WorldWideScience

Sample records for street pollution model

  1. Modelling traffic pollution in streets

    Energy Technology Data Exchange (ETDEWEB)

    Berkowicz, R.; Hertel, O. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark); Larsen, S.E.; Soerensen, N.N.; Nielsen, M. [Risoe National Lab., Dept. of Meteorology and Wind Energy, Roskilde (Denmark)

    1997-01-01

    This report concerns mainly the subject related to modelling air pollution from traffic in urban streets. A short overview is presented over the theoretical aspects and examples of most commonly used methods and models are given. Flow and dispersion conditions in street canyons are discussed and the presentation is substantiated with the analysis of the experimental data. The main emphasis is on the modelling methods that are suitable for routine applications and a more detailed presentation is given of the Operational Street Pollution Model (OSPM), which was developed by the National Environmental Research Institute. The model is used for surveillance of air pollution from traffic in Danish cities and also for special air pollution studies. (au) 76 refs.

  2. Modelling Pollutant Dispersion in a Street Network

    Science.gov (United States)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  3. Parametric laws to model urban pollutant dispersion with a street network approach

    Science.gov (United States)

    Soulhac, L.; Salizzoni, P.; Mejean, P.; Perkins, R. J.

    2013-03-01

    This study discusses the reliability of the street network approach for pollutant dispersion modelling in urban areas. This is essentially based on a box model, with parametric relations that explicitly model the main phenomena that contribute to the street canyon ventilation: the mass exchanges between the street and the atmosphere, the pollutant advection along the street axes and the pollutant transfer at street intersections. In the first part of the paper the focus is on the development of a model for the bulk transfer street/atmosphere, which represents the main ventilation mechanisms for wind direction that are almost perpendicular to the axis of the street. We then discuss the role of the advective transfer along the street axis on its ventilation, depending on the length of the street and the direction of the external wind. Finally we evaluate the performances of a box model integrating parametric exchange laws for these transfer phenomena. To that purpose we compare the prediction of the model to wind tunnel experiments of pollutant dispersion within a street canyon placed in an idealised urban district.

  4. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India)

    DEFF Research Database (Denmark)

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S.

    2016-01-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur...... concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data...

  5. Air Pollution Modeling at Road Sides Using the Operational Street Pollution Model-A Case Study in Hanoi, Vietnam

    DEFF Research Database (Denmark)

    Hung, Ngo Tho; Ketzel, Matthias; Jensen, Steen Solvang

    2010-01-01

    In many metropolitan areas, traffic is the main source of air pollution. The high concentrations of pollutants in streets have the potential to affect human health. Therefore, estimation of air pollution at the street level is required for health impact assessment. This task has been carried out...... in many developed countries by a combination of air quality measurements and modeling. This study focuses on how to apply a dispersion model to cities in the developing world, where model input data and data from air quality monitoring stations are limited or of varying quality. This research uses...... the operational street pollution model (OSPM) developed by the National Environmental Research Institute in Denmark for a case study in Hanoi, the capital of Vietnam. OSPM predictions from five streets were evaluated against air pollution measurements of nitrogen oxides (NO), sulfur dioxide (SO2), carbon monoxide...

  6. Multi-scale modeling of urban air pollution: development of a Street-in-Grid model

    Science.gov (United States)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2016-04-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of

  7. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.L.; Dong, G.; Leung, C.W.; Cheung, C.S. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Research Centre for Combustion and Pollution Control, Department of Mechanical Engineering; Hung, W.T. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Civil and Structural Engineering

    2002-07-01

    A two-dimensional numerical model based on Reynolds-averaged Navier-Stokes equations coupled with a series of standard, Renormalization Group (RNG) and realizable k-{epsilon} turbulence models was developed to simulate the fluid-flow development and pollutant dispersion within an isolated street canyon using the FLUENT code. In the present study, the validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (J. Wind Eng. Ind. Aerodyn. 62 (1996) 37). Among the studied turbulence models, the RNG k-{epsilon} turbulence model was found to be the most optimum turbulence model coupled with the two-dimensional street canyon model developed in the present study. Both the calculated and measured dimensionless pollutant concentrations have been shown to be less dependent on the variation of wind speed and source strength conditions for the studied street canyon aspect ratio of the B/H=1 case. However, the street canyon configuration has significant influence on the pollutant dispersion. The wider street and lower height of the buildings are favorable to pollutant dilution within the street canyon. The fluid-flow development has demonstrated that the rotative vortex or vortices generated within the urban street canyon can transport the pollutants from a line source to the wall surfaces of the buildings. (author)

  8. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India).

    Science.gov (United States)

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S; Dikshit, Anil Kumar; Hertel, Ole

    2016-06-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter.

  9. Operational Street Pollution Model (OSPM) - a review of performed validation studies, and future prospects

    DEFF Research Database (Denmark)

    Kakosimos K.E., Konstantinos E.; Hertel, Ole; Ketzel, Matthias

    2010-01-01

    in this context is the fast and easy to apply Operational Street Pollution Model (OSPM). For almost 20 years, OSPM has been routinely used in many countries for studying traffic pollution, performing analyses of field campaign measurements, studying efficiency of pollution abatement strategies, carrying out...... exposure assessments and as reference in comparisons to other models. OSPM is generally considered as state-of-the-art in applied street pollution modelling. This paper outlines the most important findings in OSPM validation and application studies in literature. At the end of the paper, future research...... needs are outlined for traffic air pollution modelling in general but with outset in the research performed with OSPM....

  10. On the escape of pollutants from urban street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Baik, J.J.; Kim, J.J. [Kwangju Inst. of Science and Technology (Korea). Dept. of Environmental Science and Engineering

    2002-07-01

    Pollutant transport from urban street canyons is numerically investigated using a two-dimensional flow and dispersion model. The ambient wind blows perpendicular to the street and passive pollutants are released at the street level. Results from the control experiment with a street aspect ratio of 1 show that at the roof level of the street canyon, the vertical turbulent flux of pollutants is upward everywhere and the vertical flux of pollutants by mean flow is upward or downward. The horizontally integrated vertical flux of pollutants by mean flow at the roof level of the street canyon is downward and its magnitude is much smaller than that by turbulent process. These results indicate that pollutants escape from the street canyon mainly by turbulent process and that the net effect of mean flow is to make some escaped pollutants reenter the street canyon. Further experiments with different inflow turbulence intensities, inflow wind speeds, and street aspect ratio confirm the findings from the control experiment. In the case of two isolated buildings, the horizontally integrated vertical flux of pollutants by mean flow is upward due to flow separation but the other main results are the same as those from the control experiment. (author)

  11. Evaluation of the Street Pollution Model OSPM for Measurements at 12 Streets Stations Using a Newly Developed and Freely Available Evaluation Tool

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Jensen, Steen Solvang; Brandt, Jørgen

    2012-01-01

    In the present work, the Operational Street Pollution Model (OSPM) has been evaluated in comparison with continuous half-hourly measurements over a multi-year period for five permanent street monitor stations that constitute part of the Danish Air Quality Monitoring Programme as well as with pass......In the present work, the Operational Street Pollution Model (OSPM) has been evaluated in comparison with continuous half-hourly measurements over a multi-year period for five permanent street monitor stations that constitute part of the Danish Air Quality Monitoring Programme as well...... the observations well, especially for the most recent years, while for NO2 the model over-predicts in two cases. The explanation for this over-prediction is believed to be uncertainties in the traffic or emission input data, but also in model parameters, and the representativeness of the urban background data may....... OSPM calculations for nine streets with passive sampler measurements were conducted as ‘blind test’ i.e. without knowing the measured values. OSPM calculations were in good agreement with the measurements for seven out of nine street sections. Refinements of the input data lead to a significant...

  12. [Effect of greenbelt on pollutant dispersion in street canyon].

    Science.gov (United States)

    Xu, Wei-Jia; Xing, Hong; Yu, Zhi

    2012-02-01

    The effect feature of greenbelt on flow field and pollutant dispersion in urban street canyon was researched. The greenbelt was assumed as uniform porous media and its aerodynamics property defined by the pressure loss coefficient. Subsequently, the pollutant dispersion in the street canyon of which there was greenbelt in the middle was simulated with the steady-state standard kappa-epsilon turbulence model and species transport equation. The simulated results agreed well with the wind-tunnel data. Compared with the treeless case, it finds that the street canyon contain a clockwise vortex, the pollutant concentration of the leeward was several times than the windward and the growth rate of pollutant concentration was 46.0%. The further simulation for the impact of tree crown position on the airflow and pollutant dispersion finds that the height of major vortex center in the street canyon increases with the height of tree crown and gradually closes the top of windward building This causes that the average wind speed in the street canyon decreases. Especially when the top of tree crown over the roof and hinder the air flow above the street canyon, the average pollutant concentration increases with the height of tree crown rapidly.

  13. Numerical simulation on pollutant dispersion from vehicle exhaust in street configurations.

    Science.gov (United States)

    Yassin, Mohamed F; Kellnerová, R; Janour, Z

    2009-09-01

    The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.

  14. Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2016-07-01

    Air pollutants emitted from vehicles in street canyons may be reactive, undergoing mixing and chemical processing before escaping into the overlying atmosphere. The deterioration of air quality in street canyons occurs due to combined effects of proximate emission sources, dynamical processes (reduced dispersion) and chemical processes (evolution of reactive primary and formation of secondary pollutants). The coupling between dynamics and chemistry plays a major role in determining street canyon air quality, and numerical model approaches to represent this coupling are reviewed in this article. Dynamical processes can be represented by Computational Fluid Dynamics (CFD) techniques. The choice of CFD approach (mainly the Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models) depends on the computational cost, the accuracy required and hence the application. Simplified parameterisations of the overall integrated effect of dynamics in street canyons provide capability to handle relatively complex chemistry in practical applications. Chemical processes are represented by a chemical mechanism, which describes mathematically the chemical removal and formation of primary and secondary species. Coupling between these aspects needs to accommodate transport, dispersion and chemical reactions for reactive pollutants, especially fast chemical reactions with time scales comparable to or shorter than those of typical turbulent eddies inside the street canyon. Different approaches to dynamical and chemical coupling have varying strengths, costs and levels of accuracy, which must be considered in their use for provision of reference information concerning urban canopy air pollution to stakeholders considering traffic and urban planning policies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons

    Science.gov (United States)

    Liu, J.; Fu, X.; Tao, S.

    2016-12-01

    Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.

  16. Stochastic backscatter modelling for the prediction of pollutant removal from an urban street canyon: A large-eddy simulation

    Science.gov (United States)

    O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.

    2016-10-01

    The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.

  17. PREDICTION OF AIR POLLUTION FROM MOTOR TRANSPORT ON CITY STREETS AND DISTRICTS

    Directory of Open Access Journals (Sweden)

    T. I. Rusakova

    2013-11-01

    Full Text Available Purpose. Development of applied numerical model for prediction of atmospheric pollution rate on streets and districts of a city taking into account chemical transformations of pollutants. Methodology. To solve hydrodynamic task of determining velocity field of wind flow in street the method of discrete vortices was used, in the city district – the method of separation flows vortex of ideal incompressible fluid, for solution equation of pollutant transfer - alternating triangular implicit difference scheme. Findings.An efficient numerical model using the type of «street canyons»for prediction of air quality on city streets and districts with emissions from motor transport considering chemical transformations of pollutants was designed in the work. Originality.The numerical model, which allows taking into account impact of buildings on pollutants dispersion and requiring a small consumption of computer time during practical realization was created. The advantage of the model is the possibility of rapid calculation of emissions dispersion in the street with considering the chemical reactions of pollutants. Practical value. The developed numerical model can be used in practice during the planning of new highways in new urban areas or in the renovation of old ones, for a series of calculations that require search of different variants for arrangement of buildings, highways, under certain weather conditions.

  18. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    Science.gov (United States)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  19. Integrating a street-canyon model with a regional Gaussian dispersion model for improved characterisation of near-road air pollution

    Science.gov (United States)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-03-01

    The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.

  20. A simple model for calculating air pollution within street canyons

    Science.gov (United States)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  1. Wind tunnel simulation of air pollution dispersion in a street canyon.

    Science.gov (United States)

    Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek

    2002-01-01

    Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.

  2. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting

    Energy Technology Data Exchange (ETDEWEB)

    Balczo, Marton [Budapest Univ. of Technology and Economics (Hungary). Theodore von Karman Wind Tunnel Lab.; Gromke, Christof; Ruck, Bodo [Karlsruhe Univ. (Germany). Lab. of Building- and Environmental Aerodynamics

    2009-04-15

    Numerical simulations of the impact of tree planting on airflow and traffic pollutant dispersion in urban street canyons have been performed using the commercial CFD (Computational Fluid Dynamics) code MISKAM. A {kappa}-{epsilon} turbulence model including additional terms for the treatment of vegetation, has been employed to close the Reynolds-averaged-Navier-Stokes (RANS) equations. The numerical results were compared to wind tunnel data. In the case of the investigated wind direction perpendicular to the street axis, the presence of trees lead to increased pollutant concentrations inside the canyon. Concentrations increased strongly on the upstream side of the canyon, while on the downstream side a small concentration decrease could be observed. Lower flow velocities and higher pollutant concentrations were found in the numerical simulations when directly compared to the experimental results. However, the impact of tree planting on airflow and concentration fields when compared to the treeless street canyon as a reference configuration were simulated quite well, meaning that relative changes were similar in the wind tunnel investigations and numerical computations. This feature qualifies MISKAM for use as a tool for assessing the impacts of vegetation on local air quality. (orig.)

  3. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    Directory of Open Access Journals (Sweden)

    Yucong Miao

    2014-01-01

    Full Text Available The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD model used in this study—Open Source Field Operation and Manipulation (OpenFOAM software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispersion within three different kinds of street canyon configuration under the perpendicular approaching flow were numerically studied. The result showed that the width and height of building can dramatically affect the pollution level inside the street canyon. As the width or height of building increases, the pollution at the pedestrian level increases. And the asymmetric configuration (step-up or step-down street canyon could provide better ventilation. It is recommended to design a street canyon with nonuniform configurations. And the OpenFOAM software package can be used as a reliable tool to study flows and dispersions around buildings.

  4. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting

    NARCIS (Netherlands)

    Balczó, M.; Gromke, C.B.; Ruck, B.

    2009-01-01

    Numerical simulations of the impact of tree planting on airflow and traffic pollutant dispersion in urban street canyons have been performed using the commercial CFD (Computational Fluid Dynamics) code MISKAM. A k-e turbulence model including additional terms for the treatment of vegetation, has

  5. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects.

    Science.gov (United States)

    Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing

    2005-08-01

    Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.

  6. RESEARCH OF AIR POLLUTION FROM TRAFFIC IN «STREET CANYONS» OF CITY

    Directory of Open Access Journals (Sweden)

    T. I. Rusakova

    2014-12-01

    Full Text Available Purpose. The article is devoted to state analyze of atmospheric air at its pollution with vehicle emissions in Dnipropetrovsk city, the development a numerical model and applied computing program for research of air pollution level with vehicle emissions on the streets when several buildings are located on the scheme «street canyon». Methodology. To achieve the research purpose it was studied the dynamic of change concentration of different pollutants that have been fixed on monitoring station of air quality in Dnipropetrovsk city. It was performed level assessment of air pollution from traffic (according to the Main Statistical Office in Dnipropetrovsk region. It was developed methodology for numerical calculation of concentration the atmospheric air pollution from vehicle emissions. To solve hydrodynamic task of determining velocity field of wind flow in streets the model of separated flows of an inviscid fluid was used; to solve the task of the calculation process of dispersion pollution the equation of convective-diffusion transfer of pollutant was used. To implement the proposed methodology we used implicit difference schemes. Findings.In the work a mathematical numerical model was developed and computing programs on its base were created. It allows conducting the computational experiments for evaluation the level of air pollution from vehicle emissions on the streets when several buildings are located on the scheme «street canyon». As a result of research regulations on change concentration of carbon monoxide near a considered group of buildings at different pollutant emissions were established. Originality.This numerical model was developed which allows accounting the hydrodynamic impact of group buildings on dispersion of pollutants when the wind speed and the vertical diffusion coefficient vary with height. Practical value. Conducting such class of computational experiments is necessary in the case of reconstruction of city

  7. Background Concentrations for Use in the Operational Street Pollution Model (OSPM)

    DEFF Research Database (Denmark)

    Jensen, S. S.

    A background model has been developed for application in the Operational Street Pollution Model (OSPM) in context of long-term exposure modelling. The back ground model is based on a semi-empirical method founded on a few monitor stations that estimates standardised one hour time-series of urban...... and rural back ground concentrations of NO2, NOx, O3 and CO for different geographic regions in Denmark. The annual mean of selected monitor stations is used as a reference year and the development in estimated traffic emissions as an index is used to establish a historic trend. As an exception ozone trends...

  8. Actual car fleet emissions estimated from urban air quality measurements and street pollution models

    International Nuclear Information System (INIS)

    Palmgren, F.; Berkowicz, R.; Hertel, O.; Ziv, A.

    1999-01-01

    A method to determine emissions from the actual car fleet under realistic driving conditions has been developed. The method is based on air quality measurements, traffic counts and inverse application of street air quality models. Many pollutants are of importance for assessing the adverse impact of the air pollution, e.g. NO 2 , CO, lead, VOCs and particulate matter. Aromatic VOCs are of special great concern due to their adverse health effects. Measurements of benzene, toluene and xylenes were carried out in central Copenhagen since 1994. Significant correlation was observed between VOCs and CO concentrations, indicating that the petrol engine vehicles are the major sources of VOC air pollution in central Copenhagen. Hourly mean concentrations of benzene were observed to reach values of up to 20 ppb, what is critically high according to the WHOs recommendations. Based on inverse model calculation of dispersion of pollutants in street canyons, an average emission factor of benzene for the fleet of petrol fuelled vehicles was estimated to be 0.38 g/km in 1994 and 0.11 in 1997. This decrease was caused by the reduction of benzene content in Danish petrol since summer 1995 and increasing percentage of cars equipped with three-way catalysts. The emission factors for benzene for diesel-fuelled vehicles were low

  9. Numerical modeling of flows and pollutant dispersion within and above urban street canyons under unstable thermal stratification by large-eddy simulation

    Science.gov (United States)

    Chan, Ming-Chung; Liu, Chun-Ho

    2013-04-01

    Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the

  10. Impacts of Traffic Tidal Flow on Pollutant Dispersion in a Non-Uniform Urban Street Canyon

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2018-02-01

    Full Text Available A three-dimensional geometrical model was established based on a section of street canyons in the 2nd Ring Road of Wuhan, China, and a mathematical model describing the fluid flow and pollutant dispersion characteristics in the street canyon was developed. The effect of traffic tidal flow was investigated based on the measurement results of the passing vehicles as the pollution source of the CFD method and on the spatial distribution of pollutants under various ambient crosswinds. Numerical investigation results indicated that: (i in this three-dimensional asymmetrical shallow street canyon, if the pollution source followed a non-uniform distribution due to the traffic tidal flow and the wind flow was perpendicular to the street, a leeward side source intensity stronger than the windward side intensity would cause an expansion of the pollution space even if the total source in the street is equal. When the ambient wind speed is 3 m/s, the pollutant source intensity near the leeward side that is stronger than that near the windward side (R = 2, R = 3, and R = 5 leads to an increased average concentration of CO at pedestrian breathing height by 26%, 37%, and 41%, respectively. (R is the ratio parameter of the left side pollution source and the right side pollution source; (ii However, this feature will become less significant with increasing wind speeds and changes of wind direction; (iii the pollution source intensity exerted a decisive influence on the pollutant level in the street canyon. With the decrease of the pollution source intensity, the pollutant concentration decreased proportionally.

  11. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  12. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  13. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: Using large-eddy simulation

    International Nuclear Information System (INIS)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-01-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. - Highlights: • Large-eddy simulation reproduces two unsteady vortices seen in a lab experiment. • Reactive pollutants in an urban street canyon exhibit significant spatial variation. • O 3 production rate inferred by the NO x -O 3 -steady-state-defect approach is discussed. • Ground level sourced pollutants are largely trapped within the lower vortex. • A method of quantifying parameters of a two-box model is developed. - Reactive pollutants in a deep street canyon exhibit significant spatial variation driven by two unsteady vortices. A method of quantifying parameters of a two-box model is developed

  14. A Numerical Study on Characteristics of Flow and Reactive Pollutant Dispersion in Step‒up Street Canyons

    Science.gov (United States)

    Kim, E. R.; Kim, J.

    2014-12-01

    For decades, many metro‒ and/or mega‒cities have grown and densities of population and building have increased. Because pollutants released from sources near ground surface such as vehicles are not easy to escape from street canyons which are spaces between buildings standing along streets pedestrians, drivers and residents are likely to be exposed to high concentrations of hazardous pollutants. Therefore, it is important to understand characteristics of flow and pollutant dispersion in street canyons. In this study, step‒up street canyons with higher downwind buildings are considered for understanding flow and reactive pollutants' dispersion characteristics there as a basic step to understand the characteristics in wider urban areas. This study used a CFD model coupled to a chemistry module. Detailed flow and air pollutant concentration are analyzed in step‒up street canyons with different upwind building heights.

  15. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Meroney, Robert N. [Fluid Mechanics and Wind Engineering Program, Civil Engineering Department, Colorado State University Fort Collins, CO (United States); Pavageau, Michel; Rafailidis, Stilianos; Schatzmann, Michael [Meteorologisches Institut, Universitaet Hamburg, Hamburg (Germany)

    1996-08-01

    The University of Hamburg initiated a wind tunnel study of car exhaust dispersion from street canyons in an urban environment to investigate how pollution dispersion is affected by street geometry. Particular emphasis at the beginning of this work was put on the design of a line source to represent traffic exhaust. Pollution dispersion was studied in two dimensions (i.e., infinite-length streets were assumed). The case of an isolated street canyon in open country was examined first. The same street canyon geometry was subsequently studied in an urban environment, i.e., with additional canyons of similar geometry upstream and downstream of the test street. The dynamic and dispersion characteristics of the flow in the two cases were quite different. In the canyon amidst open country we observed better canyon ventilation than in the urban roughness case

  16. Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

    OpenAIRE

    Y. Kim; Y. Wu; C. Seigneur; Y. Roustan

    2018-01-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemistry–transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport on spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH), which consists of two main components...

  17. Optimizing the use of on-street car parking system as a passive control of air pollution exposure in street canyons by large eddy simulation

    Science.gov (United States)

    Gallagher, J.; Gill, L. W.; McNabola, A.

    2011-03-01

    An investigation was carried out to establish the effectiveness of parked cars in urban street canyons as passive controls on pedestrian pollutant exposure. A numerical model of a generic street canyon was developed using a large eddy simulation (LES) model to compare personal exposure on the footpath with and without the presence of parked cars. Three configurations of car parking systems were investigated (parallel, perpendicular and 45° parking) in addition to the influence of wind speed, wind direction and car parking occupancy. A tracer gas (CO 2) was used as a representative pollutant from vehicular sources within the street canyon models. The results indicated that parked cars may act as a temporary baffle plate between traffic emissions and pedestrians on the footpath. Reductions in exposure of up to 35% and 49% were attained on the leeward and windward footpaths in perpendicular wind conditions, with parallel winds allowing up to 33% pollutant reduction on both footpaths for parallel parking. The perpendicular and 45° car parking configurations investigated proved less successful as passive controls on air pollution exposure and an increase in pollutant concentration occurred in some models. An investigation of parking space occupancy rates was carried out for parallel parked cars. The fraction of parked cars influenced the level of reduction of pollutants on the footpaths with steady reductions in perpendicular winds, yet reductions were only evident for occupancy rates greater than approximately 45% in parallel wind conditions. One negative impact associated with the parked cars study was the increase of pollutant levels on the roadway as the parked cars acted as a baffle wall, which trapped pollutants in the road. The paper underlines the potential of on-street car parking for reducing the personal exposure of pollutants by pedestrians and the optimum parking layout to achieve maximum health protection.

  18. NUMERICAL SIMULATION OF POLLUTION DISPERSION IN URBAN STREET

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-08-01

    Full Text Available Purpose. The scientific paper solves the question of 2D numerical model development, which allows quick computation of air pollution in streets from vehicles. The aim of the work is numerical model development that would enable to predict the level of air pollution by using protective barriers along the road. Methodology. The developed model is based on the equation of inviscid flow and equation of pollutant transfer. Potential equation is used to compute velocity field of air flow near road in the case of protection barriers application. To solve equation for potential flow implicit difference scheme of «conditional approximation« is used. The implicit change – triangle difference scheme is used to solve equation of convective – diffusive dispersion. Numerical integration is carried out using the rectangular difference grid. Method of porosity technique («markers method» is used to create the form of comprehensive computational region. Emission of toxic gases from vehicle is modeled using Delta function for point source.Findings. Authors developed 2D numerical model. It takes into account the main physical factors affecting the process of dispersion of pollutants in the atmosphere when emissions of vehicle including protection barriers near the road. On the basis of the developed numerical models a computational experiment was performed to estimate the level of air pollution in the street. Originality. A numerical model has been created. It makes it possible to calculate 2D aerodynamics of the wind flow in the presence of noises and the process of mass transfer of toxic gas emissions from the motorway. The model allows taking into account the presence of the car on the road, the form of a protective barrier, the presence of a curb. Calculations have been performed to determine the contamination zone formed at the protective barrier that is located at the motorway. Practical value. An effective numerical model that can be applied in the

  19. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections

    International Nuclear Information System (INIS)

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-01-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. - Highlights: • The pollutant transport strongly depends on the roof-height arrangement. • The non-uniform canyons also remove the pollutants through their lateral openings. • The higher the upstream wall, the more pollutant is removed through the top. • The lateral coherent structures correlate

  20. Application of transport demand modeling in pollution estimation of a street network

    Directory of Open Access Journals (Sweden)

    Jović Jadranka J.

    2009-01-01

    Full Text Available The importance of transportation modeling, especially personal car flow modeling, is well recognized in transportation planning. Modern software tools give the possibility of generating many development scenarios of transport system, which can be tested quickly. Transportation models represent a good (and necessary basis in the procedure of environmental traffic impacts and energy emission estimation. Research in this paper deals with the possibility of using transportation modeling as a tool for estimation of some air pollution and global warming indicators on street network, produced by personal cars with internal combustion engines. These indicators could be the basis for defining planning and management solutions for transport system with respect to their environmental impacts. All the analyses are based on several years of research experience in Belgrade. According to the emissions of gases from the model, the values of other green house gases can be estimated using the known relations between the pollutants. There is a possibility that all these data can be used to calculate the transportation systems impact on temperature increase in urban areas.

  1. Street canyon aerosol pollutant transport measurements.

    Science.gov (United States)

    Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D

    2004-12-01

    Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.

  2. THE INFLUENCE OF BUOYANCY ON FLOW AND POLLUTANT DISPERSION IN STREET CANYONS

    OpenAIRE

    Buccolieri, Riccardo; Pulvirenti, Beatrice; Di Sabatino, Silvana; Britter, Rex

    2008-01-01

    Abstract: In this paper, the effect of buoyancy on flow and pollutant dispersion within street canyons is studied by means of computational fluid dynamics simulations. We consider a neutral boundary layer approaching a 3D street canyon assuming a wind direction perpendicular to the street canyon. The Boussinesq hypothesis for incompressible fluids is chosen for modelling buoyancy. We distinguish three cases: leeward, ground and windward wall heating. Thermal effects on both the flow ...

  3. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    Science.gov (United States)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  4. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    Science.gov (United States)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  5. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons

    International Nuclear Information System (INIS)

    Abhijith, K.V.; Gokhale, Sharad

    2015-01-01

    This study investigates the passive-control-potentials of trees and on-street parked cars on pedestrian exposure to air pollutants in a street canyon using three-dimensional CFD. Since, according to some studies trees deteriorate air quality and cars parked roadside improve it, the combine as well as separate effects of trees and on-street parked cars have been examined. For this, different tree canopy layouts and parking configurations have been developed and pedestrian exposure for each has been analysed. The results showed, for example, tree crown with high porosity and low-stand density in combination with parallel or perpendicular car parking reduced the pedestrian exposure considerably. - Highlights: • Trees and on-street parked cars can manipulate pollutant levels in street canyons. • Low stand density trees with 0° or 90° car parking reduce pedestrian exposure. • Trees with medium crown, high porosity, low stand density reduce pollutant levels. - This study investigated the combination of trees and on-street parked cars to manipulate pollutant levels in urban street canyons to reduce pedestrian exposure

  6. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections.

    Science.gov (United States)

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-08-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ranking current and prospective NO2 pollution mitigation strategies: An environmental and economic modelling investigation in Oxford Street, London.

    Science.gov (United States)

    Jeanjean, A P R; Gallagher, J; Monks, P S; Leigh, R J

    2017-06-01

    Air pollution continues to be a problem in the urban environment. A range of different pollutant mitigation strategies that promote dispersion and deposition exist, but there is little evidence with respect to their comparative performance from both an environmental and economic perspective. This paper focuses on examining different NO 2 mitigation strategies such as trees, buildings facades coated with photocatalytic paint and solid barriers in Oxford Street in London. The case study findings will support ranking the environmental and economic impacts of these different strategies to improve personal exposure conditions on the footpath and on the road in a real urban street canyon. CFD simulations of airflow and NO 2 dispersion in Oxford Street in London were undertaken using the OpenFOAM software platform with the k-ε model, taking into account local prevailing wind conditions. Trees are shown to be the most cost-effective strategy, with a small reduction in NO 2 concentrations of up to 0.7% on the road. However, solid barriers with and without the application of photocatalytic paint and an innovative material (20 times more expensive than trees) can improve air quality on the footpaths more substantially, up to 7.4%, yet this has a significant detrimental impact on NO 2 concentrations (≤23.8%) on the road. Photocatalytic paint on building surfaces presented a minimal environmental reductions (1.2%) and economic (>100 times more expensive than trees) mitigation strategy. The findings recognised the differences between footpath and road concentrations occurred and that a focused examination of three pollution hotspots can provide more cost effective pollution mitigation. This study considers how a number of pollutant mitigation measures can be applied in a single street canyon and demonstrates the strengths and weaknesses of these strategies from economic and environmental perspectives. Further research is required to extrapolate the findings presented here to

  8. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  9. Seasonal Changing Effect on Airflow and Pollutant Dispersion Characteristics in Urban Street Canyons

    Directory of Open Access Journals (Sweden)

    Jingliang Dong

    2017-02-01

    Full Text Available In this study, the effect of seasonal variation on air flow and pollutant dispersion characteristics was numerically investigated. A three-dimensional urban canopy model with unit aspect ratio (H/D = 1 was used to calculate surface temperature distribution in the street canyon. Four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST during typical clear summer and winter days were selected to examine the air flow diurnal variation. The results revealed the seasonal variation significantly altered the street canyon microclimate. Compared with the street canyon surface temperature distribution in summer, the winter case showed a more evenly distributed surface temperature. In addition, the summer case showed greater daily temperature fluctuation than that of the winter case. Consequently, distinct pollutant dispersion patterns were observed between summer and winter scenarios, especially for the afternoon (1600 LST and night (2000 LST events. Among all studied time events, the pollutant removal performance of the morning (1000 LST and the night (2000 LST events were more sensitive to the seasonal variation. Lastly, limited natural ventilation performance was found during the summer morning and the winter night, which induced relatively high pollutant concentration along the pedestrian height level.

  10. Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

    Science.gov (United States)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2018-02-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemistry-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport on spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH), which consists of two main components: a street-canyon component and a street-intersection component. MUNICH is coupled to the Polair3D CTM of the Polyphemus air quality modeling platform to constitute the Street-in-Grid (SinG) model. MUNICH is used to simulate the concentrations of the chemical species in the urban canopy, which is located in the lowest layer of Polair3D, and the simulation of pollutant concentrations above rooftops is performed with Polair3D. Interactions between MUNICH and Polair3D occur at roof level and depend on a vertical mass transfer coefficient that is a function of atmospheric turbulence. SinG is used to simulate the concentrations of nitrogen oxides (NOx) and ozone (O3) in a Paris suburb. Simulated concentrations are compared to NOx concentrations measured at two monitoring stations within a street canyon. SinG shows better performance than MUNICH for nitrogen dioxide (NO2) concentrations. However, both SinG and MUNICH underestimate NOx. For the case study considered, the model performance for NOx concentrations is not sensitive to using a complex chemistry model in MUNICH and the Leighton NO-NO2-O3 set of reactions is sufficient.

  11. Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0 by coupling MUNICH (v1.0 and Polair3D (v1.8.1

    Directory of Open Access Journals (Sweden)

    Y. Kim

    2018-02-01

    Full Text Available A new multi-scale model of urban air pollution is presented. This model combines a chemistry–transport model (CTM that includes a comprehensive treatment of atmospheric chemistry and transport on spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH, which consists of two main components: a street-canyon component and a street-intersection component. MUNICH is coupled to the Polair3D CTM of the Polyphemus air quality modeling platform to constitute the Street-in-Grid (SinG model. MUNICH is used to simulate the concentrations of the chemical species in the urban canopy, which is located in the lowest layer of Polair3D, and the simulation of pollutant concentrations above rooftops is performed with Polair3D. Interactions between MUNICH and Polair3D occur at roof level and depend on a vertical mass transfer coefficient that is a function of atmospheric turbulence. SinG is used to simulate the concentrations of nitrogen oxides (NOx and ozone (O3 in a Paris suburb. Simulated concentrations are compared to NOx concentrations measured at two monitoring stations within a street canyon. SinG shows better performance than MUNICH for nitrogen dioxide (NO2 concentrations. However, both SinG and MUNICH underestimate NOx. For the case study considered, the model performance for NOx concentrations is not sensitive to using a complex chemistry model in MUNICH and the Leighton NO–NO2–O3 set of reactions is sufficient.

  12. Application of a Three-Layer Photochemical Box Model in an Athens Street Canyon.

    Science.gov (United States)

    Proyou, Athena G; Ziomas, Loannis C; Stathopoulos, Antony

    1998-05-01

    The aim of this paper is to show that a photochemical box model could describe the air pollution diurnal profiles within a typical street canyon in the city of Athens. As sophisticated three-dimensional dispersion models are computationally expensive and they cannot serve to simulate pollution levels in the scale of an urban street canyon, a suitably modified three-layer photochemical box model was applied. A street canyon of Athens with heavy traffic was chosen to apply the aforementioned model. The model was used to calculate pollutant concentrations during two days with meteorological conditions favoring pollutant accumulation. Road traffic emissions were calculated based on existing traffic load measurements. Meteorological data, as well as various pollutant concentrations, in order to compare with the model results, were provided by available measurements. The calculated concentrations were found to be in good agreement with measured concentration levels and show that, when traffic load and traffic composition data are available, this model can be used to predict pollution episodes. It is noteworthy that high concentrations persisted, even after additional traffic restriction measures were taken on the second day because of the high pollution levels.

  13. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    OpenAIRE

    Li, Xian-Xiang; Koh, Tieh-Yong; Britter, Rex E; Norford, Leslie Keith; Entekhabi, Dara

    2010-01-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street ca...

  14. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    Science.gov (United States)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  15. On the Pollutant Plume Dispersion in the Urban Canopy Layer over 2D Idealized Street Canyons: A Large-Eddy Simulation Approach

    Science.gov (United States)

    Wong, Colman C. C.; Liu, Chun-Ho

    2010-05-01

    Anthropogenic emissions are the major sources of air pollutants in urban areas. To improve the air quality in dense and mega cities, a simple but reliable prediction method is necessary. In the last five decades, the Gaussian pollutant plume model has been widely used for the estimation of air pollutant distribution in the atmospheric boundary layer (ABL) in an operational manner. Whereas, it was originally designed for rural areas with rather open and flat terrain. The recirculating flows below the urban canopy layer substantially modify the near-ground urban wind environment and so does the pollutant distribution. Though the plume height and dispersion are often adjusted empirically, the accuracy of applying the Gaussian pollutant plume model in urban areas, of which the bottom of the flow domain consists of numerous inhomogeneous buildings, is unclear. To elucidate the flow and pollutant transport, as well as to demystify the uncertainty of employing the Gaussian pollutant plume model over urban roughness, this study was performed to examine how the Gaussian-shape pollutant plume in the urban canopy layer is modified by the idealized two-dimensional (2D) street canyons at the bottom of the ABL. The specific objective is to develop a parameterization so that the geometric effects of urban morphology on the operational pollutant plume dispersion models could be taken into account. Because atmospheric turbulence is the major means of pollutant removal from street canyons to the ABL, the large-eddy simulation (LES) was adopted to calculate explicitly the flows and pollutant transport in the urban canopy layer. The subgrid-scale (SGS) turbulent kinetic energy (TKE) conservation was used to model the SGS processes in the incompressible, isothermal conditions. The computational domain consists of 12 identical idealized street canyons of unity aspect ratio which were placed evenly in the streamwise direction. Periodic boundary conditions (BCs) for the flow were applied

  16. Influence of local parameters on the dispersion of traffic-related pollutants within street canyons

    Science.gov (United States)

    Karra, Styliani; Malki-Epshtein, Liora; Martin Hyde Collaboration

    2011-11-01

    Ventilation within urban cities and street canyons and the associated air quality is a problem of increasing interest in the last decades. It is important for to minimise exposure of the population to traffic-related pollutants at street level. The residence time of pollutants within the street canyons depends on the meteorological conditions such as wind speed and direction, geometry layout and local parameters (position of traffic lane within the street). An experimental study was carried out to investigate the influence of traffic lane position on the dispersion of traffic-related pollutants within different street canyons geometries: symmetrical (equal building heights on both sides of the street), non-symmetrical (uniform building heights but lower on one side of the street) and heterogeneous (non-uniform building heights on both sides of the street) under constant meteorological conditions. Laboratory experiments were carried out within a water channel and simultaneous measurements of velocity field and concentration scalar levels within and above the street canyons using PIV and PLIF techniques. Traffic -related emissions were simulated using a line emission source. Two positions were examined for all street geometries: line emission source was placed in the centre of the street canyon; line emission source was placed off the centre of the street. TSI Incorporated.

  17. Aerodynamic effects of trees on pollutant concentration in street canyons.

    Science.gov (United States)

    Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo

    2009-09-15

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.

  18. Experimental investigation of pollutant dispersion within a street in low wind conditions, the experiment Nantes'99

    Energy Technology Data Exchange (ETDEWEB)

    Vachon, G.; Rosant, J.M.; Mestayer, P.; Louka, P.; Sini, J.F.; Lorin, Y.; Violleau, M. [Ecole Centrale de Nantes, Lab. de Mecanique des Fluides UMR 6598 CNRS, 44 (France); Antoine, M.J.; Peneau, J.P. [Ecole d' Architecture de Nantes, CERMA UMR 1563 CNRS, 44 (France); Delaunay, D.; Tetard, Y. [CSTB, 44 - Nantes (France); Ducroz, F.; Molle, F. [Air Pays de la Loire, 44 - Nantes (France); Garreau, J. [Mairie de Nantes, Service Environnement Urbain, 44 - Nantes (France); Griffiths, R. [UMIST, Environmental Technology Center, Manchester (United Kingdom); Jones, Ch. [DERA Porton Down, Salisbury (United Kingdom)

    2000-07-01

    Nantes'99 is a first experimental campaign of the URBCAP project which aims at assessing the importance of the pollutant transformation processes within the urban canopy and validating the models allowing to predict local air quality within the different quarters of a City. The objectives of Nantes'99 are the determination of wind field in a street canyon, the study of the traffic influence on turbulence, the evaluation of thermo-radiative aspects and the validation of different models. The experiment took place during the whole month of June 1999 in a section of the Rue de Strasbourg, a 3-lane, one-way, highly-trafficked, straight street of the City centre of Nantes. A first data base concerning the measurements during IOP (Intense Observation Period) days throughout Nantes'99 experiment has been built. This paper presents CO concentrations measured at different heights within the rue de Strasbourg in relation to traffic density and reference wind speed and direction. It is shown that high pollution episodes are associated with increased traffic. Furthermore wind direction perpendicular to the street leads to high concentrations at the leeward side of the street. It is also appears that the skimming flow vortex is not observed for wind speeds lover than a threshold between 0.9 and 1.2 m.s{sup -1}. Finally, it is pointed out that the background pollution levels influence the concentration of pollutants within the street canyon. (authors)

  19. Dispersion of pollutants in a street canyon and street intersection under traffic-induced flow and turbulence using a low Re k-{epsilon} model

    Energy Technology Data Exchange (ETDEWEB)

    Jicha, M.; Katolicky, J.; Pospisil, J. [Brno University of Technology (Czech Republic). Faculty of Mechanical Engineering

    2002-07-01

    A 3-D Eulerian-Lagrangian approach to moving vehicles is presented that takes into account the traffic-induced flow rate and turbulence. The method is applied to pollutant dispersion in an individual street canyon and a system of two street canyons forming a perpendicular intersection. The approach is based on computational fluid dynamics (CFD) calculations using a Eulerian approach for continuous phase and a Lagrangian approach for moving vehicles. The wind speed was assigned values of 4, 7 and 12 m/s. One-way and two-way traffic with different traffic rates per lane is considered. In the case of the intersection, a longitudinal wind direction was assumed. Predictions show differences in the pollutant dispersion in the case of one-way and two-way traffic. (author)

  20. Pollutant Removal, Dispersion and Entrainment over Two-Dimensional Idealized Street Canyons: an LES Approach

    Science.gov (United States)

    Wong, C.; Liu, C.

    2010-12-01

    Unlike pollutant transport over flat terrain, the mechanism and plume dispersion over urban areas is not well known. This study is therefore conceived to examine how urban morphology modifies the pollutant transport over urban areas. The computational domain and boundary condition used in this study is shown in Figure 1. The LES shows that inside the street canyon, the ground-level pollutants are carried to roof-level by the re-circulating flow, which are then removed from the street canyon to the UBL. Right above the roof level, narrow high-speed air masses in the streamwise flows and intensive downdrafts have been found in the shear layer. Different from the flows over a smooth surface, the maximum turbulence intensities descend that are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses rapidly over the buildings exhibiting a Gaussian-plume form in the UBL. The mean component of vertical pollutant flux shows that the mean wind contributes to pollutant removal and entrainment simultaneously. Whereas, the fluctuating component demystifies that pollutant removal is mainly governed by atmospheric turbulence. Over the roof level, atmospheric flows slow down rapidly in the wake behind leeward building, suggesting the momentum entrainment into the street canyons. The decelerating streamwise flows in turn lead to upward flows carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in the skimming flow regime. Figure 1: Computational domain and boundary conditions Figure 2: Ensemble average vertical pollutant flux along the roof level. (a). Mean component; (b). turbulent component.

  1. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    Science.gov (United States)

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  2. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    Science.gov (United States)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  3. Implications of tree planting on pollutant dispersion in street canyons

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2009-01-01

    Traffic pollutant dispersion processes inside urban street canyons with avenue-like tree planting have been studied in wind tunnel experiments. Tree planting of different crown porosities and their effects on the pollutant concentrations at the canyon walls have been investigated for wind

  4. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    Science.gov (United States)

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  5. A concentration correction scheme for Lagrangian particle model and its application in street canyon air dispersion modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jiyang Xia [Shanghai Jiao Tong University, Shanghai (China). Department of Engineering Mechanics; Leung, D.Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering

    2001-07-01

    Pollutant dispersion in street canyons with various configurations was simulated by discharging a large number of particles into the computation domain after developing a time-dependent wind field. Trajectory of the released particles was predicted using a Lagrangian particle model developed in an earlier study. A concentration correction scheme, based on the concept of 'visibility', was adopted for the Lagrangian particle model to correct the calculated pollutant concentration field in street canyons. The corrected concentrations compared favourably with those from wind tunnel experiments and a linear relationship between the computed concentrations and wind tunnel data were found. The developed model was then applied to four simulations to test for the suitability of the correction scheme and to study pollutant distribution in street canyons with different configurations. For those cases with obstacles presence in the computation domain, the correction scheme gives more reasonable results compared with the one without using it. Different flow regimes are observed in the street canyons, which depend on building configurations. A counter-clockwise rotating vortex may appear in a two-building case with wind flow from left to right, causing lower pollutant concentration at the leeward side of upstream building and higher concentration at the windward side of downstream building. On the other hand, a stable clockwise rotating vortex is formed in the street canyon with multiple identical buildings, resulting in poor natural ventilation in the street canyon. Moreover, particles emitted in the downstream canyon formed by buildings with large height-to-width ratios will be transported to upstream canyons. (author)

  6. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    OpenAIRE

    Yucong Miao; Shuhua Liu; Yijia Zheng; Shu Wang; Yuan Li

    2014-01-01

    The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD) model used in this study—Open Source Field Operation and Manipulation (OpenFOAM) software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispe...

  7. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    Science.gov (United States)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases

  8. Air flow and pollution in a real, heterogeneous urban street canyon: A field and laboratory study

    Science.gov (United States)

    Karra, Styliani; Malki-Epshtein, Liora; Neophytou, Marina K.-A.

    2017-09-01

    In this work we investigate the influence of real world conditions, including heterogeneity and natural variability of background wind, on the air flow and pollutant concentrations in a heterogeneous urban street canyon using both a series of field measurements and controlled laboratory experiments. Field measurements of wind velocities and Carbon Monoxide (CO) concentrations were taken under field conditions in a heterogeneous street in a city centre at several cross-sections along the length of the street (each cross-section being of different aspect ratio). The real field background wind was in fact observed to be highly variable and thus different Intensive Observation Periods (IOPs) represented by a different mean wind velocity and different wind variability were defined. Observed pollution concentrations reveal high sensitivity to local parameters: there is a bias towards the side closer to the traffic lane; higher concentrations are found in the centre of the street as compared to cross-sections closer to the junctions; higher concentrations are found at 1.5 height from the ground than at 2.5 m height, all of which are of concern regarding pedestrian exposure to traffic-related pollution. A physical model of the same street was produced for the purpose of laboratory experiments, making some geometrical simplifications of complex volumes and extrusions. The physical model was tested in an Atmospheric Boundary Layer water channel, using simultaneously Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF), for flow visualisation as well as for quantitative measurement of concentrations and flow velocities. The wind field conditions were represented by a steady mean approach velocity in the laboratory simulation (essentially representing periods of near-zero wind variability). The laboratory investigations showed a clear sensitivity of the resulting flow field to the local geometry and substantial three-dimensional flow patterns were

  9. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    OpenAIRE

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie Keith; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2009-01-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were valida...

  10. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model

    Science.gov (United States)

    Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu

    2017-09-01

    Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.

  11. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China

    International Nuclear Information System (INIS)

    Tang, Rongli; Ma, Keming; Zhang, Yuxin; Mao, Qizheng

    2013-01-01

    Highlights: ·We explored the pollution characters of metals in street dust of Beijing. ·Area-source pollution and point-source pollution exist simultaneously. ·We identified the spatial autocorrelation intensities and ranges of metals. ·Metal pollution anomalies were identified by cluster and outlier analyses. ·Urban activities strongly influence the distributions of metals. - Abstract: The components and concentrations of metals in street dust are indictors of environmental pollution. To explore the pollution levels of Cd, Cr, Cu, Mn, Ni and Pb in street dust and their spatial distribution characteristics, 220 dust samples were collected in a grid pattern from urban street surfaces in Beijing. Multivariate statistics and spatial analyses were adopted to investigate the associations between metals and to identify their pollution patterns. In comparison with the soil background values, elevated metal concentrations were found, except those for Mn and Ni. The results of the geo-accumulation index (I geo ) and the potential ecological risk index (Er i ) of the metals revealed the following orders: Cd > Cu > Cr > Pb > Ni > Mn and Cd > Cu > Pb > Cr > Ni. Levels of I geo ranging from 0 to 5 were found and about 80% of the samples were below the moderately polluted level. The Er i values of single elements were within the low ecological risk level in most sampling sites. Most of the metals in the street dust of Beijing were statistically significantly correlated. It is hard to clearly identify the sources of each metal in the street dust since local environments are very complex. Cadmium, Cu, Cr, Mn and Pb showed medium spatial autocorrelations within the sampling region. Similar spatial distribution patterns were observed for Cu, Cr and Pb, and these metals had relatively high spatial variabilities and were enriched in the center of the city with several peaks scattered in the suburbs. Metal pollution anomalies were identified by using cluster and outlier analyses

  12. Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

    Science.gov (United States)

    Li, X.

    2014-12-01

    Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.

  13. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons.

    Science.gov (United States)

    Tong, Nelson Y O; Leung, Dennis Y C

    2012-01-01

    A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.

  14. Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective.

    Science.gov (United States)

    Morakinyo, Tobi Eniolu; Lam, Yun Fat

    2016-11-01

    Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM 2.5 ) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1-3 % of PM 2.5 was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM 2.5 by such trees under some tree planting scenarios and wind conditions.

  15. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    Science.gov (United States)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-09-01

    Finding the number and best locations of fixed air quality monitoring stations at street level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Data sets of such urban parameters as land use, building morphology and street geometry in high-resolution grid cells in combination with direct measurements of airborne pollutants at high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self-Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. This proof of concept study showed that the selected urban parameters proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e., group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  16. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.

    Science.gov (United States)

    Pesic, Dusica J; Blagojevic, Milan Dj; Zivkovic, Nenad V

    2014-01-01

    Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316-323, 2009), Xie et al. (J Hydrodyn 21(1): 108-117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975-3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394-406, 2009; J Hazard Mater 192(3): 940-948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street

  17. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63...... for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...

