WorldWideScience

Sample records for street canyon model

  1. Modelling the air flow in symmetric and asymmetric street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L.; Martin, F. [Research Center for Energy, Environment and Technology (CIEMAT), Madrid (Spain). Fossil Fuels Dept., Numerical Simulation and Modelling Program

    2004-07-01

    In recent years a large amount of research has been conducted on urban scale and street canyon. Control of air quality inside cities is important for human health. To achieve this objective, street canyon modelling plays a significant role. Pollutant dispersion inside canyons are determined by wind flow around this complex geometry. Experimental investigations have been made by means of field measurements such as Vachon, G. et al. or wind tunnel experiences as Meroney, R.N. et al. or Kastner-Klein, P. and E.J. Plate. In many of these researches, they have used CFD models in several configurations, for instance Assimakopoulos, V.D. et al. or Sini, J.-F. et al. These models are based on a numerical resolution of Navier-Stokes equations with a turbulence closure. In this study, the aim is contribute to the understanding of air circulation inside street canyons. In order to achieve this purpose, several configurations of canyons are investigated. Two-dimensional sequences of real-scale street canyons (order to obstacles height is meters) with different features (symmetric canyons and asymmetric canyons forming step-up and step-down notch configurations) are simulated. These general configurations are modified to investigate some parameters such as aspect ratio, W/H, where W is the width of street and H is the height of buildings. Flows with high Reynolds numbers are modelling. FLUENT CFD software is used. (orig.)

  2. A simple model for calculating air pollution within street canyons

    Science.gov (United States)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  3. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.L.; Dong, G.; Leung, C.W.; Cheung, C.S. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Research Centre for Combustion and Pollution Control, Department of Mechanical Engineering; Hung, W.T. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Civil and Structural Engineering

    2002-07-01

    A two-dimensional numerical model based on Reynolds-averaged Navier-Stokes equations coupled with a series of standard, Renormalization Group (RNG) and realizable k-{epsilon} turbulence models was developed to simulate the fluid-flow development and pollutant dispersion within an isolated street canyon using the FLUENT code. In the present study, the validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (J. Wind Eng. Ind. Aerodyn. 62 (1996) 37). Among the studied turbulence models, the RNG k-{epsilon} turbulence model was found to be the most optimum turbulence model coupled with the two-dimensional street canyon model developed in the present study. Both the calculated and measured dimensionless pollutant concentrations have been shown to be less dependent on the variation of wind speed and source strength conditions for the studied street canyon aspect ratio of the B/H=1 case. However, the street canyon configuration has significant influence on the pollutant dispersion. The wider street and lower height of the buildings are favorable to pollutant dilution within the street canyon. The fluid-flow development has demonstrated that the rotative vortex or vortices generated within the urban street canyon can transport the pollutants from a line source to the wall surfaces of the buildings. (author)

  4. Comparative study of measured and modelled number concentrations of nanoparticles in an urban street canyon

    DEFF Research Database (Denmark)

    Kumar, Prashant; Garmory, Andrew; Ketzel, Matthias

    2009-01-01

    Pollution Model (OSPM) and Computational Fluid Dynamics (CFD) code FLUENT. All models disregarded any particle dynamics. CFD simulations have been carried out in a simplified geometry of the selected street canyon. Four different sizes of emission sources have been used in the CFD simulations to assess......This study presents a comparison between measured and modelled particle number concentrations (PNCs) in the 10-300 nm size range at different heights in a canyon. The PNCs were modelled using a simple modelling approach (modified Box model, including vertical variation), an Operational Street...... the effect of source size on mean PNC distributions in the street canyon. The measured PNCs were between a factor of two and three of those from the three models, suggesting that if the model inputs are chosen carefully, even a simplified approach can predict the PNCs as well as more complex models. CFD...

  5. Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2016-07-01

    Air pollutants emitted from vehicles in street canyons may be reactive, undergoing mixing and chemical processing before escaping into the overlying atmosphere. The deterioration of air quality in street canyons occurs due to combined effects of proximate emission sources, dynamical processes (reduced dispersion) and chemical processes (evolution of reactive primary and formation of secondary pollutants). The coupling between dynamics and chemistry plays a major role in determining street canyon air quality, and numerical model approaches to represent this coupling are reviewed in this article. Dynamical processes can be represented by Computational Fluid Dynamics (CFD) techniques. The choice of CFD approach (mainly the Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models) depends on the computational cost, the accuracy required and hence the application. Simplified parameterisations of the overall integrated effect of dynamics in street canyons provide capability to handle relatively complex chemistry in practical applications. Chemical processes are represented by a chemical mechanism, which describes mathematically the chemical removal and formation of primary and secondary species. Coupling between these aspects needs to accommodate transport, dispersion and chemical reactions for reactive pollutants, especially fast chemical reactions with time scales comparable to or shorter than those of typical turbulent eddies inside the street canyon. Different approaches to dynamical and chemical coupling have varying strengths, costs and levels of accuracy, which must be considered in their use for provision of reference information concerning urban canopy air pollution to stakeholders considering traffic and urban planning policies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. CODASC : a database for the validation of street canyon dispersion models

    OpenAIRE

    Gromke, C.B.

    2013-01-01

    CODASC stands for Concentration Data of Street Canyons (CODASC 2008, www.codasc.de). It is a database which provides traffic pollutant concentrations in urban street canyons obtained from wind-tunnel dispersion experiments. CODASC comprises concentration data of street canyons with different aspect ratios subjected to various wind directions and also for street canyons with tree-avenues. The database includes concentration data of tree-avenue configurations of different tree arrangement, tree...

  7. CODASC : a database for the validation of street canyon dispersion models

    NARCIS (Netherlands)

    Gromke, C.B.

    2013-01-01

    CODASC stands for Concentration Data of Street Canyons (CODASC 2008, www.codasc.de). It is a database which provides traffic pollutant concentrations in urban street canyons obtained from wind-tunnel dispersion experiments. CODASC comprises concentration data of street canyons with different aspect

  8. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting

    NARCIS (Netherlands)

    Balczó, M.; Gromke, C.B.; Ruck, B.

    2009-01-01

    Numerical simulations of the impact of tree planting on airflow and traffic pollutant dispersion in urban street canyons have been performed using the commercial CFD (Computational Fluid Dynamics) code MISKAM. A k-e turbulence model including additional terms for the treatment of vegetation, has

  9. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Meroney, Robert N. [Fluid Mechanics and Wind Engineering Program, Civil Engineering Department, Colorado State University Fort Collins, CO (United States); Pavageau, Michel; Rafailidis, Stilianos; Schatzmann, Michael [Meteorologisches Institut, Universitaet Hamburg, Hamburg (Germany)

    1996-08-01

    The University of Hamburg initiated a wind tunnel study of car exhaust dispersion from street canyons in an urban environment to investigate how pollution dispersion is affected by street geometry. Particular emphasis at the beginning of this work was put on the design of a line source to represent traffic exhaust. Pollution dispersion was studied in two dimensions (i.e., infinite-length streets were assumed). The case of an isolated street canyon in open country was examined first. The same street canyon geometry was subsequently studied in an urban environment, i.e., with additional canyons of similar geometry upstream and downstream of the test street. The dynamic and dispersion characteristics of the flow in the two cases were quite different. In the canyon amidst open country we observed better canyon ventilation than in the urban roughness case

  10. Modelling Black Carbon concentrations in two busy street canyons in Brussels using CANSBC

    Science.gov (United States)

    Brasseur, O.; Declerck, P.; Heene, B.; Vanderstraeten, P.

    2015-01-01

    This paper focused on modelling Black Carbon (BC) concentrations in two busy street canyons, the Crown and Belliard Street in Brussels. The used original Operational Street Pollution Model was adapted to BC by eliminating the chemical module and is noted here as CANSBC. Model validations were performed using temporal BC data from the fixed measurement network in Brussels. Subsequently, BC emissions were adjusted so that simulated BC concentrations equalled the observed ones, averaged over the whole period of simulation. Direct validations were performed for the Crown Street, while BC model calculations for the Belliard Street were validated indirectly using the linear relationship between BC and NOx. Concerning the Crown Street, simulated and observed half-hourly BC concentrations correlated well (r = 0.74) for the period from July 1st, 2011 till June 30th, 2013. In particular, CANSBC performed very well to simulate the monthly and diurnal evolutions of averaged BC concentrations, as well as the difference between weekdays and weekends. This means that the model correctly handled the meteorological conditions as well as the variation in traffic emissions. Considering dispersion, it should however be noted that BC concentrations are better simulated under stable than under unstable conditions. Even if the correlation on half-hourly NOx concentrations was slightly lower (r = 0.60) than the one of BC, indirect validations of CANSBC for the Belliard Street yielded comparable results and conclusions as described above for the Crown Street. Based on our results, it can be stated that CANSBC is suitable to accurately simulate BC concentrations in the street canyons of Brussels, under the following conditions: (i) accurate vehicle counting data is available to correctly estimate traffic emissions, and (ii) vehicle speeds are measured in order to improve emission estimates and to take into account the impact of the turbulence generated by moving vehicles on the local

  11. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting

    Energy Technology Data Exchange (ETDEWEB)

    Balczo, Marton [Budapest Univ. of Technology and Economics (Hungary). Theodore von Karman Wind Tunnel Lab.; Gromke, Christof; Ruck, Bodo [Karlsruhe Univ. (Germany). Lab. of Building- and Environmental Aerodynamics

    2009-04-15

    Numerical simulations of the impact of tree planting on airflow and traffic pollutant dispersion in urban street canyons have been performed using the commercial CFD (Computational Fluid Dynamics) code MISKAM. A {kappa}-{epsilon} turbulence model including additional terms for the treatment of vegetation, has been employed to close the Reynolds-averaged-Navier-Stokes (RANS) equations. The numerical results were compared to wind tunnel data. In the case of the investigated wind direction perpendicular to the street axis, the presence of trees lead to increased pollutant concentrations inside the canyon. Concentrations increased strongly on the upstream side of the canyon, while on the downstream side a small concentration decrease could be observed. Lower flow velocities and higher pollutant concentrations were found in the numerical simulations when directly compared to the experimental results. However, the impact of tree planting on airflow and concentration fields when compared to the treeless street canyon as a reference configuration were simulated quite well, meaning that relative changes were similar in the wind tunnel investigations and numerical computations. This feature qualifies MISKAM for use as a tool for assessing the impacts of vegetation on local air quality. (orig.)

  12. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    Science.gov (United States)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  13. Application of a Three-Layer Photochemical Box Model in an Athens Street Canyon.

    Science.gov (United States)

    Proyou, Athena G; Ziomas, Loannis C; Stathopoulos, Antony

    1998-05-01

    The aim of this paper is to show that a photochemical box model could describe the air pollution diurnal profiles within a typical street canyon in the city of Athens. As sophisticated three-dimensional dispersion models are computationally expensive and they cannot serve to simulate pollution levels in the scale of an urban street canyon, a suitably modified three-layer photochemical box model was applied. A street canyon of Athens with heavy traffic was chosen to apply the aforementioned model. The model was used to calculate pollutant concentrations during two days with meteorological conditions favoring pollutant accumulation. Road traffic emissions were calculated based on existing traffic load measurements. Meteorological data, as well as various pollutant concentrations, in order to compare with the model results, were provided by available measurements. The calculated concentrations were found to be in good agreement with measured concentration levels and show that, when traffic load and traffic composition data are available, this model can be used to predict pollution episodes. It is noteworthy that high concentrations persisted, even after additional traffic restriction measures were taken on the second day because of the high pollution levels.

  14. A concentration correction scheme for Lagrangian particle model and its application in street canyon air dispersion modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jiyang Xia [Shanghai Jiao Tong University, Shanghai (China). Department of Engineering Mechanics; Leung, D.Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering

    2001-07-01

    Pollutant dispersion in street canyons with various configurations was simulated by discharging a large number of particles into the computation domain after developing a time-dependent wind field. Trajectory of the released particles was predicted using a Lagrangian particle model developed in an earlier study. A concentration correction scheme, based on the concept of 'visibility', was adopted for the Lagrangian particle model to correct the calculated pollutant concentration field in street canyons. The corrected concentrations compared favourably with those from wind tunnel experiments and a linear relationship between the computed concentrations and wind tunnel data were found. The developed model was then applied to four simulations to test for the suitability of the correction scheme and to study pollutant distribution in street canyons with different configurations. For those cases with obstacles presence in the computation domain, the correction scheme gives more reasonable results compared with the one without using it. Different flow regimes are observed in the street canyons, which depend on building configurations. A counter-clockwise rotating vortex may appear in a two-building case with wind flow from left to right, causing lower pollutant concentration at the leeward side of upstream building and higher concentration at the windward side of downstream building. On the other hand, a stable clockwise rotating vortex is formed in the street canyon with multiple identical buildings, resulting in poor natural ventilation in the street canyon. Moreover, particles emitted in the downstream canyon formed by buildings with large height-to-width ratios will be transported to upstream canyons. (author)

  15. Joint PDF modelling of turbulent flow and dispersion in an urban street canyon

    OpenAIRE

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2010-01-01

    The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exc...

  16. Assesment of longwave radiation effects on air quality modelling in street canyons

    Science.gov (United States)

    Soucasse, L.; Buchan, A.; Pain, C.

    2016-12-01

    Computational Fluid Dynamics is widely used as a predictive tool to evaluate people's exposure to pollutants in urban street canyons. However, in low-wind conditions, flow and pollutant dispersion in the canyons are driven by thermal effects and may be affected by longwave (infrared) radiation due to the absorption and emission of water vapor contained in the air. These effects are mostly ignored in the literature dedicated to air quality modelling at this scale. This study aims at quantifying the uncertainties due to neglecting thermal radiation in air quality models. The Large-Eddy-Simulation of air flow in a single 2D canyon with a heat source on the ground is considered for Rayleigh and Reynolds numbers in the range of [10e8-10e10] and [5.10e3-5.10e4] respectively. The dispersion of a tracer is monitored once the statistically steady regime is reached. Incoming radiation is computed for a mid-latitude summer atmosphere and canyon surfaces are assumed to be black. Water vapour is the only radiating molecule considered and a global model is used to treat the spectral dependancy of its absorption coefficient. Flow and radiation fields are solved in a coupled way using the finite element solvers Fluidity and Fetch which have the capability of adapting their space and angular resolution according to an estimate of the solution error. Results show significant effects of thermal radiation on flow patterns and tracer dispersion. When radiation is taken into account, the air is heated far from the heat source leading to a stronger natural convection flow. The tracer is then dispersed faster out of the canyon potentially decreasing people's exposure to pollution within the street canyon.

  17. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    Science.gov (United States)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  18. Street canyon aerosol pollutant transport measurements.

    Science.gov (United States)

    Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D

    2004-12-01

    Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.

  19. The performance evaluation of WinOSPM model for urban street canyons of Nantes in France.

    Science.gov (United States)

    Gokhale, Sharad B; Rebours, Arnaud; Pavageau, Michel

    2005-01-01

    Air quality modelling is primarily the quantative approach. It is more difficult as it demands input data accuracy, uncertainties and the efficient methodologies to judge the extent of models accuracy. As a result, model validation has to be regarded as an integral part of the modelling process. Furthermore, models are often validated on a limited number of testcases therefore, appropriate evaluation procedure must be implemented to ensure these models will be applicable for various conditions. The study presented here was carried out to evaluate the WinOSPM (Preliminary version of windows based Operational Street Pollution Model) for air pollutants viz. CO, NO, NO2, NOx and C6H6 for three street canyons of Nantes (France) and for the three base years 1999, 2000, and 2001. Each street canyon selected for this study has typical and unidentical features. The rue de Strasbourg and Boulevard Victor Hugo have many building exceptions whereas rue Crébillon has not any. Application of the model above to the three street canyons revealed that WinOSPM could be used in the case when measurements are not available. This was justified from the results at rue Crébillon. The special interest was in the benzene modelled values as its content in fuel has been targeted to reduce to 1% for the years 2000 and onwards (from its 5% until the year 1999). The 50 to 70% reduction in the benzene concentrations is found for both the years i.e. in 2000 and 2001. This has further justified that air quality models are useful and interesting tools in optimising emission reduction strategies. Moreover, it is also the new pollutant added to the measurement campaign of Air Pays de la Loire (APL) for the city of Nantes. For benzene weekly averages are estimated from the hourly-modelled values for all the streets and compared with that of measurements. They are found in excellent agreement with each other's. For other pollutants annual means and percentiles were compared. The statistical analysis

  20. Stochastic backscatter modelling for the prediction of pollutant removal from an urban street canyon: A large-eddy simulation

    Science.gov (United States)

    O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.

    2016-10-01

    The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.

  1. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    NARCIS (Netherlands)

    Moonen, P.; Gromke, C.B.; Dorer, V.

    2013-01-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are

  2. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    Science.gov (United States)

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. LES of flow in the street canyon

    Science.gov (United States)

    Fuka, Vladimír; Brechler, Josef

    2012-04-01

    Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.

  4. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: Using large-eddy simulation

    International Nuclear Information System (INIS)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-01-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. - Highlights: • Large-eddy simulation reproduces two unsteady vortices seen in a lab experiment. • Reactive pollutants in an urban street canyon exhibit significant spatial variation. • O 3 production rate inferred by the NO x -O 3 -steady-state-defect approach is discussed. • Ground level sourced pollutants are largely trapped within the lower vortex. • A method of quantifying parameters of a two-box model is developed. - Reactive pollutants in a deep street canyon exhibit significant spatial variation driven by two unsteady vortices. A method of quantifying parameters of a two-box model is developed

  5. Lung cancer risk assessment due to traffic-generated particles exposure in urban street canyons: A numerical modelling approach.

    Science.gov (United States)

    Scungio, M; Stabile, L; Rizza, V; Pacitto, A; Russi, A; Buonanno, G

    2018-08-01

    Combustion-generated nanoparticles are responsible for negative health effects due to their ability to penetrate in the lungs, carrying toxic compounds with them. In urban areas, the coexistence of nanoparticle sources and particular street-building configurations can lead to very high particle exposure levels. In the present paper, an innovative approach for the evaluation of lung cancer incidence in street canyon due to exposure to traffic-generated particles was proposed. To this end, the literature-available values of particulate matter, PAHs and heavy metals emitted from different kind of vehicles were used to calculate the Excess Lifetime Cancer Risk (ELCR) at the tailpipe. The estimated ELCR was then used as input data in a numerical CFD (Computational Fluid Dynamics) model that solves the mass, momentum, turbulence and species transport equations, in order to evaluate the cancer risk in every point of interest inside the street canyon. Thus, the influence of wind speed and street canyon geometry (H/W, height of building, H and width of the street, W) on the ELCR at street level was evaluated by means of a CFD simulation. It was found that the ELCR calculated on the leeward and windward sides of the street canyon at a breathable height of 1.5 m, for people exposed 15 min per day for 20 years, is equal to 1.5 × 10 -5 and 4.8 × 10 -6 , respectively, for wind speed of 1 m/s and H/W equal to 1. The ELCR at street level results higher on the leeward side for aspect ratios equal to 1 and 3, while for aspect ratio equal to 2 it is higher on the windward side. In addition, the simulations showed that with the increasing of wind speed the ELCR becomes lower everywhere in the street canyon, due to the increased in dispersion. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects.

    Science.gov (United States)

    Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing

    2005-08-01

    Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.

  7. Ventilation Processes in a Three-Dimensional Street Canyon

    Science.gov (United States)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  8. Dispersion and photochemical evolution of reactive pollutants in street canyons

    Science.gov (United States)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon

    2013-05-01

    Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.

  9. On the escape of pollutants from urban street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Baik, J.J.; Kim, J.J. [Kwangju Inst. of Science and Technology (Korea). Dept. of Environmental Science and Engineering

    2002-07-01

    Pollutant transport from urban street canyons is numerically investigated using a two-dimensional flow and dispersion model. The ambient wind blows perpendicular to the street and passive pollutants are released at the street level. Results from the control experiment with a street aspect ratio of 1 show that at the roof level of the street canyon, the vertical turbulent flux of pollutants is upward everywhere and the vertical flux of pollutants by mean flow is upward or downward. The horizontally integrated vertical flux of pollutants by mean flow at the roof level of the street canyon is downward and its magnitude is much smaller than that by turbulent process. These results indicate that pollutants escape from the street canyon mainly by turbulent process and that the net effect of mean flow is to make some escaped pollutants reenter the street canyon. Further experiments with different inflow turbulence intensities, inflow wind speeds, and street aspect ratio confirm the findings from the control experiment. In the case of two isolated buildings, the horizontally integrated vertical flux of pollutants by mean flow is upward due to flow separation but the other main results are the same as those from the control experiment. (author)

  10. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Colls, J.J.; Micallef, A.

    1999-01-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM 10 and PM 2.5 ) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  11. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    Science.gov (United States)

    Moonen, P.; Gromke, C.; Dorer, V.

    2013-08-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are considered. The model performance is assessed in several steps, ranging from a qualitative comparison to measured concentrations, over statistical data analysis by means of scatter plots and box plots, up to the calculation of objective validation metrics. The extensive validation effort highlights and quantifies notable features and shortcomings of the model, which would otherwise remain unnoticed. The model performance is found to be spatially non-uniform. Closer agreement with measurement data is achieved near the canyon ends than for the central part of the canyon, and typical model acceptance criteria are satisfied more easily for the leeward than for the windward canyon wall. This demonstrates the need for rigorous model evaluation. Only quality-assured models can be used with confidence to support assessment, planning and implementation of pollutant mitigation strategies.

  12. [Effect of greenbelt on pollutant dispersion in street canyon].

    Science.gov (United States)

    Xu, Wei-Jia; Xing, Hong; Yu, Zhi

    2012-02-01

    The effect feature of greenbelt on flow field and pollutant dispersion in urban street canyon was researched. The greenbelt was assumed as uniform porous media and its aerodynamics property defined by the pressure loss coefficient. Subsequently, the pollutant dispersion in the street canyon of which there was greenbelt in the middle was simulated with the steady-state standard kappa-epsilon turbulence model and species transport equation. The simulated results agreed well with the wind-tunnel data. Compared with the treeless case, it finds that the street canyon contain a clockwise vortex, the pollutant concentration of the leeward was several times than the windward and the growth rate of pollutant concentration was 46.0%. The further simulation for the impact of tree crown position on the airflow and pollutant dispersion finds that the height of major vortex center in the street canyon increases with the height of tree crown and gradually closes the top of windward building This causes that the average wind speed in the street canyon decreases. Especially when the top of tree crown over the roof and hinder the air flow above the street canyon, the average pollutant concentration increases with the height of tree crown rapidly.

  13. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian

    2018-01-01

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water. PMID:29522495

  14. A Computational Fluid Dynamic (CFD Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2018-03-01

    Full Text Available Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  15. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model.

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian; Rameezdeen, Raufdeen

    2018-03-09

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM 10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM 10 . The results indicate that parallel flow would cause the concentration of PM 10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM 10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM 10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM 10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM 10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  16. Trees in urban street canyons and their impact on the dispersion of automobile exhausts

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2007-01-01

    The aim of the present study is to clarify the influence of trees on the dispersion of automobile exhausts in urban street canyons. For this purpose, measurements have been performed with a small scale wind tunnel model of an idealized, isolated street canyon with model trees placed along the canyon

  17. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: using large-eddy simulation.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-05-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biomagnetic monitoring as a validation tool for local air quality models: a case study for an urban street canyon.

    Science.gov (United States)

    Hofman, Jelle; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    Science.gov (United States)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases

  20. Turbulent ventilation of a street canyon

    DEFF Research Database (Denmark)

    Nielsen, Morten

    2000-01-01

    A selection of turbulence data corresponding to 185 days of field measurements has een analysed. The non-ideal building geometry influenced the circulation patterns in the street canyon and the largest average vertical velocities were observed in the wake of an unbroken line of buildings. The sta...

  1. Trees in urban street canyons and their impact on the dispersion of automobile exhausts

    OpenAIRE

    Gromke, Christof; Ruck, Bodo

    2007-01-01

    The aim of the present study is to clarify the influence of trees on the dispersion of automobile exhausts in urban street canyons. For this purpose, measurements have been performed with a small scale wind tunnel model of an idealized, isolated street canyon with model trees placed along the canyon center axis. Sulfur hexafluoride (SF6) was released from a line source embedded in the street surface, simulating vehicle exhaust emissions. The influence of various tree planting arrangements on ...

  2. THE INFLUENCE OF BUOYANCY ON FLOW AND POLLUTANT DISPERSION IN STREET CANYONS

    OpenAIRE

    Buccolieri, Riccardo; Pulvirenti, Beatrice; Di Sabatino, Silvana; Britter, Rex

    2008-01-01

    Abstract: In this paper, the effect of buoyancy on flow and pollutant dispersion within street canyons is studied by means of computational fluid dynamics simulations. We consider a neutral boundary layer approaching a 3D street canyon assuming a wind direction perpendicular to the street canyon. The Boussinesq hypothesis for incompressible fluids is chosen for modelling buoyancy. We distinguish three cases: leeward, ground and windward wall heating. Thermal effects on both the flow ...

  3. Influence of cetane improvers on the air quality in an urban street canyon

    International Nuclear Information System (INIS)

    Huang, H.; Akutsu, Y.; Arai, M.; Tamura, M.

    2000-01-01

    The concentration distributions of NO x , PM, HC and CO in an urban street canyon have been estimated using a two-dimensional air quality numerical model based on the k-e turbulent model and the atmospheric convection diffusion equation when various cetane improvers were used in diesel fuels. A wind vortex can be found within the street canyon, and the pollutants emitted from the bottom of the street canyon tend to follow the course of the wind field, moving circularly. The addition of cetane improvers can improve the air quality in a street canyon, all of the pollutants were found to decrease with increasing cetane number. (Author)

  4. An open-terrain line source model coupled with street-canyon effects to forecast carbon monoxide at traffic roundabout.

    Science.gov (United States)

    Pandian, Suresh; Gokhale, Sharad; Ghoshal, Aloke Kumar

    2011-02-15

    A double-lane four-arm roundabout, where traffic movement is continuous in opposite directions and at different speeds, produces a zone responsible for recirculation of emissions within a road section creating canyon-type effect. In this zone, an effect of thermally induced turbulence together with vehicle wake dominates over wind driven turbulence causing pollutant emission to flow within, resulting into more or less equal amount of pollutants upwind and downwind particularly during low winds. Beyond this region, however, the effect of winds becomes stronger, causing downwind movement of pollutants. Pollutant dispersion caused by such phenomenon cannot be described accurately by open-terrain line source model alone. This is demonstrated by estimating one-minute average carbon monoxide concentration by coupling an open-terrain line source model with a street canyon model which captures the combine effect to describe the dispersion at non-signalized roundabout. The results of the modeling matched well with the measurements compared with the line source model alone and the prediction error reduced by about 50%. The study further demonstrated this with traffic emissions calculated by field and semi-empirical methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons

    Science.gov (United States)

    Liu, J.; Fu, X.; Tao, S.

    2016-12-01

    Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.

  6. A CFD modeling study of the impacts of NO x and VOC emissions on reactive pollutant dispersion in and above a street canyon

    Science.gov (United States)

    Kwak, Kyung-Hwan; Baik, Jong-Jin

    2012-01-01

    A computational fluid dynamics (CFD) model that includes the carbon bond mechanism IV (CBM-IV) is developed and used to investigate reactive pollutant dispersion in and above a street canyon with an aspect ratio of 1. Fourteen emission scenarios of NO x and volatile organic compounds (VOCs) are considered. Dispersion types are classified into NO-type, NO 2-type, and O 3-type dispersion that exhibit concentration maxima at the street bottom, near the center of the street canyon, and above the street canyon, respectively. For the base emission scenario, the number of reactive species is 9 in the NO-type dispersion, 10 in the NO 2-type dispersion, and 15 in the O 3-type dispersion. As the NO x emission level decreases or the VOC emission level increases, some species in the O 3-type dispersion are shifted to the NO 2-type dispersion. The VOC-to-NO x emission ratio is found to be an important factor in determining the transition of dispersion type. In this transition process, OH plays a key role through a radical chain including HO 2, RO, and RO 2. Because of their high OH reactivities, XYL (xylene) and OLE (olefin carbon bond) among VOCs are largely responsible for the transition of dispersion type. The O 3 sensitivity is examined by reducing NO x or VOC emission level by a half. Because the NO titration of O 3 is more pronounced than the NO 2 photolysis and the radical chain process in the street canyon, the O 3 concentration therein is negatively correlated with the NO x emission level and weakly correlated with the VOC emission level. As a result, the street canyon is a negatively NO x-sensitive regime.

  7. Dispersion of pollutants in a street canyon and street intersection under traffic-induced flow and turbulence using a low Re k-{epsilon} model

    Energy Technology Data Exchange (ETDEWEB)

    Jicha, M.; Katolicky, J.; Pospisil, J. [Brno University of Technology (Czech Republic). Faculty of Mechanical Engineering

    2002-07-01

    A 3-D Eulerian-Lagrangian approach to moving vehicles is presented that takes into account the traffic-induced flow rate and turbulence. The method is applied to pollutant dispersion in an individual street canyon and a system of two street canyons forming a perpendicular intersection. The approach is based on computational fluid dynamics (CFD) calculations using a Eulerian approach for continuous phase and a Lagrangian approach for moving vehicles. The wind speed was assigned values of 4, 7 and 12 m/s. One-way and two-way traffic with different traffic rates per lane is considered. In the case of the intersection, a longitudinal wind direction was assumed. Predictions show differences in the pollutant dispersion in the case of one-way and two-way traffic. (author)

  8. Effects of trees on the dilution of vehicle exhaust emissions in urban street canyons

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2009-01-01

    In order to investigate the natural ventilation and air quality of urban street canyons with trees, boundary layer wind tunnel studies at a small-scale model have been performed. Concentrations in street canyons with a tracer gas emitting line source at the ground level and one row of trees arranged

  9. Integrating a street-canyon model with a regional Gaussian dispersion model for improved characterisation of near-road air pollution

    Science.gov (United States)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-03-01

    The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.

  10. LES of flow in the street canyon

    OpenAIRE

    Brechler Josef; Fuka Vladimír

    2012-01-01

    Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.

  11. LES of flow in the street canyon

    Directory of Open Access Journals (Sweden)

    Brechler Josef

    2012-04-01

    Full Text Available Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment are compared with results with a free top boundary.

  12. Strategic guidelines for street canyon geometry to achieve sustainable street air quality

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Andy T.; So, Ellen S.P.; Samad, Subash C. [Hong Kong Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2001-08-01

    This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes 'isolated roughness flow', 'skimming flow' and 'wake interference flow' (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h{sub 2}/H{sub 1}), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analysed through numerical simulations using the standard k-{sup {epsilon}} turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants. (Author)

  13. Trees as environmental modifier to improve street canyon for pedestrian activities in Muscat

    Science.gov (United States)

    Khudhayer, Wael A.; Shaaban, Awni K.; Sukor, Nur Sabahiah Abdul

    2017-10-01

    Street shading efficiency is a function of orientation and profile proportion of its height to width. Under high sun altitude conditions, minimization of solar irradiance within the urban environment may often be a significant criterion in urban design. This reduction in solar irradiance achieved when the obstruction angle is large (high H/W ratio, H=height, W=width). High H/W values often lessen the solar access to streets. The horizontal sprawl of Muscat region is an example of low H/W ratio represented the remarkable challenge that causes the lack of shading rates in the urban street. This characteristic proliferates the negative impact on the pedestrian activities in the urban street. This research aims to improve the morphology of the street to promote the pedestrian behavior. The amendment based on suggesting different configurations of trees to increase effective shading of the urban street in Muscat. The street canyon abstracted into a virtual elongated channel formed of floor and walls of equal heights on both sides. Four street orientations (E/W, N/S, NE/SW, NW/SE) and three H/W ratio (0.5,1 and 2) are considered sufficient representative of street typologies. A mathematical model developed for calculation of shading efficiency of each street canyon. The trees assumed in this study as canyon's modifier to adjust the low H/W ratio of a street canyon to a higher one. Local trees and other plants in Muscat were studied concerning their morphology. The analysis selected two case study in Muscat to investigate the shading performance of their street canyons subsequently propose the modifications to improve it. The research concluded that the suggested changes of the street canyon by using a particular type of trees could increase the H/W ratio of street canyon significantly.

  14. Street canyon ventilation control by proper planning and development

    Directory of Open Access Journals (Sweden)

    Balakin Vladimir Vasil'evich

    2014-05-01

    Full Text Available The objective of street canyon ventilation control in major streets is a tool of air pollution prevention in them, protection of housing areas from excessive wind or preservation and intensification of existing wind speed in case of insufficient ventilation. The maximum permissible concentration of car exhaust pollutants with wind speed within comfortable and permissible values by physiological and hygienic criteria, are ensured as from 40 to 70 % of thoroughfares in major cities. The dependence of air pollution level on wind speed is comparable to its dependence on traffic intensity and ratio of buildings height (H to street width. But one has to take into account that, if the wind blows across the street, vortices form within the street canyon, which results in higher concentration of car exhaust pollutants near the downwind buildings. The objective of this work is to find the functional dependences of wind speed in a major street on its width and density of buildings, and also to find out which street configurations are favorable for formation of closed air circulation within it, resulting in insufficient aeration. The experimental research was done on a site for large-scale modeling of built-up urban territory, using cup anemometers. The coefficients of dependence of wind speed within a street on the types of buildings and on the street width were obtained. Characteristics of street layouts for control of aeration were determined. Building density rates for maximizing or optimizing the wind speed were determined. Street layouts are considered where stable vortices form between the buildings. For example, vortices within the street canyon’s cross-section appear when buildings squarish in ground plan situated far apart are replaced by oblong ones with the minimum allowed intervals of 15 meters between them (for 5-storeyed buildings; or intervals equal to the buildings’ height, or where the buildings are long and close together. With

  15. Improved Large-Eddy Simulation Using a Stochastic Backscatter Model: Application to the Neutral Atmospheric Boundary Layer and Urban Street Canyon Flow

    Science.gov (United States)

    O'Neill, J. J.; Cai, X.; Kinnersley, R.

    2015-12-01

    Large-eddy simulation (LES) provides a powerful tool for developing our understanding of atmospheric boundary layer (ABL) dynamics, which in turn can be used to improve the parameterisations of simpler operational models. However, LES modelling is not without its own limitations - most notably, the need to parameterise the effects of all subgrid-scale (SGS) turbulence. Here, we employ a stochastic backscatter SGS model, which explicitly handles the effects of both forward and reverse energy transfer to/from the subgrid scales, to simulate the neutrally stratified ABL as well as flow within an idealised urban street canyon. In both cases, a clear improvement in LES output statistics is observed when compared with the performance of a SGS model that handles forward energy transfer only. In the neutral ABL case, the near-surface velocity profile is brought significantly closer towards its expected logarithmic form. In the street canyon case, the strength of the primary vortex that forms within the canyon is more accurately reproduced when compared to wind tunnel measurements. Our results indicate that grid-scale backscatter plays an important role in both these modelled situations.

  16. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    Science.gov (United States)

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  17. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil

    Science.gov (United States)

    Abreu-Harbich, Loyde V.; Labaki, Lucila C.; Matzarakis, Andreas

    2014-01-01

    Among several urban design parameters, the height-to-width ratio (H/W) and orientation are important parameters strongly affecting thermal conditions in cities. This paper quantifies changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presents urban guidelines concerning H/W ratios and green spaces to adapt urban climate change. The study focuses on thermal comfort issues of humans in urban areas and performs evaluation in terms of physiologically equivalent temperature (PET), based on long-term data. Meteorological data of air temperature, relative humidity, wind speed and solar radiation over a 7-year period (2003-2010) were used. A 3D street canyon model was designed with RayMan Pro software to simulate the influence of urban configuration on urban thermal climate. The following configurations and setups were used. The model canyon was 500 m in length, with widths 9, 21, and 44 m. Its height varied in steps of 2.5 m, from 5 to 40 m. The canyon could be rotated in steps of 15°. The results show that urban design parameters such as width, height, and orientation modify thermal conditions within street canyons. A northeast-southwest orientation can reduce PET during daytime more than other scenarios. Forestry management and green areas are recommended to promote shade on pedestrian areas and on façades, and to improve bioclimate thermal stress, in particular for H/W ratio less than 0.5. The method and results can be applied by architects and urban planners interested in developing responsive guidelines for urban climate issues.

  18. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    OpenAIRE

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie Keith; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2009-01-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were valida...

  19. Implications of tree planting on pollutant dispersion in street canyons

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2009-01-01

    Traffic pollutant dispersion processes inside urban street canyons with avenue-like tree planting have been studied in wind tunnel experiments. Tree planting of different crown porosities and their effects on the pollutant concentrations at the canyon walls have been investigated for wind

  20. Numerical modeling of flows and pollutant dispersion within and above urban street canyons under unstable thermal stratification by large-eddy simulation

    Science.gov (United States)

    Chan, Ming-Chung; Liu, Chun-Ho

    2013-04-01

    Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the

  1. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    Memon, R.A.; Lal, K.

    2011-01-01

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  2. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  3. Aerodynamic effects of trees on pollutant concentration in street canyons.

    Science.gov (United States)

    Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo

    2009-09-15

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.

  4. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    Science.gov (United States)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  5. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections.

    Science.gov (United States)

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-08-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of building roof greening on air quality in street canyons

    Science.gov (United States)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  7. The propagation of sound in narrow street canyons

    Science.gov (United States)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  8. Urban air quality modeling with full O 3-NO x-VOC chemistry: Implications for O 3 and PM air quality in a street canyon

    Science.gov (United States)

    Kim, Minjoong J.; Park, Rokjin J.; Kim, Jae-Jin

    2012-02-01

    We examine transport and chemical transformation of reactive pollutants on an urban street using a computation fluid dynamics (CFD) model coupled with full photochemistry of reactive pollutants. An extensive comparison between simulated results and observations is conducted to evaluate the model, focusing on a field campaign occurred in Dongfeng Middle Street in Guangzhou, China. Observed CO and NO concentrations vary diurnally following traffic volumes. The model captures this observed diurnal variation and magnitudes of CO concentrations successfully. However, simulated NO concentration is three times higher than observation. This high bias is significantly reduced in the sensitivity simulation with lower NO x emissions. We find that oxidation products of O 3 photochemistry such as NO 2 and O 3 vary differently from primary pollutants, indicating important effects of photochemical reactions on their fates. The model appears to reproduce observed O 3 and NO 2 variability with time and altitude. Our analysis shows that high NO x concentrations in the urban street canyon may efficiently produce aerosol nitrate in the presence of NH 3. Simulated inorganic NO 3- aerosol concentration reaches up to 0.3 μg m -3 in July but increases an order of magnitude higher at lower temperature that favors partitioning of gas-phase HNO 3 to aerosol-phase, implying a serious concern for urban air quality in winter.

  9. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    Science.gov (United States)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  10. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    Science.gov (United States)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  11. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    OpenAIRE

    Li, Xian-Xiang; Koh, Tieh-Yong; Britter, Rex E; Norford, Leslie Keith; Entekhabi, Dara

    2010-01-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street ca...

  12. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    Science.gov (United States)

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  13. Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba

    Science.gov (United States)

    Rodríguez-Algeciras, José; Tablada, Abel; Matzarakis, Andreas

    2017-07-01

    Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create

  14. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    Directory of Open Access Journals (Sweden)

    Yucong Miao

    2014-01-01

    Full Text Available The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD model used in this study—Open Source Field Operation and Manipulation (OpenFOAM software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispersion within three different kinds of street canyon configuration under the perpendicular approaching flow were numerically studied. The result showed that the width and height of building can dramatically affect the pollution level inside the street canyon. As the width or height of building increases, the pollution at the pedestrian level increases. And the asymmetric configuration (step-up or step-down street canyon could provide better ventilation. It is recommended to design a street canyon with nonuniform configurations. And the OpenFOAM software package can be used as a reliable tool to study flows and dispersions around buildings.

  15. Wind tunnel simulation of air pollution dispersion in a street canyon.

    Science.gov (United States)

    Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek

    2002-01-01

    Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.

  16. Parametric study of the dispersion aspects in a street-canyon area

    Energy Technology Data Exchange (ETDEWEB)

    Koutsourakis, N.; Neofytou, P.; Venetsanos, A.G.; Bartzis, J.G. [NCSR Demokritos (Greece). Environmental Research Lab.

    2004-07-01

    Continuously increasing vehicles' fleet is still considered to be the main emission factor in urban environments, despite the enormous progress of modern catalytic technology. Under that perspective, calculation of transportation induced pollutant dispersion is of augmented importance, especially within street canyons, where poor ventilation can result in awkward concentration levels. Computational Fluid Dynamics (CFD) studies have been conducted in the past by Neofytou, P. et al, so as to define appropriate locations for measuring-instrument placement by numerically simulating the flow and pollution dispersion fields in the vicinity of the measuring site taking into account the wind rose of the area and selecting locations of high pollution concentrations so that non-zero indications are assured. Vardoulakis, S. et al, provides a general overview of the street-canyon studies concerning both modelling and experimental investigations and offers plenty of references on air quality within street canyons. Besides air-quality, street canyon CFD studies have also been performed to evaluate accident consequences and hydrogen safety, Venetsanos A. et al. The current study examines a real street canyon in Thessaloniki, Greece. It was performed in order to examine dispersion patterns for different parameters' scenarios and help deciding where to place actual pollutant measurement instruments to better capture traffic pollution data. Various wind directions and speeds are examined and height influence on concentration levels is investigated. Complex area geometry is a key factor of the whole study. (orig.)

