enhance the strength and durability of foamed concrete. Furthermore, the presence of PMM optimizes the toughness of foamed concrete in resisting shrinkage and cracking. In this experimental study, cube and cylinder specimens were prepared for the compression and splitting-tensile tests. Meanwhile, notched beam specimens were cast for the three-point bending test. It was found that 40% RHA and 9kg/m3 PMM contribute to the highest strength and fracture energy. The compressive, tensile and flexural strengths are 32MPa, 2.88MPa and 6.68MPa respectively, while the fracture energy achieves 42.19N/m. The results indicate high potential of RHA and PMM in enhancing the mechanical properties of foamed concrete.

  8. Experimental study on the shrinkage properties and cracking potential of high strength concrete containing industrial by-products for nuclear power plant concrete

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Baek Joong; Yi, Chong Ku [School of Civil, Environmental and Architectural Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-15

    In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials.

  9. IMPACT OF FORMULA-TECHNOLOGICAL FACTORS ON CONCRETE STRENGTH INDICATORS FOR INJECTING WITH TWO-STAGE EXPANSION

    Directory of Open Access Journals (Sweden)

    Tatjana N. Zhilnikova

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the study is to clarify the dependence of the cement stone strength on additional porosity that is formed owing both to the cement stone’s development of free deformations and the expansion of the hardening concrete in the second stage as caused by the action of the expanding additive. Method The study is based on the introduction of a sulphoaluminate-type expanding additive in the composition of a binder based on alumina cement, natural gypsum stone and nitrilotrimethylphosphonic acid. Results It is shown that an important role is played in the technology of expanding concrete not only by the degree of expansion of the cement stone, but also by its strength, both during the development of deformations and following stabilisation. Among factors influencing the kinetics of hardening are not only recipe-related (composition and dosage of the additive, mineralogical composition of Portland cement clinker, composition of the concrete, presence of chemical additives, but also technological (fineness of cement grinding, hardening temperature, etc. that makes the management of the processes of structure formation quite complex. The dependence of the strength of cement stone on the additional porosity formed due to the growth of the cement stone own free deformations and expansion of the hardening concrete in the second stage due to the action of the expanding additive is revealed; dependence of the influence of kinetics of the structure formation regulator - nitrilotrimethylphosphonic acid - on the consistency of the development of the intrinsic free expansion deformations and the formation of the strength of the cement stone in the second stage; the dependence of the strength of the cement stone on the additional porosity formed due to gas evolution and expansion of the mixture in the first stage due to the action of the gas-forming additive; the influence of the constraint of expansion on the formation of the

  10. Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-04-01

    Full Text Available Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP. The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa, high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have

  11. EFFECT OF SODIUM HYDROXIDE CONCENTRATION ON FRESH PROPERTIES AND COMPRESSIVE STRENGTH OF SELF-COMPACTING GEOPOLYMER CONCRETE

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2013-02-01

    Full Text Available This paper reports the results of the laboratory tests conducted to investigate the effect of sodium hydroxide concentration on the fresh properties and compressive strength of self-compacting geopolymer concrete (SCGC. The experiments were conducted by varying the concentration of sodium hydroxide from 8 M to 14 M. Test methods such as Slump flow, V-Funnel, L-box and J-Ring were used to assess the workability characteristics of SCGC. The test specimens were cured at 70°C for a period of 48 hours and then kept in room temperature until the day of testing. Compressive strength test was carried out at the ages of 1, 3, 7 and 28 days. Test results indicate that concentration variation of sodium hydroxide had least effect on the fresh properties of SCGC. With the increase in sodium hydroxide concentration, the workability of fresh concrete was slightly reduced; however, the corresponding compressive strength was increased. Concrete samples with sodium hydroxide concentration of 12 M produced maximum compressive strength.

  12. Effect of palm oil fuel ash on compressive strength of palm oil boiler stone lightweight aggregate concrete

    Science.gov (United States)

    Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd

    2018-04-01

    Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.