  18. Diurnal variation of on-road air pollution in an urban street canyon in Seoul

    Science.gov (United States)

    Ho, Woo, Sung; Lee, Seung-Bok; Kim, Kyung Hwan; Bae, Gwi-Nam; Sunwoo, Young; Ma, Young-Il; Han, Dokyoung; Song, Sanghoo

    2014-05-01

    Motor vehicles are a major source of CO, NOx and particulate matters. Especially, in the surroundings of high-raised buildings, so-called an urban street canyon, air pollution levels increase due to limited dispersion of vehicle emissions. In this study, a mobile laboratory was used to measure diurnal variation of on-road concentrations of air pollutants such as NOx, particle-bound polycyclic aromatic hydrocarbons, black carbon and particle number in the urban street canyon on the Teheran road with eight lanes in Seoul, Korea from 5th to 8th November 2013. Each traveling distance was about 3.3km. Traveling vehicle at the middle of the Teheran road was recorded by video camera, and then the car counting by vehicle types. On road measurements conducted for 3~6 hours per day. Hourly average of air pollutant concentration in morning rush hour more than two times higher than those at the daybreak. We will analyze the correlation between air pollution levels and traffic volume by vehicle types. We will discuss about spatial characteristics of on-road air pollution levels in the urban street canyon.

  19. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    Science.gov (United States)

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dispersion and photochemical evolution of reactive pollutants in street canyons

    Science.gov (United States)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon

    2013-05-01

    Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.

  1. Aerodynamic effects of trees on pollutant concentration in street canyons

    NARCIS (Netherlands)

    Buccolieri, R.; Gromke, C.B.; Sabatino, Di S.; Ruck, B.

    2009-01-01

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant

  2. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  3. A proper choice of route significantly reduces air pollution exposure--a study on bicycle and bus trips in urban streets.

    Science.gov (United States)

    Hertel, Ole; Hvidberg, Martin; Ketzel, Matthias; Storm, Lars; Stausgaard, Lizzi

    2008-01-15

    A proper selection of route through the urban area may significantly reduce the air pollution exposure. This is the main conclusion from the presented study. Air pollution exposure is determined for two selected cohorts along the route going from home to working place, and back from working place to home. Exposure is determined with a street pollution model for three scenarios: bicycling along the shortest possible route, bicycling along the low exposure route along less trafficked streets, and finally taking the shortest trip using public transport. Furthermore, calculations are performed for the cases the trip takes place inside as well as outside the traffic rush hours. The results show that the accumulated air pollution exposure for the low exposure route is between 10% and 30% lower for the primary pollutants (NO(x) and CO). However, the difference is insignificant and in some cases even negative for the secondary pollutants (NO(2) and PM(10)/PM(2.5)). Considering only the contribution from traffic in the travelled streets, the accumulated air pollution exposure is between 54% and 67% lower for the low exposure route. The bus is generally following highly trafficked streets, and the accumulated exposure along the bus route is therefore between 79% and 115% higher than the high exposure bicycle route (the short bicycle route). Travelling outside the rush hour time periods reduces the accumulated exposure between 10% and 30% for the primary pollutants, and between 5% and 20% for the secondary pollutants. The study indicates that a web based route planner for selecting the low exposure route through the city might be a good service for the public. In addition the public may be advised to travel outside rush hour time periods.

  4. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.

    Science.gov (United States)

    Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P

    2017-06-20

    Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.

  5. A numerical analysis of pollutant dispersion in street canyon: influence of the turbulent Schmidt number

    Directory of Open Access Journals (Sweden)

    Bouabdellah Abed

    2017-12-01

    Full Text Available Realizing the growing importance and availability of motor vehicles, we observe that the main source of pollution in the street canyons comes from the dispersion of automobile engine exhaust gas. It represents a substantial effect on the micro-climate conditions in urban areas. Seven idealized-2D building configurations are investigated by numerical simulations. The turbulent Schmidt number is introduced in the pollutant transport equation in order the take into account the proportion between the rate of momentum turbulent transport and the mass turbulent transport by diffusion. In the present paper, we attempt to approach the experimental test results by adjusting the values of turbulent Schmidt number to its corresponding application. It was with interest that we established this link for achieving our objectives, since the numerical results agree well with the experimental ones. The CFD code ANSYS CFX, the k, e and the RNGk-e models of turbulence have been adopted for the resolutions. From the simulation results, the turbulent Schmidt number is a range of 0.1 to 1.3 that has some effect on the prediction of pollutant dispersion in the street canyons. In the case of a flat roof canyon configuration (case: runa000, appropriate turbulent Schmidt number of 0.6 is estimated using the k-epsilon model and of 0.5 using the RNG k-e model.

  6. Seasonal Changing Effect on Airflow and Pollutant Dispersion Characteristics in Urban Street Canyons

    OpenAIRE

    Jingliang Dong; Zijing Tan; Yimin Xiao; Jiyuan Tu

    2017-01-01

    In this study, the effect of seasonal variation on air flow and pollutant dispersion characteristics was numerically investigated. A three-dimensional urban canopy model with unit aspect ratio (H/D = 1) was used to calculate surface temperature distribution in the street canyon. Four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST) during typical clear summer and winter days were selected to examine the air flow diurnal variation. The results revealed the seasonal variat...

  7. Modelling the air flow in symmetric and asymmetric street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L.; Martin, F. [Research Center for Energy, Environment and Technology (CIEMAT), Madrid (Spain). Fossil Fuels Dept., Numerical Simulation and Modelling Program

    2004-07-01

    In recent years a large amount of research has been conducted on urban scale and street canyon. Control of air quality inside cities is important for human health. To achieve this objective, street canyon modelling plays a significant role. Pollutant dispersion inside canyons are determined by wind flow around this complex geometry. Experimental investigations have been made by means of field measurements such as Vachon, G. et al. or wind tunnel experiences as Meroney, R.N. et al. or Kastner-Klein, P. and E.J. Plate. In many of these researches, they have used CFD models in several configurations, for instance Assimakopoulos, V.D. et al. or Sini, J.-F. et al. These models are based on a numerical resolution of Navier-Stokes equations with a turbulence closure. In this study, the aim is contribute to the understanding of air circulation inside street canyons. In order to achieve this purpose, several configurations of canyons are investigated. Two-dimensional sequences of real-scale street canyons (order to obstacles height is meters) with different features (symmetric canyons and asymmetric canyons forming step-up and step-down notch configurations) are simulated. These general configurations are modified to investigate some parameters such as aspect ratio, W/H, where W is the width of street and H is the height of buildings. Flows with high Reynolds numbers are modelling. FLUENT CFD software is used. (orig.)

  8. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies

    International Nuclear Information System (INIS)

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. - Highlights: → A concept for aerodynamic modelling of vegetation in small scale wind tunnel studies is presented. → The concept was applied to study pollutant dispersion in urban street canyons with avenue tress. → The wind tunnel studies show that modelling the aerodynamic effects of vegetation is important. → Avenue trees give rise to increased pollutant concentrations in urban street canyons. - Avenue trees in urban street canyons affect the pollutant dispersion and result in increased traffic exhaust concentrations.

  9. The performance evaluation of WinOSPM model for urban street canyons of Nantes in France.

    Science.gov (United States)

    Gokhale, Sharad B; Rebours, Arnaud; Pavageau, Michel

    2005-01-01

    Air quality modelling is primarily the quantative approach. It is more difficult as it demands input data accuracy, uncertainties and the efficient methodologies to judge the extent of models accuracy. As a result, model validation has to be regarded as an integral part of the modelling process. Furthermore, models are often validated on a limited number of testcases therefore, appropriate evaluation procedure must be implemented to ensure these models will be applicable for various conditions. The study presented here was carried out to evaluate the WinOSPM (Preliminary version of windows based Operational Street Pollution Model) for air pollutants viz. CO, NO, NO2, NOx and C6H6 for three street canyons of Nantes (France) and for the three base years 1999, 2000, and 2001. Each street canyon selected for this study has typical and unidentical features. The rue de Strasbourg and Boulevard Victor Hugo have many building exceptions whereas rue Crébillon has not any. Application of the model above to the three street canyons revealed that WinOSPM could be used in the case when measurements are not available. This was justified from the results at rue Crébillon. The special interest was in the benzene modelled values as its content in fuel has been targeted to reduce to 1% for the years 2000 and onwards (from its 5% until the year 1999). The 50 to 70% reduction in the benzene concentrations is found for both the years i.e. in 2000 and 2001. This has further justified that air quality models are useful and interesting tools in optimising emission reduction strategies. Moreover, it is also the new pollutant added to the measurement campaign of Air Pays de la Loire (APL) for the city of Nantes. For benzene weekly averages are estimated from the hourly-modelled values for all the streets and compared with that of measurements. They are found in excellent agreement with each other's. For other pollutants annual means and percentiles were compared. The statistical analysis

  10. CODASC : a database for the validation of street canyon dispersion models

    NARCIS (Netherlands)

    Gromke, C.B.

    2013-01-01

    CODASC stands for Concentration Data of Street Canyons (CODASC 2008, www.codasc.de). It is a database which provides traffic pollutant concentrations in urban street canyons obtained from wind-tunnel dispersion experiments. CODASC comprises concentration data of street canyons with different aspect

  11. Analysis of the Momentum and Pollutant Transport at the Roof Level of 2D Idealized Street Canyons: a Large-Eddy Simulation Solution

    Science.gov (United States)

    Cheng, Wai Chi; Liu, Chun-Ho

    2010-05-01

    To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant along the roof level were performed to compare the contributions of different events/scales to the transport processes. The roof of the street canyon is divided into five segments, namely leeward side, upwind shift, center core, downwind shift and windward side in the streamwise direction. Among the four quadrants considered, the sweeps/ejections, which correspond to the downward/upward motions, dominate the momentum/pollutant transfer. The inward/outward interactions play relatively minor roles. While studying the events in detail, the contribution from the sweeps is mainly large-scale fluctuation compared with that of ejections. Moreover, most of the momentum and pollutant transports take place on the windward side. The strong shear at the roof level initiates instability that in turn promotes the increasing turbulent transport from the leeward side to the windward side. At the same time, the roof-level fluctuations grow linearly in the streamwise direction leading to the vigorous turbulent

  12. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: using large-eddy simulation.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-05-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comparison between measurements and OSPM calculations of NO{sub 2} at 10 street sections in Copenhagen. [OSPM - Operational Street Pollution Model]; Sammenligning af NO{sub 2}-maelinger og OSPM-beregninger for 10 gadestraekninger i Koebenhavn

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Ketzel, M.; Solvang Jensen, S.

    2012-10-15

    This report presents results from a comparison between measurements and model calculations of nitrogen dioxide (NO{sub 2}) at ten selected street sections in Copenhagen. Force Technology has carried out the measurements of NO{sub 2} during a few weeks period from October 24{sup th} to November 28{sup th} 2011. DCE has carried out model calculations using the Operational Street Pollution Model (OSPM) in two stages. The model calculations at stage 1 (''blind test'') are carried out without knowledge about the results from the measurements. Model version and input data corresponds to those used for the most recent model calculations presented in the reports from 2011 for the routine monitoring programme and a surveillance project, respectively. At stage 2 input data have been updated and revised in order to analyze the differences between measured and model calculated concentrations at stage 1. This report from AU/DCE presents only the results from the model calculations and the comparison between measurements and model results. Comparison for the two permanent measurement stations at both H.C. Andersen's Boulevard (HCAB) and Jagtvej shows good agreement between measurements from Force Technology using passive sampling and measurements from DCE using the EU reference method. The results from the ''blind test'' of OSPM at stage 1 show that the OSPM calculations are in good agreement with the measurements for seven out of nine street sections. The model results show good agreement for all street sections with two sided building facades. Large discrepancies between measurements and model results are found for two street sections (Sydhavnsgade and Fredensgade) both with one sided building facades. However, there are two other street sections with one sided building facades, where the model is in good agreement with the measurements. The discrepancies observed for Sydhavnsgade and Fredensgade are therefore not solely related to

  14. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction

    Science.gov (United States)

    Buccolieri, Riccardo; Salim, Salim Mohamed; Leo, Laura Sandra; Di Sabatino, Silvana; Chan, Andrew; Ielpo, Pierina; de Gennaro, Gianluigi; Gromke, Christof

    2011-03-01

    This paper first discusses the aerodynamic effects of trees on local scale flow and pollutant concentration in idealized street canyon configurations by means of laboratory experiments and Computational Fluid Dynamics (CFD). These analyses are then used as a reference modelling study for the extension a the neighbourhood scale by investigating a real urban junction of a medium size city in southern Italy. A comparison with previous investigations shows that street-level concentrations crucially depend on the wind direction and street canyon aspect ratio W/H (with W and H the width and the height of buildings, respectively) rather than on tree crown porosity and stand density. It is usually assumed in the literature that larger concentrations are associated with perpendicular approaching wind. In this study, we demonstrate that while for tree-free street canyons under inclined wind directions the larger the aspect ratio the lower the street-level concentration, in presence of trees the expected reduction of street-level concentration with aspect ratio is less pronounced. Observations made for the idealized street canyons are re-interpreted in real case scenario focusing on the neighbourhood scale in proximity of a complex urban junction formed by street canyons of similar aspect ratios as those investigated in the laboratory. The aim is to show the combined influence of building morphology and vegetation on flow and dispersion and to assess the effect of vegetation on local concentration levels. To this aim, CFD simulations for two typical winter/spring days show that trees contribute to alter the local flow and act to trap pollutants. This preliminary study indicates that failing to account for the presence of vegetation, as typically practiced in most operational dispersion models, would result in non-negligible errors in the predictions.

  15. Trends of air pollution in Denmark - Normalised by a simple weather index model

    International Nuclear Information System (INIS)

    Kiilsholm, S.; Rasmussen, A.

    2000-01-01

    This report is a part of the Traffic Pool projects on 'Traffic and Environments', 1995-99, financed by the Danish Ministry of Transport. The Traffic Pool projects included five different projects on 'Surveillance of the Air Quality', 'Atmospheric Modelling', 'Atmospheric Chemistry Modelling', 'Smog and ozone' and 'Greenhouse effects and Climate', [Rasmussen, 2000]. This work is a part of the project on 'Surveillance of the Air Quality' with the main objectives to make trend analysis of levels of air pollution from traffic in Denmark. Other participants were from the Road Directory mainly focusing on measurement of traffic and trend analysis of the air quality utilising a nordic model for the air pollution in street canyons called BLB (Beregningsmodel for Luftkvalitet i Byluftgader) [Vejdirektoratet 2000], National Environmental Research Institute (HERI) mainly focusing on. measurements of air pollution and trend analysis with the Operational Street Pollution Model (OSPM) [DMU 2000], and the Copenhagen Environmental Protection Agency mainly focusing on measurements. In this study a more simple statistical model has been developed for trend analysis of the air quality. The model is filtering out the influence of the variations from year to year in the meteorological conditions on the air pollution levels. The weather factors found most important are wind speed, wind direction and mixing height. Measurements of CO, NO and NO 2 from three streets in Copenhagen have been used, these streets are Jagtvej, Bredgade and H. C. Andersen's Boulevard (HCAB). The years 1994-1996 were used for evaluation of the method and annual indexes of air pollution index dependent only on meteorological parameters, called WEATHIX, were calculated for the years 1990-1997 and used for normalisation of the observed air pollution trends. Meteorological data were taken from either the background stations at the H.C. Oersted - building situated close to one of the street stations or the synoptic

  16. CODASC : a database for the validation of street canyon dispersion models

    OpenAIRE

    Gromke, C.B.

    2013-01-01

    CODASC stands for Concentration Data of Street Canyons (CODASC 2008, www.codasc.de). It is a database which provides traffic pollutant concentrations in urban street canyons obtained from wind-tunnel dispersion experiments. CODASC comprises concentration data of street canyons with different aspect ratios subjected to various wind directions and also for street canyons with tree-avenues. The database includes concentration data of tree-avenue configurations of different tree arrangement, tree...

  17. Ventilation Processes in a Three-Dimensional Street Canyon

    Science.gov (United States)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  18. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    International Nuclear Information System (INIS)

    Gallagher, J.; Gill, L.W.; McNabola, A.

    2013-01-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  19. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, J., E-mail: j.gallagher@bangor.ac.uk [School of Energy, Natural Resources and Geography, Bangor University (United Kingdom); Gill, L.W.; McNabola, A. [Dept. of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland)

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  20. Modelling Black Carbon concentrations in two busy street canyons in Brussels using CANSBC

    Science.gov (United States)

    Brasseur, O.; Declerck, P.; Heene, B.; Vanderstraeten, P.

    2015-01-01

    This paper focused on modelling Black Carbon (BC) concentrations in two busy street canyons, the Crown and Belliard Street in Brussels. The used original Operational Street Pollution Model was adapted to BC by eliminating the chemical module and is noted here as CANSBC. Model validations were performed using temporal BC data from the fixed measurement network in Brussels. Subsequently, BC emissions were adjusted so that simulated BC concentrations equalled the observed ones, averaged over the whole period of simulation. Direct validations were performed for the Crown Street, while BC model calculations for the Belliard Street were validated indirectly using the linear relationship between BC and NOx. Concerning the Crown Street, simulated and observed half-hourly BC concentrations correlated well (r = 0.74) for the period from July 1st, 2011 till June 30th, 2013. In particular, CANSBC performed very well to simulate the monthly and diurnal evolutions of averaged BC concentrations, as well as the difference between weekdays and weekends. This means that the model correctly handled the meteorological conditions as well as the variation in traffic emissions. Considering dispersion, it should however be noted that BC concentrations are better simulated under stable than under unstable conditions. Even if the correlation on half-hourly NOx concentrations was slightly lower (r = 0.60) than the one of BC, indirect validations of CANSBC for the Belliard Street yielded comparable results and conclusions as described above for the Crown Street. Based on our results, it can be stated that CANSBC is suitable to accurately simulate BC concentrations in the street canyons of Brussels, under the following conditions: (i) accurate vehicle counting data is available to correctly estimate traffic emissions, and (ii) vehicle speeds are measured in order to improve emission estimates and to take into account the impact of the turbulence generated by moving vehicles on the local

  1. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction

    NARCIS (Netherlands)

    Buccolieri, R.; Salim, S.M.; Leo, L.S.; Sabatino, Di S.; Chan, A.; Ielpo, P.; Gennaro, de G.; Gromke, C.B.

    2011-01-01

    This paper first discusses the aerodynamic effects of trees on local scale flow and pollutant concentration in idealized street canyon configurations by means of laboratory experiments and Computational Fluid Dynamics (CFD). These analyses are then used as a reference modelling study for the

  2. A novel methodology for interpreting air quality measurements from urban streets using CFD modelling

    Science.gov (United States)

    Solazzo, Efisio; Vardoulakis, Sotiris; Cai, Xiaoming

    2011-09-01

    In this study, a novel computational fluid dynamics (CFD) based methodology has been developed to interpret long-term averaged measurements of pollutant concentrations collected at roadside locations. The methodology is applied to the analysis of pollutant dispersion in Stratford Road (SR), a busy street canyon in Birmingham (UK), where a one-year sampling campaign was carried out between August 2005 and July 2006. Firstly, a number of dispersion scenarios are defined by combining sets of synoptic wind velocity and direction. Assuming neutral atmospheric stability, CFD simulations are conducted for all the scenarios, by applying the standard k-ɛ turbulence model, with the aim of creating a database of normalised pollutant concentrations at specific locations within the street. Modelled concentration for all wind scenarios were compared with hourly observed NO x data. In order to compare with long-term averaged measurements, a weighted average of the CFD-calculated concentration fields was derived, with the weighting coefficients being proportional to the frequency of each scenario observed during the examined period (either monthly or annually). In summary the methodology consists of (i) identifying the main dispersion scenarios for the street based on wind speed and directions data, (ii) creating a database of CFD-calculated concentration fields for the identified dispersion scenarios, and (iii) combining the CFD results based on the frequency of occurrence of each dispersion scenario during the examined period. The methodology has been applied to calculate monthly and annually averaged benzene concentration at several locations within the street canyon so that a direct comparison with observations could be made. The results of this study indicate that, within the simplifying assumption of non-buoyant flow, CFD modelling can aid understanding of long-term air quality measurements, and help assessing the representativeness of monitoring locations for population

  3. A geographic approach to modelling human exposure to traffic air pollution using GIS

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG) 109 refs.

  4. Annoyance due to noise and air pollution to the residents of heavily frequented streets

    Science.gov (United States)

    Wanner, H. U.; Wehrli, B.; Nemecek, J.; Turrian, V.

    1980-01-01

    The residents of different streets with varying traffic density and building density were questioned about annoyance due to traffic noise and air pollution. Results show that annoyance felt is dependent not only on the measured noise levels and/or air pollution concentrations, but that there do exist interactions between the residential quarters and annoyance. These interactions should be considered when fixing the limits and standards.

  5. Comparative study of measured and modelled number concentrations of nanoparticles in an urban street canyon

    DEFF Research Database (Denmark)

    Kumar, Prashant; Garmory, Andrew; Ketzel, Matthias

    2009-01-01

    Pollution Model (OSPM) and Computational Fluid Dynamics (CFD) code FLUENT. All models disregarded any particle dynamics. CFD simulations have been carried out in a simplified geometry of the selected street canyon. Four different sizes of emission sources have been used in the CFD simulations to assess......This study presents a comparison between measured and modelled particle number concentrations (PNCs) in the 10-300 nm size range at different heights in a canyon. The PNCs were modelled using a simple modelling approach (modified Box model, including vertical variation), an Operational Street...... the effect of source size on mean PNC distributions in the street canyon. The measured PNCs were between a factor of two and three of those from the three models, suggesting that if the model inputs are chosen carefully, even a simplified approach can predict the PNCs as well as more complex models. CFD...

  6. Multi-scale dynamic modeling of atmospheric pollution in urban environment

    International Nuclear Information System (INIS)

    Thouron, Laetitia

    2017-01-01

    Urban air pollution has been identified as an important cause of health impacts, including premature deaths. In particular, ambient concentrations of gaseous pollutants such as nitrogen dioxide (NO 2 ) and particulate matter (PM10 and PM2.5) are regulated, which means that emission reduction strategies must be put in place to reduce these concentrations in places where the corresponding regulations are not respected. Besides, air pollution can contribute to the contamination of other media, for example through the contribution of atmospheric deposition to runoff contamination. The multifactorial and multi-scale aspects of urban make the pollution sources difficult to identify. Indeed, the urban environment is a heterogeneous space characterized by complex architectural structures (old buildings alongside a more modern building, residential, commercial, industrial zones, roads, etc.), non-uniform atmospheric pollutant emissions and therefore the population exposure to pollution is variable in space and time. The modeling of urban air pollution aims to understand the origin of pollutants, their spatial extent and their concentration/deposition levels. Some pollutants have long residence times and can stay several weeks in the atmosphere (PM2.5) and therefore be transported over long distances, while others are more local (NO x in the vicinity of traffic). The spatial distribution of a pollutant will therefore depend on several factors, and in particular on the surfaces encountered. Air quality depends strongly on weather, buildings (canyon-street) and emissions. The aim of this thesis is to address some of these aspects by modeling: (1) urban background pollution with a transport-chemical model (Polyphemus / POLAIR3D), which makes it possible to estimate atmospheric pollutants by type of urban surfaces (roofs, walls and roadways), (2) street-level pollution by explicitly integrating the effects of the building in a three-dimensional way with a multi-scale model of

  7. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  8. Numerical Study on Sensitivity of Pollutant Dispersion on Turbulent Schmidt Number in a Street Canyon

    Science.gov (United States)

    WANG, J.; Kim, J.

    2014-12-01

    In this study, sensitivity of pollutant dispersion on turbulent Schmidt number (Sct) was investigated in a street canyon using a computational fluid dynamics (CFD) model. For this, numerical simulations with systematically varied Sct were performed and the CFD model results were validated against a wind‒tunnel measurement data. The results showed that root mean square error (RMSE) was quite dependent on Sct and dispersion patterns of non‒reactive scalar pollutant with different Sct were quite different among the simulation results. The RMSE was lowest in the case of Sct = 0.35 and the apparent dispersion pattern was most similar to the wind‒tunnel data in the case of Sct = 0.35. Also, numerical simulations using spatially weighted Sct were additionally performed in order for the best reproduction of the wind‒tunnel data. Detailed method and procedure to find the best reproduction will be presented.

  9. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    Science.gov (United States)

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A CFD modeling study of the impacts of NO x and VOC emissions on reactive pollutant dispersion in and above a street canyon

    Science.gov (United States)

    Kwak, Kyung-Hwan; Baik, Jong-Jin

    2012-01-01

    A computational fluid dynamics (CFD) model that includes the carbon bond mechanism IV (CBM-IV) is developed and used to investigate reactive pollutant dispersion in and above a street canyon with an aspect ratio of 1. Fourteen emission scenarios of NO x and volatile organic compounds (VOCs) are considered. Dispersion types are classified into NO-type, NO 2-type, and O 3-type dispersion that exhibit concentration maxima at the street bottom, near the center of the street canyon, and above the street canyon, respectively. For the base emission scenario, the number of reactive species is 9 in the NO-type dispersion, 10 in the NO 2-type dispersion, and 15 in the O 3-type dispersion. As the NO x emission level decreases or the VOC emission level increases, some species in the O 3-type dispersion are shifted to the NO 2-type dispersion. The VOC-to-NO x emission ratio is found to be an important factor in determining the transition of dispersion type. In this transition process, OH plays a key role through a radical chain including HO 2, RO, and RO 2. Because of their high OH reactivities, XYL (xylene) and OLE (olefin carbon bond) among VOCs are largely responsible for the transition of dispersion type. The O 3 sensitivity is examined by reducing NO x or VOC emission level by a half. Because the NO titration of O 3 is more pronounced than the NO 2 photolysis and the radical chain process in the street canyon, the O 3 concentration therein is negatively correlated with the NO x emission level and weakly correlated with the VOC emission level. As a result, the street canyon is a negatively NO x-sensitive regime.

  11. Influence of cetane improvers on the air quality in an urban street canyon

    International Nuclear Information System (INIS)

    Huang, H.; Akutsu, Y.; Arai, M.; Tamura, M.

    2000-01-01

    The concentration distributions of NO x , PM, HC and CO in an urban street canyon have been estimated using a two-dimensional air quality numerical model based on the k-e turbulent model and the atmospheric convection diffusion equation when various cetane improvers were used in diesel fuels. A wind vortex can be found within the street canyon, and the pollutants emitted from the bottom of the street canyon tend to follow the course of the wind field, moving circularly. The addition of cetane improvers can improve the air quality in a street canyon, all of the pollutants were found to decrease with increasing cetane number. (Author)

  12. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    Science.gov (United States)

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon.

    Science.gov (United States)

    Salmond, J A; Williams, D E; Laing, G; Kingham, S; Dirks, K; Longley, I; Henshaw, G S

    2013-01-15

    Space constraints in cities mean that there are only limited opportunities for increasing tree density within existing urban fabric and it is unclear whether the net effect of increased vegetation in street canyons is beneficial or detrimental to urban air quality at local scales. This paper presents data from a field study undertaken in Auckland, New Zealand designed to determine the local impact of a deciduous tree canopy on the distribution of the oxides of nitrogen within a street canyon. The results showed that the presence of leaves on the trees had a marked impact on the transport of pollutants and led to a net accumulation of pollutants in the canyon below the tree tops. The incidence and magnitude of temporally localised spikes in pollutant concentration were reduced within the tree canopy itself. A significant difference in pollutant concentrations with height was not observed when leaves were absent. Analysis of the trends in concentration associated with different wind directions showed a smaller difference between windward and leeward sides when leaves were on the trees. A small relative increase in concentrations on the leeward side was observed during leaf-on relative to leaf-off conditions as predicted by previous modelling studies. However the expected reduction in concentrations on the windward side was not observed. The results suggest that the presence of leaves on the trees reduces the upwards transport of fresh vehicle emissions, increases the storage of pollutants within the canopy space and reduces the penetration of clean air downwards from aloft. Differences observed between NO and NO(2) concentrations could not be accounted for by dispersion processes alone, suggesting that there may also be some changes in the chemistry of the atmosphere associated with the presence of leaves on the trees. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Influence of large changes in public transportation (Transantiago) on the black carbon pollution near streets

    Science.gov (United States)

    Gramsch, E.; Le Nir, G.; Araya, M.; Rubio, M. A.; Moreno, F.; Oyola, P.

    2013-02-01

    In 2006 a large transformation was carried out on the public transportation system in Santiago de Chile. The original system (before 2006) had hundreds of bus owners with about 7000 diesel buses. The new system has only 13 firms with about 5900 buses which operate in different parts of the city with little overlap between them. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. Measurements were carried out during May-July of 2005 (before Transantiago) and June-July of 2007 (after Transantiago). We have used the Wilcoxon rank-sum test to evaluate black carbon concentration in four streets in year 2005 and 2007. The results show that a statistically significant reduction between year 2005 (before Transantiago) and year 2007 (after Transantiago) in Alameda street, which changed from a mean of 18.8 μg m-3 in 2005 to 11.9 μg m-3 in 2007. In this street there was a decrease in the number of buses as well as the number of private vehicles and an improvement in the technology of public transportation between those years. Other two streets (Usach and Departamental) did not change or experienced a small increase in the black carbon concentration in spite of having less flux of buses in 2007. Eliodoro Yañez Street, which did not have public transportation in 2005 or 2007 experienced a 15% increase in the black carbon concentration between those years. Analysis of the data indicates that the change is related to a decrease in the total number of vehicles or the number of other diesel vehicles in the street rather than a decrease in the number of buses only. These results are an indication that in order to decrease pollution near a street is not enough to reduce the number of buses or improve its quality, but to reduce the total number of vehicles.

  15. Citygml and the Streets of New York - a Proposal for Detailed Street Space Modelling

    Science.gov (United States)

    Beil, C.; Kolbe, T. H.

    2017-10-01

    Three-dimensional semantic city models are increasingly used for the analysis of large urban areas. Until now the focus has mostly been on buildings. Nonetheless many applications could also benefit from detailed models of public street space for further analysis. However, there are only few guidelines for representing roads within city models. Therefore, related standards dealing with street modelling are examined and discussed. Nearly all street representations are based on linear abstractions. However, there are many use cases that require or would benefit from the detailed geometrical and semantic representation of street space. A variety of potential applications for detailed street space models are presented. Subsequently, based on related standards as well as on user requirements, a concept for a CityGML-compliant representation of street space in multiple levels of detail is developed. In the course of this process, the CityGML Transportation model of the currently valid OGC standard CityGML2.0 is examined to discover possibilities for further developments. Moreover, a number of improvements are presented. Finally, based on open data sources, the proposed concept is implemented within a semantic 3D city model of New York City generating a detailed 3D street space model for the entire city. As a result, 11 thematic classes, such as roadbeds, sidewalks or traffic islands are generated and enriched with a large number of thematic attributes.

  16. Asessing the air pollution distribution in busy street of Copenhagen in the further development of a street pollution model

    DEFF Research Database (Denmark)

    Hertel, Ole; Ketzel, Matthias; Poulsen, Maria B.

    The EU Air Quality Directive requires Member States to perform Air Quality Monitoring in order to assess ambient air quality for compliance checking with air quality limit values (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:en:PDF). This monitoring needs to include......) developed at AU; the revised version OSPM includes new features like inhomogeneous distribution of the traffic on different lanes, slope of the street etc (see e.g. Ottosen et al. (2015)). An additional goal for the project is to explore the applicability of low-cost electrochemical sensors for describing...... to get more detailed information about the traffic flow and its diurnal pattern, manual traffic counts have been performed over 24 hours. In addition a video camera has been installed on the roof of a building next to the street during the monitoring campaign. Measurements are carried out using passive...

  17. A geographic approach to modelling human exposure to traffic air pollution using GIS. Separate appendix report

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG)

  18. Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium.

    Science.gov (United States)

    Vranckx, Stijn; Vos, Peter; Maiheu, Bino; Janssen, Stijn

    2015-11-01

    Effects of vegetation on pollutant dispersion receive increased attention in attempts to reduce air pollutant concentration levels in the urban environment. In this study, we examine the influence of vegetation on the concentrations of traffic pollutants in urban street canyons using numerical simulations with the CFD code OpenFOAM. This CFD approach is validated against literature wind tunnel data of traffic pollutant dispersion in street canyons. The impact of trees is simulated for a variety of vegetation types and the full range of approaching wind directions at 15° interval. All these results are combined using meteo statistics, including effects of seasonal leaf loss, to determine the annual average effect of trees in street canyons. This analysis is performed for two pollutants, elemental carbon (EC) and PM10, using background concentrations and emission strengths for the city of Antwerp, Belgium. The results show that due to the presence of trees the annual average pollutant concentrations increase with about 8% (range of 1% to 13%) for EC and with about 1.4% (range of 0.2 to 2.6%) for PM10. The study indicates that this annual effect is considerably smaller than earlier estimates which are generally based on a specific set of governing conditions (1 wind direction, full leafed trees and peak hour traffic emissions). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China.

    Science.gov (United States)

    Wei, Xin; Gao, Bo; Wang, Peng; Zhou, Huaidong; Lu, Jin

    2015-02-01

    Street dusts from Heavy Density Traffic Area, Residential Area, Educational Area and Tourism Area in Beijing, China, were collected to study the distribution, accumulation and health risk assessment of heavy metals. Cr, Cu, Zn, Cd and Pb concentrations were in higher concentrations in these four locations than in the local soil background. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Beijing were generally at moderate or low levels. Ni, Cu, Zn and Pb concentrations in the Tourism Area were the highest among four different areas in Beijing. A pollution assessment by Geoaccumulation Index showed that the pollution level for the heavy metals is in the following order: Cd>Pb>Zn>Cu>Cr>Ni. The Cd levels can be considered "heavily contaminated" status. The health risk assessment model that was employed to calculate human exposure indicated that both non-carcinogenic and carcinogenic risks of selected metals in street dusts were generally in the low range, except for the carcinogenic risk from Cr for children. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Mean Streets: An analysis on street level pollution in NYC

    Science.gov (United States)

    Parker, G.

    2017-12-01

    The overarching objective of this study is to quantify the spatial and temporal variability in particulatematter concentration (PM 2.5) along crowded streets in New York City. Due to their fine size and lowdensity PM 2.5 stays longer in the atmosphere and could bypass human nose and throat and penetratedeep in to the lungs and even enter the circulatory system. PM 2.5 is a by-product of automobilecombustion and is a primary cause of respiratory malfunction in NYC. The study would monitor streetlevel concentration of PM2.5 across three different routes that witness significant pedestrian traffic;observations will be conducted along these three routes at different time periods. The study will use theAirBeam community air quality monitor. The monitor tracks PM 2.5 concentration along with GPS, airtemperature and relative humidity. The surface level concentration monitored by AirBeam will becompared with atmospheric concentration of PM 2.5 that are monitored at the NOAA CREST facility onCCNY campus. The lower atmospheric values will be correlated with street level values to assess thevalidity of using of lower atmospheric values to predict street level concentrations. The street levelconcentration will be compared to the air quality forecasted by the New York Department ofEnvironment Conservation to estimate its accuracy and applicability.

  1. Effects of building roof greening on air quality in street canyons

    Science.gov (United States)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  2. Urban air quality management : effects of trees on air pollution concentration in urban street canyon

    NARCIS (Netherlands)

    Salim, S.M.; Buccolieri, R.; Chan, A.; Sabatino, Di S.; Gromke, C.

    2009-01-01

    The aerodynamic effects of avenue-like tree planting on air flow and traffic-originated pollutant dispersion in urban built-up areas (i.e. street canyons of width to height ratio, W/H=1) are investigated using computational fluid dynamics techniques and complemented with extensive wind tunnel

  3. A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon.

    Science.gov (United States)

    De Nicola, Flavia; Murena, Fabio; Costagliola, M Antonietta; Alfani, Anna; Baldantoni, Daniela; Prati, M Vittoria; Sessa, Ludovica; Spagnuolo, Valeria; Giordano, Simonetta

    2013-07-01

    For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights.

  4. Street canyon ventilation control by proper planning and development

    Directory of Open Access Journals (Sweden)

    Balakin Vladimir Vasil'evich

    2014-05-01

    Full Text Available The objective of street canyon ventilation control in major streets is a tool of air pollution prevention in them, protection of housing areas from excessive wind or preservation and intensification of existing wind speed in case of insufficient ventilation. The maximum permissible concentration of car exhaust pollutants with wind speed within comfortable and permissible values by physiological and hygienic criteria, are ensured as from 40 to 70 % of thoroughfares in major cities. The dependence of air pollution level on wind speed is comparable to its dependence on traffic intensity and ratio of buildings height (H to street width. But one has to take into account that, if the wind blows across the street, vortices form within the street canyon, which results in higher concentration of car exhaust pollutants near the downwind buildings. The objective of this work is to find the functional dependences of wind speed in a major street on its width and density of buildings, and also to find out which street configurations are favorable for formation of closed air circulation within it, resulting in insufficient aeration. The experimental research was done on a site for large-scale modeling of built-up urban territory, using cup anemometers. The coefficients of dependence of wind speed within a street on the types of buildings and on the street width were obtained. Characteristics of street layouts for control of aeration were determined. Building density rates for maximizing or optimizing the wind speed were determined. Street layouts are considered where stable vortices form between the buildings. For example, vortices within the street canyon’s cross-section appear when buildings squarish in ground plan situated far apart are replaced by oblong ones with the minimum allowed intervals of 15 meters between them (for 5-storeyed buildings; or intervals equal to the buildings’ height, or where the buildings are long and close together. With

  5. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number

    Science.gov (United States)

    Boogaard, Hanna; Kos, Gerard P. A.; Weijers, Ernie P.; Janssen, Nicole A. H.; Fischer, Paul H.; van der Zee, Saskia C.; de Hartog, Jeroen J.; Hoek, Gerard

    2011-01-01

    Policies to reduce outdoor air pollution concentrations are often assessed on the basis of the regulated pollutants. Whether these are the most appropriate components to assess the potential health benefits is questionable, as other health-relevant pollutants may be more strongly related to traffic. The aim of this study is to compare the contrast in concentration between major roads and (sub)urban background for a large range of pollutants and to analyze the magnitude of the measured difference in the street - background for major streets with different street configurations. Measurements of PM 10, PM 2.5, particle number concentrations (PNC), black carbon (BC), elemental composition of PM 10 and PM 2.5 and NO x were conducted simultaneously in eight major streets and nine (sub)urban background locations in the Netherlands. Measurements were done six times for a week during a six month period in 2008. High contrasts between busy streets and background locations in the same city were found for chromium, copper and iron (factor 2-3). These elements were especially present in the coarse fraction of PM. In addition, high contrasts were found for BC and NO x (factor 1.8), typically indicators of direct combustion emissions. The contrast for PNC was similar to BC. NO 2 contrast was lower (factor 1.5). The largest contrast was found for two street canyons and two streets with buildings at one side of the street only. The contrast between busy streets and urban background in NO 2 was less than the contrast found for BC, PNC and elements indicative of non-exhaust emissions, adding evidence that NO 2 is not representing (current) traffic well. The study supports a substantial role for non-exhaust emissions including brake- and tyre wear and road dust in addition to direct combustion emissions. Significant underestimation of disease burden may occur when relying too much on the regulated components.

  6. Air quality considerations for stormwater green street design

    International Nuclear Information System (INIS)

    Shaneyfelt, Kathryn M.; Anderson, Andrew R.; Kumar, Prashant; Hunt, William F.

    2017-01-01

    Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. - Highlights: • Green streets can be used for both stormwater and air quality management. • Design considerations must be made to minimize human exposure to air pollutants. • Urban vegetation can improve air quality with careful selection and placement.

  7. Street Choice Logit Model for Visitors in Shopping Districts

    Science.gov (United States)

    Kawada, Ko; Yamada, Takashi; Kishimoto, Tatsuya

    2014-01-01

    In this study, we propose two models for predicting people’s activity. The first model is the pedestrian distribution prediction (or postdiction) model by multiple regression analysis using space syntax indices of urban fabric and people distribution data obtained from a field survey. The second model is a street choice model for visitors using multinomial logit model. We performed a questionnaire survey on the field to investigate the strolling routes of 46 visitors and obtained a total of 1211 street choices in their routes. We proposed a utility function, sum of weighted space syntax indices, and other indices, and estimated the parameters for weights on the basis of maximum likelihood. These models consider both street networks, distance from destination, direction of the street choice and other spatial compositions (numbers of pedestrians, cars, shops, and elevation). The first model explains the characteristics of the street where many people tend to walk or stay. The second model explains the mechanism underlying the street choice of visitors and clarifies the differences in the weights of street choice parameters among the various attributes, such as gender, existence of destinations, number of people, etc. For all the attributes considered, the influences of DISTANCE and DIRECTION are strong. On the other hand, the influences of Int.V, SHOPS, CARS, ELEVATION, and WIDTH are different for each attribute. People with defined destinations tend to choose streets that “have more shops, and are wider and lower”. In contrast, people with undefined destinations tend to choose streets of high Int.V. The choice of males is affected by Int.V, SHOPS, WIDTH (positive) and CARS (negative). Females prefer streets that have many shops, and couples tend to choose downhill streets. The behavior of individual persons is affected by all variables. The behavior of people visiting in groups is affected by SHOP and WIDTH (positive). PMID:25379274

  8. Street Choice Logit Model for Visitors in Shopping Districts

    Directory of Open Access Journals (Sweden)

    Ko Kawada

    2014-07-01

    Full Text Available In this study, we propose two models for predicting people’s activity. The first model is the pedestrian distribution prediction (or postdiction model by multiple regression analysis using space syntax indices of urban fabric and people distribution data obtained from a field survey. The second model is a street choice model for visitors using multinomial logit model. We performed a questionnaire survey on the field to investigate the strolling routes of 46 visitors and obtained a total of 1211 street choices in their routes. We proposed a utility function, sum of weighted space syntax indices, and other indices, and estimated the parameters for weights on the basis of maximum likelihood. These models consider both street networks, distance from destination, direction of the street choice and other spatial compositions (numbers of pedestrians, cars, shops, and elevation. The first model explains the characteristics of the street where many people tend to walk or stay. The second model explains the mechanism underlying the street choice of visitors and clarifies the differences in the weights of street choice parameters among the various attributes, such as gender, existence of destinations, number of people, etc. For all the attributes considered, the influences of DISTANCE and DIRECTION are strong. On the other hand, the influences of Int.V, SHOPS, CARS, ELEVATION, and WIDTH are different for each attribute. People with defined destinations tend to choose streets that “have more shops, and are wider and lower”. In contrast, people with undefined destinations tend to choose streets of high Int.V. The choice of males is affected by Int.V, SHOPS, WIDTH (positive and CARS (negative. Females prefer streets that have many shops, and couples tend to choose downhill streets. The behavior of individual persons is affected by all variables. The behavior of people visiting in groups is affected by SHOP and WIDTH (positive.

  9. Joint analysis of air pollution in street canyons in St. Petersburg and Copenhagen

    Science.gov (United States)

    Genikhovich, E. L.; Ziv, A. D.; Iakovleva, E. A.; Palmgren, F.; Berkowicz, R.

    The bi-annual data set of concentrations of several traffic-related air pollutants, measured continuously in street canyons in St. Petersburg and Copenhagen, is analysed jointly using different statistical techniques. Annual mean concentrations of NO 2, NO x and, especially, benzene are found systematically higher in St. Petersburg than in Copenhagen but for ozone the situation is opposite. In both cities probability distribution functions (PDFs) of concentrations and their daily or weekly extrema are fitted with the Weibull and double exponential distributions, respectively. Sample estimates of bi-variate distributions of concentrations, concentration roses, and probabilities of concentration of one pollutant being extreme given that another one reaches its extremum are presented in this paper as well as auto- and co-spectra. It is demonstrated that there is a reasonably high correlation between seasonally averaged concentrations of pollutants in St. Petersburg and Copenhagen.

  10. Exposure to traffic pollution: comparison between measurements and a model.

    Science.gov (United States)

    Alili, F; Momas, I; Callais, F; Le Moullec, Y; Sacre, C; Chiron, M; Flori, J P

    2001-01-01

    French researchers from the Building Scientific and Technical Center have produced a traffic-exposure index. To achieve this, they used an air pollution dispersion model that enabled them to calculate automobile pollutant concentrations in front of subjects' residences and places of work. Researchers used this model, which was tested at 27 Paris canyon street sites, and compared nitrogen oxides measurements obtained with passive samplers during a 6-wk period and calculations derived from the model. There was a highly significant correlation (r = .83) between the 2 series of values; their mean concentrations were not significantly different. The results suggested that the aforementioned model could be a useful epidemiological tool for the classification of city dwellers by present-or even cumulative exposure to automobile air pollution.

  11. Parametric study of the dispersion aspects in a street-canyon area

    Energy Technology Data Exchange (ETDEWEB)

    Koutsourakis, N.; Neofytou, P.; Venetsanos, A.G.; Bartzis, J.G. [NCSR Demokritos (Greece). Environmental Research Lab.

    2004-07-01

    Continuously increasing vehicles' fleet is still considered to be the main emission factor in urban environments, despite the enormous progress of modern catalytic technology. Under that perspective, calculation of transportation induced pollutant dispersion is of augmented importance, especially within street canyons, where poor ventilation can result in awkward concentration levels. Computational Fluid Dynamics (CFD) studies have been conducted in the past by Neofytou, P. et al, so as to define appropriate locations for measuring-instrument placement by numerically simulating the flow and pollution dispersion fields in the vicinity of the measuring site taking into account the wind rose of the area and selecting locations of high pollution concentrations so that non-zero indications are assured. Vardoulakis, S. et al, provides a general overview of the street-canyon studies concerning both modelling and experimental investigations and offers plenty of references on air quality within street canyons. Besides air-quality, street canyon CFD studies have also been performed to evaluate accident consequences and hydrogen safety, Venetsanos A. et al. The current study examines a real street canyon in Thessaloniki, Greece. It was performed in order to examine dispersion patterns for different parameters' scenarios and help deciding where to place actual pollutant measurement instruments to better capture traffic pollution data. Various wind directions and speeds are examined and height influence on concentration levels is investigated. Complex area geometry is a key factor of the whole study. (orig.)

  12. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    Science.gov (United States)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  13. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersectionsle

    Czech Academy of Sciences Publication Activity Database

    Nosek, Štěpán; Kukačka, L.; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-01-01

    Roč. 227, August (2017), s. 125-138 ISSN 0269-7491 R&D Projects: GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : Urban array * 3D street canyon * pollution flux measurement * wind tunnel * coherent structures Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 5.099, year: 2016

  14. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    NARCIS (Netherlands)

    Moonen, P.; Gromke, C.B.; Dorer, V.

    2013-01-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are

  15. Air quality considerations for stormwater green street design.

    Science.gov (United States)

    Shaneyfelt, Kathryn M; Anderson, Andrew R; Kumar, Prashant; Hunt, William F

    2017-12-01

    Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assesment of longwave radiation effects on air quality modelling in street canyons

    Science.gov (United States)

    Soucasse, L.; Buchan, A.; Pain, C.

    2016-12-01

    Computational Fluid Dynamics is widely used as a predictive tool to evaluate people's exposure to pollutants in urban street canyons. However, in low-wind conditions, flow and pollutant dispersion in the canyons are driven by thermal effects and may be affected by longwave (infrared) radiation due to the absorption and emission of water vapor contained in the air. These effects are mostly ignored in the literature dedicated to air quality modelling at this scale. This study aims at quantifying the uncertainties due to neglecting thermal radiation in air quality models. The Large-Eddy-Simulation of air flow in a single 2D canyon with a heat source on the ground is considered for Rayleigh and Reynolds numbers in the range of [10e8-10e10] and [5.10e3-5.10e4] respectively. The dispersion of a tracer is monitored once the statistically steady regime is reached. Incoming radiation is computed for a mid-latitude summer atmosphere and canyon surfaces are assumed to be black. Water vapour is the only radiating molecule considered and a global model is used to treat the spectral dependancy of its absorption coefficient. Flow and radiation fields are solved in a coupled way using the finite element solvers Fluidity and Fetch which have the capability of adapting their space and angular resolution according to an estimate of the solution error. Results show significant effects of thermal radiation on flow patterns and tracer dispersion. When radiation is taken into account, the air is heated far from the heat source leading to a stronger natural convection flow. The tracer is then dispersed faster out of the canyon potentially decreasing people's exposure to pollution within the street canyon.

  17. Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon.