  17. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections

    International Nuclear Information System (INIS)

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-01-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. - Highlights: • The pollutant transport strongly depends on the roof-height arrangement. • The non-uniform canyons also remove the pollutants through their lateral openings. • The higher the upstream wall, the more pollutant is removed through the top. • The lateral coherent structures correlate

  18. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles

    International Nuclear Information System (INIS)

    Hofman, Jelle; Stokkaer, Ines; Snauwaert, Lies; Samson, Roeland

    2013-01-01

    Recently, biomagnetic monitoring of tree leaves has proven to be a good estimator for ambient particulate concentration. This paper investigates the usefulness of biomagnetic leaf monitoring of crown deposited particles to assess the spatial PM distribution inside individual tree crowns and an urban street canyon in Ghent (Belgium). Results demonstrate that biomagnetic monitoring can be used to assess spatial PM variations, even within single tree crowns. SIRM values decrease exponentially with height and azimuthal effects are obtained for wind exposed sides of the street canyon. Edge and canyon trees seem to be exposed differently. As far as we know, this study is the first to present biomagnetic monitoring results of different trees within a single street canyon. The results not only give valuable insights into the spatial distribution of particulate matter inside tree crowns and a street canyon, but also offer a great potential as validation tool for air quality modelling. Highlights: ► Spatial distribution of tree crown deposited PM was evaluated. ► SIRM values decrease exponentially with height. ► Azimuthal effects were observed at wind exposed sides of the street canyon. ► Edge and canyon trees seem to be exposed differently. ► Biomagnetic monitoring offers a great potential as validation of air quality models. -- Biomagnetic leaf monitoring provides useful insights into the spatial distribution of particulates inside individual tree crowns and an urban street canyon in Ghent (Belgium)

  19. Aerodynamic effects of trees on pollutant concentration in street canyons

    NARCIS (Netherlands)

    Buccolieri, R.; Gromke, C.B.; Sabatino, Di S.; Ruck, B.

    2009-01-01

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant

  20. Modeling the Effect of Wider Canyons on Urban Heating

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-04-01

    Full Text Available The k-? turbulence model is adopted in this study to simulate the impact of street canyon AR (Aspect Ratios on heating within street canyon. The two-dimensional model was validated for RANS (Reynolds Averaged Navier Stokes and energy transport equations. The validation process confirms that the results of the model for airtemperature and wind speed could be trusted. The application of the said model is carried out to ideal street canyons of ARs (ratio of building-height-to-street-width from 0.4 to 2 with the same boundary conditions. Notably, street canyon aspect ratio was calculated by varying the street width while keeping the building height constant. Results show that the weighted-average-air-temperature within AR 0.4 was around 0.8% (i.e. 2.4K higher than that within AR 2.0. Conversely, there was strong correlation (i.e., R2>0.9 between air temperature within the street canyon and street canyon AR. Results demonstrate stronger influence of vertical velocity on heating within street canyon. Evidently, increased vertical velocity decreased the temperatures. Conversely, temperatures were higher along the leeward side of the canyon in lower ARs.

  1. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    Science.gov (United States)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  2. A Numerical Study on Characteristics of Flow and Reactive Pollutant Dispersion in Step‒up Street Canyons

    Science.gov (United States)

    Kim, E. R.; Kim, J.

    2014-12-01

    For decades, many metro‒ and/or mega‒cities have grown and densities of population and building have increased. Because pollutants released from sources near ground surface such as vehicles are not easy to escape from street canyons which are spaces between buildings standing along streets pedestrians, drivers and residents are likely to be exposed to high concentrations of hazardous pollutants. Therefore, it is important to understand characteristics of flow and pollutant dispersion in street canyons. In this study, step‒up street canyons with higher downwind buildings are considered for understanding flow and reactive pollutants' dispersion characteristics there as a basic step to understand the characteristics in wider urban areas. This study used a CFD model coupled to a chemistry module. Detailed flow and air pollutant concentration are analyzed in step‒up street canyons with different upwind building heights.

  3. Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective.

    Science.gov (United States)

    Morakinyo, Tobi Eniolu; Lam, Yun Fat

    2016-11-01

    Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM 2.5 ) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1-3 % of PM 2.5 was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM 2.5 by such trees under some tree planting scenarios and wind conditions.

  4. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  5. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  6. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    Hu, L.H.; Huo, R.; Yang, D.

    2009-01-01

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  7. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  8. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    Science.gov (United States)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  9. Influence of roadside hedgerows on air quality in urban street canyons

    Science.gov (United States)

    Gromke, Christof; Jamarkattel, Nabaraj; Ruck, Bodo

    2016-08-01

    Understanding pollutant dispersion in the urban environment is an important aspect of providing solutions to reduce personal exposure to vehicle emissions. To this end, the dispersion of gaseous traffic pollutants in urban street canyons with roadside hedges was investigated. The study was performed in an atmospheric boundary layer wind tunnel using a reduced-scale (M = 1:150) canyon model with a street-width-to-building-height ratio of W/H = 2 and a street-length-to-building-height ratio of L/H = 10. Various hedge configurations of differing height, permeability and longitudinal segmentation (continuous over street length L or discontinuous with clearings) were investigated. Two arrangements were examined: (i) two eccentric hedgerows sidewise of the main traffic lanes and (ii) one central hedgerow between the main traffic lanes. In addition, selected configurations of low boundary walls, i.e. solid barriers, were examined. For a perpendicular approach wind and in the presence of continuous hedgerows, improvements in air quality in the center area of the street canyon were found in comparison to the hedge-free reference scenario. The pollutant reductions were greater for the central hedge arrangements than for the sidewise arrangements. Area-averaged reductions between 46 and 61% were observed at pedestrian head height level on the leeward side in front of the building for the centrally arranged hedges and between 18 and 39% for the two hedges arranged sidewise. Corresponding area-averaged reductions ranging from 39 to 55% and from 1 to 20% were found at the bottom of the building facades on the leeward side. Improvements were also found in the areas at the lateral canyon ends next to the crossings for the central hedge arrangements. For the sidewise arrangements, increases in traffic pollutants were generally observed. However, since the concentrations in the end areas were considerably lower compared to those in the center area, an overall improvement remained

  10. Ventilation Processes in a Three-Dimensional Street Canyon

    Czech Academy of Sciences Publication Activity Database

    Nosek, Štěpán; Kukačka, L.; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-01-01

    Roč. 159, č. 2 (2016), s. 259-284 ISSN 0006-8314 R&D Projects: GA ČR GAP101/12/1554; GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : Coherent structures * line source * pollution flux measurements * street canyon * wind tunnel Subject RIV: BK - Fluid Dynamics Impact factor: 2.573, year: 2016

  11. A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon.

    Science.gov (United States)

    De Nicola, Flavia; Murena, Fabio; Costagliola, M Antonietta; Alfani, Anna; Baldantoni, Daniela; Prati, M Vittoria; Sessa, Ludovica; Spagnuolo, Valeria; Giordano, Simonetta

    2013-07-01

    For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights.

  12. Impacts of Traffic Tidal Flow on Pollutant Dispersion in a Non-Uniform Urban Street Canyon

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2018-02-01

    Full Text Available A three-dimensional geometrical model was established based on a section of street canyons in the 2nd Ring Road of Wuhan, China, and a mathematical model describing the fluid flow and pollutant dispersion characteristics in the street canyon was developed. The effect of traffic tidal flow was investigated based on the measurement results of the passing vehicles as the pollution source of the CFD method and on the spatial distribution of pollutants under various ambient crosswinds. Numerical investigation results indicated that: (i in this three-dimensional asymmetrical shallow street canyon, if the pollution source followed a non-uniform distribution due to the traffic tidal flow and the wind flow was perpendicular to the street, a leeward side source intensity stronger than the windward side intensity would cause an expansion of the pollution space even if the total source in the street is equal. When the ambient wind speed is 3 m/s, the pollutant source intensity near the leeward side that is stronger than that near the windward side (R = 2, R = 3, and R = 5 leads to an increased average concentration of CO at pedestrian breathing height by 26%, 37%, and 41%, respectively. (R is the ratio parameter of the left side pollution source and the right side pollution source; (ii However, this feature will become less significant with increasing wind speeds and changes of wind direction; (iii the pollution source intensity exerted a decisive influence on the pollutant level in the street canyon. With the decrease of the pollution source intensity, the pollutant concentration decreased proportionally.

  13. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons.

    Science.gov (United States)

    Tong, Nelson Y O; Leung, Dennis Y C

    2012-01-01

    A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.

  14. Modelling traffic pollution in streets

    Energy Technology Data Exchange (ETDEWEB)

    Berkowicz, R.; Hertel, O. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark); Larsen, S.E.; Soerensen, N.N.; Nielsen, M. [Risoe National Lab., Dept. of Meteorology and Wind Energy, Roskilde (Denmark)

    1997-01-01

    This report concerns mainly the subject related to modelling air pollution from traffic in urban streets. A short overview is presented over the theoretical aspects and examples of most commonly used methods and models are given. Flow and dispersion conditions in street canyons are discussed and the presentation is substantiated with the analysis of the experimental data. The main emphasis is on the modelling methods that are suitable for routine applications and a more detailed presentation is given of the Operational Street Pollution Model (OSPM), which was developed by the National Environmental Research Institute. The model is used for surveillance of air pollution from traffic in Danish cities and also for special air pollution studies. (au) 76 refs.

  15. A Numerical Study of the Temperature Reduction by Water Spray Systems within Urban Street Canyons

    Directory of Open Access Journals (Sweden)

    Ying-Chen Lee

    2018-04-01

    Full Text Available To reduce energy demand (both fossil fuel and renewable energy for cooling the urban heat island environment, some solutions have been studied. Among these methods, the water spray system is considered more flexible due to its dynamic controls. This study investigated the cooling effect of water spray systems in the street canyon under different aspect ratios and high relative humidity environments using a computational fluid dynamics model. This model was validated with water channel and wind tunnel experiments. The results showed that the most effective cooling area was the area just under the spray nozzles. However, in a narrow street canyon, people in the middle of the street may feel the cooling effect because of the dispersion and accumulation of the cooled air. Our simulations demonstrated that air under the nozzles was saturated and this revealed that under drier conditions the water spray systems will have higher cooling performance. We also found that using large water droplets created a wider cooling area in the middle of the street canyon, and this phenomenon was not changed much if the nozzle height was increased from 2.5 m to 3.5 m.

  16. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  17. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model

    Science.gov (United States)

    Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu

    2017-09-01

    Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.

  18. Seasonal Changing Effect on Airflow and Pollutant Dispersion Characteristics in Urban Street Canyons

    OpenAIRE

    Jingliang Dong; Zijing Tan; Yimin Xiao; Jiyuan Tu

    2017-01-01

    In this study, the effect of seasonal variation on air flow and pollutant dispersion characteristics was numerically investigated. A three-dimensional urban canopy model with unit aspect ratio (H/D = 1) was used to calculate surface temperature distribution in the street canyon. Four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST) during typical clear summer and winter days were selected to examine the air flow diurnal variation. The results revealed the seasonal variat...

  19. Evaluación del desempeño de modelos de dispersión de contaminantes aplicados a cañones urbanos Evaluation of the performance of atmospheric dispersion models applied to urban street canyons

    Directory of Open Access Journals (Sweden)

    Laura E. Venegas

    2012-06-01

    Full Text Available En los cañones urbanos, frecuentemente, se presentan concentraciones de contaminantes en aire varias veces superiores a la contaminación de fondo urbana. En este trabajo, se comparan valores de concentraciones de monóxido de carbono (CO en aire medidas dentro de un cañón urbano con las estimadas mediante algunos modelos de dispersión atmosférica aplicables a procesos que se verifican en los cañones: STREET, STREET-BOX, OSPM y AEOLIUS. Se presenta la evaluación para condiciones de sotavento, barlovento y para direcciones intermedias del viento. En la comparación, se utilizaron los valores horarios de concentraciones de CO en aire medidas durante un año en el interior de un cañón urbano de Göttinger Strässe (Hannover, Alemania y en el techo de un edificio lindero, de velocidad y dirección del viento observadas en el techo del mismo edificio y de flujo de tránsito vehicular en la calle del cañón. Los resultados generados por el modelo STREET con una constante empírica k=7, subestimaron las concentraciones observadas, obteniéndose un mejor desempeño con k= 12,1. El modelo STREET-BOX es adecuado para condiciones de sotavento y direcciones intermedias, pero presenta diferencias importantes con las concentraciones observadas a barlovento. En general, los resultados aportados por los modelos OSPM y AEOLIUS fueron los que menos se apartaron de los valores observados.Air pollutant concentrations inside street canyons are usually several times background concentrations in urban areas. In this paper, carbon monoxide (CO concentrations observed in a street canyon are compared with estimated values obtained using four atmospheric dispersion models: STREET, STREET-BOX, OSPM and AEOLIUS. Results for leeward, windward and intermediate wind directions are analyzed. Data used in the model evaluation include one year of hourly CO concentrations measured inside a street canyon of Göttinger Strässe (Hannover, Germany and at the roof of a

  20. Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

    Science.gov (United States)

    Li, X.

    2014-12-01

    Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.

  1. Influence of local parameters on the dispersion of traffic-related pollutants within street canyons

    Science.gov (United States)

    Karra, Styliani; Malki-Epshtein, Liora; Martin Hyde Collaboration

    2011-11-01

    Ventilation within urban cities and street canyons and the associated air quality is a problem of increasing interest in the last decades. It is important for to minimise exposure of the population to traffic-related pollutants at street level. The residence time of pollutants within the street canyons depends on the meteorological conditions such as wind speed and direction, geometry layout and local parameters (position of traffic lane within the street). An experimental study was carried out to investigate the influence of traffic lane position on the dispersion of traffic-related pollutants within different street canyons geometries: symmetrical (equal building heights on both sides of the street), non-symmetrical (uniform building heights but lower on one side of the street) and heterogeneous (non-uniform building heights on both sides of the street) under constant meteorological conditions. Laboratory experiments were carried out within a water channel and simultaneous measurements of velocity field and concentration scalar levels within and above the street canyons using PIV and PLIF techniques. Traffic -related emissions were simulated using a line emission source. Two positions were examined for all street geometries: line emission source was placed in the centre of the street canyon; line emission source was placed off the centre of the street. TSI Incorporated.

  2. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    Science.gov (United States)

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Seasonal Changing Effect on Airflow and Pollutant Dispersion Characteristics in Urban Street Canyons

    Directory of Open Access Journals (Sweden)

    Jingliang Dong

    2017-02-01

    Full Text Available In this study, the effect of seasonal variation on air flow and pollutant dispersion characteristics was numerically investigated. A three-dimensional urban canopy model with unit aspect ratio (H/D = 1 was used to calculate surface temperature distribution in the street canyon. Four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST during typical clear summer and winter days were selected to examine the air flow diurnal variation. The results revealed the seasonal variation significantly altered the street canyon microclimate. Compared with the street canyon surface temperature distribution in summer, the winter case showed a more evenly distributed surface temperature. In addition, the summer case showed greater daily temperature fluctuation than that of the winter case. Consequently, distinct pollutant dispersion patterns were observed between summer and winter scenarios, especially for the afternoon (1600 LST and night (2000 LST events. Among all studied time events, the pollutant removal performance of the morning (1000 LST and the night (2000 LST events were more sensitive to the seasonal variation. Lastly, limited natural ventilation performance was found during the summer morning and the winter night, which induced relatively high pollutant concentration along the pedestrian height level.

  4. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    Science.gov (United States)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  5. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.

    2016-11-01

    This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.

  6. A numerical analysis of pollutant dispersion in street canyon: influence of the turbulent Schmidt number

    Directory of Open Access Journals (Sweden)

    Bouabdellah Abed

    2017-12-01

    Full Text Available Realizing the growing importance and availability of motor vehicles, we observe that the main source of pollution in the street canyons comes from the dispersion of automobile engine exhaust gas. It represents a substantial effect on the micro-climate conditions in urban areas. Seven idealized-2D building configurations are investigated by numerical simulations. The turbulent Schmidt number is introduced in the pollutant transport equation in order the take into account the proportion between the rate of momentum turbulent transport and the mass turbulent transport by diffusion. In the present paper, we attempt to approach the experimental test results by adjusting the values of turbulent Schmidt number to its corresponding application. It was with interest that we established this link for achieving our objectives, since the numerical results agree well with the experimental ones. The CFD code ANSYS CFX, the k, e and the RNGk-e models of turbulence have been adopted for the resolutions. From the simulation results, the turbulent Schmidt number is a range of 0.1 to 1.3 that has some effect on the prediction of pollutant dispersion in the street canyons. In the case of a flat roof canyon configuration (case: runa000, appropriate turbulent Schmidt number of 0.6 is estimated using the k-epsilon model and of 0.5 using the RNG k-e model.

  7. Impact of height and shape of building roof on air quality in urban street canyons

    Science.gov (United States)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  8. Evaluation of turbulence from traffic using experimental data obtained in a street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, N.A.; Venegas, L.E. [Univ. of Buenos Aires, Buenos Aires (Argentina). Dept. of Atmospheric and Oceanic Sciences, National Scientific and Technological Research Council

    2004-07-01

    High air pollution levels have been observed in street canyons. Within these streets, pedestrians, cyclists, drivers and residents are likely to be exposed to pollutant concentrations exceeding current air quality standards. Airflow and dispersion in street canyons are very complicated. Depending on the synoptic wind three main dispersion conditions can be identified: a) low wind conditions, b) perpendicular or near perpendicular flow for winds over 1.5-2.0 m/s blowing at an angle of more than 30 to the canyon axes, c) parallel or near parallel flow for winds over 1.5-2.0 m/s blowing from all other directions. Under condition b), airflow in canyons with H/W{approx}1 (H is the height and W is the width of the canyon) is characterised by the formation of a single vortex within the canyon. The dispersion of gaseous pollutants in a street canyon depends generally on the rate at which the street exchanges air vertically with the above roof-level atmosphere and laterally with connecting streets. There is evidence that when the synoptic wind speed is low, the mechanical traffic-produced turbulence (TPT) might place a significant role in dispersion of traffic-generated pollutants. In this paper, we analyse interactions between wind and traffic induced dispersive air motions. Data from full-scale measurements in Goettinger Strasse (Hannover, Germany) are used for application of parameterisation proposed by Di Sabatino, S. et al. (2003) and Kastner-Klein, P. et al. (2003). (orig.)

  9. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    OpenAIRE

    Yucong Miao; Shuhua Liu; Yijia Zheng; Shu Wang; Yuan Li

    2014-01-01

    The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD) model used in this study—Open Source Field Operation and Manipulation (OpenFOAM) software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispe...

  10. Influence of trees on the dispersion of pollutants in an urban street canyon - experimental investigation of the flow and concentration field

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2007-01-01

    Flow field and concentration measurements have been performed in an idealized model of an urban street canyon with one row of trees arranged along the center axis. The model was set up in an atmospheric boundary layer wind tunnel and the approach flow was directed perpendicular to the street axis. A

  11. Effectiveness of green infrastructure for improvement of air quality in urban street canyons.

    Science.gov (United States)

    Pugh, Thomas A M; Mackenzie, A Robert; Whyatt, J Duncan; Hewitt, C Nicholas

    2012-07-17

    Street-level concentrations of nitrogen dioxide (NO(2)) and particulate matter (PM) exceed public health standards in many cities, causing increased mortality and morbidity. Concentrations can be reduced by controlling emissions, increasing dispersion, or increasing deposition rates, but little attention has been paid to the latter as a pollution control method. Both NO(2) and PM are deposited onto surfaces at rates that vary according to the nature of the surface; deposition rates to vegetation are much higher than those to hard, built surfaces. Previously, city-scale studies have suggested that deposition to vegetation can make a very modest improvement (street canyons. This study shows that increasing deposition by the planting of vegetation in street canyons can reduce street-level concentrations in those canyons by as much as 40% for NO(2) and 60% for PM. Substantial street-level air quality improvements can be gained through action at the scale of a single street canyon or across city-sized areas of canyons. Moreover, vegetation will continue to offer benefits in the reduction of pollution even if the traffic source is removed from city centers. Thus, judicious use of vegetation can create an efficient urban pollutant filter, yielding rapid and sustained improvements in street-level air quality in dense urban areas.

  12. Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2017-05-01

    A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd

  13. The impact of traffic-flow patterns on air quality in urban street canyons

    International Nuclear Information System (INIS)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.

  14. Air flow and pollution in a real, heterogeneous urban street canyon: A field and laboratory study

    Science.gov (United States)

    Karra, Styliani; Malki-Epshtein, Liora; Neophytou, Marina K.-A.

    2017-09-01

    In this work we investigate the influence of real world conditions, including heterogeneity and natural variability of background wind, on the air flow and pollutant concentrations in a heterogeneous urban street canyon using both a series of field measurements and controlled laboratory experiments. Field measurements of wind velocities and Carbon Monoxide (CO) concentrations were taken under field conditions in a heterogeneous street in a city centre at several cross-sections along the length of the street (each cross-section being of different aspect ratio). The real field background wind was in fact observed to be highly variable and thus different Intensive Observation Periods (IOPs) represented by a different mean wind velocity and different wind variability were defined. Observed pollution concentrations reveal high sensitivity to local parameters: there is a bias towards the side closer to the traffic lane; higher concentrations are found in the centre of the street as compared to cross-sections closer to the junctions; higher concentrations are found at 1.5 height from the ground than at 2.5 m height, all of which are of concern regarding pedestrian exposure to traffic-related pollution. A physical model of the same street was produced for the purpose of laboratory experiments, making some geometrical simplifications of complex volumes and extrusions. The physical model was tested in an Atmospheric Boundary Layer water channel, using simultaneously Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF), for flow visualisation as well as for quantitative measurement of concentrations and flow velocities. The wind field conditions were represented by a steady mean approach velocity in the laboratory simulation (essentially representing periods of near-zero wind variability). The laboratory investigations showed a clear sensitivity of the resulting flow field to the local geometry and substantial three-dimensional flow patterns were

  15. Wind-induced single-sided natural ventilation in buildings near a long street canyon: CFD evaluation of street configuration and envelope design

    DEFF Research Database (Denmark)

    Ai, Z.T.; Mak, C.M.

    2018-01-01

    an urban context, this study investigates the wind-induced single-sided natural ventilation in buildings near a long street canyon under a perpendicular wind direction using CFD method. Four aspect ratios (AR) of the street canyon, from 1.0, 2.0, 4.0 to 6.0, are investigated to examine the influence...

  16. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  17. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon.

    Science.gov (United States)

    Salmond, J A; Williams, D E; Laing, G; Kingham, S; Dirks, K; Longley, I; Henshaw, G S

    2013-01-15

    Space constraints in cities mean that there are only limited opportunities for increasing tree density within existing urban fabric and it is unclear whether the net effect of increased vegetation in street canyons is beneficial or detrimental to urban air quality at local scales. This paper presents data from a field study undertaken in Auckland, New Zealand designed to determine the local impact of a deciduous tree canopy on the distribution of the oxides of nitrogen within a street canyon. The results showed that the presence of leaves on the trees had a marked impact on the transport of pollutants and led to a net accumulation of pollutants in the canyon below the tree tops. The incidence and magnitude of temporally localised spikes in pollutant concentration were reduced within the tree canopy itself. A significant difference in pollutant concentrations with height was not observed when leaves were absent. Analysis of the trends in concentration associated with different wind directions showed a smaller difference between windward and leeward sides when leaves were on the trees. A small relative increase in concentrations on the leeward side was observed during leaf-on relative to leaf-off conditions as predicted by previous modelling studies. However the expected reduction in concentrations on the windward side was not observed. The results suggest that the presence of leaves on the trees reduces the upwards transport of fresh vehicle emissions, increases the storage of pollutants within the canopy space and reduces the penetration of clean air downwards from aloft. Differences observed between NO and NO(2) concentrations could not be accounted for by dispersion processes alone, suggesting that there may also be some changes in the chemistry of the atmosphere associated with the presence of leaves on the trees. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A modelling exercise to examine variations of NOx concentrations on adjacent footpaths in a street canyon: The importance of accounting for wind conditions and fleet composition.

    Science.gov (United States)

    Gallagher, J

    2016-04-15

    Personal measurement studies and modelling investigations are used to examine pollutant exposure for pedestrians in the urban environment: each presenting various strengths and weaknesses in relation to labour and equipment costs, a sufficient sampling period and the accuracy of results. This modelling exercise considers the potential benefits of modelling results over personal measurement studies and aims to demonstrate how variations in fleet composition affects exposure results (presented as mean concentrations along the centre of both footpaths) in different traffic scenarios. A model of Pearse Street in Dublin, Ireland was developed by combining a computational fluid dynamic (CFD) model and a semi-empirical equation to simulate pollutant dispersion in the street. Using local NOx concentrations, traffic and meteorological data from a two-week period in 2011, the model were validated and a good fit was presented. To explore the long-term variations in personal exposure due to variations in fleet composition, synthesised traffic data was used to compare short-term personal exposure data (over a two-week period) with the results for an extended one-year period. Personal exposure during the two-week period underestimated the one-year results by between 8% and 65% on adjacent footpaths. The findings demonstrate the potential for relative differences in pedestrian exposure to exist between the north and south footpaths due to changing wind conditions in both peak and off-peak traffic scenarios. This modelling approach may help overcome potential under- or over-estimations of concentrations in personal measurement studies on the footpaths. Further research aims to measure pollutant concentrations on adjacent footpaths in different traffic and wind conditions and to develop a simpler modelling system to identify pollutant hotspots on our city footpaths so that urban planners can implement improvement strategies to improve urban air quality. Copyright © 2016 Elsevier B

  19. Numerical Study on Sensitivity of Pollutant Dispersion on Turbulent Schmidt Number in a Street Canyon

    Science.gov (United States)

    WANG, J.; Kim, J.

    2014-12-01

    In this study, sensitivity of pollutant dispersion on turbulent Schmidt number (Sct) was investigated in a street canyon using a computational fluid dynamics (CFD) model. For this, numerical simulations with systematically varied Sct were performed and the CFD model results were validated against a wind‒tunnel measurement data. The results showed that root mean square error (RMSE) was quite dependent on Sct and dispersion patterns of non‒reactive scalar pollutant with different Sct were quite different among the simulation results. The RMSE was lowest in the case of Sct = 0.35 and the apparent dispersion pattern was most similar to the wind‒tunnel data in the case of Sct = 0.35. Also, numerical simulations using spatially weighted Sct were additionally performed in order for the best reproduction of the wind‒tunnel data. Detailed method and procedure to find the best reproduction will be presented.

  20. Optimizing the use of on-street car parking system as a passive control of air pollution exposure in street canyons by large eddy simulation

    Science.gov (United States)

    Gallagher, J.; Gill, L. W.; McNabola, A.

    2011-03-01

    An investigation was carried out to establish the effectiveness of parked cars in urban street canyons as passive controls on pedestrian pollutant exposure. A numerical model of a generic street canyon was developed using a large eddy simulation (LES) model to compare personal exposure on the footpath with and without the presence of parked cars. Three configurations of car parking systems were investigated (parallel, perpendicular and 45° parking) in addition to the influence of wind speed, wind direction and car parking occupancy. A tracer gas (CO 2) was used as a representative pollutant from vehicular sources within the street canyon models. The results indicated that parked cars may act as a temporary baffle plate between traffic emissions and pedestrians on the footpath. Reductions in exposure of up to 35% and 49% were attained on the leeward and windward footpaths in perpendicular wind conditions, with parallel winds allowing up to 33% pollutant reduction on both footpaths for parallel parking. The perpendicular and 45° car parking configurations investigated proved less successful as passive controls on air pollution exposure and an increase in pollutant concentration occurred in some models. An investigation of parking space occupancy rates was carried out for parallel parked cars. The fraction of parked cars influenced the level of reduction of pollutants on the footpaths with steady reductions in perpendicular winds, yet reductions were only evident for occupancy rates greater than approximately 45% in parallel wind conditions. One negative impact associated with the parked cars study was the increase of pollutant levels on the roadway as the parked cars acted as a baffle wall, which trapped pollutants in the road. The paper underlines the potential of on-street car parking for reducing the personal exposure of pollutants by pedestrians and the optimum parking layout to achieve maximum health protection.

  1. Do urban canyons influence street level grass pollen concentrations?

    DEFF Research Database (Denmark)

    Peel, Robert George; Kennedy, Roy; Smith, Matt

    2014-01-01

    In epidemiological studies, outdoor exposure to pollen is typically estimated using rooftop monitoring station data, whilst exposure overwhelmingly occurs at street level. In this study the relationship between street level and roof level grass pollen concentrations was investigated for city cent...

  2. Turbulence and Air Exchange in a Two-Dimensional Urban Street Canyon Between Gable Roof Buildings

    Science.gov (United States)

    Garau, Michela; Badas, Maria Grazia; Ferrari, Simone; Seoni, Alessandro; Querzoli, Giorgio

    2018-04-01

    We experimentally investigate the effect of a typical building covering: the gable roof, on the flow and air exchange in urban canyons. In general, the morphology of the urban canopy is very varied and complex, depending on a large number of factors, such as building arrangement, or the morphology of the terrain. Therefore we focus on a simple, prototypal shape, the two-dimensional canyon, with the aim of elucidating some fundamental phenomena driving the street-canyon ventilation. Experiments are performed in a water channel, over an array of identical prismatic obstacles representing an idealized urban canopy. The aspect ratio, i.e. canyon-width to building-height ratio, ranges from 1 to 6. Gable roof buildings with 1:1 pitch are compared with flat roofed buildings. Velocity is measured using a particle-image-velocimetry technique with flow dynamics discussed in terms of mean flow and second- and third-order statistical moments of the velocity. The ventilation is interpreted by means of a simple well-mixed box model and the outflow rate and mean residence time are computed. Results show that gable roofs tend to delay the transition from the skimming-flow to the wake-interference regime and promote the development of a deeper and more turbulent roughness layer. The presence of a gable roof significantly increases the momentum flux, especially for high packing density. The air exchange is improved compared to the flat roof buildings, and the beneficial effect is more significant for narrow canyons. Accordingly, for unit aspect ratio gable roofs reduce the mean residence time by a factor of 0.37 compared to flat roofs, whereas the decrease is only by a factor of 0.9 at the largest aspect ratio. Data analysis indicates that, for flat roof buildings, the mean residence time increases by 30% when the aspect ratio is decreased from 6 to 2, whereas this parameter is only weakly dependent on aspect ratio in the case of gable roofs.

  3. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersectionsle

    Czech Academy of Sciences Publication Activity Database

    Nosek, Štěpán; Kukačka, L.; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-01-01

    Roč. 227, August (2017), s. 125-138 ISSN 0269-7491 R&D Projects: GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : Urban array * 3D street canyon * pollution flux measurement * wind tunnel * coherent structures Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 5.099, year: 2016

  4. On the impact of trees on dispersion processes of traffic emissions in street canyons

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2009-01-01

    Wind-tunnel studies of dispersion processes of traffic exhaust in urban street canyons with tree planting were performed and tracer gas concentrations using electron capture detection (ECD) and flow fields using laser Doppler velocimetry (LDV) were measured. It was found that tree planting reduces

  5. Dispersion of traffic exhausts in urban street canyons with tree plantings : experimental and numerical investigations

    NARCIS (Netherlands)

    Gromke, C.B.; Denev, J.; Ruck, B.

    2007-01-01

    Wind tunnel experiments and numerical computations have been performed in order to investigate the influence of avenuelike tree plantings on the dispersion of traffic exhaust in an urban street canyon. Reduced natural ventilation and enhanced pollutant concentrations have been found in the presence

  6. Urban air quality management : effects of trees on air pollution concentration in urban street canyon

    NARCIS (Netherlands)

    Salim, S.M.; Buccolieri, R.; Chan, A.; Sabatino, Di S.; Gromke, C.

    2009-01-01

    The aerodynamic effects of avenue-like tree planting on air flow and traffic-originated pollutant dispersion in urban built-up areas (i.e. street canyons of width to height ratio, W/H=1) are investigated using computational fluid dynamics techniques and complemented with extensive wind tunnel

  7. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction

    Science.gov (United States)

    Buccolieri, Riccardo; Salim, Salim Mohamed; Leo, Laura Sandra; Di Sabatino, Silvana; Chan, Andrew; Ielpo, Pierina; de Gennaro, Gianluigi; Gromke, Christof

    2011-03-01

    This paper first discusses the aerodynamic effects of trees on local scale flow and pollutant concentration in idealized street canyon configurations by means of laboratory experiments and Computational Fluid Dynamics (CFD). These analyses are then used as a reference modelling study for the extension a the neighbourhood scale by investigating a real urban junction of a medium size city in southern Italy. A comparison with previous investigations shows that street-level concentrations crucially depend on the wind direction and street canyon aspect ratio W/H (with W and H the width and the height of buildings, respectively) rather than on tree crown porosity and stand density. It is usually assumed in the literature that larger concentrations are associated with perpendicular approaching wind. In this study, we demonstrate that while for tree-free street canyons under inclined wind directions the larger the aspect ratio the lower the street-level concentration, in presence of trees the expected reduction of street-level concentration with aspect ratio is less pronounced. Observations made for the idealized street canyons are re-interpreted in real case scenario focusing on the neighbourhood scale in proximity of a complex urban junction formed by street canyons of similar aspect ratios as those investigated in the laboratory. The aim is to show the combined influence of building morphology and vegetation on flow and dispersion and to assess the effect of vegetation on local concentration levels. To this aim, CFD simulations for two typical winter/spring days show that trees contribute to alter the local flow and act to trap pollutants. This preliminary study indicates that failing to account for the presence of vegetation, as typically practiced in most operational dispersion models, would result in non-negligible errors in the predictions.

  8. Effects of Time-Dependent Inflow Perturbations on Turbulent Flow in a Street Canyon

    Science.gov (United States)

    Duan, G.; Ngan, K.

    2017-12-01

    Urban flow and turbulence are driven by atmospheric flows with larger horizontal scales. Since building-resolving computational fluid dynamics models typically employ steady Dirichlet boundary conditions or forcing, the accuracy of numerical simulations may be limited by the neglect of perturbations. We investigate the sensitivity of flow within a unit-aspect-ratio street canyon to time-dependent perturbations near the inflow boundary. Using large-eddy simulation, time-periodic perturbations to the streamwise velocity component are incorporated via the nudging technique. Spatial averages of pointwise differences between unperturbed and perturbed velocity fields (i.e., the error kinetic energy) show a clear dependence on the perturbation period, though spatial structures are largely insensitive to the time-dependent forcing. The response of the error kinetic energy is maximized for perturbation periods comparable to the time scale of the mean canyon circulation. Frequency spectra indicate that this behaviour arises from a resonance between the inflow forcing and the mean motion around closed streamlines. The robustness of the results is confirmed using perturbations derived from measurements of roof-level wind speed.

  9. Pollutant Removal, Dispersion and Entrainment over Two-Dimensional Idealized Street Canyons: an LES Approach

    Science.gov (United States)

    Wong, C.; Liu, C.

    2010-12-01

    Unlike pollutant transport over flat terrain, the mechanism and plume dispersion over urban areas is not well known. This study is therefore conceived to examine how urban morphology modifies the pollutant transport over urban areas. The computational domain and boundary condition used in this study is shown in Figure 1. The LES shows that inside the street canyon, the ground-level pollutants are carried to roof-level by the re-circulating flow, which are then removed from the street canyon to the UBL. Right above the roof level, narrow high-speed air masses in the streamwise flows and intensive downdrafts have been found in the shear layer. Different from the flows over a smooth surface, the maximum turbulence intensities descend that are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses rapidly over the buildings exhibiting a Gaussian-plume form in the UBL. The mean component of vertical pollutant flux shows that the mean wind contributes to pollutant removal and entrainment simultaneously. Whereas, the fluctuating component demystifies that pollutant removal is mainly governed by atmospheric turbulence. Over the roof level, atmospheric flows slow down rapidly in the wake behind leeward building, suggesting the momentum entrainment into the street canyons. The decelerating streamwise flows in turn lead to upward flows carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in the skimming flow regime. Figure 1: Computational domain and boundary conditions Figure 2: Ensemble average vertical pollutant flux along the roof level. (a). Mean component; (b). turbulent component.

  10. Establishing a link between vehicular PM sources and PM measurements in urban street canyons.

    Science.gov (United States)

    Eisner, Alfred D; Richmond-Bryant, Jennifer; Wiener, Russell W; Hahn, Intaek; Drake-Richman, Zora E; Ellenson, William D

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study, conducted in Brooklyn, NY, USA, in 2005, was designed with multiple goals in mind, two of which were contaminant source characterization and street canyon transport and dispersion monitoring. In the portion of the study described here, synchronized wind velocity and azimuth as well as particulate matter (PM) concentrations at multiple locations along 33rd Street were used to determine the feasibility of using traffic emissions in a complex urban topography as a sole tracer for studying urban contaminant transport. We demonstrate in this paper that it is possible to link downwind concentrations of contaminants in an urban street canyon to the vehicular traffic cycle using Eigen-frequency analysis. In addition, multivariable circular histograms are used to establish directional frequency maxima for wind velocity and contaminant concentration.

  11. Modelling Pollutant Dispersion in a Street Network

    Science.gov (United States)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  12. Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon.

    Science.gov (United States)

    Huang, Yuan-Dong; He, Wen-Rong; Kim, Chang-Nyung

    2015-02-01

    A two-dimensional numerical model for simulating flow and pollutant dispersion in an urban street canyon is firstly developed using the FLUENT code and then validated against the wind tunnel results. After this, the flow field and pollutant dispersion inside an urban street canyon with aspect ratio W/H = 1 are examined numerically considering five different shapes (vaulted, trapezoidal, slanted, upward wedged, and downward wedged roofs) as well as three different roof height to building height ratios (Z H /H = 1/6, 1/3, and 1/2) for the upstream building roof. The results obtained reveal that the shape and height of an upstream roof have significant influences on flow pattern and pollutant distribution in an urban canyon. A large single clockwise vortex is generated in the canyon for the vaulted upstream roof at Z H /H = 1/6, 1/3, and 1/2, the trapezoidal and downward wedged roofs at Z H /H = 1/6 and 1/3, and the slanted and upward wedged roofs at Z H /H = 1/6, while a main clockwise vortex and a secondary counterclockwise vortex are established for the trapezoidal and downward wedged roofs at Z H /H = 1/2 and the slanted and upward wedged roofs at Z H /H = 1/3 and 1/2. In the one-vortex flow regime, the clockwise vortex moves upward and grows in size with increasing upstream roof height for the vaulted, trapezoidal, and downward wedged roofs. In the two-vortex flow regime, the size and rotational velocity of both upper clockwise and lower counterclockwise vortices increase with the upstream roof height for the slanted and upward wedged roofs. At Z H /H = 1/6, the pollution levels in the canyon are close among all the upstream roof shapes studied. At Z H /H = 1/3, the pollution levels in the canyon for the upward wedged roof and slanted roof are much higher than those for the vaulted, trapezoidal, and downward wedged roofs. At Z H /H = 1/2, the lowest pollution level appears in the canyon for the vaulted upstream roof, while

  13. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  14. Characterization of traffic-related PM concentration distribution and fluctuation patterns in near-highway urban residential street canyons.

    Science.gov (United States)

    Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard

    2009-12-01

    Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean

  15. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction

    NARCIS (Netherlands)

    Buccolieri, R.; Salim, S.M.; Leo, L.S.; Sabatino, Di S.; Chan, A.; Ielpo, P.; Gennaro, de G.; Gromke, C.B.

    2011-01-01

    This paper first discusses the aerodynamic effects of trees on local scale flow and pollutant concentration in idealized street canyon configurations by means of laboratory experiments and Computational Fluid Dynamics (CFD). These analyses are then used as a reference modelling study for the

  16. Influence of photochemical processes on traffic-related airborne pollutants in urban street canyon

    Czech Academy of Sciences Publication Activity Database

    Střižík, Michal; Zelinger, Zdeněk; Kubát, Pavel; Civiš, Svatopluk; Bestová, I.; Nevrlý, Václav; Kadeřábek, P.; Čadil, J.; Berger, P.; Černý, A.; Engst, Pavel

    2016-01-01

    Roč. 147, SEP 2016 (2016), s. 1-10 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GA14-14696S; GA MŠk(CZ) LD14022 Grant - others:COST(XE) TD 1105 Institutional support: RVO:61388955 ; RVO:61388998 Keywords : remote sensing * LIDAR * Urban street canyon Subject RIV: CF - Physical ; Theoretical Chemistry; BK - Fluid Dynamics (UT-L) Impact factor: 1.326, year: 2016

  17. Diurnal variation of on-road air pollution in an urban street canyon in Seoul

    Science.gov (United States)

    Ho, Woo, Sung; Lee, Seung-Bok; Kim, Kyung Hwan; Bae, Gwi-Nam; Sunwoo, Young; Ma, Young-Il; Han, Dokyoung; Song, Sanghoo

    2014-05-01

    Motor vehicles are a major source of CO, NOx and particulate matters. Especially, in the surroundings of high-raised buildings, so-called an urban street canyon, air pollution levels increase due to limited dispersion of vehicle emissions. In this study, a mobile laboratory was used to measure diurnal variation of on-road concentrations of air pollutants such as NOx, particle-bound polycyclic aromatic hydrocarbons, black carbon and particle number in the urban street canyon on the Teheran road with eight lanes in Seoul, Korea from 5th to 8th November 2013. Each traveling distance was about 3.3km. Traveling vehicle at the middle of the Teheran road was recorded by video camera, and then the car counting by vehicle types. On road measurements conducted for 3~6 hours per day. Hourly average of air pollutant concentration in morning rush hour more than two times higher than those at the daybreak. We will analyze the correlation between air pollution levels and traffic volume by vehicle types. We will discuss about spatial characteristics of on-road air pollution levels in the urban street canyon.