  13. Shear strength estimation of the concrete beams reinforced with FRP; comparison of artificial neural network and equations of regulations

    Directory of Open Access Journals (Sweden)

    Mahmood Akbari

    2017-12-01

    Full Text Available In recent years, numerous experimental tests were done on the concrete beams reinforced with the fiber-reinforced polymer (FRP. In this way, some equations were proposed to estimate the shear strength of the beams reinforced with FRP. The aim of this study is to explore the feasibility of using a feed-forward artificial neural network (ANN model to predict the ultimate shear strength of the beams strengthened with FRP composites. For this purpose, a database consists of 304 reinforced FRP concrete beams have been collected from the available articles on the analysis of shear behavior of these beams. The inputs to the ANN model consists of the 11 variables including the geometric dimensions of the section, steel reinforcement amount, FRP amount and the properties of the concrete, steel reinforcement and FRP materials while the output variable is the shear strength of the FRP beam. To assess the performance of the ANN model for estimating the shear strength of the reinforced beams, the outputs of the ANN are compared to those of equations of the Iranian code (Publication No. 345 and the American code (ACI 440. The comparisons between the outputs of Iran and American regulations with those of the proposed model indicates that the predictive power of this model is much better than the experimental codes. Specifically, for under study data, mean absolute relative error (MARE criteria is 13%, 34% and 39% for the ANN model, the American and the Iranian codes, respectively.

  14. Modeling seismic performance of high-strength steel–ultra-high-performance concrete piers with modified Kent–Park model using fiber elements

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2016-02-01

    Full Text Available The seismic performance of ultra-high-performance concrete–high-strength steel pier was studied using fiber elements, which are capable to model accurately elastic–plastic behavior of members with fibers of different material constitutive relations. For high-strength steel–ultra-high-performance concrete piers, the modified Kent–Park model was utilized to describe the compressive stress–strain relations of ultra-high-performance concrete and high-strength steel-confined ultra-high-performance concrete, respectively, by determining four key parameters. A finite element model was established to simulate the hysteretic response; conduct parameter analysis including axial load ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio; and assess the maximum ground acceleration capacity based on inelastic response spectra for high-strength steel–ultra-high-performance concrete piers. The conclusions are summarized that modified Kent–Park model is proved to be effective due to experimental data. The calculated hysteretic curves of high-strength steel–ultra-high-performance concrete piers show good agreement with the experimental results. Three parameters have evident effects on seismic performance of high-strength steel–ultra-high-performance concrete piers, which indicates that various seismic demands can be achieved by reasonable parameter settings. Compared to nonlinear dynamic analysis based on finite element model, the results provided by inelastic response spectra are less conservative for short high-strength steel–ultra-high-performance concrete piers under high axial load ratio.

  15. Influence of Fracture Width on Sealability in High-Strength and Ultra-Low-Permeability Concrete in Seawater

    Directory of Open Access Journals (Sweden)

    Katsuhiko Kaneko

    2013-06-01

    Full Text Available For cementitious composites and materials, the sealing of fractures can occur in water by the precipitation of calcium compounds. In this study, the sealing behavior in a macro-fractured high-strength and ultra-low-permeability concrete (HSULPC specimen was investigated in simulated seawater using micro-focus X-ray computed tomography (CT. In particular, the influence of fracture width (0.10 and 0.25 mm on fracture sealing was investigated. Precipitation occurred mainly at the outermost parts of the fractured surface of the specimen for both fracture widths. While significant sealing was observed for the fracture width of 0.10 mm, sealing was not attained for the fracture width of 0.25 mm within the observation period (49 days. Examination of the sealed regions on the macro-fracture was performed using a three-dimensional image registration technique and applying image subtraction between the CT images of the HSULPC specimen before and after maintaining the specimen in simulated seawater. The temporal change of the sealing deposits for the fracture width of 0.10 mm was much larger than that for the fracture width of 0.25 mm. Therefore, it is concluded that the sealability of the fracture in the HSULPC is affected by the fracture width.