    Science.gov (United States)

    Huang, Yuan-Dong; He, Wen-Rong; Kim, Chang-Nyung

    2015-02-01

    A two-dimensional numerical model for simulating flow and pollutant dispersion in an urban street canyon is firstly developed using the FLUENT code and then validated against the wind tunnel results. After this, the flow field and pollutant dispersion inside an urban street canyon with aspect ratio W/H = 1 are examined numerically considering five different shapes (vaulted, trapezoidal, slanted, upward wedged, and downward wedged roofs) as well as three different roof height to building height ratios (Z H /H = 1/6, 1/3, and 1/2) for the upstream building roof. The results obtained reveal that the shape and height of an upstream roof have significant influences on flow pattern and pollutant distribution in an urban canyon. A large single clockwise vortex is generated in the canyon for the vaulted upstream roof at Z H /H = 1/6, 1/3, and 1/2, the trapezoidal and downward wedged roofs at Z H /H = 1/6 and 1/3, and the slanted and upward wedged roofs at Z H /H = 1/6, while a main clockwise vortex and a secondary counterclockwise vortex are established for the trapezoidal and downward wedged roofs at Z H /H = 1/2 and the slanted and upward wedged roofs at Z H /H = 1/3 and 1/2. In the one-vortex flow regime, the clockwise vortex moves upward and grows in size with increasing upstream roof height for the vaulted, trapezoidal, and downward wedged roofs. In the two-vortex flow regime, the size and rotational velocity of both upper clockwise and lower counterclockwise vortices increase with the upstream roof height for the slanted and upward wedged roofs. At Z H /H = 1/6, the pollution levels in the canyon are close among all the upstream roof shapes studied. At Z H /H = 1/3, the pollution levels in the canyon for the upward wedged roof and slanted roof are much higher than those for the vaulted, trapezoidal, and downward wedged roofs. At Z H /H = 1/2, the lowest pollution level appears in the canyon for the vaulted upstream roof, while

  18. URBAN MORPHOLOGY AND AIR QUALITY IN DENSE RESIDENTIAL ENVIRONMENTS: CORRELATIONS BETWEEN MORPHOLOGICAL PARAMETERS AND AIR POLLUTION AT STREET-LEVEL

    Directory of Open Access Journals (Sweden)

    PRIYANTHA EDUSSURIYA

    2014-02-01

    Full Text Available This study is the second part of the series that identifies whether site-specific urban morphological parameters are correlated with air quality. This study aims to identify the most important urban morphological parameters that affects air quality at street level that affect air quality in metropolis like Hong Kong through field measurements and statistical analyses. The study considers 20 urban residential areas in five major districts of Hong Kong and real-time street level air pollutant and microclimatic data are collected from these areas. 21 morphological variables are identified and calculated based on the geometry of the urban fabric. Using principal component analyses, it is shown that out of the many urban morphological factors, only five morphological variables (plan area density, occlusivity, aerodynamic roughness height, mean built volume, compactness factor and four land development factors (aspect ratio, distance between building, mean building height and standard deviation of building height correlate with particulate matter. Besides mineralisation factor, contiguity and canyon ratio marginally correlate with particulate matter. On the other hand, nine variables (plan area density, compactness factor, occlusivity, aerodynamic roughness height, average size of building volume, aspect ratio, distance between buildings, mean building height and standard deviations of building heights correlate with NOx. All others play insignificant roles in street-level pollution effect. Moreover statistical analyses show little correlation between CO and ozone with urban morphological parameters. It is also established that the key microclimatic variables that connects PM and NOx with the urban morphological factors are northerly wind, relative humidity and temperature, which in turn translates to affecting the street-level air pollution.

  19. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    Science.gov (United States)

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  20. A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation

    Science.gov (United States)

    Kikumoto, Hideki; Ooka, Ryozo

    2012-07-01

    A large-eddy simulation is performed on a turbulent dispersion of chemically reactive air pollutants in a two-dimensional urban street canyon with an aspect ratio of 1.0. Nitrogen monoxide emitted from a line-source set on the bottom of the street canyon disperses and reacts with Ozone included in a free stream. The reactions have significant influences on the concentrations of pollutants in the canyon space, and they increase the concentrations of the reaction products relative to of the concentrations of the reactants. The transport of air pollutants through a free shear layer above the canyon is closely related to the structure of the turbulence. Gases in the canyon are mainly exhausted when low-speed regions appear above the canyon. In contrast, pollutants in the free stream flow into the canyon with high-speed fluid bodies. Consequently, the correlation between the time fluctuations of the reactants' concentrations strongly affects the reaction rates in the region near the free shear layer. In this calculation, the correlation term reaches to a value of 20% of the mean reaction rate at a maximum there.

  1. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.

    2016-11-01

    This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.

  2. Numerical Simulation for a Three-Dimensional Air Pollution Measurement Model in a Heavy Traffic Area under the Bangkok Sky Train Platform

    Directory of Open Access Journals (Sweden)

    Kewalee Suebyat

    2018-01-01

    Full Text Available Air pollutant levels in Bangkok are generally high in street tunnels. They are particularly elevated in almost closed street tunnels such as an area under the Bangkok sky train platform with high traffic volume where dispersion is limited. There are no air quality measurement stations in the vicinity, while the human population is high. In this research, the numerical simulation is used to measure the air pollutant levels. The three-dimensional air pollution measurement model in a heavy traffic area under the Bangkok sky train platform is proposed. The finite difference techniques are employed to approximate the modelled solutions. The vehicle air pollutant emission due to the high traffic volume is mathematically assumed by the pollutant sources term. The simulation is also considered in averaged and moving pollutant sources due to manner vehicle emission. The proposed approximated air pollutant concentration indicators can be replaced by user required gaseous pollutants indices such as NOx, SO2, CO, and PM2.5.

  3. An investigation on the effect of street morphology to ambient air quality using six real-world cases

    Science.gov (United States)

    Shen, Jialei; Gao, Zhi; Ding, Wowo; Yu, Ying

    2017-09-01

    Street canyons are vulnerable to air pollution mainly caused by vehicle emissions, which are therefore closely related to pedestrians' health. Previous studies have showed that air quality in street canyons is associated with street morphology, though the majority of them have focused on idealized street models. This paper attempts to investigate the relationship of street morphology to air quality for 6 irregular real-world cases selected from America, Europe, and China, i.e. Manhattan, Paris, Barcelona, Berlin, London and Nanjing. Each street is analyzed as a set of slices to propose a couple of morphology indices for quantitatively assessing the actual street morphology. Pollutant transport rate of mean flows and turbulent diffusion, net escape velocity and age of air are obtained from computational fluid dynamics (CFD) simulations to assess the ventilations and pollutant dispersion within street canyons with a parallel approaching wind. The results show that the street morphology characteristics, including the street width, lateral openings and intersections, are closely related to the air flows in street canyons. The air quality improves with a decreasing aspect ratio of central street owing to a larger vertical exchange through the street roof, which suggests an open central street is of better air quality. The lateral openings and intersections of streets have important effects on the air flows in street canyons, and the effects are particularly pronounced when the street widths are similar. The street continuity ratio indicates street continuity. It relates to the openings and the symmetry of a street and impacts on the air flows and pollutant dispersion through the lateral openings of the central street. The street spatial closure ratio is determined by the street continuity ratio and the aspect ratio of the central street. When the aspect ratio of central street is not excessively high, higher values of street continuity ratio and spatial closure ratio

  4. Urban air quality modeling with full O 3-NO x-VOC chemistry: Implications for O 3 and PM air quality in a street canyon

    Science.gov (United States)

    Kim, Minjoong J.; Park, Rokjin J.; Kim, Jae-Jin

    2012-02-01

    We examine transport and chemical transformation of reactive pollutants on an urban street using a computation fluid dynamics (CFD) model coupled with full photochemistry of reactive pollutants. An extensive comparison between simulated results and observations is conducted to evaluate the model, focusing on a field campaign occurred in Dongfeng Middle Street in Guangzhou, China. Observed CO and NO concentrations vary diurnally following traffic volumes. The model captures this observed diurnal variation and magnitudes of CO concentrations successfully. However, simulated NO concentration is three times higher than observation. This high bias is significantly reduced in the sensitivity simulation with lower NO x emissions. We find that oxidation products of O 3 photochemistry such as NO 2 and O 3 vary differently from primary pollutants, indicating important effects of photochemical reactions on their fates. The model appears to reproduce observed O 3 and NO 2 variability with time and altitude. Our analysis shows that high NO x concentrations in the urban street canyon may efficiently produce aerosol nitrate in the presence of NH 3. Simulated inorganic NO 3- aerosol concentration reaches up to 0.3 μg m -3 in July but increases an order of magnitude higher at lower temperature that favors partitioning of gas-phase HNO 3 to aerosol-phase, implying a serious concern for urban air quality in winter.

  5. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China

    International Nuclear Information System (INIS)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-01-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. -- Highlights: •Large-scale Pb/Zn smelters contributed to elevated trace elements in the street dust. •The hard alloy processing caused the enrichment of a few elements. •Cd, In, Zn, Ag and Pb were the most polluted elements. •Northwestern Zhuzhou suffered severe contamination for a range of trace elements. -- Pb/Zn smelting and hard alloy processing operations have caused seriously contamination of trace metal/metalloids in the street dust

  6. Influence of roadside hedgerows on air quality in urban street canyons

    Science.gov (United States)

    Gromke, Christof; Jamarkattel, Nabaraj; Ruck, Bodo

    2016-08-01

    Understanding pollutant dispersion in the urban environment is an important aspect of providing solutions to reduce personal exposure to vehicle emissions. To this end, the dispersion of gaseous traffic pollutants in urban street canyons with roadside hedges was investigated. The study was performed in an atmospheric boundary layer wind tunnel using a reduced-scale (M = 1:150) canyon model with a street-width-to-building-height ratio of W/H = 2 and a street-length-to-building-height ratio of L/H = 10. Various hedge configurations of differing height, permeability and longitudinal segmentation (continuous over street length L or discontinuous with clearings) were investigated. Two arrangements were examined: (i) two eccentric hedgerows sidewise of the main traffic lanes and (ii) one central hedgerow between the main traffic lanes. In addition, selected configurations of low boundary walls, i.e. solid barriers, were examined. For a perpendicular approach wind and in the presence of continuous hedgerows, improvements in air quality in the center area of the street canyon were found in comparison to the hedge-free reference scenario. The pollutant reductions were greater for the central hedge arrangements than for the sidewise arrangements. Area-averaged reductions between 46 and 61% were observed at pedestrian head height level on the leeward side in front of the building for the centrally arranged hedges and between 18 and 39% for the two hedges arranged sidewise. Corresponding area-averaged reductions ranging from 39 to 55% and from 1 to 20% were found at the bottom of the building facades on the leeward side. Improvements were also found in the areas at the lateral canyon ends next to the crossings for the central hedge arrangements. For the sidewise arrangements, increases in traffic pollutants were generally observed. However, since the concentrations in the end areas were considerably lower compared to those in the center area, an overall improvement remained

  7. Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2017-05-01

    A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd

  8. The ratio of effective building height to street width governs dispersion of local vehicle emissions

    Science.gov (United States)

    Schulte, Nico; Tan, Si; Venkatram, Akula

    2015-07-01

    Analysis of data collected in street canyons located in Hanover, Germany and Los Angeles, USA, suggests that street-level concentrations of vehicle-related pollutants can be estimated with a model that assumes that vertical turbulent transport of emissions dominates the governing processes. The dispersion model relates surface concentrations to traffic flow rate, the effective aspect ratio of the street, and roof level turbulence. The dispersion model indicates that magnification of concentrations relative to those in the absence of buildings is most sensitive to the aspect ratio of the street, which is the ratio of the effective height of the buildings on the street to the width of the street. This result can be useful in the design of transit oriented developments that increase building density to reduce emissions from transportation.

  9. Pollution Removal Performance of Laboratory Simulations of Sydney’s Street Stormwater Biofilters

    Directory of Open Access Journals (Sweden)

    James Macnamara

    2017-11-01

    Full Text Available The City of Sydney is constructing more than 21,000 square metres of street biofilter units (raingardens in terms of their Decentralised Water Master Plan (DWMP, for improving the quality of stormwater runoff to Port Jackson, the Cooks River, and the historical Botany Bay. Recharge of the Botany Sand Beds aquifer, currently undergoing remediation by extraction of industrial chlorinated hydrocarbon pollutants, is also envisaged. To anticipate the pollution removal efficiency of field biofilter designs, laboratory soil-column simulations were developed by Western Sydney University partnered with the City. Synthetic stormwater containing stoichiometric amounts of high-solubility pollutant salts in deionised water was passed through 104 mm columns that were layered to simulate monophasic and biphasic field designs. Both designs met the City’s improvement targets for total nitrogen (TN and total phosphorus (TP, with >65% median removal efficiency. Prolonged release of total suspended solids (SS on startup emphasised the need for specifications and testing of proprietary fills. Median removal efficiency for selected heavy metal ecotoxicants was >75%. The researchers suggested that Zinc be added to the targets as proxy for metals, polycyclic aromatic hydrocarbons (PAH and oils/greases co-generated during road use. Simulation results suggested that field units will play an important role in meeting regional stormwater improvement targets.

  10. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China.

    Science.gov (United States)

    Lin, Manli; Gui, Herong; Wang, Yao; Peng, Weihua

    2017-01-01

    To analyze the pollution characteristics, source apportionment, and health risk of heavy metals (HMs) in street dust of Suzhou, China, 23 sampling sites were selected and periodically sampled for 12 months. A total of 276 samples were collected, and the concentrations of selected HMs (e.g., Cr, Cu, Fe, Mn, Pb, V, and Zn) were examined with an X-ray fluorescence spectrum analyzer. Results showed that the mean concentrations of Cr, Cu, Fe, Mn, Pb, V, and Zn in the street dust of Suzhou were 112.9, 27.5, 19941.3, 410.3, 45.2, 75.6, and 225.3 mg kg -1 , respectively. Cr, Cu, Pb, and Zn exceeded their background values in local natural soils by 1.3-3.6-fold, whereas Fe, Mn, and V were all within their background values. However, enrichment factor analysis revealed that Cr, Cu, Mn, Pb, V, and Zn, especially Cr, Cu, Pb, and Zn, were enriched in Suzhou street dust. The HMs showed no significant seasonal changes overall, but spatial distribution analysis implied that the high values of Cr, Cu, Mn, Pb, V, and Zn were mainly distributed in areas with frequent human activities. Results of multivariate techniques (e.g., Pearson correlation, hierarchical cluster, and principal components analyses) suggested that Pb and Zn had complicated sources; Cu and V mainly originated from traffic sources; Fe and Mn mainly came from natural sources; and Cr was dominantly related to industrial district. Health risk assessment revealed that a single heavy metal might not cause both non-cancer and carcinogenic risks to local residents. Nevertheless, the sum of the hazard index of all selected HMs for children slightly exceeded the safety value, thereby implying that the HMs from Suzhou street dust can possibly produce significant risk to children. Cr was the priority pollutant in the study area because of its high concentration, high enrichment, and high contribution to non-cancer risk values.

  11. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  12. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  13. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    Hu, L.H.; Huo, R.; Yang, D.

    2009-01-01

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  14. Unified Data Model of Urban Air Pollution Dispersion and 3D Spatial City Models: Groundwork Assessment towards Sustainable Urban Development for Malaysia

    DEFF Research Database (Denmark)

    Ujang, Uznir; Anton, François; Rahman, Alias Abdul

    2013-01-01

    air pollution in urban areas encompasses sophisticated air quality modeling and data acquisition. However, rapid developments in major cities cause difficulties in acquiring the city geometries. The existing method in acquiring city geometries data via ground or space measurement inspection....... Therefore this paper aims is to perform groundwork assessment and discuss on the current scenario in Malaysia in the aspect of current policies towards SUD, air quality monitoring stations, scale model and detail discussion on air pollution dispersion model used called the Operational Street Pollution Model......Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution is one of the indicators headed towards it. At present monitoring and managing...

  15. Methodology for Air Quality Forecast Downscaling from Regional- to Street-Scale

    Science.gov (United States)

    Baklanov, Alexander; Nuterman, Roman; Mahura, Alexander; Amstrup, Bjarne; Hansen Saas, Bent; Havskov Sørensen, Jens; Lorenzen, Thomas; Weismann, Jakob

    2010-05-01

    The most serious air pollution events occur in cities where there is a combination of high population density and air pollution, e.g. from vehicles. The pollutants can lead to serious human health problems, including asthma, irritation of the lungs, bronchitis, pneumonia, decreased resistance to respiratory infections, and premature death. In particular air pollution is associated with increase in cardiovascular disease and lung cancer. In 2000 WHO estimated that between 2.5 % and 11 % of total annual deaths are caused by exposure to air pollution. However, European-scale air quality models are not suited for local forecasts, as their grid-cell is typically of the order of 5 to 10km and they generally lack detailed representation of urban effects. Two suites are used in the framework of the EC FP7 project MACC (Monitoring of Atmosphere Composition and Climate) to demonstrate how downscaling from the European MACC ensemble to local-scale air quality forecast will be carried out: one will illustrate capabilities for the city of Copenhagen (Denmark); the second will focus on the city of Bucharest (Romania). This work is devoted to the first suite, where methodological aspects of downscaling from regional (European/ Denmark) to urban scale (Copenhagen), and from the urban down to street scale. The first results of downscaling according to the proposed methodology are presented. The potential for downscaling of European air quality forecasts by operating urban and street-level forecast models is evaluated. This will bring a strong support for continuous improvement of the regional forecast modelling systems for air quality in Europe, and underline clear perspectives for the future regional air quality core and downstream services for end-users. At the end of the MACC project, requirements on "how-to-do" downscaling of European air-quality forecasts to the city and street levels with different approaches will be formulated.

  16. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review

    Science.gov (United States)

    Abhijith, K. V.; Kumar, Prashant; Gallagher, John; McNabola, Aonghus; Baldauf, Richard; Pilla, Francesco; Broderick, Brian; Di Sabatino, Silvana; Pulvirenti, Beatrice

    2017-08-01

    Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review examined published literature on neighbourhood air quality modifications by green interventions. Studies were evaluated that discussed personal exposure to local sources of air pollution under the presence of vegetation in open road and built-up street canyon environments. Further, we critically evaluated the available literature to provide a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure. The net effects of vegetation in each built-up environment are also summarised and possible recommendations for the future design of green infrastructure are proposed. In a street canyon environment, high-level vegetation canopies (trees) led to a deterioration in air quality, while low-level green infrastructure (hedges) improved air quality conditions. For open road conditions, wide, low porosity and tall vegetation leads to downwind pollutant reductions while gaps and high porosity vegetation could lead to no improvement or even deteriorated air quality. The review considers that generic recommendations can be provided for vegetation barriers in open road conditions. Green walls and roofs on building envelopes can also be used as effective air pollution abatement measures. The critical evaluation of the fundamental concepts and the amalgamation of key technical features of past studies by this review could assist urban planners to design and implement green infrastructures in the built environment.

  17. Strategic guidelines for street canyon geometry to achieve sustainable street air quality

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Andy T.; So, Ellen S.P.; Samad, Subash C. [Hong Kong Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2001-08-01

    This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes 'isolated roughness flow', 'skimming flow' and 'wake interference flow' (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h{sub 2}/H{sub 1}), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analysed through numerical simulations using the standard k-{sup {epsilon}} turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants. (Author)

  18. Biomagnetic monitoring as a validation tool for local air quality models: a case study for an urban street canyon.

    Science.gov (United States)

    Hofman, Jelle; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. An open-terrain line source model coupled with street-canyon effects to forecast carbon monoxide at traffic roundabout.

    Science.gov (United States)

    Pandian, Suresh; Gokhale, Sharad; Ghoshal, Aloke Kumar

    2011-02-15

    A double-lane four-arm roundabout, where traffic movement is continuous in opposite directions and at different speeds, produces a zone responsible for recirculation of emissions within a road section creating canyon-type effect. In this zone, an effect of thermally induced turbulence together with vehicle wake dominates over wind driven turbulence causing pollutant emission to flow within, resulting into more or less equal amount of pollutants upwind and downwind particularly during low winds. Beyond this region, however, the effect of winds becomes stronger, causing downwind movement of pollutants. Pollutant dispersion caused by such phenomenon cannot be described accurately by open-terrain line source model alone. This is demonstrated by estimating one-minute average carbon monoxide concentration by coupling an open-terrain line source model with a street canyon model which captures the combine effect to describe the dispersion at non-signalized roundabout. The results of the modeling matched well with the measurements compared with the line source model alone and the prediction error reduced by about 50%. The study further demonstrated this with traffic emissions calculated by field and semi-empirical methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. The street school Srikandi as an empowerment model of humane education for the street girls of non halfway house in Surabaya

    Science.gov (United States)

    Setyowati, RRN; Yani, MT; Imron, A.

    2018-01-01

    The street children have not had a solid emotional mental, however they must deal into the life of street that harsh, competitive and tend to affect negatively for their personality development. Their where abouts on the street is not motivated by family economic factor only, but it is also influenced by the disharmony of role and function of family rules and social environment influences. The street children empowerment that had been conducted by the halfway house does not run effectively. This research was aimed to identify problems faced by the street girls, to describe the efforts to overcome the problems faced by the street girls, and also developing the empowerment model for the street girls in Surabaya who do not stay in the halfway house. This research used qualitative method. The problems are often experienced by the street girls, for instance violence. Besides, imitative behavior arises as a respond towards behavior that happened to them. The parents also play role in the process of social control. The empowerment model that is designed is the educational empowerment through revitalization of family rules. Moreover, life skills education has to be strengthened to improve the welfare standard of living.

  1. Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation

    Science.gov (United States)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Gsella, A.; Amann, M.

    2014-01-01

    NO2 concentrations at the street level are a major concern for urban air quality in Europe and have been regulated under the EU Thematic Strategy on Air Pollution. Despite the legal requirements, limit values are exceeded at many monitoring stations with little or no improvement in recent years. In order to assess the effects of future emission control regulations on roadside NO2 concentrations, a downscaling module has been implemented in the GAINS integrated assessment model. The module follows a hybrid approach based on atmospheric dispersion calculations and observations from the AirBase European air quality database that are used to estimate site-specific parameters. Pollutant concentrations at every monitoring site with sufficient data coverage are disaggregated into contributions from regional background, urban increment, and local roadside increment. The future evolution of each contribution is assessed with a model of the appropriate scale: 28 × 28 km grid based on the EMEP Model for the regional background, 7 × 7 km urban increment based on the CHIMERE Chemistry Transport Model, and a chemical box model for the roadside increment. Thus, different emission scenarios and control options for long-range transport as well as regional and local emissions can be analysed. Observed concentrations and historical trends are well captured, in particular the differing NO2 and total NOx = NO + NO2 trends. Altogether, more than 1950 air quality monitoring stations in the EU are covered by the model, including more than 400 traffic stations and 70% of the critical stations. Together with its well-established bottom-up emission and dispersion calculation scheme, GAINS is thus able to bridge the scales from European-wide policies to impacts in street canyons. As an application of the model, we assess the evolution of attainment of NO2 limit values under current legislation until 2030. Strong improvements are expected with the introduction of the Euro 6 emission standard

  2. [Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing].

    Science.gov (United States)

    Xiang, Li; Li, Ying-Xia; Shi, Jiang-Hong; Liu, Jing-Ling

    2010-01-01

    This paper investigated the contamination levels of heavy metal and polycyclic aromatic hydrocarbons (PAHs) in street dusts in different functional areas in urban Beijing. Results show that the mean concentrations of Cd, Hg, Cr, Cu, Ni, Pb and Zn in street dusts in Beijing are 710 ng/g, 307 ng/g, 85.0 microg/g, 78.3 microg/g, 41.1 microg/g, 69.6 microg/g and 248.5 microg/g, respectively, which are significantly lower than those in most cities around the world and Shenyang, Shanghai in China. The mean concentration of Sigma 16PAHs in street dusts in Beijing is 0.398 microg/g, which is also lower than those of Handan, Tianjin and Shanghai. Non-parametric Friedman test demonstrates significant differences of heavy metal contents on street dusts from different functional zones. Street dusts in residential area and parks have lower heavy metal and PAHs concentrations than the street dusts from areas of high traffic density. The concentrations of heavy metals follow the order Zn > Cr > Cu > Pb > Ni > Cd > Hg, which is consistent with the situation in other cities around the world. The geoaccumulation index analysis shows that street dust in urban Beijing is moderately polluted by Cd, Zn and Cu, little polluted by Cr and Pb and practically unpolluted by Ni. The contamination levels of Sigma 16PAHs on street dusts vary greatly in different functional zones with parks little polluted, residential areas moderately to strongly polluted and traffic related areas strongly polluted to extremely polluted. Mass loading of heavy metals and PAHs is largely associated with street dusts of size range < 300 microm. Therefore, the urban sweeping vehicles should update the dust sweeping devices to remove not only the fine particle but also the coarser particles.

  3. Modeling of pollutant dispersion in street canyon by means of CFD

    NARCIS (Netherlands)

    Meschini, D.; Busini, V.; Van Ratingen, S.W.; Rota, R.

    2014-01-01

    Nowadays, pollution from traffic remains one of the major sources for contamination in urban areas and it is widely known that substances emitted by vehicles represent a serious hazard to human health; some traffic-related pollutants, such as NO, NOx and CO are responsible for both acute and chronic

  4. Green Street in District of Columbia Curbs Harmful Runoff

    Science.gov (United States)

    The name of the block hasn’t been changed to “Oh!” Street, but a revamped section of O Street NW in the District of Columbia is turning heads with green features that are keeping stormwater pollution out of the Anacostia River.

  5. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion

    Science.gov (United States)

    Park, S. J.; Kim, J.

    2014-12-01

    In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.

  7. Investigation of the vertical nitrogen dioxide distribution above a frequented street

    Energy Technology Data Exchange (ETDEWEB)

    Malissa, H; Juette, W; Alidad, I

    1975-01-01

    Knowledge of the vertical nitrogen dioxide concentration profile in the atmosphere within a street canyon would enable the estimation of pollutant concentrations in street site living or working rooms and furthermore the calculation of pollutant concentrations at ground level from data measured at roof levels by means of long-line remote sensing methods. A formula was therefore derived under simplified conditions and examined by simultaneous measurements of the nitrogen dioxide concentration, wind velocity, and wind direction at roof level and ground level. The data thus obtained were average values for half an hour. The knowledge of the local vertical wind profile and the influence of the traffic density in neighboring urban areas is essential for the calculation. The verification of the derived model shows a correlation coefficient of r equals 0.88 between calculated and measured data.

  8. Effectiveness of green infrastructure for improvement of air quality in urban street canyons.

    Science.gov (United States)

    Pugh, Thomas A M; Mackenzie, A Robert; Whyatt, J Duncan; Hewitt, C Nicholas

    2012-07-17

    Street-level concentrations of nitrogen dioxide (NO(2)) and particulate matter (PM) exceed public health standards in many cities, causing increased mortality and morbidity. Concentrations can be reduced by controlling emissions, increasing dispersion, or increasing deposition rates, but little attention has been paid to the latter as a pollution control method. Both NO(2) and PM are deposited onto surfaces at rates that vary according to the nature of the surface; deposition rates to vegetation are much higher than those to hard, built surfaces. Previously, city-scale studies have suggested that deposition to vegetation can make a very modest improvement (street canyons. This study shows that increasing deposition by the planting of vegetation in street canyons can reduce street-level concentrations in those canyons by as much as 40% for NO(2) and 60% for PM. Substantial street-level air quality improvements can be gained through action at the scale of a single street canyon or across city-sized areas of canyons. Moreover, vegetation will continue to offer benefits in the reduction of pollution even if the traffic source is removed from city centers. Thus, judicious use of vegetation can create an efficient urban pollutant filter, yielding rapid and sustained improvements in street-level air quality in dense urban areas.

  9. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon

    Science.gov (United States)

    Rakowska, Agata; Wong, Ka Chun; Townsend, Thomas; Chan, Ka Lok; Westerdahl, Dane; Ng, Simon; Močnik, Griša; Drinovec, Luka; Ning, Zhi

    2014-12-01

    Vehicle emissions are identified as a major source of air pollution in metropolitan areas. Emission control programs in many cities have been implemented as part of larger scale transport policy interventions to control traffic pollutants and reduce public health risks. These interventions include provision of traffic-free and low emission zones and congestion charging. Various studies have investigated the impact of urban street configurations, such as street canyon in urban centers, on pollutants dispersion and roadside air quality. However, there are few investigations in the literature to study the impact of change of fleet composition and street canyon effects on the on-road pollutants concentrations and associated roadside pedestrian exposure to the pollutants. This study presents an experimental investigation on the traffic related gas and particle pollutants in and near major streets in one of the most developed business districts in Hong Kong, known as Central. Both street canyon and open roadway configurations were included in the study design. Mobile measurement techniques were deployed to monitor both on-road and roadside pollutants concentrations at different times of the day and on different days of a week. Multiple traffic counting points were also established to concurrently collect data on traffic volume and fleet composition on individual streets. Street canyon effects were evident with elevated on-road pollutants concentrations. Diesel vehicles were found to be associated with observed pollutant levels. Roadside black carbon concentrations were found to correlate with their on-road levels but with reduced concentrations. However, ultrafine particles showed very high concentrations in roadside environment with almost unity of roadside/on-road ratios possibly due to the accumulation of primary emissions and secondary PM formation. The results from the study provide useful information for the effective urban transport design and bus route

  10. Numerical study on flow and pollutant dispersion inside street canyons

    OpenAIRE

    Yunkai, Yang

    2013-01-01

    This thesis analyzes the characteristics of flow pattern and vehicle-emitted pollutant dispersion in roughness surface layer. In an urban environment, wind flow and transported-pollutant source interfere strongly with buildings and other roughness elements on the surface ground, which results in complex characteristics of flow pattern and pollutant dispersion in 3D circumstances. The present study intends to simplify the research domain and investigate the fundamental modeling problems that e...

  11. High resolution multi-scale air quality modelling for all streets in Denmark

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Becker, Thomas

    2017-01-01

    The annual concentrations of NO2, PM2.5 and PM10 in 2012 have for the first time been modelled for all 2.4 million addresses in Denmark based on a multi-scale air quality modelling approach. All addresses include residential, industrial, institutional, shop, school, restaurant addresses etc...... concentrations of NO2 for the five available street monitoring stations are within −27% to +12%. The model results were also verified with comparisons with previous model results for NO2 at 98 selected streets in Copenhagen and 31 streets in Aalborg. The verification showed good correlation in Copenhagen (r2 = 0...

  12. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    Science.gov (United States)

    Moonen, P.; Gromke, C.; Dorer, V.

    2013-08-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are considered. The model performance is assessed in several steps, ranging from a qualitative comparison to measured concentrations, over statistical data analysis by means of scatter plots and box plots, up to the calculation of objective validation metrics. The extensive validation effort highlights and quantifies notable features and shortcomings of the model, which would otherwise remain unnoticed. The model performance is found to be spatially non-uniform. Closer agreement with measurement data is achieved near the canyon ends than for the central part of the canyon, and typical model acceptance criteria are satisfied more easily for the leeward than for the windward canyon wall. This demonstrates the need for rigorous model evaluation. Only quality-assured models can be used with confidence to support assessment, planning and implementation of pollutant mitigation strategies.

  13. Estimation of air quality improvement at road and street intersections

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, P.G. [Royal Inst. of Technology, Stockholm (Sweden). Traffic and Transport Planning

    1995-12-31

    There has always been a very great problem to quantify the detrimental exhaust air pollution related to the traffic flow, especially at road and street intersections. Until now model calculations have been developed mainly for the links between the intersections. In an attempt to remedy this situation the author has developed a method of estimating emissions on the micro level from motor vehicles at intersections as a help for infrastructural design related to improved environmental conditions. Very parsimonious knowledge exists regarding the deceleration and acceleration patterns at road- and street intersections. Not many surveys are done neither in Sweden nor within other countries. Evidently, the need for knowledge regarding deceleration and acceleration behaviour on the micro level has until now not been given priority. In traffic safety related research studies have been done describing the drivers` deceleration and acceleration behaviour and the vehicles` braking performance. Those results give deceleration data for extreme situations and are not useful for describing normal decelerations and accelerations at road- and street intersections. Environment related problems within the traffic flow analysis are now accentuating the need for the studying of special deceleration and acceleration behaviours in combination with an alternative design of the road and street infrastructure. There is a big difference in different vehicles` amount of emitted exhaust pollutions during the passing of intersections depending on the vehicles` speed levels related to their deceleration and acceleration levels. (author)

  14. Estimation of air quality improvement at road and street intersections

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, P G [Royal Inst. of Technology, Stockholm (Sweden). Traffic and Transport Planning

    1996-12-31

    There has always been a very great problem to quantify the detrimental exhaust air pollution related to the traffic flow, especially at road and street intersections. Until now model calculations have been developed mainly for the links between the intersections. In an attempt to remedy this situation the author has developed a method of estimating emissions on the micro level from motor vehicles at intersections as a help for infrastructural design related to improved environmental conditions. Very parsimonious knowledge exists regarding the deceleration and acceleration patterns at road- and street intersections. Not many surveys are done neither in Sweden nor within other countries. Evidently, the need for knowledge regarding deceleration and acceleration behaviour on the micro level has until now not been given priority. In traffic safety related research studies have been done describing the drivers` deceleration and acceleration behaviour and the vehicles` braking performance. Those results give deceleration data for extreme situations and are not useful for describing normal decelerations and accelerations at road- and street intersections. Environment related problems within the traffic flow analysis are now accentuating the need for the studying of special deceleration and acceleration behaviours in combination with an alternative design of the road and street infrastructure. There is a big difference in different vehicles` amount of emitted exhaust pollutions during the passing of intersections depending on the vehicles` speed levels related to their deceleration and acceleration levels. (author)

  15. Evaluation of turbulence from traffic using experimental data obtained in a street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, N.A.; Venegas, L.E. [Univ. of Buenos Aires, Buenos Aires (Argentina). Dept. of Atmospheric and Oceanic Sciences, National Scientific and Technological Research Council

    2004-07-01

    High air pollution levels have been observed in street canyons. Within these streets, pedestrians, cyclists, drivers and residents are likely to be exposed to pollutant concentrations exceeding current air quality standards. Airflow and dispersion in street canyons are very complicated. Depending on the synoptic wind three main dispersion conditions can be identified: a) low wind conditions, b) perpendicular or near perpendicular flow for winds over 1.5-2.0 m/s blowing at an angle of more than 30 to the canyon axes, c) parallel or near parallel flow for winds over 1.5-2.0 m/s blowing from all other directions. Under condition b), airflow in canyons with H/W{approx}1 (H is the height and W is the width of the canyon) is characterised by the formation of a single vortex within the canyon. The dispersion of gaseous pollutants in a street canyon depends generally on the rate at which the street exchanges air vertically with the above roof-level atmosphere and laterally with connecting streets. There is evidence that when the synoptic wind speed is low, the mechanical traffic-produced turbulence (TPT) might place a significant role in dispersion of traffic-generated pollutants. In this paper, we analyse interactions between wind and traffic induced dispersive air motions. Data from full-scale measurements in Goettinger Strasse (Hannover, Germany) are used for application of parameterisation proposed by Di Sabatino, S. et al. (2003) and Kastner-Klein, P. et al. (2003). (orig.)

  16. Large-eddy simulation of pollutant dispersion from a ground-level area source over urban street canyons with irreversible chemical reactions

    Science.gov (United States)

    Du, T. Z.; Liu, C.-H.; Zhao, Y. B.

    2014-10-01

    In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry produces nitrogen dioxide (NO2), developing a reactive plume over the rough urban surface. A range of timescales of turbulence and chemistry are utilized to examine the mechanism of turbulent mixing and chemical reactions in the UCL. The Damköhler number (Da) and the reaction rate (r) are analyzed along the vertical direction on the plane normal to the prevailing flow at 10 m after the source. The maximum reaction rate peaks at an elevation where Damköhler number Da is equal or close to unity. Hence, comparable timescales of turbulence and reaction could enhance the chemical reactions in the plume.

  17. Travel Time Model for Right-Turning Vehicles of Secondary Street at Unsignalized Intersections

    Directory of Open Access Journals (Sweden)

    Feng Yu-Qin

    2013-01-01

    Full Text Available The travel time of right-turning vehicles on secondary street at unsignalized intersection is discussed in this paper. Under the assumption that the major-street through vehicles’ headway follows Erlang distribution and secondary-street right-turning vehicles’ headway follows Poisson distribution. The right-turning vehicles travel time model is established on the basis of gap theory and M/G/1 queue theory. Comparison is done with the common model based on the assumption that the major-street vehicles’ headway follows Poisson distribution. An intersection is selected to verify each model. The results show that the model established in this paper has stronger applicability, and its most relative error is less than 15%. In addition, the sensitivity analysis has been done. The results show that right-turning flow rate and major-street flow rate have a significant impact on the travel time. Hence, the methodology for travel time of right-turning vehicles at unsignalized intersection proposed in this paper is effective and applicable.

  18. Relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy street canyon: Ambient wind effects

    International Nuclear Information System (INIS)

    Kwak, Kyung-Hwan; Lee, Sang-Hyun; Seo, Jaemyeong Mango; Park, Seung-Bu; Baik, Jong-Jin

    2016-01-01

    Rooftop and on-road measurements of O_3, NO_2, NO_x, and CO concentrations were conducted to investigate the relationship between rooftop and on-road concentrations in a busy and shallow street canyon with an aspect ratio of ∼0.3 in Seoul, Republic of Korea, from 15 April to 1 May 2014. The median road-to-roof concentration ratios, correlation coefficients between rooftop and on-road concentrations, and temporal variations of rooftop and on-road concentrations are analyzed according to the rooftop wind directions which are two cross-canyon and two along-canyon directions. The analysis results indicate that the relationship is strong when the rooftop is situated on the downwind side rather than on the upwind side. Relative to the cross-canyon wind directions, one of the along-canyon wind directions can more enhance the relationship. A conceptual framework is proposed to explain the effect of ambient wind direction on the relationship between rooftop and on-road concentrations in a street canyon. - One of the along-canyon wind directions can enhance the relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy and shallow street canyon.

  19. Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons

    Science.gov (United States)

    Aliabadi, Amir A.; Krayenhoff, E. Scott; Nazarian, Negin; Chew, Lup Wai; Armstrong, Peter R.; Afshari, Afshin; Norford, Leslie K.

    2017-08-01

    The influence of roof-edge roughness elements on airflow, heat transfer, and street-level pollutant transport inside and above a two-dimensional urban canyon is analyzed using an urban energy balance model coupled to a large-eddy simulation model. Simulations are performed for cold (early morning) and hot (mid afternoon) periods during the hottest month of the year (August) for the climate of Abu Dhabi, United Arab Emirates. The analysis suggests that early in the morning, and when the tallest roughness elements are implemented, the temperature above the street level increases on average by 0.5 K, while the pollutant concentration decreases by 2% of the street-level concentration. For the same conditions in mid afternoon, the temperature decreases conservatively by 1 K, while the pollutant concentration increases by 7% of the street-level concentration. As a passive or active architectural solution, the roof roughness element shows promise for improving thermal comfort and air quality in the canyon for specific times, but this should be further verified experimentally. The results also warrant a closer look at the effects of mid-range roughness elements in the urban morphology on atmospheric dynamics so as to improve parametrizations in mesoscale modelling.

  20. A modelling exercise to examine variations of NOx concentrations on adjacent footpaths in a street canyon: The importance of accounting for wind conditions and fleet composition.

    Science.gov (United States)

    Gallagher, J

    2016-04-15

    Personal measurement studies and modelling investigations are used to examine pollutant exposure for pedestrians in the urban environment: each presenting various strengths and weaknesses in relation to labour and equipment costs, a sufficient sampling period and the accuracy of results. This modelling exercise considers the potential benefits of modelling results over personal measurement studies and aims to demonstrate how variations in fleet composition affects exposure results (presented as mean concentrations along the centre of both footpaths) in different traffic scenarios. A model of Pearse Street in Dublin, Ireland was developed by combining a computational fluid dynamic (CFD) model and a semi-empirical equation to simulate pollutant dispersion in the street. Using local NOx concentrations, traffic and meteorological data from a two-week period in 2011, the model were validated and a good fit was presented. To explore the long-term variations in personal exposure due to variations in fleet composition, synthesised traffic data was used to compare short-term personal exposure data (over a two-week period) with the results for an extended one-year period. Personal exposure during the two-week period underestimated the one-year results by between 8% and 65% on adjacent footpaths. The findings demonstrate the potential for relative differences in pedestrian exposure to exist between the north and south footpaths due to changing wind conditions in both peak and off-peak traffic scenarios. This modelling approach may help overcome potential under- or over-estimations of concentrations in personal measurement studies on the footpaths. Further research aims to measure pollutant concentrations on adjacent footpaths in different traffic and wind conditions and to develop a simpler modelling system to identify pollutant hotspots on our city footpaths so that urban planners can implement improvement strategies to improve urban air quality. Copyright © 2016 Elsevier B

  1. Introduction to the DAPPLE Air Pollution Project

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.J.; ApSimon, H.; Colvile, R.N.; Kaur, S.; Nieuwenhuijsen, M.; Wang, H. [Department of Environmental Science and Technology, Royal school of Mines Building, Imperial College London, Prince Consort Rd., South Kensington, London SW7 2BP (United Kingdom); Barlow, J.; Belcher, S.; Dobre, A. [Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading, RG6 6BB (United Kingdom); Bell, M.; Tate, J. [Institute for Transport Studies, University of Leeds, Leeds, West Yorkshire LS2 9JT (United Kingdom); Boddy, J.W.; Smalley, R.J.; Tomlin, A.S. [Energy and Resources Research Institute, University of Leeds, Leeds, West Yorkshire LS2 9JT (United Kingdom); Britter, R.; Neophytou, M. [Department of Engineering, University of Cambridge, Trumpington St., Cambridge CB2 1PZ (United Kingdom); Cheng, H.; Lawton, T.; Robins, A. [EnFlo, Department of Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Clark, R.; Walsh, P. [Health and Safety Laboratory, Broad Lane, Sheffield S3 7HQ (United Kingdom); Dimitroulopoulou, S. [BRE, Environmental Engineering Centre, Garston, Watford WD25 9XX (United Kingdom); Greally, B.; Knights, A.; Makepeace, A.; Martin, D.; Nickless, G.; Price, C.; Shallcross, D.; Simmonds, P. [Department of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Neville, S. [Environmental Sciences, Westminster City Council House, Marylebone Rd, London, NW1 5PT (United Kingdom)

    2004-10-01

    The Dispersion of Air Pollution and its Penetration into the Local Environment (DAPPLE) project brings together a multidisciplinary research group that is undertaking field measurements, wind tunnel modelling and computer simulations in order to provide better understanding of the physical processes affecting street and neighbourhood-scale flow of air, traffic and people, and their corresponding interactions with the dispersion of pollutants at street canyon intersections. The street canyon intersection is of interest as it provides the basic case study to demonstrate most of the factors that will apply in a wide range of urban situations. The aims of this paper are to introduce the background of the DAPPLE project, the study design and methodology for data collection, some preliminary results from the first field campaign in central London (28 April-24 May 2003) and the future for this work. Updated information and contact details are available on the web site at http://www.dapple.org.uk.

  2. [Impact of atmospheric total suspended particulate pollution on photosynthetic parameters of street mango trees in Xiamen City].

    Science.gov (United States)

    Yu, Yu-xian; Chen, Jin-sheng; Ren, Yin; Li, Fang-yi; Cui, Sheng-hui

    2010-05-01

    With the development of urbanization, total suspended particulate (TSP) pollution is getting serious, and the normal physiological processes of urban vegetation are profoundly affected while adsorbing and purifying the particulates. In this study, four areas were selected, i.e., Tingxi reservoir (clean control area), Xiamen University (cultural and educational area), Xianyue (business area), and Haicang (industrial area), with their atmospheric TSP concentrations and the photosynthetic parameters of street Mango (Mangifera indica) trees monitored in April and May, 2009. The daily average concentration of TSP in Tingxi, Xiamen University, Xianyue, and Haicang was 0.061, 0.113, 0.120 and 0.205 mg x m(-3), respectively, and the impact of TSP stress on M. indica was in the sequence of Haicang > Xianyue > Xiamen University > Tingxi. TSP pollution negatively affected the net photosynthetic rate, stomatal conductance, and transpiration rate of M. indica, and induced intercellular CO2 concentration changed significantly. High TSP concentration could cause the decline of net photosynthetic rate via stomatal limitation.

  3. Lead in Glasgow street dirt and soil

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J G [Univ. of Glasgow; Lyon, T D.B.

    1977-07-01

    The levels of lead in city street dirt and in soil from various locations in Glasgow were investigated during spring 1976. Lead concentrations in street dirt ranged from 150 to 2300 ppM, mean 960 ppM, and were significantly elevated with respect to the observed ''natural'' level of 78 ppM. Lead derived from anti-knock compounds in petrol and introduced to the environment via automobile exhausts was clearly implicated as the main source of lead pollution in a series of soil lead measurements at the centre and periphery of eight Glasgow parks. Various chemical leaching techniques were employed and compared. Less than 5 percent of street dirt and soil lead was found to be associated with the organic phase.

  4. Influence of traffic conditions on polycyclic aromatic hydrocarbon abundance in street dust.

    Science.gov (United States)

    Xiang, Li; Li, Yingxia; Yang, Zhifeng; Shi, Jianghong

    2010-01-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations were quantified in sieved street dusts from eight sampling sites with different traffic conditions in Beijing. The parent diagnostic ratio test and multi-regression analysis were used to identify the different PAH pollution sources. Results showed that more than 93% of the cumulative 16 priority pollutant PAHs (Sigma 16EPA-PAH) load was present in street dust with a diameter less than 300 microm across all the sampling sites. The concentration of Sigma 4-6 ring PAHs was 93 to 284% higher than that of Sigma 2-3 ring PAHs for most of the sites except the cycle lane site, indicating the dominance of pyrogenic inputs in street dusts at these sites. Cooking oil is an important PAH source in street dusts for all the sampling sites. Tire debris and vehicle emissions were also identified as significant contributors to the PAH loading in the heavy traffic zone, vehicle parking areas, the frequent brake usage zone, and the construction area.

  5. Assessment of Air Pollution Tolerance Index of some plants to develop vertical gardens near street canyons of a polluted tropical city.

    Science.gov (United States)

    Pandey, Ashutosh Kumar; Pandey, Mayank; Tripathi, B D

    2016-12-01

    The aim of the present study was to examine Air Pollution Tolerance Index (APTI) of some climber plant species to develop vertical gardens in Varanasi city which has characteristics of tall building and narrow roads. This condition results in street canyon like structure and hinders the vertical dispersal of air pollutants. We have selected 24 climber plant species which are commonly found in of Varanasi city. Chosen plants can be easily grown either in planter boxes or directly in the ground, with a vertical support they can climb on walls to form green walls or vertical garden. Air Pollution Tolerance Index (APTI) of the selected plant species was calculated and plants with higher APTI are recommended for the development of Vertical garden. Highest APTI was noted for Ipomoea palmata (25.39) followed by Aristolochia elegans (23.28), Thunbergia grandiflora (23.14), Quisqualis indica (22.42), and Clerodendrum splendens (22.36). However, lowest APTI value (8.75) was recorded for the species Hemidesmus indicus. Moreover, the linear regression analysis has revealed a high positive correlation between APTI and ascorbic acid content (R 2 =0.8837) and positive correlation between APTI and Chlorophyll content (R 2 =0.6687). On the basis of higher APTI values (greater than 17), nine species of climber plants viz. I. palmata, T. grandiflora, C. splendens, A. elegans, Q. indica, Petria volubilis, Antigonon leptopus, Cryptolepis buchuanni and Tinospora cordifolia have been recommended to develop vertical greenery systems in a compact tropical city. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian

    2018-01-01

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water. PMID:29522495

  7. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model.

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian; Rameezdeen, Raufdeen

    2018-03-09

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM 10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM 10 . The results indicate that parallel flow would cause the concentration of PM 10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM 10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM 10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM 10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM 10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  8. A Computational Fluid Dynamic (CFD Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2018-03-01

    Full Text Available Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  9. The impact of traffic-flow patterns on air quality in urban street canyons

    International Nuclear Information System (INIS)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.

  10. Influence of trees on the dispersion of pollutants in an urban street canyon - experimental investigation of the flow and concentration field

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2007-01-01

    Flow field and concentration measurements have been performed in an idealized model of an urban street canyon with one row of trees arranged along the center axis. The model was set up in an atmospheric boundary layer wind tunnel and the approach flow was directed perpendicular to the street axis. A

  11. A motivation-based explanatory model of street drinking among young people.

    Science.gov (United States)

    Martín-Santana, Josefa D; Beerli-Palacio, Asunción; Fernández-Monroy, Margarita

    2014-01-01

    This social marketing study focuses on street drinking behavior among young people. The objective is to divide the market of young people who engage in this activity into segments according to their motivations. For the three segments identified, a behavior model is created using the beliefs, attitudes, behavior, and social belonging of young people who engage in street drinking. The methodology used individual questionnaires filled in by a representative sample of young people. The results show that the behavior model follows the sequence of attitudes-beliefs-behavior and that social belonging influences these three variables. Similarly, differences are observed in the behavior model depending on the segment individuals belong to.

  12. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2015-02-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  13. Decision analytic model exploring the cost and cost-offset implications of street triage.