  18. Thermal effects on vehicle emission dispersion in an urban street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Xiaomin Xie; Zhen Huang; Jiasong Wang; Zheng Xie [Shanghai Jiao Tong Univ., School of Mechanical Engineering, Shanghai (China)

    2005-05-15

    The impact of the thermal effects on vehicle emission dispersion within street canyons is examined. The results show that heating from building wall surfaces and horizontal surfaces lead to strong buoyancy forces close to surfaces receiving direct solar radiation. This thermally induced flow is combined with mechanically induced flows formed in the canyon where there is no solar heating, and affects the transport of pollutants from the canyon to the layer aloft. The relative influence of each of these effects can be estimates by Gr/Re{sup 2}. When the windward wall is warmer than the air, an upward buoyancy flux opposes the downward advection flux along the wall; if Gr/Re{sup 2} > 2, the flow structure is divided into two counter-rotating cells, and pollutants are accumulated on the windward side of the canyon. When the horizontal surface is heated, and Gr/Re{sup 2} > 4, the flow structure is divided into two counter-rotating cells by upward buoyancy flux. Pollutants are accumulated at the windward side of the canyon. When the leeward side is heated, the buoyancy flux adds to the upward advection flux along the wall strengthening the original vortex and pollutant effects of transport compared to the isothermal case. (Author)

  19. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons

    Science.gov (United States)

    Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin

    2012-11-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.

  20. The impact of traffic-flow patterns on air quality in urban street canyons.

    Science.gov (United States)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.

    Science.gov (United States)

    Pesic, Dusica J; Blagojevic, Milan Dj; Zivkovic, Nenad V

    2014-01-01

    Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316-323, 2009), Xie et al. (J Hydrodyn 21(1): 108-117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975-3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394-406, 2009; J Hazard Mater 192(3): 940-948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street

  2. On the Pollutant Plume Dispersion in the Urban Canopy Layer over 2D Idealized Street Canyons: A Large-Eddy Simulation Approach

    Science.gov (United States)

    Wong, Colman C. C.; Liu, Chun-Ho

    2010-05-01

    Anthropogenic emissions are the major sources of air pollutants in urban areas. To improve the air quality in dense and mega cities, a simple but reliable prediction method is necessary. In the last five decades, the Gaussian pollutant plume model has been widely used for the estimation of air pollutant distribution in the atmospheric boundary layer (ABL) in an operational manner. Whereas, it was originally designed for rural areas with rather open and flat terrain. The recirculating flows below the urban canopy layer substantially modify the near-ground urban wind environment and so does the pollutant distribution. Though the plume height and dispersion are often adjusted empirically, the accuracy of applying the Gaussian pollutant plume model in urban areas, of which the bottom of the flow domain consists of numerous inhomogeneous buildings, is unclear. To elucidate the flow and pollutant transport, as well as to demystify the uncertainty of employing the Gaussian pollutant plume model over urban roughness, this study was performed to examine how the Gaussian-shape pollutant plume in the urban canopy layer is modified by the idealized two-dimensional (2D) street canyons at the bottom of the ABL. The specific objective is to develop a parameterization so that the geometric effects of urban morphology on the operational pollutant plume dispersion models could be taken into account. Because atmospheric turbulence is the major means of pollutant removal from street canyons to the ABL, the large-eddy simulation (LES) was adopted to calculate explicitly the flows and pollutant transport in the urban canopy layer. The subgrid-scale (SGS) turbulent kinetic energy (TKE) conservation was used to model the SGS processes in the incompressible, isothermal conditions. The computational domain consists of 12 identical idealized street canyons of unity aspect ratio which were placed evenly in the streamwise direction. Periodic boundary conditions (BCs) for the flow were applied

  3. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons

    International Nuclear Information System (INIS)

    Abhijith, K.V.; Gokhale, Sharad

    2015-01-01

    This study investigates the passive-control-potentials of trees and on-street parked cars on pedestrian exposure to air pollutants in a street canyon using three-dimensional CFD. Since, according to some studies trees deteriorate air quality and cars parked roadside improve it, the combine as well as separate effects of trees and on-street parked cars have been examined. For this, different tree canopy layouts and parking configurations have been developed and pedestrian exposure for each has been analysed. The results showed, for example, tree crown with high porosity and low-stand density in combination with parallel or perpendicular car parking reduced the pedestrian exposure considerably. - Highlights: • Trees and on-street parked cars can manipulate pollutant levels in street canyons. • Low stand density trees with 0° or 90° car parking reduce pedestrian exposure. • Trees with medium crown, high porosity, low stand density reduce pollutant levels. - This study investigated the combination of trees and on-street parked cars to manipulate pollutant levels in urban street canyons to reduce pedestrian exposure

  4. Time-series analysis to study the impact of an intersection on dispersion along a street canyon.

    Science.gov (United States)

    Richmond-Bryant, Jennifer; Eisner, Alfred D; Hahn, Intaek; Fortune, Christopher R; Drake-Richman, Zora E; Brixey, Laurie A; Talih, M; Wiener, Russell W; Ellenson, William D

    2009-12-01

    This paper presents data analysis from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study to assess the transport of ultrafine particulate matter (PM) across urban intersections. Experiments were performed in a street canyon perpendicular to a highway in Brooklyn, NY, USA. Real-time ultrafine PM samplers were positioned on either side of an intersection at multiple locations along a street to collect time-series number concentration data. Meteorology equipment was positioned within the street canyon and at an upstream background site to measure wind speed and direction. Time-series analysis was performed on the PM data to compute a transport velocity along the direction of the street for the cases where background winds were parallel and perpendicular to the street. The data were analyzed for sampler pairs located (1) on opposite sides of the intersection and (2) on the same block. The time-series analysis demonstrated along-street transport, including across the intersection when background winds were parallel to the street canyon and there was minimal transport and no communication across the intersection when background winds were perpendicular to the street canyon. Low but significant values of the cross-correlation function (CCF) underscore the turbulent nature of plume transport along the street canyon. The low correlations suggest that flow switching around corners or traffic-induced turbulence at the intersection may have aided dilution of the PM plume from the highway. This observation supports similar findings in the literature. Furthermore, the time-series analysis methodology applied in this study is introduced as a technique for studying spatiotemporal variation in the urban microscale environment.

  5. Numerical study on flow and pollutant dispersion inside street canyons

    OpenAIRE

    Yunkai, Yang

    2013-01-01

    This thesis analyzes the characteristics of flow pattern and vehicle-emitted pollutant dispersion in roughness surface layer. In an urban environment, wind flow and transported-pollutant source interfere strongly with buildings and other roughness elements on the surface ground, which results in complex characteristics of flow pattern and pollutant dispersion in 3D circumstances. The present study intends to simplify the research domain and investigate the fundamental modeling problems that e...

  6. Vertical distribution of particulate trace elements in a street canyon determined by PIXE analysis

    International Nuclear Information System (INIS)

    Raunemaa, T.; Hautojaervi, A.; Kaisla, K.; Gerlander, M.

    1981-01-01

    Suspended particles in a street canyon were investigated by collecting air particulate matter on thin filters at heigths 2.3 to 20.5 m. The weather parameters and traffic characteristics were registered during the collection. Quantitative analysis of 15 trace elements from AI to Pb was carried out by the PIXE method using 1.8-2.0 MeV protons. The concentration of lead was found to decrease exponentially when going from street level to roof level. Almost all the trace elements analyzed were found to fall into two groups with different vertical distributions. The collected matter above 10 m height was found to be due mainly to combustion originated motor vehicle exhaust, the matter below 10 m to soil originated dust. (orig.)

  7. Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons

    Science.gov (United States)

    Wong, C. C. C.; Liu, C. H.

    2012-04-01

    Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical

  8. Evaluation of numerical flow and dispersion simulations for street canyons with avenue-like tree planting by comparison with wind tunnel data

    NARCIS (Netherlands)

    Gromke, C.B.; Buccolieri, R.; Sabatino, Di S.; Ruck, B.

    2008-01-01

    Flow and traffic-originated pollutant dispersion in an urban street canyon with avenue-like tree planting have been studied by means of wind tunnel and CFD investigations. The study comprises tree planting of different crown porosity, planted in two rows within a canyon of street width to building

  9. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    Science.gov (United States)

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A Wind Tunnel Investigation of the Influence of Solar-Induced Wall-Heating on the Flow Regime within a Simulated Urban Street Canyon

    International Nuclear Information System (INIS)

    Kovar-Panskus, A.; Moulinneuf, L.; Savory, E.; Abdelqari, A.; Sini, J.-F.; Rosant, J.-M.; Robins, A.; Toy, N.

    2002-01-01

    A wind tunnel study has been undertaken to assess the influence of solar-induced wall heating on the airflow pattern within a street canyon under low-speed wind conditions. This flow is normally dominated by large-scale vortical motion, such that the wind moves downwards at the downstream wall. In the present work the aim has been to examine whether the buoyancy forces generated at this wall by solar-induced heating are of sufficient strength to oppose the downward inertial forces and, thereby, change the canyon flow pattern. Such changes will also influence the dispersion of pollutants within the street. In the experiments the windward-facing wall of a canyon has been uniformly heated to simulate the effect of solar radiation.Four different test cases, representing different degrees of buoyancy (defined by a test Froude number, Fr), have been examined using a simple, 2-D, square-section canyon model in a wind tunnel. For reference purposes, the neutral case (no wall heating), has also been studied. The approach flow boundary layer conditions have been well defined, with the wind normal to the main canyon axis, and measurements have been taken of canyon wall and air temperatures and profiles of mean velocities and turbulence intensities.Analysis of the results shows clear differences in the flow patterns. As Fr decreases from the neutral case there are reductions of up to 50% in the magnitudes of the reverseflow velocities near the ground and in the upward motion near the upstream wall. A marked transition occurs at Fr ∼ 1, where the single dominant vortex, existing at higher Fr values, weakens and moves upwards whilst a lower region of relatively stagnant flow appears. This transition had previously been observed in numerical model predictions but at a Fr at least an order of magnitude higher

  11. Multi-scale modeling of urban air pollution: development of a Street-in-Grid model

    Science.gov (United States)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2016-04-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of

  12. Simulations of the dispersion of reactive pollutants in a street canyon, considering different chemical mechanisms and micromixing

    Science.gov (United States)

    Garmory, A.; Kim, I. S.; Britter, R. E.; Mastorakos, E.

    The Stochastic Fields (SF) or Field Monte Carlo method has been used to model the dispersion of reactive scalars in a street canyon, using a simple chemistry and the CBM-IV mechanism. SF is a Probability Density Function (PDF) method which allows both means and variances of the scalars to be calculated as well as considering the effect of segregation on reaction rates. It was found that the variance of reactive scalars such as NO 2 was very high in the mixing region at roof-top level with rms values of the order of the mean values. The effect of segregation on major species such as O 3 was found to be very small using either mechanism, however, some radical species in CBM-IV showed a significant difference. These were found to be the seven species with the fastest chemical timescales. The calculated photostationary state defect was also found to be in error when segregation is neglected.

  13. Evaluation of numerical flow and dispersion simulations for street canyons with avenue-like tree planting by comparison with wind tunnel data

    OpenAIRE

    Gromke, CB Christof; Buccolieri, R; Sabatino, S Di; Ruck, B

    2008-01-01

    Abstract: Flow and traffic-originated pollutant dispersion in an urban street canyon with avenue-like tree planting have been studied by means of wind tunnel and CFD investigations. The study comprises tree planting of different crown porosity, planted in two rows within a canyon of street width to building height ratio W/H = 2 and street length to building height ratio L/H = 10 exposed to a perpendicular approaching boundary layer flow. Numerical simulations have been performed with...

  14. Joint analysis of air pollution in street canyons in St. Petersburg and Copenhagen

    Science.gov (United States)

    Genikhovich, E. L.; Ziv, A. D.; Iakovleva, E. A.; Palmgren, F.; Berkowicz, R.

    The bi-annual data set of concentrations of several traffic-related air pollutants, measured continuously in street canyons in St. Petersburg and Copenhagen, is analysed jointly using different statistical techniques. Annual mean concentrations of NO 2, NO x and, especially, benzene are found systematically higher in St. Petersburg than in Copenhagen but for ozone the situation is opposite. In both cities probability distribution functions (PDFs) of concentrations and their daily or weekly extrema are fitted with the Weibull and double exponential distributions, respectively. Sample estimates of bi-variate distributions of concentrations, concentration roses, and probabilities of concentration of one pollutant being extreme given that another one reaches its extremum are presented in this paper as well as auto- and co-spectra. It is demonstrated that there is a reasonably high correlation between seasonally averaged concentrations of pollutants in St. Petersburg and Copenhagen.

  15. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon.

    Science.gov (United States)

    Kumar, Prashant; Fennell, Paul; Britter, Rex

    2008-08-25

    There have been many studies concerning dispersion of gaseous pollutants from vehicles within street canyons; fewer address the dispersion of particulate matter, particularly particle number concentrations separated into the nucleation (10-30 nm or N10-30) or accumulation (30-300 nm or N30-300) modes either separately or together (N10-300). This study aimed to determine the effect of wind direction and speed on particle dispersion in the above size ranges. Particle number distributions (PNDs) and concentrations (PNCs) were measured in the 5-2738 nm range continuously (and in real-time) for 17 days between 7th and 23rd March 2007 in a regular (aspect ratio approximately unity) street canyon in Cambridge (UK), using a newly developed fast-response differential mobility spectrometer (sampling frequency 0.5 Hz), at 1.60 m above the road level. The PNCs in each size range, during all wind directions, were better described by a proposed two regime model (traffic-dependent and wind-dependent mixing) than by simply assuming that the PNC was inversely proportional to the wind speed or by fitting the data with a best-fit single power law. The critical cut-off wind speed (Ur,crit) for each size range of particles, distinguishing the boundary between these mixing regimes was also investigated. In the traffic-dependent PNC region (UrUrwind speed and direction. In the wind speed dependent PNC region (UrUr>Ur,critUr,crit), concentrations were inversely proportional to Ur irrespective of any particle size range and wind directions. The wind speed demarcating the two regimes (Ur,critUr,crit) was 1.23+/-0.55 m s(-1) for N10-300, (1.47+/-0.72 m s(-1)) for N10-30 but smaller (0.78+/-0.29 m s(-1)) for N30-300.

  16. Analysis of the Momentum and Pollutant Transport at the Roof Level of 2D Idealized Street Canyons: a Large-Eddy Simulation Solution

    Science.gov (United States)

    Cheng, Wai Chi; Liu, Chun-Ho

    2010-05-01

    To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant along the roof level were performed to compare the contributions of different events/scales to the transport processes. The roof of the street canyon is divided into five segments, namely leeward side, upwind shift, center core, downwind shift and windward side in the streamwise direction. Among the four quadrants considered, the sweeps/ejections, which correspond to the downward/upward motions, dominate the momentum/pollutant transfer. The inward/outward interactions play relatively minor roles. While studying the events in detail, the contribution from the sweeps is mainly large-scale fluctuation compared with that of ejections. Moreover, most of the momentum and pollutant transports take place on the windward side. The strong shear at the roof level initiates instability that in turn promotes the increasing turbulent transport from the leeward side to the windward side. At the same time, the roof-level fluctuations grow linearly in the streamwise direction leading to the vigorous turbulent

  17. Parametric laws to model urban pollutant dispersion with a street network approach

    Science.gov (United States)

    Soulhac, L.; Salizzoni, P.; Mejean, P.; Perkins, R. J.

    2013-03-01

    This study discusses the reliability of the street network approach for pollutant dispersion modelling in urban areas. This is essentially based on a box model, with parametric relations that explicitly model the main phenomena that contribute to the street canyon ventilation: the mass exchanges between the street and the atmosphere, the pollutant advection along the street axes and the pollutant transfer at street intersections. In the first part of the paper the focus is on the development of a model for the bulk transfer street/atmosphere, which represents the main ventilation mechanisms for wind direction that are almost perpendicular to the axis of the street. We then discuss the role of the advective transfer along the street axis on its ventilation, depending on the length of the street and the direction of the external wind. Finally we evaluate the performances of a box model integrating parametric exchange laws for these transfer phenomena. To that purpose we compare the prediction of the model to wind tunnel experiments of pollutant dispersion within a street canyon placed in an idealised urban district.

  18. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon

    Science.gov (United States)

    Rakowska, Agata; Wong, Ka Chun; Townsend, Thomas; Chan, Ka Lok; Westerdahl, Dane; Ng, Simon; Močnik, Griša; Drinovec, Luka; Ning, Zhi

    2014-12-01

    Vehicle emissions are identified as a major source of air pollution in metropolitan areas. Emission control programs in many cities have been implemented as part of larger scale transport policy interventions to control traffic pollutants and reduce public health risks. These interventions include provision of traffic-free and low emission zones and congestion charging. Various studies have investigated the impact of urban street configurations, such as street canyon in urban centers, on pollutants dispersion and roadside air quality. However, there are few investigations in the literature to study the impact of change of fleet composition and street canyon effects on the on-road pollutants concentrations and associated roadside pedestrian exposure to the pollutants. This study presents an experimental investigation on the traffic related gas and particle pollutants in and near major streets in one of the most developed business districts in Hong Kong, known as Central. Both street canyon and open roadway configurations were included in the study design. Mobile measurement techniques were deployed to monitor both on-road and roadside pollutants concentrations at different times of the day and on different days of a week. Multiple traffic counting points were also established to concurrently collect data on traffic volume and fleet composition on individual streets. Street canyon effects were evident with elevated on-road pollutants concentrations. Diesel vehicles were found to be associated with observed pollutant levels. Roadside black carbon concentrations were found to correlate with their on-road levels but with reduced concentrations. However, ultrafine particles showed very high concentrations in roadside environment with almost unity of roadside/on-road ratios possibly due to the accumulation of primary emissions and secondary PM formation. The results from the study provide useful information for the effective urban transport design and bus route

  19. CO2 absorption/emission and aerodynamic effects of trees on the concentrations in a street canyon in Guangzhou, China

    International Nuclear Information System (INIS)

    Li, Jian-Feng; Zhan, Jie-Min; Li, Y.S.; Wai, Onyx W.H.

    2013-01-01

    In this paper, the effects of trees on CO 2 concentrations in a street canyon in Guangzhou, China are examined by Computational Fluid Dynamics (CFD) simulations of the concentration distribution, taking into account both the CO 2 absorption/emission and aerodynamic effects of trees. Simulation results show that, under a 2 m/s southerly prevailing wind condition, CO 2 absorption by trees will reduce the CO 2 concentration by around 2.5% in the daytime and at the same time the trees' resistance will increase the difference of CO 2 concentrations in the street and at the inflow by 43%. As the traffic density increases to 50 vehicles/min, the effect of trees on the ambient CO 2 concentration will change from positive to negative. At night, trees have a negative effect on the concentration in the street canyon mainly because of their resistance to airflow. When environmental wind changes, the effect of trees will be different. -- Highlights: ► The trees affect CO 2 concentrations in a street canyon. ► Both the CO 2 absorption and flow resistance of trees are significant factors by day. ► As the emissions of CO 2 increase, the effect of trees will become negative. ► At night, trees have a negative effect on CO 2 concentration due to the resistance. -- The effects of trees on CO 2 concentrations in a street canyon are examined by CFD simulations, taking into account both the CO 2 absorption/emission and aerodynamic effects of trees

  20. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    Science.gov (United States)

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  1. Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium.

    Science.gov (United States)

    Vranckx, Stijn; Vos, Peter; Maiheu, Bino; Janssen, Stijn

    2015-11-01

    Effects of vegetation on pollutant dispersion receive increased attention in attempts to reduce air pollutant concentration levels in the urban environment. In this study, we examine the influence of vegetation on the concentrations of traffic pollutants in urban street canyons using numerical simulations with the CFD code OpenFOAM. This CFD approach is validated against literature wind tunnel data of traffic pollutant dispersion in street canyons. The impact of trees is simulated for a variety of vegetation types and the full range of approaching wind directions at 15° interval. All these results are combined using meteo statistics, including effects of seasonal leaf loss, to determine the annual average effect of trees in street canyons. This analysis is performed for two pollutants, elemental carbon (EC) and PM10, using background concentrations and emission strengths for the city of Antwerp, Belgium. The results show that due to the presence of trees the annual average pollutant concentrations increase with about 8% (range of 1% to 13%) for EC and with about 1.4% (range of 0.2 to 2.6%) for PM10. The study indicates that this annual effect is considerably smaller than earlier estimates which are generally based on a specific set of governing conditions (1 wind direction, full leafed trees and peak hour traffic emissions). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Temporal variations of PM1 major components in an urban street canyon.

    Science.gov (United States)

    Yubero, E; Galindo, N; Nicolás, J F; Crespo, J; Calzolai, G; Lucarelli, F

    2015-09-01

    Seasonal changes in the levels of PM1 and its main components (organic carbon (OC), elemental carbon (EC), SO4 (2-), NO3 (-) and NH4 (+)) were studied in an urban street canyon in southeastern Spain. Although PM1 levels did not show an evident seasonal cycle, strong variations in the concentrations of its major components were observed. Ammonium sulfate, the main secondary inorganic compound, was found to be of regional origin. Its formation was favored during summer due to increased photochemical activity. In contrast, the concentrations of particulate ammonium nitrate, which is thermally unstable, were highest in winter. Although traffic emissions are the dominant source of EC in the city, variations in traffic intensity could not explain the seasonal cycle of this component. The higher EC concentrations during the cold months were attributed to the lower dispersion conditions and the increase in EC emissions. Special attention has been given to variations in organic carbon levels since it accounted for about one third of the total PM1 mass. The concentrations of both total OC and secondary OC (SOC) were maxima in winter. The observed seasonal variation in SOC levels is similar to that found in other southern European cities where the frequency of sunny days in winter is high enough to promote photochemical processes.

  3. Relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy street canyon: Ambient wind effects

    International Nuclear Information System (INIS)

    Kwak, Kyung-Hwan; Lee, Sang-Hyun; Seo, Jaemyeong Mango; Park, Seung-Bu; Baik, Jong-Jin

    2016-01-01

    Rooftop and on-road measurements of O_3, NO_2, NO_x, and CO concentrations were conducted to investigate the relationship between rooftop and on-road concentrations in a busy and shallow street canyon with an aspect ratio of ∼0.3 in Seoul, Republic of Korea, from 15 April to 1 May 2014. The median road-to-roof concentration ratios, correlation coefficients between rooftop and on-road concentrations, and temporal variations of rooftop and on-road concentrations are analyzed according to the rooftop wind directions which are two cross-canyon and two along-canyon directions. The analysis results indicate that the relationship is strong when the rooftop is situated on the downwind side rather than on the upwind side. Relative to the cross-canyon wind directions, one of the along-canyon wind directions can more enhance the relationship. A conceptual framework is proposed to explain the effect of ambient wind direction on the relationship between rooftop and on-road concentrations in a street canyon. - One of the along-canyon wind directions can enhance the relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy and shallow street canyon.

  4. Damage costs due to automotive air pollution and the influence of street canyons

    International Nuclear Information System (INIS)

    Spadaro, Joseph V.; Rabl, Ari

    2001-01-01

    Using the methodology of the ExternE Project of the European Commission, we have evaluated the damage costs of automotive air pollution by way of two case studies in France: a trip across Paris, and a trip from Paris to Lyon. This methodology involves an analysis of the impact pathways, starting with the emissions (e.g., g/km of particles form tailpipe), followed by local and regional dispersion (e.g., incremental μg/m 3 of particles), calculation of the physical impacts using exposure-response functions (e.g., cases of respiratory hospital admissions), and finally multiplication by unit costs factors (e.g., ε per hospital admission). Damages are aggregated over all affected receptors in Europe. In addition to the local and regional dispersion calculations carried out so far by ExternE, we also consider the increased microscale impacts due to the trapping of pollutants in street canyons, using numerical simulations with the FLUENT software. We have evaluated impacts to human health, agricultural crops and building materials, due to particles, NO x , CO, HC and CO 2 . Health impacts, especially reduced life expectancy, dominate in terms of cost. Damages for older cars (before 1997) range from 2 to 41Euro cents/km, whereas for newer cars (since 1997), the range 1-9 Euro cents/km, and there is continuing progress in reducing the emissions further. In large cities, the particulate emissions of diesel cars lead to the highest damages, exceeding those of gasoline cars by a factor of 7. For cars before 1997 the order of magnitude of the damage costs is comparable to the price of gasoline, and the loss of life expectancy is comparable to that from traffic accidents. (Author)

  5. Impacts of traffic composition and street-canyon geometry on on-road air quality in a high-rise building area

    Science.gov (United States)

    Kwak, Kyung-Hwan; Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam; Sunwoo, Young; Baik, Jong-Jin

    2016-04-01

    Mobile measurements using a mobile laboratory and numerical simulations using a computational fluid dynamics (CFD) model were conducted over different time periods of multiple days in a high-rise building area, Seoul, Republic of Korea. Mobile measurement can provide actual on-road emission levels of air pollutants from vehicles as well as validation dataset of a CFD model. On the other hand, CFD modeling is required for the process analysis of mobile measurement data and the quantitative estimation of determining factors in complex phenomena. The target area is characterized as a busy street canyon elongated along a major road with hourly traffic volumes of approximately 4000 vehicles during working hours on weekdays. Nitrogen oxides (NOx), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pPAH), and particle number (PN) concentrations were measured during 39 round trips of mobile laboratory. The associations of the measured NOx, BC, pPAH, and PN concentrations with the traffic volumes of individual compositions are analyzed by calculating the correlation coefficients (R2) based on linear regressions. It is found that SUV, truck, van, and bus are heavy emitters responsible for the on-road air pollution in the street canyon. Among the measured pollutants, the largest R2 is shown for pPAH. The measured NOx, BC, pPAH, and PN concentrations are unevenly distributed in the street canyon. The measured concentrations around an intersection are higher than those in between intersections, particularly for NOx and pPAH. The CFD modeling for different dispersion scenarios reveals that the intersection has counterbalancing roles in determining the on-road concentrations. The emission process acts to increase the on-road concentrations due to accelerating and idling vehicles, whereas the dispersion process acts to decrease the on-road concentrations due to lateral ventilations along the crossing street. It is needed to control the number of heavy emitters and

  6. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India)

    DEFF Research Database (Denmark)

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S.

    2016-01-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur...... concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data...

  7. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation

    Science.gov (United States)

    Kikumoto, Hideki; Ooka, Ryozo

    2012-07-01

    A large-eddy simulation is performed on a turbulent dispersion of chemically reactive air pollutants in a two-dimensional urban street canyon with an aspect ratio of 1.0. Nitrogen monoxide emitted from a line-source set on the bottom of the street canyon disperses and reacts with Ozone included in a free stream. The reactions have significant influences on the concentrations of pollutants in the canyon space, and they increase the concentrations of the reaction products relative to of the concentrations of the reactants. The transport of air pollutants through a free shear layer above the canyon is closely related to the structure of the turbulence. Gases in the canyon are mainly exhausted when low-speed regions appear above the canyon. In contrast, pollutants in the free stream flow into the canyon with high-speed fluid bodies. Consequently, the correlation between the time fluctuations of the reactants' concentrations strongly affects the reaction rates in the region near the free shear layer. In this calculation, the correlation term reaches to a value of 20% of the mean reaction rate at a maximum there.

  9. Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls

    Science.gov (United States)

    Lee, Hyunjung; Mayer, Helmut

    2018-03-01

    Numerical simulations based on the ENVI-met model were carried out for an E-W street canyon in the city of Stuttgart (Southwest Germany) to analyse the effect of increased albedo of building walls on outdoor human thermal comfort. It was quantified by air temperature (T a ), mean radiant temperature (T mrt ) and physiologically equivalent temperature (PET). The simulations were conducted on 4 August 2003 as a heat wave day that represents a typical scenario for future summer weather in Central Europe. The simulation results presented for 13 CET and averaged over the period 10-16 CET are focused on pedestrians on both sidewalks. For the initial situation, i.e. albedo of 0.2, human heat stress indicated by mean PET is by 26% lower on the N-facing than on the S-facing sidewalk, while this reduction amounts to 42% for mean T mrt . Mean T a does not show any spatial differentiation. The systematic albedo increment by 0.2 from 0.2 to 0.8 leads to a linear increase of outdoor human heat stress in terms of T mrt and PET. For both variables, this increase is more pronounced on the N-facing than on the S-facing sidewalk. Mean relative T a shows the tendency of a minimal increase with rising albedo. The results were achieved for the usual standardised human-biometeorological reference person. Its substitution by two other types of male and female pedestrians, respectively, which are statistically characteristic of human conditions in Germany, does not reveal any significant change in the results.

  10. On the influence of viaduct and ground heating on pollutant dispersion in 2D street canyons and toward single-sided ventilated buildings

    Science.gov (United States)

    This paper employs Computational Fluid Dynamic (CFD) simulations to investigate the influence of ground heating intensities and viaduct configurations on gaseous and particle dispersion within two-dimensional idealized street canyons (typical aspect ratio H/W=1) and their transpo...

  11. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review

    Science.gov (United States)

    Abhijith, K. V.; Kumar, Prashant; Gallagher, John; McNabola, Aonghus; Baldauf, Richard; Pilla, Francesco; Broderick, Brian; Di Sabatino, Silvana; Pulvirenti, Beatrice

    2017-08-01

    Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review examined published literature on neighbourhood air quality modifications by green interventions. Studies were evaluated that discussed personal exposure to local sources of air pollution under the presence of vegetation in open road and built-up street canyon environments. Further, we critically evaluated the available literature to provide a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure. The net effects of vegetation in each built-up environment are also summarised and possible recommendations for the future design of green infrastructure are proposed. In a street canyon environment, high-level vegetation canopies (trees) led to a deterioration in air quality, while low-level green infrastructure (hedges) improved air quality conditions. For open road conditions, wide, low porosity and tall vegetation leads to downwind pollutant reductions while gaps and high porosity vegetation could lead to no improvement or even deteriorated air quality. The review considers that generic recommendations can be provided for vegetation barriers in open road conditions. Green walls and roofs on building envelopes can also be used as effective air pollution abatement measures. The critical evaluation of the fundamental concepts and the amalgamation of key technical features of past studies by this review could assist urban planners to design and implement green infrastructures in the built environment.

  12. Morphodynamic Model of Submarine Canyon Incision by Sandblasting

    Science.gov (United States)

    Zhang, L.; Parker, G.; Izumi, N.; Cartigny, M.; Li, T.; Wang, G.

    2017-12-01

    Submarine canyons are carved by turbidity currents under the deep sea. As opposed to subaerial canyons, the relevant processes are not easy to observe directly. Turbidity currents are bottom-hugging sediment gravity flows of that can incise or deposit on the seafloor to create submarine canyons or fans. The triggers of turbidity currents can be storms, edge waves, internal waves, canyon wall sapping, delta failure, breaching and hyperpycnal flows. The formation and evolution mechanisms of submarine canyons are similar to those of subaerial canyons, but have substantial differences. For example, sandblasting, rather than wear due to colliding gravel clasts is more likely to be the mechanism of bedrock incision. Submarine canyons incise downward, and often develop meander bends and levees within the canyon, so defining "fairways". Here we propose a simple model for canyon incision. The starting point of our model is the Macro Roughness Saltation Abrasion Alluviation model of Zhang et al. [2015], designed for bedrock incision by gravel clasts in mixed bedrock-alluvial rivers. We adapt this formulation to consider sandblasting as a means of wear. We use a layer-averaged model for turbidity current dynamics. The current contains a mixture of mud, which helps drive the flow but which does not cause incision, and sand, which is the agent of incision. We show that the model can successfully model channel downcutting, and indeed illustrate the early formation of net incisional cyclic steps, i.e. upstream-migrating undulations on the bed associated with transcritical (in the Froude sense) flow. These steps can be expected to abet the process of incision.

  13. Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

    OpenAIRE

    Y. Kim; Y. Wu; C. Seigneur; Y. Roustan

    2018-01-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemistry–transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport on spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH), which consists of two main components...

  14. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India).

    Science.gov (United States)

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S; Dikshit, Anil Kumar; Hertel, Ole

    2016-06-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter.

  15. Large-eddy simulation of pollutant dispersion from a ground-level area source over urban street canyons with irreversible chemical reactions

    Science.gov (United States)

    Du, T. Z.; Liu, C.-H.; Zhao, Y. B.

    2014-10-01

    In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry produces nitrogen dioxide (NO2), developing a reactive plume over the rough urban surface. A range of timescales of turbulence and chemistry are utilized to examine the mechanism of turbulent mixing and chemical reactions in the UCL. The Damköhler number (Da) and the reaction rate (r) are analyzed along the vertical direction on the plane normal to the prevailing flow at 10 m after the source. The maximum reaction rate peaks at an elevation where Damköhler number Da is equal or close to unity. Hence, comparable timescales of turbulence and reaction could enhance the chemical reactions in the plume.

  16. Citygml and the Streets of New York - a Proposal for Detailed Street Space Modelling

    Science.gov (United States)

    Beil, C.; Kolbe, T. H.

    2017-10-01

    Three-dimensional semantic city models are increasingly used for the analysis of large urban areas. Until now the focus has mostly been on buildings. Nonetheless many applications could also benefit from detailed models of public street space for further analysis. However, there are only few guidelines for representing roads within city models. Therefore, related standards dealing with street modelling are examined and discussed. Nearly all street representations are based on linear abstractions. However, there are many use cases that require or would benefit from the detailed geometrical and semantic representation of street space. A variety of potential applications for detailed street space models are presented. Subsequently, based on related standards as well as on user requirements, a concept for a CityGML-compliant representation of street space in multiple levels of detail is developed. In the course of this process, the CityGML Transportation model of the currently valid OGC standard CityGML2.0 is examined to discover possibilities for further developments. Moreover, a number of improvements are presented. Finally, based on open data sources, the proposed concept is implemented within a semantic 3D city model of New York City generating a detailed 3D street space model for the entire city. As a result, 11 thematic classes, such as roadbeds, sidewalks or traffic islands are generated and enriched with a large number of thematic attributes.

  17. Flow and Dispersion in a Simplified Street Canyon - Wind Tunnel Study

    Czech Academy of Sciences Publication Activity Database

    Bezpalcová, Klára

    2005-01-01

    Roč. 56, č. 1 (2005), s. 2-27 ISSN 1026-2172 R&D Projects: GA ČR(CZ) GA205/04/0311; GA MŠk(CZ) OC 723.002 Institutional research plan: CEZ:AV0Z20760514 Keywords : atmospheric boundary layer * air pollution * physical modelling Subject RIV: DG - Athmosphere Sciences, Meteorology

  18. A novel methodology for interpreting air quality measurements from urban streets using CFD modelling

    Science.gov (United States)

    Solazzo, Efisio; Vardoulakis, Sotiris; Cai, Xiaoming

    2011-09-01

    In this study, a novel computational fluid dynamics (CFD) based methodology has been developed to interpret long-term averaged measurements of pollutant concentrations collected at roadside locations. The methodology is applied to the analysis of pollutant dispersion in Stratford Road (SR), a busy street canyon in Birmingham (UK), where a one-year sampling campaign was carried out between August 2005 and July 2006. Firstly, a number of dispersion scenarios are defined by combining sets of synoptic wind velocity and direction. Assuming neutral atmospheric stability, CFD simulations are conducted for all the scenarios, by applying the standard k-ɛ turbulence model, with the aim of creating a database of normalised pollutant concentrations at specific locations within the street. Modelled concentration for all wind scenarios were compared with hourly observed NO x data. In order to compare with long-term averaged measurements, a weighted average of the CFD-calculated concentration fields was derived, with the weighting coefficients being proportional to the frequency of each scenario observed during the examined period (either monthly or annually). In summary the methodology consists of (i) identifying the main dispersion scenarios for the street based on wind speed and directions data, (ii) creating a database of CFD-calculated concentration fields for the identified dispersion scenarios, and (iii) combining the CFD results based on the frequency of occurrence of each dispersion scenario during the examined period. The methodology has been applied to calculate monthly and annually averaged benzene concentration at several locations within the street canyon so that a direct comparison with observations could be made. The results of this study indicate that, within the simplifying assumption of non-buoyant flow, CFD modelling can aid understanding of long-term air quality measurements, and help assessing the representativeness of monitoring locations for population

  19. Street Choice Logit Model for Visitors in Shopping Districts

    Directory of Open Access Journals (Sweden)

    Ko Kawada

    2014-07-01

    Full Text Available In this study, we propose two models for predicting people’s activity. The first model is the pedestrian distribution prediction (or postdiction model by multiple regression analysis using space syntax indices of urban fabric and people distribution data obtained from a field survey. The second model is a street choice model for visitors using multinomial logit model. We performed a questionnaire survey on the field to investigate the strolling routes of 46 visitors and obtained a total of 1211 street choices in their routes. We proposed a utility function, sum of weighted space syntax indices, and other indices, and estimated the parameters for weights on the basis of maximum likelihood. These models consider both street networks, distance from destination, direction of the street choice and other spatial compositions (numbers of pedestrians, cars, shops, and elevation. The first model explains the characteristics of the street where many people tend to walk or stay. The second model explains the mechanism underlying the street choice of visitors and clarifies the differences in the weights of street choice parameters among the various attributes, such as gender, existence of destinations, number of people, etc. For all the attributes considered, the influences of DISTANCE and DIRECTION are strong. On the other hand, the influences of Int.V, SHOPS, CARS, ELEVATION, and WIDTH are different for each attribute. People with defined destinations tend to choose streets that “have more shops, and are wider and lower”. In contrast, people with undefined destinations tend to choose streets of high Int.V. The choice of males is affected by Int.V, SHOPS, WIDTH (positive and CARS (negative. Females prefer streets that have many shops, and couples tend to choose downhill streets. The behavior of individual persons is affected by all variables. The behavior of people visiting in groups is affected by SHOP and WIDTH (positive.

  20. Street Choice Logit Model for Visitors in Shopping Districts

    Science.gov (United States)

    Kawada, Ko; Yamada, Takashi; Kishimoto, Tatsuya

    2014-01-01

    In this study, we propose two models for predicting people’s activity. The first model is the pedestrian distribution prediction (or postdiction) model by multiple regression analysis using space syntax indices of urban fabric and people distribution data obtained from a field survey. The second model is a street choice model for visitors using multinomial logit model. We performed a questionnaire survey on the field to investigate the strolling routes of 46 visitors and obtained a total of 1211 street choices in their routes. We proposed a utility function, sum of weighted space syntax indices, and other indices, and estimated the parameters for weights on the basis of maximum likelihood. These models consider both street networks, distance from destination, direction of the street choice and other spatial compositions (numbers of pedestrians, cars, shops, and elevation). The first model explains the characteristics of the street where many people tend to walk or stay. The second model explains the mechanism underlying the street choice of visitors and clarifies the differences in the weights of street choice parameters among the various attributes, such as gender, existence of destinations, number of people, etc. For all the attributes considered, the influences of DISTANCE and DIRECTION are strong. On the other hand, the influences of Int.V, SHOPS, CARS, ELEVATION, and WIDTH are different for each attribute. People with defined destinations tend to choose streets that “have more shops, and are wider and lower”. In contrast, people with undefined destinations tend to choose streets of high Int.V. The choice of males is affected by Int.V, SHOPS, WIDTH (positive) and CARS (negative). Females prefer streets that have many shops, and couples tend to choose downhill streets. The behavior of individual persons is affected by all variables. The behavior of people visiting in groups is affected by SHOP and WIDTH (positive). PMID:25379274

  1. A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion

    Science.gov (United States)

    Park, S. J.; Kim, J.

    2014-12-01

    In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.

  2. Numerical simulation on pollutant dispersion from vehicle exhaust in street configurations.

    Science.gov (United States)

    Yassin, Mohamed F; Kellnerová, R; Janour, Z

    2009-09-01

    The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.

  3. An investigation on the effect of street morphology to ambient air quality using six real-world cases

    Science.gov (United States)

    Shen, Jialei; Gao, Zhi; Ding, Wowo; Yu, Ying

    2017-09-01

    Street canyons are vulnerable to air pollution mainly caused by vehicle emissions, which are therefore closely related to pedestrians' health. Previous studies have showed that air quality in street canyons is associated with street morphology, though the majority of them have focused on idealized street models. This paper attempts to investigate the relationship of street morphology to air quality for 6 irregular real-world cases selected from America, Europe, and China, i.e. Manhattan, Paris, Barcelona, Berlin, London and Nanjing. Each street is analyzed as a set of slices to propose a couple of morphology indices for quantitatively assessing the actual street morphology. Pollutant transport rate of mean flows and turbulent diffusion, net escape velocity and age of air are obtained from computational fluid dynamics (CFD) simulations to assess the ventilations and pollutant dispersion within street canyons with a parallel approaching wind. The results show that the street morphology characteristics, including the street width, lateral openings and intersections, are closely related to the air flows in street canyons. The air quality improves with a decreasing aspect ratio of central street owing to a larger vertical exchange through the street roof, which suggests an open central street is of better air quality. The lateral openings and intersections of streets have important effects on the air flows in street canyons, and the effects are particularly pronounced when the street widths are similar. The street continuity ratio indicates street continuity. It relates to the openings and the symmetry of a street and impacts on the air flows and pollutant dispersion through the lateral openings of the central street. The street spatial closure ratio is determined by the street continuity ratio and the aspect ratio of the central street. When the aspect ratio of central street is not excessively high, higher values of street continuity ratio and spatial closure ratio

  4. Ranking current and prospective NO2 pollution mitigation strategies: An environmental and economic modelling investigation in Oxford Street, London.