  16. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    Science.gov (United States)

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. LDRD summary report. Part 1: initiation studies of thin film explosvies used for scabbling concrete. Part 2: investigation of spray techniques for use in explosive scabbling of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Benham, R.A.; Bickes, R.W. Jr.; Grubelich, M.C.; Wackerbarth, D.E.; Brock, J.L.

    1996-11-01

    We describe a new method for the scabbling of concrete surfaces using a thin layer of explosive material sprayed onto the surfaces. We also developed a new explosive mixture that could be applied with commercial spray painting equipment. The first part of our record describes experiments that studied methods for the initiation of the sprayed explosive. We successfully initiated layers 0.36 mm thick using a commercial EBW detonator, a flying plate detonator, and by pellet impact. The second part of our report describes a survey of spray methods and tests with two commercial spray systems that we believe could be used for developing a robotic spray system.

  18. Compressive strength and interfacial transition zone of sugar cane bagasse ash concrete: A comparison to the established pozzolans

    Science.gov (United States)

    Hussein, Asma Abd Elhameed; Shafiq, Nasir; Nuruddin, Muhd Fadhil

    2015-05-01

    Agricultural and industrial by-products are commonly used in concrete production as cement replacement materials (CRMs) or as admixtures to enhance both fresh and hardened properties of concrete as well as to save the environment from the negative effects caused by their disposal. Sugar Cane Bagasse Ash (SCBA) is one of the promising CRMs, it is used as a partial replacement of cement for producing concrete; properties of such concrete depend on the chemical composition, fineness, and burning temperature of SCBA. Approximately 1500 Million tons of sugarcane are annually produced over all the world which leave about 40-45% bagasse after juice crushing for sugar industry giving an average annual production of about 600 Million tons of bagasse as a waste material. This paper presents some findings on the effect of SCBA on workability, compressive strength and microstructure of interfacial zone of concrete and its performance is compared to some of the established CRMs namely Densified Silica Fume, Fly Ash and Microwave Incinerated Rice Husk Ash.

  19. Evaluation of Shear Strength of Concrete Flat Plates Reinforced with GFRP Plates

    OpenAIRE

    Min Sook Kim; Young Hak Lee

    2017-01-01

    The shear performance of concrete flat plates with glass fiber-reinforced polymer (GFRP) plate shear reinforcement was investigated through punching shear tests. Each GFRP plate was embedded in the concrete and included openings to permit the flow of concrete during fabrication. Punching shear tests were conducted on a total of 8 specimens, and the resulting crack and fracture formations, strains, and load-displacement curves were analyzed and compared. The experimental variables considered w...

  20. Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks

    Directory of Open Access Journals (Sweden)

    José Fernando Moretti

    2016-01-01

    Full Text Available Currently, artificial neural networks are being widely used in various fields of science and engineering. Neural networks have the ability to learn through experience and existing examples, and then generate solutions and answers to new problems, involving even the effects of non-linearity in their variables. The aim of this study is to use a feed-forward neural network with back-propagation technique, to predict the values of compressive strength and modulus of elasticity, at 28 days, of different concrete mixtures prepared and tested in the laboratory. It demonstrates the ability of the neural networks to quantify the strength and the elastic modulus of concrete specimens prepared using different mix proportions.

  1. Evolution of the fracture process zone in high-strength concrete under different loading rates

    Directory of Open Access Journals (Sweden)

    Cámara M.