    Science.gov (United States)

    Heslin, Margaret; Callaghan, Lynne; Packwood, Martin; Badu, Vincent; Byford, Sarah

    2016-02-11

    To determine if street triage is effective at reducing the total number of people with mental health needs detained under section 136, and is associated with cost savings compared to usual police response. Routine data from a 6-month period in the year before and after the implementation of a street triage scheme were used to explore detentions under section 136, and to populate a decision analytic model to explore the impact of street triage on the cost to the NHS and the criminal justice sector of supporting people with a mental health need. A predefined area of Sussex, South East England, UK. All people who were detained under section 136 within the predefined area or had contact with the street triage team. The street triage model used here was based on a psychiatric nurse attending incidents with a police constable. The primary outcome was change in the total number of detentions under section 136 between the before and after periods assessed. Secondary analysis focused on whether the additional costs of street triage were offset by cost savings as a result of changes in detentions under section 136. Detentions under section 136 in the street triage period were significantly lower than in the usual response period (118 vs 194 incidents, respectively; χ(2) (1df) 18.542, p<0.001). Total NHS and criminal justice costs were estimated to be £1043 in the street triage period compared to £1077 in the usual response period. Investment in street triage was offset by savings as a result of reduced detentions under section 136, particularly detentions in custody. Data available did not include assessment of patient outcomes, so a full economic evaluation was not possible. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-11-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Impacts of traffic composition and street-canyon geometry on on-road air quality in a high-rise building area

    Science.gov (United States)

    Kwak, Kyung-Hwan; Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam; Sunwoo, Young; Baik, Jong-Jin

    2016-04-01

    Mobile measurements using a mobile laboratory and numerical simulations using a computational fluid dynamics (CFD) model were conducted over different time periods of multiple days in a high-rise building area, Seoul, Republic of Korea. Mobile measurement can provide actual on-road emission levels of air pollutants from vehicles as well as validation dataset of a CFD model. On the other hand, CFD modeling is required for the process analysis of mobile measurement data and the quantitative estimation of determining factors in complex phenomena. The target area is characterized as a busy street canyon elongated along a major road with hourly traffic volumes of approximately 4000 vehicles during working hours on weekdays. Nitrogen oxides (NOx), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pPAH), and particle number (PN) concentrations were measured during 39 round trips of mobile laboratory. The associations of the measured NOx, BC, pPAH, and PN concentrations with the traffic volumes of individual compositions are analyzed by calculating the correlation coefficients (R2) based on linear regressions. It is found that SUV, truck, van, and bus are heavy emitters responsible for the on-road air pollution in the street canyon. Among the measured pollutants, the largest R2 is shown for pPAH. The measured NOx, BC, pPAH, and PN concentrations are unevenly distributed in the street canyon. The measured concentrations around an intersection are higher than those in between intersections, particularly for NOx and pPAH. The CFD modeling for different dispersion scenarios reveals that the intersection has counterbalancing roles in determining the on-road concentrations. The emission process acts to increase the on-road concentrations due to accelerating and idling vehicles, whereas the dispersion process acts to decrease the on-road concentrations due to lateral ventilations along the crossing street. It is needed to control the number of heavy emitters and

  16. Integrated monitoring and assessment of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, O.

    2009-09-15

    Improved quality, better understanding of processes and optimisation of allocated resources, these are the main advantages of applying Integrated Monitoring and Assessment (IMA) in air quality management. The IMA is defined as the combined use of measurements and model calculations. The use of IMA is demonstrated with examples with different aims: to obtain data for air pollution in urban streets, to assess human exposure to traffic air pollution, and to assess atmospheric deposition of nitrogen compounds to marine and terrestrial ecosystems. (author)

  17. Street outreach with no streets.

    Science.gov (United States)

    Self, Bruce; Peters, Heather

    2005-01-01

    A street nurse position in the rural and small-town interior of British Columbia has been addressing the needs of street-involved or otherwise marginalized client populations by bringing healthcare services to wherever those clients are, rather than waiting for the clients to seek care. The primary reason for a street outreach approach is that marginalized populations face a variety of barriers to accessing traditional healthcare services--barriers such as homelessness, mental health problems, criminal involvement, lack of transportation, lack of ability to pay for prescriptions, lack of specialized or knowledgeable providers and provider discrimination. In the rural street nurse program, the target population includes the usual street nurse populations of illegal drug users and sex trade workers, which are more hidden in small communities than in larger urban centres, creating the community denial that is a barrier to healthcare access. Yet another barrier is the co-locaton of services common in small communities, where public health clinics might share a building with police services, making marginalized clients reluctant to attend clinics. The rural street nurse collaborates with public health nurses and other care providers (mental health workers, social workers, etc) with collegial advice and support, making and receiving referrals, and generally assisting one another--the street nurse through his rapport with the marginalized individuals and the others with their specialized knowledge. Rural street services are delivered whereverthe clientsfeel comfortable: a school, a drop-in centre, a mall, a youth centre or simplythe street. Services provided include sexually transmitted infection testing, chlamydia treatments, pregnancy testing emergency contraception pills and assistance with filling out forms for financial support. Accordingly, the street nurse's truck is equipped as a mobile treatment centre and office, with a cellphone and a stock of testing and

  18. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  19. Development and evaluation of SBLINE, a suite of models for the prediction of pollution concentrations from vehicles in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Namdeo, A.K.; Colls, J.J. [Environmental Science, University of Nottingham, Loughborough (United Kingdom)

    1996-09-06

    The assessment of air quality impacts from roadways is a major concern to urban planners, developers, health officials and engineers. This paper describes the development of a suite of models, called SBLINE, for prediction of pollution concentrations from vehicles in urban road networks. The first component of the suite is ROADFAC, an emission model for calculating emission rates for a road link with known vehicle fleet structure and operational details. ROADFAC can also calculate modal emission rates, caused by deceleration, idle, acceleration and cruise operational modes, by determining queue length and vehicle delay from traffic volume and signal phasing information. The other components of SBLINE are two dispersion models, called NOTLINE and CPB, for prediction of pollution concentrations contributed by different roadlinks in the network. These models use site geometry, meteorology, and traffic emissions calculated by ROADFAC to predict pollutant concentrations. The contribution from a given link is calculated by using NOTLINE if that link is situated in simple topography, or CPB is run if the link is inside a canyon or a cut-section. Finally, cumulative concentrations at any receptor location are calculated by adding the contributions from all roadlinks. SBLINE can be applied to any urban network of roads, with roadlinks located in either simple topography or street canyons. The program has been evaluated in one region of Leicester in the UK. The region represents a typical urban network of roads with some roads located in plain topography and some inside medium size canyons. Observed values of pollutant concentrations are compared with predictions made from detailed measurements of the vehicle population parameters, meteorology, and local street and building topography. Well-established statistical techniques have been used to show the potential of SBLINE for application to other road networks

  20. Evaluation of impacts of trees on PM2.5 dispersion in urban streets

    Science.gov (United States)

    Jin, Sijia; Guo, Jiankang; Wheeler, Stephen; Kan, Liyan; Che, Shengquan

    2014-12-01

    Reducing airborne particulate matter (PM), especially PM2.5 (PM with aerodynamic diameters of 2.5 μm or less), in urban street canyons is critical to the health of central city population. Tree-planting in urban street canyons is a double-edged sword, providing landscape benefits while inevitably resulting in PM2.5 concentrating at street level, thus showing negative environmental effects. Thereby, it is necessary to quantify the impact of trees on PM2.5 dispersion and obtain the optimum structure of street trees for minimizing the PM2.5 concentration in street canyons. However, most of the previous findings in this field were derived from wind tunnel or numerical simulation rather than on-site measuring data. In this study, a seasonal investigation was performed in six typical street canyons in the residential area of central Shanghai, which has been suffering from haze pollution while having large numbers of green streets. We monitored and measured PM2.5 concentrations at five heights, structural parameters of street trees and weather. For tree-free street canyons, declining PM2.5 concentrations were found with increasing height. However, in presence of trees the reduction rate of PM2.5 concentrations was less pronounced, and for some cases, the concentrations even increased at the top of street canyons, indicating tree canopies are trapping PM2.5. To quantify the decrease of PM2.5 reduction rate, we developed the attenuation coefficient of PM2.5 (PMAC). The wind speed was significantly lower in street canyons with trees than in tree-free ones. A mixed-effects model indicated that canopy density (CD), leaf area index (LAI), rate of change of wind speed were the most significant predictors influencing PMAC. Further regression analysis showed that in order to balance both environmental and landscape benefits of green streets, the optimum range of CD and LAI was 50%-60% and 1.5-2.0 respectively. We concluded by suggesting an optimized tree-planting pattern and

  1. The effect of a tall tower on flow and dispersion through a model urban neighborhood: part 2. Pollutant dispersion.

    Science.gov (United States)

    Brixey, Laurie A; Heist, David K; Richmond-Bryant, Jennifer; Bowker, George E; Perry, Steven G; Wiener, Russell W

    2009-12-01

    This article is the second in a two-paper series presenting results from wind tunnel and computational fluid dynamics (CFD) simulations of flow and dispersion in an idealized model urban neighborhood. Pollutant dispersion results are presented and discussed for a model neighborhood that was characterized by regular city blocks of three-story row houses with a single 12-story tower located at the downwind edge of one of these blocks. The tower had three significant effects on pollutant dispersion in the surrounding street canyons: drawing the plume laterally towards the tower, greatly enhancing the vertical dispersion of the plume in the wake of the tower, and significantly decreasing the residence time of pollutants in the wake of the tower. In the wind tunnel, tracer gas released in the avenue lee of the tower, but several blocks away laterally, was pulled towards the tower and lifted in the wake of the tower. The same lateral movement of the pollutant was seen in the next avenue, which was approximately 2.5 tower heights downwind of the tower. The tower also served to ventilate the street canyon directly in its wake more rapidly than the surrounding areas. This was evidenced by CFD simulations of concentration decay where the residence time of pollutants lee of the 12-story tower was found to be less than half the residence time behind a neighboring three-story building. This same phenomenon of rapid vertical dispersion lee of a tower among an array of smaller buildings was also demonstrated in a separate set of wind tunnel experiments using an array of cubical blocks. A similar decrease in the residence time was observed when the height of one block was increased.

  2. Intra-urban and street scale variability of BTEX, NO 2 and O 3 in Birmingham, UK: Implications for exposure assessment

    Science.gov (United States)

    Vardoulakis, Sotiris; Solazzo, Efisio; Lumbreras, Julio

    2011-09-01

    Automatic monitoring networks have the ability of capturing air pollution episodes, as well as short- and long-term air quality trends in urban areas that can be used in epidemiological studies. However, due to practical constraints (e.g. cost and bulk of equipment), the use of automatic analysers is restricted to a limited number of roadside and background locations within a city. As a result, certain localised air pollution hotspots may be overlooked or overemphasised, especially near heavily trafficked street canyons and intersections. This has implications for compliance with regulatory standards and may cause exposure misclassification in epidemiological studies. Apart from automatic analysers, low cost passive diffusion tubes can be used to characterise the spatial variability of air pollution in urban areas. In this study, BTEX, NO 2 and O 3 data from a one-year passive sampling survey were used to characterise the intra-urban and street scale spatial variability of traffic-related pollutants in Birmingham (UK). In addition, continuous monitoring of NO 2, NO x, O 3, CO, SO 2, PM 10 and PM 2.5 from three permanent monitoring sites was used to identify seasonal and annual pollution patterns. The passive sampling measurements allowed us to evaluate the representativeness of a permanent roadside monitoring site that has recorded some of the highest NO 2 and PM 10 concentrations in Birmingham in recent years. Dispersion modelling was also used to gain further insight into pollutant sources and dispersion characteristics at this location. The strong spatial concentration gradients observed in busy streets, as well as the differences between roadside and urban background levels highlight the importance of appropriate positioning of air quality monitoring equipment in cities.

  3. Numerical study of the effects of Planetary Boundary Layer structure on the pollutant dispersion within built-up areas.

    Science.gov (United States)

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Liu, Zhenxin; Zhang, Bihui

    2015-06-01

    The effects of different Planetary Boundary Layer (PBL) structures on pollutant dispersion processes within two idealized street canyon configurations and a realistic urban area were numerically examined by a Computational Fluid Dynamics (CFD) model. The boundary conditions of different PBL structures/conditions were provided by simulations of the Weather Researching and Forecasting model. The simulated results of the idealized 2D and 3D street canyon experiments showed that the increment of PBL instability favored the downward transport of momentum from the upper flow above the roof to the pedestrian level within the street canyon. As a result, the flow and turbulent fields within the street canyon under the more unstable PBL condition are stronger. Therefore, more pollutants within the street canyon would be removed by the stronger advection and turbulent diffusion processes under the unstable PBL condition. On the contrary, more pollutants would be concentrated in the street canyon under the stable PBL condition. In addition, the simulations of the realistic building cluster experiments showed that the density of buildings was a crucial factor determining the dynamic effects of the PBL structure on the flow patterns. The momentum field within a denser building configuration was mostly transported from the upper flow, and was more sensitive to the PBL structures than that of the sparser building configuration. Finally, it was recommended to use the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme, which can explicitly output the needed turbulent variables, to provide the boundary conditions to the CFD simulation. Copyright © 2015. Published by Elsevier B.V.

  4. Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

    Directory of Open Access Journals (Sweden)

    Nurilla Avazov

    2012-01-01

    Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.

  5. Analysis of carbon monoxide (CO) with Delhi Finite Line Source (DFLS) in MT Haryono Street, Medan City

    Science.gov (United States)

    Turmuzi, M.; Suryati, I.; Mashaly, E. T.; Batubara, F.

    2018-02-01

    One source to decrease urban air ambient quality is transportation sector. Important pollutants are released by gas emissions from vehicles are carbon monoxide (CO), hydrocarbons (HC), nitrogen dioxide (NO2), particulate matter and others. The presence of CO pollutants in the ambient air can be predicted by modeling air quality. This study aims to estimate CO concentration resulting from transportation activities using Delhi Finite Line Source (DFLS) model, comparing CO prediction using a DFLS model with CO observation in the field, and determine the suitability of the DFLS model application on the MT Haryono street in Medan City. Research was conducted for 3 days at two sample points with frequency twice daily. Based on research results, the range of CO concentration from observation between 22.903 μg/m3 - 27.484 μg/m3. CO observation is still below the ambient air quality standard. According to the DFLS calculations, the range of CO concentration between 1.499 μg/m3- 2.051 μg/m3. The calculation index of agreement (IOA) validation test obtained value of d = 0.22. The DFLS model is not suitable to be applied on MT Haryono street because many factors affected such as wind direction and wind velocity, ambient air temperature and humidity

  6. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness

    Science.gov (United States)

    Wong, Colman C. C.; Liu, Chun-Ho

    2013-05-01

    The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.

  7. Damage costs due to automotive air pollution and the influence of street canyons

    International Nuclear Information System (INIS)

    Spadaro, Joseph V.; Rabl, Ari

    2001-01-01

    Using the methodology of the ExternE Project of the European Commission, we have evaluated the damage costs of automotive air pollution by way of two case studies in France: a trip across Paris, and a trip from Paris to Lyon. This methodology involves an analysis of the impact pathways, starting with the emissions (e.g., g/km of particles form tailpipe), followed by local and regional dispersion (e.g., incremental μg/m 3 of particles), calculation of the physical impacts using exposure-response functions (e.g., cases of respiratory hospital admissions), and finally multiplication by unit costs factors (e.g., ε per hospital admission). Damages are aggregated over all affected receptors in Europe. In addition to the local and regional dispersion calculations carried out so far by ExternE, we also consider the increased microscale impacts due to the trapping of pollutants in street canyons, using numerical simulations with the FLUENT software. We have evaluated impacts to human health, agricultural crops and building materials, due to particles, NO x , CO, HC and CO 2 . Health impacts, especially reduced life expectancy, dominate in terms of cost. Damages for older cars (before 1997) range from 2 to 41Euro cents/km, whereas for newer cars (since 1997), the range 1-9 Euro cents/km, and there is continuing progress in reducing the emissions further. In large cities, the particulate emissions of diesel cars lead to the highest damages, exceeding those of gasoline cars by a factor of 7. For cars before 1997 the order of magnitude of the damage costs is comparable to the price of gasoline, and the loss of life expectancy is comparable to that from traffic accidents. (Author)

  8. Impacts of Street-Visible Greenery on Housing Prices: Evidence from a Hedonic Price Model and a Massive Street View Image Dataset in Beijing

    Directory of Open Access Journals (Sweden)

    Yonglin Zhang

    2018-03-01

    Full Text Available Street greenery is a component of urban green infrastructure. By forming foundational green corridors in urban ecological systems, street greenery provides vital ecological, social, and cultural functions, and benefits the wellbeing of citizens. However, because of the difficulty of quantifying people’s visual perceptions, the impact of street-visible greenery on housing prices has not been fully studied. Using Beijing, which has a mature real estate market, as an example, this study evaluated 22,331 transactions in 2014 in 2370 private housing estates. We selected 25 variables that were classified into three categories—location, housing, and neighbourhood characteristics—and introduced an index called the horizontal green view index (HGVI into a hedonic pricing model to measure the value of the visual perception of street greenery in neighbouring residential developments. The results show that (1 Beijing’s homebuyers would like to reside in residential units with a higher HGVI; (2 Beijing’s homebuyers favour larger lakes; and (3 Beijing’s housing prices were impacted by the spatial development patterns of the city centre and multiple business centres. We used computer vision to quantify the street-visible greenery and estimated the economic benefits that the neighbouring visible greenery would have on residential developments in Beijing. This study provides a scientific basis and reference for policy makers and city planners in road greening, and a tool for formulating street greening policy, studying housing price characteristics, and evaluating real estate values.

  9. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  10. VISUALIZATION AND ANALYSIS OF LIGHT POLLUTION: A CASE STUDY IN HONG KONG

    Directory of Open Access Journals (Sweden)

    B. Wu

    2012-07-01

    Full Text Available The effects of light pollution problems in metropolitan areas are investigated in this study. Areas of Hong Kong are used as the source of three typical study cases. One case represents the regional scale, a second represents the district scale, and a third represents the street scale. Two light pollution parameters, Night Sky Brightness (NSB and Street Light Level (SLL, are the focus of the analyses. Light pollution visualization approaches in relation to the different scales include various light pollution maps. They provide straightforward presentations of the light pollution situations in the study areas. The relationship between light pollution and several social-economic factors such as land use, household income, and types of outdoor lighting in the scale areas given, are examined. Results show that: (1 Land use may be one factor affecting light pollution in the regional scale; (2 A relatively strong correlation exists between light pollution and household income in the district scale; (3 The heaviest light pollution in the street scale is created by spotlights and also the different types of lighting from shops. The impact of the latter is in relation to the shop profile and size.

  11. Ventilation Processes in a Three-Dimensional Street Canyon

    Czech Academy of Sciences Publication Activity Database

    Nosek, Štěpán; Kukačka, L.; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-01-01

    Roč. 159, č. 2 (2016), s. 259-284 ISSN 0006-8314 R&D Projects: GA ČR GAP101/12/1554; GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : Coherent structures * line source * pollution flux measurements * street canyon * wind tunnel Subject RIV: BK - Fluid Dynamics Impact factor: 2.573, year: 2016

  12. Evaluación del desempeño de modelos de dispersión de contaminantes aplicados a cañones urbanos Evaluation of the performance of atmospheric dispersion models applied to urban street canyons

    Directory of Open Access Journals (Sweden)

    Laura E. Venegas

    2012-06-01

    Full Text Available En los cañones urbanos, frecuentemente, se presentan concentraciones de contaminantes en aire varias veces superiores a la contaminación de fondo urbana. En este trabajo, se comparan valores de concentraciones de monóxido de carbono (CO en aire medidas dentro de un cañón urbano con las estimadas mediante algunos modelos de dispersión atmosférica aplicables a procesos que se verifican en los cañones: STREET, STREET-BOX, OSPM y AEOLIUS. Se presenta la evaluación para condiciones de sotavento, barlovento y para direcciones intermedias del viento. En la comparación, se utilizaron los valores horarios de concentraciones de CO en aire medidas durante un año en el interior de un cañón urbano de Göttinger Strässe (Hannover, Alemania y en el techo de un edificio lindero, de velocidad y dirección del viento observadas en el techo del mismo edificio y de flujo de tránsito vehicular en la calle del cañón. Los resultados generados por el modelo STREET con una constante empírica k=7, subestimaron las concentraciones observadas, obteniéndose un mejor desempeño con k= 12,1. El modelo STREET-BOX es adecuado para condiciones de sotavento y direcciones intermedias, pero presenta diferencias importantes con las concentraciones observadas a barlovento. En general, los resultados aportados por los modelos OSPM y AEOLIUS fueron los que menos se apartaron de los valores observados.Air pollutant concentrations inside street canyons are usually several times background concentrations in urban areas. In this paper, carbon monoxide (CO concentrations observed in a street canyon are compared with estimated values obtained using four atmospheric dispersion models: STREET, STREET-BOX, OSPM and AEOLIUS. Results for leeward, windward and intermediate wind directions are analyzed. Data used in the model evaluation include one year of hourly CO concentrations measured inside a street canyon of Göttinger Strässe (Hannover, Germany and at the roof of a

  13. Solar radiation and street temperature as function of street orientation. An analysis of the status quo and simulation of future scenarios towards sustainability in Bahrain

    Science.gov (United States)

    Silva, Joao Pinelo

    2017-11-01

    This paper discusses the contribution of street orientation towards the development of a comfortable microclimate for pedestrians in Bahrain. Increasing walkability is a global agenda to address issues such as a) transportation, b) energy consumption, c) health, and d) air pollution, all of which are topics of the sustainability agenda. Thermal comfort is one of the pre-requisites for walkability. In warm climates, this is a challenging goal. Street design is paramount for pedestrian comfort in warm climates. The roles of street orientation and aspect ratio are of particular importance as they determine the intake of solar radiation into the urban canyon. We investigate the state of affairs in Bahrain, by measuring the frequency with which the street orientations E-W, N-S, NE-SW, and NW-SE, currently occur. Research suggests that the street orientation E-W presents the lesser performance for mitigating the effects of heat gain. The ideal grid orientation would, therefore, be N-S, and NE-SW - NW-SE, avoiding street segments with E-W orientation. A countrywide analysis shows that E-W orientation accounts for the highest overall street length with 37%. The second most frequent orientation is N-S (29%), the best performer. NW-SE and NE-SW both have frequencies of only 17%. Preference for a street grid with N-S, NW-SE, and NE-SW orientation would improve the thermal performance of streets and provide a continuous network of a comfortable pedestrian environment. We simulate two future scenarios based on avoiding new E-W streets, or not. We measure their potential reduction in thermal gain and conclude that a simple policy could reduce solar exposition in 40%.

  14. Simulating the impacts of on-street vehicle parking on traffic operations on urban streets using cellular automation

    Science.gov (United States)

    Chen, Jingxu; Li, Zhibin; Jiang, Hang; Zhu, Senlai; Wang, Wei

    2017-02-01

    In recent years, many bicycle lanes on urban streets are replaced with vehicle parking places. Spaces for bicycle riding are reduced, resulting in changes in bicycle and vehicle operational features. The objective of this study is to estimate the impacts of on-street parking on heterogeneous traffic operation on urban streets. A cellular automaton (CA) model is developed and calibrated to simulate bicycle lane-changing on streets with on-street parking. Two types of street segments with different bicycle lane width are considered. From the simulation, two types of conflicts between bicycles and vehicles are identified which are frictional conflicts and blocking conflicts. Factors affecting the frequency of conflicts are also identified. Based on the results, vehicle delay is estimated for various traffic situations considering the range of occupancy levels for on-street parking. Later, a numerical network example is analyzed to estimate the network impact of on-street parking on traffic assignment and operation. Findings of the study are helpful to policies and design regarding on-street vehicle parking to improve the efficiency of traffic operations.

  15. Metal pollution investigation of Goldman Park, Middletown Ohio: Evidence for steel and coal pollution in a high child use setting.

    Science.gov (United States)

    Dietrich, Matthew; Huling, Justin; Krekeler, Mark P S

    2018-03-15

    A geochemical investigation of both ballfield sediment and street sediment in a park adjacent to a major steel manufacturing site in Middletown, Ohio revealed Pb, Cu, Cr and Zn exceeded background levels, but in heterogeneous ways and in varying levels of health concern. Pb, Sn, and Zn had geoaccumulation values>2 (moderate to heavy pollutants) in street sediment samples. Cr had a geoaccumulation value>1, while Ni, W, Fe and Mn had geoaccumulation values between 1 and 0 in street sediment. Street sediment contamination factors for respective elements are Zn (10.41), Sn (5.45), Pb (4.70), Sb (3.45), Cr (3.19), W (2.59), and Mn (2.43). The notable elements with the highest factors for ball fields are Zn (1.72), Pb (1.36), Cr (0.99), V (0.95), and Mn (1.00). High correlation coefficients of known constituents of steel, such as Fe and Mo, Ni and Cr, W and Co, W and V, as well as particulate steel and coal spherule fragments found by SEM suggest probable sourcing of some of the metals from the AK Steel facility directly adjacent to the park. However, overall extensive heterogeneity of metal pollutants in the area points to the difficulties in sourcing pollutant metals, with many outside sources likely contributing as well. This study demonstrates that different sediment media can be impacted by significantly different metal pollutants even when in very close proximity to a single source and points to unrecognized complexity in urban pollution processes in the region. This study pertains to large-scale regional importance, as Middletown, Ohio is indicative of a typical post-industrial Midwestern U.S. city where limited investigation has been conducted regarding urban pollution and sourcing of materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. VISUALIZATION AND ANALYSIS OF LIGHT POLLUTION: A CASE STUDY IN HONG KONG

    OpenAIRE

    B. Wu; H. Wong

    2012-01-01

    The effects of light pollution problems in metropolitan areas are investigated in this study. Areas of Hong Kong are used as the source of three typical study cases. One case represents the regional scale, a second represents the district scale, and a third represents the street scale. Two light pollution parameters, Night Sky Brightness (NSB) and Street Light Level (SLL), are the focus of the analyses. Light pollution visualization approaches in relation to the different scales incl...

  17. Joint PDF modelling of turbulent flow and dispersion in an urban street canyon

    OpenAIRE

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2010-01-01

    The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exc...

  18. Impact of height and shape of building roof on air quality in urban street canyons

    Science.gov (United States)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  19. Characterization of traffic-generated pollutants in Bucharest

    Energy Technology Data Exchange (ETDEWEB)

    Raducan, G. [University of Bucharest, Faculty of Physics, Department of Atmospheric Physics, Magurele, Bucharest (Romania)]. E-mail: gabi_raducan@yahoo.com; Stefan, S. [University of Bucharest, Faculty of Physics, Department of Atmospheric Physics, Magurele, Bucharest (Romania)

    2009-01-15

    European Union Council directive 96/62/EC on ambient air quality assessment and management requires the development of action plans for zones where the concentrations of pollutants in ambient air exceed limit values. In the urban areas the limit values are exceeded, especially due to the traffic. In this paper, we analyzed the temporal variability levels of concentration of NO{sub X}, O{sub 3} and SO{sub 2} in two street canyons. The distribution of concentrations proves that traffic is the most important source of NO{sub X}, this pollutant being emitted during running of the vehicle engines. The level of pollution within U2 street is 25% less than U1 street, even though the measured traffic within U2 street is 50% less than within U1 street. This happen because the streets geometry and locations are different. [Spanish] La directiva 96/62/EC del Consejo de la Union Europea sobre determinacion y manejo de la calidad del aire ambiental establece que deben existir planes de accion para las zonas donde la concentracion de contaminantes excede los valores limite. En las areas urbanas dichos valores limite se rebasan en especial debido al trafico. En este trabajo analizamos la variabilidad temporal de los niveles de concentracion de NO{sub X}, O{sub 3} y SO{sub 2} en dos canones urbanos. La distribucion de las concentraciones demuestra que el trafico es la fuente mas importante de NO{sub X}, contaminante que se emite por la operacion de los motores vehiculares. El nivel de contaminacion en la calle U2 es 25% menor que el de la calle U1, aun cuando el trafico cuantificado en la calle U2 es 50% menor que el de la U1. Esto se debe a que la geometria y la ubicacion de las calles es diferente.

  20. Mean and turbulent mass flux measurements in an idealised street network.

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G; Hayden, Paul; Santi, Edoardo

    2018-03-01

    Pollutant mass fluxes are rarely measured in the laboratory, especially their turbulent component. They play a major role in the dispersion of gases in urban areas and modern mathematical models often attempt some sort of parametrisation. An experimental technique to measure mean and turbulent fluxes in an idealised urban array was developed and applied to improve our understanding of how the fluxes are distributed in a dense street canyon network. As expected, horizontal advective scalar fluxes were found to be dominant compared with the turbulent components. This is an important result because it reduces the complexity in developing parametrisations for street network models. On the other hand, vertical mean and turbulent fluxes appear to be approximately of the same order of magnitude. Building height variability does not appear to affect the exchange process significantly, while the presence of isolated taller buildings upwind of the area of interest does. One of the most interesting results, again, is the fact that even very simple and regular geometries lead to complex advective patterns at intersections: parametrisations derived from measurements in simpler geometries are unlikely to capture the full complexity of a real urban area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stochastic Modeling of Traffic Air Pollution

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2014-01-01

    In this paper, modeling of traffic air pollution is discussed with special reference to infrastructures. A number of subjects related to health effects of air pollution and the different types of pollutants are briefly presented. A simple model for estimating the social cost of traffic related air...... and using simple Monte Carlo techniques to obtain a stochastic estimate of the costs of traffic air pollution for infrastructures....... pollution is derived. Several authors have published papers on this very complicated subject, but no stochastic modelling procedure have obtained general acceptance. The subject is discussed basis of a deterministic model. However, it is straightforward to modify this model to include uncertain parameters...

  2. The Dictionary On Environment and Pollution

    International Nuclear Information System (INIS)

    1989-01-01

    This book is the dictionary for environment and pollution, which puts the words in alphabetical order. It includes words such as street refuse, powdered soap, sodium hydroxide, waste caustics, causticization, vibration acceleration level, gasoline, and processed fuel. This dictionary gives descriptions on each word which is related the environment and pollution.

  3. Review on urban vegetation and particle air pollution - Deposition and dispersion

    Science.gov (United States)

    Janhäll, Sara

    2015-03-01

    Urban vegetation affects air quality through influencing pollutant deposition and dispersion. Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing e.g. on urban street canyons and crossings or vegetation barriers adjacent to traffic sources. There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study. This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements. The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition. Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier. The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes.

  4. Land use-related chemical composition of street sediments in Beijing.

    Science.gov (United States)

    Kuang, Cen; Neumann, Thomas; Norra, Stefan; Stüben, Doris

    2004-01-01

    More than 10 million people are currently living in Beijing. This city faces severe anthropogenic air pollution caused by an intense vehicle increase (11% per year in China), coal combusting power plants, heavy industry, huge numbers of household and restaurant cookers, and domestic heating stoves. Additionally, each year dust storms are carrying particulate matter from the deserts of Gobi and Takla Makan towards Beijing, especially in spring. Other geogenic sources of particulate matter which contribute to the air pollution are bare soils, coal heaps and construction sites occurring in and around Beijing. Streets function as receptor surfaces for atmospheric dusts. Thus, street sediments consist of particles of different chemical compositions from many different sources, such as traffic, road side soils and industry. Distributions and concentrations of various chemical elements in street sediments were investigated along a rural-urban transect in Beijing, China. Chemical elements were determined with X-ray fluorescence analysis. Factor analysis was used to extract most important element sources contributing to particulate pollution along a main arterial route of the Chinese capital. The statistical evaluation of the data by factor analysis identifies three main anthropogenic sources responsible for the contamination of Beijing street sediments. The first source is a steel factory in the western part of Beijing. From this source, Mn, Fe, and Ti were emitted into the atmosphere through chimneys and by wind from coal heaps used as the primary energy source for the factory. The second source is a combination of traffic, domestic heating and some small factories in the center of Beijing discharging Cu, Pb, Zn and Sn. Calcium and Cr characterize a third anthropogenic element source of construction materials such as concrete and mortar. Beside the anthropogenic contamination, some elements like Y, Zr, Nb, Ce, and Rb are mainly derived from natural soils and from the

  5. Street children

    Directory of Open Access Journals (Sweden)

    Rončević Nevenka

    2013-01-01

    Full Text Available According to UNICEF, street child is any child under the age of 18 for whom the street has become home and/or source of income and which is not adequately protected or supervised by adult, responsible person. It has been estimated that there are between 100 and 150 million street children worldwide. Life and work on the street have long term and far-reaching consequences for development and health of these children. By living and working in the street, these children face the highest level of risk. Street children more often suffer from the acute illness, injuries, infection, especially gastrointestinal, acute respiratory infections and sexually transmitted diseases, inadequate nutrition, mental disorders, and drug abuse. They are more often victims of abuse, sexual exploitation, trafficking; they have higher rate of adolescent pregnancy than their peers from poor families. Street children and youth have higher rates of hospitalization and longer hospital stay due to seriousness of illness and delayed health care. Street children/youth are reluctant to seek health care, and when they try, they face many barriers. Street children are invisible to the state and their number in Serbia is unknown. Recently, some non­governmental organizations from Belgrade, Novi Sad and Nis have recognized this problem and tried to offer some help to street children, by opening drop­in centers, but this is not enough. To solve this problem, an engagement of the state and the whole community is necessary, and primary responsibility lies in health, social and educational sector. The best interests of the child must serve as a basic guideline in all activities aimed at improving health, quality of life and rights of children involved in the life and work in the street.

  6. Exploring the patterns and evolution of self-organized urban street networks through modeling

    Science.gov (United States)

    Rui, Yikang; Ban, Yifang; Wang, Jiechen; Haas, Jan

    2013-03-01

    As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.

  7. Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons

    Science.gov (United States)

    Wong, C. C. C.; Liu, C. H.

    2012-04-01

    Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical

  8. Characterization and Low-Dimensional Modeling of Urban Fluid Flow

    Science.gov (United States)

    2014-10-06

    pollutant dispersion characteristics in urban street canyons . Journal of Applied... pollutant dispersion in an urban street canyon . Journal of Wind Engineering and Industrial Aerodynamics, 91:309–329, 2003. J. Kim and J. Baik. A numerical...J. Wang, and Z. Xie. The impact of solar radiation and street layout on pollutant dispersion in street canyon . Building and environment,

  9. Hospitality Invites Sociability, Which Builds Cohesion: a Model for the Role of Main Streets in Population Mental Health.

    Science.gov (United States)

    Izenberg, Jacob M; Fullilove, Mindy Thompson

    2016-04-01

    The aim of this study was to investigate the contribution of main streets to community social cohesion, a factor important to health. Prior work suggests that casual contact in public space, which we call "sociability," facilitates more sustained social bonds in the community. We appropriate the term "hospitality" to describe a main street's propensity to support a density of such social interactions. Hospitality is a result of the integrity and complex contents of the main street and surrounding area. We examine this using a typology we term "box-circle-line" to represent the streetscape (the box), the local neighborhood (the circle), and the relationship to the regional network of streets (the line). Through field visits to 50 main streets in New Jersey and elsewhere, and a systematic qualitative investigation of main streets in a densely interconnected urban region (Essex County, New Jersey), we observed significant variation in main street hospitality, which generally correlated closely with sociability. Physical elements such as street wall, neighborhood elements such as connectivity, inter-community elements such as access and perceived welcome, and socio-political elements such as investment and racial discrimination were identified as relevant to main street hospitality. We describe the box-circle-line as a theoretical model for main street hospitality that links these various factors and provides a viable framework for further research into main street hospitality, particularly with regard to geographic health disparities.

  10. Urban streets

    NARCIS (Netherlands)

    Schönfeld, von Kim Carlotta; Bertolini, Luca

    2017-01-01

    Today's urban streets are usually planned for purposes of mobility: pedestrians, as well as a variety of vehicles such as cars, trucks, and sometimes bicycles, are usually factored into an urban street plan. However, urban streets are also increasingly recognized as public spaces, accommodating

  11. Potential reductions of street solids and phosphorus in urban watersheds from street cleaning, Cambridge, Massachusetts, 2009-11

    Science.gov (United States)

    Sorenson, Jason R.

    2013-01-01

    Material accumulating and washing off urban street surfaces and ultimately into stormwater drainage systems represents a substantial nonpoint source of solids, phosphorus, and other constituent loading to waterways in urban areas. Cost and lack of usable space limit the type and number of structural stormwater source controls available to municipalities and other public managers. Non-structural source controls such as street cleaning are commonly used by cities and towns for construction, maintenance and aesthetics, and may reduce contaminant loading to waterways. Effectiveness of street cleaning is highly variable and potential improvements to water quality are not fully understood. In 2009, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, the U.S. Environmental Protection Agency, and the city of Cambridge, Massachusetts, and initiated a study to better understand the physical and chemical nature of the organic and inorganic solid material on street surfaces, evaluate the performance of a street cleaner at removing street solids, and make use of the Source Loading and Management Model (SLAMM) to estimate potential reductions in solid and phosphorus loading to the lower Charles River from various street-cleaning technologies and frequencies. Average yield of material on streets collected between May and December 2010, was determined to be about 740 pounds per curb-mile on streets in multifamily land use and about 522 pounds per curb-mile on commercial land-use streets. At the end-of-winter in March 2011, about 2,609 and 4,788 pounds per curb-mile on average were collected from streets in multifamily and commercial land-use types, respectively. About 86 percent of the total street-solid yield from multifamily and commercial land-use streets was greater than or equal to 0.125 millimeters in diameter (or very fine sand). Observations of street-solid distribution across the entire street width indicated that as

  12. Can dispersion modeling of air pollution be improved by land-use regression? An example from Stockholm, Sweden.

    Science.gov (United States)

    Korek, Michal; Johansson, Christer; Svensson, Nina; Lind, Tomas; Beelen, Rob; Hoek, Gerard; Pershagen, Göran; Bellander, Tom

    2017-11-01

    Both dispersion modeling (DM) and land-use regression modeling (LUR) are often used for assessment of long-term air pollution exposure in epidemiological studies, but seldom in combination. We developed a hybrid DM-LUR model using 93 biweekly observations of NO x at 31 sites in greater Stockholm (Sweden). The DM was based on spatially resolved topographic, physiographic and emission data, and hourly meteorological data from a diagnostic wind model. Other data were from land use, meteorology and routine monitoring of NO x . We built a linear regression model for NO x , using a stepwise forward selection of covariates. The resulting model predicted observed NO x (R 2 =0.89) better than the DM without covariates (R 2 =0.68, P-interaction <0.001) and with minimal apparent bias. The model included (in descending order of importance) DM, traffic intensity on the nearest street, population (number of inhabitants) within 100 m radius, global radiation (direct sunlight plus diffuse or scattered light) and urban contribution to NO x levels (routine urban NO x , less routine rural NO x ). Our results indicate that there is a potential for improving estimates of air pollutant concentrations based on DM, by incorporating further spatial characteristics of the immediate surroundings, possibly accounting for imperfections in the emission data.

  13. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  14. 46th Street pilot street lighting project.

    Science.gov (United States)

    2013-01-01

    Street lighting improvements provide an opportunity for governments to save money and to reduce their : environmental footprint. New energy-efficient technologies are being perfected that are more efficient than : standard high-pressure sodium street...

  15. Platinum-Group Elements in Soils and Street Dust of the Southeastern Administrative District of Moscow

    Science.gov (United States)

    Ladonin, D. V.

    2018-03-01

    The contents of five platinum-group metals (Ru, Rh, Pd, Ir, and Pt) in soils and street dust of the Southeastern administrative district (SEAD) of Moscow have been determined. The contents of these elements in soils may considerably exceed their natural abundances in the lithosphere and are characterized by considerable variability and asymmetric frequency distribution. A close correlation between Rh, Pd, and Pt contents in soils and street dust has been shown. The data on the contents of the elements and the ratios between them suggest that motor vehicles are the major source of pollution of soils and street dust in the studied district.

  16. Minimizing the effect of automotive pollution in urban geometry using mathematical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Craig, K.J.; De Kock, D.J.; Snyman, J.A. [Pretoria Univ. (South Africa). Dept. of Mechanical and Aeronautical Engineering

    2001-07-01

    One of the factors that needs to be considered during the layout of new urban geometry (e.g. street direction, spacing and width, building height restrictions) is the effect of the air pollution associated with the automotive transport that would use routes in this urban area. Although the pollution is generated at street level, its effect can be widespread due to interaction of the pollutant dispersion and diffusion with the wind speed and direction. In order to study the effect of a new urban geometry on the pollutant levels and dispersion, a very time-consuming experimental or parametric numerical study would have to be performed. This paper proposes an alternative approach, that of combining mathematical optimization with the techniques of computational fluid dynamics (CFD). In essence, the meteorological information as represented by a wind rose (wind speed and direction), is used to calculate pollutant levels as a function of urban geometry variables: street canyon depth and street canyon width. The pollutant source specified in conjunction with a traffic scenario with CO is used as pollutant. The main aim of the study is to be able to suggest the most beneficial configuration of an idealized urban geometry that minimizes the peak pollutant levels due to assumed traffic distributions. This study uses two mathematical optimization methods. The first method is implemented through a successive maximization-minimization approach, while the second method determines the location of saddle points of the pollutant level, considered as a function of urban geometry and wind rose. Locally, a saddle point gives the best urban geometry for the worst meteorological scenario. The commercial CFD code, STAR-CD, is coupled with a version of the DYNAMIC-Q optimization algorithm of Snyman, first to successively locate maxima and minima in a min-max approach; and then to locate saddle points. It is shown that the saddle-point method is more cost-effective. The methodology

  17. Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire

    Directory of Open Access Journals (Sweden)

    Roman Sikora

    2018-05-01

    Full Text Available Before the use of regulated street luminaires with variable power and luminous flux, computations were performed using constant values for their electrical and photometric parameters. At present, where such lighting is in use, it is no longer possible to base calculations on such assumptions. Computations of energy and power losses, for example, need to be performed for all dimming levels and based on the applied regulation algorithm. Based on measurements carried out on regulated luminaires, it was found that certain electrical parameters have a nonlinear dependence on the dimming level. Electrical parameters were also observed to depend on the value of the supply voltage. The results of the measurements are presented in this article. Failure to take account of power losses in computations of the energy efficiency of street lighting in accordance with the applicable EN 13201 standard causes values of energy efficiency indicators to be overstated. Power loss computations are presented in this article for a sample street lighting system with regulated luminaires, for the whole range of dimming levels and additionally for fluctuations of ±10% in the supply voltage. In addition, a mathematical model of a regulated luminaire is constructed with the use of regression methods, and a practical application of that model is described.

  18. Evaluation of numerical flow and dispersion simulations for street canyons with avenue-like tree planting by comparison with wind tunnel data

    NARCIS (Netherlands)

    Gromke, C.B.; Buccolieri, R.; Sabatino, Di S.; Ruck, B.

    2008-01-01

    Flow and traffic-originated pollutant dispersion in an urban street canyon with avenue-like tree planting have been studied by means of wind tunnel and CFD investigations. The study comprises tree planting of different crown porosity, planted in two rows within a canyon of street width to building

  19. [Sharing and distrusting: street merchants' view of children in street situations].

    Science.gov (United States)

    Sánchez-Suárez, Diana M; Giraldo-Puerta, Alexandra; Giraldo-Pineda, Álvaro; Forero-Pulido, Constanza

    2016-06-01

    Objective To understand the meanings, through the description of experiences that street merchants have of their interactions with children in a street situation in downtown of Medellin in 2013. Methodology Qualitative investigation with ethnographic approach. Observations were made in the zone at different times of the day. Twelve interviews with street merchants were held in their work places. Records were kept in a field journal. Results The street merchants and children in street situations share the same space. Both groups try to survive and their relationship is mediated by the trust-distrust that is established between them. The coexistence generates ambivalent feelings. For the street merchants, children in street situations are the result of abandonment by the family, the state and society. They live in a hard world in which they are exposed to a series of risks that they must face. Conclusion The interaction between street merchants and children in street situations is good to the extent that conflicts are avoided, establishing norms of coexistence. The element that determines this relationship is trust-distrust. In trust, strong affective ties are generated, considering each other family. Distrust generates a preventative attitude.

  20. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon

    Science.gov (United States)

    Dons, Evi; Van Poppel, Martine; Kochan, Bruno; Wets, Geert; Int Panis, Luc

    2013-08-01

    Land use regression (LUR) modeling is a statistical technique used to determine exposure to air pollutants in epidemiological studies. Time-activity diaries can be combined with LUR models, enabling detailed exposure estimation and limiting exposure misclassification, both in shorter and longer time lags. In this study, the traffic related air pollutant black carbon was measured with μ-aethalometers on a 5-min time base at 63 locations in Flanders, Belgium. The measurements show that hourly concentrations vary between different locations, but also over the day. Furthermore the diurnal pattern is different for street and background locations. This suggests that annual LUR models are not sufficient to capture all the variation. Hourly LUR models for black carbon are developed using different strategies: by means of dummy variables, with dynamic dependent variables and/or with dynamic and static independent variables. The LUR model with 48 dummies (weekday hours and weekend hours) performs not as good as the annual model (explained variance of 0.44 compared to 0.77 in the annual model). The dataset with hourly concentrations of black carbon can be used to recalibrate the annual model, resulting in many of the original explaining variables losing their statistical significance, and certain variables having the wrong direction of effect. Building new independent hourly models, with static or dynamic covariates, is proposed as the best solution to solve these issues. R2 values for hourly LUR models are mostly smaller than the R2 of the annual model, ranging from 0.07 to 0.8. Between 6 a.m. and 10 p.m. on weekdays the R2 approximates the annual model R2. Even though models of consecutive hours are developed independently, similar variables turn out to be significant. Using dynamic covariates instead of static covariates, i.e. hourly traffic intensities and hourly population densities, did not significantly improve the models' performance.

  1. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons

    Science.gov (United States)

    Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin

    2012-11-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.

  2. Travel Time Estimation on Urban Street Segment

    Directory of Open Access Journals (Sweden)

    Jelena Kajalić

    2018-02-01

    Full Text Available Level of service (LOS is used as the main indicator of transport quality on urban roads and it is estimated based on the travel speed. The main objective of this study is to determine which of the existing models for travel speed calculation is most suitable for local conditions. The study uses actual data gathered in travel time survey on urban streets, recorded by applying second by second GPS data. The survey is limited to traffic flow in saturated conditions. The RMSE method (Root Mean Square Error is used for research results comparison with relevant models: Akcelik, HCM (Highway Capacity Manual, Singapore model and modified BPR (the Bureau of Public Roads function (Dowling - Skabardonis. The lowest deviation in local conditions for urban streets with standardized intersection distance (400-500 m is demonstrated by Akcelik model. However, for streets with lower signal density (<1 signal/km the correlation between speed and degree of saturation is best presented by HCM and Singapore model. According to test results, Akcelik model was adopted for travel speed estimation which can be the basis for determining the level of service in urban streets with standardized intersection distance and coordinated signal timing under local conditions.

  3. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation.

    Science.gov (United States)

    Petranović, Zvonimir; Bešenić, Tibor; Vujanović, Milan; Duić, Neven

    2017-12-01

    In order to reduce the harmful effect on the environment, European Union allowed using the biofuel blends as fuel for the internal combustion engines. Experimental studies have been carried on, dealing with the biodiesel influence on the emission concentrations, showing inconclusive results. In this paper numerical model for pollutant prediction in internal combustion engines is presented. It describes the processes leading towards the pollutant emissions, such as spray particles model, fuel disintegration and evaporation model, combustion and the chemical model for pollutant formation. Presented numerical model, implemented in proprietary software FIRE ® , is able to capture chemical phenomena and to predict pollutant emission concentration trends. Using the presented model, numerical simulations of the diesel fuelled internal combustion engine have been performed, with the results validated against the experimental data. Additionally, biodiesel has been used as fuel and the levels of pollutant emissions have been compared to the diesel case. Results have shown that the biodiesel blends release lower nitrogen oxide emissions than the engines powered with the regular diesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation of numerical flow and dispersion simulations for street canyons with avenue-like tree planting by comparison with wind tunnel data

    OpenAIRE

    Gromke, CB Christof; Buccolieri, R; Sabatino, S Di; Ruck, B

    2008-01-01

    Abstract: Flow and traffic-originated pollutant dispersion in an urban street canyon with avenue-like tree planting have been studied by means of wind tunnel and CFD investigations. The study comprises tree planting of different crown porosity, planted in two rows within a canyon of street width to building height ratio W/H = 2 and street length to building height ratio L/H = 10 exposed to a perpendicular approaching boundary layer flow. Numerical simulations have been performed with...

  5. Aquatic urban ecology at the scale of a capital: community structure and interactions in street gutters.

    Science.gov (United States)

    Hervé, Vincent; Leroy, Boris; Da Silva Pires, Albert; Lopez, Pascal Jean

    2018-01-01

    In most cities, streets are designed for collecting and transporting dirt, litter, debris, storm water and other wastes as a municipal sanitation system. Microbial mats can develop on street surfaces and form microbial communities that have never been described. Here, we performed the first molecular inventory of the street gutter-associated eukaryotes across the entire French capital of Paris and the non-potable waters sources. We found that the 5782 OTUs (operational taxonomic units) present in the street gutters which are dominated by diatoms (photoautotrophs), fungi (heterotrophs), Alveolata and Rhizaria, includes parasites, consumers of phototrophs and epibionts that may regulate the dynamics of gutter mat microbial communities. Network analyses demonstrated that street microbiome present many species restricted to gutters, and an overlapping composition between the water sources used for street cleaning (for example, intra-urban aquatic networks and the associated rivers) and the gutters. We propose that street gutters, which can cover a significant surface area of cities worldwide, potentially have important ecological roles in the remediation of pollutants or downstream wastewater treatments, might also be a niche for growth and dissemination of putative parasite and pathogens.

  6. Street as Public Space - Measuring Street Life of Kuala Lumpur

    Science.gov (United States)

    Sulaiman, Normah; Ayu Abdullah, Yusfida; Hamdan, Hazlina

    2017-10-01

    Kuala Lumpur has envisioning in becoming World Class City by the year 2020. Essential elements of form and function of the urban environment are streets. Streets showcase the community and connect people. It’s one of the most comfortable social environment that provides aesthetical and interaction pleasure for everyone. Classified as main shopping streets in the local Kuala Lumpur urban design guidelines, Jalan Masjid India (JMI) has its uniqueness of shopping experience and social interaction. This conceptual paper will study the physical and cultural characteristics of the street that will generate the street character by mapping its original characters. The findings will focus on strengthening the methodology applied to promote improvements in evaluating it as a great public space. Results will also contribute to understanding the overall site context, the street connectivity, and urban dynamics. This paper is part of a larger study that addresses on transforming the sociability of public space.

  7. Simple street tree sampling

    Science.gov (United States)

    David J. Nowak; Jeffrey T. Walton; James Baldwin; Jerry. Bond

    2015-01-01

    Information on street trees is critical for management of this important resource. Sampling of street tree populations provides an efficient means to obtain street tree population information. Long-term repeat measures of street tree samples supply additional information on street tree changes and can be used to report damages from catastrophic events. Analyses of...