    Science.gov (United States)

    Jeanjean, A P R; Gallagher, J; Monks, P S; Leigh, R J

    2017-06-01

    Air pollution continues to be a problem in the urban environment. A range of different pollutant mitigation strategies that promote dispersion and deposition exist, but there is little evidence with respect to their comparative performance from both an environmental and economic perspective. This paper focuses on examining different NO 2 mitigation strategies such as trees, buildings facades coated with photocatalytic paint and solid barriers in Oxford Street in London. The case study findings will support ranking the environmental and economic impacts of these different strategies to improve personal exposure conditions on the footpath and on the road in a real urban street canyon. CFD simulations of airflow and NO 2 dispersion in Oxford Street in London were undertaken using the OpenFOAM software platform with the k-ε model, taking into account local prevailing wind conditions. Trees are shown to be the most cost-effective strategy, with a small reduction in NO 2 concentrations of up to 0.7% on the road. However, solid barriers with and without the application of photocatalytic paint and an innovative material (20 times more expensive than trees) can improve air quality on the footpaths more substantially, up to 7.4%, yet this has a significant detrimental impact on NO 2 concentrations (≤23.8%) on the road. Photocatalytic paint on building surfaces presented a minimal environmental reductions (1.2%) and economic (>100 times more expensive than trees) mitigation strategy. The findings recognised the differences between footpath and road concentrations occurred and that a focused examination of three pollution hotspots can provide more cost effective pollution mitigation. This study considers how a number of pollutant mitigation measures can be applied in a single street canyon and demonstrates the strengths and weaknesses of these strategies from economic and environmental perspectives. Further research is required to extrapolate the findings presented here to

  5. Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

    Science.gov (United States)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2018-02-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemistry-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport on spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH), which consists of two main components: a street-canyon component and a street-intersection component. MUNICH is coupled to the Polair3D CTM of the Polyphemus air quality modeling platform to constitute the Street-in-Grid (SinG) model. MUNICH is used to simulate the concentrations of the chemical species in the urban canopy, which is located in the lowest layer of Polair3D, and the simulation of pollutant concentrations above rooftops is performed with Polair3D. Interactions between MUNICH and Polair3D occur at roof level and depend on a vertical mass transfer coefficient that is a function of atmospheric turbulence. SinG is used to simulate the concentrations of nitrogen oxides (NOx) and ozone (O3) in a Paris suburb. Simulated concentrations are compared to NOx concentrations measured at two monitoring stations within a street canyon. SinG shows better performance than MUNICH for nitrogen dioxide (NO2) concentrations. However, both SinG and MUNICH underestimate NOx. For the case study considered, the model performance for NOx concentrations is not sensitive to using a complex chemistry model in MUNICH and the Leighton NO-NO2-O3 set of reactions is sufficient.

  6. Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0 by coupling MUNICH (v1.0 and Polair3D (v1.8.1

    Directory of Open Access Journals (Sweden)

    Y. Kim

    2018-02-01

    Full Text Available A new multi-scale model of urban air pollution is presented. This model combines a chemistry–transport model (CTM that includes a comprehensive treatment of atmospheric chemistry and transport on spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH, which consists of two main components: a street-canyon component and a street-intersection component. MUNICH is coupled to the Polair3D CTM of the Polyphemus air quality modeling platform to constitute the Street-in-Grid (SinG model. MUNICH is used to simulate the concentrations of the chemical species in the urban canopy, which is located in the lowest layer of Polair3D, and the simulation of pollutant concentrations above rooftops is performed with Polair3D. Interactions between MUNICH and Polair3D occur at roof level and depend on a vertical mass transfer coefficient that is a function of atmospheric turbulence. SinG is used to simulate the concentrations of nitrogen oxides (NOx and ozone (O3 in a Paris suburb. Simulated concentrations are compared to NOx concentrations measured at two monitoring stations within a street canyon. SinG shows better performance than MUNICH for nitrogen dioxide (NO2 concentrations. However, both SinG and MUNICH underestimate NOx. For the case study considered, the model performance for NOx concentrations is not sensitive to using a complex chemistry model in MUNICH and the Leighton NO–NO2–O3 set of reactions is sufficient.

  7. Actual car fleet emissions estimated from urban air quality measurements and street pollution models

    International Nuclear Information System (INIS)

    Palmgren, F.; Berkowicz, R.; Hertel, O.; Ziv, A.

    1999-01-01

    A method to determine emissions from the actual car fleet under realistic driving conditions has been developed. The method is based on air quality measurements, traffic counts and inverse application of street air quality models. Many pollutants are of importance for assessing the adverse impact of the air pollution, e.g. NO 2 , CO, lead, VOCs and particulate matter. Aromatic VOCs are of special great concern due to their adverse health effects. Measurements of benzene, toluene and xylenes were carried out in central Copenhagen since 1994. Significant correlation was observed between VOCs and CO concentrations, indicating that the petrol engine vehicles are the major sources of VOC air pollution in central Copenhagen. Hourly mean concentrations of benzene were observed to reach values of up to 20 ppb, what is critically high according to the WHOs recommendations. Based on inverse model calculation of dispersion of pollutants in street canyons, an average emission factor of benzene for the fleet of petrol fuelled vehicles was estimated to be 0.38 g/km in 1994 and 0.11 in 1997. This decrease was caused by the reduction of benzene content in Danish petrol since summer 1995 and increasing percentage of cars equipped with three-way catalysts. The emission factors for benzene for diesel-fuelled vehicles were low

  8. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  9. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    International Nuclear Information System (INIS)

    Oar, D.L.

    1994-01-01

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0

  10. Assessment of Air Pollution Tolerance Index of some plants to develop vertical gardens near street canyons of a polluted tropical city.

    Science.gov (United States)

    Pandey, Ashutosh Kumar; Pandey, Mayank; Tripathi, B D

    2016-12-01

    The aim of the present study was to examine Air Pollution Tolerance Index (APTI) of some climber plant species to develop vertical gardens in Varanasi city which has characteristics of tall building and narrow roads. This condition results in street canyon like structure and hinders the vertical dispersal of air pollutants. We have selected 24 climber plant species which are commonly found in of Varanasi city. Chosen plants can be easily grown either in planter boxes or directly in the ground, with a vertical support they can climb on walls to form green walls or vertical garden. Air Pollution Tolerance Index (APTI) of the selected plant species was calculated and plants with higher APTI are recommended for the development of Vertical garden. Highest APTI was noted for Ipomoea palmata (25.39) followed by Aristolochia elegans (23.28), Thunbergia grandiflora (23.14), Quisqualis indica (22.42), and Clerodendrum splendens (22.36). However, lowest APTI value (8.75) was recorded for the species Hemidesmus indicus. Moreover, the linear regression analysis has revealed a high positive correlation between APTI and ascorbic acid content (R 2 =0.8837) and positive correlation between APTI and Chlorophyll content (R 2 =0.6687). On the basis of higher APTI values (greater than 17), nine species of climber plants viz. I. palmata, T. grandiflora, C. splendens, A. elegans, Q. indica, Petria volubilis, Antigonon leptopus, Cryptolepis buchuanni and Tinospora cordifolia have been recommended to develop vertical greenery systems in a compact tropical city. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Numerical modeling of the late Cenozoic geomorphic evolution of Grand Canyon, Arizona

    Science.gov (United States)

    Pelletier, J. D.

    2008-12-01

    The late Cenozoic geomorphic evolution of Grand Canyon has been influenced by three primary tectonic and drainage adjustment events. First, incision into the Paleozoic strata of the southwestern margin of the Colorado Plateau began at 16 Ma in response to relief production along the Grand Wash Fault. Second, the ancestral Upper Colorado River reversed drainage and became integrated with the Lower Colorado River basin through Grand Canyon between 5.5 and 6 Ma. Third, the Colorado River was influenced by Plio- Quaternary normal faulting along the Hurricane and Toroweap Faults. Despite the relatively firm constraints available on the timing of these events, the geomorphic evolution of Grand Canyon is still not well constrained and many questions remain. For example, was there a deeply-incised gorge in western Grand Canyon before Colorado River integration? How and where was the Colorado River integrated? How have incision rates varied in space and time? In this paper, I describe the results of a numerical modeling study designed to address these questions. The model integrates the stream power model for bedrock channel erosion with cliff retreat and the flexural-isostatic response to erosion. The model honors the structural geology of the Grand Canyon region, including the variable erodibility of rocks in the Colorado Plateau and the occurrence of Plio-Quaternary normal faulting along the Hurricane-Toroweap Fault system. We present the results of two models designed to bracket the possible drainage architectures of the southwestern margin of the Colorado Plateau in Miocene time. In the first model, we assume a 13,000 km2 drainage basin primarily sourced from the Hualapai and Coconino Plateaux. The results of this model indicate that relief production along the Grand Wash fault initiated the formation of a large (700 m) knickpoint that migrated headward at a rate of 15 km/Myr prior to drainage integration at 6 Ma to form a deep gorge in western Grand Canyon. This model

  12. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2015-02-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  13. Attachments for fire modeling for Building 221-T, T Plant canyon deck and railroad tunnel

    International Nuclear Information System (INIS)

    Oar, D.L.

    1995-01-01

    The purpose of this attachment is to provide historical information and documentation for Document No. WHC-SD-CP-ANAL-008 Rev 0, ''Fire Modeling for Building 221-T--T Plant Canyon Deck and Railroad Tunnel'', dated September 29, 1994. This data compilation contains the following: Resumes of the Technical Director, Senior Engineer and Junior Engineer; Review and Comment Record; Software Files; CFAST Input and Output Files; Calculation Control Sheets; and Estimating Sprinkler Actuation Time in the Canyon and Railroad Tunnel. The T Plant was originally a fuel reprocessing facility. It was modified later to decontaminate and repair PuRex process equipment

  14. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Science.gov (United States)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M.

    2015-02-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter dispersion calculations, and a traffic increment calculation wherever applicable. At each monitoring station fulfilling a few data coverage criteria, measured concentrations in the base year 2009 are explained to the extent possible and then modelled for the past and future. More than 1850 monitoring stations are covered, including more than 300 traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are

  15. Evaluation of impacts of trees on PM2.5 dispersion in urban streets

    Science.gov (United States)

    Jin, Sijia; Guo, Jiankang; Wheeler, Stephen; Kan, Liyan; Che, Shengquan

    2014-12-01

    Reducing airborne particulate matter (PM), especially PM2.5 (PM with aerodynamic diameters of 2.5 μm or less), in urban street canyons is critical to the health of central city population. Tree-planting in urban street canyons is a double-edged sword, providing landscape benefits while inevitably resulting in PM2.5 concentrating at street level, thus showing negative environmental effects. Thereby, it is necessary to quantify the impact of trees on PM2.5 dispersion and obtain the optimum structure of street trees for minimizing the PM2.5 concentration in street canyons. However, most of the previous findings in this field were derived from wind tunnel or numerical simulation rather than on-site measuring data. In this study, a seasonal investigation was performed in six typical street canyons in the residential area of central Shanghai, which has been suffering from haze pollution while having large numbers of green streets. We monitored and measured PM2.5 concentrations at five heights, structural parameters of street trees and weather. For tree-free street canyons, declining PM2.5 concentrations were found with increasing height. However, in presence of trees the reduction rate of PM2.5 concentrations was less pronounced, and for some cases, the concentrations even increased at the top of street canyons, indicating tree canopies are trapping PM2.5. To quantify the decrease of PM2.5 reduction rate, we developed the attenuation coefficient of PM2.5 (PMAC). The wind speed was significantly lower in street canyons with trees than in tree-free ones. A mixed-effects model indicated that canopy density (CD), leaf area index (LAI), rate of change of wind speed were the most significant predictors influencing PMAC. Further regression analysis showed that in order to balance both environmental and landscape benefits of green streets, the optimum range of CD and LAI was 50%-60% and 1.5-2.0 respectively. We concluded by suggesting an optimized tree-planting pattern and

  16. Traffic noise in shielded urban areas: comparison of experimental data with model results

    NARCIS (Netherlands)

    Randrianoelina, A.; Salomons, E.M.

    2008-01-01

    Noise maps of cities are commonly produced with rather simple engineering models for sound propagation. These models may be inaccurate in complex urban situations, in particular in situations with street canyons. Street canyons are urban areas that are partly or completely enclosed by buildings, for

  17. Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons

    Science.gov (United States)

    Qaid, Adeb; Lamit, Hasanuddin Bin; Ossen, Dilshan Remaz; Rasidi, Mohd Hisyam

    2018-02-01

    Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N-S, NE-SW and NW-SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street's meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE-SW or N-S street direction and to the SW of a NW-SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW-SE street direction, to the NW and the zenith for a NE-SW street direction and to the zenith for a N-S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun's trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal

  18. Modeling In-Stream Hydro-Geomorphic Processes After 2012 Waldo Canyon Fire, Colorado

    Science.gov (United States)

    Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.

    2016-12-01

    Wildfires can have significant impacts on hydrologic and geomorphic processes. Post-fire sediment transport and runoff generation vary by burn severity, precipitation, and vegetation. A need exists to understand these variable relationships and improve parameterization of post-fire hydro-geomorphic models. This research aims to model pre-fire geomorphic and hydrologic processes in Williams Canyon, a watershed burned by the 2012 Waldo Canyon Fire in Colorado. We develop the KINematic Runoff and EROSion (KINEROS) model with Geographical Information System (GIS)-based information, including a Digital Elevation Model, land cover, soil classification, precipitation, and soil burn severity for a local reference watershed that is unburned. We transfer these parameters to a channel reach in Williams Canyon (Williams Downstream) and adjust them toward post-fire conditions. We model runoff and sediment yield for several storms following the fire. Three post-fire terrestrial Light Detection and Ranging (LiDAR) images (21 April 2013, 14 September 2013, and 16 September 2014) are used to estimate total erosion and deposition at the reach scale. We use the LiDAR-based information to calibrate the post-fire model. Preliminary modeling results indicate 3870-125 kg/ha of sediment in the Williams Downstream reach. The uncalibrated model overestimated (410% in the first year) and underestimated (87.2% in the second year) the erosion. Model calibration reduced the Root Mean Square Error (RMSE) of sediment to 0.016% for the first year and 0.09% for the second year. The parameters calibrated for the Williams Downstream channel reach will be used to develop models for seven other channel reaches within the area burned by the Waldo Canyon Fire, where the performance can be evaluated with LiDAR estimates. Results of this research will enhance our understanding of wildfire disturbance on coupled hydrologic and geomorphic processes. Findings will also improve model parameterization that can

  19. A decision support tool for evaluating the air quality and wind comfort induced by different opening configurations for buildings in canyons.

    Science.gov (United States)

    Fan, M; Chau, C K; Chan, E H W; Jia, J

    2017-01-01

    This study formulated a new index for evaluating both the air quality and wind comfort induced by building openings at the pedestrian level of street canyons. The air pollutant concentrations and wind velocities induced by building openings were predicted by a series of CFD simulations using ANSYS Fluent software based on standard k-ɛ model. The types of opening configurations investigated inside isolated and non-isolated canyons included separations, voids and permeable elements. It was found that openings with permeability values of 10% were adequate for improving the air quality and wind comfort conditions for pedestrians after considering the reduction in development floor areas. Openings were effective in improving the air quality in isolated canyons and different types of opening configurations were suggested for different street aspect ratios. On the contrary, openings were not always found effective for non-isolated canyons if there were pollutant sources in adjacent street canyons. As such, it would also be recommended introducing openings to adjacent canyons along with openings to the target canyons. The formulated index can help city planners and building designers to strike an optimal balance between air quality and wind comfort for pedestrians when designing and planning buildings inside urban streets and thus promoting urban environmental sustainability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Modeling of pollutant dispersion in street canyon by means of CFD

    NARCIS (Netherlands)

    Meschini, D.; Busini, V.; Van Ratingen, S.W.; Rota, R.

    2014-01-01

    Nowadays, pollution from traffic remains one of the major sources for contamination in urban areas and it is widely known that substances emitted by vehicles represent a serious hazard to human health; some traffic-related pollutants, such as NO, NOx and CO are responsible for both acute and chronic

  1. Modeled alongshore circulation and morphologic evolution onshore of a large submarine canyon

    Science.gov (United States)

    Hansen, J. E.; Raubenheimer, B.; List, J. H.; Elgar, S.; Guza, R. T.; Lippmann, T. C.

    2012-12-01

    Alongshore circulation and morphologic evolution observed at an ocean beach during the Nearshore Canyon Experiment, onshore of a large submarine canyon in San Diego, CA (USA), are investigated using a two-dimensional depth-averaged numerical model (Delft3D). The model is forced with waves observed in ~500 m water depth and tidal constituents derived from satellite altimetry. Consistent with field observations, the model indicates that refraction of waves over the canyon results in wave focusing ~500 m upcoast of the canyon and shadowing onshore of the canyon. The spatial variability in the modeled wave field results in a corresponding non-uniform alongshore circulation field. In particular, when waves approach from the northwest the alongshore flow converges near the wave focal zone, while waves that approach from the southwest result in alongshore flow that diverges away from the wave focal zone. The direction and magnitude of alongshore flows are determined by a balance between the (often opposing) radiation stress and alongshore pressure gradients, consistent with observations and previous results. The largest observed morphologic evolution, vertical accretion of about 1.5 m in about 3 m water depth near the wave focal zone, occurred over a one-week period when waves from the northwest reached heights of 1.8 m. The model, with limited tuning, replicates the magnitude and spatial extent of the observed accretion and indicates that net accretion of the cross-shore profile was owing to alongshore transport from converging alongshore flows. The good agreement between the observed and modeled morphology change allows for an in-depth examination of the alongshore force balance that resulted in the sediment convergence. These results indicate that, at least in this case, a depth-averaged hydrodynamic model can replicate observed surfzone morphologic change resulting from forcing that is strongly non-uniform in the alongshore. Funding was provided by the Office of Naval

  2. Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation

    Science.gov (United States)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Gsella, A.; Amann, M.

    2014-01-01

    NO2 concentrations at the street level are a major concern for urban air quality in Europe and have been regulated under the EU Thematic Strategy on Air Pollution. Despite the legal requirements, limit values are exceeded at many monitoring stations with little or no improvement in recent years. In order to assess the effects of future emission control regulations on roadside NO2 concentrations, a downscaling module has been implemented in the GAINS integrated assessment model. The module follows a hybrid approach based on atmospheric dispersion calculations and observations from the AirBase European air quality database that are used to estimate site-specific parameters. Pollutant concentrations at every monitoring site with sufficient data coverage are disaggregated into contributions from regional background, urban increment, and local roadside increment. The future evolution of each contribution is assessed with a model of the appropriate scale: 28 × 28 km grid based on the EMEP Model for the regional background, 7 × 7 km urban increment based on the CHIMERE Chemistry Transport Model, and a chemical box model for the roadside increment. Thus, different emission scenarios and control options for long-range transport as well as regional and local emissions can be analysed. Observed concentrations and historical trends are well captured, in particular the differing NO2 and total NOx = NO + NO2 trends. Altogether, more than 1950 air quality monitoring stations in the EU are covered by the model, including more than 400 traffic stations and 70% of the critical stations. Together with its well-established bottom-up emission and dispersion calculation scheme, GAINS is thus able to bridge the scales from European-wide policies to impacts in street canyons. As an application of the model, we assess the evolution of attainment of NO2 limit values under current legislation until 2030. Strong improvements are expected with the introduction of the Euro 6 emission standard

  3. High resolution multi-scale air quality modelling for all streets in Denmark

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Becker, Thomas

    2017-01-01

    The annual concentrations of NO2, PM2.5 and PM10 in 2012 have for the first time been modelled for all 2.4 million addresses in Denmark based on a multi-scale air quality modelling approach. All addresses include residential, industrial, institutional, shop, school, restaurant addresses etc...... concentrations of NO2 for the five available street monitoring stations are within −27% to +12%. The model results were also verified with comparisons with previous model results for NO2 at 98 selected streets in Copenhagen and 31 streets in Aalborg. The verification showed good correlation in Copenhagen (r2 = 0...

  4. The street school Srikandi as an empowerment model of humane education for the street girls of non halfway house in Surabaya

    Science.gov (United States)

    Setyowati, RRN; Yani, MT; Imron, A.

    2018-01-01

    The street children have not had a solid emotional mental, however they must deal into the life of street that harsh, competitive and tend to affect negatively for their personality development. Their where abouts on the street is not motivated by family economic factor only, but it is also influenced by the disharmony of role and function of family rules and social environment influences. The street children empowerment that had been conducted by the halfway house does not run effectively. This research was aimed to identify problems faced by the street girls, to describe the efforts to overcome the problems faced by the street girls, and also developing the empowerment model for the street girls in Surabaya who do not stay in the halfway house. This research used qualitative method. The problems are often experienced by the street girls, for instance violence. Besides, imitative behavior arises as a respond towards behavior that happened to them. The parents also play role in the process of social control. The empowerment model that is designed is the educational empowerment through revitalization of family rules. Moreover, life skills education has to be strengthened to improve the welfare standard of living.

  5. How well do basic models describe the turbidity currents coming down Monterey and Congo Canyon?

    Science.gov (United States)

    Cartigny, M.; Simmons, S.; Heerema, C.; Xu, J. P.; Azpiroz, M.; Clare, M. A.; Cooper, C.; Gales, J. A.; Maier, K. L.; Parsons, D. R.; Paull, C. K.; Sumner, E. J.; Talling, P.

    2017-12-01

    Turbidity currents rival rivers in their global capacity to transport sediment and organic carbon. Furthermore, turbidity currents break submarine cables that now transport >95% of our global data traffic. Accurate turbidity current models are thus needed to quantify their transport capacity and to predict the forces exerted on seafloor structures. Despite this need, existing numerical models are typically only calibrated with scaled-down laboratory measurements due to the paucity of direct measurements of field-scale turbidity currents. This lack of calibration thus leaves much uncertainty in the validity of existing models. Here we use the most detailed observations of turbidity currents yet acquired to validate one of the most fundamental models proposed for turbidity currents, the modified Chézy model. Direct measurements on which the validation is based come from two sites that feature distinctly different flow modes and grain sizes. The first are from the multi-institution Coordinated Canyon Experiment (CCE) in Monterey Canyon, California. An array of six moorings along the canyon axis captured at least 15 flow events that lasted up to hours. The second is the deep-sea Congo Canyon, where 10 finer grained flows were measured by a single mooring, each lasting several days. Moorings captured depth-resolved velocity and suspended sediment concentration at high resolution (turbidity currents; the modified Chézy model. This basic model has been very useful for river studies over the past 200 years, as it provides a rapid estimate of how flow velocity varies with changes in river level and energy slope. Chézy-type models assume that the gravitational force of the flow equals the friction of the river-bed. Modified Chézy models have been proposed for turbidity currents. However, the absence of detailed measurements of friction and sediment concentration within full-scale turbidity currents has forced modellers to make rough assumptions for these parameters. Here

  6. The ratio of effective building height to street width governs dispersion of local vehicle emissions

    Science.gov (United States)

    Schulte, Nico; Tan, Si; Venkatram, Akula

    2015-07-01

    Analysis of data collected in street canyons located in Hanover, Germany and Los Angeles, USA, suggests that street-level concentrations of vehicle-related pollutants can be estimated with a model that assumes that vertical turbulent transport of emissions dominates the governing processes. The dispersion model relates surface concentrations to traffic flow rate, the effective aspect ratio of the street, and roof level turbulence. The dispersion model indicates that magnification of concentrations relative to those in the absence of buildings is most sensitive to the aspect ratio of the street, which is the ratio of the effective height of the buildings on the street to the width of the street. This result can be useful in the design of transit oriented developments that increase building density to reduce emissions from transportation.

  7. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    Science.gov (United States)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  8. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    Science.gov (United States)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  9. Decision analytic model exploring the cost and cost-offset implications of street triage.

    Science.gov (United States)

    Heslin, Margaret; Callaghan, Lynne; Packwood, Martin; Badu, Vincent; Byford, Sarah

    2016-02-11

    To determine if street triage is effective at reducing the total number of people with mental health needs detained under section 136, and is associated with cost savings compared to usual police response. Routine data from a 6-month period in the year before and after the implementation of a street triage scheme were used to explore detentions under section 136, and to populate a decision analytic model to explore the impact of street triage on the cost to the NHS and the criminal justice sector of supporting people with a mental health need. A predefined area of Sussex, South East England, UK. All people who were detained under section 136 within the predefined area or had contact with the street triage team. The street triage model used here was based on a psychiatric nurse attending incidents with a police constable. The primary outcome was change in the total number of detentions under section 136 between the before and after periods assessed. Secondary analysis focused on whether the additional costs of street triage were offset by cost savings as a result of changes in detentions under section 136. Detentions under section 136 in the street triage period were significantly lower than in the usual response period (118 vs 194 incidents, respectively; χ(2) (1df) 18.542, p<0.001). Total NHS and criminal justice costs were estimated to be £1043 in the street triage period compared to £1077 in the usual response period. Investment in street triage was offset by savings as a result of reduced detentions under section 136, particularly detentions in custody. Data available did not include assessment of patient outcomes, so a full economic evaluation was not possible. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Evaluation of the Street Pollution Model OSPM for Measurements at 12 Streets Stations Using a Newly Developed and Freely Available Evaluation Tool

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Jensen, Steen Solvang; Brandt, Jørgen

    2012-01-01

    In the present work, the Operational Street Pollution Model (OSPM) has been evaluated in comparison with continuous half-hourly measurements over a multi-year period for five permanent street monitor stations that constitute part of the Danish Air Quality Monitoring Programme as well as with pass......In the present work, the Operational Street Pollution Model (OSPM) has been evaluated in comparison with continuous half-hourly measurements over a multi-year period for five permanent street monitor stations that constitute part of the Danish Air Quality Monitoring Programme as well...... the observations well, especially for the most recent years, while for NO2 the model over-predicts in two cases. The explanation for this over-prediction is believed to be uncertainties in the traffic or emission input data, but also in model parameters, and the representativeness of the urban background data may....... OSPM calculations for nine streets with passive sampler measurements were conducted as ‘blind test’ i.e. without knowing the measured values. OSPM calculations were in good agreement with the measurements for seven out of nine street sections. Refinements of the input data lead to a significant...

  11. Flow in bedrock canyons.

    Science.gov (United States)

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  12. Diablo Canyon

    International Nuclear Information System (INIS)

    Bindon, F.J.L.

    1986-01-01

    The paper traces the history of Diablo Canyon nuclear power station, California, which took 18 years to reach full-power testing from the planning stage. The major delays during the construction are outlined, as well as the costs of Diablo Canyon. (UK)

  13. Peaks, plateaus, canyons, and craters: The complex geometry of simple mid-domain effect models

    DEFF Research Database (Denmark)

    Colwell, Robert K.; Gotelli, Nicholas J.; Rahbek, Carsten

    2009-01-01

    dye algorithm to place assemblages of species of uniform We used a spreading dye algorithm to place assemblages of species of uniform range size in one-dimensional or two-dimensional bounded domains. In some models, we allowed dispersal to introduce range discontinuity. Results: As uniform range size...... increases from small to medium, a flat pattern of species As uniform range size increases from small to medium, a flat pattern of species richness is replaced by a pair of peripheral peaks, separated by a valley (one-dimensional models), or by a cratered ring (two-dimensional models) of species richness...... of a uniform size generate more complex patterns, including peaks, plateaus, canyons, and craters of species richness....

  14. Preliminary modeling of moisture movement in the tuff beneath Mortandad Canyon, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Geddis, A.M.

    1992-01-01

    An area of upper/middle Mortandad Canyon on the Los Alamos National Laboratory is modeled in cross-section. UNSAT2, a finite element model (FEM) is used to predict moisture movement. Hydraulic characteristics of the tuff are described by van Genuchten parameters determined from laboratory tests on cores taken from a borehole within the cross-section. Material properties are distributed horizontal planar in space to cover the solution domain with required initial conditions. An estimate of seepage flux from a thin perched alluvial aquifer into the upper surface of the tuff is taken from a lumped parameter model. Moisture redistribution for a ponded boundary condition and a larger flux is investigated. A composite simulation using material properties from two separate coreholes is also evaluated

  15. Impacts of Street-Visible Greenery on Housing Prices: Evidence from a Hedonic Price Model and a Massive Street View Image Dataset in Beijing

    Directory of Open Access Journals (Sweden)

    Yonglin Zhang

    2018-03-01

    Full Text Available Street greenery is a component of urban green infrastructure. By forming foundational green corridors in urban ecological systems, street greenery provides vital ecological, social, and cultural functions, and benefits the wellbeing of citizens. However, because of the difficulty of quantifying people’s visual perceptions, the impact of street-visible greenery on housing prices has not been fully studied. Using Beijing, which has a mature real estate market, as an example, this study evaluated 22,331 transactions in 2014 in 2370 private housing estates. We selected 25 variables that were classified into three categories—location, housing, and neighbourhood characteristics—and introduced an index called the horizontal green view index (HGVI into a hedonic pricing model to measure the value of the visual perception of street greenery in neighbouring residential developments. The results show that (1 Beijing’s homebuyers would like to reside in residential units with a higher HGVI; (2 Beijing’s homebuyers favour larger lakes; and (3 Beijing’s housing prices were impacted by the spatial development patterns of the city centre and multiple business centres. We used computer vision to quantify the street-visible greenery and estimated the economic benefits that the neighbouring visible greenery would have on residential developments in Beijing. This study provides a scientific basis and reference for policy makers and city planners in road greening, and a tool for formulating street greening policy, studying housing price characteristics, and evaluating real estate values.

  16. Operational Street Pollution Model (OSPM) - a review of performed validation studies, and future prospects

    DEFF Research Database (Denmark)

    Kakosimos K.E., Konstantinos E.; Hertel, Ole; Ketzel, Matthias

    2010-01-01

    in this context is the fast and easy to apply Operational Street Pollution Model (OSPM). For almost 20 years, OSPM has been routinely used in many countries for studying traffic pollution, performing analyses of field campaign measurements, studying efficiency of pollution abatement strategies, carrying out...... exposure assessments and as reference in comparisons to other models. OSPM is generally considered as state-of-the-art in applied street pollution modelling. This paper outlines the most important findings in OSPM validation and application studies in literature. At the end of the paper, future research...... needs are outlined for traffic air pollution modelling in general but with outset in the research performed with OSPM....

  17. UV Radiation in an Urban Canyon in Southeast Queensland

    Science.gov (United States)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  18. Travel Time Model for Right-Turning Vehicles of Secondary Street at Unsignalized Intersections

    Directory of Open Access Journals (Sweden)

    Feng Yu-Qin

    2013-01-01

    Full Text Available The travel time of right-turning vehicles on secondary street at unsignalized intersection is discussed in this paper. Under the assumption that the major-street through vehicles’ headway follows Erlang distribution and secondary-street right-turning vehicles’ headway follows Poisson distribution. The right-turning vehicles travel time model is established on the basis of gap theory and M/G/1 queue theory. Comparison is done with the common model based on the assumption that the major-street vehicles’ headway follows Poisson distribution. An intersection is selected to verify each model. The results show that the model established in this paper has stronger applicability, and its most relative error is less than 15%. In addition, the sensitivity analysis has been done. The results show that right-turning flow rate and major-street flow rate have a significant impact on the travel time. Hence, the methodology for travel time of right-turning vehicles at unsignalized intersection proposed in this paper is effective and applicable.

  19. A motivation-based explanatory model of street drinking among young people.

    Science.gov (United States)

    Martín-Santana, Josefa D; Beerli-Palacio, Asunción; Fernández-Monroy, Margarita

    2014-01-01

    This social marketing study focuses on street drinking behavior among young people. The objective is to divide the market of young people who engage in this activity into segments according to their motivations. For the three segments identified, a behavior model is created using the beliefs, attitudes, behavior, and social belonging of young people who engage in street drinking. The methodology used individual questionnaires filled in by a representative sample of young people. The results show that the behavior model follows the sequence of attitudes-beliefs-behavior and that social belonging influences these three variables. Similarly, differences are observed in the behavior model depending on the segment individuals belong to.

  20. Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Magirl, Christopher S.; Breedlove, Michael J.; Webb, Robert H.; Griffiths, Peter G.

    2008-01-01

    Using widely-available software intended for modeling rivers, a new one-dimensional hydraulic model was developed for the Colorado River through Grand Canyon from Lees Ferry to Diamond Creek. Solving one-dimensional equations of energy and continuity, the model predicts stage for a known steady-state discharge at specific locations, or cross sections, along the river corridor. This model uses 2,680 cross sections built with high-resolution digital topography of ground locations away from the river flowing at a discharge of 227 m3/s; synthetic bathymetry was created for topography submerged below the 227 m3/s water surface. The synthetic bathymetry was created by adjusting the water depth at each cross section up or down until the model?s predicted water-surface elevation closely matched a known water surface. This approach is unorthodox and offers a technique to construct one-dimensional hydraulic models of bedrock-controlled rivers where bathymetric data have not been collected. An analysis of this modeling approach shows that while effective in enabling a useful model, the synthetic bathymetry can differ from the actual bathymetry. The known water-surface profile was measured using elevation data collected in 2000 and 2002, and the model can simulate discharges up to 5,900 m3/s. In addition to the hydraulic model, GIS-based techniques were used to estimate virtual shorelines and construct inundation maps. The error of the hydraulic model in predicting stage is within 0.4 m for discharges less than 1,300 m3/s. Between 1,300-2,500 m3/s, the model accuracy is about 1.0 m, and for discharges between 2,500-5,900 m3/s, the model accuracy is on the order of 1.5 m. In the absence of large floods on the flow-regulated Colorado River in Grand Canyon, the new hydraulic model and the accompanying inundation maps are a useful resource for researchers interested in water depths, shorelines, and stage-discharge curves for flows within the river corridor with 2002 topographic

  1. Hospitality Invites Sociability, Which Builds Cohesion: a Model for the Role of Main Streets in Population Mental Health.

    Science.gov (United States)

    Izenberg, Jacob M; Fullilove, Mindy Thompson

    2016-04-01

    The aim of this study was to investigate the contribution of main streets to community social cohesion, a factor important to health. Prior work suggests that casual contact in public space, which we call "sociability," facilitates more sustained social bonds in the community. We appropriate the term "hospitality" to describe a main street's propensity to support a density of such social interactions. Hospitality is a result of the integrity and complex contents of the main street and surrounding area. We examine this using a typology we term "box-circle-line" to represent the streetscape (the box), the local neighborhood (the circle), and the relationship to the regional network of streets (the line). Through field visits to 50 main streets in New Jersey and elsewhere, and a systematic qualitative investigation of main streets in a densely interconnected urban region (Essex County, New Jersey), we observed significant variation in main street hospitality, which generally correlated closely with sociability. Physical elements such as street wall, neighborhood elements such as connectivity, inter-community elements such as access and perceived welcome, and socio-political elements such as investment and racial discrimination were identified as relevant to main street hospitality. We describe the box-circle-line as a theoretical model for main street hospitality that links these various factors and provides a viable framework for further research into main street hospitality, particularly with regard to geographic health disparities.

  2. Estimation of health damage due to emission of air pollutants by cars: the canyon effect

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, J.V. [Ecole des Mines, Centre d' Energetique, Paris, 75 (France); Rabl, A.

    1999-07-01

    Since current epidemiological evidence suggests that air pollution has harmful effects even at typical ambient concentrations and the dispersion is significant over hundreds to thousands of km, the estimation of total health damage involves consideration of local and regional effects. In recent years, several estimates have been published of health damage due to air pollution from cars, in particular by Delucchi et al of UC Davis and by the ExternE Project of the European Commission. To capture the geographic extent of pollutant dispersion, local and regional models have been used in combination. The present paper addresses a potentially significant contribution of the total damage, not yet taken into account in these studies: the increased concentration of pollutants inside urban street canyons. This canyon effect is appreciable only for primary pollutants, the time constants for the formation of secondary pollutants being long compared to the residence time in the canyon. We assumed linearity of incremental health impact with incremental concentration, in view of the lack of epidemiological evidence for no-effect thresholds or significant deviations from linearity at typical ambient concentrations; therefore, only long term average concentrations matter. We use the FLUENT software to model the dispersion inside a street canyon for a wide range of rectangular geometries and wind velocities. Our results suggest that the canyon effect is of marginal significance for total damages, the contribution of the canyon effect being roughly 10 to 20% of the total. The relative importance of the canyon effect is, of course, highly variable with local conditions; it could be much smaller but it is unlikely to add more than 100% to the flat terrain estimate. (Author)

  3. Air Pollution Modeling at Road Sides Using the Operational Street Pollution Model-A Case Study in Hanoi, Vietnam

    DEFF Research Database (Denmark)

    Hung, Ngo Tho; Ketzel, Matthias; Jensen, Steen Solvang

    2010-01-01

    In many metropolitan areas, traffic is the main source of air pollution. The high concentrations of pollutants in streets have the potential to affect human health. Therefore, estimation of air pollution at the street level is required for health impact assessment. This task has been carried out...... in many developed countries by a combination of air quality measurements and modeling. This study focuses on how to apply a dispersion model to cities in the developing world, where model input data and data from air quality monitoring stations are limited or of varying quality. This research uses...... the operational street pollution model (OSPM) developed by the National Environmental Research Institute in Denmark for a case study in Hanoi, the capital of Vietnam. OSPM predictions from five streets were evaluated against air pollution measurements of nitrogen oxides (NO), sulfur dioxide (SO2), carbon monoxide...

  4. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  5. An individual-based model for population viability analysis of humpback chub in Grand Canyon

    Science.gov (United States)

    Pine, William Pine; Healy, Brian; Smith, Emily Omana; Trammell, Melissa; Speas, Dave; Valdez, Rich; Yard, Mike; Walters, Carl; Ahrens, Rob; Vanhaverbeke, Randy; Stone, Dennis; Wilson, Wade

    2013-01-01

    We developed an individual-based population viability analysis model (females only) for evaluating risk to populations from catastrophic events or conservation and research actions. This model tracks attributes (size, weight, viability, etc.) for individual fish through time and then compiles this information to assess the extinction risk of the population across large numbers of simulation trials. Using a case history for the Little Colorado River population of Humpback Chub Gila cypha in Grand Canyon, Arizona, we assessed extinction risk and resiliency to a catastrophic event for this population and then assessed a series of conservation actions related to removing specific numbers of Humpback Chub at different sizes for conservation purposes, such as translocating individuals to establish other spawning populations or hatchery refuge development. Our results suggested that the Little Colorado River population is generally resilient to a single catastrophic event and also to removals of larvae and juveniles for conservation purposes, including translocations to establish new populations. Our results also suggested that translocation success is dependent on similar survival rates in receiving and donor streams and low emigration rates from recipient streams. In addition, translocating either large numbers of larvae or small numbers of large juveniles has generally an equal likelihood of successful population establishment at similar extinction risk levels to the Little Colorado River donor population. Our model created a transparent platform to consider extinction risk to populations from catastrophe or conservation actions and should prove useful to managers assessing these risks for endangered species such as Humpback Chub.

  6. Facies and depositional model of Almada Canyon, Almada Basin, Bahia, Brazil; Facies e modelo deposicional do Canyon de Almada, Bacia de Almada, Bahia

    Energy Technology Data Exchange (ETDEWEB)

    D' Avila, Roberto Salvador Francisco; Souza Cruz, Carlos Emanoel de; Oliveira Filho, Jose Souto; Jesus, Candida Menezes de; Cesero, Pedro de; Dias Filho, Dorval Carvalho; Lima, Claudio Coelho de; Queiroz, Claudia Lima de; Santos, Saulo Ferreira; Ferreira, Eduardo Araripe [PETROBRAS, Santos, SP (Brazil). Unidade de Negocio de Exploracao]. E-mail: rdavila@petrobras.com.br

    2004-11-01

    In the continental portion of the Almada Basin outcrops of canyon filling deposits are represented by turbidite channels and associated facies from Urucutuca Formation. The canyon - semi-exhumated - eroded basement and pre-Cenomanian sedimentary rocks. The field study of the outcrops and cores obtained in adjacent perforations lead to the understanding of the facies and processes that controlled the deposition of these channeled turbidite that can be compared to the reservoirs of many oil fields in Brazil. The Almada canyon is a submarine conduct of tectonic origin that was enlarged by the repeated passing of turbidity currents. During the rift phase and the Albian period, compressive events reactivated old N E and N W faults in the basement as trans current fault systems. The continuation of these stresses, from the Cenomanian to the Maastrichtian, developed normal faults that controlled a submarine canyon that connected the continent, where an estuary was formed between the mountains, to the deep marine region of the basin. The canyon has received sediments brought by catastrophic fluvial floods coming from the surrounding mountains, which formed hyperpicnal flows that have evolved as turbidity currents, thus causing erosion of the substrate and carrying a huge volume of sediments to the basin. A part of that load was deposited in the canyon and formed turbidite channels filled by conglomerates, sandstones and shales. These moderately to highly efficient turbidite are intercalated to pro delta pelites and low density turbid plumes deposits, which have mostly been re mobilized as slump and debris flows (chaotic deposits). Pelites were accumulated mainly in the normal fluvial sedimentation phases, when the sandy sediment was retained next to the canyon head and were reworked by the tides on the upper part of the estuary. (author)

  7. Exploring the patterns and evolution of self-organized urban street networks through modeling

    Science.gov (United States)

    Rui, Yikang; Ban, Yifang; Wang, Jiechen; Haas, Jan

    2013-03-01

    As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.

  8. Numerical modeling of landslides and generated seismic waves: The Bingham Canyon Mine landslides

    Science.gov (United States)

    Miallot, H.; Mangeney, A.; Capdeville, Y.; Hibert, C.

    2016-12-01

    Landslides are important natural hazards and key erosion processes. They create long period surface waves that can be recorded by regional and global seismic networks. The seismic signals are generated by acceleration/deceleration of the mass sliding over the topography. They consist in a unique and powerful tool to detect, characterize and quantify the landslide dynamics. We investigate here the processes at work during the two massive landslides that struck the Bingham Canyon Mine on the 10th April 2013. We carry a combined analysis of the generated seismic signals and the landslide processes computed with a 3D modeling on a complex topography. Forces computed by broadband seismic waveform inversion are used to constrain the study and particularly the force-source and the bulk dynamic. The source time function are obtained by a 3D model (Shaltop) where rheological parameters can be adjusted. We first investigate the influence of the initial shape of the sliding mass which strongly affects the whole landslide dynamic. We also see that the initial shape of the source mass of the first landslide constrains pretty well the second landslide source mass. We then investigate the effect of a rheological parameter, the frictional angle, that strongly influences the resulted computed seismic source function. We test here numerous friction laws as the frictional Coulomb law and a velocity-weakening friction law. Our results show that the force waveform fitting the observed data is highly variable depending on these different choices.