    2010-06-01

    Full Text Available For cementitious materials, the inelastic zone around a crack tip is termed as fracture process zone (FPZ and dominated by complicated mechanism, such as microcracking, crack deflection, bridging, crack face friction, crack tip blunting by voids, crack branching, and so on. Due to the length of the FPZ is related with the characteristic length of the cementitious materials, the size, extent and location of the FPZ has been the object of countless research efforts for several decades. For instance, Cedolin et al. [1] have used an optical method based on the moiré interferometry to determine FPZ in concrete. Castro-Montero et al. [2] have applied the method of holographic interferometry to mortar to study the extension of the FPZ. The advantage of the interferometry method is that the complete FPZ can be directly observed on the surface of the sample. Swartz et al. [3] has adopted the dye penetration technique to illustrate the changing patterns observed as the crack progress from the tensile side to the compression side of the beam. Moreover, acoustic emission (AE is also an experimental technique well suited for monitoring fracture process. Haidar et al. [4] and Maji et al. [5] have studied the relation between acoustic emission characteristics and the properties of the FPZ. Compared with the extensive research on properties of the FPZ under quasi-static loading conditions, much less information is available on its dynamic characterization, especially for high-strength concrete (HSC. This paper presents the very recent results of an experimental program aimed at disclosing the loading rate effect on the size and velocity of the (FPZ in HSC. Eighteen three-point bending specimens were conducted under a wide range of loading rates from from 10-4 mm/s to 103 mm/s using either a servo-hydraulic machine or a self-designed drop-weight impact device. The beam dimensions were 100 mm 100 mm in cross section, and 420 mm in length. The initial notch

  2. Stress corrosion cracking and hydrogen embrittlement behaviour of high strength duplex and austenitic stainless steels in simulated concrete pore solution

    OpenAIRE

    GRIMAULT, Benoît; GAILLET, Laurent; DRISSI-HABTI, Monssef; MANTEL, Marc; CHAUVEAU, Eric; CHAUSSADENT, Thierry

    2011-01-01

    Stainless steels are playing an increasingly role in civil engineering, especially in coastal and marine constructions, where the concentration of chloride ions is higher. Their use as concrete reinforcement rebar is an interesting example of that idea. However, although some studies about the use of stainless steels in prestressing are emerging, no realistic realization has been performed. This might be due to technical lock as the high mechanical strength needed for prestressing seems to be...

  3. Comparative analysis of analytical and experimental results of the strength of compressed reinforced concrete columns under special combinations of loads

    Directory of Open Access Journals (Sweden)

    Tamrazyan Ashot

    2016-01-01

    Full Text Available The article presents a comparison of results of experimental and analytical calculations of the strength of the central and eccentrically compressed concrete elements working in the conditions of dynamic loads under fire exposure. The diagram shows a coefficient of dynamic strength depending on the dynamic loading under high temperature obtained by experimentation way. It is shown, that accounting the dynamic effects in fire condition reduces the load carrying capacity of columns by 40%. Therefore, it is recommended to check the possibility of progressive collapse of buildings and, results of which, appearing the character of dynamic loads on the structure, in calculating load carrying capacity of the structure in fire testing.

  4. The Effects of Loading Rate and Duration on the Axial Behavior of Low-Strength and Medium-Strength Noncircular Concrete Members Confined by Fiber-Reinforced Polymer Sheets

    Directory of Open Access Journals (Sweden)

    Cem Demir

    2014-06-01

    Full Text Available In this study, 36 concrete specimens with square cross-sections and different concrete qualities were tested either under uniaxial compression at different loading rates or subjected to sustained uniaxial stresses after externally jacketing with carbon fiber-reinforced polymer (CFRP sheets. The main test parameters were the loading rate and the applied sustained stress level. Among these parameters, the loading rate varied in the range of 0.0002 and 0.04 strain/min. In the case of short-term creep tests under sustained loads, three stress levels (between 0.73 f'cc and 0.90 f'cc or 2.76 f'cc and 3.37 f'cc for low-strength and four stress levels (between 0.69 f'cc and 0.92 f'cc or 0.89 f'co and 1.20 f'co for medium-strength prisms were applied. The test results showed that the stress-strain behavior of CFRP-confined concrete was affected by the change in loading rate, and external CFRP confinement enhanced the creep performance of concrete significantly. For low-strength concrete specimens, higher strain rates did not bring higher strength values; however, an increase in strength was obvious for medium-strength prisms. On the other hand, for both concrete qualities, the specimens loaded at slower strain rates exhibited better deformability. None of the specimens of the medium-strength concrete failed during the short-term creep tests; however, three of the low-strength concrete prisms failed during the tests. The results of residual strength tests showed that sustained loading did not cause a strength or ultimate deformation capacity loss, but affected the residual strain capacities.