  8. AN EMPIRICAL ASSESSMENT OF THE WALKING ENVIRONMENT IN A MEGACITY: CASE STUDY OF VALIASR STREET, TEHRAN

    Directory of Open Access Journals (Sweden)

    Bahareh Motamed

    2016-11-01

    Full Text Available High air pollution, car dependency, and increasing statistics of obesity and cardiovascular diseases are growing issues in the mega city of Tehran, the capital city of Iran. Therefore, investigating the quality of walkability as an effective solution for these issues in Valiasr Street, the longest street of Middle East and one of the key vena of Tehran, becomes significant. Research shows that despite the attempts of executed projects, the majority of implemented actions in this street were not in accordance with services of its pedestrian facilities. Even in some cases, they may threaten the walking environment. This paper discusses not only the physical features of Valiasr Street but it also considers the consequences of policies and municipal decisions in light of walkability criteria. Using walkability indexes from various scholars, this study seeks to investigate the level of walkability in Valiasr Street through field observation and mapping by trained observers/ auditors.

  9. Analysing improvements to on-street public transport systems: a mesoscopic model approach

    DEFF Research Database (Denmark)

    Ingvardson, Jesper Bláfoss; Kornerup Jensen, Jonas; Nielsen, Otto Anker

    2017-01-01

    and other advanced public transport systems (APTS), the attractiveness of such systems depends heavily on their implementation. In the early planning stage it is advantageous to deploy simple and transparent models to evaluate possible ways of implementation. For this purpose, the present study develops...... headway time regularity and running time variability, i.e. taking into account waiting time and in-vehicle time. The approach was applied on a case study by assessing the effects of implementing segregated infrastructure and APTS elements, individually and in combination. The results showed...... that the reliability of on-street public transport operations mainly depends on APTS elements, and especially holding strategies, whereas pure infrastructure improvements induced travel time reductions. The results further suggested that synergy effects can be obtained by planning on-street public transport coherently...

  10. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects

    DEFF Research Database (Denmark)

    Nielsen, T.; Ejsing Jørgensen, Hans; Larsen, J.C.

    1996-01-01

    The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3......) in the city park. The atmospheric concentrations of PAH decreased in the order of: street > city background air similar to suburbs > village > open land. The traffic contribution of PAH to street air was estimated to be 90% on working days and 60% during weekends and its contribution to city background air...... was estimated to be 40%. Four different approaches to evaluate the health effects are discussed. The direct effect of PAH air pollution, and other mutagens, is considered to be a maximum of five lung cancer cases each year out of one million people....

  11. Violence in the Street, Violence of the Street

    DEFF Research Database (Denmark)

    Heinskou, Marie Bruvik; Liebst, Lasse Suonperä

    While in his early and general theory of interaction rituals Randall Collins emphasised that social situations are both ’symbolic’ and ’material’, the latter dimension is largely absent from Collins’ theory of violence(Collins 2004; 1993: 214). Compared with criminology’s more recent situational...... studies of violence, it is noticeable that the analytical success of these studies is closely linked with understanding street violence as a spatial-situational phenomenon (Clarke 1997; Eck & Weisburd 1995; Bragand & Weisburd; 2010; Wikström et al. 2012; Sampson et al. 1997). In light of evidence...... for the spatial concentration of street violence, this paper takes its point of departure in a large study of Street Violence among youth in Copenhagen, Denmark (combining quantitative data from filed police reports (N = 501), data from CCTV (N=100) and qualitative analysis of selected cases of street violence...

  12. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    Science.gov (United States)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( ptransportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  13. Cellular automata model for urban road traffic flow considering pedestrian crossing street

    Science.gov (United States)

    Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu

    2016-11-01

    In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

  14. In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London

    Science.gov (United States)

    Balogun, Ahmed A.; Tomlin, Alison S.; Wood, Curtis R.; Barlow, Janet F.; Belcher, Stephen E.; Smalley, Robert J.; Lingard, Justin J. N.; Arnold, Sam J.; Dobre, Adrian; Robins, Alan G.; Martin, Damien; Shallcross, Dudley E.

    2010-09-01

    We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction ( θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15- min mean θ ref of 5°-10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

  15. Monitoring Street-Level Spatial-Temporal Variations of Carbon Monoxide in Urban Settings Using a Wireless Sensor Network (WSN) Framework

    Science.gov (United States)

    Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang

    2013-01-01

    Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management. PMID:24287859

  16. Monitoring Street-Level Spatial-Temporal Variations of Carbon Monoxide in Urban Settings Using a Wireless Sensor Network (WSN Framework

    Directory of Open Access Journals (Sweden)

    Tzai-Hung Wen

    2013-11-01

    Full Text Available Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management.

  17. Monitoring street-level spatial-temporal variations of carbon monoxide in urban settings using a wireless sensor network (WSN) framework.

    Science.gov (United States)

    Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang

    2013-11-27

    Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management.

  18. Modeling of atmospheric pollutant transfers

    International Nuclear Information System (INIS)

    Jourdain, F.

    2007-01-01

    Modeling is today a common tool for the evaluation of the environmental impact of atmospheric pollution events, for the design of air monitoring networks or for the calculation of pollutant concentrations in the ambient air. It is even necessary for the a priori evaluation of the consequences of a pollution plume. A large choice of atmospheric transfer codes exist but no ideal tool is available which allows to model all kinds of situations. The present day approach consists in combining different types of modeling according to the requested results and simulations. The CEA has a solid experience in this domain and has developed independent tools for the impact and safety studies relative to industrial facilities and to the management of crisis situations. (J.S.)

  19. A bicycle safety index for evaluating urban street facilities.

    Science.gov (United States)

    Asadi-Shekari, Zohreh; Moeinaddini, Mehdi; Zaly Shah, Muhammad

    2015-01-01

    The objectives of this research are to conceptualize the Bicycle Safety Index (BSI) that considers all parts of the street and to propose a universal guideline with microscale details. A point system method comparing existing safety facilities to a defined standard is proposed to estimate the BSI. Two streets in Singapore and Malaysia are chosen to examine this model. The majority of previous measurements to evaluate street conditions for cyclists usually cannot cover all parts of streets, including segments and intersections. Previous models also did not consider all safety indicators and cycling facilities at a microlevel in particular. This study introduces a new concept of a practical BSI to complete previous studies using its practical, easy-to-follow, point system-based outputs. This practical model can be used in different urban settings to estimate the level of safety for cycling and suggest some improvements based on the standards.

  20. Responses of gas-exchange rates and water relations to annual fluctuations of weather in three species of urban street trees.

    Science.gov (United States)

    Osone, Yoko; Kawarasaki, Satoko; Ishida, Atsushi; Kikuchi, Satoshi; Shimizu, Akari; Yazaki, Kenichi; Aikawa, Shin-Ichi; Yamaguchi, Masahiro; Izuta, Takeshi; Matsumoto, Genki I

    2014-10-01

    The frequency of extreme weather has been rising in recent years. A 3-year study of street trees was undertaken in Tokyo to determine whether: (i) street trees suffer from severe water stress in unusually hot summer; (ii) species respond differently to such climatic fluctuations; and (iii) street trees are also affected by nitrogen (N) deficiency, photoinhibition and aerosol pollution. During the study period (2010-12), midsummers of 2010 and 2012 were unusually hot (2.4-2.8 °C higher maximum temperature than the long-term mean) and dry (6-56% precipitation of the mean). In all species, street trees exhibited substantially decreased photosynthetic rate in the extremely hot summer in 2012 compared with the average summer in 2011. However, because of a more conservative stomatal regulation (stomatal closure at higher leaf water potential) in the hot summer, apparent symptoms of hydraulic failure were not observed in street trees even in 2012. Compared with Prunus × yedoensis and Zelkova serrata, Ginkgo biloba, a gymnosperm, was high in stomatal conductance and midday leaf water potential even under street conditions in the unusually hot summer, suggesting that the species had higher drought resistance than the other species and was less susceptible to urban street conditions. This lower susceptibility might be ascribed to the combination of higher soil-to-leaf hydraulic conductance and more conservative water use. Aside from meteorological conditions, N deficiency affected street trees significantly, whereas photoinhibition and aerosol pollution had little effect. The internal CO2 and δ(13)C suggested that both water and N limited the net photosynthetic rate of street trees simultaneously, but water was more limiting. From these results, we concluded that the potential risk of hydraulic failure caused by climatic extremes could be low in urban street trees in temperate regions. However, the size of the safety margin might be different between species. © The

  1. An amalgamation of 3D city models in urban air quality modelling for improving visual impact analysis

    DEFF Research Database (Denmark)

    Ujang, U.; Anton, F.; Ariffin, A.

    2015-01-01

    is predominantly vehicular engines, the situation will become worse when pollutants are trapped between buildings and disperse inside the street canyon and move vertically to create a recirculation vortex. Studying and visualizing the recirculation zone in 3D visualization is conceivable by using 3D city models......,engineers and policy makers to design the street geometry (building height and width, green areas, pedestrian walks, roads width, etc.)....

  2. Dispersion of traffic exhausts in urban street canyons with tree plantings : experimental and numerical investigations

    NARCIS (Netherlands)

    Gromke, C.B.; Denev, J.; Ruck, B.

    2007-01-01

    Wind tunnel experiments and numerical computations have been performed in order to investigate the influence of avenuelike tree plantings on the dispersion of traffic exhaust in an urban street canyon. Reduced natural ventilation and enhanced pollutant concentrations have been found in the presence

  3. The comparison of summer air pollution by nitrogen dioxide in Ljubljana between 2005 and 2013

    Directory of Open Access Journals (Sweden)

    Matej Ogrin

    2013-12-01

    Full Text Available In Ljubljana, the air pollution by NO2 is mainly caused by transportation.The article focuses on traffic-related air pollution in three different types of urban space: urban background, open space near the roads, and street canyon.The measurement of concentrations perpendicular to the main city street is also presented. We compare the results of NO2 measuring campaigns in Ljubljana during the summers of 2005 and 2013. We seek to explain the reasons for the differences in the pollution of diverse urban space types and for the significant decrease of concentrations in all types of urban space.

  4. Safety of street: The role of street design

    Science.gov (United States)

    Rashid, Suhaila Abdul; Wahab, Mohammad Hussaini; Rani, Wan Nurul Mardiah Wan Mohd.; Ismail, Syuhaida

    2017-10-01

    Living in the cities poses many challenges for the vulnerable group of user especially women where they are exposed to many issues related to safety. With the changing of lifestyle and demands, women are expected to play multiple roles in the society and working is one of the tasks. When women are expected to be working as men do, they are no longer occupied at one place. Women nowadays travel on a daily basis and being in the streets is one of the important activities. With the influx of diverse group of people into the country, our streets are dominated by different types of people from different background. Due to these factors, there are possibilities of challenges and threats for users especially women. Therefore, city spaces especially the street become an important public realm for women. The design of the street should be able to make women feel safe as these are the public space where they spend time getting to and from work. The way women perceived their environment might be different from men especially when they fear of crime. Perception of safety will affect the quality of life where fear is an important psychological factor in human life. Living in fear will restrict human's freedom. Therefore, this study aimed to explore women's perception of safety in the streets of Kuala Lumpur. The study adopted a mixed-method approach of qualitative and quantitative in order to understand the safety perception among women that will later establish the relationship between built environment and human psychology. 120 respondents were selected randomly around Jalan Benteng, Jalan Tun Perak, Jalan Melaka and Jalan Melayu. Questionnaire survey forms were distributed and structured observation was conducted at interval period at these streets to examined and assess women's behavior. Finding shows that fear does affect women's perception and physical design of the streets are important in affecting their behavior.

  5. Modeling route choice criteria from home to major streets: A discrete choice approach

    Directory of Open Access Journals (Sweden)

    Jose Osiris Vidana-Bencomo

    2018-03-01

    Full Text Available A discrete choice model that consists of three sub-models was developed to investigates the route choice criteria of drivers who travel from their homes in the morning to the access point along the major streets that bound the Traffic Analysis Zones (TAZs. The first sub-model is a Nested Logit Model (NLM that estimates the probability of a driver has or has no multiple routes, and if the driver has multiple routes, the route selection criteria are based on the access point’s intersection control type or other factors. The second sub-model is a Mixed Logit (MXL model. It estimates the probabilities of the type of intersection control preferred by a driver. The third sub-model is a NLM that estimates the probabilities of a driver selecting his/her route for its shortest travel time or to avoid pedestrian, and if the aim is to take the fastest route, the decision criteria is based on the shortest distance or minimum stops and turns. Data gathered in a questionnaire survey were used to estimate the sub-models. The attributes of the utility functions of the sub-models are the driver’s demographic and trip characteristics. The model provides a means for transportation planners to distribute the total number of home-based trips generated within a TAZ to the access points along the major streets that bound the TAZ.

  6. Pollution externalities in a Schumpeterian growth model

    OpenAIRE

    Koesler, Simon

    2010-01-01

    This paper extends a standard Schumpeterian growth model to include an environmental dimension. Thereby, it explicitly links the pollution intensity of economic activity to technological progress. In a second step, it investigates the effect of pollution on economic growth under the assumption that pollution intensities are related to technological progress. Several conclusions emerge from the model. In equilibrium, the economy follows a balanced growth path. The effect of pollution on the ec...

  7. Estimation of health damage due to emission of air pollutants by cars: the canyon effect

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, J.V. [Ecole des Mines, Centre d' Energetique, Paris, 75 (France); Rabl, A.

    1999-07-01

    Since current epidemiological evidence suggests that air pollution has harmful effects even at typical ambient concentrations and the dispersion is significant over hundreds to thousands of km, the estimation of total health damage involves consideration of local and regional effects. In recent years, several estimates have been published of health damage due to air pollution from cars, in particular by Delucchi et al of UC Davis and by the ExternE Project of the European Commission. To capture the geographic extent of pollutant dispersion, local and regional models have been used in combination. The present paper addresses a potentially significant contribution of the total damage, not yet taken into account in these studies: the increased concentration of pollutants inside urban street canyons. This canyon effect is appreciable only for primary pollutants, the time constants for the formation of secondary pollutants being long compared to the residence time in the canyon. We assumed linearity of incremental health impact with incremental concentration, in view of the lack of epidemiological evidence for no-effect thresholds or significant deviations from linearity at typical ambient concentrations; therefore, only long term average concentrations matter. We use the FLUENT software to model the dispersion inside a street canyon for a wide range of rectangular geometries and wind velocities. Our results suggest that the canyon effect is of marginal significance for total damages, the contribution of the canyon effect being roughly 10 to 20% of the total. The relative importance of the canyon effect is, of course, highly variable with local conditions; it could be much smaller but it is unlikely to add more than 100% to the flat terrain estimate. (Author)

  8. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Colls, J.J.; Micallef, A.

    1999-01-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM 10 and PM 2.5 ) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  9. Establishing a link between vehicular PM sources and PM measurements in urban street canyons.

    Science.gov (United States)

    Eisner, Alfred D; Richmond-Bryant, Jennifer; Wiener, Russell W; Hahn, Intaek; Drake-Richman, Zora E; Ellenson, William D

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study, conducted in Brooklyn, NY, USA, in 2005, was designed with multiple goals in mind, two of which were contaminant source characterization and street canyon transport and dispersion monitoring. In the portion of the study described here, synchronized wind velocity and azimuth as well as particulate matter (PM) concentrations at multiple locations along 33rd Street were used to determine the feasibility of using traffic emissions in a complex urban topography as a sole tracer for studying urban contaminant transport. We demonstrate in this paper that it is possible to link downwind concentrations of contaminants in an urban street canyon to the vehicular traffic cycle using Eigen-frequency analysis. In addition, multivariable circular histograms are used to establish directional frequency maxima for wind velocity and contaminant concentration.

  10. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.

    Science.gov (United States)

    Free, Brian A; Paley, Derek A

    2018-03-14

    Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.

  11. Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements

    Science.gov (United States)

    Mo, Ziwei; Liu, Chun-Ho

    2017-04-01

    Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.

  12. The propagation of sound in narrow street canyons

    Science.gov (United States)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  13. POLICY EVALUATION OF RESTRUCTURING STREET VENDORS IN SURAKARTA CITY (Study of Street Vendors in Monument Park Banjarsari and Street Vendors in Manahan Stadium

    Directory of Open Access Journals (Sweden)

    Frahlevi Prajasari

    2015-08-01

    Full Text Available This study examined the policy evaluation of restructuring street vendors in Surakarta city. Street vendors represent the economic actors in the informal sector of urban economic activity. The government of City/District usually removes these street vendors by disguising this activity behind the reason of structuring, . The study used descriptive research with a qualitative approach. The relocation of street vendors in Surakarta City is orderly and smooth without violence which may impact badly on physic and material because the government of Surakarta City, especially Surakarta Mayor, uses persuasive approach. Notoharjo Market is a relocation place for street vendors at Banjarsari Monument Park. In the beginning, Notoharjo Market is crowded with buyers but current days, street vendors who occupy Notoharjo Market complain about lack of buyers. The lack of buyers at Notoharjo Market is because the facilities previously provided by the government of Surakarta City are not well maintained. The government of Surakarta City must listening all complains of street vendors for the smoothness and orderliness of trading activity of street vendors. Not only listening, but the government of Surakarta City also gives appropriate and best solution to street vendors such that street vendors feel comfort in selling and their income is better than before.

  14. Street Children and Employment Opportunities

    International Nuclear Information System (INIS)

    Enos, H.N.; Njoka, M.

    1999-01-01

    Although there is a general realization that there are 'people' in the streets, we often take the phenomenon for granted probably because we wake up and go home only to come to the streets the following morning and still find the people. This situation is however changing with the emergence of 'birth' and increase of street children as we begin to take into consideration the category of people to be routinely found on the streets. The phrase 'street children' refer to the children below the statutory adult age living on or found on the streets. These children derive their livelihood from the streets. While the children on the streets may have a 'home' to go to, the latter are an integral part of the street having nowhere to retire to at the end of the day. The street children live in abject poverty and are exposed to many risks. They suffer from malnutrition and deficiency diseases due to low and poor nutrition intake. The street girls get trapped in teenage prostitution quite early in life. Of concern are the issues related to the working street children. Many street children engage in collecting and selling waste paper, bottles and plastics. They are referred to as 'chokora' because of their work of turning garbage upside down as they look for something useful. Unfortunately they have to sell these wastes to powerful forces including people who underpay and harrass them

  15. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Science.gov (United States)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M.

    2015-02-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter dispersion calculations, and a traffic increment calculation wherever applicable. At each monitoring station fulfilling a few data coverage criteria, measured concentrations in the base year 2009 are explained to the extent possible and then modelled for the past and future. More than 1850 monitoring stations are covered, including more than 300 traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are

  16. Mathematical models for atmospheric pollutants. Final report

    International Nuclear Information System (INIS)

    Drake, R.L.; Barrager, S.M.

    1979-08-01

    The present and likely future roles of mathematical modeling in air quality decisions are described. The discussion emphasizes models and air pathway processes rather than the chemical and physical behavior of specific anthropogenic emissions. Summarized are the characteristics of various types of models used in the decision-making processes. Specific model subclasses are recommended for use in making air quality decisions that have site-specific, regional, national, or global impacts. The types of exposure and damage models that are currently used to predict the effects of air pollutants on humans, other animals, plants, ecosystems, property, and materials are described. The aesthetic effects of odor and visibility and the impact of pollutants on weather and climate are also addressed. Technical details of air pollution meteorology, chemical and physical properties of air pollutants, solution techniques, and air quality models are discussed in four appendices bound in separate volumes

  17. A review of variables of urban street connectivity for spatial connection

    International Nuclear Information System (INIS)

    Mohamad, W S N W; Said, I

    2014-01-01

    Several studies on street connectivity in cities and towns have been modeled on topology, morphology, technology and psychology of people living in the urban environment. Street connectivity means the connection of streets that offers people alternative routes. However, there emerge difficulties to determine the suitable variables and analysis to be chosen in defining the accurate result for studies street connectivity. The aim of this paper is to identify variables of street connectivity by applying GIS and Space Syntax. This paper reviews the variables of street connectivity from 15 past articles done in 1990s to early 2000s from journals of nine disciplines on Environment and Behavior, Planning and Design, Computers, Environment and Urban Systems, Applied Earth Observation and Geo-information, Environment and Planning, Physica A: Statistical Mechanics and its Applications, Environmental Psychology, Social Science and Medicine and Building and Environment. From the review, there are four variables found for street connectivity: link (streets-streets, street-nodes or node-streets, nodes-nodes), accessibility, least-angle, and centrality. Space syntax and GIS are suitable tools to analyze the four variables relating to systematic street systems for pedestrians. This review implies that planners of the street systems, in the aspect of street connectivity in cities and towns, should consider these four variables

  18. A review of variables of urban street connectivity for spatial connection

    Science.gov (United States)

    Mohamad, W. S. N. W.; Said, I.

    2014-02-01

    Several studies on street connectivity in cities and towns have been modeled on topology, morphology, technology and psychology of people living in the urban environment. Street connectivity means the connection of streets that offers people alternative routes. However, there emerge difficulties to determine the suitable variables and analysis to be chosen in defining the accurate result for studies street connectivity. The aim of this paper is to identify variables of street connectivity by applying GIS and Space Syntax. This paper reviews the variables of street connectivity from 15 past articles done in 1990s to early 2000s from journals of nine disciplines on Environment and Behavior, Planning and Design, Computers, Environment and Urban Systems, Applied Earth Observation and Geo-information, Environment and Planning, Physica A: Statistical Mechanics and its Applications, Environmental Psychology, Social Science and Medicine and Building and Environment. From the review, there are four variables found for street connectivity: link (streets-streets, street-nodes or node-streets, nodes-nodes), accessibility, least-angle, and centrality. Space syntax and GIS are suitable tools to analyze the four variables relating to systematic street systems for pedestrians. This review implies that planners of the street systems, in the aspect of street connectivity in cities and towns, should consider these four variables.

  19. The design of optical module of LED street lamp with non-axial symmetrical reflector

    Science.gov (United States)

    Lu, Ming-Jun; Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2010-05-01

    In recently, many research focus on the LED applications for environmental protection so a number of LED street lamps are presented. Although LED has many advantages for environmental protection, its special optical characteristics, such as intensity distribution, always limit the advantages in many applications. Therefore, we always need to do the secondary optical design for LED street lamp to replace the traditional optical designs that are designed for high-pressure sodium lamps and mercury lamps. According to the situation, we design an optical module of LED street lamp with LEDs and secondary optical design. First, the LEDs are placed on freeform reflector for the specific illuminated conditions. We design the optical module of street lamp with the two conditions that include the uniformity and the ratio of length to width in the illuminated area and without any light pollution. According to the simulation with the designed optical module, the uniformity in the illuminated area is about 0.6 that is better than the general condition, 0.3, and the ratio of length to width in the illuminated area is 3:1 in which the length is 30 meters and the width is 10 meters. Therefore, the design could let LED street lamp fits the two conditions, uniformity and ratio in the illuminated area.

  20. Level and Contamination Assessment of Environmentally Sensitive Elements in Smaller than 100 μm Street Dust Particles from Xining, China

    Directory of Open Access Journals (Sweden)

    Ni Zhao

    2014-02-01

    Full Text Available Concentrations of the environmentally sensitive elements (ESEs As, Co, Cu, Mn, Ni, Pb, V and Zn in smaller than 100 μm street dust particles from Xining were measured using X-ray fluorescence spectrometry and their contamination levels were assessed based on enrichment factor (EF, geoaccumulation index (Igeo and pollution load index (PLI. The concentrations of As, Co, Cu, Mn, Ni, Pb, V and Zn in smaller than 100 μm street dust particles from Xining are 0.1–0.8, 2.7–10.9, 0.7–5.2, 0.3–1.1, 0.6–2.5, 1.2–11.1, 0.7–1.3 and 0.4–2.9 times the background values of Qinghai soil, respectively. The calculated EF and Igeo values reveal the order Co > Pb > Cu > Zn > V > Ni > Mn > As. The EF and Igeo values of Co, Cu, Pb and Zn are higher indicating that there is considerable pollution by these elements in smaller than 100 μm street dust particles, especially for Co. The EF and Igeo of Mn, Ni and V are lower and the assessment results indicate an absence of distinct Mn, Ni and V pollution in the studied samples. The mean value of PLIsite is 1.14, indicating a slightly pollution in the whole city of Xining. The order of PLIarea for the five tested districts is Center District (CD > East District (ED > West District (WD > North District (ND > South District (SD, showing that ESEs pollution in the South District is the lightest while it is the highest in the Central District.

  1. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    Memon, R.A.; Lal, K.

    2011-01-01

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  2. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  3. Impact of passenger car NOX emissions on urban NO2 pollution - Scenario analysis for 8 European cities

    Science.gov (United States)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2017-12-01

    Residents of large European cities are exposed to NO2 concentrations that often exceed the established air quality standards. Diesel cars have been identified as a major contributor to this situation; yet, it remains unclear to which levels the NOX emissions of diesel cars have to decrease to effectively mitigate urban NO2 pollution across Europe. Here, we take a continental perspective and model urban NO2 pollution in a generic street canyon of 8 major European cities for various NOX emission scenarios. We find that a reduction in the on-road NOX emissions of diesel cars to the Euro 6 level can in general decrease the regional and urban NO2 concentrations and thereby the frequency of exceedances of the NO2 air quality standard. High NO2 fractions in the NOX emissions of diesel cars tend to increase the urban NO2 concentrations only in proximity of intense road traffic typically found on artery roads in large cities like Paris and London. In cities with a low share of diesel cars in the vehicle fleet such as Athens or a high contribution from the NO2 background to the urban NO2 pollution such as Krakow, measures addressing heavy-duty vehicles, and the manufacturing, energy, and mining industry are necessary to decrease urban air pollution. We regard our model results as robust albeit subject to uncertainty resulting from the application of a generic street layout. With small modifications in the input parameters, our model could be used to assess the impact of NOX emissions from road transport on NO2 air pollution in any European city.

  4. Street children and political violence: a socio-demographic analysis of street children in Rwanda.

    Science.gov (United States)

    Veale, Angela; Donà, Giorgia

    2003-03-01

    The aims were: (1) to examine the profile of African street children and to assess the link between street children in Africa and political violence; (2) to undertake a systematic examination of causal factors of street children in postgenocide Rwanda; and (3) to situate this analysis in the context of the socio-cultural and political impact of the genocide on Rwandan communities. Observational mapping examined the profile and activities of Rwandan street children. Structured interviews were carried out with 290 children in four regional towns to obtain information on socio-demographic, familial, educational background, causal factors surrounding street life involvement, psychological well-being, and relationship to the street. Focus group discussions and key informant interviews examined the relationship between street children and the broader Rwandan society. Street children in Rwanda were predominantly adolescent boys, almost half of whom were homeless (42%), with a high proportion of orphaned children or children who had lost at least one parent. Two variables predicted homelessness: child's guardian and reason for being in street. Qualitative accounts of children conveyed the impact of death of family members, repatriation, imprisonment of parents, and poverty on their lives. The analysis highlighted the need for community based support for children in alternative guardianship care and for policies to support the reintegration of male youths in postconflict welfare strategies as prevention strategies for street migration.

  5. Adolescent Hopefulness in Tanzania: Street Youth, Former Street Youth, and School Youth

    Science.gov (United States)

    Nalkur, Priya G.

    2009-01-01

    This study compares hope in street youth, former street youth, and school youth (aged 12-18) in Tanzania. Responding to Snyder's hope theory, the author argues that not only personal agency but also the stability of living context (street, shelter, home) shapes hopefulness. Employing qualitative and quantitative analyses, the author presents a…

  6. Lung cancer risk assessment due to traffic-generated particles exposure in urban street canyons: A numerical modelling approach.

    Science.gov (United States)

    Scungio, M; Stabile, L; Rizza, V; Pacitto, A; Russi, A; Buonanno, G

    2018-08-01

    Combustion-generated nanoparticles are responsible for negative health effects due to their ability to penetrate in the lungs, carrying toxic compounds with them. In urban areas, the coexistence of nanoparticle sources and particular street-building configurations can lead to very high particle exposure levels. In the present paper, an innovative approach for the evaluation of lung cancer incidence in street canyon due to exposure to traffic-generated particles was proposed. To this end, the literature-available values of particulate matter, PAHs and heavy metals emitted from different kind of vehicles were used to calculate the Excess Lifetime Cancer Risk (ELCR) at the tailpipe. The estimated ELCR was then used as input data in a numerical CFD (Computational Fluid Dynamics) model that solves the mass, momentum, turbulence and species transport equations, in order to evaluate the cancer risk in every point of interest inside the street canyon. Thus, the influence of wind speed and street canyon geometry (H/W, height of building, H and width of the street, W) on the ELCR at street level was evaluated by means of a CFD simulation. It was found that the ELCR calculated on the leeward and windward sides of the street canyon at a breathable height of 1.5 m, for people exposed 15 min per day for 20 years, is equal to 1.5 × 10 -5 and 4.8 × 10 -6 , respectively, for wind speed of 1 m/s and H/W equal to 1. The ELCR at street level results higher on the leeward side for aspect ratios equal to 1 and 3, while for aspect ratio equal to 2 it is higher on the windward side. In addition, the simulations showed that with the increasing of wind speed the ELCR becomes lower everywhere in the street canyon, due to the increased in dispersion. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Addictive behavior of street children: interculturation and resilience].

    Science.gov (United States)

    Kommegne, T; Denoux, P; Bernoussi, A; Njiengwe, E F

    2014-09-01

    This research belongs to a more comprehensive study on the care of street children in Cameroon. The idea is to develop an analysis of the street pathology where symptoms such as addictive behavior and drug addiction can be found. Beside HIV AIDS, addictive behaviors are the main risk factors that many professionals have to face with while dealing with the street problems today. Through an intercultural approach, we examined the practices of addictive typology, their initiatory role and their function in the integration of the street system. We also analysed their importance in the survival strategies. After an overview of theoretical controversies that feed the debate on addictions, we questioned the impact of these practices on the street career through the prism of general theory of addictions, particularly the hedonic management model. Addiction helps to resist adversity, it helps to desist and then to begin a harmonious neo development despite the horrors of the street experience. We undertook a quantitative and qualitative study on a sample of 148 street children. We proposed to 128 of them a questionnaire focused on addictive behaviors and survival strategies in the street context. We notably evaluated the street career of 24 of them, using interviews and standardized tests to assess self-esteem (Coopersmith's SEI) frustration tolerance (Rosenweig's P-F) and self-efficacy (Sherer's SE Scale) in order to measure the impact of addictive behaviors on the resilience process. We found that the street career is essentially traumatic, and that addictive behaviors involving various integration strategies are strongly linked to the interculturation process through the identity strategies and the intercultural competences. Addiction itself is not significantly related to self-esteem issues but strongly impacts on self-efficacy and the ability to tolerate frustration. They allow the street children to withstand the street adversity but are a real obstacle to their

  8. Trees in the city: valuing street trees in Portland, Oregon

    Science.gov (United States)

    G.H. Donovan; D.T. Butry

    2010-01-01

    We use a hedonic price model to simultaneously estimate the effects of street trees on the sales price and the time-on-market (TOM) of houses in Portland. Oregon. On average, street trees add $8,870 to sales price and reduce TOM by 1.7 days. In addition, we found that the benefits of street trees spill over to neighboring houses. Because the provision and maintenance...

  9. Smart street lighting management

    Energy Technology Data Exchange (ETDEWEB)

    Pizzuti, S.; Annunziato, M. [Energy New Technologies and Sustainable Economic Development Agency ENEA, Rome (Italy); Moretti, F. [Automation and Computer Science Department, University & #x27; Roma Tre& #x27; , Rome (Italy)

    2013-08-15

    In this work, we propose a new street lighting energy management system in order to reduce energy consumption. The key idea we want to accomplish is that of 'energy on demand' meaning that energy, in this case light, is provided only when needed. In order to achieve this goal, it is critical to have a reliable demand model, which in the case of street lighting turns out to be a traffic flow rate forecasting model. In order to achieve this goal, several methods on the 1-h prediction have been compared and the one providing the best results is based on artificial neural networks. Moreover, several control strategies have been tested and the one which gave the best energy savings is the adaptive one we carried out. Experimentation has been carried out on real data and the study shows that with the proposed approach, it is possible to save up to 50 % of energy compared to no regulation systems.

  10. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  11. Comparison of heavy metal loads in stormwater runoff from major and minor urban roads using pollutant yield rating curves

    International Nuclear Information System (INIS)

    Davis, Brett; Birch, Gavin

    2010-01-01

    Trace metal export by stormwater runoff from a major road and local street in urban Sydney, Australia, is compared using pollutant yield rating curves derived from intensive sampling data. The event loads of copper, lead and zinc are well approximated by logarithmic relationships with respect to total event discharge owing to the reliable appearance of a first flush in pollutant mass loading from urban roads. Comparisons of the yield rating curves for these three metals show that copper and zinc export rates from the local street are comparable with that of the major road, while lead export from the local street is much higher, despite a 45-fold difference in traffic volume. The yield rating curve approach allows problematic environmental data to be presented in a simple yet meaningful manner with less information loss. - A simple method for representing data onroad runoff pollution allows comparisons among dissimilar sites and could form the basis for a pollution database.

  12. pH in exhaled breath condensate and nasal lavage as a biomarker of air pollution-related inflammation in street traffic-controllers and office-workers

    Directory of Open Access Journals (Sweden)

    Thamires Marques de Lima

    2013-12-01

    Full Text Available OBJECTIVE: To utilize low-cost and simple methods to assess airway and lung inflammation biomarkers related to air pollution. METHODS: A total of 87 male, non-smoking, healthy subjects working as street traffic-controllers or office-workers were examined to determine carbon monoxide in exhaled breath and to measure the pH in nasal lavage fluid and exhaled breath condensate. Air pollution exposure was measured by particulate matter concentration, and data were obtained from fixed monitoring stations (8-h work intervals per day, during the 5 consecutive days prior to the study. RESULTS: Exhaled carbon monoxide was two-fold greater in traffic-controllers than in office-workers. The mean pH values were 8.12 in exhaled breath condensate and 7.99 in nasal lavage fluid in office-workers; these values were lower in traffic-controllers (7.80 and 7.30, respectively. Both groups presented similar cytokines concentrations in both substrates, however, IL-1β and IL-8 were elevated in nasal lavage fluid compared with exhaled breath condensate. The particulate matter concentration was greater at the workplace of traffic-controllers compared with that of office-workers. CONCLUSION: The pH values of nasal lavage fluid and exhaled breath condensate are important, robust, easy to measure and reproducible biomarkers that can be used to monitor occupational exposure to air pollution. Additionally, traffic-controllers are at an increased risk of airway and lung inflammation during their occupational activities compared with office-workers.

  13. Total pollution effect of urban surface runoff.

    Science.gov (United States)

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  14. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  15. Geostatistical models for air pollution

    International Nuclear Information System (INIS)

    Pereira, M.J.; Soares, A.; Almeida, J.; Branquinho, C.

    2000-01-01

    The objective of this paper is to present geostatistical models applied to the spatial characterisation of air pollution phenomena. A concise presentation of the geostatistical methodologies is illustrated with practical examples. The case study was conducted in an underground copper-mine located on the southern of Portugal, where a biomonitoring program using lichens has been implemented. Given the characteristics of lichens as indicators of air pollution it was possible to gather a great amount of data in space, which enabled the development and application of geostatistical methodologies. The advantages of using geostatistical models compared with deterministic models, as environmental control tools, are highlighted. (author)

  16. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  17. Study on a model of street vended food choices by Korean high school students.

    Science.gov (United States)

    Cho, Kiwoong; Park, Sanghyun; Joo, Nami

    2011-10-01

    Street vended food (SVF) includes food and beverages prepared and sold outdoors or in public areas by street merchants for consumption on the scene or later without further preparation. Due to its low price and convenience, SVF has been popular in Korea for a long time, particularly with high school students. Beyond Korea, SVF is also popular in southeast Asia and southern Africa in the form of ready-to-eat food. This study on high school students, who are main consumers of SVF in Korea, focused on the factors that affect consumer loyalty. The study was performed by questionnaire and used AMOS software to develop a structural equation model. The results of verifying the model's fidelity were χ(2) = 685.989, df = 261, GFI = 0.851, AGFI = 0.814, NFI = 0.901, CFI = 0.907, RMR = 0.048, indicating a satisfying structural model. SVF quality and service, emotional response, and the physical environment had a statistically significant effect on consumer loyalty. In contrast, SVF sanitation had no statistically significant effect on consumer loyalty. Based on these results, the sanitary management of SVF needs to be addressed immediately combined with education for SVF providers to maintain a clean environment.

  18. Assessment of noise pollution indices in Birjand old districts in 2010

    Directory of Open Access Journals (Sweden)

    Nargess Moasheri

    2013-02-01

    Conclusion: Since the level of noise pollution is critical especially along Taleghani Street which passes right through the city and along Emam Reza Hospital, as a sensitive area, it is necessary to design and apply suitable measurements, as well as to consider the level of their effectiveness in order to decrease noise pollution.

  19. Streets? Where We're Going, We Don't Need Streets

    Science.gov (United States)

    Bailey, J.

    2017-12-01

    In 2007 Google Street View started as a project to provide 360-degree imagery along streets, but in the decade since has evolved into a platform through which to explore everywhere from the slope of everest, to the middle of the Amazon rainforest to under the ocean. As camera technology has evolved it has also become a tool for ground truthing maps, and provided scientific observations, storytelling and education. The Google Street View "special collects" team has undertaken increasingly more challenging projects across 80+ countries and every continent. All of which culminated in possibly the most ambitious collection yet, the capture of Street View on board the International Space Station. Learn about the preparation and obstacles behind this and other special collects. Explore these datasets through both Google Earth and Google Expeditions VR, an educational tool to take students on virtual field trips using 360 degree imagery.

  20. High-Resolution Air Pollution Mapping with Google Street View Cars : Exploiting Big Data

    NARCIS (Netherlands)

    Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P

    2017-01-01

    Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations.

  1. Time-series analysis to study the impact of an intersection on dispersion along a street canyon.

    Science.gov (United States)

    Richmond-Bryant, Jennifer; Eisner, Alfred D; Hahn, Intaek; Fortune, Christopher R; Drake-Richman, Zora E; Brixey, Laurie A; Talih, M; Wiener, Russell W; Ellenson, William D

    2009-12-01

    This paper presents data analysis from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study to assess the transport of ultrafine particulate matter (PM) across urban intersections. Experiments were performed in a street canyon perpendicular to a highway in Brooklyn, NY, USA. Real-time ultrafine PM samplers were positioned on either side of an intersection at multiple locations along a street to collect time-series number concentration data. Meteorology equipment was positioned within the street canyon and at an upstream background site to measure wind speed and direction. Time-series analysis was performed on the PM data to compute a transport velocity along the direction of the street for the cases where background winds were parallel and perpendicular to the street. The data were analyzed for sampler pairs located (1) on opposite sides of the intersection and (2) on the same block. The time-series analysis demonstrated along-street transport, including across the intersection when background winds were parallel to the street canyon and there was minimal transport and no communication across the intersection when background winds were perpendicular to the street canyon. Low but significant values of the cross-correlation function (CCF) underscore the turbulent nature of plume transport along the street canyon. The low correlations suggest that flow switching around corners or traffic-induced turbulence at the intersection may have aided dilution of the PM plume from the highway. This observation supports similar findings in the literature. Furthermore, the time-series analysis methodology applied in this study is introduced as a technique for studying spatiotemporal variation in the urban microscale environment.

  2. Emissions from street vendor cooking devices (charcoal grilling). Final report, January 1998--March 1999

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1999-06-01

    The report discusses a joint US/Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in the streets of Mexicali, Mexico, were investigated experimentally by measuring levels of particulate matter, particle size distributions, volatile and semivolatile organic compounds, aldehydes, and oxides of nitrogen and sulfur, emitted when meat is cooked on a grill over a charcoal fire. To investigate the emission rate, both beef and chicken were tested. Furthermore, both meats were marinated with a mixture similar to that used by the street vendors. Some tests were conducted with non-marinated beef for comparison. Two blank runs were performed sampling charcoal fires without meat. Finally, a simple control device, normally used in an exhaust fan to trap grease over a kitchen stove, was evaluated for its effectiveness in reducing emissions

  3. Influence of photochemical processes on traffic-related airborne pollutants in urban street canyon

    Czech Academy of Sciences Publication Activity Database

    Střižík, Michal; Zelinger, Zdeněk; Kubát, Pavel; Civiš, Svatopluk; Bestová, I.; Nevrlý, Václav; Kadeřábek, P.; Čadil, J.; Berger, P.; Černý, A.; Engst, Pavel

    2016-01-01

    Roč. 147, SEP 2016 (2016), s. 1-10 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GA14-14696S; GA MŠk(CZ) LD14022 Grant - others:COST(XE) TD 1105 Institutional support: RVO:61388955 ; RVO:61388998 Keywords : remote sensing * LIDAR * Urban street canyon Subject RIV: CF - Physical ; Theoretical Chemistry; BK - Fluid Dynamics (UT-L) Impact factor: 1.326, year: 2016

  4. Thermal Comfort Assessment in The Open Space in Bandung Case Study Dago Street and Riau Street

    Science.gov (United States)

    Sugangga, M.; Janesonia, K. I.; Illiyin, D. F.; Donny Koerniawan, M.

    2018-05-01

    Bandung’s temperature has been higher since last years. This phenomenon affects the level of thermal comfort in open space. One indicator that determines the thermal comfort level is the type of activity performed by the open space user. Riau Street and Dago Street are corridors that are often used by the people for strolling, jogging, shopping. Dago Street has special event every Sunday namely car free day. Both corridors have different orientation; Dago Street is North to South corridor while Riau Street’s is West to East. The goal of the study is to compare people’s perception of thermal comfort in both corridors. This research uses two methods, namely qualitative method and quantitative method. Based on the results of qualitative analysis found that the thermal conditions in Dago Street more comfortable than the Riau Street. The result of quantitative analysis found that the average PET (thermal comfort indices) value of Dago Street was at 27.5 °C PET and Riau Street 28.6 °C PET. Dago Street is considered more convenient because it has a lower PET value than Riau Street. The people perception of thermal comfort is very important to start the steps for designing the orientation of street in urban design.

  5. Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements

    Science.gov (United States)

    Wang, An; Fallah-Shorshani, Masoud; Xu, Junshi; Hatzopoulou, Marianne

    2016-10-01

    Near-road concentrations of nitrogen dioxide (NO2), a known marker of traffic-related air pollution, were simulated along a busy urban corridor in Montreal, Quebec using a combination of microscopic traffic simulation, instantaneous emission modeling, and air pollution dispersion. In order to calibrate and validate the model, a data collection campaign was designed. For this purpose, measurements of NO2 were conducted mid-block along four segments of the corridor throughout a four-week campaign conducted between March and April 2015. The four segments were chosen to be consecutive and yet exhibiting variability in road configuration and built environment characteristics. Roadside NO2 measurements were also paired with on-site and fixed-station meteorological data. In addition, traffic volumes, composition, and routing decisions were collected using video-cameras located at upstream and downstream intersections. Dispersion of simulated emissions was conducted for eight time slots and under a range of meteorological conditions using three different models with vastly different dispersion algorithms (OSPM, CALINE 4, and SIRANE). The three models exhibited poor correlation with near-road NO2 concentrations and were better able to simulate average concentrations occurring along the roadways rather than the range of concentrations measured under diverse meteorological and traffic conditions. As hypothesized, the model SIRANE that can handle a street canyon configuration was the most sensitive to the built environment especially to the presence of tall buildings around the road. In contrast, CALINE exhibited the lowest sensitivity to the built environment.

  6. The Code of the Street and Violent Versus Property Crime Victimization.

    Science.gov (United States)

    McNeeley, Susan; Wilcox, Pamela

    2015-01-01

    Previous research has shown that individuals who adopt values in line with the code of the street are more likely to experience violent victimization (e.g., Stewart, Schreck, & Simons, 2006). This study extends this literature by examining the relationship between the street code and multiple types of violent and property victimization. This research investigates the relationship between street code-related values and 4 types of victimization (assault, breaking and entering, theft, and vandalism) using Poisson-based multilevel regression models. Belief in the street code was associated with higher risk of experiencing assault, breaking and entering, and vandalism, whereas theft victimization was not related to the street code. The results suggest that the code of the street influences victimization broadly--beyond violence--by increasing behavior that provokes retaliation from others in various forms.

  7. Exposure to maltreatment and urban violence in children working on the streets in São Paulo, Brazil: factors associated with street work

    Directory of Open Access Journals (Sweden)

    Andrea F. Mello

    2014-09-01

    Full Text Available Objective: To quantitatively study the exposure to childhood maltreatment and urban violence in children from families with at least one child working on the streets and to investigate the relationship between these factors and street work. Methods: Families who participated in a nongovernmental organization (NGO program to eliminate child labor were included. Data concerning sociodemographic characteristics, punishment methods used in the family environment against the children, five types of abuse and neglect perpetrated by the caregivers, urban violence exposure and family functioning were collected. Results: The sample included 126 children who were working on the streets and 65 siblings who were not working on the streets. Caregivers reported high levels of severe physical punishment. The children reported high levels of abuse and neglect, and high levels of urban violence exposure. The families showed a predominance of dysfunctional and unsatisfactory relationships. A multiple logistic regression model showed that age older than 12 years and severe physical punishment at home were associated with street work. Conclusion: Interventions to decrease the risk of child street work should be family-focused and should aim to reduce violence in the family environment.

  8. The impact of urban open space and 'lift-up' building design on building intake fraction and daily pollutant exposure in idealized urban models.

    Science.gov (United States)

    Sha, Chenyuan; Wang, Xuemei; Lin, Yuanyuan; Fan, Yifan; Chen, Xi; Hang, Jian

    2018-08-15

    Sustainable urban design is an effective way to improve urban ventilation and reduce vehicular pollutant exposure to urban residents. This paper investigated the impacts of urban open space and 'lift-up' building design on vehicular CO (carbon monoxide) exposure in typical three-dimensional (3D) urban canopy layer (UCL) models under neutral atmospheric conditions. The building intake fraction (IF) represents the fraction of total vehicular pollutant emissions inhaled by residents when they stay at home. The building daily CO exposure (E t ) means the extent of human beings' contact with CO within one day indoor at home. Computational fluid dynamics (CFD) simulations integrating with these two concepts were performed to solve turbulent flow and assess vehicular CO exposure to urban residents. CFD technique with the standard k-ε model was successfully validated by wind tunnel data. The initial numerical UCL model consists of 5-row and 5-column (5×5) cubic buildings (building height H=street width W=30m) with four approaching wind directions (θ=0°, 15°, 30°, 45°). In Group I, one of the 25 building models is removed to attain urban open space settings. In Group II, the first floor (Lift-up1), or second floor (Lift-up2), or third floor (Lift-up3) of all buildings is elevated respectively to create wind pathways through buildings. Compared to the initial case, urban open space can slightly or significantly reduce pollutant exposure for urban residents. As θ=30° and 45°, open space settings are more effective to reduce pollutant exposure than θ=0° and 15°.The pollutant dilution near or surrounding open space and in its adjacent downstream regions is usually enhanced. Lift-up1 and Lift-up2 experience much greater pollutant exposure reduction in all wind directions than Lift-up3 and open space. Although further investigations are still required to provide practical guidelines, this study is one of the first attempts for reducing urban pollutant exposure by

  9. Spatial Character Analysis of Streets as Public Spaces: The Case of Izmit Hurriyet and Cumhuriyet Street, Turkey

    Science.gov (United States)

    Özbayraktar, Mehtap; Pekdemir, Merve; Mırzaliyeva, Gumru

    2017-10-01

    strangers; the house of the society; the main elements of urban existence; spaces as changeable as life; symbolic models of urban problems; and symbols of free city. However, the role of streets, which are so important in our daily life, has only been reduced to pass. They have been divided into two between pedestrians and vehicles and lost many social functions of theirs. Accordingly, the present study aims to answer the question of whether the abovementioned features and characters of streets as public spaces are still maintained with special reference to a street, which is one of the main streets of Izmit, Turkey. The street, which was called İmre Tökeli Avenue, Hamidiye Street (1908), and Demiryolu Tekeli Street (1948) in the course of time, is currently called Hürriyet and Cumhuriyet Street. The people also call it “walking road”. According to the sources, the history of this street is the history of Izmit as well. The past and present spatial character of the study area will be revealed through archive reviews, city development plants, face-to-face interviews, and surveys. Problems will be determined, and recommendations will be developed.

  10. Wall Street som kreationistisk forkynder

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2016-01-01

    Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...

  11. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  12. Social and economic characteristics of street youth by gender and level of street involvement in Eldoret, Kenya.

    Directory of Open Access Journals (Sweden)

    Rebecca Sorber

    Full Text Available Street-connected youth are a neglected and vulnerable population, particularly in resource-constrained settings. The development of interventions and supports for this population requires insight into how they live. This study describes the social and economic characteristics of a convenience sample of street youth (SY in Eldoret, Kenya.Participants were eligible if they were aged 12-21, living in Eldoret, spending days only (part-time, or nights and days on the street (full-time and able and willing to consent or assent. Data were collected using a standardized interview conducted in English or Kiswahili. Binary dependent variables were having been arrested and/or jailed, and first priority for spending money (food vs. other. Nominal categorical dependent variables included major source of support, and major reason for being street-involved. Multivariable analysis used logistic regression models to examine the association of gender and level of street-involvement with social and economic factors of interest adjusting for age and length of time on the street. Data were analyzed using SAS 9.3.Of the 200 SY enrolled, 41% were female, mean age of 16.3 years; 71% were on the street full-time, and 29% part-time. Compared with part-time SY, full-time SY were more likely to have been arrested (Adjusted Odds Ratio [AOR]: 2.33, 95% Confidence Interval [95%CI]:1.01-5.35, name food as their first spending priority (AOR: 2.57, 95%CI:1.03-6.45, have left home due to violence (AOR: 5.54, 95%CI: 1.67-18.34, and more likely to report friends on the street as a major source of support (AOR: 3.59, 95% CI: 1.01-12.82. Compared with females, males were more likely to have ever been arrested (AOR: 2.66, 95%CI:1.14-6.18, and to have ever been jailed (AOR: 3.22, 95%CI:1.47-7.02.These results suggest a high degree of heterogeneity and vulnerability among SY in this setting. There is an urgent need for interventions taking into consideration these characteristics.