  9. Statistical Multipath Model Based on Experimental GNSS Data in Static Urban Canyon Environment

    Directory of Open Access Journals (Sweden)

    Yuze Wang

    2018-04-01

    Full Text Available A deep understanding of multipath characteristics is essential to design signal simulators and receivers in global navigation satellite system applications. As a new constellation is deployed and more applications occur in the urban environment, the statistical multipath models of navigation signal need further study. In this paper, we present statistical distribution models of multipath time delay, multipath power attenuation, and multipath fading frequency based on the experimental data in the urban canyon environment. The raw data of multipath characteristics are obtained by processing real navigation signal to study the statistical distribution. By fitting the statistical data, it shows that the probability distribution of time delay follows a gamma distribution which is related to the waiting time of Poisson distributed events. The fading frequency follows an exponential distribution, and the mean of multipath power attenuation decreases linearly with an increasing time delay. In addition, the detailed statistical characteristics for different elevations and orbits satellites is studied, and the parameters of each distribution are quite different. The research results give useful guidance for navigation simulator and receiver designers.

  10. Asessing the air pollution distribution in busy street of Copenhagen in the further development of a street pollution model

    DEFF Research Database (Denmark)

    Hertel, Ole; Ketzel, Matthias; Poulsen, Maria B.

    The EU Air Quality Directive requires Member States to perform Air Quality Monitoring in order to assess ambient air quality for compliance checking with air quality limit values (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:en:PDF). This monitoring needs to include......) developed at AU; the revised version OSPM includes new features like inhomogeneous distribution of the traffic on different lanes, slope of the street etc (see e.g. Ottosen et al. (2015)). An additional goal for the project is to explore the applicability of low-cost electrochemical sensors for describing...... to get more detailed information about the traffic flow and its diurnal pattern, manual traffic counts have been performed over 24 hours. In addition a video camera has been installed on the roof of a building next to the street during the monitoring campaign. Measurements are carried out using passive...

  11. Modelling dimensional growth of three street tree species in the ...

    African Journals Online (AJOL)

    The results could also be used in the process of modelling energy use reduction, air pollution uptake, rainfall interception, carbon sequestration and microclimate modification of urban forests such as those found in the City of Tshwane. Keywords: allometry; regression; size relationships; tree growth; urban forests. Southern ...

  12. Background Concentrations for Use in the Operational Street Pollution Model (OSPM)

    DEFF Research Database (Denmark)

    Jensen, S. S.

    A background model has been developed for application in the Operational Street Pollution Model (OSPM) in context of long-term exposure modelling. The back ground model is based on a semi-empirical method founded on a few monitor stations that estimates standardised one hour time-series of urban...... and rural back ground concentrations of NO2, NOx, O3 and CO for different geographic regions in Denmark. The annual mean of selected monitor stations is used as a reference year and the development in estimated traffic emissions as an index is used to establish a historic trend. As an exception ozone trends...

  13. Analysing improvements to on-street public transport systems: a mesoscopic model approach

    DEFF Research Database (Denmark)

    Ingvardson, Jesper Bláfoss; Kornerup Jensen, Jonas; Nielsen, Otto Anker

    2017-01-01

    and other advanced public transport systems (APTS), the attractiveness of such systems depends heavily on their implementation. In the early planning stage it is advantageous to deploy simple and transparent models to evaluate possible ways of implementation. For this purpose, the present study develops...... headway time regularity and running time variability, i.e. taking into account waiting time and in-vehicle time. The approach was applied on a case study by assessing the effects of implementing segregated infrastructure and APTS elements, individually and in combination. The results showed...... that the reliability of on-street public transport operations mainly depends on APTS elements, and especially holding strategies, whereas pure infrastructure improvements induced travel time reductions. The results further suggested that synergy effects can be obtained by planning on-street public transport coherently...

  14. A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river

    Science.gov (United States)

    Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.

    2017-01-01

    Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-boundrivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized,three-dimensional, turbulence-resolving model was developed to study the flow structures along lateralseparation zones located in two pools along the Colorado River in Marble Canyon. The model employs thedetached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacingin the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flowmeasurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-pointvalidation using a number of skill metrics, often employed in hydrological research, is proposed here forfluvial modeling. The validation results show predictive capabilities of the DES model. The model reproducesthe pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position ofthe primary and secondary eddy cells, and return current. The lateral recirculation zone is open, havingcontinuous import of fluid upstream of the point of reattachment and export by the recirculation returncurrent downstream of the point of separation. Differences in magnitude and direction of near-bed andnear-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between therecirculation return current and the main flow is dynamic, with large temporal changes in flow direction andmagnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shearlayer becoming three-dimensional without preferred orientation downstream.

  15. Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire

    Directory of Open Access Journals (Sweden)

    Roman Sikora

    2018-05-01

    Full Text Available Before the use of regulated street luminaires with variable power and luminous flux, computations were performed using constant values for their electrical and photometric parameters. At present, where such lighting is in use, it is no longer possible to base calculations on such assumptions. Computations of energy and power losses, for example, need to be performed for all dimming levels and based on the applied regulation algorithm. Based on measurements carried out on regulated luminaires, it was found that certain electrical parameters have a nonlinear dependence on the dimming level. Electrical parameters were also observed to depend on the value of the supply voltage. The results of the measurements are presented in this article. Failure to take account of power losses in computations of the energy efficiency of street lighting in accordance with the applicable EN 13201 standard causes values of energy efficiency indicators to be overstated. Power loss computations are presented in this article for a sample street lighting system with regulated luminaires, for the whole range of dimming levels and additionally for fluctuations of ±10% in the supply voltage. In addition, a mathematical model of a regulated luminaire is constructed with the use of regression methods, and a practical application of that model is described.

  16. Modeling route choice criteria from home to major streets: A discrete choice approach

    Directory of Open Access Journals (Sweden)

    Jose Osiris Vidana-Bencomo

    2018-03-01

    Full Text Available A discrete choice model that consists of three sub-models was developed to investigates the route choice criteria of drivers who travel from their homes in the morning to the access point along the major streets that bound the Traffic Analysis Zones (TAZs. The first sub-model is a Nested Logit Model (NLM that estimates the probability of a driver has or has no multiple routes, and if the driver has multiple routes, the route selection criteria are based on the access point’s intersection control type or other factors. The second sub-model is a Mixed Logit (MXL model. It estimates the probabilities of the type of intersection control preferred by a driver. The third sub-model is a NLM that estimates the probabilities of a driver selecting his/her route for its shortest travel time or to avoid pedestrian, and if the aim is to take the fastest route, the decision criteria is based on the shortest distance or minimum stops and turns. Data gathered in a questionnaire survey were used to estimate the sub-models. The attributes of the utility functions of the sub-models are the driver’s demographic and trip characteristics. The model provides a means for transportation planners to distribute the total number of home-based trips generated within a TAZ to the access points along the major streets that bound the TAZ.

  17. Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons

    Science.gov (United States)

    Aliabadi, Amir A.; Krayenhoff, E. Scott; Nazarian, Negin; Chew, Lup Wai; Armstrong, Peter R.; Afshari, Afshin; Norford, Leslie K.

    2017-08-01

    The influence of roof-edge roughness elements on airflow, heat transfer, and street-level pollutant transport inside and above a two-dimensional urban canyon is analyzed using an urban energy balance model coupled to a large-eddy simulation model. Simulations are performed for cold (early morning) and hot (mid afternoon) periods during the hottest month of the year (August) for the climate of Abu Dhabi, United Arab Emirates. The analysis suggests that early in the morning, and when the tallest roughness elements are implemented, the temperature above the street level increases on average by 0.5 K, while the pollutant concentration decreases by 2% of the street-level concentration. For the same conditions in mid afternoon, the temperature decreases conservatively by 1 K, while the pollutant concentration increases by 7% of the street-level concentration. As a passive or active architectural solution, the roof roughness element shows promise for improving thermal comfort and air quality in the canyon for specific times, but this should be further verified experimentally. The results also warrant a closer look at the effects of mid-range roughness elements in the urban morphology on atmospheric dynamics so as to improve parametrizations in mesoscale modelling.

  18. Numerical model of turbulence, sediment transport, and morphodynamics tested in the Colorado River at Grand Canyon

    Science.gov (United States)

    Alvarez, L. V.; Grams, P.

    2017-12-01

    We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique, tested at the scale of the river-reach in the Colorado River. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied in the flow interior. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs in the interface of the eddy and main channel. Pulsation of the

  19. Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

    Directory of Open Access Journals (Sweden)

    Nurilla Avazov

    2012-01-01

    Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.

  20. INTEGRATED SFM TECHNIQUES USING DATA SET FROM GOOGLE EARTH 3D MODEL AND FROM STREET LEVEL

    Directory of Open Access Journals (Sweden)

    L. Inzerillo

    2017-08-01

    Full Text Available Structure from motion (SfM represents a widespread photogrammetric method that uses the photogrammetric rules to carry out a 3D model from a photo data set collection. Some complex ancient buildings, such as Cathedrals, or Theatres, or Castles, etc. need to implement the data set (realized from street level with the UAV one in order to have the 3D roof reconstruction. Nevertheless, the use of UAV is strong limited from the government rules. In these last years, Google Earth (GE has been enriched with the 3D models of the earth sites. For this reason, it seemed convenient to start to test the potentiality offered by GE in order to extract from it a data set that replace the UAV function, to close the aerial building data set, using screen images of high resolution 3D models. Users can take unlimited “aerial photos” of a scene while flying around in GE at any viewing angle and altitude. The challenge is to verify the metric reliability of the SfM model carried out with an integrated data set (the one from street level and the one from GE aimed at replace the UAV use in urban contest. This model is called integrated GE SfM model (i-GESfM. In this paper will be present a case study: the Cathedral of Palermo.

  1. Urban streets

    NARCIS (Netherlands)

    Schönfeld, von Kim Carlotta; Bertolini, Luca

    2017-01-01

    Today's urban streets are usually planned for purposes of mobility: pedestrians, as well as a variety of vehicles such as cars, trucks, and sometimes bicycles, are usually factored into an urban street plan. However, urban streets are also increasingly recognized as public spaces, accommodating

  2. Characterization and Low-Dimensional Modeling of Urban Fluid Flow

    Science.gov (United States)

    2014-10-06

    pollutant dispersion characteristics in urban street canyons . Journal of Applied... pollutant dispersion in an urban street canyon . Journal of Wind Engineering and Industrial Aerodynamics, 91:309–329, 2003. J. Kim and J. Baik. A numerical...J. Wang, and Z. Xie. The impact of solar radiation and street layout on pollutant dispersion in street canyon . Building and environment,

  3. A model for estimation of the demand for on-street parking

    DEFF Research Database (Denmark)

    Madsen, Edith; Mulalic, Ismir; Pilegaard, Ninette

    2013-01-01

    This paper presents a stylized econometric model for the demand for on-street parking with focus on estimation of the elasticity of demand with respect to the full cost of parking. The full cost of parking consists of a parking fee and the cost of searching for a vacant parking space (cruising......). The cost of cruising is usually unobserved. Ignoring this issue implies a downward bias of the elasticity of demand with respect to the total cost of parking since the cost of cruising depends on the number of cars parked. We also demonstrate that, even when the cost of cruising is unobserved, the demand...

  4. Study on a model of street vended food choices by Korean high school students.

    Science.gov (United States)

    Cho, Kiwoong; Park, Sanghyun; Joo, Nami

    2011-10-01

    Street vended food (SVF) includes food and beverages prepared and sold outdoors or in public areas by street merchants for consumption on the scene or later without further preparation. Due to its low price and convenience, SVF has been popular in Korea for a long time, particularly with high school students. Beyond Korea, SVF is also popular in southeast Asia and southern Africa in the form of ready-to-eat food. This study on high school students, who are main consumers of SVF in Korea, focused on the factors that affect consumer loyalty. The study was performed by questionnaire and used AMOS software to develop a structural equation model. The results of verifying the model's fidelity were χ(2) = 685.989, df = 261, GFI = 0.851, AGFI = 0.814, NFI = 0.901, CFI = 0.907, RMR = 0.048, indicating a satisfying structural model. SVF quality and service, emotional response, and the physical environment had a statistically significant effect on consumer loyalty. In contrast, SVF sanitation had no statistically significant effect on consumer loyalty. Based on these results, the sanitary management of SVF needs to be addressed immediately combined with education for SVF providers to maintain a clean environment.

  5. Tracer Flux Balance at an Urban Canyon Intersection

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G.

    2010-05-01

    Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.

  6. Cellular automata model for urban road traffic flow considering pedestrian crossing street

    Science.gov (United States)

    Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu

    2016-11-01

    In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

  7. Street children

    Directory of Open Access Journals (Sweden)

    Rončević Nevenka

    2013-01-01

    Full Text Available According to UNICEF, street child is any child under the age of 18 for whom the street has become home and/or source of income and which is not adequately protected or supervised by adult, responsible person. It has been estimated that there are between 100 and 150 million street children worldwide. Life and work on the street have long term and far-reaching consequences for development and health of these children. By living and working in the street, these children face the highest level of risk. Street children more often suffer from the acute illness, injuries, infection, especially gastrointestinal, acute respiratory infections and sexually transmitted diseases, inadequate nutrition, mental disorders, and drug abuse. They are more often victims of abuse, sexual exploitation, trafficking; they have higher rate of adolescent pregnancy than their peers from poor families. Street children and youth have higher rates of hospitalization and longer hospital stay due to seriousness of illness and delayed health care. Street children/youth are reluctant to seek health care, and when they try, they face many barriers. Street children are invisible to the state and their number in Serbia is unknown. Recently, some non­governmental organizations from Belgrade, Novi Sad and Nis have recognized this problem and tried to offer some help to street children, by opening drop­in centers, but this is not enough. To solve this problem, an engagement of the state and the whole community is necessary, and primary responsibility lies in health, social and educational sector. The best interests of the child must serve as a basic guideline in all activities aimed at improving health, quality of life and rights of children involved in the life and work in the street.

  8. Experimental investigation of pollutant dispersion within a street in low wind conditions, the experiment Nantes'99

    Energy Technology Data Exchange (ETDEWEB)

    Vachon, G.; Rosant, J.M.; Mestayer, P.; Louka, P.; Sini, J.F.; Lorin, Y.; Violleau, M. [Ecole Centrale de Nantes, Lab. de Mecanique des Fluides UMR 6598 CNRS, 44 (France); Antoine, M.J.; Peneau, J.P. [Ecole d' Architecture de Nantes, CERMA UMR 1563 CNRS, 44 (France); Delaunay, D.; Tetard, Y. [CSTB, 44 - Nantes (France); Ducroz, F.; Molle, F. [Air Pays de la Loire, 44 - Nantes (France); Garreau, J. [Mairie de Nantes, Service Environnement Urbain, 44 - Nantes (France); Griffiths, R. [UMIST, Environmental Technology Center, Manchester (United Kingdom); Jones, Ch. [DERA Porton Down, Salisbury (United Kingdom)

    2000-07-01

    Nantes'99 is a first experimental campaign of the URBCAP project which aims at assessing the importance of the pollutant transformation processes within the urban canopy and validating the models allowing to predict local air quality within the different quarters of a City. The objectives of Nantes'99 are the determination of wind field in a street canyon, the study of the traffic influence on turbulence, the evaluation of thermo-radiative aspects and the validation of different models. The experiment took place during the whole month of June 1999 in a section of the Rue de Strasbourg, a 3-lane, one-way, highly-trafficked, straight street of the City centre of Nantes. A first data base concerning the measurements during IOP (Intense Observation Period) days throughout Nantes'99 experiment has been built. This paper presents CO concentrations measured at different heights within the rue de Strasbourg in relation to traffic density and reference wind speed and direction. It is shown that high pollution episodes are associated with increased traffic. Furthermore wind direction perpendicular to the street leads to high concentrations at the leeward side of the street. It is also appears that the skimming flow vortex is not observed for wind speeds lover than a threshold between 0.9 and 1.2 m.s{sup -1}. Finally, it is pointed out that the background pollution levels influence the concentration of pollutants within the street canyon. (authors)

  9. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon

    Science.gov (United States)

    Symons, William O.; Sumner, Esther J.; Paull, Charles K.; Cartigny, Matthieu J.B.; Xu, Jingping; Maier, Katherine L.; Lorenson, Thomas; Talling, Peter J.

    2017-01-01

    Submarine turbidity currents create some of the largest sediment accumulations on Earth, yet there are few direct measurements of these flows. Instead, most of our understanding of turbidity currents results from analyzing their deposits in the sedimentary record. However, the lack of direct flow measurements means that there is considerable debate regarding how to interpret flow properties from ancient deposits. This novel study combines detailed flow monitoring with unusually precisely located cores at different heights, and multiple locations, within the Monterey submarine canyon, offshore California, USA. Dating demonstrates that the cores include the time interval that flows were monitored in the canyon, albeit individual layers cannot be tied to specific flows. There is good correlation between grain sizes collected by traps within the flow and grain sizes measured in cores from similar heights on the canyon walls. Synthesis of flow and deposit data suggests that turbidity currents sourced from the upper reaches of Monterey Canyon comprise three flow phases. Initially, a thin (38–50 m) powerful flow in the upper canyon can transport, tilt, and break the most proximal moorings and deposit chaotic sands and gravel on the canyon floor. The initially thin flow front then thickens and deposits interbedded sands and silty muds on the canyon walls as much as 62 m above the canyon floor. Finally, the flow thickens along its length, thus lofting silty mud and depositing it at greater altitudes than the previous deposits and in excess of 70 m altitude.

  10. In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London

    Science.gov (United States)

    Balogun, Ahmed A.; Tomlin, Alison S.; Wood, Curtis R.; Barlow, Janet F.; Belcher, Stephen E.; Smalley, Robert J.; Lingard, Justin J. N.; Arnold, Sam J.; Dobre, Adrian; Robins, Alan G.; Martin, Damien; Shallcross, Dudley E.

    2010-09-01

    We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction ( θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15- min mean θ ref of 5°-10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

  11. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    Science.gov (United States)

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies

    International Nuclear Information System (INIS)

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. - Highlights: → A concept for aerodynamic modelling of vegetation in small scale wind tunnel studies is presented. → The concept was applied to study pollutant dispersion in urban street canyons with avenue tress. → The wind tunnel studies show that modelling the aerodynamic effects of vegetation is important. → Avenue trees give rise to increased pollutant concentrations in urban street canyons. - Avenue trees in urban street canyons affect the pollutant dispersion and result in increased traffic exhaust concentrations.

  13. Street outreach with no streets.

    Science.gov (United States)

    Self, Bruce; Peters, Heather

    2005-01-01

    A street nurse position in the rural and small-town interior of British Columbia has been addressing the needs of street-involved or otherwise marginalized client populations by bringing healthcare services to wherever those clients are, rather than waiting for the clients to seek care. The primary reason for a street outreach approach is that marginalized populations face a variety of barriers to accessing traditional healthcare services--barriers such as homelessness, mental health problems, criminal involvement, lack of transportation, lack of ability to pay for prescriptions, lack of specialized or knowledgeable providers and provider discrimination. In the rural street nurse program, the target population includes the usual street nurse populations of illegal drug users and sex trade workers, which are more hidden in small communities than in larger urban centres, creating the community denial that is a barrier to healthcare access. Yet another barrier is the co-locaton of services common in small communities, where public health clinics might share a building with police services, making marginalized clients reluctant to attend clinics. The rural street nurse collaborates with public health nurses and other care providers (mental health workers, social workers, etc) with collegial advice and support, making and receiving referrals, and generally assisting one another--the street nurse through his rapport with the marginalized individuals and the others with their specialized knowledge. Rural street services are delivered whereverthe clientsfeel comfortable: a school, a drop-in centre, a mall, a youth centre or simplythe street. Services provided include sexually transmitted infection testing, chlamydia treatments, pregnancy testing emergency contraception pills and assistance with filling out forms for financial support. Accordingly, the street nurse's truck is equipped as a mobile treatment centre and office, with a cellphone and a stock of testing and

  14. Characterisation of current and future GNSS performance in urban canyons using a high quality 3-D urban model of Melbourne, Australia

    Science.gov (United States)

    Gang-jun, Liu; Kefei, Zhang; Falin, Wu; Liam, Densley; Retscher, Günther

    2009-03-01

    Global Navigation Satellite System (GNSS) is a critical space-borne geospatial infrastructure providing essential positioning supports to a range of location-sensitive applications. GNSS is currently dominated by the US Global Positioning System (GPS) constellation. The next generation GNSS is expected to offer more satellites, better positioning provision, and improved availability and continuity of navigation support. However, GNSS performance in 3-D urban environments is problematic because GNSS signals are either completely blocked or severely degraded by high-rising geographic features like buildings. The aim of this study is to gain an in-depth understanding of the changing spatial patterns of GNSS performance, measured by the number of visible satellites (NVS) and position dilution-of-precision (PDOP), in the urban canyons of Melbourne, Australia. The methodology used includes the following steps: (1) determination of the dynamic orbital positions of current and future GNSS satellites; (2) development of a 3-D urban model of high geometric quality for Melbourne Central Business District (CBD); (3) evaluation of GNSS performance for every specified location in the urban canyons; and (4) visualisation and characterisation of the dynamic spatial patterns of GNSS performances in the urban canyons. As expected, the study shows that the integration of the GPS and Galileo constellations results in higher availability and stronger geometry, leading to significant improvement of GNSS performance in urban canyons of Melbourne CBD. Some conclusions are drawn and further research currently undertaken is also outlined.

  15. Application of transport demand modeling in pollution estimation of a street network

    Directory of Open Access Journals (Sweden)

    Jović Jadranka J.

    2009-01-01

    Full Text Available The importance of transportation modeling, especially personal car flow modeling, is well recognized in transportation planning. Modern software tools give the possibility of generating many development scenarios of transport system, which can be tested quickly. Transportation models represent a good (and necessary basis in the procedure of environmental traffic impacts and energy emission estimation. Research in this paper deals with the possibility of using transportation modeling as a tool for estimation of some air pollution and global warming indicators on street network, produced by personal cars with internal combustion engines. These indicators could be the basis for defining planning and management solutions for transport system with respect to their environmental impacts. All the analyses are based on several years of research experience in Belgrade. According to the emissions of gases from the model, the values of other green house gases can be estimated using the known relations between the pollutants. There is a possibility that all these data can be used to calculate the transportation systems impact on temperature increase in urban areas.

  16. City Streets

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set contains roadway centerlines for city streets found on the USGS 1:24,000 mapping series. In some areas, these roadways are current through the 2000...

  17. Flow dynamics around downwelling submarine canyons

    Directory of Open Access Journals (Sweden)

    J. M. Spurgin

    2014-10-01

    Full Text Available Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively and their impacts on flow dynamics. A new non-dimensional parameter (χ was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m. Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate, as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  18. PREDICTION OF AIR POLLUTION FROM MOTOR TRANSPORT ON CITY STREETS AND DISTRICTS

    Directory of Open Access Journals (Sweden)

    T. I. Rusakova

    2013-11-01

    Full Text Available Purpose. Development of applied numerical model for prediction of atmospheric pollution rate on streets and districts of a city taking into account chemical transformations of pollutants. Methodology. To solve hydrodynamic task of determining velocity field of wind flow in street the method of discrete vortices was used, in the city district – the method of separation flows vortex of ideal incompressible fluid, for solution equation of pollutant transfer - alternating triangular implicit difference scheme. Findings.An efficient numerical model using the type of «street canyons»for prediction of air quality on city streets and districts with emissions from motor transport considering chemical transformations of pollutants was designed in the work. Originality.The numerical model, which allows taking into account impact of buildings on pollutants dispersion and requiring a small consumption of computer time during practical realization was created. The advantage of the model is the possibility of rapid calculation of emissions dispersion in the street with considering the chemical reactions of pollutants. Practical value. The developed numerical model can be used in practice during the planning of new highways in new urban areas or in the renovation of old ones, for a series of calculations that require search of different variants for arrangement of buildings, highways, under certain weather conditions.

  19. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  20. RESEARCH OF AIR POLLUTION FROM TRAFFIC IN «STREET CANYONS» OF CITY

    Directory of Open Access Journals (Sweden)

    T. I. Rusakova

    2014-12-01

    Full Text Available Purpose. The article is devoted to state analyze of atmospheric air at its pollution with vehicle emissions in Dnipropetrovsk city, the development a numerical model and applied computing program for research of air pollution level with vehicle emissions on the streets when several buildings are located on the scheme «street canyon». Methodology. To achieve the research purpose it was studied the dynamic of change concentration of different pollutants that have been fixed on monitoring station of air quality in Dnipropetrovsk city. It was performed level assessment of air pollution from traffic (according to the Main Statistical Office in Dnipropetrovsk region. It was developed methodology for numerical calculation of concentration the atmospheric air pollution from vehicle emissions. To solve hydrodynamic task of determining velocity field of wind flow in streets the model of separated flows of an inviscid fluid was used; to solve the task of the calculation process of dispersion pollution the equation of convective-diffusion transfer of pollutant was used. To implement the proposed methodology we used implicit difference schemes. Findings.In the work a mathematical numerical model was developed and computing programs on its base were created. It allows conducting the computational experiments for evaluation the level of air pollution from vehicle emissions on the streets when several buildings are located on the scheme «street canyon». As a result of research regulations on change concentration of carbon monoxide near a considered group of buildings at different pollutant emissions were established. Originality.This numerical model was developed which allows accounting the hydrodynamic impact of group buildings on dispersion of pollutants when the wind speed and the vertical diffusion coefficient vary with height. Practical value. Conducting such class of computational experiments is necessary in the case of reconstruction of city

  1. Isoprene Emission Factors for Subtropical Street Trees for Regional Air Quality Modeling.

    Science.gov (United States)

    Dunn-Johnston, Kristina A; Kreuzwieser, Jürgen; Hirabayashi, Satoshi; Plant, Lyndal; Rennenberg, Heinz; Schmidt, Susanne

    2016-01-01

    Evaluating the environmental benefits and consequences of urban trees supports their sustainable management in cities. Models such as i-Tree Eco enable decision-making by quantifying effects associated with particular tree species. Of specific concern are emissions of biogenic volatile organic compounds, particularly isoprene, that contribute to the formation of photochemical smog and ground level ozone. Few studies have quantified these potential disservices of urban trees, and current models predominantly use emissions data from trees that differ from those in our target region of subtropical Australia. The present study aimed (i) to quantify isoprene emission rates of three tree species that together represent 16% of the inventoried street trees in the target region; (ii) to evaluate outputs of the i-Tree Eco model using species-specific versus currently used, generic isoprene emission rates; and (iii) to evaluate the findings in the context of regional air quality. Isoprene emission rates of (Myrtaceae) and (Proteaceae) were 2.61 and 2.06 µg g dry leaf weight h, respectively, whereas (Sapindaceae) was a nonisoprene emitter. We substituted the generic isoprene emission rates with these three empirical values in i-Tree Eco, resulting in a 182 kg yr (97%) reduction in isoprene emissions, totaling 6284 kg yr when extrapolated to the target region. From these results we conclude that care has to be taken when using generic isoprene emission factors for urban tree models. We recommend that emissions be quantified for commonly planted trees, allowing decision-makers to select tree species with the greatest overall benefit for the urban environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Channel Measurement and Modeling for 5G Urban Microcellular Scenarios

    Directory of Open Access Journals (Sweden)

    Michael Peter

    2016-08-01

    Full Text Available In order to support the development of channel models for higher frequency bands, multiple urban microcellular measurement campaigns have been carried out in Berlin, Germany, at 60 and 10 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL and the delay spread (DS. It reveals that the ground reflection has a dominant impact on the fading behavior. For line-of-sight conditions, the PL exponents are close to free space propagation at 60 GHz, but slightly smaller (1.62 for the street canyon at 10 GHz. The DS shows a clear dependence on the scenario (median values between 16 and 38 ns and a strong distance dependence for the open square and the wide street canyon. The dependence is less distinct for the narrow street canyon with residential buildings. This behavior is consistent with complementary ray tracing simulations, though the simplified model tends to overestimate the DS.

  3. Street Politics

    Directory of Open Access Journals (Sweden)

    Michael J. Shapiro

    2012-03-01

    Full Text Available I write from Prague, where, unlike in most urban formations, the main city street plays an iconic role; it references a history of political protest. However, before elaborating on the protest iconography of the Prague street, Vaclavske nam, I want to locate the ways in which the design of urban space is actualized in everyday life in the cities of the world. Three functions stand out; the first involves dwelling, the second seeing, and the third moving. With respect to the first function – dwelling – the design partitions and coordinates residential, commercial and leisure functions. At times these are organized to segregate different classes (Robert Moses’ redesign of much of New York stands out with respect to the segregation function. With respect to the second function – seeing – the design of urban space is allegiance-inspiring; it involves sight lines that afford urban dwellers and visitors views of iconic buildings and statues, which reference key founding moments in the past and/or authoritative political functions in the present (Here, L’Enfants design for Washington DC stands out as exemplary. Its manifest intention was to make the buildings housing executive, legislative and judicial functions visible from many vantage points. Rarely are the streets themselves iconic. Their dominant role is involved with the effectuation of movement. As for this third function: As Lewis Mumford famously points out, streets were once part of an asterisk design, radiating out from an exemplary, often spiritual center...

  4. Comparison between measurements and OSPM calculations of NO{sub 2} at 10 street sections in Copenhagen. [OSPM - Operational Street Pollution Model]; Sammenligning af NO{sub 2}-maelinger og OSPM-beregninger for 10 gadestraekninger i Koebenhavn

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Ketzel, M.; Solvang Jensen, S.

    2012-10-15

    This report presents results from a comparison between measurements and model calculations of nitrogen dioxide (NO{sub 2}) at ten selected street sections in Copenhagen. Force Technology has carried out the measurements of NO{sub 2} during a few weeks period from October 24{sup th} to November 28{sup th} 2011. DCE has carried out model calculations using the Operational Street Pollution Model (OSPM) in two stages. The model calculations at stage 1 (''blind test'') are carried out without knowledge about the results from the measurements. Model version and input data corresponds to those used for the most recent model calculations presented in the reports from 2011 for the routine monitoring programme and a surveillance project, respectively. At stage 2 input data have been updated and revised in order to analyze the differences between measured and model calculated concentrations at stage 1. This report from AU/DCE presents only the results from the model calculations and the comparison between measurements and model results. Comparison for the two permanent measurement stations at both H.C. Andersen's Boulevard (HCAB) and Jagtvej shows good agreement between measurements from Force Technology using passive sampling and measurements from DCE using the EU reference method. The results from the ''blind test'' of OSPM at stage 1 show that the OSPM calculations are in good agreement with the measurements for seven out of nine street sections. The model results show good agreement for all street sections with two sided building facades. Large discrepancies between measurements and model results are found for two street sections (Sydhavnsgade and Fredensgade) both with one sided building facades. However, there are two other street sections with one sided building facades, where the model is in good agreement with the measurements. The discrepancies observed for Sydhavnsgade and Fredensgade are therefore not solely related to

  5. Two Currencies - One Model? Evidence from the Wall Street Journal forecast poll

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Ruelke, Jan Christoph; Frenkel, Michael

    2009-01-01

    We use the foreign exchange forecasts of the Wall Street Journal poll to compare forecasters' expectation formation process for the exchange rates of the euro and the yen against the U.S. dollar for the period 1999 - 2005. We also contrast the expectation formation process with the actual exchange...

  6. Toward a Theoretical Framework for Ethical Decision Making of Street-Level Bureaucracy : Existing Models Reconsidered

    NARCIS (Netherlands)

    Loyens, Kim|info:eu-repo/dai/nl/370525086; Maesschalck, Jeroen

    Much research has been done on the way in which individuals in organizations deal with their discretion. This article focuses on the literature on street-level bureaucracy and the literature on ethical decision making. Despite their shared attempt to explain individual behavior and decision making,

  7. Evaluation of energy efficiency in street lighting: model proposition considering climate variability

    Directory of Open Access Journals (Sweden)

    Amaury Caruzzo

    2015-12-01

    Full Text Available This paper assesses the impacts of climate variability on efficient electricity consumption in street lighting in Brazil. The Climate Demand Method (CDM was applied, and the energy savings achieved by Brazil’s National Efficient Street Lighting Program (ReLuz in 2005 were calculated, considering the monthly climatology of sunshine duration, disaggregated by county in Brazil. The total energy savings in street lighting in 2005 were estimated at 63 GWh/year or 1.39% higher than the value determined by ReLuz/Eletrobrás and there was a 15 MW reduction in demand in Brazil, considering the nearly 393,000 points in ReLuz served in 2005. The results indicate that, besides the difference in latitude, climate variability in different county increases the daily usage of street lighting up to 19%. Furthermore, Brazil’s large size means that seasonality patterns in energy savings are not homogeneous, and there is a correlation between the monthly variability in sunshine duration and the latitude of mesoregions. The CDM was also shown to be suitable for ranking mesoregions with the highest levels of energy saving lighting.

  8. Two Currencies - One Model? Evidence from the Wall Street Journal forecast poll

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Ruelke, Jan Christoph; Frenkel, Michael

    2009-01-01

    We use the foreign exchange forecasts of the Wall Street Journal poll to compare forecasters' expectation formation process for the exchange rates of the euro and the yen against the U.S. dollar for the period 1999 - 2005. We also contrast the expectation formation process with the actual exchang...

  9. Floodplain Vegetation Dynamics Modeling Using Coupled RiPCAS-DFLOW (CoRD): Jemez Canyon, Jemez River, New Mexico

    Science.gov (United States)

    Miller, S. J.; Gregory, A. E.; Turner, M. A.; Chaulagain, S.; Cadol, D.; Stone, M. C.; Sheneman, L.

    2017-12-01

    Interactions among precipitation, vegetation, soil moisture, runoff and other landscape properties set the stage for complex streamflow regimes and cascading riparian habitat impacts, particularly in semi-arid regions. A consortium of New Mexico, Nevada, and Idaho, funded through NSF-EPSCoR, has promulgated the Western Consortium for Watershed Analysis, Visualization, and Exploration (WC-WAVE). Two WC-WAVE objectives are to advance understanding of hydrologic interactions and ecosystem services, and to develop a virtual watershed platform (VWP) cyber-infrastructure to unite and streamline coordination among teams, databases and modeling tools. To provide proof of concept for the VWP and to study coevolution of riparian habitat mosaics and flood dynamics, the study team selected two models and developed a model coupling system for the Jemez River Canyon, Jemez River, NM. DFLOW is a 2-D hydrodynamic model for steady and unsteady flow conditions; the Riparian Community Alteration and Succession (RipCAS) model, developed using concepts from a vegetation disturbance and succession model (CASiMiR), uses shear stresses and flood depths from DFLOW to evolve riparian vegetation maps with associated roughness. The Coupled RipCAS-DFLOW (CoRD) model allows serial annual time step feedback of changes in peak-flow-derived depth and shear stress and vegetation-derived roughness values. An intuitive command-line interface on a computing cluster is used to call CoRD, which provides commands to calculate boundary conditions, perform multiple file and data format conversions and archive and compress decades of data. Four thirty-year synthetic annual maximum flood scenarios were selected for CoRD simulations, representing a historical wet period (1957-1986) a historical dry period (1986-2015), and flows doubling the historical wet period and halving the historical dry period. Event-driven coupled modeling simulates the spatial distribution of floodplain vegetation community evolution

  10. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    International Nuclear Information System (INIS)

    Gallagher, J.; Gill, L.W.; McNabola, A.

    2013-01-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  11. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, J., E-mail: j.gallagher@bangor.ac.uk [School of Energy, Natural Resources and Geography, Bangor University (United Kingdom); Gill, L.W.; McNabola, A. [Dept. of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland)

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  12. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  13. Modeling of external radiation from the transport of radionuclides across a canyon

    International Nuclear Information System (INIS)

    Bowen, B.M.; Olsen, W.A.; Van Etten, D.; Chen, I-li.

    1986-01-01

    The Los Alamos Meson Physics Facility (LAMPF) is an 800-million electron volt, l mA intensity linear proton accelerator used for studying subatomic particles at relativistic velocities. Routine operation of the accelerator results in the formation of short-lived air activation products, primarily in the beam stop section of LAMPF. This study presents the results of monitoring and modeling external radiation levels from LAMPF emissions at three locations during 1984. Measured radiation exposures are presented for all three locations during a 49-day period. Hourly radiation levels are calculated for all sites and compared with the prevalent wind patterns during the study period. Predicted daily levels are compared with measured values at all of the sites. Accuracy of the model is compared for day and night conditions. Annual model predictions are also compared with TLD measurements

  14. Investigation of the vertical nitrogen dioxide distribution above a frequented street

    Energy Technology Data Exchange (ETDEWEB)

    Malissa, H; Juette, W; Alidad, I

    1975-01-01

    Knowledge of the vertical nitrogen dioxide concentration profile in the atmosphere within a street canyon would enable the estimation of pollutant concentrations in street site living or working rooms and furthermore the calculation of pollutant concentrations at ground level from data measured at roof levels by means of long-line remote sensing methods. A formula was therefore derived under simplified conditions and examined by simultaneous measurements of the nitrogen dioxide concentration, wind velocity, and wind direction at roof level and ground level. The data thus obtained were average values for half an hour. The knowledge of the local vertical wind profile and the influence of the traffic density in neighboring urban areas is essential for the calculation. The verification of the derived model shows a correlation coefficient of r equals 0.88 between calculated and measured data.

  15. An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements During VTMX 2000

    International Nuclear Information System (INIS)

    Fast, Jerome D.; Darby, Lisa S.

    2004-01-01

    A mesoscale model, a Lagrangian particle dispersion model, and extensive Doppler lidar wind measurements during the VTMX 2000 field campaign were used to examine converging flows over the Salt Lake Valley and their effect on vertical mixing of tracers at night and during the morning transition period. The simulated wind components were transformed into radial velocities to make a direct comparison with about 1.3 million Doppler lidar data points and critically evaluate, using correlation coefficients, the spatial variations in the simulated wind fields aloft. The mesoscale model captured reasonably well the general features of the observed circulations including the daytime up-valley flow, the nighttime slope, canyon, and down-valley flows, and the convergence of the flows over the valley. When there were errors in the simulated wind fields, they were usually associated with the timing, structure, or strength of specific flows. Simulated outflows from canyons along the Wasatch Mountains propagated over the valley and converged with the down-valley flow, but the advance and retreat of these simulated flows was often out of phase with the lidar measurements. While the flow reversal during the evening transition period produced rising motions over much of the valley atmosphere in the absence of significant ambient winds, average vertical velocities became close to zero as the down-valley flow developed. Still, vertical velocities between 5 and 15 cm s-1 occurred where down-slope, canyon and down-valley flows converged and vertical velocities greater than 50 cm s-1 were produced by hydraulic jumps at the base of the canyons. The presence of strong ambient winds resulted in smaller average rising motions during the evening transition period and larger average vertical velocities after that. A fraction of the tracer released at the surface was transported up to the height of the surrounding mountains; however, higher concentrations were produced aloft for evening s

  16. Is Canyon Width a Diagnostic Indicator of the Discharge of Megafloods on Earth and Mars?

    Science.gov (United States)

    Lapotre, M. G.; Lamb, M. P.

    2013-12-01

    On Earth, large floods have carved steep-walled and amphitheater-headed canyons from the Pleistocene (e.g. Box Canyon, ID) through the Holocene (e.g. Asbyrgi Canyon, Iceland), to historic times (e.g. Canyon Lake Gorge, TX). The geologic record on Mars suggests that similar floods have carved canyons by waterfall retreat about 3.5 billion years ago, when the red planet was wetter and possibly warmer. We currently lack robust paleo-hydraulic tools to reconstruct the discharge of ancient floods, especially on Mars where sediment sizes are obscured from observation. To address this issue, we hypothesize that the width of canyon escarpment is controlled by the hydraulics of the canyon-carving flood due to focusing of the flood into the canyon head. We compiled field data from multiple canyons and floods on Earth and Mars and show that there is a correlation between estimated flood discharge and canyon headwall width. To explore what sets this relationship, we identified five important parameters using dimensional analysis: the Froude number, the ratio of backwater length to canyon length, the ratio of backwater length to flood width, the ratio of canyon width to flood width, and the topographic slope upstream of the canyon. We used the hydraulic numerical modeling suite ANUGA to simulate overland flow over different canyon geometries and flood parameters to systematically explore the relative bed shear stresses along the canyon rim as a metric for flow focusing. Results show that canyons that exceed a certain length, scaling with the hydraulic backwater length, have shear stresses at their heads that are significantly higher than near the canyon mouth. Shear stresses along the rim of the canyon sidewalls are limited, in comparison to stresses along the canyon head, when the flood width is of the order of the backwater length. Flow focusing only occurs for subcritical flow. Together, these results suggest that canyons may only grow from a perturbation that is large

  17. ASMUS - a numerical model for simulations of wind and pollutant dispersion around individual buildings. II. Dispersion modelling and applications; ASMUS - ein numerisches Modell zur Berechnung der Stroemung und der Schadstoffverteilung im Bereich einzelner Gebaeude. II. Schadstoffausbreitung und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Gross, G. [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    1997-06-01

    For pt.I see ibid., vol.3, p.267-74 (1994). The microscale model ASMUS-F was used to study air flow and dispersion in street canyons. The results demonstrate a strong dependence on car-induced turbulence, while the shape of roofs and trees along the street modify the situation only locally. The simulation results in the finding, that concentration in the canyon follows the relation c {proportional_to} u{sup -n} with n {approx} 0.35. Also the evaluation of statistical measures like the mean value are, compared to observations, very reasonable. (orig.)