  5. Drop weight impact strength measurement method for porous concrete using laser doppler velocimetry

    NARCIS (Netherlands)

    Agar-Ozbek, A.S.; Weerheijm, J.; Schlangen, E.; Breugel, K. van

    2012-01-01

    In this study, an experimental configuration that reveals the dynamic response of porous concretes in a drop weight impact test was introduced. Through the measurement of particle velocity at the interface, between the impactor and the concrete target, the dynamic response was obtained in an easily

  6. The feasibility and benefits of using high-strength concrete for ...

    African Journals Online (AJOL)

    Examining the studies on this type of concrete, this paper has deal with the feasibility and benefits of using HSC for construction purposes in earthquake prone areas. The results of this study show that in case of respecting the bylaw constrains and conformity of new bylaws with this type of concrete, it is hoped to use it as a ...

  7. Fiber-reinforced concretes with a high fiber volume fraction — a look in future. Can a design determine the fiber amount in concrete in real time in every part of a structure in production?

    Science.gov (United States)

    Tepfers, R.

    2010-09-01

    In near future, when the control of the load-bearing capacity of fiber-only-reinforced concrete members will be safely guaranteed, the deletion of the ordinary continuous steel reinforcing bars might be possible. For the time being, it is difficult to change the fiber amount during the casting with today's techniques. Therefore, the fiber concentration has to be determined by the maximum tensile stress in concrete structural members, resulting in an unnecessary fiber addition in compressed zones. However, if the right amount of fibers could be regulated and added to concrete in real time at the pump outlet, a future vision could be to design and produce a structure by using FEM-controlled equipment. The signals from calculation results could be transmitted to a concrete casting system for addition of a necessary amount of fibers to take care of the actual tensile stresses in the right position in the structure. The casting location could be determined by using a GPS for positioning the pump outlet for targeting the casting location horizontally and a laser vertically. The addition of fibers to concrete at the outlet of a concrete pump and proportioning them there according to the actual needs of the stress situation in a structure, given by a FEM analysis in real time, is a future challenge. The FEM analysis has to be based on material properties of fiber-only-reinforced concrete. This means that the resistance and stiffness of different-strength concrete members with a varying fiber content has to be determined in tests and conveyed to the FEM analysis. The FEM analysis has to be completed before the casting and controlled. Then it can be used as the base for adding a correct amount of fibers to concrete in every part of the structure. Thus, a system for introducing a correct amount of fibers into concrete has to be developed. The fibers have to be added at the outlet of concrete pump. Maybe a system to shotcrete concrete with electronically controlled fiber

  8. Mechanical Properties of High Strength Mortars Made withFine Waste Concrete Aggregates and Ground Granulated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Ali Hassoon Nahhab

    2018-01-01

    Full Text Available The mechanical properties of high strength mortars produced with fine waste concrete aggregate (FWCA and GGBFS were investigated. The natural sand was replaced by FWCA with different levels, namely 0, 25, 50, 75, and 100%. The ordinary Portland cement (OPC was substituted by GGBFS with 0, 30, and 60% by weight. To satisfy the requirements of high strength, all the mortar mixes were made with a 0.25 w/bratio. The hardened mortars were tested for compressive strength, splitting tension, and fracture parametersat different ages.The experimental findings showed that the mixtures with FWCA showed lower strength, fracture energy and toughness compared to the corresponding reference mixes at a given age and GGBFS content. The 30% replacement of OPC by GGBFS improved the strengths of all mixes at 28 and 90 days. Moreover, the use of 30% GGBFS counterbalanced the strength decrement due to the use of the FWCA such that the mixtures with FWCA and GGBFS showed strengths comparable to or even exceeded the strengths of the mixtures made with natural sand only.

  9. Development of System for Evaluating Concrete Strength Deterioration Due to Radiation and Resultant Heat

    International Nuclear Information System (INIS)

    Maruyama, I.; Kontani, O.; Ishizawa, A.; Takizawa, M.; Sato, O.