  13. Healthy neighborhoods: walkability and air pollution.

    Science.gov (United States)

    Marshall, Julian D; Brauer, Michael; Frank, Lawrence D

    2009-11-01

    The built environment may influence health in part through the promotion of physical activity and exposure to pollution. To date, no studies have explored interactions between neighborhood walkability and air pollution exposure. We estimated concentrations of nitric oxide (NO), a marker for direct vehicle emissions), and ozone (O(3)) and a neighborhood walkability score, for 49,702 (89% of total) postal codes in Vancouver, British Columbia, Canada. NO concentrations were estimated from a land-use regression model, O(3) was estimated from ambient monitoring data; walkability was calculated based on geographic attributes such as land-use mix, street connectivity, and residential density. All three attributes exhibit an urban-rural gradient, with high walkability and NO concentrations, and low O(3) concentrations, near the city center. Lower-income areas tend to have higher NO concentrations and walkability and lower O(3) concentrations. Higher-income areas tend to have lower pollution (NO and O(3)). "Sweet-spot" neighborhoods (low pollution, high walkability) are generally located near but not at the city center and are almost exclusively higher income. Increased concentration of activities in urban settings yields both health costs and benefits. Our research identifies neighborhoods that do especially well (and especially poorly) for walkability and air pollution exposure. Work is needed to ensure that the poor do not bear an undue burden of urban air pollution and that neighborhoods designed for walking, bicycling, or mass transit do not adversely affect resident's exposure to air pollution. Analyses presented here could be replicated in other cities and tracked over time to better understand interactions among neighborhood walkability, air pollution exposure, and income level.

  14. Spatial distribution of pollutants in the area of the former CHP plant

    Science.gov (United States)

    Cichowicz, Robert

    2018-01-01

    The quality of atmospheric air and level of its pollution are now one of the most important issues connected with life on Earth. The frequent nuisance and exceedance of pollution standards often described in the media are generated by both low emission sources and mobile sources. Also local organized energy emission sources such as local boiler houses or CHP plants have impact on air pollution. At the same time it is important to remember that the role of local power stations in shaping air pollution immission fields depends on the height of emitters and functioning of waste gas treatment installations. Analysis of air pollution distribution was carried out in 2 series/dates, i.e. 2 and 10 weeks after closure of the CHP plant. In the analysis as a reference point the largest intersection of streets located in the immediate vicinity of the plant was selected, from which virtual circles were drawn every 50 meters, where 31 measuring points were located. As a result, the impact of carbon dioxide, hydrogen sulfide and ammonia levels could be observed and analyzed, depending on the distance from the street intersection.

  15. Evaluation of energy efficiency in street lighting: model proposition considering climate variability

    Directory of Open Access Journals (Sweden)

    Amaury Caruzzo

    2015-12-01

    Full Text Available This paper assesses the impacts of climate variability on efficient electricity consumption in street lighting in Brazil. The Climate Demand Method (CDM was applied, and the energy savings achieved by Brazil’s National Efficient Street Lighting Program (ReLuz in 2005 were calculated, considering the monthly climatology of sunshine duration, disaggregated by county in Brazil. The total energy savings in street lighting in 2005 were estimated at 63 GWh/year or 1.39% higher than the value determined by ReLuz/Eletrobrás and there was a 15 MW reduction in demand in Brazil, considering the nearly 393,000 points in ReLuz served in 2005. The results indicate that, besides the difference in latitude, climate variability in different county increases the daily usage of street lighting up to 19%. Furthermore, Brazil’s large size means that seasonality patterns in energy savings are not homogeneous, and there is a correlation between the monthly variability in sunshine duration and the latitude of mesoregions. The CDM was also shown to be suitable for ranking mesoregions with the highest levels of energy saving lighting.

  16. RACE, CODE OF THE STREET, AND VIOLENT DELINQUENCY: A MULTILEVEL INVESTIGATION OF NEIGHBORHOOD STREET CULTURE AND INDIVIDUAL NORMS OF VIOLENCE*

    Science.gov (United States)

    Stewart, Eric A.; Simons, Ronald L.

    2011-01-01

    The study outlined in this article drew on Elijah Anderson’s (1999) code of the street perspective to examine the impact of neighborhood street culture on violent delinquency. Using data from more than 700 African American adolescents, we examined 1) whether neighborhood street culture predicts adolescent violence above and beyond an adolescent’s own street code values and 2) whether neighborhood street culture moderates individual-level street code values on adolescent violence. Consistent with Anderson’s hypotheses, neighborhood street culture significantly predicts violent delinquency independent of individual-level street code effects. Additionally, neighborhood street culture moderates individual-level street code values on violence in neighborhoods where the street culture is widespread. In particular, the effect of street code values on violence is enhanced in neighborhoods where the street culture is endorsed widely. PMID:21666759

  17. Dynamics of a Stage Structured Pest Control Model in a Polluted Environment with Pulse Pollution Input

    OpenAIRE

    Liu, Bing; Xu, Ling; Kang, Baolin

    2013-01-01

    By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity ...

  18. LEAD: THE SILENT KILLER IN OUR FAVOURITE STREET FOOD

    Directory of Open Access Journals (Sweden)

    Krishnajyoti

    2016-03-01

    Full Text Available INTRODUCTION Street vended foods are a very common consumable commodity across age and income groups. It covers a wide range of a variety of food items to suit every need, and are hugely popular all over the country. They can, however, contain toxic heavy metals, like lead, which can pose serious health hazards, including neuropathy, cardiovascular, renal as well as bone diseases. Source of lead can be various artificial food colorants used to increase the palatability of such food, and also automobile emission exhaust smoke that pollutes the street atmosphere, the very place where such food is prepared or kept ready to consume. Contamination with heavy metals is a serious threat because of their toxicity, bioaccumulation and bio magnifications in the food chain. This source of lead toxicity, however, is one aspect of the health hazards that has not been widely explored. The aim of this study is to increase awareness among general population, both consumers and vendors, regarding a very common but often overlooked source of heavy metal contamination. METHODOLOGY Lead was measured by flame atomic absorption spectrophotometry after digestion of food with 98% Nitric acid. RESULTS This present study measures the level of lead in various commonly consumed street vended food items across the streets of Kolkata, India, and shows that the range of its level is much higher than the WHO recommended level of lead in food materials. The level also has close association with the food colorant used. In conclusion, the gross lack of awareness among the general population, both at the vendor and the consumer level, regarding this particular health hazard related to the food they consume on a regular basis, needs to be addressed as a serious issue, and personal safety measures should be undertaken.

  19. Radiocarbon (14C) Concentration of Local Pollution in Street Trees Located at Intersections

    OpenAIRE

    Ogawa, Daisuke

    2018-01-01

    At large intersections, vehicles consume and generate a large amount of fossil fuel. Carbon derived from fossil fuels that do not contain radioactive carbon (14C), i.e., dead carbon, is released in large amounts in the roadside air environment. By means of photosynthesis, street trees along the roadside assimilate both dead carbon, not containing radioactive carbon (14C), and contemporary carbon, which includes radioactive carbon (14C). Therefore, the concentration of radioactive carbon (14C)...

  20. Atmospheric dispersion models for environmental pollution applications

    International Nuclear Information System (INIS)

    Gifford, F.A.

    1976-01-01

    Pollutants are introduced into the air by many of man's activities. The potentially harmful effects these can cause are, broadly speaking, of two kinds: long-term, possibly large-scale and wide-spread chronic effects, including long-term effects on the earth's climate; and acute, short-term effects such as those associated with urban air pollution. This section is concerned with mathematical cloud or plume models describing the role of the atmosphere, primarily in relation to the second of these, the acute effects of air pollution, i.e., those arising from comparatively high concentration levels. The need for such air pollution modeling studies has increased spectacularly as a result of the National Environmental Policy Act of 1968 and, especially, two key court decisions; the Calvert Cliffs decision, and the Sierra Club ruling on environmental non-degradation

  1. An interprovincial cooperative game model for air pollution control in China.

    Science.gov (United States)

    Xue, Jian; Zhao, Laijun; Fan, Longzhen; Qian, Ying

    2015-07-01

    The noncooperative air pollution reduction model (NCRM) that is currently adopted in China to manage air pollution reduction of each individual province has inherent drawbacks. In this paper, we propose a cooperative air pollution reduction game model (CRM) that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distribute the economic benefit of the cooperation (i.e., pollution reduction cost saving) among the provinces in the cooperation based on the Shapley value method. We applied the CRM to the case of SO2 reduction in the Beijing-Tianjin-Hebei region in China. The results, based on the data from 2003-2009, show that cooperation helps lower the overall SO2 pollution reduction cost from 4.58% to 11.29%. Distributed across the participating provinces, such a cost saving from interprovincial cooperation brings significant benefits to each local government and stimulates them for further cooperation in pollution reduction. Finally, sensitivity analysis is performed using the year 2009 data to test the parameters' effects on the pollution reduction cost savings. China is increasingly facing unprecedented pressure for immediate air pollution control. The current air pollution reduction policy does not allow cooperation and is less efficient. In this paper we developed a cooperative air pollution reduction game model that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distributes the cooperation gains (i.e., cost reduction) among the provinces in the cooperation based on the Shapley value method. The empirical case shows that such a model can help improve efficiency in air pollution reduction. The result of the model can serve as a reference for Chinese government

  2. Long-Term Calculations with Large Air Pollution Models

    DEFF Research Database (Denmark)

    Ambelas Skjøth, C.; Bastrup-Birk, A.; Brandt, J.

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  3. Modeling cellular effects of coal pollutants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The goal of this project is to develop and test models for the dose and dose-rate dependence of biological effects of coal pollutants on mammalian cells in tissue culture. Particular attention is given to the interaction of pollutants with the genetic material (deoxyribonucleic acid, or NDA) in the cell. Unlike radiation, which can interact directly with chromatin, chemical pollutants undergo numerous changes before the ultimate carcinogen becomes covalently bound to the DNA. Synthetic vesicles formed from a phospholipid bilayer are being used to investigate chemical transformations that may occur during the transport of pollutants across cellular membranes. The initial damage to DNA is rapidly modified by enzymatic repair systems in most living organisms. A model has been developed for predicting the effects of excision repair on the survival of human cells exposed to chemical carcinogens. In addition to the excision system, normal human cells also have tolerance mechanisms that permit continued growth and division of cells without removal of the damage. We are investigating the biological effect of damage passed to daughter cells by these tolerance mechanisms

  4. Influence of urban morphology on total noise pollution: multifractal description.

    Science.gov (United States)

    Ariza-Villaverde, Ana B; Jiménez-Hornero, Francisco J; Gutiérrez De Ravé, Eduardo

    2014-02-15

    Exposure to ambient noise levels above 65 dB can cause public health problems. The spatial distribution of this kind of pollution is linked to various elements which make up the urban form, such as construction density, the existence of open spaces and the shape and physical position of buildings. Since urban morphology displays multifractal behaviour, the present research studies for the first time the relationship between total noise pollution and urban features, such as street width and building height by means of a joint multifractal spectrum in two neighbourhoods of the city of Cordoba (Andalusia, Spain). According to the results, the joint multifractal spectrum reveals a positive correlation between the total noise pollution and the street width to building height ratio, this being more evident when urban morphology is regular. The information provided by the multifractal analysis completes the description obtained by using urban indexes and landscape metrics and might be useful for urban planning once the linkage between both frameworks has been done. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Street-art

    OpenAIRE

    Rybnikářová, Klára

    2009-01-01

    This thesis is concerned with the street-art and graffiti phenomenon. The theoretical research is focused on presenting the essence and character of this art style, while also watching it from socio-cultural point of view and observing it in context of art history. The theoretical study is followed by the didactical part of thesis, where I present possibilities of using the street-art theme in art education programs in the school setting. My thesis is concluded with a discussion of a practica...

  6. Street Children as M arginal People: The Relationship between Life History and Social Networks on the Street

    OpenAIRE

    SUCHARITKUL, Juthathip

    2007-01-01

    This paper assumes that street children are victims of socioeconomic development policy. As a consequence of the street life experience, children are labeled as street children by society and their way of their life is different from ordinary children, thus pushing them to become marginalized people. The purpose of this paper is to examine the Street Children phenomenon, and especially to study the relationship between their life history and personal networks on the street. The focus is to...

  7. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale.

    Science.gov (United States)

    Livesley, S J; McPherson, G M; Calfapietra, C

    2016-01-01

    Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However, there is an increasing need for empirical evidence as to the magnitude of the impacts, both beneficial and adverse, that urban trees can provide and the role that climatic region and built landscape circumstance play in modifying those impacts. This special section presents new research that advances our knowledge of the ecological and environmental services provided by the urban forest. The 14 studies included provide a global perspective on the role of trees in towns and cities from five continents. Some studies provide evidence for the cooling benefit of the local microclimate in urban green space with and without trees. Other studies focus solely on the cooling benefit of urban tree transpiration at a mesoscale or on cooling from canopy shade at a street and pedestrian scale. Other studies are concerned with tree species differences in canopy interception of rainfall, water uptake from biofilter systems, and water quality improvements through nutrient uptake from stormwater runoff. Research reported here also considers both the positive and the negative impacts of trees on air quality, through the role of trees in removing air pollutants such as ozone as well as in releasing potentially harmful volatile organic compounds and allergenic particulates. A transdisciplinary framework to support future urban forest research is proposed to better understand and communicate the role of urban trees in urban biogeochemical cycles that are highly disturbed, highly managed, and of paramount importance to human health and well-being. Copyright © by the American Society of Agronomy, Crop Science Society of

  8. Drug use among street children and adolescents: what helps?

    Directory of Open Access Journals (Sweden)

    Yone Gonçalves de Moura

    Full Text Available The aim of this study was to investigate factors associated to frequent and heavy drug use among street children and adolescents aged 10 to 18 years. A sample of 2,807 street children and adolescents from the 27 Brazilian state capital cities was analyzed. A World Health Organization questionnaire for non-students was adapted for use in Brazil. Data analysis was performed using logistic regression and decision tree models. Factors inversely associated with frequent and heavy drug use were: being age nine to 11 years (OR = 0.1; school attendance (OR = 0.3; daily time (one to five hours spent on the streets (OR = 0.3 and 0.4; not sleeping on the streets (OR = 0.4; being on the streets for less than one year (OR = 0.4; maintenance of some family bonds (OR = 0.5; presence on the streets of a family member (OR = 0.6; not suffering domestic violence (OR = 0.6; being female (OR = 0.8. All of these variables were significant at the p < 0.05 level. The findings suggest that being younger, having family bonds and engagement in school are important protective factors that affect drug use among this population and should be considered in the formulation of public policies.

  9. Measurement of genotoxic air pollutant exposures in street vendors and school children in and near Bangkok

    International Nuclear Information System (INIS)

    Ruchirawat, Mathuros; Navasumrit, Panida; Settachan, Daam; Tuntaviroon, Jantamas; Buthbumrung, Nantaporn; Sharma, Suman

    2005-01-01

    The effects of air pollution on human health are a great concern, particularly in big cities with severe traffic problems such as Bangkok, Thailand. In this study, exposure to genotoxic compounds in ambient air was studied by analysis of particle-associated polycyclic aromatic hydrocarbons (PAHs) and benzene through direct measurement of concentrations in air as well as through the use of different biomarkers of exposure: urinary 1-hydroxypyrene (1-OHP) for PAHs and urinary t,t-muconic acid (t,t-MA) for benzene. The study was conducted in various susceptible groups of the population with different occupations in 5 traffic-congested areas of Bangkok, as well as in primary school children. The level of total PAHs on the main roads at various sites ranged from 7.10 to 83.04 ng/m 3 , while benzene levels ranged from 16.35 to 49.25 ppb. In contrast, ambient levels in nearby temples, the control sites, ranged from 1.67 to 3.04 ng/m 3 total PAHs and 10.16 to 16.25 ppb benzene. Street vendors selling clothes were exposed to 16.07 ± 1.64 ng/m 3 total PAHs and 21.97 ± 1.50 ppb benzene, levels higher than in monks and nuns residing in nearby temples (5.34 ± 0.65 ng/m 3 total PAHs and 13.69 ± 0.77 ppb benzene). Grilled-meat vendors in the same area were exposed to both total PAHs and benzene at even higher levels, possibly due to additional formation of PAHs during the grilling of meat (34.27 ± 7.02 ng/m 3 total PAHs; 27.49 ± 2.72 ppb benzene). At the end of the workday, urinary 1-OHP levels in street vendors (0.12 and 0.15 μmol/mol creatinine in clothes and grilled-meat vendors, respectively) were significantly higher than in controls (0.04 μmol/mol creatinine; P 3 and 4.71 ± 0.25 ppb, respectively, higher than those to which children living outside the city were exposed (1.25 ± 0.24 ng/m 3 total PAHs; 2.10 ± 0.16 ppb benzene). At the end of the school day, levels of urinary 1-OHP and t,t-MA were significantly higher (P < 0.001 and P < 0.01, respectively) in

  10. MAPCERN links to Google Street View

    CERN Multimedia

    Matilda Heron

    2015-01-01

    CERN’s online maps, MAPCERN, now have the added bonus of Google Street View, thanks to the new release of images of many CERN sites captured by Google.   New Street View images of CERN sites have been added to MAPCERN, see bottom-right-hand image in the screenshot above.   Google Street View, an integrated service of Google Maps introduced in 2007, links 360-degree panoramic photos into a virtual tour. CERN and Google began collaborating on this Street View project in 2010 and now these Street View images have been embedded into MAPCERN, accessible by clicking the “Street View” tab in MAPCERN’s bottom-right-hand window. If you need to locate a building at CERN, or plan an operation on some equipment, you can save time by using the Street View images to check out the area in advance. The CERN Meyrin site has been fully mapped, as well as the surfaces of the eight LHC points, BA2 and BA3. New Street View images of CERN, including the Pr...

  11. Human health risk assessment based on toxicity characteristic leaching procedure and simple bioaccessibility extraction test of toxic metals in urban street dust of Tianjin, China.

    Directory of Open Access Journals (Sweden)

    Binbin Yu

    Full Text Available The potential ecological and human health risk related with urban street dust from urban areas of Tianjin, China was quantitatively analyzed using the method of toxicity characteristic leaching procedure (TCLP and simple bioaccessibility extraction test (SBET. In the study, Hakason index, Nemerow index (P, the hazard index (HI and the cancer risk index (RI were calculated to assess the potential risk. The sequence of potential ecological risk based on Hakason index was arsenic (As > cadmium (Cd > lead (Pb > copper (Cu > chromium (Cr, in particular, As and Cd were regarded as high polluted metals. While the results of extraction of TCLP were assessed using P, the sequence was As > Pb > Cd > Cr > Cu, which mean that As and Pb should be low polluted, and Cd, Cr and Cu would barely not polluted. For human health, total carcinogenic risk for children and adults was 2.01 × 10(-3 and 1.05 × 10(-3, respectively. This could be considered to be intolerable in urban street dust exposure. The sequence in the hazard quotient (HQ of each element was As > Cr > Pb > Cu > Cd. The HI value of these toxic metals in urban street dust for children and adults was 5.88 × 10(-1 and 2.80 × 10(-1, respectively. According to the characters of chemistry, mobility, and bioavailability of metals in urban street dust, we estimated the hazards on the environment and human health, which will help us to get more reasonable information for risk management of metals in urban environment.

  12. Allegheny County Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of the street centerlines for vehicular and foot traffic in Allegheny County. Street Centerlines are classified as Primary Road,...

  13. Street Politics

    Directory of Open Access Journals (Sweden)

    Michael J. Shapiro

    2012-03-01

    Full Text Available I write from Prague, where, unlike in most urban formations, the main city street plays an iconic role; it references a history of political protest. However, before elaborating on the protest iconography of the Prague street, Vaclavske nam, I want to locate the ways in which the design of urban space is actualized in everyday life in the cities of the world. Three functions stand out; the first involves dwelling, the second seeing, and the third moving. With respect to the first function – dwelling – the design partitions and coordinates residential, commercial and leisure functions. At times these are organized to segregate different classes (Robert Moses’ redesign of much of New York stands out with respect to the segregation function. With respect to the second function – seeing – the design of urban space is allegiance-inspiring; it involves sight lines that afford urban dwellers and visitors views of iconic buildings and statues, which reference key founding moments in the past and/or authoritative political functions in the present (Here, L’Enfants design for Washington DC stands out as exemplary. Its manifest intention was to make the buildings housing executive, legislative and judicial functions visible from many vantage points. Rarely are the streets themselves iconic. Their dominant role is involved with the effectuation of movement. As for this third function: As Lewis Mumford famously points out, streets were once part of an asterisk design, radiating out from an exemplary, often spiritual center...

  14. A model for estimation of the demand for on-street parking

    DEFF Research Database (Denmark)

    Madsen, Edith; Mulalic, Ismir; Pilegaard, Ninette

    2013-01-01

    This paper presents a stylized econometric model for the demand for on-street parking with focus on estimation of the elasticity of demand with respect to the full cost of parking. The full cost of parking consists of a parking fee and the cost of searching for a vacant parking space (cruising......). The cost of cruising is usually unobserved. Ignoring this issue implies a downward bias of the elasticity of demand with respect to the total cost of parking since the cost of cruising depends on the number of cars parked. We also demonstrate that, even when the cost of cruising is unobserved, the demand...

  15. Road and Street Centerlines, Street-The data set is a line feature consisting of 13948 line segments representing streets. It was created to maintain the location of city and county based streets., Published in 1989, Davis County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Road and Street Centerlines dataset current as of 1989. Street-The data set is a line feature consisting of 13948 line segments representing streets. It was created...

  16. Technology transfer, a two-way street

    International Nuclear Information System (INIS)

    Martin, H.L.

    1994-01-01

    Technology transfer through the Pollution Prevention ampersand Control Conferences, which have been cosponsored by the Environmental Protection Agency and by the professional societies of industry, greatly improved the environmental projects of the Department of Energy at Savannah River Site (SRS) in the mid-1980's. Those technologies, used in the liquid effluent treatment of the metal finishing liquid effluents from aluminum cleaning and nickel plating of fuel and targets for the nuclear production reactors, have been enhanced by the research and development of SRS engineers and scientists. The technology transfer has now become a two-way street to the benefit of our Nation's environment as these enhancements are being adopted in the metal finishing industry. These success stories are examples of the achievements anticipated in the 1990's as technology development in the federal facilities is shared with commercial industry

  17. Characterization of traffic-related PM concentration distribution and fluctuation patterns in near-highway urban residential street canyons.

    Science.gov (United States)

    Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard

    2009-12-01

    Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean

  18. Street art - vandalismus nebo umění?

    OpenAIRE

    Grabmüllerová, Eva

    2012-01-01

    The diploma thesis ‚Street Art - Vandalism or Art?' deals with a world-wide phenomenon of contemporary art. The thesis focuses on the characterization of street art and history of street art (its origin and development) and analyzes the difference between street art and graffiti. The thesis presents street art techniques as well as notable street artists. The thesis also observes street art scene in the Czech Republic and depicts features that street art has in common with other art movements...

  19. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  20. Trees in urban street canyons and their impact on the dispersion of automobile exhausts

    OpenAIRE

    Gromke, Christof; Ruck, Bodo

    2007-01-01

    The aim of the present study is to clarify the influence of trees on the dispersion of automobile exhausts in urban street canyons. For this purpose, measurements have been performed with a small scale wind tunnel model of an idealized, isolated street canyon with model trees placed along the canyon center axis. Sulfur hexafluoride (SF6) was released from a line source embedded in the street surface, simulating vehicle exhaust emissions. The influence of various tree planting arrangements on ...

  1. Spatial traffic noise pollution assessment - A case study.

    Science.gov (United States)

    Monazzam, Mohammad Reza; Karimi, Elham; Abbaspour, Majid; Nassiri, Parvin; Taghavi, Lobat

    2015-01-01

    Spatial assessment of traffic noise pollution intensity will provide urban planners with approximate estimation of citizens exposure to impermissible sound levels. They could identify critical noise pollution areas wherein noise barriers should be embedded. The present study aims at using the Geographic Information System (GIS) to assess spatial changes in traffic noise pollution in Tehran, the capital of Iran, and the largest city in the Middle East. For this purpose, while measuring equivalent sound levels at different time periods of a day and different days of a week in District 14 of Tehran, wherein there are highways and busy streets, the geographic coordination of the measurement points was recorded at the stations. The obtained results indicated that the equivalent sound level did not show a statistically significant difference between weekdays, and morning, afternoon and evening hours as well as time intervals of 10 min, 15 min and 30 min. Then, 91 stations were selected in the target area and equivalent sound level was measured for each station on 3 occasions of the morning (7:00-9:00 a.m.), afternoon (12.00-3:00 p.m.) and evening (5:00-8:00 p.m.) on Saturdays to Wednesdays. As the results suggest, the maximum equivalent sound level (Leq) was reported from Basij Highway, which is a very important connecting thoroughfare in the district, and was equal to 84.2 dB(A), while the minimum equivalent sound level (Leq), measured in the Fajr Hospital, was equal to 59.9 dB(A). The average equivalent sound level was higher than the national standard limit at all stations. The use of sound walls in Highways Basij and Mahallati as well as widening the Streets 17th Shahrivar, Pirouzi and Khavaran, benchmarked on a map, were recommended as the most effective mitigation measures. Additionally, the research findings confirm the outstanding applicability of the Geographic Information System in handling noise pollution data towards depicting noise pollution intensity caused

  2. INTEGRATED SFM TECHNIQUES USING DATA SET FROM GOOGLE EARTH 3D MODEL AND FROM STREET LEVEL

    Directory of Open Access Journals (Sweden)

    L. Inzerillo

    2017-08-01

    Full Text Available Structure from motion (SfM represents a widespread photogrammetric method that uses the photogrammetric rules to carry out a 3D model from a photo data set collection. Some complex ancient buildings, such as Cathedrals, or Theatres, or Castles, etc. need to implement the data set (realized from street level with the UAV one in order to have the 3D roof reconstruction. Nevertheless, the use of UAV is strong limited from the government rules. In these last years, Google Earth (GE has been enriched with the 3D models of the earth sites. For this reason, it seemed convenient to start to test the potentiality offered by GE in order to extract from it a data set that replace the UAV function, to close the aerial building data set, using screen images of high resolution 3D models. Users can take unlimited “aerial photos” of a scene while flying around in GE at any viewing angle and altitude. The challenge is to verify the metric reliability of the SfM model carried out with an integrated data set (the one from street level and the one from GE aimed at replace the UAV use in urban contest. This model is called integrated GE SfM model (i-GESfM. In this paper will be present a case study: the Cathedral of Palermo.

  3. quality and sustainability of urban street lighting: a study of warri

    African Journals Online (AJOL)

    user

    The results of the model and the actual measurement of the Street light that was taken for some time ... telecommunication networks, electricity generation/ ... system is a valuable investment because it enhances .... performance of street lighting, [14], [15], [16] and ... on an assessment of the effectiveness of luminaire of.

  4. Personal and Familial Properties of Street Children--"Street Children: The Forgotten or Not Remembered Ones"

    Science.gov (United States)

    Özbas, Mehmet

    2015-01-01

    With this research it is aimed to determine the personal traits of Street Children depending on them and also the socio-economic variables of Street Children resulting from their families. For this main aim in the research process, it is provided to have communication directly with the parents of Street Children using one-to-one and face-to-face…

  5. Air Pollution Exposure Modeling for Health Studies | Science ...

    Science.gov (United States)

    Dr. Michael Breen is leading the development of air pollution exposure models, integrated with novel personal sensor technologies, to improve exposure and risk assessments for individuals in health studies. He is co-investigator for multiple health studies assessing the exposure and effects of air pollutants. These health studies include participants with asthma, diabetes, and coronary artery disease living in various U.S. cities. He has developed, evaluated, and applied novel exposure modeling and time-activity tools, which includes the Exposure Model for Individuals (EMI), GPS-based Microenvironment Tracker (MicroTrac) and Exposure Tracker models. At this seminar, Dr. Breen will present the development and application of these models to predict individual-level personal exposures to particulate matter (PM) for two health studies in central North Carolina. These health studies examine the association between PM and adverse health outcomes for susceptible individuals. During Dr. Breen’s visit, he will also have the opportunity to establish additional collaborations with researchers at Harvard University that may benefit from the use of exposure models for cohort health studies. These research projects that link air pollution exposure with adverse health outcomes benefit EPA by developing model-predicted exposure-dose metrics for individuals in health studies to improve the understanding of exposure-response behavior of air pollutants, and to reduce participant

  6. The social world of street children : street children's peer friendship, group life and subculture in Addis Ababa, Ethiopia

    OpenAIRE

    Fikre, Kaleab

    2016-01-01

    This study attempts to explore the street children’s social world, focusing on their peer friendship, group life, and street subculture in Addis Ababa, Ethiopia. The study shows how street children’s peer friendship, street group, and subculture are part and parcel of children’s quest for survival in the street in the absence of guardians conventionally considered as responsible for the provision and protection of children. The main perspective of the study is grounded in the p...

  7. Groundwater Pollution Source Identification using Linked ANN-Optimization Model

    Science.gov (United States)

    Ayaz, Md; Srivastava, Rajesh; Jain, Ashu

    2014-05-01

    Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration

  8. Nitrogen component in nonpoint source pollution models

    Science.gov (United States)

    Pollutants entering a water body can be very destructive to the health of that system. Best Management Practices (BMPs) and/or conservation practices are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid...

  9. COMMON GROUNDS BETWEEN PRINTMAKING AND STREET ART

    Directory of Open Access Journals (Sweden)

    Burcak Balamber

    2016-09-01

    Full Text Available Graffiti movement, born as a result of an effort of the youth, who felt themselves socially excluded and alone, to show their existence and identities during the 1960s, expanded its scope owing to street based artists such as Keith Haring and Jean-Michel Basquiat entering to the galleries, and transformed into an artistic manner of expression having aesthetic concerns by adopting a more inclusive definition ‘street art’. During this transformation of street art,street artists experimented with various methods from many different disciplines and hence created works in a wide range of varieties in terms of plastic and artistic values. Among these disciplines, printmakinghastaken its own place in street artas a discipline thatdeeply influenced street artists.Printmaking has fascinated street artists and become a part of their production process, not only with its philosophy sharing common grounds with street art and advantages in terms of its tecnical practices but also its unique plastic and linear values.Thanks to the opportunities of printmaking, street art has succeeded creating a tremendous impression worldwide, and even positioned itself into today’s greatest museums/gallery halls. This article aims to show how and in what way printmaking has influenced street art being in a transformation since the 1960s, and to put an emphasis on theimportance of printmaking on today’s street art.

  10. Intelligent street lighting clustering

    NARCIS (Netherlands)

    Verhoeven, R.; Jovanovic, N.; Lukkien, J.J.

    2014-01-01

    The advances in dynamic street lighting introduce new functionality for control and maintenance of the street lighting infrastructure. Vital elements in this infrastructure are the powerful controlling devices that control separate groups of light poles and collect information from the system. For

  11. CURB-BASED STREET FLOOR EXTRACTION FROM MOBILE TERRESTRIAL LIDAR POINT CLOUD

    Directory of Open Access Journals (Sweden)

    S. Ibrahim

    2012-07-01

    Full Text Available Mobile terrestrial laser scanners (MTLS produce huge 3D point clouds describing the terrestrial surface, from which objects like different street furniture can be generated. Extraction and modelling of the street curb and the street floor from MTLS point clouds is important for many applications such as right-of-way asset inventory, road maintenance and city planning. The proposed pipeline for the curb and street floor extraction consists of a sequence of five steps: organizing the 3D point cloud and nearest neighbour search; 3D density-based segmentation to segment the ground; morphological analysis to refine out the ground segment; derivative of Gaussian filtering to detect the curb; solving the travelling salesman problem to form a closed polygon of the curb and point-inpolygon test to extract the street floor. Two mobile laser scanning datasets of different scenes are tested with the proposed pipeline. The results of the extracted curb and street floor are evaluated based on a truth data. The obtained detection rates for the extracted street floor for the datasets are 95% and 96.53%. This study presents a novel approach to the detection and extraction of the road curb and the street floor from unorganized 3D point clouds captured by MTLS. It utilizes only the 3D coordinates of the point cloud.

  12. A street rubbish detection algorithm based on Sift and RCNN

    Science.gov (United States)

    Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting

    2018-02-01

    This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).

  13. StreetMekka - Ledelse af Københavns nye streetkulturhus

    OpenAIRE

    Gjelstrup, Mikkel

    2009-01-01

    Street culture is spreading out through the streets of Denmark and in the summer of 2009 the City of Copenhagen will open up an indoor street culture facility called StreetMekka. Moving street culture from its natural concrete habitat to a communal facility presents challenges. The City of Copenhagen has made official guideline for the StreetMekka facility to follow, but the free and self organized street culture is not an easy thing to keep within guidelines. This master thesis discusses fro...

  14. Modelling dimensional growth of three street tree species in the ...

    African Journals Online (AJOL)

    The results could also be used in the process of modelling energy use reduction, air pollution uptake, rainfall interception, carbon sequestration and microclimate modification of urban forests such as those found in the City of Tshwane. Keywords: allometry; regression; size relationships; tree growth; urban forests. Southern ...

  15. Thermal effects on vehicle emission dispersion in an urban street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Xiaomin Xie; Zhen Huang; Jiasong Wang; Zheng Xie [Shanghai Jiao Tong Univ., School of Mechanical Engineering, Shanghai (China)

    2005-05-15

    The impact of the thermal effects on vehicle emission dispersion within street canyons is examined. The results show that heating from building wall surfaces and horizontal surfaces lead to strong buoyancy forces close to surfaces receiving direct solar radiation. This thermally induced flow is combined with mechanically induced flows formed in the canyon where there is no solar heating, and affects the transport of pollutants from the canyon to the layer aloft. The relative influence of each of these effects can be estimates by Gr/Re{sup 2}. When the windward wall is warmer than the air, an upward buoyancy flux opposes the downward advection flux along the wall; if Gr/Re{sup 2} > 2, the flow structure is divided into two counter-rotating cells, and pollutants are accumulated on the windward side of the canyon. When the horizontal surface is heated, and Gr/Re{sup 2} > 4, the flow structure is divided into two counter-rotating cells by upward buoyancy flux. Pollutants are accumulated at the windward side of the canyon. When the leeward side is heated, the buoyancy flux adds to the upward advection flux along the wall strengthening the original vortex and pollutant effects of transport compared to the isothermal case. (Author)

  16. Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment

    Science.gov (United States)

    Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.

    2013-12-01

    Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons

  17. Road and Street Centerlines, StreetLabels-The data set is a text feature consisting of 6329 label points representing street names. It was created to show the names of city and county based streets., Published in 1989, Davis County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Road and Street Centerlines dataset current as of 1989. StreetLabels-The data set is a text feature consisting of 6329 label points representing street names. It was...

  18. Road and Street Centerlines - COUNTY_STREET_CENTERLINES_IDHS_IN: Street Centerlines Maintained by County Agencies in Indiana (Indiana Department of Homeland Security, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — COUNTY_STREET_CENTERLINES_IDHS_IN is a line feature class that contains street centerlines maintained by county agencies in Indiana, provided by personnel of Indiana...

  19. Application of Parallel Algorithms in an Air Pollution Model

    DEFF Research Database (Denmark)

    Georgiev, K.; Zlatev, Z.

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  20. Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba

    Science.gov (United States)

    Rodríguez-Algeciras, José; Tablada, Abel; Matzarakis, Andreas

    2017-07-01

    Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create

  1. Do suburban residents want to pay for wide streets? a survey on consumer preference and ability to afford towards wide street and on-street parking in American suburbia.

    Science.gov (United States)

    2016-08-01

    All local governments in the U.S. set the street minimum width and cross-section design for local : neighborhood streets. Because local streets typically require no more than two traffic lanes (approx. 20 feet : wide), a minimum width of 26 feet or w...

  2. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China.

    Science.gov (United States)

    Zeng, X T; Tong, Y F; Cui, L; Kong, X M; Sheng, Y N; Chen, L; Li, Y P

    2017-07-15

    In recent years, increscent emissions in the city of Beijing due to expanded population, accelerated industrialization and inter-regional pollutant transportation have led to hazardous atmospheric pollution issues. Although a number of anthropogenic control measures have been put into use, frequent/severe haze events have still challenged regional governments. In this study, a hybrid population-production-pollution nexus model (PPP) is proposed for air pollution management and air quality planning (AMP) with the aim to coordinate human activities and environmental protection. A fuzzy-stochastic mixed quadratic programming method (FSQ) is developed and introduced into a PPP for tackling atmospheric pollution issues with uncertainties. Based on the contribution of an index of population-production-pollution, a hybrid PPP-based AMP model that considers employment structure, industrial layout pattern, production mode, pollutant purification efficiency and a pollution mitigation scheme have been applied in Beijing. Results of the adjustment of employment structure, pollution mitigation scheme, and green gross domestic product under various environmental regulation scenarios are obtained and analyzed. This study can facilitate the identification of optimized policies for alleviating population-production-emission conflict in the study region, as well as ameliorating the hazardous air pollution crisis at an urban level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Generalized additive model of air pollution to daily mortality

    International Nuclear Information System (INIS)

    Kim, J.; Yang, H.E.

    2005-01-01

    The association of air pollution with daily mortality due to cardiovascular disease, respiratory disease, and old age (65 or older) in Seoul, Korea was investigated in 1999 using daily values of TSP, PM10, O 3 , SO 2 , NO 2 , and CO. Generalized additive Poisson models were applied to allow for the highly flexible fitting of daily trends in air pollution as well as nonlinear association with meteorological variables such as temperature, humidity, and wind speed. To estimate the effect of air pollution and weather on mortality, LOESS smoothing was used in generalized additive models. The findings suggest that air pollution levels affect significantly the daily mortality. (orig.)

  4. Spatial distribution, health risk assessment, and isotopic composition of lead contamination of street dusts in different functional areas of Beijing, China.

    Science.gov (United States)

    Han, Lanfang; Gao, Bo; Wei, Xin; Xu, Dongyu; Gao, Li

    2016-02-01

    Street dusts from heavy density traffic area (HDTA), tourism area (TA), residential area (RA), and educational area (EA) in Beijing were collected to explore the distribution, health risk assessment, and source of lead (Pb). The average concentration of Pb in TA was the highest among the four areas. Compared with other cities, Pb concentrations in Beijing were generally at moderate or low levels. The average value (14.05) of ecological risk index (RI) indicated that Pb was at "low pollution risk" status. According to the calculation on hazard index (HI), the ingestion of dust particles of children and adults was the major route of exposure to street dusts in four studied areas, followed by dermal contact. The lower values of HI than 1 further suggested that non-carcinogenic risks of Pb in the street dusts were in the low range. Comparing (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of street dusts with other environmental samples, it was found that atmospheric deposition of coal combustion dust might be the main pathway for anthropogenic Pb input to the street dusts in four functional areas.

  5. Trees in urban street canyons and their impact on the dispersion of automobile exhausts

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2007-01-01

    The aim of the present study is to clarify the influence of trees on the dispersion of automobile exhausts in urban street canyons. For this purpose, measurements have been performed with a small scale wind tunnel model of an idealized, isolated street canyon with model trees placed along the canyon

  6. Pollutant dispersion models for issues of air pollution control

    International Nuclear Information System (INIS)

    1985-01-01

    14 papers entered separately into the data base were presented at the meeting for application-oriented dispersion models for issues of air pollution control. These papers focus on fields of application, availability of required input data relevant to emissions and meteorology, performance and accuracy of these methods and their practicability. (orig./PW) [de

  7. Street Lines, US, 2015, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Streets for the United States. The Streets layer contains all roads plus all Road Network attributes such as direction of travel, lanes, dividers, speed...

  8. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  9. Assessment of heavy metals in street dust in Kathmandu metropolitan city and their possible impacts on the environment

    International Nuclear Information System (INIS)

    Tamrakar, C.S.; Shakya, P.R.

    2011-01-01

    Street dust often contains elevated concentrations of heavy metals and can influence on environment and human health. Therefore, a study on the characteristics of heavy metals in street dusts at different localities was carried out in the metropolitan city of Kathmandu of Nepal. A total of 20 street dusts have been sampled from four sampling sites with various activities or characteristics such as mechanical workshops (MWK), motor parks (MPK), market areas (MKA) and residential areas (RDA) and analyzed for Zn, Pb, Ni, Cr and Cd using the atomic absorption spectrophotometric method. Results showed that street dust samples contained significant levels of the metals studied compared to the values from the control site. The variation in concentration of most of the heavy metals determined decreased in an order represented as MWK>MPK>MKA>RDA>Control. While the RDA and MKA give the same element abundance order as Zn > Pb > Ni > Cr > Cd, the MPK and MWK show different abundance order in some elemental contents. In all the street dusts, zinc is the most available and labile element followed by lead. From the place of low activity (RDA) to the place of high activity (MWK), the metal concentrations in street dusts varied from 55.4-419.3 mu g/sup -1/ for Zn, 12.3-116.8 mu g/sup -1/ for Pb, 4.9-86.3 mu /sup -1/ for Ni, 1.4-14.3 mu g/sup -1/ for Cr and 0.3-39.6 mu g/sup -1/ for Cd respectively. Results indicate that the metal pollutants in street dusts could significantly contribute to deteriorate the environmental status of the city of Kathmandu metropolis. (author)

  10. Trees as environmental modifier to improve street canyon for pedestrian activities in Muscat

    Science.gov (United States)

    Khudhayer, Wael A.; Shaaban, Awni K.; Sukor, Nur Sabahiah Abdul

    2017-10-01

    Street shading efficiency is a function of orientation and profile proportion of its height to width. Under high sun altitude conditions, minimization of solar irradiance within the urban environment may often be a significant criterion in urban design. This reduction in solar irradiance achieved when the obstruction angle is large (high H/W ratio, H=height, W=width). High H/W values often lessen the solar access to streets. The horizontal sprawl of Muscat region is an example of low H/W ratio represented the remarkable challenge that causes the lack of shading rates in the urban street. This characteristic proliferates the negative impact on the pedestrian activities in the urban street. This research aims to improve the morphology of the street to promote the pedestrian behavior. The amendment based on suggesting different configurations of trees to increase effective shading of the urban street in Muscat. The street canyon abstracted into a virtual elongated channel formed of floor and walls of equal heights on both sides. Four street orientations (E/W, N/S, NE/SW, NW/SE) and three H/W ratio (0.5,1 and 2) are considered sufficient representative of street typologies. A mathematical model developed for calculation of shading efficiency of each street canyon. The trees assumed in this study as canyon's modifier to adjust the low H/W ratio of a street canyon to a higher one. Local trees and other plants in Muscat were studied concerning their morphology. The analysis selected two case study in Muscat to investigate the shading performance of their street canyons subsequently propose the modifications to improve it. The research concluded that the suggested changes of the street canyon by using a particular type of trees could increase the H/W ratio of street canyon significantly.

  11. Simulating the production and dispersion of environmental pollutants in aerosol phase in an urban area of great historical and cultural value.

    Science.gov (United States)

    Librando, Vito; Tringali, Giuseppe; Calastrini, Francesca; Gualtieri, Giovanni

    2009-11-01

    Mathematical models were developed to simulate the production and dispersion of aerosol phase atmospheric pollutants which are the main cause of the deterioration of monuments of great historical and cultural value. This work focuses on Particulate Matter (PM) considered the primary cause of monument darkening. Road traffic is the greatest contributor to PM in urban areas. Specific emission and dispersion models were used to study typical urban configurations. The area selected for this study was the city of Florence, a suitable test bench considering the magnitude of architectural heritage together with the remarkable effect of the PM pollution from road traffic. The COPERT model, to calculate emissions, and the street canyon model coupled with the CALINE model, to simulate pollutant dispersion, were used. The PM concentrations estimated by the models were compared to actual PM concentration measurements, as well as related to the trend of some meteorological variables. The results obtained may be defined as very encouraging even the models correlated poorly: the estimated concentration trends as daily averages moderately reproduce the same trends of the measured values.

  12. Street as Sustainable City Structural Element

    Science.gov (United States)

    Leyzerova, A. V.; Bagina, E. J.

    2017-11-01

    Sustainability in architecture is nowadays of particular significance in the course of globalization and information density. The technospehere spontaneous development poses a threat to the sustainability of traditional urban forms where a street is one of the essential forming elements in the urban structure. The article proposes to consider formally compositional street features in relation to one of the traditional streets in the historic center of Ekaterinburg. The study examines the street-planning structure, the development of its skeleton elements, silhouette and fabric elevation characteristics as well as the scale characteristics and visual complexity of objects. The study provided architectural and artistic aspects of street sustainability, and limits of the appropriate scale and composition consistency under which the compatibility of alternative compositional forms existing at different times is possible.

  13. Street Prostitution Zones and Crime

    OpenAIRE

    Bisschop, Paul; Kastoryano, Stephen; van der Klaauw, Bas

    2015-01-01

    This paper studies the effects of introducing legal street prostitution zones on both registered and perceived crime. We exploit a unique setting in the Netherlands where legal street prostitution zones were opened in nine cities under different regulation systems. We provide evidence that the opening of these zones was not in response to changes in crime. Our difference-in-difference analysis using data on the largest 25 Dutch cities between 1994 and 2011 shows that opening a legal street pr...

  14. The impact of traffic-flow patterns on air quality in urban street canyons.

    Science.gov (United States)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of illegal on-street parking on travel times in urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Morillo Carbonell, C.; Magin Campos Cacheda, J.

    2016-07-01

    The aim of this paper is to evaluate the effect of the on-street illegal parking on the commercial travel time of the vehicles in the area. The effect of the illegal parking in the travel time of the vehicles in the zone is analyzed in an urban scenario in order to quantify the negative impact that illegal parking implies to this, by itself, congested areas. To achieve the objective of the paper, a 3x3 street model has been designed and evaluated for different situations. In this sense, based on a traffic microsimulation model a bunch of scenarios have been considered in function of parameters referred to intensity of vehicles, illegal on street parking level and location of the illegals. Based on the scenarios mentioned, it has been analyzed the effect that the different parameters have on the commercial speed of the vehicles in order to have a first set of information that permits how to act to reduce the effect of illegal on street parking. The results obtained in this article will be able to be used in next steps in order to define direct and indirect reduction strategies referred to illegal on street parking effect. (Author)

  16. Street trees reduce the negative effects of urbanization on birds.

    Science.gov (United States)

    Pena, João Carlos de Castro; Martello, Felipe; Ribeiro, Milton Cezar; Armitage, Richard A; Young, Robert J; Rodrigues, Marcos

    2017-01-01

    The effects of streets on biodiversity is an important aspect of urban ecology, but it has been neglected worldwide. Several vegetation attributes (e.g. street tree density and diversity) have important effects on biodiversity and ecological processes. In this study, we evaluated the influences of urban vegetation-represented by characteristics of street trees (canopy size, proportion of native tree species and tree species richness)-and characteristics of the landscape (distance to parks and vegetation quantity), and human impacts (human population size and exposure to noise) on taxonomic data and functional diversity indices of the bird community inhabiting streets. The study area was the southern region of Belo Horizonte (Minas Gerais, Brazil), a largely urbanized city in the understudied Neotropical region. Bird data were collected on 60 point count locations distributed across the streets of the landscape. We used a series of competing GLM models (using Akaike's information criterion for small sample sizes) to assess the relative contribution of the different sets of variables to explain the observed patterns. Seventy-three bird species were observed exploiting the streets: native species were the most abundant and frequent throughout this landscape. The bird community's functional richness and Rao's Quadratic Entropy presented values lower than 0.5. Therefore, this landscape was favoring few functional traits. Exposure to noise was the most limiting factor for this bird community. However, the average size of arboreal patches and, especially the characteristics of street trees, were able to reduce the negative effects of noise on the bird community. These results show the importance of adequately planning the urban afforestation process: increasing tree species richness, preserving large trees and planting more native trees species in the streets are management practices that will increase bird species richness, abundance and community functional aspects and

  17. THE ASSESSMENT MODELS OF AIR POLLUTION DURING TRANSPORTATION OF BULK CARGO

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-10-01

    Full Text Available Purpose. The scientific work is concentrated on development of 3D, 2D numerical models for the prediction of atmospheric pollution during transport of bulk cargo in the railway car. Methodology. To solve this problem numerical models were developed, based on the use of the motion equations of inviscid incompressible fluid and mass transfer, to determine the field of wind velocity near the cars and dispersion of dust in the atmosphere. For the numerical integration of the pollutant transport equation implicit alternating-triangular difference scheme was used. When constructing a difference scheme splitting of the transport equation is carried out that allows us to construct an efficient algorithm for solving a differential problem. Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of point-to-point computation, which provides a simple numerical implementation of splitting equations. For numerical integration of the 3D equation for the velocity potential method of Richardson is applied. For numerical integration of the 2D equation for the velocity potential the method of total approximation is applied. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models a computational experiment to assess the level of air pollution when demolition of coal dust from the gondola car was carried out. Findings. 3D, 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dust pollution dispersion in the atmosphere during transportation of bulk cargo, but require small costs of the computer time in the practice at the low and medium power machines. These models are used for serial calculations of various situations of scenarios related to issues of environmental protection and pollution intensity diagnostics for

  18. Severity and Susceptibility Beliefs Associated with Urban Air Pollution: Results of a Qualitative Study

    International Nuclear Information System (INIS)

    Oltra, C.; Sala, R.