  18. Health Belief Model and Labelling Theory in the Analysis of Preventive Behaviors to Address Biopsychosocial Impacts of Sexual Violence Among Street Children in YOGYAKARTA

    OpenAIRE

    Intan Noor Khalifah; Argyo Demartoto; Harsono Salimo

    2017-01-01

    Background: Street children are at high risk of sexual violence. Necessary measures should be undertaken to address deleterious biopsychosocial impacts of sexual violence. This study aimed to analyze the preventive behaviors to address biopsychosocial impacts of sexual violence among street children in Yogyakarta using Health Belief Model and Labelling Theory.Subjects and Method: This study was qualitative descriptive with phenomenology approach. The key informants for this study included Hea...

  19. A comprehensive experimental databank for the verification of urban car emission dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Pavageau, M.; Rafailidis, S.; Schatzmann, M. [Universitaet Hamburg (Germany). Meteorologisches Inst.

    2001-07-01

    A summary presentation is made of representative samples from a comprehensive experimental databank on car exhaust dispersion in urban street canyons. Physical modelling, under neutral stratification conditions, was used to provide visualisation, pollutant concentration and velocity measurements above and inside test canyons amidst surrounding urban roughness. The study extended to two different canyon aspects ratios, in combination with different roof configurations on the surrounding buildings. To serve as a reliable basis for validation and testing of urban pollution dispersion codes, special emphasis was placed in this work on data quality assurance. (Author)

  20. An amalgamation of 3D city models in urban air quality modelling for improving visual impact analysis

    DEFF Research Database (Denmark)

    Ujang, U.; Anton, F.; Ariffin, A.

    2015-01-01

    is predominantly vehicular engines, the situation will become worse when pollutants are trapped between buildings and disperse inside the street canyon and move vertically to create a recirculation vortex. Studying and visualizing the recirculation zone in 3D visualization is conceivable by using 3D city models......,engineers and policy makers to design the street geometry (building height and width, green areas, pedestrian walks, roads width, etc.)....

  1. Simple street tree sampling

    Science.gov (United States)

    David J. Nowak; Jeffrey T. Walton; James Baldwin; Jerry. Bond

    2015-01-01

    Information on street trees is critical for management of this important resource. Sampling of street tree populations provides an efficient means to obtain street tree population information. Long-term repeat measures of street tree samples supply additional information on street tree changes and can be used to report damages from catastrophic events. Analyses of...

  2. 46th Street pilot street lighting project.

    Science.gov (United States)

    2013-01-01

    Street lighting improvements provide an opportunity for governments to save money and to reduce their : environmental footprint. New energy-efficient technologies are being perfected that are more efficient than : standard high-pressure sodium street...

  3. Diablo Canyon ECCS enhancements

    International Nuclear Information System (INIS)

    Lin, A.; Lee, T.P.; Walter, L.E.

    2004-01-01

    Diablo Canyon Power Plant (DCPP) operated by Pacific Gas and Electric Co. (PG and E) is a Westinghouse designed four loop plant. In recent years, several issues were identified regarding the compliance of the Emergency Core Cooling System (ECCS) surveillance tests to the ECCS analyses assumptions. These concerns are related mostly to the High Head Safety Injection (HHSI) and the Intermediate Head Safety Injection (IHSI) systems where the injection line throttle valves are adjusted during outage surveillance testing to ensure compliance with the Technical Specifications (TS). To resolve all of the identified issues PG and E performed an ECCS reanalysis and upgraded the ECCS surveillance test program and also had Westinghouse perform a containment reanalysis using their latest model. As a result of these plant specific enhancement efforts, DCPP widened the operating window for TS surveillance testing, lowered the ECCS pumps' acceptance performance curves, and re-gained Peak Clad Temperature (PCT) and containment peak pressure margins. These enhancements are generically applicable to other plants and are addressed in this paper. (author)

  4. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-01-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon building so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered

  5. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-05-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon buildings so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered. (U.S.)

  6. Smart street lighting management

    Energy Technology Data Exchange (ETDEWEB)

    Pizzuti, S.; Annunziato, M. [Energy New Technologies and Sustainable Economic Development Agency ENEA, Rome (Italy); Moretti, F. [Automation and Computer Science Department, University & #x27; Roma Tre& #x27; , Rome (Italy)

    2013-08-15

    In this work, we propose a new street lighting energy management system in order to reduce energy consumption. The key idea we want to accomplish is that of 'energy on demand' meaning that energy, in this case light, is provided only when needed. In order to achieve this goal, it is critical to have a reliable demand model, which in the case of street lighting turns out to be a traffic flow rate forecasting model. In order to achieve this goal, several methods on the 1-h prediction have been compared and the one providing the best results is based on artificial neural networks. Moreover, several control strategies have been tested and the one which gave the best energy savings is the adaptive one we carried out. Experimentation has been carried out on real data and the study shows that with the proposed approach, it is possible to save up to 50 % of energy compared to no regulation systems.

  7. The addition of hydrodynamic variables to predictive cold water coral habitat modeling: The Bari Canyon case-study, southwestern Adriatic Sea

    Science.gov (United States)

    Foglini, Federica; Bargain, Annaëlle; Angeletti, Lorenzo; Bonaldo, Davide; Carniel, Sandro; Taviani, Marco

    2017-04-01

    Predictive habitat modeling is gaining momentum because of its usefulness to recognize potential distributional patterns of ecosystems thus facilitating their proper governance when required, as it is for instance the case of the Marine Strategy Framework Directive (MSFD). This holds particularly true for the deep-sea in front of its overwhelming areal extent on a global scale and intrinsic technological difficulties (with related costs) for its direct exploration. Cold Water Corals (CWC) is one emblematic, virtually cosmopolitan, ecosystem in the deep, that is under international attention because of its multifaceted ecological importance. CWC is currently represented in the Mediterranean basin by habitats engineered by the arborescent scleractinians Madrepora oculata and Lophelia pertusa associated with a number of other benthic invertebrates. One major CWC hotspot located on the southwestern Adriatic margin, the Bari Canyon cold water coral province, has been targeted for producing habitat suitability maps. Initially the evaluation of the theoretical distribution of CWC in this area has been based upon visual observations, mainly extracted from geo-referenced underwater ROV imagery, coupled with the eco-geographic information derived from bathymetry. This approach relies upon the compilation and comparison of presence-only models (MaxEnt and ENFA), but also presence-absence model (GLMs). However, the pivotal role played by oceanographic factors has been soon added in order to achieve more robust predictive models. In fact, the Bari Canyon CWC province is situated on the main path of the North Adriatic Dense Water cascading, and hypothesized to be sensitive to hydrological factors. Accordingly, the statistical models to assess potential habitat extent have been implemented using hydrodynamic fields provided by ROMS for ocean currents, coupled with SWAN within the COAWST modelling system to account for wave-current interactions. The integration of results is

  8. Fourmile Canyon Fire Findings

    Science.gov (United States)

    Russell Graham; Mark Finney; Chuck McHugh; Jack Cohen; Dave Calkin; Rick Stratton; Larry Bradshaw; Ned Nikolov

    2012-01-01

    The Fourmile Canyon Fire burned in the fall of 2010 in the Rocky Mountain Front Range adjacent to Boulder, Colorado. The fire occurred in steep, rugged terrain, primarily on privately owned mixed ponderosa pine and Douglas-fir forests. The fire started on September 6 when the humidity of the air was very dry (¡Ö

  9. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.

    Science.gov (United States)

    Free, Brian A; Paley, Derek A

    2018-03-14

    Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.

  10. Bell Canyon test summary report

    International Nuclear Information System (INIS)

    Christensen, C.L.; Peterson, E.W.

    1981-04-01

    The Bell Canyon Test was an in situ evaluation of the ability of a cement grout plug to seal boreholes. It consisted of a 2-m-long, 20-cm-diameter grout plug in an anhydrite formation at a depth of 1370 m, directly above an aquifer that provided a 12.4 MPa (1800 psi) differential pressure. The aquifer had a production capability of 38,000 l/day (240 bbl/day, 10 4 gal/day). The observed leakage after plug installation was 0.6 l/day, which is equivalent to a 50 microdarcy flow path assuming all flow occurred through the plug cross-sectional area. Laboratory results and analysis of field data indicate that the bulk of the flow occurred through a microstructure at the interface between the plug and the host rock. The Bell Canyon Test demonstrated that a plug could be formulated, emplaced, and tested under actual conditions and provide acceptable performance. When these results are related to the WIPP performance assessment models, they provide additional confidence that borehole plugging can be accomplished satisfactorily. The Bell Canyon results can also be used as basis for future activities in the generic repository sealing program for similar emplacements and performance assessment evaluations. If the observed leakage rates are not acceptable at other sites, the BCT results would indicate that the first step in improving such emplacements should deal with improved bonding of the plug to the rock at these sites. The results obtained from the BCT, when coupled with results from long-term durability assessments, form a plug performance data basis for repository designers at other proposed waste repository sites

  11. Crossing fitness canyons by a finite population

    Science.gov (United States)

    Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun

    2017-06-01

    We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.

  12. A Calibration-Capture-Recapture Model for Inferring Natual Gas Leak Population Characteristics Using Data from Google Street View Cars

    Science.gov (United States)

    Weller, Z.; Hoeting, J.; von Fischer, J.

    2017-12-01

    Pipeline systems that distribute natural gas (NG) within cities can leak, leading to safety hazards and wasted product. Moreover, these leaks are climate-altering because NG is primarily composed of methane, a potent greenhouse gas. Scientists have recently developed an innovative method for mapping NG leak locations by installing atmospheric methane analyzers on Google Street View cars. We develop new statistical methodology to answer key inferential questions using data collected by these mobile air monitors. The new calibration-capture-recapture (CCR) model utilizes data from controlled methane releases and data collected by GSV cars to provide inference for several desired quantities, including the number of undetected methane sources and the total methane output rate in a surveyed region. The CCR model addresses challenges associated with using a capture-recapture model to analyze data collected by a mobile detection system including variable sampling effort and lack of physically marking individuals. We develop a Markov chain Monte Carlo algorithm for parameter estimation and apply the CCR model to methane data collected in two U.S. cities. The CCR model provides a new framework for inferring the total number of leaks in NG distribution systems and offers critical insights for informing intelligent repair policy that is both cost-effective and environmentally friendly.

  13. Hydraulics of outburst floods spilling over a steep-walled canyon: Implications for paleo-discharges on Mars

    Science.gov (United States)

    Lapotre, Mathieu; Lamb, Michael

    2013-04-01

    Canyons carved by outburst floods are common landforms on Earth and Mars. These canyons are generally found in fractured basalts and jointed sedimentary rocks. Flood-carved canyons commonly have steep headwalls and a roughly constant width, and are often thought to have formed from upstream headwall propagation due to waterfall erosion. Because morphology is readily available from satellite imagery, these canyons offer a unique opportunity to quantify the discharge of rare, catastrophic paleo-floods on Earth and Mars. However, mechanistic relationships that relate canyon size to flood discharge have yet to be developed. We propose that the width of a canyon headwall in fractured rock is set by the spatial distribution of erosion around the rim of the canyon, which is controlled by the distribution of shear stresses induced by the overflowing water as it is focused into the canyon head. We test this hypothesis by performing a series of numerical simulations of flood-water focusing using ANUGA Hydro, a 2D-depth averaged, fully turbulent, hydraulic numerical modeling suite allowing for Froude-number transitions. The numerical simulations were designed to explore five dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width to flood-water width ratio, the canyon width to normal-flow depth ratio, the Froude number, and the topographic gradient upstream of the canyon. Preliminary results show that flow focusing leads to increased shear stresses at the canyon head compared to the sides of the canyon for subcritical floods and higher canyon aspect ratios. This suggests that proto-canyons start growing from a topographic defect in all directions until they reach a critical length for the side walls to dry. Once this critical length is attained, canyons focus most of the flood waters into their heads, and propagate upstream only, maintaining roughly constant widths. Preliminary results suggest that canyon width may be used to

  14. Democratic Model of Public Policy Accountability. Case Study on Implementation of Street Vendors Empowerment Policy in Makassar City

    Directory of Open Access Journals (Sweden)

    Rulinawaty Kasmadsi

    2015-08-01

    Full Text Available Policy accountability is a form of manifestation of public officials responsible to the people. One form of policy accountability that is discussed here is street vendors policy accountability, because they are a group of citizens who have the economic activities in public spaces. The existence of this policy how-ever, the number of street vendors from year to year increase in Makassar City. Therefore, this study seeks to uncover and explain the democratic policy ac-countability through the street vendors’ responses and expectations to the implementation of street ven-dors empowerment policy in Makassar City; and to uncover and explain the democratic policy account-ability through the stakeholders’ responses and ex-pectations to the implementation of street vendors empowerment policy in Makassar City. To achieve these objectives, the study uses democracy theory, in which this theory focuses on togetherness in dis-cussing solutions to the various problems of street vendors and in the policy implementation as well.This study used a qualitative design and case studies strat-egy. Data collection techniques used was observa-tion, interview, and documentation. Data were ana-lyzed with case description its settings. The results of this study pointed out that the interests and needs of the street vendors are not met through the empow-erment policies vendors. This is caused by the ab-sence of accountability forum as a place of togeth-erness all of street vendors empowerment stakehold-ers’. Street vendors empowerment policy in Makassar City are designed base on a top-down approach, so they are considered as objects, which must accept all government programs aimed at them.

  15. Canyons off northwest Puerto Rico

    International Nuclear Information System (INIS)

    Gardner, W.D.; Glover, L.K.; Hollister, C.D.

    1980-01-01

    The Nuclear-Research Submarine NR-1 was used to study morphoplogy, sediment, and sediment-water interactions off the northwest coast of Puerto Rico. New detailed bathymetry from the surface-support ship, USS Portland, shows several submarine canyons in the area, some of them unreported previously. The north coast canyons, Arecibo, Tiberones and Quebradillas, are primarily erosional features although no recent turbidity-current evidence is seen. The canyons are presently filling with river-transported sediments. (orig./ME)

  16. Submarine canyons as coral and sponge habitat on the eastern Bering Sea slope

    Directory of Open Access Journals (Sweden)

    Robert J. Miller

    2015-07-01

    Full Text Available Submarine canyons have been shown to positively influence pelagic and benthic biodiversity and ecosystem function. In the eastern Bering Sea, several immense canyons lie under the highly productive “green belt” along the continental slope. Two of these, Pribilof and Zhemchug canyons, are the focus of current conservation interest. We used a maximum entropy modeling approach to evaluate the importance of these two canyons, as well as canyons in general, as habitat for gorgonian (alcyonacean corals, pennatulacean corals, and sponges, in an area comprising most of the eastern Bering Sea slope and outer shelf. These invertebrates create physical structure that is a preferred habitat for many mobile species, including commercially important fish and invertebrates. We show that Pribilof canyon is a hotspot of structure-forming invertebrate habitat, containing over 50% of estimated high-quality gorgonian habitat and 45% of sponge habitat, despite making up only 1.7% of the total study area. The amount of quality habitat for gorgonians and sponges varied in other canyons, but canyons overall contained more high-quality habitat for structure-forming invertebrates compared to other slope areas. Bottom trawling effort was not well correlated with habitat quality for structure-forming invertebrates, and bottom-contact fishing effort in general, including longlining and trawling, was not particularly concentrated in the canyons examined. These results suggest that if conserving gorgonian coral habitat is a management goal, canyons, particularly Pribilof Canyon, may be a prime location to do this without excessive impact on fisheries.

  17. Allegheny County Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of the street centerlines for vehicular and foot traffic in Allegheny County. Street Centerlines are classified as Primary Road,...

  18. 'The formula that killed Wall Street': the Gaussian copula and modelling practices in investment banking.

    Science.gov (United States)

    MacKenzie, Donald; Spears, Taylor

    2014-06-01

    Drawing on documentary sources and 114 interviews with market participants, this and a companion article discuss the development and use in finance of the Gaussian copula family of models, which are employed to estimate the probability distribution of losses on a pool of loans or bonds, and which were centrally involved in the credit crisis. This article, which explores how and why the Gaussian copula family developed in the way it did, employs the concept of 'evaluation culture', a set of practices, preferences and beliefs concerning how to determine the economic value of financial instruments that is shared by members of multiple organizations. We identify an evaluation culture, dominant within the derivatives departments of investment banks, which we call the 'culture of no-arbitrage modelling', and explore its relation to the development of Gaussian copula models. The article suggests that two themes from the science and technology studies literature on models (modelling as 'impure' bricolage, and modelling as articulating with heterogeneous objectives and constraints) help elucidate the history of Gaussian copula models in finance.

  19. The Whittard Canyon - A case study of submarine canyon processes

    Science.gov (United States)

    Amaro, T.; Huvenne, V. A. I.; Allcock, A. L.; Aslam, T.; Davies, J. S.; Danovaro, R.; De Stigter, H. C.; Duineveld, G. C. A.; Gambi, C.; Gooday, A. J.; Gunton, L. M.; Hall, R.; Howell, K. L.; Ingels, J.; Kiriakoulakis, K.; Kershaw, C. E.; Lavaleye, M. S. S.; Robert, K.; Stewart, H.; Van Rooij, D.; White, M.; Wilson, A. M.

    2016-08-01

    Submarine canyons are large geomorphological features that incise continental shelves and slopes around the world. They are often suggested to be biodiversity and biomass hotspots, although there is no consensus about this in the literature. Nevertheless, many canyons do host diverse faunal communities but owing to our lack of understanding of the processes shaping and driving this diversity, appropriate management strategies have yet to be developed. Here, we integrate all the current knowledge of one single system, the Whittard Canyon (Celtic Margin, NE Atlantic), including the latest research on its geology, sedimentology, geomorphology, oceanography, ecology, and biodiversity in order to address this issue. The Whittard Canyon is an active system in terms of sediment transport. The net suspended sediment transport is mainly up-canyon causing sedimentary overflow in some upper canyon areas. Occasionally sediment gravity flow events do occur, some possibly the result of anthropogenic activity. However, the role of these intermittent gravity flows in transferring labile organic matter to the deeper regions of the canyon appears to be limited. More likely, any labile organic matter flushed downslope in this way becomes strongly diluted with bulk material and is therefore of little food value for benthic fauna. Instead, the fresh organic matter found in the Whittard Channel mainly arrives through vertical deposition and lateral transport of phytoplankton blooms that occur in the area during spring and summer. The response of the Whittard Canyon fauna to these processes is different in different groups. Foraminiferal abundances are higher in the upper parts of the canyon and on the slope than in the lower canyon. Meiofaunal abundances in the upper and middle part of the canyon are higher than on adjacent slopes, but lower in the deepest part. Mega- and macrofauna abundances are higher in the canyon compared with the adjacent slope and are higher in the eastern than

  20. Improving the modeling of road dust levels for Barcelona at urban scale and street level

    NARCIS (Netherlands)

    Amato, F.; Zandveld, P.; Keuken, M.; Jonkers, S.; Querol, X.; Reche, C.; Denier van der Gon, H.A.C.; Schaap, M.

    2016-01-01

    Road dust emission is an emerging issue in air quality due to the lack of remediation measures in contrast to vehicle exhaust emissions. The evidence of receptor modeling studies allows for quantifying impact on a few receptors, but the high cost of PM chemical speciation data and the questionable

  1. The Wall Street Journal Report: Basis for a Model Program in Business English.

    Science.gov (United States)

    Zuck, Joyce G.

    One successful model for instruction in English as a second language (ESL) takes its core texts from a single recurring publication or broadcast. The use of one periodical maximizes the opportunity to become familiar with the format, topics, and common story genres or scripts. Script theory, which views texts as answers to predictable questions…

  2. New York Canyon Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  3. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    Science.gov (United States)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  4. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative

  5. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  6. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Zeno, Ramona; Dorman, Jeffrey G; Sydeman, William J

    2018-05-15

    Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.

  7. Simulations of Moscow megacity heat island with the COSMO-CLM model using two different urban canopy schemes and realistic building parameters, derived from OpenStreetMap data

    Science.gov (United States)

    Varentsov, Mikhail; Wouters, Hendrik; Trusilova, Kristina; Samsonov, Timofey; Konstantinov, Pavel

    2017-04-01

    In this study we present the application of the regional climate model COSMO-CLM to simulate urban heat island (UHI) phenomenon for Moscow megacity, which is the biggest agglomeration in Europe (with modern population of more than 17 million people). Significant differences of Moscow from the cities of Western Europe are related with much more continental climate with higher diurnal and annual temperature variations, and with specific building features such as its high density and almost total predominance of high-rise and low-rise blocks of flats on the private low-rise houses. Because of these building and climate features, the UHI of Moscow megacity is stronger than UHIs of many other cities of the similar size, with a mean intensity is about 2 °C and maximum intensity reaching up to 13 °C (Lokoschenko, 2014). Such a pronounced UHI together with the existence of an extensive observation network (more than 50 weather and air quality monitoring stations and few microwave temperature profilers) within the city and its surrounding make Moscow an especially interesting place for urban climate researches and good testbed for urban canopy models. In our numerical experiments, regional climate model firstly was adapted for investigated region with aim to improve quality of its simulations of rural areas. Then, to take into account urban canopy effects on thermal regime of the urbanized areas, we used two different versions of COSMO-CLM model. First is coupled with TEB (Town Energy Balance) single layer urban canopy model (Trusilova, 2013), and second is extended with bulk urban canopy scheme TERRA_URB using the Semi-empircal URban-canopY dependency parametriation SURY (Wouters et. al, 2016). Numerical experiments with these two versions of the model were run with spatial resolution about 1 km for several summer and winter months. To provide specific parameters, required for urban parameterizations, such as urban fraction, building height and street canyon aspect ratio

  8. Heard on The Street: GIS-Guided Immersive 3D Models as an Augmented Reality for Team Collaboration

    Science.gov (United States)

    Quinn, B. B.

    2007-12-01

    ] (x,y,z meters). Visiting this model amounts to going inside a map, seeing oneself there, and seeing, gesturing with, and speaking to other visitors in the same space. The Second Life viewer client is free, and the model is hosted on a vast publicly accessible grid that as of 1 September 2007 is simulating 846 square kilometers and frequently has over 40,000 simultaneous users. For reference, this work uses less than 1/200,000 part of the total grid. For cost savings, GIS was used to construct the model at 1/3 scale so that some 35,000 square meters of Berkeley were modeled in less than 4000 square meters of simulator space. Our work in Second Life "Gualala" has shown that it is feasible to use real-life GIS data to guide the construction of a spatially accurate model that reflects the built surface and underground environment. Groups of visitors may position their proxy body, or avatars on the street corner and converse, greatly augmenting the experience of a conference call. Since each visitor controls their own camera position in real time, the model considerably augments a video conference call, and can permit individuals to manipulate 3D objects as part of a demonstration or discussion.

  9. SWAT (Student Weekend Arborist Team): A Model for Land Grant Institutions and Cooperative Extension Systems to Conduct Street Tree Inventories

    Science.gov (United States)

    Cowett, F.D.; Bassuk, N.L.

    2012-01-01

    SWAT (Student Weekend Arborist Team) is a program affiliated with Cornell University and Extension founded to conduct street tree inventories in New York State communities with 10,000 residents or fewer, a group of communities underserved in community forestry planning. Between 2002 and 2010, SWAT conducted 40 inventories, and data from these…

  10. 236-Z canyon utilization study

    International Nuclear Information System (INIS)

    Dixon, D.R.

    1977-01-01

    The 236-Z canyon contains equipment for repurification of plutonium and recovery of plutonium from scrap material. To meet production requirements of Fast Flux Test Facility/Clinch River Breeder Reactor oxide with the existing plant, several new pieces of equipment will be needed in the future. More storage space and a better accountability system are needed to support this increased production. The available canyon space needs to be utilized to its fullest in order to accommodate the new equipment. The purpose of this document is to identify the new pieces of equipment, show how they fit into the flowsheet, and locate them in the canyon

  11. 2010 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): Diablo Canyon, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Diablo Canyon (2010), and San...

  12. Intelligent street lighting clustering

    NARCIS (Netherlands)

    Verhoeven, R.; Jovanovic, N.; Lukkien, J.J.

    2014-01-01

    The advances in dynamic street lighting introduce new functionality for control and maintenance of the street lighting infrastructure. Vital elements in this infrastructure are the powerful controlling devices that control separate groups of light poles and collect information from the system. For

  13. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    International Nuclear Information System (INIS)

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M.; McDonnell, J.R.

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas

  14. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    Science.gov (United States)

    Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.

    2017-08-01

    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.

  15. Formative flow in bedrock canyons

    Science.gov (United States)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted

  16. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  17. Mean and turbulent mass flux measurements in an idealised street network.

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G; Hayden, Paul; Santi, Edoardo

    2018-03-01

    Pollutant mass fluxes are rarely measured in the laboratory, especially their turbulent component. They play a major role in the dispersion of gases in urban areas and modern mathematical models often attempt some sort of parametrisation. An experimental technique to measure mean and turbulent fluxes in an idealised urban array was developed and applied to improve our understanding of how the fluxes are distributed in a dense street canyon network. As expected, horizontal advective scalar fluxes were found to be dominant compared with the turbulent components. This is an important result because it reduces the complexity in developing parametrisations for street network models. On the other hand, vertical mean and turbulent fluxes appear to be approximately of the same order of magnitude. Building height variability does not appear to affect the exchange process significantly, while the presence of isolated taller buildings upwind of the area of interest does. One of the most interesting results, again, is the fact that even very simple and regular geometries lead to complex advective patterns at intersections: parametrisations derived from measurements in simpler geometries are unlikely to capture the full complexity of a real urban area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    Science.gov (United States)

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  19. Deepwater Canyons 2013: Pathways to the Abyss

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Leg I focused on biological objectives in Norfolk Canyon, with some sampling in Baltimore Canyon. Leg II focused on archaeological targets in and around the Norfolk...

  20. 78 FR 48670 - Boulder Canyon Project

    Science.gov (United States)

    2013-08-09

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  1. 77 FR 48151 - Boulder Canyon Project

    Science.gov (United States)

    2012-08-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  2. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  3. Submarine canyons off Madras Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Submarine canyons off the coast of Madras, Tamil Nadu, India were studied during cruise of @iINS Kistna@@ as part of the IIOE programme They consist of hill-like projections and V-shaped valleys Their other features are also reported...

  4. Street-art

    OpenAIRE

    Rybnikářová, Klára

    2009-01-01

    This thesis is concerned with the street-art and graffiti phenomenon. The theoretical research is focused on presenting the essence and character of this art style, while also watching it from socio-cultural point of view and observing it in context of art history. The theoretical study is followed by the didactical part of thesis, where I present possibilities of using the street-art theme in art education programs in the school setting. My thesis is concluded with a discussion of a practica...

  5. Street level society

    DEFF Research Database (Denmark)

    Vinum, Christine; Nissen, Morten

    2006-01-01

    This paper aims to reflect on research findings from different empirical studies of social work with young drug users and socially excluded young people in Copenhagen. In the paper we account for historical changes in social policy and interventions into young people's drug taking in Copenhagen......, and partly from the decentralizing and specializing efforts characteristic of the Danish welfare state and its institutions. We discuss a general turn towards street level interventions to address the problems of social exclusion, as well as different attempts to create what we term street level heterotopias...

  6. Regional economic impacts of Grand Canyon river runners.

    Science.gov (United States)

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  7. Geomorphic process fingerprints in submarine canyons

    Science.gov (United States)

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  8. Street Children and Employment Opportunities

    International Nuclear Information System (INIS)

    Enos, H.N.; Njoka, M.

    1999-01-01

    Although there is a general realization that there are 'people' in the streets, we often take the phenomenon for granted probably because we wake up and go home only to come to the streets the following morning and still find the people. This situation is however changing with the emergence of 'birth' and increase of street children as we begin to take into consideration the category of people to be routinely found on the streets. The phrase 'street children' refer to the children below the statutory adult age living on or found on the streets. These children derive their livelihood from the streets. While the children on the streets may have a 'home' to go to, the latter are an integral part of the street having nowhere to retire to at the end of the day. The street children live in abject poverty and are exposed to many risks. They suffer from malnutrition and deficiency diseases due to low and poor nutrition intake. The street girls get trapped in teenage prostitution quite early in life. Of concern are the issues related to the working street children. Many street children engage in collecting and selling waste paper, bottles and plastics. They are referred to as 'chokora' because of their work of turning garbage upside down as they look for something useful. Unfortunately they have to sell these wastes to powerful forces including people who underpay and harrass them

  9. The City Street

    NARCIS (Netherlands)

    H.C. van der Wouden

    1999-01-01

    Original title: De stad op straat. The city street; the public space in perspective (De stad op straat; de openbare ruimte in perspectief) by the Netherlands Institute for Social Research/SCP is intended to contribute to the formation of new ideas about the public space and the future of

  10. Occupy Wall Street

    DEFF Research Database (Denmark)

    Jensen, Michael J.; Bang, Henrik

    2013-01-01

    This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional...

  11. Saving Mango Street

    Science.gov (United States)

    Van Winkle, Katie

    2012-01-01

    The author first learned about cultural diversity and racial justice in Mr. Sanderson's middle school English class. They read a book called "The House on Mango Street" by Sandra Cisneros and learned about a different culture, but also about a community with striking similarities to their own. The main character in the novel, Esperanza,…

  12. Street Lines, US, 2015, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Streets for the United States. The Streets layer contains all roads plus all Road Network attributes such as direction of travel, lanes, dividers, speed...

  13. Solar radiation and street temperature as function of street orientation. An analysis of the status quo and simulation of future scenarios towards sustainability in Bahrain

    Science.gov (United States)

    Silva, Joao Pinelo

    2017-11-01

    This paper discusses the contribution of street orientation towards the development of a comfortable microclimate for pedestrians in Bahrain. Increasing walkability is a global agenda to address issues such as a) transportation, b) energy consumption, c) health, and d) air pollution, all of which are topics of the sustainability agenda. Thermal comfort is one of the pre-requisites for walkability. In warm climates, this is a challenging goal. Street design is paramount for pedestrian comfort in warm climates. The roles of street orientation and aspect ratio are of particular importance as they determine the intake of solar radiation into the urban canyon. We investigate the state of affairs in Bahrain, by measuring the frequency with which the street orientations E-W, N-S, NE-SW, and NW-SE, currently occur. Research suggests that the street orientation E-W presents the lesser performance for mitigating the effects of heat gain. The ideal grid orientation would, therefore, be N-S, and NE-SW - NW-SE, avoiding street segments with E-W orientation. A countrywide analysis shows that E-W orientation accounts for the highest overall street length with 37%. The second most frequent orientation is N-S (29%), the best performer. NW-SE and NE-SW both have frequencies of only 17%. Preference for a street grid with N-S, NW-SE, and NE-SW orientation would improve the thermal performance of streets and provide a continuous network of a comfortable pedestrian environment. We simulate two future scenarios based on avoiding new E-W streets, or not. We measure their potential reduction in thermal gain and conclude that a simple policy could reduce solar exposition in 40%.

  14. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    Science.gov (United States)

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  15. Wall Street som kreationistisk forkynder

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2016-01-01

    Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...

  16. Trees in the city: valuing street trees in Portland, Oregon

    Science.gov (United States)

    G.H. Donovan; D.T. Butry

    2010-01-01

    We use a hedonic price model to simultaneously estimate the effects of street trees on the sales price and the time-on-market (TOM) of houses in Portland. Oregon. On average, street trees add $8,870 to sales price and reduce TOM by 1.7 days. In addition, we found that the benefits of street trees spill over to neighboring houses. Because the provision and maintenance...

  17. Rapid formation of a modern bedrock canyon by a single flood event

    Science.gov (United States)

    Lamb, Michael P.; Fonstad, Mark A.

    2010-07-01

    Deep river canyons are thought to form slowly over geological time (see, for example, ref. 1), cut by moderate flows that reoccur every few years. In contrast, some of the most spectacular canyons on Earth and Mars were probably carved rapidly during ancient megaflood events. Quantification of the flood discharge, duration and erosion mechanics that operated during such events is hampered because we lack modern analogues. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood. The event offers a rare opportunity to analyse canyon formation and test palaeo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use digital topographic models and visible/near-infrared aerial images from before and after the flood, discharge measured during the event, field measurements and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated ~7m of limestone and transformed a soil-mantled valley into a bedrock canyon in just ~3days. We find that canyon morphology is strongly dependent on rock type: plucking of limestone blocks produced waterfalls, inner channels and bedrock strath terraces, whereas abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment. We suggest that our results might improve hydraulic reconstructions of similar megafloods on Earth and Mars.

  18. Marble Canyon spring sampling investigation

    International Nuclear Information System (INIS)

    McCulley, B.

    1985-10-01

    The Mississippian Leadville Limestone is the most permeable formation in the lower hydrostratigraphic unit underlying the salt beds of the Paradox Formation in Gibson Dome, Paradox Basin, Utah, which is being considered as a potential nuclear waste repository site. The closest downgradient outcrop of the Mississippian limestone is along the Colorado River in Marble Canyon, Arizona. This report describes the sampling and interpretation of springs in that area to assess the relative contribution of Gibson Dome-type Leadville Limestone ground water to that spring discharge. The high-volume (hundreds of liters per second or thousands of gallons per minute) springs discharging from fault zones in Marble Canyon are mixtures of water recharged west of the Colorado River on the Kaibab Plateau and east of the river in the Kaiparowits basin. No component of Gibson Dome-type Leadville Limestone ground water is evident in major and trace element chemistry or isotopic composition of the Marble Canyon Springs. A low-volume (0.3 liters per second or 5 gallons per minute) spring with some chemical and isotopic characteristics of Gibson Dome-type Leadville Limestone water diluted by Kaiparowits basin-type water issues from a travertine mound in the Bright Angel Shale on the Little Colorado River. However, the stable isotopic composition and bromide levels of that spring discharge, in addition to probable ground-water flow paths, contradict the dilution hypothesis

  19. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  20. Effect of submarine canyons on tsunami heights, currents and run-up off the southeast coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.; ManiMurali, R.; Baldock, T.E.

    Tsunami numerical model studies are mostly focused on inundation and run-up onto the coast. Fewer studies have been aimed at investigating role of submarine canyons on the tsunami heights, currents and run-up. The influence of submarine canyons...

  1. Potential reductions of street solids and phosphorus in urban watersheds from street cleaning, Cambridge, Massachusetts, 2009-11

    Science.gov (United States)

    Sorenson, Jason R.

    2013-01-01

    Material accumulating and washing off urban street surfaces and ultimately into stormwater drainage systems represents a substantial nonpoint source of solids, phosphorus, and other constituent loading to waterways in urban areas. Cost and lack of usable space limit the type and number of structural stormwater source controls available to municipalities and other public managers. Non-structural source controls such as street cleaning are commonly used by cities and towns for construction, maintenance and aesthetics, and may reduce contaminant loading to waterways. Effectiveness of street cleaning is highly variable and potential improvements to water quality are not fully understood. In 2009, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, the U.S. Environmental Protection Agency, and the city of Cambridge, Massachusetts, and initiated a study to better understand the physical and chemical nature of the organic and inorganic solid material on street surfaces, evaluate the performance of a street cleaner at removing street solids, and make use of the Source Loading and Management Model (SLAMM) to estimate potential reductions in solid and phosphorus loading to the lower Charles River from various street-cleaning technologies and frequencies. Average yield of material on streets collected between May and December 2010, was determined to be about 740 pounds per curb-mile on streets in multifamily land use and about 522 pounds per curb-mile on commercial land-use streets. At the end-of-winter in March 2011, about 2,609 and 4,788 pounds per curb-mile on average were collected from streets in multifamily and commercial land-use types, respectively. About 86 percent of the total street-solid yield from multifamily and commercial land-use streets was greater than or equal to 0.125 millimeters in diameter (or very fine sand). Observations of street-solid distribution across the entire street width indicated that as

  2. Travel Time Estimation on Urban Street Segment

    Directory of Open Access Journals (Sweden)

    Jelena Kajalić

    2018-02-01

    Full Text Available Level of service (LOS is used as the main indicator of transport quality on urban roads and it is estimated based on the travel speed. The main objective of this study is to determine which of the existing models for travel speed calculation is most suitable for local conditions. The study uses actual data gathered in travel time survey on urban streets, recorded by applying second by second GPS data. The survey is limited to traffic flow in saturated conditions. The RMSE method (Root Mean Square Error is used for research results comparison with relevant models: Akcelik, HCM (Highway Capacity Manual, Singapore model and modified BPR (the Bureau of Public Roads function (Dowling - Skabardonis. The lowest deviation in local conditions for urban streets with standardized intersection distance (400-500 m is demonstrated by Akcelik model. However, for streets with lower signal density (<1 signal/km the correlation between speed and degree of saturation is best presented by HCM and Singapore model. According to test results, Akcelik model was adopted for travel speed estimation which can be the basis for determining the level of service in urban streets with standardized intersection distance and coordinated signal timing under local conditions.

  3. [Addictive behavior of street children: interculturation and resilience].

    Science.gov (United States)

    Kommegne, T; Denoux, P; Bernoussi, A; Njiengwe, E F

    2014-09-01

    This research belongs to a more comprehensive study on the care of street children in Cameroon. The idea is to develop an analysis of the street pathology where symptoms such as addictive behavior and drug addiction can be found. Beside HIV AIDS, addictive behaviors are the main risk factors that many professionals have to face with while dealing with the street problems today. Through an intercultural approach, we examined the practices of addictive typology, their initiatory role and their function in the integration of the street system. We also analysed their importance in the survival strategies. After an overview of theoretical controversies that feed the debate on addictions, we questioned the impact of these practices on the street career through the prism of general theory of addictions, particularly the hedonic management model. Addiction helps to resist adversity, it helps to desist and then to begin a harmonious neo development despite the horrors of the street experience. We undertook a quantitative and qualitative study on a sample of 148 street children. We proposed to 128 of them a questionnaire focused on addictive behaviors and survival strategies in the street context. We notably evaluated the street career of 24 of them, using interviews and standardized tests to assess self-esteem (Coopersmith's SEI) frustration tolerance (Rosenweig's P-F) and self-efficacy (Sherer's SE Scale) in order to measure the impact of addictive behaviors on the resilience process. We found that the street career is essentially traumatic, and that addictive behaviors involving various integration strategies are strongly linked to the interculturation process through the identity strategies and the intercultural competences. Addiction itself is not significantly related to self-esteem issues but strongly impacts on self-efficacy and the ability to tolerate frustration. They allow the street children to withstand the street adversity but are a real obstacle to their

  4. 78 FR 7775 - Boulder Canyon Project

    Science.gov (United States)

    2013-02-04

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area...), is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates... subsequent laws, particularly section 9(c) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)); and...

  5. 77 FR 2533 - Boulder Canyon Project

    Science.gov (United States)

    2012-01-18

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area...), is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates...) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)); and other acts that specifically apply to...

  6. 76 FR 56430 - Boulder Canyon Project

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Project (BCP) electric service provided by the Western Area Power Administration (Western). The Rates will... by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River...

  7. 76 FR 8359 - Boulder Canyon Project

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Western Area Power Administration (Western) is proposing an adjustment to the Boulder Canyon Project (BCP... Reclamation Project Act of 1939 (43 U.S.C. 485h(c)), and other acts that specifically apply to the project...

  8. Grand Canyon Monitoring and Research Center

    Science.gov (United States)

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  9. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  10. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  11. Environmental assessment: Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization

  12. Environmental assessment: Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization

  13. Street as Public Space - Measuring Street Life of Kuala Lumpur

    Science.gov (United States)

    Sulaiman, Normah; Ayu Abdullah, Yusfida; Hamdan, Hazlina

    2017-10-01

    Kuala Lumpur has envisioning in becoming World Class City by the year 2020. Essential elements of form and function of the urban environment are streets. Streets showcase the community and connect people. It’s one of the most comfortable social environment that provides aesthetical and interaction pleasure for everyone. Classified as main shopping streets in the local Kuala Lumpur urban design guidelines, Jalan Masjid India (JMI) has its uniqueness of shopping experience and social interaction. This conceptual paper will study the physical and cultural characteristics of the street that will generate the street character by mapping its original characters. The findings will focus on strengthening the methodology applied to promote improvements in evaluating it as a great public space. Results will also contribute to understanding the overall site context, the street connectivity, and urban dynamics. This paper is part of a larger study that addresses on transforming the sociability of public space.

  14. H-Canyon Recovery Crawler

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hera, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marzolf, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Phillips, M. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and

  15. Environmental assessment overview, Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 3 figs

  16. Simulating the impacts of on-street vehicle parking on traffic operations on urban streets using cellular automation

    Science.gov (United States)

    Chen, Jingxu; Li, Zhibin; Jiang, Hang; Zhu, Senlai; Wang, Wei

    2017-02-01

    In recent years, many bicycle lanes on urban streets are replaced with vehicle parking places. Spaces for bicycle riding are reduced, resulting in changes in bicycle and vehicle operational features. The objective of this study is to estimate the impacts of on-street parking on heterogeneous traffic operation on urban streets. A cellular automaton (CA) model is developed and calibrated to simulate bicycle lane-changing on streets with on-street parking. Two types of street segments with different bicycle lane width are considered. From the simulation, two types of conflicts between bicycles and vehicles are identified which are frictional conflicts and blocking conflicts. Factors affecting the frequency of conflicts are also identified. Based on the results, vehicle delay is estimated for various traffic situations considering the range of occupancy levels for on-street parking. Later, a numerical network example is analyzed to estimate the network impact of on-street parking on traffic assignment and operation. Findings of the study are helpful to policies and design regarding on-street vehicle parking to improve the efficiency of traffic operations.