    2012-01-01

    Evaluation of the soundness of concrete exposed to irradiation has been studied within the framework of a project of the Nuclear and Industrial Safety Agency (NISA) 'Japan Ageing Management Program for System Safety'. This contribution presents the background to the existing evaluation processes, a review of the irradiation exposure effect on concrete and needs for irradiation testing. Based on results of this study, working assumptions for the development of an evaluation system are derived, and an overall picture of a numerical model as well as a framework for evaluating concrete soundness under irradiated conditions are proposed. (author)

  10. Effects of Nanosilica on Compressive Strength and Durability Properties of Concrete with Different Water to Binder Ratios

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2016-01-01

    Full Text Available The effects of the addition of different nanosilica dosages (0.5%, 1%, and 1.5% with respect to cement on compressive strength and durability properties of concrete with water/binder ratios 0.65, 0.55, and 0.5 were investigated. Water sorptivity, apparent chloride diffusion coefficient, electrical resistivity, and carbonation coefficient of concrete were measured. The results showed that compressive strength significantly improved in case of water/binder = 0.65, while for water/binder = 0.5 no change was found. Increasing nanosilica content, the water sorptivity decreased only for water/binder = 0.55. The addition of 0.5% nanosilica decreased the apparent chloride diffusion coefficient for water/binder = 0.65 and 0.55; however, higher nanosilica dosages did not decrease it with respect to reference value. The resistivity was elevated by 0.5% nanosilica for all water/binder ratios and by 1.5% nanosilica only for water/binder = 0.5. The carbonation coefficient was not notably affected by increasing nanosilica dosages and even adverse effect was observed for water/binder = 0.65. Further information of microstructure was also provided through characterization techniques such as X-ray diffraction, thermal gravimetric analysis, mercury intrusion porosimetry, and scanning electron microscopy. The effectiveness of a certain nanosilica dosage addition into lower strength mixes was more noticeable, while, for the higher strength mix, the effectiveness was less.

  11. Effect of alkali–silica reaction on the shear strength of reinforced concrete structural members. A numerical and statistical study

    International Nuclear Information System (INIS)

    Saouma, Victor E.; Hariri-Ardebili, Mohammad Amin; Le Pape, Yann; Balaji, Rajagopalan

    2016-01-01

    Highlights: • Alkali–silica reaction (ASR) affects reinforced structures shear strength. • Statistical analysis indicates large scattering of post-ASR strength losses/gains. • Competitive structural and materials mechanisms affect the residual shear strength. - Abstract: The residual structural shear resistance of concrete members without shear reinforcement and subject to alkali–aggregate reaction (ASR) is investigated by finite element analysis. A parametric numerical study of 648 analyses considering various structural members’ geometries, boundary conditions, ASR-induced losses of materials properties, ASR expansions and reinforcement ratios is conducted. As a result of competitive mechanisms (e.g., ASR-induced prestressing caused by the longitudinal reinforcement) and loss of concrete materials properties, important scatter in terms of gain or loss of shear strength is observed: about 50% of the studied configurations lead to a degradation of structural performance. The range of variation in terms of post-ASR shear resistance is extremely scattered, in particular, when ASR results in out-of-plane expansion only. Influencing factors are derived by two methods: (i) visual inspection of boxplots and probability distributions, and (ii) information criteria within multiple-linear regression analysis.

  12. Design Of A Laboratory Set-up For Evaluating Structural Strength Of Deteriorated Concrete Sewer Pipes

    NARCIS (Netherlands)

    Stanic, N.; Salet, T.; Langeveld, J.G.; Clemens, F.H.L.R.

    2014-01-01

    The principle of structural behaviour of buried concrete pipes is fairly understood, except for how material deterioration affects structural behaviour and performance. Consequently, information on the structural behaviour of deteriorated sewer pipes will contribute to better understanding of the

  13. Development of rational pay factors based on concrete compressive strength data

    Science.gov (United States)

    2008-06-01

    This research project addresses the opportunity to contain the escalating costs of concrete materials in construction projects. Both statistical process control and rational acceptance criteria show that quality improvement and cost savings can be ac...