    2015-01-01

    In this report we present the results of a qualitative study based on recombined focus groups with lay citizens. The main objective is to analyze individuals’ beliefs on urban air pollution and perceived benefits and barriers of some self-protective actions, such as using special masks, avoidance of polluted streets, etc. The analytical framework on which the study is based is the Health Belief Model, whose basic idea is that it is more likely that individuals take actions to protect themselves if they think they are potentially susceptible to a serious threat to your health, if they think adopting certain actions has advantages, and if they think there are no significant barriers for such conduct. A secondary objective is to explore the perception of different existing materials to inform the public about air pollution. The results of the study are intended to contribute to the design of interventions aimed at reducing health impacts of urban air pollution and, specifically, to the design of messages in the context of information campaigns on health and environmental risk.

  19. mathematical modelling of atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Mohamed, M.E.

    2002-01-01

    the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established

  20. Regional Persistent Organic Pollutants' Environmental Impact Assessment and Control Model

    Directory of Open Access Journals (Sweden)

    Jurgis Staniskis

    2008-10-01

    Full Text Available The sources of formation, environmental distribution and fate of persistent organic pollutants (POPs are increasingly seen as topics to be addressed and solved at the global scale. Therefore, there are already two international agreements concerning persistent organic pollutants: the Protocol of 1998 to the 1979 Convention on the Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (Aarhus Protocol; and the Stockholm Convention on Persistent Organic Pollutants. For the assessment of environmental pollution of POPs, for the risk assessment, for the evaluation of new pollutants as potential candidates to be included in the POPs list of the Stokholmo or/and Aarhus Protocol, a set of different models are developed or under development. Multimedia models help describe and understand environmental processes leading to global contamination through POPs and actual risk to the environment and human health. However, there is a lack of the tools based on a systematic and integrated approach to POPs management difficulties in the region.

  1. Moss as Indicator of Heavy Metals Pollution in Kano Municipality ...

    African Journals Online (AJOL)

    MBI

    2015-09-23

    Sep 23, 2015 ... Metals accumulation was determined in moss specie funaria hygrometrica collected from industrial and neighbouring residential .... of Lead in street dust to index its pollution in. Kano municipality. Spectrum journal, 1: 94-. 97. Sharada. Bompai. City campus Kano municipal. Zoo Road. 0. 5. 10. 15. 20. 25. 30.

  2. Democratic Model of Public Policy Accountability. Case Study on Implementation of Street Vendors Empowerment Policy in Makassar City

    Directory of Open Access Journals (Sweden)

    Rulinawaty Kasmadsi

    2015-08-01

    Full Text Available Policy accountability is a form of manifestation of public officials responsible to the people. One form of policy accountability that is discussed here is street vendors policy accountability, because they are a group of citizens who have the economic activities in public spaces. The existence of this policy how-ever, the number of street vendors from year to year increase in Makassar City. Therefore, this study seeks to uncover and explain the democratic policy ac-countability through the street vendors’ responses and expectations to the implementation of street ven-dors empowerment policy in Makassar City; and to uncover and explain the democratic policy account-ability through the stakeholders’ responses and ex-pectations to the implementation of street vendors empowerment policy in Makassar City. To achieve these objectives, the study uses democracy theory, in which this theory focuses on togetherness in dis-cussing solutions to the various problems of street vendors and in the policy implementation as well.This study used a qualitative design and case studies strat-egy. Data collection techniques used was observa-tion, interview, and documentation. Data were ana-lyzed with case description its settings. The results of this study pointed out that the interests and needs of the street vendors are not met through the empow-erment policies vendors. This is caused by the ab-sence of accountability forum as a place of togeth-erness all of street vendors empowerment stakehold-ers’. Street vendors empowerment policy in Makassar City are designed base on a top-down approach, so they are considered as objects, which must accept all government programs aimed at them.

  3. Cleaning up the Streets of Denver

    International Nuclear Information System (INIS)

    Stegen, R.L.; Wood, T.R.; Hackett, J.R.; Sogue, A.

    2006-01-01

    Between 1913 and 1924, several Denver area facilities extracted radium from carnotite ore mined from the Paradox basin region of Colorado. Tailings or abandoned ores from these facilities were apparently incorporated into asphalt used to pave approximately 7.2 kilometers (4.5 miles) of streets in Denver. A majority of the streets are located in residential areas. The radionuclides are bound within the asphalt matrix and pose minimal risk unless they are disturbed. The City and County of Denver (CCoD) is responsible for controlling repairs and maintenance on these impacted streets. Since 2002, the CCoD has embarked on a significant capital improvement project to remove the impacted asphalt for secure disposal followed by street reconstruction. To date, Parsons has removed approximately 55 percent of the impacted asphalt. This paper discusses the history of the Denver Radium Streets and summarizes on-going project efforts. (authors)

  4. Street level society

    DEFF Research Database (Denmark)

    Vinum, Christine; Nissen, Morten

    2006-01-01

    This paper aims to reflect on research findings from different empirical studies of social work with young drug users and socially excluded young people in Copenhagen. In the paper we account for historical changes in social policy and interventions into young people's drug taking in Copenhagen......, and partly from the decentralizing and specializing efforts characteristic of the Danish welfare state and its institutions. We discuss a general turn towards street level interventions to address the problems of social exclusion, as well as different attempts to create what we term street level heterotopias...

  5. Self-Localization at Street Intersections.

    Science.gov (United States)

    Fusco, Giovanni; Shen, Huiying; Coughlan, James M

    2014-05-01

    There is growing interest among smartphone users in the ability to determine their precise location in their environment for a variety of applications related to wayfinding, travel and shopping. While GPS provides valuable self-localization estimates, its accuracy is limited to approximately 10 meters in most urban locations. This paper focuses on the self-localization needs of blind or visually impaired travelers, who are faced with the challenge of negotiating street intersections. These travelers need more precise self-localization to help them align themselves properly to crosswalks, signal lights and other features such as walk light pushbuttons. We demonstrate a novel computer vision-based localization approach that is tailored to the street intersection domain. Unlike most work on computer vision-based localization techniques, which typically assume the presence of detailed, high-quality 3D models of urban environments, our technique harnesses the availability of simple, ubiquitous satellite imagery (e.g., Google Maps) to create simple maps of each intersection. Not only does this technique scale naturally to the great majority of street intersections in urban areas, but it has the added advantage of incorporating the specific metric information that blind or visually impaired travelers need, namely, the locations of intersection features such as crosswalks. Key to our approach is the integration of IMU (inertial measurement unit) information with geometric information obtained from image panorama stitchings. Finally, we evaluate the localization performance of our algorithm on a dataset of intersection panoramas, demonstrating the feasibility of our approach.

  6. Health Belief Model and Labelling Theory in the Analysis of Preventive Behaviors to Address Biopsychosocial Impacts of Sexual Violence Among Street Children in YOGYAKARTA

    OpenAIRE

    Intan Noor Khalifah; Argyo Demartoto; Harsono Salimo

    2017-01-01

    Background: Street children are at high risk of sexual violence. Necessary measures should be undertaken to address deleterious biopsychosocial impacts of sexual violence. This study aimed to analyze the preventive behaviors to address biopsychosocial impacts of sexual violence among street children in Yogyakarta using Health Belief Model and Labelling Theory.Subjects and Method: This study was qualitative descriptive with phenomenology approach. The key informants for this study included Hea...

  7. Source-Flux-Fate Modelling of Priority Pollutants in Stormwater Systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca

    quality management. The thesis provides a framework for the trustworthy application of models to estimate PP fluxes from their sources, and through stormwater drainage systems, and to the sink. This fills a knowledge gap regarding stormwater PP and it supplies urban water managers with modelling tools......The increasing focus on management of stormwater Priority Pollutants (PP) enhances the role of mathematical models as support for the assessment of stormwater quality control strategies. This thesis investigates and presents modelling approaches that are suitable to simulate PP fluxes across...... stormwater systems, supporting the development of pollution control strategies. This is obtained by analyzing four study areas: (i) catchment characterization, (ii) pollutant release and transport models, (iii) stormwater treatment models, and (iv) combination of the above into an integrated model. Given...

  8. Air pollution modeling over very complex terrain: An evaluation of WRF-Chem over Switzerland for two 1-year periods

    Science.gov (United States)

    Ritter, Mathias; Müller, Mathias D.; Tsai, Ming-Yi; Parlow, Eberhard

    2013-10-01

    The fully coupled chemistry module (WRF-Chem) within the Weather Research and Forecasting (WRF) model has been implemented over a Swiss domain for the years 2002 and 1991. The very complex terrain requires a high horizontal resolution (2 × 2 km2), which is achieved by nesting the Swiss domain into a coarser European one. The temporal and spatial distribution of O3, NO2 and PM10 as well as temperature and solar radiation are evaluated against ground-based measurements. The model performs well for the meteorological parameters with Pearson correlation coefficients of 0.92 for temperature and 0.88-0.89 for solar radiation. Temperature has root mean square errors (RMSE) of 3.30 K and 3.51 K for 2002 and 1991 and solar radiation has RMSEs of 122.92 and 116.35 for 2002 and 1991, respectively. For the modeled air pollutants, a multi-linear regression post-processing was used to eliminate systematic bias. Seasonal variations of post-processed air pollutants are represented correctly. However, short-term peaks of several days are not captured by the model. Averaged daily maximum and daily values of O3 achieved Pearson correlation coefficients of 0.69-0.77 whereas averaged NO2 and PM10 had the highest correlations for yearly average values (0.68-0.78). The spatial distribution reveals the importance of PM10 advection from the Po valley to southern Switzerland (Ticino). The absolute errors are ranging from - 10 to 15 μg/m3 for ozone, - 9 to 3 μg/m3 for NO2 and - 4 to 3 μg/m3 for PM10. However, larger errors occur along heavily trafficked roads, in street canyons or on mountains. We also compare yearly modeled results against a dedicated Swiss dispersion model for NO2 and PM10. The dedicated dispersion model has a slightly better statistical performance, but WRF-Chem is capable of computing the temporal evolution of three-dimensional data for a variety of air pollutants and meteorological parameters. Overall, WRF-Chem with the application of post-processing algorithms can

  9. A Signal Coordination Control Based on Traversing Empty between Mid-Block Street Crossing and Intersection

    Directory of Open Access Journals (Sweden)

    Changjiang Zheng

    2012-01-01

    Full Text Available To solve the problem in pedestrian Mid-Block street crossing, the method of signal coordination control between mid-block street crossing and intersection is researched in this paper. The paper proposes to use “distance-flow rate-time” graph as the tool for building coordination control system model which is for different situations of traffic control. Through alternating the linear optimization model, the system outputs the distribution of signal timing and system operational factors (delays in vehicles and mid-block street crossing. Finally, taking one section on the Taiping North Road in Nanjing as an example, the signal coordination control is carried out. And the results which are delays in the vehicles and mid-block street crossing are compared to those in the current distribution of signal timing.

  10. Presentation of Austrians recommended dispersion model for tunnel portals

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, D.; Sturm, P.; Almbauer, R. [Inst. for Internal Combustion Engines and Thermodynamics, Graz Univ. of Technology (Austria)

    2004-07-01

    Street tunnels in cities are often suggested as solution to avoid daily congestions but also to prevent residential areas from high noise and air pollution emissions. In case of longitudinal ventilated tunnels high pollution levels may occur in the vicinity of the portals. The dispersion of pollutants from tunnel portals is considered to differ significantly from those of other sources, such as line or point sources. To the best of the authors knowledge, there exist currently two distinct dispersion models, which are especially designed to treat dispersion from tunnel portals. Okamoto et al proposed a diagnostic wind field model, where the dispersion is modelled using a Taylor-Galerkin-Forester filter method. Oettl et al. developed a Lagrangian-type model (GRAL TM 3.5=Graz Lagrangian model Tunnel Module version 3.5), which is briefly described in the next section. (orig.)

  11. Universal design characteristic on themed streets

    Science.gov (United States)

    Harsritanto, Bangun IR; Indriastjario; Wijayanti

    2017-12-01

    People around the world can access the streets to fulfil their daily activities regardless of their gender, age, and abilities. The streetscape is an urban public space which is built to facilitate the basic needs of people as social being. The themed street is an urban streetscape designed and built in detail with a theme or special purpose in an of urban development process. Universal design facilitates the full range of human diversity as physical appearance, perception, cognitive abilities, sizes, and shapes. By designing for the diversity, the specialized streets become more functional and user-friendly. The purpose of this study is to examine several design characteristics of themed streets in several countries from three different continents using universal design principles for giving proper directions to develop more user-friendly streets. Literature review and case study were used as research methods. The literature review was extracted and compiled from manuscripts, streetscape design books, and from universal design principles. Furthermore, the constructed theory were used to examine the case studies of themed streets. The findings indicated that themed streets’ character design were strongly influenced by local cultural aspect even though the basic guidelines were universal design principles; the resumed design direction can be suggested universal along with the richness of local aspects.

  12. The Regulation of Street Foods

    DEFF Research Database (Denmark)

    Forkour, John Boulard; Samuelsen, Helle; Yeboah, Eric Henry

    2017-01-01

    the challenges and negotiating strategies of regulators of street-vended foods in Ghana and analyses the implication for their relationship with street food vendors. The paper reveals that regulators operate in a context of limited resources, leading to a general feeling of neglect. In coping, regulators adopt...

  13. Street Papers, Work, and Begging

    DEFF Research Database (Denmark)

    Cockburn, Patrick Joseph

    2014-01-01

    Street papers are publications produced specifically for sale by the homeless and other vulnerable people in many countries around the world. Their social status is, however, often conspicuously unstable: ‘Get a job!’ has been reported as a common insult addressed to vendors, and street paper...

  14. Street Pastors : on security, care and faith

    NARCIS (Netherlands)

    van Steden, R.

    2018-01-01

    This paper presents a study of Street Pastors in Cardiff, the capital city of Wales. Street Pastors are Christian volunteers who look after vulnerable people in the night-time economy. In this manner, they provide ‘securitas’ through empathy and care. The motives of Street Pastors for engaging with

  15. City Streets

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set contains roadway centerlines for city streets found on the USGS 1:24,000 mapping series. In some areas, these roadways are current through the 2000...

  16. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko; Steyn, Douw G.

    2011-01-01

    formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate

  17. Modeling personal exposure to traffic related air pollutants

    NARCIS (Netherlands)

    Montagne, D.R.

    2015-01-01

    The first part of this thesis is about the VE3SPA project. Land use regression (LUR) models are often used to predict the outdoor air pollution at the home address of study participants, to study long-term effects of air pollution. While several studies have documented that PM2.5 mass measured at a

  18. Heavy metals characteristics of settled particles of streets dust from Diwaniyah City- Qadisiyah Governorate - Southern Iraq

    Science.gov (United States)

    Al-Dabbas, Moutaz A.; Mahdi, Khalid H.; Al-Khafaji, Raad; Obayes, Kawthar H.

    2018-05-01

    Road-side dust samples were collected from selected areas of Diwaniyah city-Qadisiyah Governorate - Southern Iraq. The heavy metals (Fe, Co, Ni, Cu, Zn and Pb) in these streets dust samples were studied and used as indicator for pollution by using three of main indices (I-geo, CF, and PLI). Determination of heavy metal in the roadside dust is with XRD and XRF methods. I-geo for Co, Zn, Pb, and Ni in the studied sites shows relative values of class 1, which indicated the slightly polluted, while I-geo for Fe and Cu shows relative values of class 0, which indicated no pollution. The contamination factor for Co, Zn, Pb, and Ni classified as class 2, which indicate moderately contamination, while the contamination factor for Fe and Cu classified as class 1, which indicate low contamination. PLI values in the all of studied sites classified as class 2 (Deterioration on site quality) indicating local pollution, as well as denote perfection with (class 0) of no pollution. The distribution pattern of metals percentages was affected by gases emitted from transportation vehicles as well as the prevailing wind direction.

  19. PLC based Smart Street Lighting Control

    OpenAIRE

    D.V.Pushpa Latha; K.R.Sudha; Swati Devabhaktuni

    2013-01-01

    Conventional street lighting systems in most of the areas are Online at regular intervals of time irrespective of the seasonal variations. The street lights are simply switched on at afternoon and turned off in the morning. The consequence is that a large amount of Power is wasted meaninglessly. As energy consumption is an issue of increasing interest, possible energy savings in public street lighting systems are recently discussed from different viewpoints. The purpose of this work is to des...

  20. Stochastic modeling for river pollution of Sungai Perlis

    International Nuclear Information System (INIS)

    Yunus, Nurul Izzaty Mohd.; Rahman, Haliza Abd.; Bahar, Arifah

    2015-01-01

    River pollution has been recognized as a contributor to a wide range of health problems and disorders in human. It can pose health dangers to humans who come into contact with it, either directly or indirectly. Therefore, it is most important to measure the concentration of Biochemical Oxygen Demand (BOD) as a water quality parameter since the parameter has long been the basic means for determining the degree of water pollution in rivers. In this study, BOD is used as a parameter to estimate the water quality at Sungai Perlis. It has been observed that Sungai Perlis is polluted due to lack of management and improper use of resources. Therefore, it is of importance to model the Sungai Perlis water quality in order to describe and predict the water quality systems. The BOD concentration secondary data set is used which was extracted from the Drainage and Irrigation Department Perlis State website. The first order differential equation from Streeter – Phelps model was utilized as a deterministic model. Then, the model was developed into a stochastic model. Results from this study shows that the stochastic model is more adequate to describe and predict the BOD concentration and the water quality systems in Sungai Perlis by having smaller value of mean squared error (MSE)

  1. Stochastic modeling for river pollution of Sungai Perlis

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Nurul Izzaty Mohd.; Rahman, Haliza Abd. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,81310 Johor Bahru, Johor (Malaysia); Bahar, Arifah [UTM-Centre of Industrial and Applied Mathematics (UTM-CIAM) Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    River pollution has been recognized as a contributor to a wide range of health problems and disorders in human. It can pose health dangers to humans who come into contact with it, either directly or indirectly. Therefore, it is most important to measure the concentration of Biochemical Oxygen Demand (BOD) as a water quality parameter since the parameter has long been the basic means for determining the degree of water pollution in rivers. In this study, BOD is used as a parameter to estimate the water quality at Sungai Perlis. It has been observed that Sungai Perlis is polluted due to lack of management and improper use of resources. Therefore, it is of importance to model the Sungai Perlis water quality in order to describe and predict the water quality systems. The BOD concentration secondary data set is used which was extracted from the Drainage and Irrigation Department Perlis State website. The first order differential equation from Streeter – Phelps model was utilized as a deterministic model. Then, the model was developed into a stochastic model. Results from this study shows that the stochastic model is more adequate to describe and predict the BOD concentration and the water quality systems in Sungai Perlis by having smaller value of mean squared error (MSE)

  2. Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women

    Science.gov (United States)

    James, Peter; Hart, Jaime E.; Laden, Francine

    2015-01-01

    Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775

  3. Drivers willingness to pay progressive rate for street parking.

    Science.gov (United States)

    2015-01-01

    This study finds willingness to pay and price elasticity for on-street parking demand using stated : preference data obtained from 238 respondents. Descriptive, statistical and economic analyses including : regression, generalized linear model, and f...

  4. Mathematical models for atmospheric pollutants. Appendix D. Available air quality models. Final report

    International Nuclear Information System (INIS)

    Drake, R.L.; McNaughton, D.J.; Huang, C.

    1979-08-01

    Models that are available for the analysis of airborne pollutants are summarized. In addition, recommendations are given concerning the use of particular models to aid in particular air quality decision making processes. The air quality models are characterized in terms of time and space scales, steady state or time dependent processes, reference frames, reaction mechanisms, treatment of turbulence and topography, and model uncertainty. Using these characteristics, the models are classified in the following manner: simple deterministic models, such as air pollution indices, simple area source models and rollback models; statistical models, such as averaging time models, time series analysis and multivariate analysis; local plume and puff models; box and multibox models; finite difference or grid models; particle models; physical models, such as wind tunnels and liquid flumes; regional models; and global models

  5. Overview of the Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) study: theoretical background and model for design of field experiments.

    Science.gov (United States)

    Hahn, Intaek; Wiener, Russell W; Richmond-Bryant, Jennifer; Brixey, Laurie A; Henkle, Stacy W

    2009-12-01

    The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) study was a multidisciplinary field research project that investigated the transport, dispersion, and infiltration processes of traffic emission particulate matter (PM) pollutants in a near-highway urban residential area. The urban PM transport, dispersion, and infiltration processes were described mathematically in a theoretical model that was constructed to develop the experimental objectives of the B-TRAPPED study. In the study, simultaneous and continuous time-series PM concentration and meteorological data collected at multiple outdoor and indoor monitoring locations were used to characterize both temporal and spatial patterns of the PM concentration movements within microscale distances (street canyon; (2) investigating the effects of urban structures such as a tall building or an intersection on the transport and dispersion of PM; (3) studying the influence of meteorological variables on the transport, dispersion, and infiltration processes; (4) characterizing the relationships between the building parameters and the infiltration mechanisms; (5) establishing a cause-and-effect relationship between outdoor-released PM and indoor PM concentrations and identifying the dominant mechanisms involved in the infiltration process; (6) evaluating the effectiveness of a shelter-in-place area for protection against outdoor-released PM pollutants; and (7) understanding the predominant airflow and pollutant dispersion patterns within the neighborhood using wind tunnel and CFD simulations. The 10 papers in this first set of papers presenting the results from the B-TRAPPED study address these objectives. This paper describes the theoretical background and models representing the interrelated processes of transport, dispersion, and infiltration. The theoretical solution for the relationship between the time-dependent indoor PM concentration and the initial PM concentration

  6. Simulations of the dispersion of reactive pollutants in a street canyon, considering different chemical mechanisms and micromixing

    Science.gov (United States)

    Garmory, A.; Kim, I. S.; Britter, R. E.; Mastorakos, E.

    The Stochastic Fields (SF) or Field Monte Carlo method has been used to model the dispersion of reactive scalars in a street canyon, using a simple chemistry and the CBM-IV mechanism. SF is a Probability Density Function (PDF) method which allows both means and variances of the scalars to be calculated as well as considering the effect of segregation on reaction rates. It was found that the variance of reactive scalars such as NO 2 was very high in the mixing region at roof-top level with rms values of the order of the mean values. The effect of segregation on major species such as O 3 was found to be very small using either mechanism, however, some radical species in CBM-IV showed a significant difference. These were found to be the seven species with the fastest chemical timescales. The calculated photostationary state defect was also found to be in error when segregation is neglected.

  7. Modelling of particulate matter pollution (PM10) over the Etang de Berre area Determination of areas of homogeneous pollution

    International Nuclear Information System (INIS)

    Brocheton, F.; Poulet, D.; Mesbah, B.; Hourdin, G.

    2010-01-01

    AIRFOBEP is the association in charge of the air quality monitoring in the Etang de Berre area. AIRFOBEP is managing a network of ten sensors to monitor the PMI (particulate matter index) particulate pollution. This network is updated once a year according to the Air Quality Monitoring Plan (PSQA). Optimizing this network needs to know how the particulate pollution is distributed in the area. In other words, to determine the limits of homogeneous zones of PM 10 pollution. The aim of the project presented in this article is to produce a map of homogeneous zones of PM 10 pollution in the Etang de Berre area. The project was carried out in two steps: - PM 10 atmospheric dispersion modeling, using a ADMS-URBAN software, - Statistic classification, based on the well known Hierarchical Ascending Classification (HAC) technique. Results of the atmospheric dispersion modeling was namely adjusted using an original technique for the 'background PM 10 pollution' computation. Good performances have been obtained when comparing modeling and measurements data. Finally, a set of five homogeneous zones was found to well describe the PM 10 pollution level distribution in the Etang de Berre area. (author)

  8. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  9. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    Science.gov (United States)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  10. Street connectivity and obesity in Glasgow, Scotland: impact of age, sex and socioeconomic position.

    Science.gov (United States)

    Ball, Kylie; Lamb, Karen; Travaglini, Noemi; Ellaway, Anne

    2012-11-01

    This study investigated associations of street connectivity with body mass index (BMI), and whether these associations varied by sex, age and socioeconomic position, amongst adults in Glasgow, Scotland. Data on socio-demographic variables, height and weight were collected from 1062 participants in the Greater Glasgow Health and Well-being Study, and linked with neighbourhood-level census and geo-referenced data on area level deprivation and street connectivity. Results of multilevel models showed that, after adjustment for individual level covariates, street connectivity was not significantly associated with either BMI or BMI category; nor were there any significant interactions between age, sex or socioeconomic position and street connectivity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The Education Rights of Street-Involved Children

    Directory of Open Access Journals (Sweden)

    Sonja Grover

    2010-05-01

    Full Text Available This paper provides an overview of certain key aspects of the practical and legal situation of street-involved children globally. The inadequate protection of these children under both domestic and international law is addressed. The diversity of the population of street-involved children is considered as is the fact that this group is composed of both legally stateless and de facto stateless children. The relationship of street involvement to child labor, various health risks and victimization is discussed. The educational needs of older street-involved children are addressed including their right to participate in decision-making regarding aspects of educational service design and delivery. The overall objective of this paper is to encourage those who are involved in, or could impact upon educational policy to include street-involved children in their educational planning implementation and advocacy efforts.

  12. Smart street lighting : The advantages of LED street lighting and a smart control system in Uppsala municipality

    OpenAIRE

    Sjöberg, Inga; Gidén Hember, Amanda; Wallerström, Carolina

    2017-01-01

    The purpose of this bachelor thesis is to examine how LED street lights and a smart street light control system can reduce the energy consumption, costs and in extension the CO2 equivalents in a geographically delimited area. In 2015 the municipality of Sala installed LED armatures connected to a smart control system in the whole municipality. The smart control system enables for instance adjustment of the light intensity at specific times during the day and a supervision of the street light ...

  13. Analyzing on-Street Parking Duration and Demand in a Metropolitan City of a Developing Country: A Case Study of Yogyakarta City, Indonesia

    Directory of Open Access Journals (Sweden)

    Carolina Ajeng

    2018-02-01

    Full Text Available On-street parking is an urgent issue to address in a fast-growing city of a developing country, such as Yogyakarta City in Indonesia. However, this issue has not been satisfactorily studied due to a lack of relevant parking data. Using a sample of 21 street segments that are currently used for on-street parking in the central district of the city, this study analyzes how the parking duration and demand are differentiated by street and land use characteristics. The characteristics are evaluated through a field survey, which is supplemented by remote sensing and GIS. Specifically, QuickBird imagery is used to roughly examine the length and angle of the street segments and GIS data to calculate parking capacity and demand as well as to confirm the street length and angle. Regression models find that the parking duration is affected by the street length, parking volume, and commercial type of land use, while the street length also differentiates the parking demand. Although the model for the parking demand has only one significant variable—street length—its variation is better accounted for by the same set of variables than the variation in the parking duration. Regarding the street length, it is found to be the only significant variable in the demand model, but it becomes the weakest among those significant in the duration model, where the land use type has the highest magnitude.

  14. Population-Level Exposure to Particulate Air Pollution during Active Travel: Planning for Low-Exposure, Health-Promoting Cities.

    Science.gov (United States)

    Hankey, Steve; Lindsey, Greg; Marshall, Julian D

    2017-04-01

    Providing infrastructure and land uses to encourage active travel (i.e., bicycling and walking) are promising strategies for designing health-promoting cities. Population-level exposure to air pollution during active travel is understudied. Our goals were a ) to investigate population-level patterns in exposure during active travel, based on spatial estimates of bicycle traffic, pedestrian traffic, and particulate concentrations; and b ) to assess how those exposure patterns are associated with the built environment. We employed facility-demand models (active travel) and land use regression models (particulate concentrations) to estimate block-level ( n = 13,604) exposure during rush-hour (1600-1800 hours) in Minneapolis, Minnesota. We used the model-derived estimates to identify land use patterns and characteristics of the street network that are health promoting. We also assessed how exposure is correlated with indicators of health disparities (e.g., household income, proportion of nonwhite residents). Our work uses population-level rates of active travel (i.e., traffic flows) rather than the probability of walking or biking (i.e., "walkability" or "bikeability") to assess exposure. Active travel often occurs on high-traffic streets or near activity centers where particulate concentrations are highest (i.e., 20-42% of active travel occurs on blocks with high population-level exposure). Only 2-3% of blocks (3-8% of total active travel) are "sweet spots" (i.e., high active travel, low particulate concentrations); sweet spots are located a ) near but slightly removed from the city-center or b ) on off-street trails. We identified 1,721 blocks (~ 20% of local roads) where shifting active travel from high-traffic roads to adjacent low-traffic roads would reduce exposure by ~ 15%. Active travel is correlated with population density, land use mix, open space, and retail area; particulate concentrations were mostly unchanged with land use. Public health officials and

  15. Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    McCollister, G M; Wilson, K R

    1975-04-01

    Two related time series models were developed to forecast concentrations of various air pollutants and tested on carbon monoxide and oxidant data for the Los Angeles basin. One model forecasts daily maximum concentrations of a particular pollutant using only past daily maximum values of that pollutant as input. The other model forecasts 1 hr average concentrations using only the past hourly average values. Both are significantly more accurate than persistence, i.e., forecasting for tomorrow what occurred today (or yesterday). Model forecasts for 1972 of the daily instantaneous maxima for total oxidant made using only past pollutant concentration data are more accurate than those made by the Los Angeles APCD using meteorological input as well as pollutant concentrations. Although none of these models forecast as accurately as might be desired for a health warning system, the relative success of simple time series models, even though based solely on pollutant concentration, suggests that models incorporating meteorological data and using either multi-dimensional times series or pattern recognition techniques should be tested.

  16. Pecan Street Grid Demonstration Program. Final technology performance report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  17. Neighborhood walkability and particulate air pollution in a nationwide cohort of women.

    Science.gov (United States)

    James, Peter; Hart, Jaime E; Laden, Francine

    2015-10-01

    Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Using data from the Nurses' Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) µg/m(3) higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary from region to region that allow for walkable neighborhoods with low levels of air pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effects of trees on the dilution of vehicle exhaust emissions in urban street canyons

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2009-01-01

    In order to investigate the natural ventilation and air quality of urban street canyons with trees, boundary layer wind tunnel studies at a small-scale model have been performed. Concentrations in street canyons with a tracer gas emitting line source at the ground level and one row of trees arranged

  19. Generative Street Addresses from Satellite Imagery

    Directory of Open Access Journals (Sweden)

    İlke Demir

    2018-03-01

    Full Text Available We describe our automatic generative algorithm to create street addresses from satellite images by learning and labeling roads, regions, and address cells. Currently, 75% of the world’s roads lack adequate street addressing systems. Recent geocoding initiatives tend to convert pure latitude and longitude information into a memorable form for unknown areas. However, settlements are identified by streets, and such addressing schemes are not coherent with the road topology. Instead, we propose a generative address design that maps the globe in accordance with streets. Our algorithm starts with extracting roads from satellite imagery by utilizing deep learning. Then, it uniquely labels the regions, roads, and structures using some graph- and proximity-based algorithms. We also extend our addressing scheme to (i cover inaccessible areas following similar design principles; (ii be inclusive and flexible for changes on the ground; and (iii lead as a pioneer for a unified street-based global geodatabase. We present our results on an example of a developed city and multiple undeveloped cities. We also compare productivity on the basis of current ad hoc and new complete addresses. We conclude by contrasting our generative addresses to current industrial and open solutions.

  20. Public Reactions to New Street Tree Planting

    Directory of Open Access Journals (Sweden)

    Ruth A. Rae

    2010-01-01

    Full Text Available MillionTreesNYC, which has the goal of planting one million trees in New York City by 2017, is intended to make New York City a greener, more sustainable city and is part of the Mayor’s comprehensive long term strategic plan, PlaNYC. Through planting a tree at every suitable sidewalk location in the city, the City of New York is transforming blocks and communities, and providing a variety of environmental, social and aesthetic benefits. This article examines the large scale municipal planting of new street trees and the reaction by some of the pubic to this planting.Trees offer benefits to the city overall, but the public may not understand these benefits or the street tree planting process. Between 2007 and 2009, the Department of Parks & Recreation planted 53,235 new street trees, and received 4,108 items of correspondence from the public. The majority of this correspondence consisted of public comments about the City’s new street tree planting policies and processes including placement objections, maintenance concerns, reports of resultant damage from tree planting operations, requests for new street trees and reports of tree conditions.This study describes the operational policies that guide New York City's municipal street tree planting, and results of content and spatial analysis of the correspondence. Qualitative analysis of the correspondence revealed the public perceptions and concerns related to the MillionTreesNYC program. Spatial analysis explored the relationship between the planting locations of new street trees and the locations of the citizen correspondence.Public reactions to this large scale municipal planting are related to the dual public and private nature of the sidewalk, issues of territoriality, responsibility, aesthetics and place attachment. Correspondence volume was associated with the scale of the new street tree block planting program, and the effectiveness of NYC’s 311 Customer Service Center. The discussion

  1. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs.

    Science.gov (United States)

    Xie, Yujing; Zhao, Laijun; Xue, Jian; Hu, Qingmi; Xu, Xiang; Wang, Hongbo

    2016-12-15

    How to effectively control severe regional air pollution has become a focus of global concern recently. The non-cooperative reduction model (NCRM) is still the main air pollution control pattern in China, but it is both ineffective and costly, because each province must independently fight air pollution. Thus, we proposed a cooperative reduction model (CRM), with the goal of maximizing the reduction in adverse health effects (AHEs) at the lowest cost by encouraging neighboring areas to jointly control air pollution. CRM has two parts: a model of optimal pollutant removal rates using two optimization objectives (maximizing the reduction in AHEs and minimizing pollutant reduction cost) while meeting the regional pollution control targets set by the central government, and a model that allocates the cooperation benefits (i.e., health improvement and cost reduction) among the participants according to their contributions using the Shapley value method. We applied CRM to the case of sulfur dioxide (SO 2 ) reduction in Yangtze River Delta region. Based on data from 2003 to 2013, and using mortality due to respiratory and cardiovascular diseases as the health endpoints, CRM saves 437 more lives than NCRM, amounting to 12.1% of the reduction under NCRM. CRM also reduced costs by US $65.8×10 6 compared with NCRM, which is 5.2% of the total cost of NCRM. Thus, CRM performs significantly better than NCRM. Each province obtains significant benefits from cooperation, which can motivate them to actively cooperate in the long term. A sensitivity analysis was performed to quantify the effects of parameter values on the cooperation benefits. Results shown that the CRM is not sensitive to the changes in each province's pollutant carrying capacity and the minimum pollutant removal capacity, but sensitive to the maximum pollutant reduction capacity. Moreover, higher cooperation benefits will be generated when a province's maximum pollutant reduction capacity increases. Copyright

  2. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China.

    Science.gov (United States)

    Sun, Guangyi; Li, Zhonggen; Liu, Ting; Chen, Ji; Wu, Tingting; Feng, Xinbin

    2017-12-01

    The content levels, distribution characteristics, and health risks associated with 15 rare earth elements (REEs) in urban street dust from an industrial city, Zhuzhou, in central China were investigated. The total REE content (∑REE) ranged from 66.1 to 237.4 mg kg -1 , with an average of 115.9 mg kg -1 , which is lower than that of Chinese background soil and Yangtze river sediment. Average content of the individual REE in street dust decreased in the order Ce > La > Nd > Y > Pr > Sm > Gd > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chondrite-normalized REE pattern indicated light REE (LREE) enrichment, a relatively steep LREE trend, heavy REE (HREE) depletion, a flat HREE trend, a Eu-negative anomaly and a Ce-positive anomaly. Foremost heavy local soil and to less degree anthropogenic pollution are the main sources of REE present in street dust. Health risk associated with the exposure of REE in street dust was assessed based on the carcinogenic and non-carcinogenic effect and lifetime average daily dose. The obtained cancer and non-cancer risk values prompt for no augmented health hazard. However, children had greater health risks than that of adults.

  3. Monitoring and pollution control: A stochastic process approach to model oil spills

    International Nuclear Information System (INIS)

    Viladrich-Grau, M.

    1991-01-01

    The first chapter analyzes the behavior of a firm in an environment with pollution externalities and technological progress. It is assumed that firms may not purposely violate the pollution control regulations but nonetheless, generate some pollution due to negligence. The model allows firms two possible actions: either increase the level of treated waste or pay an expected penalty if illegal pollution is detected. The results of the first chapter show that in a world with pollution externalities, technological progress does not guarantee increases in the welfare level. The second chapter models the occurrence of an oil spill as a stochastic event. The stochastic model developed allows one to see how each step of the spilling process is affected by each policy measure and to compare the relative efficiency of different measures in reducing spills. The third chapter estimates the parameters that govern oil spill frequency and size distribution. The author models how these parameters depend on two pollution prevention measures: monitoring of transfer operations and assessment of penalties. He shows that these measures reduce the frequency of oil spills

  4. Modeling the risk of water pollution by pesticides from imbalanced data.

    Science.gov (United States)

    Trajanov, Aneta; Kuzmanovski, Vladimir; Real, Benoit; Perreau, Jonathan Marks; Džeroski, Sašo; Debeljak, Marko

    2018-04-30

    The pollution of ground and surface waters with pesticides is a serious ecological issue that requires adequate treatment. Most of the existing water pollution models are mechanistic mathematical models. While they have made a significant contribution to understanding the transfer processes, they face the problem of validation because of their complexity, the user subjectivity in their parameterization, and the lack of empirical data for validation. In addition, the data describing water pollution with pesticides are, in most cases, very imbalanced. This is due to strict regulations for pesticide applications, which lead to only a few pollution events. In this study, we propose the use of data mining to build models for assessing the risk of water pollution by pesticides in field-drained outflow water. Unlike the mechanistic models, the models generated by data mining are based on easily obtainable empirical data, while the parameterization of the models is not influenced by the subjectivity of ecological modelers. We used empirical data from field trials at the La Jaillière experimental site in France and applied the random forests algorithm to build predictive models that predict "risky" and "not-risky" pesticide application events. To address the problems of the imbalanced classes in the data, cost-sensitive learning and different measures of predictive performance were used. Despite the high imbalance between risky and not-risky application events, we managed to build predictive models that make reliable predictions. The proposed modeling approach can be easily applied to other ecological modeling problems where we encounter empirical data with highly imbalanced classes.

  5. Tracking Restoration of Park and Urban Street Settings in Coronary Artery Disease Patients

    Directory of Open Access Journals (Sweden)

    Regina Grazuleviciene

    2016-05-01

    Full Text Available The physiological effects of natural and urban environments on the cardiovascular system of coronary artery disease (CAD patients are not fully understood. This controlled field study examines the effects of restorative walking in a park vs. in an urban street environment on CAD patients’ stress parameters and cardiac function. Methods: Twenty stable CAD patients were randomly allocated to 7 days controlled walking in a city park or in an urban street environment group. The relationship between different environmental exposures and health effects was analyzed using Wilcoxon signed-rank test and exact Mann-Whitney U test. Results: The mean reduction in cortisol levels and negative effects after the walk on the first day was greater in the city park than in the urban street exposed group, while a reduction in negative effects in the urban group were greater after seven days. The reduction in diastolic blood pressure (DBP in the park group was evident on the seventh day before the walk (−4 mm Hg, p = 0.031 and 60 min after the walk (−6.00 mm Hg, p = 0.002. The cortisol slope was negatively associated with the DBP changes (r = −0.514, p < 0.05. Conclusions: Physical activity in a green environment with noise and air pollution levels lower than in an urban environment has a greater positive effect on CAD patients’ stress level and hemodynamic parameters. Mitigating green environmental influences may allow urban residents to maintain health and reduce disability.

  6. [Street social education: historical, political and pedagogical bases].

    Science.gov (United States)

    de Oliveira, Walter Ferreira

    2007-01-01

    This work is about street social education as a pedagogical system that started in Latin America in the late 1970s, as the street population formed mostly by children and adolescents called for attention. The first street social educators were 'pastoral' agents working at the praça da Sé a place with large numbers of street children in São Paulo. Based on the Liberation Theology and on the pedagogies developed by Paulo Freire, Celestine Freinet, Anton Makarenko, and Emília Ferreiro, the street educators developed a conceptual field and participated in the promulgation of the 1988 Federal Constitution, particularly by writing and introducing the 'Estatuto da Criança e do Adolescente' (the 'Child and Adolescent Statute'). Street social education is currently latent and suffering the consequences of program discontinuity caused by successive changes of government. It is, therefore important to know the conceptual proposals.

  7. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments.

    Science.gov (United States)

    Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A

    2016-02-01

    Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Alcohol in urban streetscapes: a comparison of the use of Google Street View and on-street observation.

    Science.gov (United States)

    Clews, Chris; Brajkovich-Payne, Roza; Dwight, Emily; Ahmad Fauzul, Ayob; Burton, Madeleine; Carleton, Olivia; Cook, Julie; Deroles, Charlotte; Faulkner, Ruby; Furniss, Mary; Herewini, Anahera; Huband, Daymen; Jones, Nerissa; Kim, Cho Wool; Li, Alice; Lu, Jacky; Stanley, James; Wilson, Nick; Thomson, George

    2016-05-26

    Alcohol-related harm is a major global health issue, and controls on alcohol marketing are one intervention utilized by governments. This study investigated the use of Google Street View (GSV) as a novel research method for collecting alcohol-related data in the urban environment. The efficacy of GSV and on-street observation by observer teams was compared by surveying 400 m stretches of 12 streets in Wellington, the capital city of New Zealand. Data on alcohol sale, alcohol-related advertising, health promotion materials, regulatory information and visible alcohol consumption were collected. A total of 403 retailers with evidence of alcohol sales and 1161 items of alcohol-related communication were identified in on-street observation. Of the latter, 1028 items (89 %) were for alcohol marketing and 133 (11 %) were for alcohol-related health promotion and alcohol regulation. GSV was found to be a less sensitive tool than on-street observation with only 50 % of the alcohol venues identified and 52 % of the venue-associated brand marketing identified. A high degree of inter-observer reliability was generally found between pairs of observers e.g., for the detection of alcohol retail venues the intra-class correlation coefficient (ICC) was 0.93 (95 % CI: 0.78 to 0.98) for on-street observation and 0.85 (95 % CI: 0.49 to 0.96) for using GSV. GSV does not seem suitable for the comprehensive study of the influences on alcohol consumption in the urban streetscape. However, it may still have value for large, static objects in the environment and be more time efficient than traditional on-street observation measures, especially when used to collect data across a wide geographical area. Furthermore, GSV might become a more useful research tool in settings with better image quality (such as more 'footpath views') and with more regularly updated GSV imagery.

  9. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    Science.gov (United States)

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  10. Studies of urban climates and air pollution in Switzerland

    International Nuclear Information System (INIS)

    Wanner, H.; Hertig, J.

    1984-01-01

    In addition to an assessment of the factors that are responsible for urban climate change, this paper describes climatological studies and peculiarities of some Swiss cities. Although these cities are small, urban air pollution presents a real problem for urban planning. This is a result of the narow street canyons, the high traffic concentration and the complex topography, which favors air stagnation during anticyclonic weather conditions

  11. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    OpenAIRE

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implem...

  12. Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain.

    Directory of Open Access Journals (Sweden)

    Rahul Goel

    Full Text Available Street imagery is a promising and growing big data source providing current and historical images in more than 100 countries. Studies have reported using this data to audit road infrastructure and other built environment features. Here we explore a novel application, using Google Street View (GSV to predict travel patterns at the city level.We sampled 34 cities in Great Britain. In each city, we accessed 2000 GSV images from 1000 random locations. We selected archived images from time periods overlapping with the 2011 Census and the 2011-2013 Active People Survey (APS. We manually annotated the images into seven categories of road users. We developed regression models with the counts of images of road users as predictors. The outcomes included Census-reported commute shares of four modes (combined walking plus public transport, cycling, motorcycle, and car, as well as APS-reported past-month participation in walking and cycling.We found high correlations between GSV counts of cyclists ('GSV-cyclists' and cycle commute mode share (r = 0.92/past-month cycling (r = 0.90. Likewise, GSV-pedestrians was moderately correlated with past-month walking for transport (r = 0.46, GSV-motorcycles was moderately correlated with commute share of motorcycles (r = 0.44, and GSV-buses was highly correlated with commute share of walking plus public transport (r = 0.81. GSV-car was not correlated with car commute mode share (r = -0.12. However, in multivariable regression models, all outcomes were predicted well, except past-month walking. The prediction performance was measured using cross-validation analyses. GSV-buses and GSV-cyclists are the strongest predictors for most outcomes.GSV images are a promising new big data source to predict urban mobility patterns. Predictive power was the greatest for those modes that varied the most (cycle and bus. With its ability to identify mode of travel and capture street activity often excluded in routinely carried out

  13. Detecting Themed Streets Using a Location Based Service Application

    Directory of Open Access Journals (Sweden)

    Byeongsuk Ji

    2016-07-01

    Full Text Available Various themed streets have recently been developed by local governments in order to stimulate local economies and to establish the identity of the corresponding places. However, the motivations behind the development of some of these themed street projects has been based on profit, without full considerations of people’s perceptions of their local areas, resulting in marginal effects on the local economies concerned. In response to this issue, this study proposed a themed street clustering method to detect the themed streets of a specific region, focusing on the commercial themed street, which is more prevalent than other types of themed streets using location based service data. This study especially uses “the street segment” as a basic unit for analysis. The Sillim and Gangnam areas of Seoul, South Korea were chosen for the evaluation of the adequacy of the proposed method. By comparing trade areas that were sourced from a market analysis report by a reliable agent with the themed streets detected in this study, the experiment results showed high proficiency of the proposed method.

  14. Modelling an environmental pollutant transport from the stacks to and through the soil

    Directory of Open Access Journals (Sweden)

    Rushdi M.M. El-Kilani

    2010-07-01

    Full Text Available In this paper, a model is presented for predicting the transport of an environmental pollutant from the source to and through the soil. The model can predict the deposition of an environmental pollutant on the soil surface due to the pollutant being loaded on dust particles, which are later deposited on the soil surface. The model is a coupling of three models: a model for predicting the cumulative dust deposition from near and far field sources on a certain area; a canopy microclimate model for solving the energy partition within the canopy elements and so predicting the water convection stream for pollutant transport through the soil; and coupling the deposition of these pollutants on the soil surface to a model for its transport through the soil. The air pollution model uses the Gaussian model approach, superimposed for multiple emission sources, to elucidate the deposition of pollutant laden airborne particulates on the soil surface. A complete canopy layer model is used to calculate within the canopy energy fluxes. The retardation factor for the pollutant is calculated from an adsorption batch experiment. The model was used to predict the deposition of lead laden dust particles on the soil surface and lead's transport through the soil layers inside a metropolitan region for: (1 three large cement factories and (2 a large number of smelters. The results show that, due to the very high retardation values for lead movement through the soil, i.e. ranging from 4371 to 53,793 from previous data and 234 from the adsorption experiment in this paper, lead is immobile and all the lead added to the soil surface via deposited dust or otherwise, even if it is totally soluble, will remain mostly on the soil surface and not move downwards due to high affinity with the soil.

  15. Psychosocial profile of institutionalised street children in Alexandria ...

    African Journals Online (AJOL)

    Objective: The phenomenon of street children in Egypt constitutes a public health concern. This study aimed to investigate the characteristics of institutionalised street children in Alexandria, to compare the prevalence of substance abuse and conduct disorder between street children and school children, and to identify ...

  16. Street Food Consumption and its associated socio-demographic ...

    African Journals Online (AJOL)

    Street Food Consumption and its associated socio-demographic factors in Oyo town, Nigeria. ... Abstract. Background: Contemporary life-styles have made street foods to be an important meal option in Nigeria. They contribute ... Nutrition education is suggested for people to make a better choice of nourishing street foods.

  17. LES of flow in the street canyon

    Science.gov (United States)

    Fuka, Vladimír; Brechler, Josef

    2012-04-01

    Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.

  18. Improved Large-Eddy Simulation Using a Stochastic Backscatter Model: Application to the Neutral Atmospheric Boundary Layer and Urban Street Canyon Flow

    Science.gov (United States)

    O'Neill, J. J.; Cai, X.; Kinnersley, R.

    2015-12-01

    Large-eddy simulation (LES) provides a powerful tool for developing our understanding of atmospheric boundary layer (ABL) dynamics, which in turn can be used to improve the parameterisations of simpler operational models. However, LES modelling is not without its own limitations - most notably, the need to parameterise the effects of all subgrid-scale (SGS) turbulence. Here, we employ a stochastic backscatter SGS model, which explicitly handles the effects of both forward and reverse energy transfer to/from the subgrid scales, to simulate the neutrally stratified ABL as well as flow within an idealised urban street canyon. In both cases, a clear improvement in LES output statistics is observed when compared with the performance of a SGS model that handles forward energy transfer only. In the neutral ABL case, the near-surface velocity profile is brought significantly closer towards its expected logarithmic form. In the street canyon case, the strength of the primary vortex that forms within the canyon is more accurately reproduced when compared to wind tunnel measurements. Our results indicate that grid-scale backscatter plays an important role in both these modelled situations.

  19. Uncertainty characterization and quantification in air pollution models. Application to the ADMS-Urban model.

    Science.gov (United States)

    Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.