  17. A review of variables of urban street connectivity for spatial connection

    International Nuclear Information System (INIS)

    Mohamad, W S N W; Said, I

    2014-01-01

    Several studies on street connectivity in cities and towns have been modeled on topology, morphology, technology and psychology of people living in the urban environment. Street connectivity means the connection of streets that offers people alternative routes. However, there emerge difficulties to determine the suitable variables and analysis to be chosen in defining the accurate result for studies street connectivity. The aim of this paper is to identify variables of street connectivity by applying GIS and Space Syntax. This paper reviews the variables of street connectivity from 15 past articles done in 1990s to early 2000s from journals of nine disciplines on Environment and Behavior, Planning and Design, Computers, Environment and Urban Systems, Applied Earth Observation and Geo-information, Environment and Planning, Physica A: Statistical Mechanics and its Applications, Environmental Psychology, Social Science and Medicine and Building and Environment. From the review, there are four variables found for street connectivity: link (streets-streets, street-nodes or node-streets, nodes-nodes), accessibility, least-angle, and centrality. Space syntax and GIS are suitable tools to analyze the four variables relating to systematic street systems for pedestrians. This review implies that planners of the street systems, in the aspect of street connectivity in cities and towns, should consider these four variables

  18. A review of variables of urban street connectivity for spatial connection

    Science.gov (United States)

    Mohamad, W. S. N. W.; Said, I.

    2014-02-01

    Several studies on street connectivity in cities and towns have been modeled on topology, morphology, technology and psychology of people living in the urban environment. Street connectivity means the connection of streets that offers people alternative routes. However, there emerge difficulties to determine the suitable variables and analysis to be chosen in defining the accurate result for studies street connectivity. The aim of this paper is to identify variables of street connectivity by applying GIS and Space Syntax. This paper reviews the variables of street connectivity from 15 past articles done in 1990s to early 2000s from journals of nine disciplines on Environment and Behavior, Planning and Design, Computers, Environment and Urban Systems, Applied Earth Observation and Geo-information, Environment and Planning, Physica A: Statistical Mechanics and its Applications, Environmental Psychology, Social Science and Medicine and Building and Environment. From the review, there are four variables found for street connectivity: link (streets-streets, street-nodes or node-streets, nodes-nodes), accessibility, least-angle, and centrality. Space syntax and GIS are suitable tools to analyze the four variables relating to systematic street systems for pedestrians. This review implies that planners of the street systems, in the aspect of street connectivity in cities and towns, should consider these four variables.

  19. Near-inertial motions in the DeSoto Canyon during Hurricane Georges

    Science.gov (United States)

    Jordi, Antoni; Wang, Dong-Ping; Hamilton, Peter

    2016-09-01

    Hurricane Georges passed directly over an array of 13 moorings deployed in the DeSoto Canyon in the northern Gulf of Mexico on 27-28 September 1998. Current velocity data from the mooring array were analyzed together with a primitive-equation model simulation with realistic hurricane forcing, to characterize the generation and propagation of the hurricane-generated near-inertial waves. The model successfully reproduces the observed mean (sub-inertial) and near-inertial motions. The upper ocean response is strongly impacted by the canyon 'wall': a strong jet is formed along the slope, and the near-inertial motions on the shelf are rapidly suppressed. The model results moreover suggest that strong near-inertial waves in the mixed layer are mostly trapped in an energy flux recirculating gyre around the canyon. This gyre retains the near-inertial energy in the canyon region and enhances the transfer of near-inertial energy below the mixed layer. Additional simulations with idealized topographies show that the presence of a steep slope rather than the canyon is fundamental for the generation of this recirculating gyre. The near-inertial wave energy budget shows that during the study period the wind generated an input of 6.79 × 10-2 Wm-2 of which about 1/3, or 2.43 × 10-2 Wm-2, was transferred below the mixed layer. The horizontal energy flux into and out of the canyon region, in contrast, was relatively weak.

  20. Street Prostitution Zones and Crime

    OpenAIRE

    Bisschop, Paul; Kastoryano, Stephen; van der Klaauw, Bas

    2015-01-01

    This paper studies the effects of introducing legal street prostitution zones on both registered and perceived crime. We exploit a unique setting in the Netherlands where legal street prostitution zones were opened in nine cities under different regulation systems. We provide evidence that the opening of these zones was not in response to changes in crime. Our difference-in-difference analysis using data on the largest 25 Dutch cities between 1994 and 2011 shows that opening a legal street pr...

  1. Prehistoric deforestation at Chaco Canyon?

    Science.gov (United States)

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world.

  2. Carbon transport in Monterey Submarine Canyon

    Science.gov (United States)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  3. Engineering modeling of traffic noise in shielded areas in cities.

    Science.gov (United States)

    Salomons, Erik M; Polinder, Henk; Lohman, Walter J A; Zhou, Han; Borst, Hieronymous C; Miedema, Henk M E

    2009-11-01

    A computational study of road traffic noise in cities is presented. Based on numerical boundary-element calculations of canyon-to-canyon propagation, an efficient engineering algorithm is developed to calculate the effect of multiple reflections in street canyons. The algorithm is supported by a room-acoustical analysis of the reverberant sound fields in the source and receiver canyons. Using the algorithm, a simple model for traffic noise in cities is developed. Noise maps and exposure distributions of the city of Amsterdam are calculated with the model, and for comparison also with an engineering model that is currently used for traffic noise impact assessments in cities. Considerable differences between the two model predictions are found for shielded buildings with day-evening-night levels of 40-60 dB at the facades. Further, an analysis is presented of level differences between the most and the least exposed facades of buildings. Large level differences are found for buildings directly exposed to traffic noise from nearby roads. It is shown that by a redistribution of traffic flow around these buildings, one can achieve low sound levels at quiet sides and a corresponding reduction in the percentage of highly annoyed inhabitants from typically 23% to 18%.

  4. Street Papers, Work, and Begging

    DEFF Research Database (Denmark)

    Cockburn, Patrick Joseph

    2014-01-01

    Street papers are publications produced specifically for sale by the homeless and other vulnerable people in many countries around the world. Their social status is, however, often conspicuously unstable: ‘Get a job!’ has been reported as a common insult addressed to vendors, and street paper...

  5. The Regulation of Street Foods

    DEFF Research Database (Denmark)

    Forkour, John Boulard; Samuelsen, Helle; Yeboah, Eric Henry

    2017-01-01

    the challenges and negotiating strategies of regulators of street-vended foods in Ghana and analyses the implication for their relationship with street food vendors. The paper reveals that regulators operate in a context of limited resources, leading to a general feeling of neglect. In coping, regulators adopt...

  6. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  7. Bedrock Canyons Carved by the Largest Known Floods on Earth and Mars

    Science.gov (United States)

    Lamb, M. P.; Lapôtre, M. G. A.; Larsen, I. J.; Williams, R. M. E.

    2017-12-01

    The surface of Earth is a dynamic and permeable interface where the rocky crust is sculpted by ice, wind and water resulting in spectacular mountain ranges, vast depositional basins and environments that support life. These landforms and deposits contain a rich, yet incomplete, record of Earth history that we are just beginning to understand. Some of the most dramatic landforms are the huge bedrock canyons carved by catastrophic floods. On Mars, similar bedrock canyons, known as Outflow Channels, are the most important indicators of large volumes of surface water in the past. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations - that suggests that bedrock canyons carved by megafloods rapidly evolve to a size and shape such that boundary shear stresses just exceed that required to entrain fractured blocks of rock. The threshold shear stress constraint allows for quantitative reconstruction of the largest known floods on Earth and Mars, and implies far smaller discharges than previous methods that assume flood waters fully filled the canyons to high water marks.

  8. Diablo Canyon refueling outage program

    International Nuclear Information System (INIS)

    McLane, W.B.; Irving, T.L.

    1991-01-01

    Management of outages has become one of the most talked about subjects in the nuclear power industry in the past several years. Many utilities do not perform refueling outages very well or in the past have had some outages that they would not like to repeat and in some cases do not even like to think about. With the growing cost of energy and the demands placed on utilities to improve capacity factors, it is very easy for management to focus on shortening refueling outage durations as a prime objective in improving overall corporate performance. So it is with Pacific Gas and Electric Company and the Diablo Canyon power plant. A review of their refueling outage performance reflects a utility that is responding to the nuclear industry's call for improved outage performance

  9. A source mixing model to apportion PAHs from coal tar and asphalt binders in street pavements and urban aquatic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, M.J.; Depree, C.V. [National Institute of Water & Atmospheric Research, Hamilton (New Zealand)

    2010-12-15

    Present-day and more than 30 years old road and footpath pavements from Auckland, New Zealand were analysed for PAHs to test the hypothesis that coal tar based pavement binders contribute to unusually high PAH concentrations in adjacent stream and estuarine sediments Total PAH ({Sigma}{sub 28}PAH) concentrations in the dichloromethane-soluble fraction ('binder'), comprising 5-10% of pavement mass, were as high as 200 000 mg kg{sup -1}(10 000 mg kg{sup -1} in binder + aggregate) Older and deeper pavement layers were strongly pyrogenic, whereas pavement layers from recently sealed roads had a more petrogenic composition and more than 1000 times lower Sigma(28)PAH concentrations. Source identification analysis using three PAH isomer ratio pairs (benz(a)anthracene/(benz(a)anthracene + chrysene), benzo(a)pyrene/(benzo(a)pyrene + benzo(e)pyrene)), and indeno(1,2,3-cd)pyrene/(indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene) revealed low PAH (bitumen) pavements to have consistently lower isomer ratios than high PAH (coal tar) samples. A concentration-weighted mixing model, with coal tar and bitumen as source materials, explained more than 80% of the variance in isomer ratios and enveloped the entire PAH compositional and concentration range encountered PAH composition and concentrations in adjacent stream sediments ({gt} 15 mg kg{sup -1} dry weight) were consistent with diluted coal tar material as a principal PAH source. Due to the very high PAH concentrations of coal tar, a coal tar content of as little as 0.01% of total sediment mass can account for more than 90% of PAH concentrations in adjacent stream sediments.

  10. Environmental assessment: Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs

  11. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  12. Drivers willingness to pay progressive rate for street parking.

    Science.gov (United States)

    2015-01-01

    This study finds willingness to pay and price elasticity for on-street parking demand using stated : preference data obtained from 238 respondents. Descriptive, statistical and economic analyses including : regression, generalized linear model, and f...

  13. Wintertime Boundary Layer Structure in the Grand Canyon.

    Science.gov (United States)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  14. Violence in the Street, Violence of the Street

    DEFF Research Database (Denmark)

    Heinskou, Marie Bruvik; Liebst, Lasse Suonperä

    While in his early and general theory of interaction rituals Randall Collins emphasised that social situations are both ’symbolic’ and ’material’, the latter dimension is largely absent from Collins’ theory of violence(Collins 2004; 1993: 214). Compared with criminology’s more recent situational...... studies of violence, it is noticeable that the analytical success of these studies is closely linked with understanding street violence as a spatial-situational phenomenon (Clarke 1997; Eck & Weisburd 1995; Bragand & Weisburd; 2010; Wikström et al. 2012; Sampson et al. 1997). In light of evidence...... for the spatial concentration of street violence, this paper takes its point of departure in a large study of Street Violence among youth in Copenhagen, Denmark (combining quantitative data from filed police reports (N = 501), data from CCTV (N=100) and qualitative analysis of selected cases of street violence...

  15. Numerical Simulation of Recent Turbidity Currents in the Monterey Canyon System, Offshore California

    Science.gov (United States)

    Heimsund, S.; Xu, J.; Nemec, W.

    2007-12-01

    The method of computational fluid dynamics (CFD) has been used, in the form of a 3D numerical model (Flow- 3D®), to perform a full-scale simulation of turbidity currents measured in December 2002 by three moorings in the Soquel and Monterey canyons. The model was verified by simulation of laboratory flows, and was upscaled to the Monterey Canyon system on the basis of high-resolution bathymetric data and flow measurements. The measured velocity profiles were sufficient to assess the flow thickness, initial velocity and duration in the canyon head zone. A computational grid with a highest feasible resolution was used, and both bathymetry and hydrostatic pressure were accounted for. The volumetric sediment concentration and exact grain- size composition of the flows were unknown, and thus a range of values for the initial concentration and bed roughness were assumed and assessed on a trial-and-error basis. The simulations reveal the behavior of a turbidity current along its descent path, including its local hydraulic characteristics (the 3D field of velocity, sediment concentration, shear stress, strain rate, and dynamic viscosity, as well as the magnitude of velocity and turbulent shear). The results confirm that the velocity structure of turbidity current is highly sensitive to variation in seafloor topography. The December 17th flow in the Soquel Canyon appears to have lost capacity by dilution over a relatively short distance and shown significant velocity fluctuations, which is attributed to the rugged topography of the canyon floor. A major loss of momentum occurred when the flow plunged at high angle into the Monterey Canyon, crashing against its bend's southern wall. The December 20th flow in the Monterey Canyon, in contrast, developed a considerably longer body and strongly accelerated towards the canyon's sharp second bend before crashing against its western wall. The mooring data show a down-canyon decline of velocity and suggest gradual waning, but the

  16. A bicycle safety index for evaluating urban street facilities.

    Science.gov (United States)

    Asadi-Shekari, Zohreh; Moeinaddini, Mehdi; Zaly Shah, Muhammad

    2015-01-01

    The objectives of this research are to conceptualize the Bicycle Safety Index (BSI) that considers all parts of the street and to propose a universal guideline with microscale details. A point system method comparing existing safety facilities to a defined standard is proposed to estimate the BSI. Two streets in Singapore and Malaysia are chosen to examine this model. The majority of previous measurements to evaluate street conditions for cyclists usually cannot cover all parts of streets, including segments and intersections. Previous models also did not consider all safety indicators and cycling facilities at a microlevel in particular. This study introduces a new concept of a practical BSI to complete previous studies using its practical, easy-to-follow, point system-based outputs. This practical model can be used in different urban settings to estimate the level of safety for cycling and suggest some improvements based on the standards.

  17. Davis Canyon noise analysis: Revision 2

    International Nuclear Information System (INIS)

    1985-11-01

    A study was performed as part of the Civilian Radioactive Waste Management Program to quantify the level and effect of noise from the various major phases of development of the proposed potentially acceptable nuclear waste repository site at Davis Canyon, Utah. This report contains the results of a predictive noise level study for the site characterization, repository construction, and repository operational phases. Included herein are graphic representations of energy averaged sound levels, and of audibility levels representing impact zones expected during each phase. Sound levels from onsite and offsite activity including traffic on highways and railroad routes are presented in isopleth maps. A description of the Environmental Noise Prediction Model used for the study, the study basis and methodologies, and actual modeling data are provided. Noise and vibration levels from blasting are also predicted and evaluated. Protective noise criteria containing a margin of safety are used in relation to residences, schools, churches, noise-sensitive recreation areas, and noise-sensitive biological resources. Protective ground motion criteria for ruins and delicate rock formation in Canyonlands National Park and for human annoyance are used in the evaluation of blasting. The evaluations provide the basis for assessing the noise impacts from the related activities at the proposed repository. 45 refs., 21 figs., 15 tabs

  18. Evaluation of regional and local atmospheric dispersion models for the analysis of traffic-related air pollution in urban areas

    Science.gov (United States)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-10-01

    Dispersion of road transport emissions in urban metropolitan areas is typically simulated using Gaussian models that ignore the turbulence and drag induced by buildings, which are especially relevant for areas with dense downtown cores. To consider the effect of buildings, street canyon models are used but often at the level of single urban corridors and small road networks. In this paper, we compare and validate two dispersion models with widely varying algorithms, across a modelling domain consisting of the City of Montreal, Canada accounting for emissions of more 40,000 roads. The first dispersion model is based on flow decomposition into the urban canopy sub-flow as well as overlying airflow. It takes into account the specific height and geometry of buildings along each road. The second model is a Gaussian puff dispersion model, which handles complex terrain and incorporates three-dimensional meteorology, but accounts for buildings only through variations in the initial vertical mixing coefficient. Validation against surface observations indicated that both models under-predicted measured concentrations. Average weekly exposure surfaces derived from both models were found to be reasonably correlated (r = 0.8) although the Gaussian dispersion model tended to underestimate concentrations around the roadways compared to the street canyon model. In addition, both models were used to estimate exposures of a representative sample of the Montreal population composed of 1319 individuals. Large differences were noted whereby exposures derived from the Gaussian puff model were significantly lower than exposures derived from the street canyon model, an expected result considering the concentration of population around roadways. These differences have large implications for the analyses of health effects associated with NO2 exposure.

  19. Safety of street: The role of street design

    Science.gov (United States)

    Rashid, Suhaila Abdul; Wahab, Mohammad Hussaini; Rani, Wan Nurul Mardiah Wan Mohd.; Ismail, Syuhaida

    2017-10-01

    Living in the cities poses many challenges for the vulnerable group of user especially women where they are exposed to many issues related to safety. With the changing of lifestyle and demands, women are expected to play multiple roles in the society and working is one of the tasks. When women are expected to be working as men do, they are no longer occupied at one place. Women nowadays travel on a daily basis and being in the streets is one of the important activities. With the influx of diverse group of people into the country, our streets are dominated by different types of people from different background. Due to these factors, there are possibilities of challenges and threats for users especially women. Therefore, city spaces especially the street become an important public realm for women. The design of the street should be able to make women feel safe as these are the public space where they spend time getting to and from work. The way women perceived their environment might be different from men especially when they fear of crime. Perception of safety will affect the quality of life where fear is an important psychological factor in human life. Living in fear will restrict human's freedom. Therefore, this study aimed to explore women's perception of safety in the streets of Kuala Lumpur. The study adopted a mixed-method approach of qualitative and quantitative in order to understand the safety perception among women that will later establish the relationship between built environment and human psychology. 120 respondents were selected randomly around Jalan Benteng, Jalan Tun Perak, Jalan Melaka and Jalan Melayu. Questionnaire survey forms were distributed and structured observation was conducted at interval period at these streets to examined and assess women's behavior. Finding shows that fear does affect women's perception and physical design of the streets are important in affecting their behavior.

  20. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  1. Red Rock Canyon National Conservation Area Transportation Feasibility Study

    Science.gov (United States)

    2012-07-31

    Red Rock Canyon National Conservation Area is a popular Bureau of Land Management natural area located near Las Vegas, Nevada. Red Rock Canyon experiences heavy congestion on its Scenic Drive and associated parking areas, due to high volumes of visit...

  2. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2012-04-17

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group...). SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG) makes recommendations to the Secretary..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and independent...

  3. Hydrogeology of Middle Canyon, Oquirrh Mountains, Tooele County, Utah

    Science.gov (United States)

    Gates, Joseph Spencer

    1963-01-01

    Geology and climate are the principal influences affecting the hydrology of Middle Canyon, Tooele County, Utah. Reconnaissance in the canyon indicated that the geologic influences on the hydrology may be localized; water may be leaking through fault and fracture zones or joints in sandstone and through solution openings in limestone of the Oquirrh formation of Pennsylvanian and Permian age. Surficial deposits of Quaternary age serve as the main storage material for ground water in the canyon and transmit water from the upper canyon to springs and drains at the canyon mouth. The upper canyon is a more important storage area than the lower canyon because the surficial deposits are thicker, and any zones of leakage in the underlying bedrock of the upper canyon probably would result in greater leakage than would similar outlets in the lower canyon.The total annual discharge from Middle Canyon, per unit of precipitation, decreased between 1910 and 1939. Similar decreases occurred in Parleys Canyon in the nearby Wasatch Range and in other drainage basins in Utah, and it is likely that most of the decrease in discharge from Middle Canyon and other canyons in Utah is due to a change in climate.Chemical analyses of water showed that the high content of sulfate and other constituents in the water from the Utah Metals tunnel, which drains into Middle Canyon, does not have a significant effect on water quality at the canyon mouth. This suggests that much of the tunnel water is lost from the channel by leakage, probably in the upper canyon, during the dry part of the year.Comparison of the 150 acre-feet of water per square mile of drainage area discharged by Middle Canyon in 1947 with the 623 and 543 acre-feet per square mile discharged in 1948 by City Creek and Mill Creek Canyons, two comparable drainage basins in the nearby Wasatch Range, also suggests that there is leakage in Middle Canyon.A hydrologic budget of the drainage basin results in an estimate that about 3,000 acre

  4. Venting of Heat and Carbon Dioxide from Urban Canyons at Night.

    Science.gov (United States)

    Salmond, J. A.; Oke, T. R.; Grimmond, C. S. B.; Roberts, S.; Offerle, B.

    2005-08-01

    Turbulent fluxes of carbon dioxide and sensible heat were observed in the surface layer of the weakly convective nocturnal boundary layer over the center of the city of Marseille, France, during the Expérience sur Sites pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d'Emission (ESCOMPTE) field experiment in the summer of 2001. The data reveal intermittent events or bursts in the time series of carbon dioxide (CO2) concentration and air temperature that are superimposed upon the background values. These features relate to intermittent structures in the fluxes of CO2 and sensible heat. In Marseille, CO2 is primarily emitted into the atmosphere at street level from vehicle exhausts. In a similar way, nocturnal sensible heat fluxes are most likely to originate in the deep street canyons that are warmer than adjacent roof surfaces. Wavelet analysis is used to examine the hypothesis that CO2 concentrations can be used as a tracer to identify characteristics of the venting of pollutants and heat from street canyons into the above-roof nocturnal urban boundary layer. Wavelet analysis is shown to be effective in the identification and analysis of significant events and coherent structures within the turbulent time series. Late in the evening, there is a strong correlation between the burst structures observed in the air temperature and CO2 time series. Evidence suggests that the localized increases of temperature and CO2 observed above roof level in the urban boundary layer (UBL) are related to intermittent venting of sensible heat from the warmer urban canopy layer (UCL). However, later in the night, local advection of CO2 in the UBL, combined with reduced traffic emissions in the UCL, limit the value of CO2 as a tracer of convective plumes in the UBL.

  5. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    Science.gov (United States)

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  6. Self-Localization at Street Intersections.

    Science.gov (United States)

    Fusco, Giovanni; Shen, Huiying; Coughlan, James M

    2014-05-01

    There is growing interest among smartphone users in the ability to determine their precise location in their environment for a variety of applications related to wayfinding, travel and shopping. While GPS provides valuable self-localization estimates, its accuracy is limited to approximately 10 meters in most urban locations. This paper focuses on the self-localization needs of blind or visually impaired travelers, who are faced with the challenge of negotiating street intersections. These travelers need more precise self-localization to help them align themselves properly to crosswalks, signal lights and other features such as walk light pushbuttons. We demonstrate a novel computer vision-based localization approach that is tailored to the street intersection domain. Unlike most work on computer vision-based localization techniques, which typically assume the presence of detailed, high-quality 3D models of urban environments, our technique harnesses the availability of simple, ubiquitous satellite imagery (e.g., Google Maps) to create simple maps of each intersection. Not only does this technique scale naturally to the great majority of street intersections in urban areas, but it has the added advantage of incorporating the specific metric information that blind or visually impaired travelers need, namely, the locations of intersection features such as crosswalks. Key to our approach is the integration of IMU (inertial measurement unit) information with geometric information obtained from image panorama stitchings. Finally, we evaluate the localization performance of our algorithm on a dataset of intersection panoramas, demonstrating the feasibility of our approach.

  7. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  8. Intra-urban and street scale variability of BTEX, NO 2 and O 3 in Birmingham, UK: Implications for exposure assessment

    Science.gov (United States)

    Vardoulakis, Sotiris; Solazzo, Efisio; Lumbreras, Julio

    2011-09-01

    Automatic monitoring networks have the ability of capturing air pollution episodes, as well as short- and long-term air quality trends in urban areas that can be used in epidemiological studies. However, due to practical constraints (e.g. cost and bulk of equipment), the use of automatic analysers is restricted to a limited number of roadside and background locations within a city. As a result, certain localised air pollution hotspots may be overlooked or overemphasised, especially near heavily trafficked street canyons and intersections. This has implications for compliance with regulatory standards and may cause exposure misclassification in epidemiological studies. Apart from automatic analysers, low cost passive diffusion tubes can be used to characterise the spatial variability of air pollution in urban areas. In this study, BTEX, NO 2 and O 3 data from a one-year passive sampling survey were used to characterise the intra-urban and street scale spatial variability of traffic-related pollutants in Birmingham (UK). In addition, continuous monitoring of NO 2, NO x, O 3, CO, SO 2, PM 10 and PM 2.5 from three permanent monitoring sites was used to identify seasonal and annual pollution patterns. The passive sampling measurements allowed us to evaluate the representativeness of a permanent roadside monitoring site that has recorded some of the highest NO 2 and PM 10 concentrations in Birmingham in recent years. Dispersion modelling was also used to gain further insight into pollutant sources and dispersion characteristics at this location. The strong spatial concentration gradients observed in busy streets, as well as the differences between roadside and urban background levels highlight the importance of appropriate positioning of air quality monitoring equipment in cities.

  9. The (Street) Art of Resistance

    DEFF Research Database (Denmark)

    Awad, Sarah H.; Wagoner, Brady; Glaveanu, Vlad Petre

    2017-01-01

    This chapter focuses on the interrelation between resistance, novelty and social change We will consider resistance as both a social and individual phenomenon, a constructive process that articulates continuity and change and as an act oriented towards an imagined future of different communities....... In this account, resistance is thus a creative act having its own dynamic and, most of all, aesthetic dimension. In fact, it is one such visibly artistic form of resistance that will be considered here, the case of street art as a tool of social protest and revolution in Egypt. Street art is commonly defined...... in sharp contrast with high or fine art because of its collective nature and anonymity, its different kind of aesthetics, and most of all its disruptive, ‘anti-social’ outcomes. With the use of illustrations, we will argue here that street art is prototypical of a creative form of resistance, situated...

  10. Sensation Seeking in Street Violence

    DEFF Research Database (Denmark)

    Heinskou, Marie Bruvik; Liebst, Lasse Suonperä

    Sensation seeking leads to violence—runs an influential hypothesis in the social scientific study of violent behavior. Although studies confirm that violence is sometimes structured by sensation-seeking motives, the literature seldom comments on the limits to this explanation of violence....... The present study examines the scale of violence motivated by sensation seeking and the degree to which there are several distinct forms of sensation seeking motives operative in violence, rather than a sensation-seeking motive in the singular. The study draws on a sample of situations from Copenhagen...... involving street violence, which are coded quantitatively and qualitatively. Our analysis shows that sensation seeking only seldom seems to play a role in the structuring of street violence. Moreover, the data indicate that sensation seeking finds expression in street violence situations in two different...

  11. Ecological baseline studies in Los Alamos and Guaje Canyons County of Los Alamos, New Mexico. A two-year study

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T.S. [comp.

    1995-11-01

    During the summers of 1993 and 1994, the Biological Resource Evaluations Team (BRET) of the Environmental Protection Group (ESH-8) conducted baseline studies within two canyon systems, Los Alamos and Guaje Canyons. Biological data was collected within each canyon to provide background and baseline information for Ecological Risk models. Baseline studies included establishment of permanent vegetation plots within each canyon along the elevational gradient. Then, in association with the various vegetation types, surveys were conducted for ground dwelling insects, birds, and small mammals. The stream channels associated with the permanent vegetation plots were characterized and aquatic macroinvertebrates collected within the stream monthly throughout a six-month period. The Geographic Position System (GPS) in combination with ARC INFO was used to map the study areas. Considerable data was collected during these surveys and are summarized in individual chapters.

  12. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande

  13. Mean Streets: An analysis on street level pollution in NYC

    Science.gov (United States)

    Parker, G.

    2017-12-01

    The overarching objective of this study is to quantify the spatial and temporal variability in particulatematter concentration (PM 2.5) along crowded streets in New York City. Due to their fine size and lowdensity PM 2.5 stays longer in the atmosphere and could bypass human nose and throat and penetratedeep in to the lungs and even enter the circulatory system. PM 2.5 is a by-product of automobilecombustion and is a primary cause of respiratory malfunction in NYC. The study would monitor streetlevel concentration of PM2.5 across three different routes that witness significant pedestrian traffic;observations will be conducted along these three routes at different time periods. The study will use theAirBeam community air quality monitor. The monitor tracks PM 2.5 concentration along with GPS, airtemperature and relative humidity. The surface level concentration monitored by AirBeam will becompared with atmospheric concentration of PM 2.5 that are monitored at the NOAA CREST facility onCCNY campus. The lower atmospheric values will be correlated with street level values to assess thevalidity of using of lower atmospheric values to predict street level concentrations. The street levelconcentration will be compared to the air quality forecasted by the New York Department ofEnvironment Conservation to estimate its accuracy and applicability.

  14. A street rubbish detection algorithm based on Sift and RCNN

    Science.gov (United States)

    Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting

    2018-02-01

    This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).

  15. Street trees reduce the negative effects of urbanization on birds.

    Science.gov (United States)

    Pena, João Carlos de Castro; Martello, Felipe; Ribeiro, Milton Cezar; Armitage, Richard A; Young, Robert J; Rodrigues, Marcos

    2017-01-01

    The effects of streets on biodiversity is an important aspect of urban ecology, but it has been neglected worldwide. Several vegetation attributes (e.g. street tree density and diversity) have important effects on biodiversity and ecological processes. In this study, we evaluated the influences of urban vegetation-represented by characteristics of street trees (canopy size, proportion of native tree species and tree species richness)-and characteristics of the landscape (distance to parks and vegetation quantity), and human impacts (human population size and exposure to noise) on taxonomic data and functional diversity indices of the bird community inhabiting streets. The study area was the southern region of Belo Horizonte (Minas Gerais, Brazil), a largely urbanized city in the understudied Neotropical region. Bird data were collected on 60 point count locations distributed across the streets of the landscape. We used a series of competing GLM models (using Akaike's information criterion for small sample sizes) to assess the relative contribution of the different sets of variables to explain the observed patterns. Seventy-three bird species were observed exploiting the streets: native species were the most abundant and frequent throughout this landscape. The bird community's functional richness and Rao's Quadratic Entropy presented values lower than 0.5. Therefore, this landscape was favoring few functional traits. Exposure to noise was the most limiting factor for this bird community. However, the average size of arboreal patches and, especially the characteristics of street trees, were able to reduce the negative effects of noise on the bird community. These results show the importance of adequately planning the urban afforestation process: increasing tree species richness, preserving large trees and planting more native trees species in the streets are management practices that will increase bird species richness, abundance and community functional aspects and

  16. Recreational impacts on Colorado River beaches in Glen Canyon, Arizona

    Science.gov (United States)

    Carothers, Steven W.; Johnson, Robert A.; Dolan, Robert

    1984-07-01

    Recreational impact was measured on eight beaches in Glen Canyon National Recreation Area and 15 beaches in Grand Canyon National Park using permanently located transects and plots. Recreational impact indices included densities of human trash and charcoal and a measure of sand discoloration due to charcoal. Significant increases in the indices occurred on several Glen Canyon beaches over a seven-month period. Sand discoloration became significantly higher over all Glen Canyon beaches during the same time period. All indices were significantly higher in Glen Canyon than on similar Grand Canyon beaches. These differences are probably due to differences in: (a) level of impacts tolerated by the respective management regimes and, (b) in the number of user days among the two National Park Service administrative units. Management alternatives are presented for reversing the present trends of recreational impact on Glen Canyon beaches.

  17. Drug use among street children and adolescents: what helps?

    Directory of Open Access Journals (Sweden)

    Yone Gonçalves de Moura

    Full Text Available The aim of this study was to investigate factors associated to frequent and heavy drug use among street children and adolescents aged 10 to 18 years. A sample of 2,807 street children and adolescents from the 27 Brazilian state capital cities was analyzed. A World Health Organization questionnaire for non-students was adapted for use in Brazil. Data analysis was performed using logistic regression and decision tree models. Factors inversely associated with frequent and heavy drug use were: being age nine to 11 years (OR = 0.1; school attendance (OR = 0.3; daily time (one to five hours spent on the streets (OR = 0.3 and 0.4; not sleeping on the streets (OR = 0.4; being on the streets for less than one year (OR = 0.4; maintenance of some family bonds (OR = 0.5; presence on the streets of a family member (OR = 0.6; not suffering domestic violence (OR = 0.6; being female (OR = 0.8. All of these variables were significant at the p < 0.05 level. The findings suggest that being younger, having family bonds and engagement in school are important protective factors that affect drug use among this population and should be considered in the formulation of public policies.

  18. Submarine canyons off the Coromandel coast

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Nair, R.R.; Murty, P.S.N.

    During the 26th Cruise of I.N.S. `KISTNA', a bathymetric survey was carried out in some detail off the Pondicherry coast. This survey has revealed the existence of three sets of distinctly separate canyons between Cuddalore and Palar River...

  19. Assessment of changes at Glen Canyon Dam

    International Nuclear Information System (INIS)

    Cherry, D.; McCoy, J.; Crandall, S.

    1991-01-01

    This paper describes the complexity associated with the assessment of financial impacts of proposed and actual short-term restrictions at Glen Canyon Dam. The reasons for these restrictions are discussed as well as the methods used to measure their financial impact to Western Area Power Administration

  20. ACUMEN 2012: Atlantic Canyons Undersea Mapping Expeditions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between February and August 2012, a team of NOAA and external partners will conduct a mapping ‘blitz’ focused on deepwater canyons off the northeastern...

  1. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Spengler, R.W.

    1994-01-01

    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41 degrees to 74 degrees. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash

  2. Anatomy of La Jolla submarine canyon system; offshore southern California

    Science.gov (United States)

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  3. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  4. Urban Morphology Influence on Urban Albedo: A Revisit with the S olene Model

    Science.gov (United States)

    Groleau, Dominique; Mestayer, Patrice G.

    2013-05-01

    This heuristic study of the urban morphology influence on urban albedo is based on some 3,500 simulations with the S olene model. The studied configurations include square blocks in regular and staggered rows, rectangular blocks with different street widths, cross-shaped blocks, infinite street canyons and several actual districts in Marseilles, Toulouse and Nantes, France. The scanned variables are plan density, facade density, building height, layout orientation, latitude, date and time of the day. The sky-view factors of the ground and canopy surfaces are also considered. This study demonstrates the significance of the facade density, in addition to the built plan density, as the explanatory geometrical factor to characterize the urban morphology, rather than building height. On the basis of these albedo calculations the puzzling results of Kondo et al. (Boundary-Layer Meteorol 100:225-242, 2001) for the influence of building height are explained, and the plan density influence is quantitatively assessed. It is shown that the albedo relationship with plan and facade densities obtained with the regular square plot configuration may be considered as a reference for all other configurations, with the exception of the infinite street canyon that shows systematic differences for the lower plan densities. The curves representing this empirical relationship may be used as a sort of abacus for all other geometries while an approximate simple mathematical model is proposed, as well as relationships between the albedo and sky-view factors.

  5. Street photography as social interaction

    Directory of Open Access Journals (Sweden)

    Andrea Mubi Brighenti

    2009-06-01

    Full Text Available Street photographers know quite well that taking a picture is a form of social interaction. The birth of this genre of photography, they have been discussing at length about the ethical problems involved in taking pictures of personal strangers in public places without asking permission.

  6. Wary Eyes Monitoring Wall Street

    Science.gov (United States)

    Jacobson, Linda

    2008-01-01

    School business officials kept a close watch on the financial markets this week--and on district investment portfolios and teacher-retirement funds--as stock prices gyrated and once-sound institutions got government bailouts or crumbled into bankruptcy. While financial observers said it was too soon to predict how Wall Street's upheaval might…

  7. Street prostitution zones and crime

    NARCIS (Netherlands)

    Bisschop, P.; Kastoryano, S.; van der Klaauw, B.

    2017-01-01

    This paper studies the effects of legal street prostitution zones on registered and perceived crime. We exploit a unique setting in the Netherlands where these tippelzones were opened in nine cities under different regulation systems. Our difference-in-difference analysis of 25 Dutch cities between

  8. Turkish Straits System and Southern Black Sea: Exchange. Mixing and Shelf / Canyon Interactions

    Science.gov (United States)

    Özsoy, Emin; Gürses, Özgür; Tutsak, Ersin

    2015-04-01

    Based largely on an experiment employing high-resolution measurements carried out in June-July 2013 and re-interpretation of past experiments, the oceanographic variability of the exchange through the Turkish Straits System (TSS) and the interactions with the southern Black Sea are revealed through CTD, ADCP, oxygen and light transmission measurements. The exchange flow is primarily governed by the complex topography spanning two narrow straits, wide continental shelf regions, steep slopes and numerous canyons connecting deep basins. Water properties and currents in the high energy environment depends on the mosaic of fine-scale processes and pathways. The TSS, often approximated as a two-layer system has a hydraulically controlled, upper ocean and straits intensified regime, leading to surface jets and bottom plumes participating in mixing and renewal processes. The exit of the 'Mediterranean effluent' onto the Black Sea past a sill overflow from the Bosphorus passes through two subsequent hydraulic jumps and proceeds along a narrow canyon that veers to the west clear of the greater Bosphorus Canyon finally cascading down the few small canyons. A diffusive spread from the bottom vein of salty water reforms to the east and spills down the Bosphorus Canyon. The suspended particulate signature of the cascade, as well as its influence in hydrography is traced over the shelf and slope waters and through the numerous canyons into deep water where the reformed flow is found to sustain signatures of the past evolution of intrusive waters. An evaluation of the processes is given with reference to model development carried out in parallel to the analyses of the measurements.

  9. Street Pastors : on security, care and faith

    NARCIS (Netherlands)

    van Steden, R.

    2018-01-01

    This paper presents a study of Street Pastors in Cardiff, the capital city of Wales. Street Pastors are Christian volunteers who look after vulnerable people in the night-time economy. In this manner, they provide ‘securitas’ through empathy and care. The motives of Street Pastors for engaging with

  10. School Me, School Me Not, Street Me, Street Me Not…

    DEFF Research Database (Denmark)

    Gravesen, David Thore; Frostholm, Peter Hornbæk

    School Me, School Me Not, Street Me, Street Me Not… (1099) David Thore Gravesen, Peter Hornbæk Frostholm ECER 2016, 14. Communities, Families and Schooling in Educational Research, Session: 14 SES 10 A When picking leaves of a marguerite, whilst doing the “she loves me, she loves me not” game, you....... Obviously, the skaters attend the site to skate. But also other, more vulnerable groupings, use the site to socialize, meet peers and perhaps escape an unreliable and risky family arena. One particular group, the self-named Thugz, primarily formed around a number of young boys with non-Danish ethnic...... milieu. With a criminal gang-like behavior (Hoeben & Weerman 2013; Hviid 2007; Rasmussen 2012) involving petty crime and violence, one would think the group members would be indifferent towards their schooling and future careers. This was not the case. The informants proved to be very aware...

  11. Anatomy of La Jolla submarine canyon system; offshore southern California

    Science.gov (United States)

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  12. Hydrology and sediment budget of Los Laureles Canyon, Tijuana, MX: Modelling channel, gully, and rill erosion with 3D photo-reconstruction, CONCEPTS, and AnnAGNPS

    Science.gov (United States)

    Taniguchi, Kristine; Gudiño, Napoleon; Biggs, Trent; Castillo, Carlos; Langendoen, Eddy; Bingner, Ron; Taguas, Encarnación; Liden, Douglas; Yuan, Yongping

    2015-04-01

    Several watersheds cross the US-Mexico boundary, resulting in trans-boundary environmental problems. Erosion in Tijuana, Mexico, increases the rate of sediment deposition in the Tijuana Estuary in the United States, altering the structure and function of the ecosystem. The well-being of residents in Tijuana is compromised by damage to infrastructure and homes built adjacent to stream channels, gully formation in dirt roads, and deposition of trash. We aim to understand the dominant source of sediment contributing to the sediment budget of the watershed (channel, gully, or rill erosion), where the hotspots of erosion are located, and what the impact of future planned and unplanned land use changes and Best Management Practices (BMPs) will be on sediment and storm flow. We will be using a mix of field methods, including 3D photo-reconstruction of stream channels, with two models, CONCEPTS and AnnAGNPS to constrain estimates of the sediment budget and impacts of land use change. Our research provides an example of how 3D photo-reconstruction and Structure from Motion (SfM) can be used to model channel evolution.

  13. 3D View of Grand Canyon, Arizona

    Science.gov (United States)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as

  14. First characterization and comparison of TEB model simulations with in situ measurements regarding radiation balance in a single urban canyon at the BOKU site (Vienna)

    Science.gov (United States)

    Oswald, Sandro; Trimmel, Heidelinde; Revesz, Michael; Nadeem, Imran; Masson, Valéry; Weihs, Philipp

    2017-04-01

    According to the World Health Organization more than half of the world population lives in a city since 2010. Predictions foresee that by 2030 six out of ten people will live in an urban area. As a result, many cities are expanding in size. Almost 10% of all urban dwellers live in megacities (defined according to UN HABITAT as a city with a population of more than 10 million). There are several effects in cities which strongly influence human health. Visible influences like the severe emissions of air pollutants by industry and traffic (e.g. Mayer H., 1999, Grimmond et al., 2010) are obvious to people but thermal stress in urban areas is only recently recognized for its strong devastating effect on human health. As a consequence, the urban environment virtually influences all weather parameters that have an impact on human comfort and thermal stress. Within this study, we investigate effects of city growth and the development of outlying districts on the local climate of Vienna. We focus particularly on the influence of urban heat island and consequent the risk for heat related illnesses or thermal stress for people. To quantify radiation balance and other important meteorological factors, we performed an extensive field campaign with three types of net radiometer in three different heights at BOKU site in August 2016. The first results indicated a strong correlation (ρ=0.96) between the Town Energy Balance (TEB) model and the measurements of the top net radiometer regarding radiation balance at roof level, meanwhile the TEB results are slightly underestimated. Further check if the measurements are reasonable, a comparison of the input values (global and direct solar radiation) for the TEB simulation with Secondary Standard measurements of ARAD site Wien Hohe Warte shows a deviation under 2% concerning interquartile range on clear sky days. The next steps will enclose TEB simulations, coupled with the mesoscale Weather Research and Forecasting (WRF) model, for

  15. The Code of the Street and Violent Versus Property Crime Victimization.

    Science.gov (United States)

    McNeeley, Susan; Wilcox, Pamela

    2015-01-01

    Previous research has shown that individuals who adopt values in line with the code of the street are more likely to experience violent victimization (e.g., Stewart, Schreck, & Simons, 2006). This study extends this literature by examining the relationship between the street code and multiple types of violent and property victimization. This research investigates the relationship between street code-related values and 4 types of victimization (assault, breaking and entering, theft, and vandalism) using Poisson-based multilevel regression models. Belief in the street code was associated with higher risk of experiencing assault, breaking and entering, and vandalism, whereas theft victimization was not related to the street code. The results suggest that the code of the street influences victimization broadly--beyond violence--by increasing behavior that provokes retaliation from others in various forms.