  14. Investigation of transfer length, development length, flexural strength, and prestress losses in lightweight prestressed concrete girders.

    Science.gov (United States)

    2003-01-01

    Encouraged by the performance of high performance normal weight composite girders, the Virginia Department of Transportation has sought to exploit the use of high performance lightweight composite concrete (HPLWC) girders to achieve economies brought...

  15. Effect of Molarity of Sodium Hydroxide and Curing Method on the Compressive Strength of Ternary Blend Geopolymer Concrete

    Science.gov (United States)

    Sathish Kumar, V.; Ganesan, N.; Indira, P. V.

    2017-07-01

    Concrete plays a vital role in the development of infrastructure and buildings all over the world. Geopolymer based cement-less concrete is one of the current findings in the construction industry which leads to a green environment. This research paper deals with the results of the use of Fly ash (FA), Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin (MK) as a ternary blend source material in Geopolymer concrete (GPC). The aspects that govern the compressive strength of GPC like the proportion of source material, Molarity of Sodium Hydroxide (NaOH) and Curing methods were investigated. The purpose of this research is to optimise the local waste material and use them effectively as a ternary blend in GPC. Seven combinations of binder were made in this study with replacement of FA with GGBS and MK by 35%, 30%, 25%, 20%, 15%, 10%, 5% and 5%, 10%, 15%, 20%, 25%, 30%, 35% respectively. The molarity of NaOH solution was varied by 12M, 14M and 16M and two types of curing method were adopted, viz. Hot air oven curing and closed steam curing for 24 hours at 60°C (140°F). The samples were kept at ambient temperature till testing. The compressive strength was obtained after 7 days and 28 days for the GPC cubes. The test data reveals that the ternary blend GPC with molarity 14M cured by hot air oven produces the maximum compressive strength. It was also observed that the compressive strength of the oven cured GPC is approximately 10% higher than the steam cured GPC using the ternary blend.

  16. NEW EVALUATION of SLENDERNESS' CLASSIFICATION FOR COMPOSITE GIRDERS CONSIDERING LOWER CONCRETE STRENGTH SLAB

    OpenAIRE

    Ahmed M. AbdElrahman Massoud*, Manar M. M. Hussein, Walid A.L. Attia

    2017-01-01

    Composite steel/concrete girder is one of the main structural systems used in bridges and buildings. Steel element mainly located in tension zone and a concrete element located in compression zone. Full integration by the shear connectors used to simulate as one section without any slippage between the two materials. The classification requirements for steel sections and composite sections in most specifications were originally derived from experimental and analytical studies based on the the...

  17. STRENGTH AND DURABILITY STUDIES ON SODIUM NITRITE INHIBITOR IN ORDINARY AND HIGH PERFORMANCE CONCRETE

    OpenAIRE

    Madhavan, V.; Jeyasehar, C. Antony

    2013-01-01

    Deterioration of concrete occurs due to physical actions, chemical reactions and electro chemical reactions at steel / concrete interface causing reinforcement corrosion. Among these, reinforcement corrosion is one of the most important causes of deterioration. Reinforcement corrosion induced by chlorides is one of the most frequent causes of corrosion of steel and 40 percent of steel corrodes due to chloride attack. To delay the corrosion process many techniques such as increasing the concre...

  18. The effect of bagasse ash on the compressive strength of concrete ...

    African Journals Online (AJOL)

    In this research work, the effect of bagasse ash in the production of concrete was investigated. A mix proportion of 1:1.8:3.7with water-cement ratio of 0.47 was used. The percentage replacement of Ordinary Portland Cement (OPC) with bagasse ash is 0, 5, 10, 20, 30 and 40%. Concrete cubes of 150 x 15 x 150 mm of ...

  19. Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete

    OpenAIRE

    Sanawung, Wachilakorn; Cheewaket, Tieng; Tangchirapat, Weerachart; Jaturapitakkul, Chai

    2017-01-01

    This research studies the effects of W/B ratios and palm oil fuel ash (POFA) on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B) ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were inve...

  20. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....