    2009-04-01

    Evaluation of human exposure to atmospheric pollution usually requires the knowledge of pollutants concentrations in ambient air. In the framework of PAISA project, which studies the influence of socio-economical status on relationships between air pollution and short term health effects, the concentrations of gas and particle pollutants are computed over Strasbourg with the ADMS-Urban model. As for any modeling result, simulated concentrations come with uncertainties which have to be characterized and quantified. There are several sources of uncertainties related to input data and parameters, i.e. fields used to execute the model like meteorological fields, boundary conditions and emissions, related to the model formulation because of incomplete or inaccurate treatment of dynamical and chemical processes, and inherent to the stochastic behavior of atmosphere and human activities [1]. Our aim is here to assess the uncertainties of the simulated concentrations with respect to input data and model parameters. In this scope the first step consisted in bringing out the input data and model parameters that contribute most effectively to space and time variability of predicted concentrations. Concentrations of several pollutants were simulated for two months in winter 2004 and two months in summer 2004 over five areas of Strasbourg. The sensitivity analysis shows the dominating influence of boundary conditions and emissions. Among model parameters, the roughness and Monin-Obukhov lengths appear to have non neglectable local effects. Dry deposition is also an important dynamic process. The second step of the characterization and quantification of uncertainties consists in attributing a probability distribution to each input data and model parameter and in propagating the joint distribution of all data and parameters into the model so as to associate a probability distribution to the modeled concentrations. Several analytical and numerical methods exist to perform an

  20. Multiple traumas and resilience among street children in Haiti: Psychopathology of survival.

    Science.gov (United States)

    Cénat, Jude Mary; Derivois, Daniel; Hébert, Martine; Amédée, Laetitia Mélissande; Karray, Amira

    2018-05-01

    In Haiti, as in several developing countries, the phenomenon of street children has become a major public health issue. These children are often victims of traumas and adverse life events. This article aimed to investigate traumas experienced by street children and their coping and resilience strategies used to deal with adversities in a logic of survival, relying on a mixed method approach. A group of 176 street children, aged 7-18 (n = 21 girls), recruited in Port-au-Prince, completed measures assessing PTSD, social support and resilience. Semi-structured interviews were conducted to document traumatic experiences, factors related to resilience and coping strategies. After performing statistical analyses to evaluate prevalence and predictors associated with PTSD, and level of social support satisfaction and resilience, qualitative analysis using a grounded theory approach was conducted. Results showed that street children experienced multiple traumas such as neglect, maltreatment, psychological, physical and sexual abuse. However, they also showed self-efficacy to face their traumatic experiences and few of them (less than 15%) obtained scores reaching clinical rates of PTSD, while a large majority presented a level of resilience between moderate to very high. A socio-ecological model of multiple traumas and a model of coping, survival and resilience strategies are conceptualized. Data provide a better understanding of the traumas experienced by street children, their coping and resilience strategies. Results underscore ways to develop practices to offer psychological support, social and vocational integration based on the real needs of these children, in a perspective of social justice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. OpenStreetMap over WMS

    Directory of Open Access Journals (Sweden)

    Přemysl Vohnout

    2010-02-01

    Full Text Available This paper discuss the issues which we faced, while preparing WMS server with OpenStreetMap data of whole Europe. This article is divided into three sections. First is about mandatory applications which are required for working WMS service with OpenStreetMap data. Second is focused on tuning up PostgreSQL. Third is focused on rendering time improvement of layers.

  2. POLE-LIKE STREET FURNITURE DECOMPOSTION IN MOBILE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    F. Li

    2016-06-01

    Full Text Available Automatic semantic interpretation of street furniture has become a popular topic in recent years. Current studies detect street furniture as connected components of points above the street level. Street furniture classification based on properties of such components suffers from large intra class variability of shapes and cannot deal with mixed classes like traffic signs attached to light poles. In this paper, we focus on the decomposition of point clouds of pole-like street furniture. A novel street furniture decomposition method is proposed, which consists of three steps: (i acquirement of prior-knowledge, (ii pole extraction, (iii components separation. For the pole extraction, a novel global pole extraction approach is proposed to handle 3 different cases of street furniture. In the evaluation of results, which involves the decomposition of 27 different instances of street furniture, we demonstrate that our method decomposes mixed classes street furniture into poles and different components with respect to different functionalities.

  3. Pole-Like Street Furniture Decompostion in Mobile Laser Scanning Data

    Science.gov (United States)

    Li, F.; Oude Elberink, S.; Vosselman, G.

    2016-06-01

    Automatic semantic interpretation of street furniture has become a popular topic in recent years. Current studies detect street furniture as connected components of points above the street level. Street furniture classification based on properties of such components suffers from large intra class variability of shapes and cannot deal with mixed classes like traffic signs attached to light poles. In this paper, we focus on the decomposition of point clouds of pole-like street furniture. A novel street furniture decomposition method is proposed, which consists of three steps: (i) acquirement of prior-knowledge, (ii) pole extraction, (iii) components separation. For the pole extraction, a novel global pole extraction approach is proposed to handle 3 different cases of street furniture. In the evaluation of results, which involves the decomposition of 27 different instances of street furniture, we demonstrate that our method decomposes mixed classes street furniture into poles and different components with respect to different functionalities.

  4. A dynamic model of optimal reduction of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Deissenberg, C. [CEFI-CNRS, Les Milles (France); Gottinger, H.W. [International Inst. for Environmental Economics and Management, Bad Waldsee (Germany); Gurman, V. [RAS, Program Systems Inst., Pereslavl-Zalessky (Russian Federation); Marinushkin, D. [Pereslavl Univ., Pereslavl-Zalessky (Russian Federation)

    2001-07-01

    This paper proposes a system of dynamic models to describe the interactive behaviour of different agents (polluters, inspectors, and a principal pollution control agency) involved in the processes of marine oil pollution and of its prevention and purification, under some realistic assumptions, In particular, short- and long-term economic responses of polluters to monitoring efforts, as well as possible collusions between polluters and inspectors, are taken into account. A numerical example is considered using the results of Deissenberg et al., (2001), which show the existence of optimal fines and inspector wage rates that minimize (along with other variables) a simple and visual 'social damage' criterion. (Author)

  5. Forewarning model for water pollution risk based on Bayes theory.

    Science.gov (United States)

    Zhao, Jun; Jin, Juliang; Guo, Qizhong; Chen, Yaqian; Lu, Mengxiong; Tinoco, Luis

    2014-02-01

    In order to reduce the losses by water pollution, forewarning model for water pollution risk based on Bayes theory was studied. This model is built upon risk indexes in complex systems, proceeding from the whole structure and its components. In this study, the principal components analysis is used to screen out index systems. Hydrological model is employed to simulate index value according to the prediction principle. Bayes theory is adopted to obtain posterior distribution by prior distribution with sample information which can make samples' features preferably reflect and represent the totals to some extent. Forewarning level is judged on the maximum probability rule, and then local conditions for proposing management strategies that will have the effect of transforming heavy warnings to a lesser degree. This study takes Taihu Basin as an example. After forewarning model application and vertification for water pollution risk from 2000 to 2009 between the actual and simulated data, forewarning level in 2010 is given as a severe warning, which is well coincide with logistic curve. It is shown that the model is rigorous in theory with flexible method, reasonable in result with simple structure, and it has strong logic superiority and regional adaptability, providing a new way for warning water pollution risk.

  6. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    Science.gov (United States)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  7. Automatic Sky View Factor Estimation from Street View Photographs—A Big Data Approach

    Directory of Open Access Journals (Sweden)

    Jianming Liang

    2017-04-01

    Full Text Available Hemispherical (fisheye photography is a well-established approach for estimating the sky view factor (SVF. High-resolution urban models from LiDAR and oblique airborne photogrammetry can provide continuous SVF estimates over a large urban area, but such data are not always available and are difficult to acquire. Street view panoramas have become widely available in urban areas worldwide: Google Street View (GSV maintains a global network of panoramas excluding China and several other countries; Baidu Street View (BSV and Tencent Street View (TSV focus their panorama acquisition efforts within China, and have covered hundreds of cities therein. In this paper, we approach this issue from a big data perspective by presenting and validating a method for automatic estimation of SVF from massive amounts of street view photographs. Comparisons were made with SVF estimates derived from two independent sources: a LiDAR-based Digital Surface Model (DSM and an oblique airborne photogrammetry-based 3D city model (OAP3D, resulting in a correlation coefficient of 0.863 and 0.987, respectively. The comparisons demonstrated the capacity of the proposed method to provide reliable SVF estimates. Additionally, we present an application of the proposed method with about 12,000 GSV panoramas to characterize the spatial distribution of SVF over Manhattan Island in New York City. Although this is a proof-of-concept study, it has shown the potential of the proposed approach to assist urban climate and urban planning research. However, further development is needed before this approach can be finally delivered to the urban climate and urban planning communities for practical applications.

  8. Sensation Seeking in Street Violence

    DEFF Research Database (Denmark)

    Heinskou, Marie Bruvik; Liebst, Lasse Suonperä

    Sensation seeking leads to violence—runs an influential hypothesis in the social scientific study of violent behavior. Although studies confirm that violence is sometimes structured by sensation-seeking motives, the literature seldom comments on the limits to this explanation of violence....... The present study examines the scale of violence motivated by sensation seeking and the degree to which there are several distinct forms of sensation seeking motives operative in violence, rather than a sensation-seeking motive in the singular. The study draws on a sample of situations from Copenhagen...... involving street violence, which are coded quantitatively and qualitatively. Our analysis shows that sensation seeking only seldom seems to play a role in the structuring of street violence. Moreover, the data indicate that sensation seeking finds expression in street violence situations in two different...

  9. Diffusion of Complete Streets policies Across US communities.

    Science.gov (United States)

    Moreland-Russell, Sarah; Eyler, Amy; Barbero, Colleen; Hipp, J Aaron; Walsh, Heidi

    2013-01-01

    Complete Streets policies guide planning in communities by making the transportation system accommodating to all users including vehicle drivers, pedestrians, and bicyclists, as well as those using public transportation. While the number of Complete Streets policies has increased over the past decade, no research has explored the factors attributing to the widespread diffusion of these policies. The purpose of this study was to apply concepts of the Diffusion of Innovation Theory to data related to Complete Streets policies in order to identify potential patterns and correlates. The main outcome of this study was policy adoption. Using the Diffusion of Innovation Theory and results from previous literature, we identified several factors that had the potential to affect the rate of Complete Streets policy diffusion: rural/urban status, state obesity rate, state funding for transportation, state obesity prevention funding, percentage of people who walk or bike to work in the state, presence of a state Complete Streets policy, and the number of bordering communities with Complete Streets policy. We used event history analysis as the main analysis method. Data from 49 community-level policies were analyzed, with a "community" defined as a city, a county, or a regional/Metropolitan Planning Organization. Three variables were significant predictors of Complete Streets policy adoption: state obesity rate (odds ratio [OR] = 1.465; confidence interval [CI] = 1.10-1.96) percentage of people who bike or walk to work in the state (OR = 1.726; CI = 1.069-2.79), and presence of a border community with a Complete Streets policy (OR = 3.859; CI = 1.084-13.742). Communities with Complete Streets policies varied in geographic and sociodemographic factors. Information about communities that are more likely to adopt a policy can be a tool for advocates and policy makers interested in this topic. Because adoption does not imply implementation, further research is needed to study

  10. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  11. Individuals with severely impaired vision can learn useful orientation and mobility skills in virtual streets and can use them to improve real street safety.

    Science.gov (United States)

    Bowman, Ellen Lambert; Liu, Lei

    2017-01-01

    Virtual reality has great potential in training road safety skills to individuals with low vision but the feasibility of such training has not been demonstrated. We tested the hypotheses that low vision individuals could learn useful skills in virtual streets and could apply them to improve real street safety. Twelve participants, whose vision was too poor to use the pedestrian signals were taught by a certified orientation and mobility specialist to determine the safest time to cross the street using the visual and auditory signals made by the start of previously stopped cars at a traffic-light controlled street intersection. Four participants were trained in real streets and eight in virtual streets presented on 3 projection screens. The crossing timing of all participants was evaluated in real streets before and after training. The participants were instructed to say "GO" at the time when they felt the safest to cross the street. A safety score was derived to quantify the GO calls based on its occurrence in the pedestrian phase (when the pedestrian sign did not show DON'T WALK). Before training, > 50% of the GO calls from all participants fell in the DON'T WALK phase of the traffic cycle and thus were totally unsafe. 20% of the GO calls fell in the latter half of the pedestrian phase. These calls were unsafe because one initiated crossing this late might not have sufficient time to walk across the street. After training, 90% of the GO calls fell in the early half of the pedestrian phase. These calls were safer because one initiated crossing in the pedestrian phase and had at least half of the pedestrian phase for walking across. Similar safety changes occurred in both virtual street and real street trained participants. An ANOVA showed a significant increase of the safety scores after training and there was no difference in this safety improvement between the virtual street and real street trained participants. This study demonstrated that virtual reality

  12. Health policy making for street children: challenges and strategies.

    Science.gov (United States)

    Abdi, Fatemeh; Saeieh, Sara Esmaelzadeh; Roozbeh, Nasibeh; Yazdkhasti, Mansoureh

    2017-08-17

    Background The phenomenon of street children is a bio-psychological and social issue that not only harms children, but also endangers the health of a society. In line with the national programs for the development and promotion of street children's health in Iran, health policy making and essential strategies for this group of children will be presented in this paper. This paper will discuss the main issues and challenges of street children's health and, also, health policy and guidelines for this population. Methods In this review study, the keywords; street children, health, challenges, policy, and health policy making were searched through PubMed, SID, Iranmedex, World Health Organization (WHO), Emro, the Cochran Library, Medline and Google scholar to collect data. The search resulted in 84 related resources from which 48 cases that were more relevant to this research and covered the issue more comprehensively, were used. All data published during 2002-2015 have been included in this paper. Results Key concepts including street children and their health, health policy, strategies to improve the health of street children, health policy approaches for street children, the WHO's strategies, and social support program for street children must be considered in the health policy making processes for street children, as precise identification of the relevant information makes planning more effective in health policy making for this group of children. Conclusion The phenomenon of street children is a growing problem in the world and it has turned into a serious concern in many countries including Iran. The findings of this study can be used for identifying necessary measures in order to use research outcomes more effectively in policy making processes and reforming street children's health policies in Iran.

  13. Validating a continental-scale groundwater diffuse pollution model using regional datasets.

    Science.gov (United States)

    Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik

    2017-12-11

    In this study, we assess the validity of an African-scale groundwater pollution model for nitrates. In a previous study, we identified a statistical continental-scale groundwater pollution model for nitrate. The model was identified using a pan-African meta-analysis of available nitrate groundwater pollution studies. The model was implemented in both Random Forest (RF) and multiple regression formats. For both approaches, we collected as predictors a comprehensive GIS database of 13 spatial attributes, related to land use, soil type, hydrogeology, topography, climatology, region typology, nitrogen fertiliser application rate, and population density. In this paper, we validate the continental-scale model of groundwater contamination by using a nitrate measurement dataset from three African countries. We discuss the issue of data availability, and quality and scale issues, as challenges in validation. Notwithstanding that the modelling procedure exhibited very good success using a continental-scale dataset (e.g. R 2  = 0.97 in the RF format using a cross-validation approach), the continental-scale model could not be used without recalibration to predict nitrate pollution at the country scale using regional data. In addition, when recalibrating the model using country-scale datasets, the order of model exploratory factors changes. This suggests that the structure and the parameters of a statistical spatially distributed groundwater degradation model for the African continent are strongly scale dependent.

  14. Whose Bay Street? Competing Narratives of Nassau's City Centre

    Directory of Open Access Journals (Sweden)

    Nona Patara Martin

    2009-05-01

    Full Text Available Bay Street has always been at the centre of commercial, cultural and political life in the Bahama Islands. It also acts as a gateway for millions of tourists who come to Nassau, the Bahamian capital, via cruise ships every year. Not surprisingly, Bahamians and non-Bahamians have widely divergent impressions of Bay Street. The need to accommodate the tourists who are critical to the Bahamian economy has meant that Bay Street, despite its deep social significance for Bahamians, has increasingly become a tourist space. With reference to the ‘sense of place’ and place attachment literature, this paper traces the transformation of Bay Street and attempts to tease out the most obvious tensions between the Bay Street that Bahamians experience and Bay Street as a port of call.

  15. Alcohol in urban streetscapes: a comparison of the use of Google Street View and on-street observation

    Directory of Open Access Journals (Sweden)

    Chris Clews

    2016-05-01

    Full Text Available Abstract Background Alcohol-related harm is a major global health issue, and controls on alcohol marketing are one intervention utilized by governments. This study investigated the use of Google Street View (GSV as a novel research method for collecting alcohol-related data in the urban environment. Methods The efficacy of GSV and on-street observation by observer teams was compared by surveying 400 m stretches of 12 streets in Wellington, the capital city of New Zealand. Data on alcohol sale, alcohol-related advertising, health promotion materials, regulatory information and visible alcohol consumption were collected. Results A total of 403 retailers with evidence of alcohol sales and 1161 items of alcohol-related communication were identified in on-street observation. Of the latter, 1028 items (89 % were for alcohol marketing and 133 (11 % were for alcohol-related health promotion and alcohol regulation. GSV was found to be a less sensitive tool than on-street observation with only 50 % of the alcohol venues identified and 52 % of the venue-associated brand marketing identified. A high degree of inter-observer reliability was generally found between pairs of observers e.g., for the detection of alcohol retail venues the intra-class correlation coefficient (ICC was 0.93 (95 % CI: 0.78 to 0.98 for on-street observation and 0.85 (95 % CI: 0.49 to 0.96 for using GSV. Conclusions GSV does not seem suitable for the comprehensive study of the influences on alcohol consumption in the urban streetscape. However, it may still have value for large, static objects in the environment and be more time efficient than traditional on-street observation measures, especially when used to collect data across a wide geographical area. Furthermore, GSV might become a more useful research tool in settings with better image quality (such as more ‘footpath views’ and with more regularly updated GSV imagery.

  16. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    Science.gov (United States)

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  17. Preliminary evaluation, using passive tubes, of carbon monoxide concentrations in outdoor and indoor air at street level shops in Genoa (Italy)

    Science.gov (United States)

    Valerio, Federico; Pala, Mauro; Lazzarotto, Anna; Balducci, Daniele

    Preliminary information on carbon monoxide (CO) concentrations (exposure time: 8 h) both inside and outside 38 randomly selected shops situated on four heavy traffic streets of Genoa was obtained using passive diffusion tubes. Reproducibility and accuracy of this analytical method were tested in real outdoor urban conditions and found within 25%; the detection limit was 1 mgm -3 of CO. The highest mean CO concentrations (15.8 ± 2.2 mgm -3) were found inside shops on Balbi street, a narrow "canyon street". Only in two small shops and two bars (both with many smokers) and in a delicatessen, were indoor CO concentrations significantly higher than outdoor values. The mean outdoor CO concentrations (mgm -3) along the four streets considered (XX Settembre, Balbi, Rolando, Fillak) were 7.4 ± 2.2; 14.5 ± 8.7; 5.8 ± 0.4; 10.5 ± 3.7, respectively. No statistical difference was found, comparing the mean indoor CO concentration with the mean CO outdoor value, measured simultaneously along the sidewalks of each street. CO concentrations in 10 shops without smokers and the nearest outdoor measurements were linearly correlated ( r = 0.99; p statistically significant difference was found comparing indoor CO pollution in shops with smokers (CO: 8.0 ± 5.4) to those without smokers (CO: 7.1 ± 4.6). Forced ventilation, with air intake far from traffic, proved effective in some specific situations in reducing indoor CO concentrations.

  18. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.

    Science.gov (United States)

    Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C

    2013-09-01

    The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Urban planning solutions in the context of dispersion of road pollution

    Directory of Open Access Journals (Sweden)

    Jakubiak Mateusz

    2016-09-01

    Full Text Available Dense road network change the landscape as well as in many different ways affect the environment and living organisms. The works on reducing the exposures to traffic pollutants carried out all around the world. In the last decade, noise barriers in large numbers began to appear along the main streets and became a common feature of urban architecture in Poland. Besides being barriers to the spread of the noise on the neighboring areas these constructions might also contribute to reducing the spread of air pollution, especially road dust particles with associated trace metals (Cd, Cu, Mn, Ni, Pb, Zn.

  20. Modeling of air pollution from the power plant ash dumps

    Science.gov (United States)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  1. Investigation of pollutant gases with molecular absorption spectroscopy

    International Nuclear Information System (INIS)

    Izairi, N; Ajredini, F.; Shehabi, M.

    2011-01-01

    This paper contains the molecular absorption spectroscopic investigation on environmental pollution by many pollutants. For this purpose a laser absorption spectroscopy at 630 nm wavelength has been applied to excite the molecular spectra in order to identify the presence of main gas pollutants. The following was the experimental procedure. Preliminary the presence of pollutants was identified. The gas champions were taken in live environment, in Tetovo streets where cars moved, and in some points in Tetovo suburbia, during different periods of the day. A special civet, part of the apparatus, has been filled by environmental air, and latter, put into the apparatus. A laser beam pulse passes throughout absorbing gas medium in the civet to excite the gas, and the absorbing spectra were automatically registered. The molecular band spectra registration has been performed by an FT-IR Spectrometer (Spectrum BX FT-IR Perkin Elmer). For this purpose the measurements were focused in spectral region of 2075 cm -1 to 2384 cm -1 for CO 2 and CO bands investigation. The importance of such measurements is to investigate the spectral properties of absorption spectra and molecular structure, and for monitoring the environmental pollution. (Author)

  2. Robust geographically weighted regression of modeling the Air Polluter Standard Index (APSI)

    Science.gov (United States)

    Warsito, Budi; Yasin, Hasbi; Ispriyanti, Dwi; Hoyyi, Abdul

    2018-05-01

    The Geographically Weighted Regression (GWR) model has been widely applied to many practical fields for exploring spatial heterogenity of a regression model. However, this method is inherently not robust to outliers. Outliers commonly exist in data sets and may lead to a distorted estimate of the underlying regression model. One of solution to handle the outliers in the regression model is to use the robust models. So this model was called Robust Geographically Weighted Regression (RGWR). This research aims to aid the government in the policy making process related to air pollution mitigation by developing a standard index model for air polluter (Air Polluter Standard Index - APSI) based on the RGWR approach. In this research, we also consider seven variables that are directly related to the air pollution level, which are the traffic velocity, the population density, the business center aspect, the air humidity, the wind velocity, the air temperature, and the area size of the urban forest. The best model is determined by the smallest AIC value. There are significance differences between Regression and RGWR in this case, but Basic GWR using the Gaussian kernel is the best model to modeling APSI because it has smallest AIC.

  3. Into a Mapping of Copenhagen Street Lighting 2014

    DEFF Research Database (Denmark)

    Bülow, Katja; Asp, Claus; Kongshaug, Jesper

    LED lighting is a new lighting component in urban Spaces. How does LED lighting change the visual experience of a street, how did it use to be and how will it become? The book presents a mapping method in which an overview map of light sources in the Copenhagen streets is combined with a video...... recording and a series of photos from a route, whick goes through different city parts and types of streets. The mapping is done in the crucial changing fase, in which the street lighting in Copenhagen is a mix of previously used light sources and LED....

  4. Application of integrated GIS and multimedia modeling on NPS pollution evaluation.

    Science.gov (United States)

    Lin, C E; Kao, C M; Lai, Y C; Shan, W L; Wu, C Y

    2009-11-01

    In Taiwan, nonpoint source (NPS) pollution is one of the major causes of the impairment of surface waters. I-Liao Creek, located in southern Taiwan, flows approximately 90 km and drains toward the Kaoping River. Field investigation results indicate that NPS pollution from agricultural activities is one of the main water pollution sources in the I-Liao Creek Basin. Assessing the potential of NPS pollution to assist in the planning of best management practice (BMP) is significant for improving pollution prevention and control in the I-Liao Creek Basin. In this study, land use identification in the I-Liao Creek Basin was performed by properly integrating the skills of geographic information system (GIS) and global positioning system (GPS). In this analysis, 35 types of land use patterns in the watershed area of the basin are classified with the aid of Erdas Imagine process system and ArcView GIS system. Results indicate that betel palm farms, orchard farms, and tea gardens dominate the farmland areas in the basin, and are scattered around on both sides of the river corridor. An integrated watershed management model (IWMM) was applied for simulating the water quality and evaluating NPS pollutant loads to the I-Liao Creek. The model was calibrated and verified with collected water quality and soil data, and was used to investigate potential NPS pollution management plans. Simulated results indicate that NPS pollution has significant contributions to the nutrient loads to the I-Liao Creek during the wet season. Results also reveal that NPS pollution plays an important role in the deterioration of downstream water quality and caused significant increase in nutrient loads into the basin's water bodies. Simulated results show that source control, land use management, and grassy buffer strip are applicable and feasible BMPs for NPS nutrient loads reduction. GIS system is an important method for land use identification and waste load estimation in the basin. Linking the

  5. A study of spatial resolution in pollution exposure modelling

    Directory of Open Access Journals (Sweden)

    Gustafsson Susanna

    2007-06-01

    Full Text Available Abstract Background This study is part of several ongoing projects concerning epidemiological research into the effects on health of exposure to air pollutants in the region of Scania, southern Sweden. The aim is to investigate the optimal spatial resolution, with respect to temporal resolution, for a pollutant database of NOx-values which will be used mainly for epidemiological studies with durations of days, weeks or longer periods. The fact that a pollutant database has a fixed spatial resolution makes the choice critical for the future use of the database. Results The results from the study showed that the accuracy between the modelled concentrations of the reference grid with high spatial resolution (100 m, denoted the fine grid, and the coarser grids (200, 400, 800 and 1600 meters improved with increasing spatial resolution. When the pollutant values were aggregated in time (from hours to days and weeks the disagreement between the fine grid and the coarser grids were significantly reduced. The results also illustrate a considerable difference in optimal spatial resolution depending on the characteristic of the study area (rural or urban areas. To estimate the accuracy of the modelled values comparison were made with measured NOx values. The mean difference between the modelled and the measured value were 0.6 μg/m3 and the standard deviation 5.9 μg/m3 for the daily difference. Conclusion The choice of spatial resolution should not considerably deteriorate the accuracy of the modelled NOx values. Considering the comparison between modelled and measured values we estimate that an error due to coarse resolution greater than 1 μg/m3 is inadvisable if a time resolution of one day is used. Based on the study of different spatial resolutions we conclude that for urban areas a spatial resolution of 200–400 m is suitable; and for rural areas the spatial resolution could be coarser (about 1600 m. This implies that we should develop a pollutant

  6. A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    NARESHA RAM

    2009-04-01

    Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.

  7. Predicting self-pollution inside school buses using a CFD and multi-zone coupled model

    Science.gov (United States)

    Li, Fei; Lee, Eon S.; Liu, Junjie; Zhu, Yifang

    2015-04-01

    The in-cabin environment of a school bus is important for children's health. The pollutants from a bus's own exhaust contribute to children's overall exposure to air pollutants inside the school bus cabin. In this study, we adapted a coupled model originally developed for indoor environment to determine the relative contribution of the bus own exhaust to the in-cabin pollutant concentrations. The coupled model uses CFD (computational fluent dynamics) model to simulate outside concentration and CONTAM (a multi-zone model) for inside the school bus. The model was validated with experimental data in the literature. Using the validated model, we analyzed the effects of vehicle speed and tailpipe location on self-pollution inside the bus cabin. We confirmed that the pollution released from the tailpipe can penetrate into the bus cabin through gaps in the back emergency door. We found the pollution concentration inside school buses was the highest when buses were driven at a medium speed. In addition, locating the tailpipe on the side, behind the rear axle resulted in less self-pollution since there is less time for the suction effect to take place. The developed theoretical framework can be generalized to study other types of buses. These findings can be used in developing policy recommendations for reducing human exposure to air pollution inside buses.

  8. POLE-LIKE STREET FURNITURE DECOMPOSTION IN MOBILE LASER SCANNING DATA

    OpenAIRE

    Li, F.; Oude Elberink, S.; Vosselman, G.

    2016-01-01

    Automatic semantic interpretation of street furniture has become a popular topic in recent years. Current studies detect street furniture as connected components of points above the street level. Street furniture classification based on properties of such components suffers from large intra class variability of shapes and cannot deal with mixed classes like traffic signs attached to light poles. In this paper, we focus on the decomposition of point clouds of pole-like street furniture. A nove...

  9. Some important results from the air pollution distribution model STACKS (1988-1992)

    International Nuclear Information System (INIS)

    Erbrink, J.J.

    1993-01-01

    Attention is paid to the results of the study on the distribution of air pollutants by high chimney-stacks of electric power plants. An important product of the study is the integrated distribution model STACKS (Short Term Air-pollutant Concentrations Kema modelling System). The improvements and the extensions of STACKS are described in relation to the National Model, which has been used to estimate the environmental effects of individual chimney-stacks. The National Model shows unacceptable variations for high pollutant sources. Based on the results of STACKS revision of the National model has been taken into consideration. By means of the revised National Model a more realistic estimation of the environmental effects of electric power plants can be carried out

  10. 75 FR 78952 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Science.gov (United States)

    2010-12-17

    ... Promulgation of State Air Quality Plans for Designated Facilities and Pollutants; Commonwealth of Virginia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator (HMIWI) Units, Negative... Quality, 629 East Main Street, Richmond, Virginia 23219. FOR FURTHER INFORMATION CONTACT: James B. Topsale...

  11. Spatial traffic noise pollution assessment – A case study

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Monazzam

    2015-06-01

    Full Text Available Objectives: Spatial assessment of traffic noise pollution intensity will provide urban planners with approximate estimation of citizens exposure to impermissible sound levels. They could identify critical noise pollution areas wherein noise barriers should be embedded. The present study aims at using the Geographic Information System (GIS to assess spatial changes in traffic noise pollution in Tehran, the capital of Iran, and the largest city in the Middle East. Material and Methods: For this purpose, while measuring equivalent sound levels at different time periods of a day and different days of a week in District 14 of Tehran, wherein there are highways and busy streets, the geographic coordination of the measurement points was recorded at the stations. The obtained results indicated that the equivalent sound level did not show a statistically significant difference between weekdays, and morning, afternoon and evening hours as well as time intervals of 10 min, 15 min and 30 min. Then, 91 stations were selected in the target area and equivalent sound level was measured for each station on 3 occasions of the morning (7:00–9:00 a.m., afternoon (12.00–3:00 p.m. and evening (5:00–8:00 p.m. on Saturdays to Wednesdays. Results: As the results suggest, the maximum equivalent sound level (Leq was reported from Basij Highway, which is a very important connecting thoroughfare in the district, and was equal to 84.2 dB(A, while the minimum equivalent sound level (Leq, measured in the Fajr Hospital, was equal to 59.9 dB(A. Conclusions: The average equivalent sound level was higher than the national standard limit at all stations. The use of sound walls in Highways Basij and Mahallati as well as widening the Streets 17th Shahrivar, Pirouzi and Khavaran, benchmarked on a map, were recommended as the most effective mitigation measures. Additionally, the research findings confirm the outstanding applicability of the Geographic Information System in

  12. Street children of India -- a glimpse.

    Science.gov (United States)

    Nigam, S

    1994-01-01

    In India, 90% of street children are working children with regular family ties who live with their families, but are on the streets due to poverty and their parents' unemployment. The remaining 10% are either working children with few family ties who view the streets as their homes or abandoned and neglected children with no family ties. The National Policy for Children established in 1974 emphasizes the provision of equal opportunities for the development to all children during their growing years. Policy stresses programs to maintain, educate, and train destitute children and orphans. Policy is also to protect children against neglect, cruelty, and exploitation, but this is only on paper. An UNICEF study found that almost 40,000 children die every day in developing countries, 25% of whom are in India. Studies in some major cities indicate that the street children in India are of moderate health status, suffering from various chronic diseases and undernourishment. They are deprived of all health programs, but seem to prefer government hospitals in case of dire need. Street children often have to pay for water. Almost 97% in Calcutta, 99% in Bangalore, and 90% in Madras reported having no access to toilet and bathing facilities; 83% in Kanpur, however, had access to such facilities. Nothing has been heard in recent years of the National Children's Board established in 1975. Apparently the board has gradually waned. Various schemes were planned in 1992 by the Union Welfare Ministry in association with UNICEF. Extending extra health facilities, establishing nutrition programs, providing vocational training, protecting children from abuse, distributing dry-food polypacks, providing night shelters, providing ration cards, and creating bathing and toilet facilities would go far in improving the quality of life and the future of street children in India.

  13. 75 FR 71744 - Fifth Street Finance Corp., et al.; Notice of Application

    Science.gov (United States)

    2010-11-24

    ... Street Finance Corp., et al.; Notice of Application November 18, 2010. AGENCY: Securities and Exchange... Street Finance Corp. (``Fifth Street''), Fifth Street Management LLC, Fifth Street Mezzanine Partners IV... regulated as a business development company (``BDC'') under the Act. Fifth Street is a specialty finance...

  14. Development of Laboratory Model Ecosystems as Early Warning Elements of Environmental Pollution

    Science.gov (United States)

    1974-12-01

    AD-AOll 851 DEVELOPMENT OF LABORATORY MODEL ECOSYSTEMS AS EARLY WARNING ELEMENTS OF ENVIRONMENTAL POLLUTION Robert L. Metcalf... ENVIRONMENTAL POLLUTION Robert L. Metcalf, Ph. D. University of Illinois Urbana-Champaign, Illinois INTRODUCTION Problems of environmental pollution with...house dust is unsafe to breathe (Ewing and Pearson, 1974). Most of the source of our concern about environmental pollution by trace substances relates

  15. A review of air exchange rate models for air pollution exposure assessments.

    Science.gov (United States)

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  16. A Study on Evaluation for Street Space using AHP Method

    OpenAIRE

    小塚, みすず; 許, 彦; 川本, 義海; 本多, 義明

    2004-01-01

    Street space is an important public area which forms the framework of city space. In addition, from the view of the traffic functions, street space also plays a role to support people's activities performed in city. This paper examines the evaluations of street space among the cities of Fukui (Japan), Toyota (Japan) and Suzhou (China). Therefore, a questionnaire has been carried out and actual conditions of street space are grasped. In addition street functions were evaluated with the AHP met...

  17. "Street Love": How Street Life Oriented U. S. Born African Men Frame Giving Back to One Another and the Local Community

    Science.gov (United States)

    Payne, Yasser Arafat; Hamdi, Hanaa A.

    2009-01-01

    This Participatory Action Research (PAR) project worked with four active street life oriented U. S. born African men, to document how a community sample of street life oriented U. S. born African men between the ages of 16-65, frame and use "street life" as a Site of Resiliency (Payne, Dissertation, 2005; "Journal of Black Psychology" 34(1):3-31,…

  18. The (Street) Art of Resistance

    DEFF Research Database (Denmark)

    Awad, Sarah H.; Wagoner, Brady; Glaveanu, Vlad Petre

    2017-01-01

    This chapter focuses on the interrelation between resistance, novelty and social change We will consider resistance as both a social and individual phenomenon, a constructive process that articulates continuity and change and as an act oriented towards an imagined future of different communities....... In this account, resistance is thus a creative act having its own dynamic and, most of all, aesthetic dimension. In fact, it is one such visibly artistic form of resistance that will be considered here, the case of street art as a tool of social protest and revolution in Egypt. Street art is commonly defined...... in sharp contrast with high or fine art because of its collective nature and anonymity, its different kind of aesthetics, and most of all its disruptive, ‘anti-social’ outcomes. With the use of illustrations, we will argue here that street art is prototypical of a creative form of resistance, situated...

  19. A Knife-Edge Property of Some Pollution-and-Growth Models

    OpenAIRE

    Eriksson, Clas

    2008-01-01

    In some recent economic growth models there can be decreasing pollution along with increasing per capita income, if the rate of improvement in the environmenta ltechnology is sufficiently high. A central function describes how gross pollution and environmental technology interact to determine net pollution, which in the previous works has a log-linear form. This letter provides an example in which this function is generalized to a CES type. The result is that the environmental technology factor...

  20. Street children: “Running from” or “running to”?

    Directory of Open Access Journals (Sweden)

    J. le Roux

    1997-03-01

    Full Text Available The street child phenomenon presents a complex issue resulting from a diversity of integrated factors. The problem should therefore preferably be explained and addressed holistically. A search of available literature on street children clearly indicates that street children per se are not the primary problem. The phenomenon o f street children is merely a symptom of a problem underlying the intolerable situation of these children's family and community lives. In this article it is explained that the street child phenomenon is thus symptomatic of contemporary twentieth century conditions. "Running from " and “running to " are in fact intereffective tendencies or reactions to a complicated polarised society: two sides of a common coin.

  1. [Effect of antecedent dry weather period on urban storm runoff pollution load].

    Science.gov (United States)

    Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci

    2007-10-01

    Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.

  2. Designing safe and inclusive streets in India | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    17 nov. 2016 ... Safe streets play a crucial role in enabling livelihoods, mobility, and access to services. In fast-growing Indian cities such as Ahmedabad, streets are also the site of conflict. With incomes and vehicle ownership on the rise, traffic has replaced people as the central point of street design. Vehicle-focused street ...

  3. School Me, School Me Not, Street Me, Street Me Not…

    DEFF Research Database (Denmark)

    Gravesen, David Thore; Frostholm, Peter Hornbæk

    School Me, School Me Not, Street Me, Street Me Not… (1099) David Thore Gravesen, Peter Hornbæk Frostholm ECER 2016, 14. Communities, Families and Schooling in Educational Research, Session: 14 SES 10 A When picking leaves of a marguerite, whilst doing the “she loves me, she loves me not” game, you....... Obviously, the skaters attend the site to skate. But also other, more vulnerable groupings, use the site to socialize, meet peers and perhaps escape an unreliable and risky family arena. One particular group, the self-named Thugz, primarily formed around a number of young boys with non-Danish ethnic...... milieu. With a criminal gang-like behavior (Hoeben & Weerman 2013; Hviid 2007; Rasmussen 2012) involving petty crime and violence, one would think the group members would be indifferent towards their schooling and future careers. This was not the case. The informants proved to be very aware...

  4. Image diagnosis of plant function under environmental pollution. Shokubutsu de kankyo osen wo shindansuru

    Energy Technology Data Exchange (ETDEWEB)

    Omasa, K. (National Inst. for Environmental studies, Tsukuba (Japan))

    1993-12-20

    Various physiological reaction of plants would be obstructed and troubles of their growth would be met under environmental pollution. There are also cases that the polluted materials as nutritious components are absorbed by plants. Consequently, if plant's reaction on this environmental pollution would be used, indexes of environmental pollution and environment can be improved. For examples, Ipomoea Nil and Petunia having high reaction on photochemical oxidate are widely used as index plant of air pollution. Zelkova trees and poplars planted as street trees can also greatly absorbed the polluted gas and have a function to clear air. In this paper, a diagnosis method by visualizing plant's reaction on environmental pollution by using technique of image measurement was explained. As devices of usable image measurement, a thermal camera, a solid measuring cameras, an ultrasonic camera, a multi-spectral camera and an X-ray TV camera were given. 6 refs., 4 figs., 1 tab.

  5. Pollutant Flux Estimation in an Estuary Comparison between Model and Field Measurements

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chen

    2014-08-01

    Full Text Available This study proposes a framework for estimating pollutant flux in an estuary. An efficient method is applied to estimate the flux of pollutants in an estuary. A gauging station network in the Danshui River estuary is established to measure the data of water quality and discharge based on the efficient method. A boat mounted with an acoustic Doppler profiler (ADP traverses the river along a preselected path that is normal to the streamflow to measure the velocities, water depths and water quality for calculating pollutant flux. To know the characteristics of the estuary and to provide the basis for the pollutant flux estimation model, data of complete tidal cycles is collected. The discharge estimation model applies the maximum velocity and water level to estimate mean velocity and cross-sectional area, respectively. Thus, the pollutant flux of the estuary can be easily computed as the product of the mean velocity, cross-sectional area and pollutant concentration. The good agreement between the observed and estimated pollutant flux of the Danshui River estuary shows that the pollutant measured by the conventional and the efficient methods are not fundamentally different. The proposed method is cost-effective and reliable. It can be used to estimate pollutant flux in an estuary accurately and efficiently.

  6. Improving urban visibility through fractal analysis of street edges: The case of John Evans Atta Mills High Street in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    R.A. Oppong

    2017-06-01

    Full Text Available Streets are a representation of cities, and the image of a city is a reflection of its home country. Although attempts to ensure harmonious spatial and environmental development in Ghanaian settlements date back to the colonial era, these efforts have minimal physical manifestation in the urban fabric of the city of Accra. The Independence Arch of Ghana, an important landmark in the urban fabric and history of Accra, lacks the striking vista and approach it deserves. This paper introduces the use of fractal analysis of street edges to understand the characteristics of the John Evans Atta Mills (JEAM High Street for developing recommendations to improve visibility along its stretch and the overall image of the city. The box-counting method with visual survey was used in research. The pertinent questions this paper seeks to address are as follows: What factors affect the visibility and imageability of JEAM High Street? What design aspects should be considered to improve urban visibility along JEAM High Street? What is the link of fractals to urban design and architecture? The paper recommends various design considerations and qualities to improve the urban visibility and imageability of JEAM High Street.

  7. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    Science.gov (United States)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  8. Blossoms in the Dust: Street Children in Africa.

    Science.gov (United States)

    Velis, Jean-Pierre

    For many African children today, the grim realities of everyday life are far removed from models of education based on traditional wisdom. Part of an attempt to draw the attention of a wide public to the situation of street children, this book focuses on the educational aspects of a problem from which no country is spared. The book focuses…

  9. Two Currencies - One Model? Evidence from the Wall Street Journal forecast poll

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Ruelke, Jan Christoph; Frenkel, Michael

    2009-01-01

    We use the foreign exchange forecasts of the Wall Street Journal poll to compare forecasters' expectation formation process for the exchange rates of the euro and the yen against the U.S. dollar for the period 1999 - 2005. We also contrast the expectation formation process with the actual exchange...

  10. Two Currencies - One Model? Evidence from the Wall Street Journal forecast poll

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Ruelke, Jan Christoph; Frenkel, Michael

    2009-01-01

    We use the foreign exchange forecasts of the Wall Street Journal poll to compare forecasters' expectation formation process for the exchange rates of the euro and the yen against the U.S. dollar for the period 1999 - 2005. We also contrast the expectation formation process with the actual exchang...

  11. Diversity of contexts in drug use among street adolescents.

    Science.gov (United States)

    Goncalves de Moura, Yone; van der Meer Sanchez, Zila; Noto, Ana Regina

    2010-09-01

    In this study we aimed to investigate through ethnographic methods the different contexts of drug use by street adolescents in Sao Paulo, Brazil. Participant observations and semistructured interviews were performed at 11 major points of adolescent concentration in the streets of the city and in 10 care institutions. The sample was composed of 17 adolescents between 12 and 17 years of age. Data showed diverse patterns of drug use distributed by geographic situation and street circumstances. Observations were grouped into three main contexts: (a) immersion: greater intensity of drug use associated with greater involvement in the street culture; (b) surface: less drug use associated with family closeness; and (c) alternative-migratory: greater involvement with drug trafficking and prostitution associated with less family closeness and street culture. The drug use patterns varied in accordance with the diversity of street situations. Therefore, the peculiarities of each context should be taken into consideration in the development of social/ health policies.

  12. THE DEVELOPMENT OF STREET PATTERNS IN ISRAELI CITIES

    Directory of Open Access Journals (Sweden)

    Itzhak OMER

    2015-12-01

    Full Text Available Street patterns of Israeli cities were investigated by comparing three time periods of urban development: (I the late 19th century until the establishment of the state of Israel in 1948; (II 1948 until the 1980s; and (III the late 1980s until the present. These time periods are related respectively to the pre-modern, modern and late-modern urban planning approach. Representative urban street networks were examined in selected cities by means of morphological analysis of typical street pattern properties: curvature, fragmentation, connectivity, continuity and differentiation. The study results reveal significant differences between the street patterns of the three examined periods in the development of cities in Israel. The results show clearly the gradual trends in the intensification of curvature, fragmentation, complexity and hierarchical organization of street networks as well as the weakening of the network's internal and external connectivity. The implications of these changes on connectivity and spatial integration are discussed with respect to planning approaches.

  13. THE DEVELOPMENT OF STREET PATTERNS IN ISRAELI CITIES

    Directory of Open Access Journals (Sweden)

    Itzhak OMER

    2016-07-01

    Full Text Available Street patterns of Israeli cities were investigated by comparing three time periods of urban development: (I the late 19th century until the establishment of the state of Israel in 1948; (II 1948 until the 1980s; and (III the late 1980s until the present. These time periods are related respectively to the pre-modern, modern and late-modern urban planning approach. Representative urban street networks were examined in selected cities by means of morphological analysis of typical street pattern properties: curvature, fragmentation, connectivity, continuity and differentiation. The study results reveal significant differences between the street patterns of the three examined periods in the development of cities in Israel. The results show clearly the gradual trends in the intensification of curvature, fragmentation, complexity and hierarchical organization of street networks as well as the weakening of the network's internal and external connectivity. The implications of these changes on connectivity and spatial integration are discussed with respect to planning approaches.

  14. LES of flow in the street canyon

    OpenAIRE

    Brechler Josef; Fuka Vladimír

    2012-01-01

    Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.

  15. Socio - demographic characteristics of child street vendors in Nnewi ...

    African Journals Online (AJOL)

    Background: Involvement of children in street trading is inimical, contrary to the Rights of the Child, and threatens holistic child development. Objective: To describe the sociodemographic characteristics of child street vendors in Nnewi. Method: A cross-sectional questionnaire survey of children selling wares on the streets of ...

  16. Socio-demographic characteristics of street children in rural ... - Ibadan

    African Journals Online (AJOL)

    15.0%), part-time driving (9.5%) and car washing (5.0%) were the commonest types of work. Of those still schooling, 41.6% had no form of part-time work on the streets. None of the street children lived on the street with 65% still living with parents.

  17. Space Livability of Street Vendors in Simpang Lima Public Space, Semarang

    Science.gov (United States)

    Widjajanti, R.; Wahyono, H.

    2018-02-01

    Street vendors in Semarang have been growing rapidly and uncontrolled. They always use public space such as public roads, sidewalks, parks and fields as trading locations. The street vendors’ activities in the public space are considered as the cause of declining on environmental quality and aesthetics of the city. All these years, the government often evicted the street vendors than organized and provides adequate space for them. As one of the actual urban activities, the street vendors’ activities should be accommodated by the government and the location for them is managed in the urban spatial plan. Street vendors need spaces which livable and suitable to their activities’ requirements, has a relationship with users (street vendors’ doers and consumers) and the activities of street vendors themselves. Research on the aspect of space for street vendors is still less in quantity, whereas space for them is an urgent matter for the government in managing their activities. This study aims to identify the livability of space based on the street vendors’ behavior in their location. This research used descriptive quantitative method with questionnaires and GIS as the mapping tool for street vendors’ location. The result of the research shows that the livability of street vendor space is based on the activity of street vendors (type of merchandise, trading places’ size, trade place assessment, space dimension, trading time, duration and period) and space conditions (access, natural elements, safety and parking space).

  18. [Street Outreach Offices: visibility, invisibility, and enhanced visibility].

    Science.gov (United States)

    Hallais, Janaína Alves da Silveira; Barros, Nelson Filice de

    2015-07-01

    This article discusses care for street people from a socio-anthropological perspective, using participant observation conducted with a team from a street outreach project. Based on observations, street people are historically viewed as marginal and rarely obtain access to health services, thus making them invisible to the Brazilian Unified National Health System. Brazil's National Policy for the Homeless provides for their access to health care, but such care is not always guaranteed in practice, because health services and professionals have little experience in dealing with homeless persons. The study concludes that enhanced visibility is needed to ensure care for people living on the street, establishing a therapeutic bond that deconstructs stigmatizing practice.

  19. A social work study on family patterns and street children

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Iravani

    2014-06-01

    Full Text Available This paper presents a social work study on relationship between various family characteristics and street children in rural area as well as city of Esfahan, Iran. The proposed study selects a sample of 150 street children, 75 from city and 75 from rural area, and using some statistical tests verifies the effects of three factors including family income, place of residency and family size on street children. The results indicate that the city residence had more street children than rural residence did. In addition, there was a meaningful difference between the number of street children in low-income families and high-income families. Finally, the survey results indicate that big size families more likely suffered from street children than low size families did.

  20. Risk behaviour of street children in Colombo.

    Science.gov (United States)

    Senaratna, B C V; Wijewardana, B V N

    2012-09-01

    Sri Lankan street children live in insecure and disadvantaged environments and have disrupted and poorly functioning families resulting in their poor socialisation. In this backdrop they are at high risk of adopting delinquent and antisocial behaviour and becoming victims of abuse. Despite recognition of this as a social problem, an in-depth exploration of their behaviour and its correlates has not been attempted. To describe risk behaviour among street children in Colombo city and the determinants of such behaviour. A cross sectional qualitative study in Colombo Fort, Pettah, Slave Island, and Maradana areas was conducted using focus group discussions (FGDs) with street children and semi-structured interviews (SSIs) with street children and key informants in their environment. Data generated were used to profile 283 children identified through referral sampling. An observation study was conducted to validate data generated through FGDs and SSIs. Semi-structured questionnaires, a moderator guide, an interviewer-administered questionnaire, and an observational checklist were used for SSIs, FGDs, profiling, and observational study, respectively. Majority of street children were boys and were aged 14 years or less. Nearly 18% lived alone without a guardian. Two thirds had never enrolled in a school. Many children were used for begging, neglecting their health vulnerabilities. Occupational risk behaviour included heavy manual labour, transportation and sale of illicit alcohol and narcotics, robbing/pick-pocketing, commercial sex work, and pimping. Recreational risk behaviour included abuse of alcohol/narcotics, smoking, sexual promiscuity, and patronising commercial sex workers. Increased awareness and strategies are required to minimise threats to street children and society.