  16. Street art - vandalismus nebo umění?

    OpenAIRE

    Grabmüllerová, Eva

    2012-01-01

    The diploma thesis ‚Street Art - Vandalism or Art?' deals with a world-wide phenomenon of contemporary art. The thesis focuses on the characterization of street art and history of street art (its origin and development) and analyzes the difference between street art and graffiti. The thesis presents street art techniques as well as notable street artists. The thesis also observes street art scene in the Czech Republic and depicts features that street art has in common with other art movements...

  17. Computer-aided performance monitoring program at Diablo Canyon

    International Nuclear Information System (INIS)

    Nelson, T.; Glynn, R. III; Kessler, T.C.

    1992-01-01

    This paper describes the thermal performance monitoring program at Pacific Gas ampersand Electric Company's (PG ampersand E's) Diablo Canyon Nuclear Power Plant. The plant performance monitoring program at Diablo Canyon uses the THERMAC performance monitoring and analysis computer software provided by Expert-EASE Systems. THERMAC is used to collect performance data from the plant process computers, condition that data to adjust for measurement errors and missing data points, evaluate cycle and component-level performance, archive the data for trend analysis and generate performance reports. The current status of the program is that, after a fair amount of open-quotes tuningclose quotes of the basic open-quotes thermal kitclose quotes models provided with the initial THERMAC installation, we have successfully baselined both units to cycle isolation test data from previous reload cycles. Over the course of the past few months, we have accumulated enough data to generate meaningful performance trends and, as a result, have been able to use THERMAC to track a condenser fouling problem that was costing enough megawatts to attract corporate-level attention. Trends from THERMAC clearly related the megawatt loss to a steadily degrading condenser cleanliness factor and verified the subsequent gain in megawatts after the condenser was cleaned. In the future, we expect to rebaseline THERMAC to a beginning of cycle (BOC) data set and to use the program to help track feedwater nozzle fouling

  18. COMMON GROUNDS BETWEEN PRINTMAKING AND STREET ART

    Directory of Open Access Journals (Sweden)

    Burcak Balamber

    2016-09-01

    Full Text Available Graffiti movement, born as a result of an effort of the youth, who felt themselves socially excluded and alone, to show their existence and identities during the 1960s, expanded its scope owing to street based artists such as Keith Haring and Jean-Michel Basquiat entering to the galleries, and transformed into an artistic manner of expression having aesthetic concerns by adopting a more inclusive definition ‘street art’. During this transformation of street art,street artists experimented with various methods from many different disciplines and hence created works in a wide range of varieties in terms of plastic and artistic values. Among these disciplines, printmakinghastaken its own place in street artas a discipline thatdeeply influenced street artists.Printmaking has fascinated street artists and become a part of their production process, not only with its philosophy sharing common grounds with street art and advantages in terms of its tecnical practices but also its unique plastic and linear values.Thanks to the opportunities of printmaking, street art has succeeded creating a tremendous impression worldwide, and even positioned itself into today’s greatest museums/gallery halls. This article aims to show how and in what way printmaking has influenced street art being in a transformation since the 1960s, and to put an emphasis on theimportance of printmaking on today’s street art.

  19. New supply for canyon fire foam system

    International Nuclear Information System (INIS)

    Gainey, T.

    1995-01-01

    The raw water supply for the B-Plant Canyon fire foam system is being replaced. The 4 inche water supply line to the foam system is being rerouted from the 6 inches raw water line in the Pipe Gallery to the 10 inches raw water main in the Operating Gallery. This document states the acceptance criteria for the flushing and testing to be performed by the contractor

  20. Source contributions to PM2.5 and PM10 at an urban background and a street location

    Science.gov (United States)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Röckmann, T.; Dusek, U.

    2013-06-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC and OC concentrations was also determined, to distinguish the contribution from "modern" carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM2.5 and PM10 is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The 14C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM2.5 and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM10. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  1. Renaming Zagreb Streets and Squares

    Directory of Open Access Journals (Sweden)

    Jelena Stanić

    2009-06-01

    Full Text Available The paper deals with changes in street names in the city of Zagreb. Taking the Lower Town (Donji grad city area as an example, the first part of the paper analyses diachronic street name changes commencing from the systematic naming of streets in 1878. Analysis of official changes in street names throughout Zagreb’s history resulted in categorisation of five periods of ideologically motivated naming/name-changing: 1. the Croatia modernisation period, when the first official naming was put into effect, with a marked tendency towards politicisation and nationalisation of the urban landscape; 2. the period of the Kingdom of the Serbs, Croatians and Slovenians/Yugoslavia, when symbols of the new monarchy, the idea of the fellowship of the Southern Slavs, Slavenophilism and the pro-Slavic geopolitical orientation were incorporated into the street names, and when the national idea was highly evident and remained so in that process; 3. the period of the NDH, the Independent State of Croatia, with decanonisation of the tokens of the Yugoslavian monarchy and the Southern Slavic orientation, and reference to the Ustashi and the German Nazi and Italian Fascist movement; 4. the period of Socialism, embedding the ideals and heroes of the workers’ movement and the War of National Liberation into the canonical system; and, 5. the period following the democratic changes in 1990, when almost all the signs of Socialism and the Communist/Antifascist struggle were erased, with the prominent presence of a process of installing new references to early national culture and historical tradition. The closing part of the paper deals with public discussions connected with the selection of a location for a square to bear the name of the first president of independent Croatia, Franjo Tuđman. Analysis of these public polemics shows two opposing discourses: the right-wing political option, which supports a central position for the square and considers the chosen area to

  2. Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland.

    Science.gov (United States)

    Baynes, Edwin R C; Attal, Mikaël; Niedermann, Samuel; Kirstein, Linda A; Dugmore, Andrew J; Naylor, Mark

    2015-02-24

    Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (10(0) to 10(3) h). However, their impacts are rarely considered in studies of long-term landscape evolution (>10(3) y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic (3)He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m(3)/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene.

  3. Pecan Street Grid Demonstration Program. Final technology performance report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  4. quality and sustainability of urban street lighting: a study of warri

    African Journals Online (AJOL)

    user

    The results of the model and the actual measurement of the Street light that was taken for some time ... telecommunication networks, electricity generation/ ... system is a valuable investment because it enhances .... performance of street lighting, [14], [15], [16] and ... on an assessment of the effectiveness of luminaire of.

  5. RECALIBRATION OF H CANYON ONLINE SPECTROPHOTOMETER AT EXTENDED URANIUM CONCENTRATION

    International Nuclear Information System (INIS)

    Lascola, R

    2008-01-01

    The H Canyon online spectrophotometers are calibrated for measurement of the uranium and nitric acid concentrations of several tanks in the 2nd Uranium Cycle.[1] The spectrometers, flow cells, and prediction models are currently optimized for a process in which uranium concentrations are expected to range from 0-15 g/L and nitric acid concentrations from 0.05-6 M. However, an upcoming processing campaign will involve 'Super Kukla' material, which has a lower than usual enrichment of fissionable uranium. Total uranium concentrations will be higher, spanning approximately 0-30 g/L U, with no change in the nitric acid concentrations. The new processing conditions require the installation of new flow cells with shorter path lengths. As the process solutions have a higher uranium concentration, the shorter path length is required to decrease the absorptivity to values closer to the optimal range for the instrument. Also, new uranium and nitric acid prediction models are required to span the extended uranium concentration range. The models will be developed for the 17.5 and 15.4 tanks, for which nitric acid concentrations will not exceed 1 M. The restricted acid range compared to the original models is anticipated to reduce the measurement uncertainty for both uranium and nitric acid. The online spectrophotometers in H Canyon Second Uranium Cycle were modified to allow measurement of uranium and nitric acid for the Super Kukla processing campaign. The expected uranium concentrations, which are higher than those that have been recently processed, required new flow cells with one-third the optical path length of the existing cells. Also, new uranium and nitric acid calibrations were made. The estimated reading uncertainties (2σ) for Tanks 15.4 and 17.5 are ∼5% for uranium and ∼25% for nitric acid

  6. Structural value of Yerevan streets

    Directory of Open Access Journals (Sweden)

    Avetisyan Arsen Grantovich

    2015-04-01

    Full Text Available The absence of the methods of urban analysis in the process of urban development of Yerevan is the reason of urban planning activities that tend to decrease the urban value of Yerevan territories. Meanwhile the studies in the sphere of urban planning and urban analysis prove the dependence of the life in the city on its structure and distribution of the functions. The mentioned issue highlights the importance of urban analysis. The paper discusses space syntax, which is one of the initial methods of urban analysis. The basic concept of Space syntax is based on the assumption that urban fabric can be presented and studied as a power graph. The method provides the measures that evaluate the land use, traffic and pedestrian movement, land value and even carbon emissions. The paper discusses also recent attempts of integration of space syntax method into GIS environment. GIS databases provide researchers with vast amount of urban data. Analyses presented in the current paper were performed on the basis of the open street map, which was imported from the GIS environment. With the application of space syntax methods analysis of connectivity, integration choice (betweenness and depth from the city center were performed to evaluate the structural value of Yerevan streets. Municipal regions of Yerevan were classified by the level of their accessibility and by their distances from the city center on the base of the results of depth measures from the city center. Evaluation of the street network aims to define the most integrated and centrally positioned parts of the city. These areas can be locations for the organization of sub centers of Yerevan in the municipal regions.

  7. Blossoms in the Dust: Street Children in Africa.

    Science.gov (United States)

    Velis, Jean-Pierre

    For many African children today, the grim realities of everyday life are far removed from models of education based on traditional wisdom. Part of an attempt to draw the attention of a wide public to the situation of street children, this book focuses on the educational aspects of a problem from which no country is spared. The book focuses…

  8. Seri Rama: converting a shadow play puppet to Street Fighter.

    Science.gov (United States)

    Ghani, D B A

    2012-01-01

    Shadow puppet plays, a traditional Malaysian theater art, is slowly losing its appeal to adolescents, who prefer computer games. To help reverse this decline, the authors incorporated the traditional Seri Rama character into the Street Fighter video game. Using modeling, texturing, and animation, they developed a 3D Seri Rama prototype. Users can control Seri Rama with a PlayStation game controller.

  9. Spatial Character Analysis of Streets as Public Spaces: The Case of Izmit Hurriyet and Cumhuriyet Street, Turkey

    Science.gov (United States)

    Özbayraktar, Mehtap; Pekdemir, Merve; Mırzaliyeva, Gumru

    2017-10-01

    strangers; the house of the society; the main elements of urban existence; spaces as changeable as life; symbolic models of urban problems; and symbols of free city. However, the role of streets, which are so important in our daily life, has only been reduced to pass. They have been divided into two between pedestrians and vehicles and lost many social functions of theirs. Accordingly, the present study aims to answer the question of whether the abovementioned features and characters of streets as public spaces are still maintained with special reference to a street, which is one of the main streets of Izmit, Turkey. The street, which was called İmre Tökeli Avenue, Hamidiye Street (1908), and Demiryolu Tekeli Street (1948) in the course of time, is currently called Hürriyet and Cumhuriyet Street. The people also call it “walking road”. According to the sources, the history of this street is the history of Izmit as well. The past and present spatial character of the study area will be revealed through archive reviews, city development plants, face-to-face interviews, and surveys. Problems will be determined, and recommendations will be developed.

  10. PLC based Smart Street Lighting Control

    OpenAIRE

    D.V.Pushpa Latha; K.R.Sudha; Swati Devabhaktuni

    2013-01-01

    Conventional street lighting systems in most of the areas are Online at regular intervals of time irrespective of the seasonal variations. The street lights are simply switched on at afternoon and turned off in the morning. The consequence is that a large amount of Power is wasted meaninglessly. As energy consumption is an issue of increasing interest, possible energy savings in public street lighting systems are recently discussed from different viewpoints. The purpose of this work is to des...

  11. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2013-02-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning..., the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and independent...

  12. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning... Federal advisory committee, the AMWG, a technical work group, a Grand Canyon Monitoring and Research...

  13. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2010-06-17

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection with...

  14. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2011-05-02

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning..., the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and independent...

  15. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Science.gov (United States)

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  16. [Street prostitution and drug addiction].

    Science.gov (United States)

    Ishøy, Torben; Ishøy, Pelle Lau; Olsen, Lis Raabaek

    2005-09-26

    Street-based prostitution accounts for 10% of the prostitution activity in Denmark, mainly involving female drug addicts. We studied a group of women with a common history of substance abuse and their comparative psychosocial characteristics, correlated with whether they had previously been a prostitute or not. Their psychic symptoms were evaluated and compared with those of controls. 27 females receiving maintenance treatment for substance abuse completed a questionnaire dealing with their social background, substance abuse profile, and history of sexual abuse and prostitution, as well as their current health status, including SCL-90. The scores were compared to those of a control group of an age- and gender-matched Danish standard population. Neglect in childhood and adulthood corresponded to international findings. 14 of the women had previous sex-trading experience, and early use of heroin and cocaine was a predictor for starting a career in prostitution. The SCL-90 scores for the dimensions of somatization and depression were significantly higher for drug-abusing women in general than in the control group. The scores of drug-abusing former prostitutes were similarly significantly higher on most of the dimensions except the hostility dimension when compared to those of drug-abusing women who had never been involved in prostitution. Rape and domestic violence were characteristic phenomena among drug-abusing prostitutes (p prostitution. Various psychosocial stress factors among street-based prostitutes indicate the need for broader psychiatric approaches in Danish drug addiction maintenance programmes.

  17. Georges Charpak street sign unveiled

    CERN Multimedia

    Paola Catapano

    2011-01-01

    While it might not be the only French street named in honour of the late Georges Charpak, who passed away in September 2010 at the age of 87, the street chosen by the mayor of Saint-Genis-Pouilly is certainly the only one located directly opposite the CERN "campus". The road overlooks buildings on the CERN Meyrin site, where Georges Charpak spent most of his career as a physicist, conducting the research that won him the Nobel Prize in Physics in 1992.   From left to right: Sigurd Lettow, Dominique Charpak and the mayor of Saint-Genis-Pouilly. The unveiling took place on 17 October and was organised by the mayor of Saint-Genis-Pouilly. George Charpak’s wife, Dominique, and Sigurd Lettow, CERN Director of Administration and General Infrastructure, attended what was an intimate and touching ceremony. The mayor’s speech at the event praised Georges’ commitment to scientific education. The highlight of the event, however, was a witty and humorous ...

  18. Perspective view over the Grand Canyon, Arizona

    Science.gov (United States)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  19. A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment

    Science.gov (United States)

    Wang, Chenghao; Wang, Zhi-Hua; Yang, Jiachuan; Li, Qi

    2018-02-01

    Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.

  20. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  1. The Black Canyon of the Gunnison: Today and Yesterday

    Science.gov (United States)

    Hansen, Wallace R.

    1965-01-01

    Since the early visit of Captain John William Gunnison in the middle of the last century, the Black Canyon of the Gunnison has stirred mixed apprehension and wonder in the hearts of its viewers. It ranks high among the more awesome gorges of North America. Many great western canyons are as well remembered for their brightly colored walls as for their airy depths. Not so the Black Canyon. Though it is assuredly not black, the dark-gray tones of its walls and the hazy shadows of its gloomy depths join together to make its name well deserved. Its name conveys an impression, not a picture. After the first emotional impact of the canyon, the same questions come to the minds of most reflective viewers and in about the following order: How deep is the Black Canyon, how wide, how does it compare with other canyons, what are the rocks, how did it form, and how long did it take? Several western canyons exceed the Black Canyon in overall size. Some are longer; some are deeper; some are narrower; and a few have walls as steep. But no other canyon in North American combines the depth, narrowness, sheerness, and somber countenance of the Black Canyon. In many places the Black Canyon is as deep as it is wide. Between The Narrows and Chasm View in the Black Canyon of the Gunnison National Monument (fig. 15) it is much deeper than wide. Average depth in the monument is about 2,000 feet, ranging from a maximum of about 2,700 feet, north of Warner Point (which also is the greatest depth anywhere in the canyon), to a minimum of about 1,750 feet at The Narrows. The stretch of canyon between Pulpit Rock and Chasm View, including The Narrows, though the shallowest in the monument, is also the narrowest, has some of the steepest walls, and is, therefore, among the most impressive segments of the canyon (fig. 3). Profiles of several well-known western canyons are shown in figure 1. Deepest of these by far is Hells Canyon of the Snake, on the Idaho-Oregon border. Clearly, it dwarfs the

  2. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  3. Adolescent Hopefulness in Tanzania: Street Youth, Former Street Youth, and School Youth

    Science.gov (United States)

    Nalkur, Priya G.

    2009-01-01

    This study compares hope in street youth, former street youth, and school youth (aged 12-18) in Tanzania. Responding to Snyder's hope theory, the author argues that not only personal agency but also the stability of living context (street, shelter, home) shapes hopefulness. Employing qualitative and quantitative analyses, the author presents a…

  4. Personal and Familial Properties of Street Children--"Street Children: The Forgotten or Not Remembered Ones"

    Science.gov (United States)

    Özbas, Mehmet

    2015-01-01

    With this research it is aimed to determine the personal traits of Street Children depending on them and also the socio-economic variables of Street Children resulting from their families. For this main aim in the research process, it is provided to have communication directly with the parents of Street Children using one-to-one and face-to-face…

  5. A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece)

    Science.gov (United States)

    Giannaros, Christos; Nenes, Athanasios; Giannaros, Theodore M.; Kourtidis, Konstantinos; Melas, Dimitrios

    2018-03-01

    This study presents a comprehensive modeling approach for simulating the spatiotemporal distribution of urban air temperatures with a modeling system that includes the Weather Research and Forecasting (WRF) model and the Single-Layer Urban Canopy Model (SLUCM) with a modified treatment of the impervious surface temperature. The model was applied to simulate a 3-day summer heat wave event over the city of Athens, Greece. The simulation, using default SLUCM parameters, is capable of capturing the observed diurnal variation of urban temperatures and the Urban Heat Island (UHI) in the greater Athens Area (GAA), albeit with systematic biases that are prominent during nighttime hours. These biases are particularly evident over low-intensity residential areas, and they are associated with the surface and urban canopy properties representing the urban environment. A series of sensitivity simulations unravels the importance of the sub-grid urban fraction parameter, surface albedo, and street canyon geometry in the overall causation and development of the UHI effect. The sensitivities are then used to determine optimal values of the street canyon geometry, which reproduces the observed temperatures throughout the simulation domain. The optimal parameters, apart from considerably improving model performance (reductions in mean temperature bias from 0.30 °C to 1.58 °C), are also consistent with actual city building characteristics - which gives confidence that the model set-up is robust, and can be used to study the UHI in the GAA in the anticipated warmer conditions in the future.

  6. Quality Analysis of Open Street Map Data

    Science.gov (United States)

    Wang, M.; Li, Q.; Hu, Q.; Zhou, M.

    2013-05-01

    Crowd sourcing geographic data is an opensource geographic data which is contributed by lots of non-professionals and provided to the public. The typical crowd sourcing geographic data contains GPS track data like OpenStreetMap, collaborative map data like Wikimapia, social websites like Twitter and Facebook, POI signed by Jiepang user and so on. These data will provide canonical geographic information for pubic after treatment. As compared with conventional geographic data collection and update method, the crowd sourcing geographic data from the non-professional has characteristics or advantages of large data volume, high currency, abundance information and low cost and becomes a research hotspot of international geographic information science in the recent years. Large volume crowd sourcing geographic data with high currency provides a new solution for geospatial database updating while it need to solve the quality problem of crowd sourcing geographic data obtained from the non-professionals. In this paper, a quality analysis model for OpenStreetMap crowd sourcing geographic data is proposed. Firstly, a quality analysis framework is designed based on data characteristic analysis of OSM data. Secondly, a quality assessment model for OSM data by three different quality elements: completeness, thematic accuracy and positional accuracy is presented. Finally, take the OSM data of Wuhan for instance, the paper analyses and assesses the quality of OSM data with 2011 version of navigation map for reference. The result shows that the high-level roads and urban traffic network of OSM data has a high positional accuracy and completeness so that these OSM data can be used for updating of urban road network database.

  7. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number

    Science.gov (United States)

    Boogaard, Hanna; Kos, Gerard P. A.; Weijers, Ernie P.; Janssen, Nicole A. H.; Fischer, Paul H.; van der Zee, Saskia C.; de Hartog, Jeroen J.; Hoek, Gerard

    2011-01-01

    Policies to reduce outdoor air pollution concentrations are often assessed on the basis of the regulated pollutants. Whether these are the most appropriate components to assess the potential health benefits is questionable, as other health-relevant pollutants may be more strongly related to traffic. The aim of this study is to compare the contrast in concentration between major roads and (sub)urban background for a large range of pollutants and to analyze the magnitude of the measured difference in the street - background for major streets with different street configurations. Measurements of PM 10, PM 2.5, particle number concentrations (PNC), black carbon (BC), elemental composition of PM 10 and PM 2.5 and NO x were conducted simultaneously in eight major streets and nine (sub)urban background locations in the Netherlands. Measurements were done six times for a week during a six month period in 2008. High contrasts between busy streets and background locations in the same city were found for chromium, copper and iron (factor 2-3). These elements were especially present in the coarse fraction of PM. In addition, high contrasts were found for BC and NO x (factor 1.8), typically indicators of direct combustion emissions. The contrast for PNC was similar to BC. NO 2 contrast was lower (factor 1.5). The largest contrast was found for two street canyons and two streets with buildings at one side of the street only. The contrast between busy streets and urban background in NO 2 was less than the contrast found for BC, PNC and elements indicative of non-exhaust emissions, adding evidence that NO 2 is not representing (current) traffic well. The study supports a substantial role for non-exhaust emissions including brake- and tyre wear and road dust in addition to direct combustion emissions. Significant underestimation of disease burden may occur when relying too much on the regulated components.

  8. RACE, CODE OF THE STREET, AND VIOLENT DELINQUENCY: A MULTILEVEL INVESTIGATION OF NEIGHBORHOOD STREET CULTURE AND INDIVIDUAL NORMS OF VIOLENCE*

    Science.gov (United States)

    Stewart, Eric A.; Simons, Ronald L.

    2011-01-01

    The study outlined in this article drew on Elijah Anderson’s (1999) code of the street perspective to examine the impact of neighborhood street culture on violent delinquency. Using data from more than 700 African American adolescents, we examined 1) whether neighborhood street culture predicts adolescent violence above and beyond an adolescent’s own street code values and 2) whether neighborhood street culture moderates individual-level street code values on adolescent violence. Consistent with Anderson’s hypotheses, neighborhood street culture significantly predicts violent delinquency independent of individual-level street code effects. Additionally, neighborhood street culture moderates individual-level street code values on violence in neighborhoods where the street culture is widespread. In particular, the effect of street code values on violence is enhanced in neighborhoods where the street culture is endorsed widely. PMID:21666759

  9. Social and economic characteristics of street youth by gender and level of street involvement in Eldoret, Kenya.

    Directory of Open Access Journals (Sweden)

    Rebecca Sorber

    Full Text Available Street-connected youth are a neglected and vulnerable population, particularly in resource-constrained settings. The development of interventions and supports for this population requires insight into how they live. This study describes the social and economic characteristics of a convenience sample of street youth (SY in Eldoret, Kenya.Participants were eligible if they were aged 12-21, living in Eldoret, spending days only (part-time, or nights and days on the street (full-time and able and willing to consent or assent. Data were collected using a standardized interview conducted in English or Kiswahili. Binary dependent variables were having been arrested and/or jailed, and first priority for spending money (food vs. other. Nominal categorical dependent variables included major source of support, and major reason for being street-involved. Multivariable analysis used logistic regression models to examine the association of gender and level of street-involvement with social and economic factors of interest adjusting for age and length of time on the street. Data were analyzed using SAS 9.3.Of the 200 SY enrolled, 41% were female, mean age of 16.3 years; 71% were on the street full-time, and 29% part-time. Compared with part-time SY, full-time SY were more likely to have been arrested (Adjusted Odds Ratio [AOR]: 2.33, 95% Confidence Interval [95%CI]:1.01-5.35, name food as their first spending priority (AOR: 2.57, 95%CI:1.03-6.45, have left home due to violence (AOR: 5.54, 95%CI: 1.67-18.34, and more likely to report friends on the street as a major source of support (AOR: 3.59, 95% CI: 1.01-12.82. Compared with females, males were more likely to have ever been arrested (AOR: 2.66, 95%CI:1.14-6.18, and to have ever been jailed (AOR: 3.22, 95%CI:1.47-7.02.These results suggest a high degree of heterogeneity and vulnerability among SY in this setting. There is an urgent need for interventions taking into consideration these characteristics.

  10. MAPCERN links to Google Street View

    CERN Multimedia

    Matilda Heron

    2015-01-01

    CERN’s online maps, MAPCERN, now have the added bonus of Google Street View, thanks to the new release of images of many CERN sites captured by Google.   New Street View images of CERN sites have been added to MAPCERN, see bottom-right-hand image in the screenshot above.   Google Street View, an integrated service of Google Maps introduced in 2007, links 360-degree panoramic photos into a virtual tour. CERN and Google began collaborating on this Street View project in 2010 and now these Street View images have been embedded into MAPCERN, accessible by clicking the “Street View” tab in MAPCERN’s bottom-right-hand window. If you need to locate a building at CERN, or plan an operation on some equipment, you can save time by using the Street View images to check out the area in advance. The CERN Meyrin site has been fully mapped, as well as the surfaces of the eight LHC points, BA2 and BA3. New Street View images of CERN, including the Pr...

  11. CURB-BASED STREET FLOOR EXTRACTION FROM MOBILE TERRESTRIAL LIDAR POINT CLOUD

    Directory of Open Access Journals (Sweden)

    S. Ibrahim

    2012-07-01

    Full Text Available Mobile terrestrial laser scanners (MTLS produce huge 3D point clouds describing the terrestrial surface, from which objects like different street furniture can be generated. Extraction and modelling of the street curb and the street floor from MTLS point clouds is important for many applications such as right-of-way asset inventory, road maintenance and city planning. The proposed pipeline for the curb and street floor extraction consists of a sequence of five steps: organizing the 3D point cloud and nearest neighbour search; 3D density-based segmentation to segment the ground; morphological analysis to refine out the ground segment; derivative of Gaussian filtering to detect the curb; solving the travelling salesman problem to form a closed polygon of the curb and point-inpolygon test to extract the street floor. Two mobile laser scanning datasets of different scenes are tested with the proposed pipeline. The results of the extracted curb and street floor are evaluated based on a truth data. The obtained detection rates for the extracted street floor for the datasets are 95% and 96.53%. This study presents a novel approach to the detection and extraction of the road curb and the street floor from unorganized 3D point clouds captured by MTLS. It utilizes only the 3D coordinates of the point cloud.

  12. Street as Sustainable City Structural Element

    Science.gov (United States)

    Leyzerova, A. V.; Bagina, E. J.

    2017-11-01

    Sustainability in architecture is nowadays of particular significance in the course of globalization and information density. The technospehere spontaneous development poses a threat to the sustainability of traditional urban forms where a street is one of the essential forming elements in the urban structure. The article proposes to consider formally compositional street features in relation to one of the traditional streets in the historic center of Ekaterinburg. The study examines the street-planning structure, the development of its skeleton elements, silhouette and fabric elevation characteristics as well as the scale characteristics and visual complexity of objects. The study provided architectural and artistic aspects of street sustainability, and limits of the appropriate scale and composition consistency under which the compatibility of alternative compositional forms existing at different times is possible.

  13. Cleaning up the Streets of Denver

    International Nuclear Information System (INIS)

    Stegen, R.L.; Wood, T.R.; Hackett, J.R.; Sogue, A.

    2006-01-01

    Between 1913 and 1924, several Denver area facilities extracted radium from carnotite ore mined from the Paradox basin region of Colorado. Tailings or abandoned ores from these facilities were apparently incorporated into asphalt used to pave approximately 7.2 kilometers (4.5 miles) of streets in Denver. A majority of the streets are located in residential areas. The radionuclides are bound within the asphalt matrix and pose minimal risk unless they are disturbed. The City and County of Denver (CCoD) is responsible for controlling repairs and maintenance on these impacted streets. Since 2002, the CCoD has embarked on a significant capital improvement project to remove the impacted asphalt for secure disposal followed by street reconstruction. To date, Parsons has removed approximately 55 percent of the impacted asphalt. This paper discusses the history of the Denver Radium Streets and summarizes on-going project efforts. (authors)

  14. Thermal Comfort Assessment in The Open Space in Bandung Case Study Dago Street and Riau Street

    Science.gov (United States)

    Sugangga, M.; Janesonia, K. I.; Illiyin, D. F.; Donny Koerniawan, M.

    2018-05-01

    Bandung’s temperature has been higher since last years. This phenomenon affects the level of thermal comfort in open space. One indicator that determines the thermal comfort level is the type of activity performed by the open space user. Riau Street and Dago Street are corridors that are often used by the people for strolling, jogging, shopping. Dago Street has special event every Sunday namely car free day. Both corridors have different orientation; Dago Street is North to South corridor while Riau Street’s is West to East. The goal of the study is to compare people’s perception of thermal comfort in both corridors. This research uses two methods, namely qualitative method and quantitative method. Based on the results of qualitative analysis found that the thermal conditions in Dago Street more comfortable than the Riau Street. The result of quantitative analysis found that the average PET (thermal comfort indices) value of Dago Street was at 27.5 °C PET and Riau Street 28.6 °C PET. Dago Street is considered more convenient because it has a lower PET value than Riau Street. The people perception of thermal comfort is very important to start the steps for designing the orientation of street in urban design.

  15. Climate and sea level controlled sedimentation processes in two submarine canyons off NW-Africa

    OpenAIRE

    Pierau, Roberto

    2008-01-01

    This study focuses on the trigger mechanisms of gravity-driven sediment transport in two submarine canyons at the passive continental margin off NW-Africa during the past 240 kyr. The sedimentary records allow to determine the turbidite emplacement times based on high resolution age models. The sediment textures of the turbidites were studied by using X-ray radiographies. The sedimentary properties like the terrigenous silt size distribution and XRF-core scanning element data allow to identif...

  16. Estimation of air quality improvement at road and street intersections

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, P.G. [Royal Inst. of Technology, Stockholm (Sweden). Traffic and Transport Planning

    1995-12-31

    There has always been a very great problem to quantify the detrimental exhaust air pollution related to the traffic flow, especially at road and street intersections. Until now model calculations have been developed mainly for the links between the intersections. In an attempt to remedy this situation the author has developed a method of estimating emissions on the micro level from motor vehicles at intersections as a help for infrastructural design related to improved environmental conditions. Very parsimonious knowledge exists regarding the deceleration and acceleration patterns at road- and street intersections. Not many surveys are done neither in Sweden nor within other countries. Evidently, the need for knowledge regarding deceleration and acceleration behaviour on the micro level has until now not been given priority. In traffic safety related research studies have been done describing the drivers` deceleration and acceleration behaviour and the vehicles` braking performance. Those results give deceleration data for extreme situations and are not useful for describing normal decelerations and accelerations at road- and street intersections. Environment related problems within the traffic flow analysis are now accentuating the need for the studying of special deceleration and acceleration behaviours in combination with an alternative design of the road and street infrastructure. There is a big difference in different vehicles` amount of emitted exhaust pollutions during the passing of intersections depending on the vehicles` speed levels related to their deceleration and acceleration levels. (author)

  17. Smart street lighting solution for remote rural areas of India

    Science.gov (United States)

    Hajra, Debdyut

    2017-09-01

    Though many smart street lighting solutions is available for urban areas, comparatively fewer solutions exist for rural areas. In the recent times, village streets have been illuminated with artificial lights as a part of rural development drive undertaken by the governments of respective countries. But, vehicle and pedestrian traffic is quite low through village roads. Hence, if light remains on all night long on such roads, then there is a huge wastage of energy. This calls for solutions to reduce this energy loss in an efficient manner. There are a lot of factors which must be kept in mind while designing solutions. Many villages lack the proper infrastructure to support new technologies. Communication facilities are limited, lack of local technically skilled labor, lack of security, etc. After evaluating these opportunities and challenges, an attempt has been made to devise a smart street lighting solution tailored for remote rural areas in India. One part of the solution discusses how intensity of the LED street lights can be varied according to the ambient lighting conditions using sensors and LED switching in LED matrix. An artificial intelligence (AI) has also been modelled to identify traffic conditions using PIR sensors and object identification through image processing and independently control the lights. It also tracks the performance and status of each light. It would send this data and necessary notifications to a distant control center for human evaluation. This solution is also applicable for other rural areas throughout the world.

  18. Estimation of air quality improvement at road and street intersections

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, P G [Royal Inst. of Technology, Stockholm (Sweden). Traffic and Transport Planning

    1996-12-31

    There has always been a very great problem to quantify the detrimental exhaust air pollution related to the traffic flow, especially at road and street intersections. Until now model calculations have been developed mainly for the links between the intersections. In an attempt to remedy this situation the author has developed a method of estimating emissions on the micro level from motor vehicles at intersections as a help for infrastructural design related to improved environmental conditions. Very parsimonious knowledge exists regarding the deceleration and acceleration patterns at road- and street intersections. Not many surveys are done neither in Sweden nor within other countries. Evidently, the need for knowledge regarding deceleration and acceleration behaviour on the micro level has until now not been given priority. In traffic safety related research studies have been done describing the drivers` deceleration and acceleration behaviour and the vehicles` braking performance. Those results give deceleration data for extreme situations and are not useful for describing normal decelerations and accelerations at road- and street intersections. Environment related problems within the traffic flow analysis are now accentuating the need for the studying of special deceleration and acceleration behaviours in combination with an alternative design of the road and street infrastructure. There is a big difference in different vehicles` amount of emitted exhaust pollutions during the passing of intersections depending on the vehicles` speed levels related to their deceleration and acceleration levels. (author)

  19. Road and Street Centerlines, Street-The data set is a line feature consisting of 13948 line segments representing streets. It was created to maintain the location of city and county based streets., Published in 1989, Davis County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Road and Street Centerlines dataset current as of 1989. Street-The data set is a line feature consisting of 13948 line segments representing streets. It was created...

  20. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    Science.gov (United States)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( ptransportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  1. Calibration of the k- ɛ model constants for use in CFD applications

    Science.gov (United States)

    Glover, Nina; Guillias, Serge; Malki-Epshtein, Liora

    2011-11-01

    The k- ɛ turbulence model is a popular choice in CFD modelling due to its robust nature and the fact that it has been well validated. However it has been noted in previous research that the k- ɛ model has problems predicting flow separation as well as unconfined and transient flows. The model contains five empirical model constants whose values were found through data fitting for a wide range of flows (Launder 1972) but ad-hoc adjustments are often made to these values depending on the situation being modeled. Here we use the example of flow within a regular street canyon to perform a Bayesian calibration of the model constants against wind tunnel data. This allows us to assess the sensitivity of the CFD model to changes in these constants, find the most suitable values for the constants as well as quantifying the uncertainty related to the constants and the CFD model as a whole.

  2. Outage risk reduction at Diablo Canyon

    International Nuclear Information System (INIS)

    Burnett, Tobias W.T.; Eugene Newman, C.

    2004-01-01

    A formal risk reduction program was conducted at the Diablo Canyon Nuclear Generating plant as part of EPRI's Outage Risk Assessment and Management Program. The program began with a probabilistic and deterministic assessment of the frequency of core coolant boiling and core uncovery during shutdown operations. This step identified important contributors to risk, periods of high vulnerability, and potential mechanisms for reducing risk. Next, recovery strategies were evaluated and procedures, training, and outage schedules modified. Twelve risk reduction enhancements were developed and implemented. These enhancements and their impact are described in this paper. These enhancements reduced the calculated risk of core uncovery by about a factor of four for a refueling outage without lengthening the outage schedule; increased the outage efficiency, contributing to completing 11 days ahead of schedule; and helped to earn the highest achievable SALP rating from the NRC. (author)

  3. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1995-01-01

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting

  4. Radionuclides at the Hudson Canyon disposal site

    International Nuclear Information System (INIS)

    Schell, W.R.; Nevissi, A.E.

    1983-01-01

    A sampling and analytical program was initiated in June 1978 to measure radionuclides in water, sediments, and biota collected at the deepwater (4000 m) radioactive waste disposal site at the mouth of the Hudson Canyon 350km off New York Harbor in the western Atlantic Ocean. Plutonium, americium, cesium, strontium, and uranium series isotopes were measured in selected samples; the /sup 210/Pb data were used to give sedimentation and mixing rates in the upper sediment layers. The results showed that /sup 137/Cs, /sup 239,240/Pu, and /sup 238/Pu were found at low concentrations in the skin, viscera, and stomach contents for some of the fish collected. Significant concentrations of /sup 241/Am were found in tissues of the common rattail Coryphaenoides (Macrouridae) collected at the disposal site, suggesting a local source for this radionuclide and biological accumulation. The edible muscle of this fish contained less than 2.6 x 10/sup -5/ Bq g/sup -1/ (dry wt) of /sup 239,240/Pu. Radionuclides measured in sediment-core profiles showed that mixing occurred to depths of 16 cm and that variable sedimentation or mixing rates, or both, exist at 4000 m deep. Radionuclide deposition near the canisters was not found to be significantly higher than the expected fallout levels at 4000 m deep. At the mouth of the Hudson Canyon variable sedimentation and mixing rates were found using the natural unsupported /sup 210/Pb tracer values; these variable rates were attributed to sediment transport by the currents and to bioturbation

  5. Street children and political violence: a socio-demographic analysis of street children in Rwanda.

    Science.gov (United States)

    Veale, Angela; Donà, Giorgia

    2003-03-01

    The aims were: (1) to examine the profile of African street children and to assess the link between street children in Africa and political violence; (2) to undertake a systematic examination of causal factors of street children in postgenocide Rwanda; and (3) to situate this analysis in the context of the socio-cultural and political impact of the genocide on Rwandan communities. Observational mapping examined the profile and activities of Rwandan street children. Structured interviews were carried out with 290 children in four regional towns to obtain information on socio-demographic, familial, educational background, causal factors surrounding street life involvement, psychological well-being, and relationship to the street. Focus group discussions and key informant interviews examined the relationship between street children and the broader Rwandan society. Street children in Rwanda were predominantly adolescent boys, almost half of whom were homeless (42%), with a high proportion of orphaned children or children who had lost at least one parent. Two variables predicted homelessness: child's guardian and reason for being in street. Qualitative accounts of children conveyed the impact of death of family members, repatriation, imprisonment of parents, and poverty on their lives. The analysis highlighted the need for community based support for children in alternative guardianship care and for policies to support the reintegration of male youths in postconflict welfare strategies as prevention strategies for street migration.

  6. Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA

    NARCIS (Netherlands)

    Brooke, S.D.; Watts, M.W.; Heil, A.D.; Rhode, M.; Mienis, F.; Duineveld, G.C.A.; Davies, A.J.; Ross, S.W.

    2017-01-01

    A multi-disciplinary study of two major submarine canyons, Baltimore Canyon and Norfolk Canyon, off the US mid-Atlantic coast focused on the ecology and biology of canyon habitats, particularly those supporting deep-sea corals. Historical data on deep-sea corals from these canyons were sparse with

  7. Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA

    Directory of Open Access Journals (Sweden)

    Natalie S. Wagenbrenner

    2018-01-01

    Full Text Available This work investigates gap winds in a steep, deep river canyon prone to wildland fire. The driving mechanisms and the potential for forecasting the gap winds are investigated. The onset and strength of the gap winds are found to be correlated to the formation of an along-gap pressure gradient linked to periodic development of a thermal trough in the Pacific Northwest, USA. Numerical simulations are performed using a reanalysis dataset to investigate the ability of numerical weather prediction (NWP to simulate the observed gap wind events, including the timing and flow characteristics within the canyon. The effects of model horizontal grid spacing and terrain representation are considered. The reanalysis simulations suggest that horizontal grid spacings used in operational NWP could be sufficient for simulating the gap flow events given the regional-scale depression in which the Salmon River Canyon is situated. The strength of the events, however, is under-predicted due, at least in part, to terrain smoothing in the model. Routine NWP, however, is found to have mixed results in terms of forecasting the gap wind events, primarily due to problems in simulating the regional sea level pressure system correctly.

  8. Rose Canyon Sustainable Aquaculture Project, San Diego, CA

    Science.gov (United States)

    Documents related to EPA's preparation of an Environmental Assessment (EA) to analyze the potential impacts related to the issuance of a National Pollutant Discharge Elimination System (NPDES) permit for the Rose Canyon Sustainable Aquaculture Project.

  9. Habitat Mapping Cruise - Hudson Canyon (HB0904, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives are to: 1) perform multibeam mapping of transitional and deepwater habitats in Hudson Canyon (off New Jersey) with the National Institute of Undersea...

  10. H Canyon Processing In Correlation With FH Analytical Labs

    International Nuclear Information System (INIS)

    Weinheimer, E.

    2012-01-01

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial