Streamwise decrease of the 'unsteady' virtual velocity of gravel tracers
Klösch, Mario; Gmeiner, Philipp; Habersack, Helmut
2017-04-01
Gravel tracers are usually inserted and transported on top of the riverbed, before they disperse vertically and laterally due to periods of intense bedload, the passage of bed forms, lateral channel migration and storage on bars. Buried grains have a lower probability of entrainment, resulting in a reduction of overall mobility, and, on average, in a deceleration of the particles with distance downstream. As a consequence, the results derived from tracer experiments and their significance for gravel transport may depend on the time scale of the investigation period, complicating the comparison of results from different experiments. We developed a regression method, which establishes a direct link between the transport velocity and the unsteady flow variables to yield an 'unsteady' virtual velocity, while considering the tracer slowdown with distance downstream in the regression. For that purpose, the two parameters of a linear excess shear velocity formula (the critical shear velocity u*c and coefficient a) were defined as functions of the travelled distance since the tracer's insertion. Application to published RFID tracer data from the Mameyes River, Puerto Rico, showed that during the investigation period the critical shear velocity u*c of tracers representing the median bed particle diameter (0.11 m) increased from 0.36 m s-1 to 0.44 m s-1, while the coefficient a decreased from the dimensionless value of 4.22 to 3.53, suggesting a reduction of the unsteady virtual velocity at the highest shear velocity in the investigation period from 0.40 m s-1 to 0.08 m s-1. Consideration of the tracer slowdown improved the root mean square error of the calculated mean displacements of the median bed particle diameter from 8.82 m to 0.34 m. As in previous work these results suggest the need of considering the history of transport when deriving travel distances and travel velocities, depending on the aim of the tracer study. The introduced method now allows estimating the
Interaction of Streamwise and Wall-Normal Velocities in Combined Wave-Current Motion
Shu-Qing YANG; In-Soo KIM; Daniel S. KOH; Young-Chae SONG
2005-01-01
The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been comprehensively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. -ρ(uv)only, this study demonstrates that the momentum flux caused by mean velocities, i.e.,(u)and(v) , is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.
Negative streamwise velocities and other rare events near the wall in turbulent flows
Lenaers, Peter; Li Qiang; Brethouwer, Geert; Schlatter, Philipp; Oerlue, Ramis, E-mail: Lenaers@mech.kth.se [Linne FLOW Centre, KTH Mechanics, SE-100 44 Stockholm (Sweden)
2011-12-22
Negative streamwise velocities, extreme wall-normal velocites and high flatness values for the wall-normal fluctuations near the wall are investigated for turbulent channel flow simulations at a series of Reynolds numbers up to Re{sub {tau}} = 1000 in this paper. Probability density functions of the wall-shear stress and velocity components are presented, as well as joint probability density functions of the velocity components and the pressure. Backflow occurs more often (0.06% at Re{sub {tau}} = 1000) and further away from the wall into the buffer layer for rising Reynolds number. An oblique vortex outside the viscous sublayer is found to cause this backflow. Extreme v events occur also more often for rising Reynolds number. Positive and negative velocity spikes appear in pairs, located on the two edges of a strong streamwise vortex: the negative spike occurring in a high speed streak indicating a sweeping motion, while the positive spike is located between a high and low speed streak. These extreme v events cause high flatness values near the wall (F(v) = 43 at Re{sub {tau}} = 1000).
KNIGHT; Donald; W
2009-01-01
Natural rivers are commonly characterized by a main channel for primary flow conveyance and a floodplain, often partially covered with vegetation such as shrubs or trees, to carry extra flow during floods. The hydraulic resistance due to vegetation on the floodplain typically causes a further reduction of flow velocity and increases the velocity difference between the main channel and the floodplain. As a consequence a strong lateral shear layer leads to the exchange of mass and momentum between the main channel and floodplain, which in turn affects the overall channel conveyance and certain fluvial processes. The prediction of the lateral velocity distribution is important for many flood alleviation schemes, as well as for studies on sediment transport and dispersion in such channels. The present paper proposes a method for predicting the depth-averaged velocity in compound channels with partially vegetated floodplains, based on an analytical solution to the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term included to account for the effects of vegetation. The vegetation is modelled via an additional term in the momentum equation to account for the additional drag force. The method includes the effects of bed friction, drag force, lateral turbulence and secondary flows, via four coefficients f, CD, λ & Γ respectively. The predicted lateral distributions of depth-averaged velocity agree well with the experimental data. The analytical solutions can also be used to predict the distribution of boundary shear stresses, which adds additional weight to the method proposed.
TANG XiaoNan; KNIGHT Donald W
2009-01-01
Natural rivers are commonly characterized by a main channel for primary flow conveyance and a floodplain, often partially covered with vegetation such as shrubs or trees, to carry extra flow during floods.The hydraulic resistance due to vegetation on the floodplain typically causes a further reduction of flow velocity and increases the velocity difference between the main channel and the floodplain.As a consequence a strong lateral shear layer leads to the exchange of mass and momentum between the main channel and floodplain, which in turn affects the overall channel conveyance and certain fluvial processes.The prediction of the lateral velocity distribution is important for many flood alleviation schemes, as well as for studies on sediment transport and dispersion in such channels.The present paper proposes a method for predicting the depth-averaged velocity in compound channels with par-tially vegetated floodplains, based on an analytical solution to the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term included to account for the effects of vegetation.The vegetation is modelled via an additional term in the momentum equation to account for the additional drag force.The method includes the effects of bed friction, drag force, lateral turbulence and secondary flows, via four coefficients f, C_D,λ & Г respectively.The predicted lateral distributions of depth-averaged velocity agree well with the experimental data.The analytical solutions can also be used to predict the distribu-tion of boundary shear stresses, which adds additional weight to the method proposed.
Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver
2013-01-01
The current work describes the experimental parametric study of streamwise vortices generated in a boundary layer by a rectangular vane (commonly named vortex generator) mounted perpendicularly to the wall and at an angle to the oncoming flow. Stereoscopic Particle Image Velocimetry measurements...
A streamwise constant model of turbulence in plane Couette flow
Gayme, D. F.; McKeon, B. J.; Papachristodoulou, A.; Bamieh, B; Doyle, J. C.
2010-01-01
Streamwise and quasi-streamwise elongated structures have been shown to play a significant role in turbulent shear flows. We model the mean behaviour of fully turbulent plane Couette flow using a streamwise constant projection of the Navier–Stokes equations. This results in a two-dimensional three-velocity-component (2D/3C) model. We first use a steady-state version of the model to demonstrate that its nonlinear coupling provides the mathematical mechanism that shapes the turbulent velocity p...
A Total Generalized Optimal Velocity Model and Its Numerical Tests
ZHU Wen-xing; LIU Yun-cai
2008-01-01
A car-following model named total generalized optimal velocity model (TGOVM) was developed with a consideration of an arbitrary number of preceding vehicles before current one based on analyzing the previous models such as optimal velocity model (OVM), generalized OVM (GOVM) and improved GOVM (IGOVM). This model describes the physical phenomena of traffic flow more exactly and realistically than previous models. Also the performance of this model was checked out by simulating the acceleration and de- celeration process for a small delay time. On a single circular lane, the evolution of the traffic congestion was studied for a different number of headways and relative velocities of the preceding vehicles being taken into account. The simulation results show that TGOVM is reasonable and correct.
A Streamwise Constant Model of Turbulence in Plane Couette Flow
Gayme, D F; Papachristodoulou, A; Bamieh, B; Doyle, J C
2010-01-01
There is a consensus that turbulent flow is characterized by coherent structures. In particular, streamwise and quasi-streamwise elongated structures have been observed in both numerical simulations and experiments. Using this idea the mean behavior of fully turbulent plane Couette flow is modeled using a streamwise constant projection of the Navier Stokes equations. This assumption results in a two dimensional, three velocity component (2D/3C) model. We first use a steady state version of this 2D/3C model to demonstrate that the nonlinear coupling in the equations provides the mathematical mechanisms associated with the shape of the turbulent velocity profile. In simulating the full model we borrow some ideas from robust control and represent uncertainty as well as modeling errors using small amplitude noise forcing. Simulations of the 2D/3C model under small amplitude Gaussian forcing of the cross stream components is compared to DNS data. The results indicate that a streamwise constant projection of the Na...
Streamwise Vortex Interaction with a Horseshoe Vortex
Piotr Doerffer; Pawel Flaszynski; Franco Magagnato
2003-01-01
Flow control in turbomachinery is very difficult because of the complexity of its fully 3-D flow structure. The authors propose to introduce streamwise vortices into the control of internal flows. A simple configuration of vortices was investigated in order to better understand the flow control methods by means of streamwise vortices.The research presented here concerns streamwise vortex interaction with a horseshoe vortex. The effects of such an interaction are significantly dependent on the relative location of the streamwise vortex in respect to the leading edge of the profile. The streamwise vortex is induced by an air jet. The horseshoe vortex is generated by the leading edge of a symmetric profile. Such a configuration gives possibility to investigate the interaction of these two vortices alone. The presented analysis is based on numerical simulations by means of N-S compressible solver with a two-equation turbulence model.
Owen, Albert K.
1993-01-01
The mathematical relations between the measured velocity fields for the same compressor rotor flow field resolved by two fringe type laser anemometers at different observational locations are developed in this report. The relations allow the two sets of velocity measurements to be combined to produce a total velocity vector field for the compressor rotor. This report presents the derivation of the mathematical relations, beginning with the specification of the coordinate systems and the velocity projections in those coordinate systems. The vector projections are then transformed into a common coordinate system. The transformed vector coordinates are then combined to determine the total velocity vector. A numerical example showing the solution procedure is included.
On generating counter-rotating streamwise vortices
Winoto, S H
2015-09-23
Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.
Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements
Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor
2004-01-01
For a specific thermal anemometer with omnidirectional velocity sensor the expanded total uncertainty in measured mean velocity Û(Vmean) and the expanded total uncertainty in measured turbulence intensity Û(Tu) due to different error sources are estimated. The values are based on a previously dev...
EXPERIMENTAL STUDY ON TURBULENT BOUNDARY LAYER CHARACTERISTICS OVER STREAMWISE RIBLETS
ZHAO Zhi-yong; DONG Shou-ping; DU Ya-nan
2004-01-01
Measurements of characteristics by means of a two-component Laser Doppler Velocimeter (LDV) were carried out in turbulent boundary layers over both a symmetric V-shaped ribbed plate and a smooth one in a low speed wind tunnel. The present results clearly indicate that the logarithmic velocity profile over the riblets surface is shifted upward with a 30.9% increase in the thickness of the viscous sublayer. Also a change in the log-law region is found. And the maximum value of streamwise velocity fluctuations is reduced by approximately 17%. The skewness and flatness factors do not show any change besides those in the region of y+＜0.6. It is evident that the Reynolds shear stress over the riblets is reduced. Further more, in log-law region, the Reynolds shear stress has a larger reduction of up to 18%.
Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices
Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun
1997-11-01
Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.
The three-dimensional distributions of tangential velocity and total- temperature in vortex tubes
Linderstrøm-Lang, C.U.
1971-01-01
physical requirements and which at the same time lead to realistic tangential velocity gradients. The total-temperature distribution in both the axial and radial directions is calculated from such secondary flow functions and corresponding tangential velocity results on the basis of an approximate...
Formation Flight: Upstream Influence of a Wing on a Streamwise Vortex
McKenna, Chris; Rockwell, Donald; Lehigh University Fluids Lab Team
2015-11-01
Aircraft flying together in formation can experience aerodynamic advantages. Impingement of the tip vortex of the leader wing on the trailer wing can increase the lift to drag ratio L/D and the unsteady loading on the trailer wing. These increases are sensitive to the impingement location of the vortex on the wing. Particle image velocimetry is employed to determine patterns of velocity and vorticity on successive crossflow planes along the vortex, which lead to volume representations and thereby characterization of the streamwise evolution of the vortex structure as it approaches the trailer wing. This evolution of the incident vortex is affected by the upstream influence of the trailer wing, and is highly dependent on the location of vortex impingement. As the spanwise impingement location of the vortex moves from outboard of the wing tip to inboard, the upstream influence on the development of the vortex increases. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the in-plane vorticity; decrease the downwash; and increase the root-mean-square of both streamwise velocity and vorticity.
Stainback, P. C.; Johnson, C. B.; Basnett, C. B.
1983-01-01
The heat transfer characteristics of a three-wire hot-wire probe operated with a constant temperature anemometer were investigated in the subsonic compressible flow regime. The sensitivity coefficients, with respect to velocity, density and total temperature, were measured and the results were used to calculate the velocity, density, and total temperature fluctuations in the test section of the Langley 0.3-m Transonic Cryogenic Tunnel (TCT). These results were extended to give estimates for fluctuations due to vorticity, sound, and entropy. In addition, attempts were made to determine the major source of disturbances in the 0.3-m TCT.
Doerfler, Deborah; Gurney, Burke; Mermier, Christine; Rauh, Mitchell; Black, Liza; Andrews, Ron
2016-01-01
Despite improvement in pain and perceived function in older adults following total knee arthroplasty (TKA), objective outcome measures of muscular impairment and ambulatory function demonstrate significant deficits. Evidence suggests that quadriceps power may play a greater role in ambulatory function than measures of strength alone following TKA. The purpose of this study was to compare the effect of high-velocity (HV) quadriceps exercises with that of slow-velocity (SV) quadriceps exercises on functional outcomes and quadriceps power following TKA. This study was a randomized clinical study conducted in an outpatient physical therapy clinic. Twenty-one participants who were 4 to 6 weeks post unilateral TKA were randomly assigned to an HV or SV group. Participants performed an evidence-based standardized progressive resistance exercise program in addition to HV quadriceps exercises or SV quadriceps exercises. Participants attended 2 sessions per week for 8 weeks. Before and after the 8-week exercise intervention, participants completed a functional questionnaire, health survey, functional testing, and underwent quadriceps strength and power testing. Both groups demonstrated improvements in ambulatory outcome measures, strength, speed, and power. The HV group demonstrated significantly greater improvements in distance walked and quadriceps strength than the SV group. These data should be considered preliminary because of a small sample size. HV quadriceps exercises may be an effective rehabilitation strategy in conjunction with a standardized progressive resistance exercise program beginning 4 to 6 weeks after TKA.
Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel
Budiman, A.C.
2015-10-23
Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.
Leifu Chen; Shaolin Peng; Jingang Liu; Qianqian Hou
2012-01-01
Dry deposition velocity of total suspended particles (TSP) is an effective parameter that describes the speed of atmospheric particulate matter deposit to the natural surface.It is also an important indicator to the capacity of atmosphere self-depuration.However,the spatial and temporal variations in dry deposition velocity of TSP at different urban landscapes and the relationship between dry deposition velocity and the meteorological parameters are subject to large uncertainties.We concurrently investigated this relationship at four different landscapes of Guangzhou,from October to December of 2009.The result of the average dry deposition velocity is (1.49 ±0.77),(1.44 ± 0.77),(1.13 ± 0.53) and (1.82 ± 0.82) cm/sec for urban commercial landscape,urban forest landscape,urban residential landscape and country landscape,respectively.This spatial variation can be explained by the difference of both particle size composition of TSP and meteorological parameters of sampling sites.Dry deposition velocity of TSP has a positive correlation with wind speed,and a negative correlation with temperature and relative humidity.Wind speed is the strongest factor that affects the magnitude of TSP dry deposition velocity,and the temperature is another considerable strong meteorological factor.We also find out that the relative humidity brings less impact,especially during the dry season.It is thus implied that the current global warming and urban heat island effect may lead to correlative changes in TSP dry deposition velocity,especially in the urban areas.
Laminar streak enhancement using streamwise grooves
Martel, Carlos; Martín, Juan Ángel
2011-11-01
Laminar streak promotion in a flat plate boundary layer results in an increase of the stability of the Tollmien-Schlichting waves with respect to that of the 2D Blasius profile. This stabilization delays the laminar-turbulent transition, increasing the laminar phase of the flow. The stabilization effect is stronger for higher streak amplitudes, and therefore simple ways of generating high amplitude stable streaks are sought to be used as boundary layer flow control methods. In a recent experiment [Tallamelli & Franson,AIAA 2010-4291] high amplitude stable steady streaks have been produced using Miniature Vortex Generators (MGVs), where one array of MGVs is used to excite the streak and a second array is used downstream to enhance their amplitude. In this presentation we numerically explore the possibility of enhancing the streaks using a different passive mechanism: streamwise grooves carved in the plate. We will present some numerical simulations for different values of the spanwise period of the streaks and of the grooves, and we will show the combinations that provide maximum streak amplitude.
Changes in Gait symmetry, Gait velocity and self-reported function following total hip replacement
Hodt-Billington, Caroline; Jorunn L. Helbostad; Vervaat, Willemijn; Rognsvåg, Turid; Moe-Nilssen, Rolf
2011-01-01
Objective: To investigate the magnitude of change at different time points in measures of gait symmetry, gait velocity and self-reported function following total hip replacement. Design: Longitudinal with test occasions pre-surgery and 3, 6 and 12 months post-surgery. Subjects: Thirty-four patients with hip osteoarthritis (mean age 63 years, standard deviation 11 years). Methods: Subjects walked back and forth along a 7-m walkway at slow, preferred and fast speed. Ante...
Moarref, Rashad; Tropp, Joel A; McKeon, Beverley J
2013-01-01
We study the Reynolds number scaling of a gain-based, low-rank approximation to turbulent channel flows, determined by the resolvent formulation of McKeon & Sharma (2010), in order to obtain a description of the streamwise turbulence intensity from direct consideration of the Navier-Stokes equations. Under this formulation, the velocity field is decomposed into propagating waves (with single streamwise and spanwise wavelengths and wave speed) whose wall-normal shapes are determined from the principal singular function of the corresponding resolvent operator. We establish that the resolvent formulation admits three classes of wave parameters that induce universal behavior with Reynolds number on the low-rank model, and which are consistent with scalings proposed throughout the wall turbulence literature. For the rank-1 model subject to broadband forcing, the integrated streamwise energy density takes a universal form which is consistent with the dominant near-wall turbulent motions. When the shape of the f...
Bouremel, Yann
2016-11-01
Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.
Schobeiri, M. T.; John, J.
1996-01-01
The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the
Influence of pressure gradient on streamwise skewness factor in turbulent boundary layer
Dróżdż, Artur
2014-08-01
The paper shows an effect of favourable and adverse pressure gradients on turbulent boundary layer. The skewness factor of streamwise velocity component was chosen as a measure of the pressure gradient impact. It appears that skewness factor is an indicator of convection velocity of coherent structures, which is not always equal to the average flow velocity. The analysis has been performed based upon velocity profiles measured with hot-wire technique in turbulent boundary layer with pressure gradient corresponding to turbomachinery conditions. The results show that the skewness factor decreases in the flow region subjected to FPG and increases in the APG conditions. The changes of convection velocity and skewness factor are caused by influence of large-scale motion through the mechanism called amplitude modulation. The large-scale motion is less active in FPG and more active in APG, therefore in FPG the production of vortices is random (there are no high and low speed regions), while in the APG the large-scale motion drives the production of vortices. Namely, the vortices appear only in the high-speed regions, therefore have convection velocity higher than local mean velocity. The convection velocity affects directly the turbulent sweep and ejection events. The more flow is dominated by large-scale motion the higher values takes both the convection velocity of small-scale structures and sweep events induced by them.
Zhong, Qiang; Chen, Qigang; Wang, Hao; Li, Danxun; Wang, Xingkui
2016-05-01
Long streamwise-elongated high- and low-speed streaks are repeatedly observed near the free surface in open channel flows in natural rivers and lab experiments. Super-streamwise vortex model has been proposed to explain this widespread phenomenon for quite some time. However, statistical evidence of the existence of the super-streamwise vortices as one type of coherent structures is still insufficient. Correlation and proper orthogonal decomposition (POD) analysis based on PIV experimental data in the streamwise-spanwise plane near the free surface in a smooth open channel flow are employed to investigate this topic. Correlation analysis revealed that the streaky structures appear frequently near the free surface and their occurrence probability at any spanwise position is equal. The spanwise velocity fluctuation usually flows from low-speed streaks toward high-speed streaks. The average spanwise width and spacing between neighboring low (or high) speed streaks are approximately h and 2h respectively. POD analysis reveals that there are streaks with different spanwise width in the instantaneous flow fields. Typical streamwise rotational movement can be sketched out directly based on the results from statistical analyses. Point-by-point analysis indicates that this pattern is consistent everywhere in the measurement window and is without any inhomogeneity in the spanwise direction, which reveals the essential difference between coherent structures and secondary flow cells. The pattern found by statistical analysis is consistent with the notion that the super-streamwise vortices exist universally as one type of coherent structure in open channel flows.
Ostanek, Jason K.; Thole, Karen A.
2012-12-01
While flow across long tube bundles is considered classical data, pin-fin arrays made up of short tubes have become a growing topic of interest for use in cooling gas turbine airfoils. Data from the literature indicate that decreasing streamwise spacing increases heat transfer in pin-fin arrays; however, the specific mechanism that causes increased heat transfer coefficients remains unknown. The present work makes use of time-resolved PIV to quantify the effects of streamwise spacing on the turbulent near wake throughout various pin-fin array spacings. Specifically, proper orthogonal decomposition was used to separate the (quasi-) periodic motion from vortex shedding and the random motion from turbulent eddies. Reynolds number flow conditions of 3.0 × 103 and 2.0 × 104, based on pin-fin diameter and velocity at the minimum flow area, were considered. Streamwise spacing was varied from 3.46 pin diameters to 1.73 pin diameters while the pin-fin height-to-diameter ratio was unity and the spanwise spacing was held constant at two diameters. Results indicated that (quasi-) periodic motions were attenuated at closer streamwise spacings while the level of random motions was not strongly dependent on pin-fin spacing. This trend was observed at both Reynolds number conditions considered. Because closer spacings exhibit higher heat transfer levels, the present results imply that periodic motions may not contribute to heat transfer, although further experimentation is required.
Probe shapes that measure time-averaged streamwise momentum and cross-stream turbulence intensity
Rossow, Vernon J. (Inventor)
1993-01-01
A method and apparatus for directly measuring the time-averaged streamwise momentum in a turbulent stream use a probe which has total head response which varies as the cosine-squared of the angle of incidence. The probe has a nose with a slight indentation on its front face for providing the desired response. The method of making the probe incorporates unique design features. Another probe may be positioned in a side-by-side relationship to the first probe to provide a direct measurement of the total pressure. The difference between the two pressures yields the sum of the squares of the cross-stream components of the turbulence level.
Controlling the onset of turbulence by streamwise traveling waves. Part 1: Receptivity analysis
Moarref, Rashad
2010-01-01
We examine the efficacy of streamwise traveling waves generated by a zero-net-mass-flux surface blowing and suction for controlling the onset of turbulence in a channel flow. For small amplitude actuation, we utilize weakly nonlinear analysis to determine base flow modifications and to assess the resulting net power balance. Receptivity analysis of the velocity fluctuations around this base flow is then employed to design the traveling waves. Our simulation-free approach reveals that, relative to the flow with no control, the downstream traveling waves with properly designed speed and frequency can significantly reduce receptivity which makes them well-suited for controlling the onset of turbulence. In contrast, the velocity fluctuations around the upstream traveling waves exhibit larger receptivity to disturbances. Our theoretical predictions, obtained by perturbation analysis (in the wave amplitude) of the linearized Navier-Stokes equations with spatially periodic coefficients, are verified using full-scale...
Steady streamwise transpiration control in turbulent pipe flow
Gómez, F; Rudman, M; Sharma, AS; McKeon, BJ
2016-01-01
A study of the the main features of low- and high amplitude steady streamwise wall transpiration applied to pipe flow is presented. The effect of the two transpiration parameters, amplitude and wavenumber, on the flow have been investigated by means of direct numerical simulation at a moderate turbulent Reynolds number. The behaviour of the three identified mechanisms that act in the flow: modification of Reynolds shear stress, steady streaming and generation of non-zero mean streamwise gradients, have been linked to the transpiration parameters. The observed trends have permitted the identification of wall transpiration configurations able to reduce or increase the overall flow rate in -36.1% and 19.3% respectively. A resolvent analysis has been carried out to obtain a description of the reorganization of the flow structures induced by the transpiration.
Effects of streamwise vortex breakdown on supersonic combustion.
Hiejima, Toshihiko
2016-04-01
This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.
Lieu, Binh K; Jovanović, Mihailo R
2010-01-01
This work builds on and confirms the theoretical findings of Part 1 of this paper, Moarref & Jovanovi\\'c (2010). We use direct numerical simulations of the Navier-Stokes equations to assess the efficacy of blowing and suction in the form of streamwise traveling waves for controlling the onset of turbulence in a channel flow. We highlight the effects of the modified base flow on the dynamics of velocity fluctuations and net power balance. Our simulations verify the theoretical predictions of Part 1 that the upstream traveling waves promote turbulence even when the uncontrolled flow stays laminar. On the other hand, the downstream traveling waves with parameters selected in Part 1 are capable of reducing the fluctuations' kinetic energy, thereby maintaining the laminar flow. In flows driven by a fixed pressure gradient, a positive net efficiency as large as 25 % relative to the uncontrolled turbulent flow can be achieved with downstream waves. Furthermore, we show that these waves can also relaminarize full...
Effect of streamwise vortices on Tollmien-Schlichting waves
Nayfeh, A. H.
1981-01-01
The method of multiple scales is used to determine a first-order uniform expansion for the effect of counter-rotating steady streamwise vortices in growing boundary layers on oblique Tollmien-Schlichting waves. The results show that such vortices have a strong tendency to amplify oblique Tollmien-Schlichting waves having a spanwise wavelength that is twice the wavelength of the vortices. An analytical expression is derived for the growth rates of these waves. These exponential growth rates increase linearly with increasing amplitudes of the vortices. Numerical results are presented. They suggest that this mechanism may dominate the instability.
Shock Wave Induced Separation Control by Streamwise Vortices
Ryszard SZWABA
2005-01-01
Control of shock wave and boundary layer interaction finds still a lot of attention. Methods of this interaction control have been especially investigated in recent decade. This research was mostly concerned with flows without separation. However, in many applications shock waves induce separation often leads to strong unsteady effects. In this context it is proposed to use streamwise vortices for the interaction control. The results of experimental investigations are presented here. The very promising results were obtained, meaning that the incipient separation was postponed and the separation size was reduced for the higher Mach numbers. The decrease of the RMS of average shock wave oscillation was also achieved.
Clukey, Steven J.; Jones, Gregory S.; Stainback, P. Calvin
1988-01-01
The use of a high-speed Dynamic Data Acquisition System (DDAS) to measure simultaneously velocity, density, and total temperature fluctuations is described. The DDAS is used to automate the acquisition of hot-wire calibration data. The data acquisition, data handling, and data reporting techiques used by DDAS are described. Sample data are used to compare results obtained with the DDAS with those obtained from the FM tape and post-test digitization method.
Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection
Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan
2017-03-01
To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.
Stainback, P. C.
1986-01-01
There is a renewed interest in hot wire anemometry at transonic speeds. Recent results were published which indicate that at transonic speeds a heated wire is sensitive only to mass flow and total temperature, results similar to those obtained for supersonic flows. Other results were obtained to show that the sensitivity is a function of velocity, density, and total temperature, results in agreement with many of those obtained in the 1950s. An analysis of anemometry results was made to evaluate possible errors when various assumptions were made concerning the sensitivity of a heated wire to fluid flow variables.
Streamwise decay of localized states in channel flow
Zammert, Stefan
2016-01-01
Channel flow, the pressure driven flow between parallel plates, has exact coherent structures that show various degrees of localization. For states which are localized in streamwise direction but extended in spanwise direction, we show that they are exponentially localized, with decay constants that are different on the upstream and downstream side. We extend the analysis of Brand and Gibson, J. Fluid Mech. 750, R1 (2014), for stationary states to the case of advected structures that is needed here, and derive expressions for the decay in terms of eigenvalues and eigenfunctions of certain second order differential equations. The results are in very good agreement with observations on exact coherent structures of different transversal wave length.
Horstmann, T; Martini, F; Knak, J; Mayer, F; Sell, S; Zacher, J; Küsswetter, W
1994-01-01
There are only a few studies which could support conclusions concerning the strength of the muscles surrounding the hip joint and especially concerning the strength relationships following implantation of endoprostheses. The aim of this study was to examine the post-operative course of strength deficits in this musculature compared to clinical parameters. Fifty-eight patients between 30 and 67 years of age, in whom individual total hip prostheses were implanted, were clinically examined prior, 9 weeks and 6 months after surgery. Moreover, the maximum isometric strengths of abductors, flexors, and rotator muscles as well as maximum isokinetic strengths of the extensors and flexor musculature at 60 degrees/s and 120 degrees/s were measured. The flexor and extensor musculature already showed a clear increase in maximum strength after 9 weeks and 6 months. By contrast, the isometric strengths of the rotators increased only slightly, the abductor strength decreased after 9 weeks to below the preoperative baseline level and attained this level again only after 6 months. The clinical parameters Trendelenburg sign, limping, and walking capacity were clearly improved after 6 months, but no correlation to the abductor strength could be demonstrated. It is concluded that limp-free gait can be attained even without maximum strength increase in the abductors, which are important for fluid gait, at least for short distances. The importance of regular training of the rotator and abductor musculature in coxarthrosis is emphasized to delay limitation of movement and decreased strength in the sense of a capsule pattern.
Joint Stream-Wise THP Transceiver Design for the Multiuser MIMO Downlink
Miao, Wei; Chen, Xiang; Zhao, Ming; Zhou, Shidong; Wang, Jing
This paper addresses the problem of joint transceiver design for Tomlinson-Harashima Precoding (THP) in the multiuser multiple-input-multiple-output (MIMO) downlink under both perfect and imperfect channel state information at the transmitter (CSIT). For the case of perfect CSIT, we differ from the previous work by performing stream-wise (both inter-user and intra-user) interference pre-cancelation at the transmitter. A minimum total mean square error (MT-MSE) criterion is used to formulate our optimization problem. By some convex analysis of the problem, we obtain the necessary conditions for the optimal solution. An iterative algorithm is proposed to handle this problem and its convergence is proved. Then we extend our designed algorithm to the robust version by minimizing the conditional expectation of the T-MSE under imperfect CSIT. Simulation results are given to verify the efficacy of our proposed schemes and to show their superiorities over existing MMSE-based THP schemes.
Heat transfer with very high free-stream turbulence and streamwise vortices
Moffat, Robert J.; Maciejewski, Paul; Eaton, John K.; Pauley, Wayne
1986-01-01
Results are presented for two experimental programs related to augmentation of heat transfer by complex flow characteristics. In one program, high free stream turbulence (up to 63 percent) was shown to increase the Stanton number by more than a factor of 5, compared with the normally expected value based on x-Reynolds number. These experiments are being conducted in a free-jet facility, near the margins of the jet. To a limited extent, the mean velocity, turbulence intensity, and integral length scale can be separately varied. The results show that scale is a very important factor in determining the augmentation. Detailed studies of the turbulence structure are being carried out using an orthogonal triple hot-wire anemometer equipped with a fourth wire for measuring temperature. The v' component of turbulence appears to be distributed differently from u' or w'. In the second program, the velocity distributions and boundary layer thicknesses associated with a pair of counter-rotating, streamwise vortices were measured. There is a region of considerably thinned boundary layer between the two vortices when they are of approximately the same strength. If one vortex is much stronger than the other, the weaker vortex may be lifted off the surface and absorbed into the stronger.
Effect of total gas velocity on the growth of ZnO films by metal-organic chemical vapor deposition
Zhu Junjie [School of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Yao Ran [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu Cihui [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lee, In-Hwan [School of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Zhu Lala [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ju, Jin-woo [School of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Baek, Jong Hyeob [Center of Technology Strategy Development, Korea Photonics Technology Institute, Gwangju 500-210 (Korea, Republic of); Lin Bixia [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fu Zhuxi [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: fuzx@ustc.edu.cn
2006-08-30
ZnO films were grown on Si (100) substrates at low pressure in a vertical metal-organic chemical vapor deposition reactor with different total gas velocity. The structure and photoluminescence property of the undoped ZnO films grown with different flow rates of N{sub 2} eluting gas were investigated. The structure quality was improved as the N{sub 2} flow rate increased. In addition, when the flow rate of N{sub 2} eluting gas was higher than 1.4 slm, a new luminescence peak which was attributed to the N-related defect was detected at room temperature, besides the other two peaks near the band gap, which were due to radiation of the free exciton and the electron from the donor level to the valence band respectively, also appeared at low flow rate of N{sub 2} eluting gas.
Hasheminejad, S.M.
2017-04-03
Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.
Frewer, Michael
2016-01-01
The study by Oberlack et al. (2006) consists of two main parts: a direct numerical simulation (DNS) of a turbulent plane channel flow with streamwise rotation and a preceding Lie-group symmetry analysis on the two-point correlation equation (TPC) to analytically predict the scaling of the mean velocity profiles for different rotation rates. We will only comment on the latter part, since the DNS result obtained in the former part has already been commented on by Recktenwald et al. (2009), stating that the observed mismatch between DNS and their performed experiment is possibly due to the prescription of periodic boundary conditions on a too small computational domain in the spanwise direction. By revisiting the group analysis part in Oberlack et al. (2006), we will generate more natural scaling laws describing better the mean velocity profiles than the ones proposed. However, due to the statistical closure problem of turbulence, this improvement is illusive. As we will demonstrate, any arbitrary invariant scal...
Venkatachari, Anand K; Halliburton, Sandra S; Setser, Randolph M; White, Richard D; Chatzimavroudis, George P
2007-01-01
A major determinant of the success of surgical vascular modifications, such as the total cavopulmonary connection (TCPC), is the energetic efficiency that is assessed by calculating the mechanical energy loss of blood flow through the new connection. Currently, however, to determine the energy loss, invasive pressure measurements are necessary. Therefore, this study evaluated the feasibility of the viscous dissipation (VD) method, which has the potential to provide the energy loss without the need for invasive pressure measurements. Two experimental phantoms, a U-shaped tube and a glass TCPC, were scanned in a magnetic resonance (MR) imaging scanner and the images were used to construct computational models of both geometries. MR phase velocity mapping (PVM) acquisitions of all three spatial components of the fluid velocity were made in both phantoms and the VD was calculated. VD results from MR PVM experiments were compared with VD results from computational fluid dynamics (CFD) simulations on the image-based computational models. The results showed an overall agreement between MR PVM and CFD. There was a similar ascending tendency in the VD values as the image spatial resolution increased. The most accurate computations of the energy loss were achieved for a CFD grid density that was too high for MR to achieve under current MR system capabilities (in-plane pixel size of less than 0.4 mm). Nevertheless, the agreement between the MR PVM and the CFD VD results under the same resolution settings suggests that the VD method implemented with a clinical imaging modality such as MR has good potential to quantify the energy loss in vascular geometries such as the TCPC.
Formation Flight: Modes of Interaction of a Streamwise Vortex with a Wing
McKenna, Chris; Bross, Matthew; Rockwell, Donald
2014-11-01
Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex of the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to be sensitive to the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine patterns of velocity and vorticity in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying the spanwise location of the leader wing. These modes are defined by differences in the development of, and interaction between, the incident tip vortex from the leader wing and the tip vortex along the follower wing. Modes of development/interaction of the tip vortices include bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the follower tip vortex. In contrast, the mutual induction mode increases the strength of the follower tip vortex.
Asadolah Tanasan
2015-10-01
Full Text Available Background: Longer survival after the total repair of the Tetralogy of Fallot increases the importance of late complications such as right ventricular dysfunction. This is a prospective study of the right ventricular function in totally corrected Tetralogy of Fallot patients versus healthy children.Methods: Thirty-two healthy children were prospectively compared with 30 totally corrected Tetralogy of Fallot patients. Right ventricular myocardial tissue velocities, right ventricular myocardial performance index, and tricuspid annular plane systolic excursion were investigated as well as the presence and severity of pulmonary regurgitation.Results: The two groups were age-and sex-matched. Mean systolic peak velocity (Sa and tricuspid annular plane systolic excursion were significantly decreased, while myocardial performance index and early to late diastolic velocity (Ea/Aa were significantly increased in the Tetralogy of Fallot patients. Early diastolic velocity (Ea showed no significant difference between the two groups. Sa correlated significantly with tricuspid annular plane systolic excursion in both the normal children and totally corrected Tetralogy of Fallot patients. Myocardial performance index was significantly higher in the patients with moderate to severe pulmonary regurgitation than in those with mild regurgitation. However, there was no significant correlation between this index and right ventricular myocardial tissue velocities.Conclusion: In this study, systolic right ventricular function indices (Sa and tricuspid annular plane systolic excursion were impaired in the totally corrected Tetralogy of Fallot patients. Myocardial performance index was affected by the severity of pulmonary regurgitation.
Optimizing Spanwise & Streamwise Spacings of MHK Devices in a Trapezoidal River Channel
Roberts, J. D.; Barco, J.; Johnson, E.; James, S. C.; Jones, C. A.; Jepsen, R. A.
2011-12-01
The world is facing significant challenges meeting the energy demands for the future. Growing populations and developing economies as well as increasing energy expenditures highlight the need for a spectrum of energy sources. One promising renewable is marine and hydrokinetic (MHK) energy, which has the potential to make important contributions to future energy portfolios. Increasing interest in MHK energy has spurred to significant research on optimal placement of emerging technologies to maximize energy capture and minimize potential negative effects on the environment. Understanding changes to near- and far-field hydrodynamics is necessary to assess optimal placement. This work demonstrates a newly developed modeling tool that can be used to optimize MHK array layouts to maximize energy capture while minimizing potentially harmful environmental effects. SNL has developed and implemented modifications to an existing flow, sediment-dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the interaction and influence of MHK-device operation at a representative site using an appropriate and verified representation of momentum/energy extraction and turbulent wake generation. Various hypothetical MHK array configurations are simulated within a straight rectangular unidirectional flow conditions channel at several water column depths. Results show that the turbine-array power efficiency increased, nonlinearly, as turbine spacing was increased in both the spanwise and streamwise directions as well as when turbines were placed higher in the water column. Contour plots facilitate evaluation of tradeoffs between efficiency and spacing. In addition, results show that flow increases around and over/under the array leading to elevated velocities in the main channel, near the bank, and near the sediment bed, which may have potential implications for bank and bottom erosion, and navigation. SNL-EFDC's "MHK friendly" array-optimization tool is and will
Development of plasma streamwise vortex generators for increased boundary layer control authority
Bowles, Patrick; Schatzman, David; Corke, Thomas; Thomas, Flint
2009-11-01
This experimental study focuses on active boundary layer flow control utilizing streamwise vorticity produced by a single dielectric barrier discharge plasma actuator. A novel plasma streamwise vortex generator (PSVG) layout is presented that mimics the passive flow control characteristics of the trapezoidal vane vortex generator. The PSVG consists of a common insulated electrode and multiple, exposed streamwise oriented electrodes used to produce counter-rotating vortical structures. Smoke and oil surface visualization of boundary layer flow over a flat plate compare the characteristics of passive control techniques and different PSVG designs. Passive and active control over a generic wall-mounted hump model, Rec = 288,000-575,000, are compared through static wall pressure measurements along the model's centerline. Different geometric effects of the PSVG electrode configuration were investigated. PSVG's with triangular exposed electrodes outperformed ordinary PSVG's under certain circumstances. The electrode arrangement produced flow control mechanisms and effectiveness similar to the passive trapezoidal vane vortex generators.
Numerical simulation of quasi-streamwise hairpin-like vortex generation in turbulent boundary layer
ZHANG Nan; LU Li-peng; DUAN Zhen-zhen; YUAN Xiang-jiang
2008-01-01
A mechanism for generation of near wall quasi-streamwise hairpin-like vortex (QHV) and secondary quasi-streamwise vortices (SQV) is presented. The conceptual model of resonant triad in the theory of hydrodynamic instability and direct numerical simulation of a turbulent boundary layer were applied to reveal the formation of QHV and SQV. The generation procedures and the characteristics of the vortex structures are obtained, which share some similarities with previous numerical simulations. The research using resonant triad conceptual model and numerical simulation provides a possibility for investigating and controling the vortex structures, which play a dominant role in the evolution of coherent structures in the near-wall region.
Macmahan, Jamie; Reniers, Ad; Ashley, Will; Thornton, Ed
2012-09-01
Macroscale turbulent coherent flow structures in a natural fast-flowing river were examined with a combination of a novel 2 MHz Acoustic Doppler Beam (ADB) and a Maximum Likelihood Estimator (MLE) to characterize the streamwise horizontal length scales and persistence of coherent flow structures by measuring the frequency (f)-streamwise-wavenumber (ks) energy density velocity spectrum, E(f, ks), for the first time in natural rivers. The ADB was deployed under a range of Froude numbers (0.1-0.6) at high Reynolds numbers (˜106) based on depth and velocity conditions within a gravel bed reach of the Kootenai River, Idaho. The MLE employed on the ADB data increased our ability to describe river motions with relatively long (>10 m) length scales in ˜1 m water depths. The E(f, ks) spectra fell along a ridge described by V = f/ks, where Vis the mean velocity over depth, consistent with Taylor's hypothesis. New, consistent length scale measures are defined based on averaged wavelengths of the low-frequencyE(f, ks) and coherence spectra. Energetic (˜50% of the total spectral energy), low-frequency (f 1 m/s,Lmwere found to be significantly longer than their corresponding coherence lengths, suggesting that the turbulent structures evolve rapidly under these conditions. This is attributed to the stretching and concomitant deformation of preexisting macroturbulent motions by the ubiquitous bathymetry-induced spatial flow accelerations present in a natural gravel bed river.
Thornton, E. B.; MacMahan, J. H.; Reniers, A. J.; Ashley, W.
2012-12-01
Macro-scale turbulent coherent flow structures in a natural fast-flowing river were examined with a combination of a novel 2 MHz Acoustic Doppler Beam (ADB) and a Maximum Likelihood Estimator (MLE) to characterize the stream-wise horizontal length scales and persistence of coherent flow structures by measuring the frequency (f)- streamwise-wavenumber (k) energy density velocity spectrum, E(f,k ), for the first time in natural rivers. The ADB was deployed under a range of Froude numbers (0.1-0.6) at high Reynolds Numbers based on depth and velocity conditions within a gravel-bed reach of the Kootenai River, ID. The MLE employed on the ADB data increased our ability to describe river motions with relatively long (>10 m) length scales in ~1 m water depths. The E(f,k) fall along a ridge described by V=f/k, where V is the mean velocity over depth, verifying Taylor's hypothesis. New, consistent length scale measures are defined based on averaged wave lengths of the low frequency E(f,k) and coherence spectra. Energetic (~50% of the total spectral energy), low-frequency (f1 m/s, L were found to be significantly longer than their corresponding coherence lengths suggesting that the turbulent structures evolve rapidly under these conditions. This is attributed to the stretching and concomitant deformation of pre-existing macro-turbulent motions by the ubiquitous bathymetry-induced spatial flow accelerations present in a natural gravel-bed river.Mean motion lengths, Lm, (circles) and coherence lengths, Lc, (squares) as a function of the mean streamwise velocity at locations in Zones 1-4.
Accurate measurement of streamwise vortices in low speed aerodynamic flows
Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.
2010-11-01
Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.
Analysis of streamwise conduction in forced convection of microchannels using fin approach
Suhandran MUNIANDY; Yew Mun HUNG
2011-01-01
The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been studied.By employing the fin approach in the first law of analysis,models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow under local thermal non-equilibrium for the solid and fluid phases.These two models were solved to obtain closed form analytical solutions for the fluid and solid temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the fluid temperature distributions.The effects of the Peclet number,aspect ratio,and thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks were analyzed and discussed.This study reveals the conditions under which the effect of streamwise conduction is significant and should not be neglected in the forced convective heat transfer analysis ofmicrochannel heat sinks.
Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature
Yoo, Paul
2013-01-01
Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.
Belan, Marco
2013-01-01
The background of this work is the problem of reducing the aerodynamic turbulent friction drag, which is an important source of energy waste in innumerable technological fields. We develop a theoretical framework aimed at predicting the behaviour of existing drag reduction techniques when used at the large values of Re which are typical of applications. We focus on one recently proposed and very promising technique, which consists in creating at the wall streamwise-travelling waves of spanwise velocity. A perturbation analysis of the Navier-Stokes equations that govern the fluid motion is carried out, for the simplest wall-bounded flow geometry, i.e. the plane channel flow. The streamwise base flow is perturbed by the spanwise time-varying base flow induced by the travelling waves. An asymptotic expansion is then carried out with respect to the velocity amplitude of the travelling wave. The analysis, although based on several assumptions, leads to predictions of drag reduction that agree well with the measure...
Dritselis, Chris D, E-mail: dritseli@mie.uth.gr [Mechanical Engineering Department, University of Thessaly, Pedion Areos, 38334 Volos (Greece)
2016-02-15
The budgets of the Reynolds stress and streamwise enstrophy are evaluated through direct numerical simulations for the turbulent particle-laden flow in a vertical channel with momentum exchange between the two phases. The influence of the dispersed particles on the budgets is examined through a comparison of the particle-free and the particle-laden cases at the same Reynolds number of Re{sub b} = 5600 based on the bulk fluid velocity and the distance between the channel walls. Results are obtained for particle ensembles with four response times in simulations with and without streamwise gravity and inter-particle collisions at average mass (volume) fractions of 0.2 (2.7 × 10{sup −5}) and 0.5 (6.8 × 10{sup −5}). The particle feedback force on the flow of the carrier phase is modeled by a point-force approximation (PSIC-method). It is shown that all the terms in the budgets of the Reynolds stress components are decreased in the presence of particles. The level of reduction depends on the particle response time and it is higher under the effects of gravity and inter-particle collisions. A considerable reduction in all the terms of the streamwise enstrophy budget is also observed. In particular, all production mechanisms, and mainly vortex stretching, are inhibited in the particulate flows and thus the production of streamwise vorticity is significantly damped. A further insight into the direct particle effects on the fluid turbulence is provided by analyzing in detail the fluid–fluid, fluid–particle and particle–particle correlations, and the spectra of the fluid–particle energy exchange rate. The present results indicate that the turbulence production, dissipation and pressure–strain term are generally large quantities, but their summation is relatively small and comparable to the fluid–particle direct energy exchange rate. Consequently, the particle contribution can potentially increase or decrease the fluctuating fluid velocities and eventually
Xu Wan-hai; Yu Jian-xing; Du Jie; CHENG An-kang; KANG Hao
2012-01-01
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated,and a wake oscillator model for the dynamic response prediction is proposed.An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model.It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.
Chaichanyut, Montree
2016-01-01
This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T) antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s) with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm) with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C). The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm), approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model. PMID:27642364
Montree Chaichanyut
2016-01-01
Full Text Available This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C. The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm, approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model.
Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu
2009-01-21
A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.
Lagrangian structures and mixing in the wake of a streamwise oscillating cylinder
Cagney, N.; Balabani, S.
2016-04-01
Lagrangian analysis is capable of revealing the underlying structure and complex phenomena in unsteady flows. We present particle-image velocimetry measurements of the wake of a cylinder undergoing streamwise vortex-induced vibrations and calculate the Finite-Time Lyapunov Exponents (FTLE) in backward- and forward-time. The FTLE fields are compared to the phase-averaged vorticity fields for the four different wake modes observed while the cylinder experiences streamwise vortex-induced vibrations. The backward-time FTLE fields characterise the formation of vortices, with the roll up of spiral-shaped ridges coinciding with the roll up of the shear layers to form the vortices. Ridges in the forward-time fields tend to lie perpendicular to the flow direction and separate nearby vortices. The shedding of vortices coincides with a "peel off" process in the forward-time FTLE fields, in which a ridge connected to the cylinder splits into two strips, one of which moves downstream. Particular attention is given to the "wake breathing" process, in which the streamwise motion of the cylinder causes both shear layers to roll up simultaneously and two vortices of opposite sign to be shed into the wake. In this case, the ridges in forward-time FTLE fields are shown to define "vortex cells," in which the new vortices form, and the FTLE fields allow the wake to be decomposed into three distinct regions. Finally, the mixing associated with each wake mode is examined, and it is shown that cross-wake mixing is significantly enhanced when the vibration amplitude is large and the vortices are shed alternately. However, while the symmetric shedding induces large amplitude vibrations, no increase in mixing is observed relative to the von Kármán vortex street observed behind near-stationary bodies.
Effect of Streamwise Fences on Secondary Flows and Losses in a Twod-imensional Turbine Rotor Cascade
M. Govardhan; A. Rajender; J.P. Umang
2006-01-01
To control secondary flows,streamwise fences were attached to end wall of a linear turbine rotor cascade.The cascade had 8 blades of 400 mm long and 175 mm chord.The blades deflected the flow by 120°.The fences were madeout of 0.7 mm thick brass sheet and the heights of the fences were 14 mm,18 mm respectively.The curvature of the fences was the same as that of the blade camber line.The fences were fixed normal to the end wall and at half pitch away from the blades.The experimental program consists of total pressure,static pressure measurements at the inlet and outlet of the cascade,by using five-hole probe.In addition,static pressure on the blade suction surface and pressure surface was also obtained.Fences are effective in preventing the movement of the pressure side leg of the horseshoe vortex.Consequently the accumulation of low energy fluid on the suction surface is minimised.End wall losses are reduced by the fences due to weakening of the end wall cross flow.
Alexander Christantho Budiman
2016-01-01
Full Text Available Two different channel entrance designs, code named Valley First (VF and Peak First (PF, were experimentally visualized by means of smoke-wire visualization technique to observe their effects towards the streamwise counter-rotating vortices generated. The spanwise wavelength of the vortices was pre-set by modifying the leading edge. The investigation was carried out on the laminar boundary-layer flow in a rectangular channel with one-sided wavy surface that has amplitude a and wavelength λ of 7.5 mm and 76 mm, respectively. The vortices in the channel with VF design preserve farther downstream than those on the PF design, which might be caused by the large favorable pressure gradient between the entrance flat plate and the first peak location. The counter-rotating vortices could still be observed at non-dimensionalized streamwise distance χ (= x/λ = 2.47 for Reynolds number Re (= UH/ν = 9900 in channel with VF design. For lower Re, the vortices could preserve further downstream. In contrast, in channel with PF design, the structures were only visible clearly up to approximately χ = 1.32 for Re = 4700 and χ = 0.39 for Re = 5200.
Kim, Taeyoun; Hwang, Seho; Jang, Seonghyung
2017-01-01
When finding the "sweet spot" of a shale gas reservoir, it is essential to estimate the brittleness index (BI) and total organic carbon (TOC) of the formation. Particularly, the BI is one of the key factors in determining the crack propagation and crushing efficiency for hydraulic fracturing. There are several methods for estimating the BI of a formation, but most of them are empirical equations that are specific to particular rock types. We estimated the mineralogical BI based on elemental capture spectroscopy (ECS) log and elastic BI based on well log data, and we propose a new method for predicting S-wave velocity (VS) using mineralogical BI and elastic BI. The TOC is related to the gas content of shale gas reservoirs. Since it is difficult to perform core analysis for all intervals of shale gas reservoirs, we make empirical equations for the Horn River Basin, Canada, as well as TOC log using a linear relation between core-tested TOC and well log data. In addition, two empirical equations have been suggested for VS prediction based on density and gamma ray log used for TOC analysis. By applying the empirical equations proposed from the perspective of BI and TOC to another well log data and then comparing predicted VS log with real VS log, the validity of empirical equations suggested in this paper has been tested.
Numerical study of streamwise and cross flow in the presence of heat and mass transfer
Rizwan-ul-Haq; Soomro, Feroz Ahmed; Khan, Z. H.; Al-Mdallal, Qasem M.
2017-05-01
The present model is devoted to investigate the streamwise and cross flow of a viscous fluid over a heated moving surface. Viscous dissipation effects are also considered with heat and mass transfer effects and these effects with cross flow have not been explored yet in the literature. Governing boundary layer equations consist in the form of nonlinear partial differential equations (PDEs). Compatible transformations are applied to change such equations into ordinary differential equations which are further solved using the Runge-Kutta technique and shooting method. Linear stability analysis is also performed over the obtained solutions to validate the results and to determine the smallest eigenvalues. Three different kinds of fluids namely: acetone, water and ethaline glycol are investigated to analyse the heat transfer rate. The problem contains important physical parameters namely: Prandtl number, Eckert numbers and Lewis number. The obtained solutions are discussed in detail against each physical parameter using graphs and tables.
Jing Fan; Chong Xie; Jianzheng Jiang
2007-01-01
Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 ± 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kni ＞ 0.02, but they scat ter between 0.85 and 1.15 as Kni ＜ 0.02 with, to some extent, a very interesting bifurcation trend.
Han, Eun Young; Im, Sang Hee; Kim, Bo Ryun; Seo, Min Ji; Kim, Myeong Ok
2016-01-01
Abstract Objective: Brachial–ankle pulse wave velocity (baPWV) evaluates arterial stiffness and also predicts early outcome in stroke patients. The objectives of this study were to investigate arterial stiffness of subacute nonfunctional ambulatory stroke patients and to compare the effects of robot-assisted gait therapy (RAGT) combined with rehabilitation therapy (RT) on arterial stiffness and functional recovery with those of RT alone. Method: The RAGT group (N = 30) received 30 minutes of robot-assisted gait therapy and 30 minutes of conventional RT, and the control group (N = 26) received 60 minutes of RT, 5 times a week for 4 weeks. baPWV was measured and calculated using an automated device. The patients also performed a symptom-limited graded exercise stress test using a bicycle ergometer, and parameters of cardiopulmonary fitness were recorded. Clinical outcome measures were categorized into 4 categories: activities of daily living, balance, ambulatory function, and paretic leg motor function and were evaluated before and after the 4-week intervention. Results: Both groups exhibited significant functional recovery in all clinical outcome measures after the 4-week intervention. However, peak aerobic capacity, peak heart rate, exercise tolerance test duration, and baPWV improved only in the RAGT group, and the improvements in baPWV and peak aerobic capacity were more noticeable in the RAGT group than in the control group. Conclusion: Robot-assisted gait therapy combined with conventional rehabilitation therapy represents an effective method for reversing arterial stiffness and improving peak aerobic capacity in subacute stroke patients with totally dependent ambulation. However, further large-scale studies with longer term follow-up periods are warranted to measure the effects of RAGT on secondary prevention after stroke. PMID:27741123
Han, Eun Young; Im, Sang Hee; Kim, Bo Ryun; Seo, Min Ji; Kim, Myeong Ok
2016-10-01
Brachial-ankle pulse wave velocity (baPWV) evaluates arterial stiffness and also predicts early outcome in stroke patients. The objectives of this study were to investigate arterial stiffness of subacute nonfunctional ambulatory stroke patients and to compare the effects of robot-assisted gait therapy (RAGT) combined with rehabilitation therapy (RT) on arterial stiffness and functional recovery with those of RT alone. The RAGT group (N = 30) received 30 minutes of robot-assisted gait therapy and 30 minutes of conventional RT, and the control group (N = 26) received 60 minutes of RT, 5 times a week for 4 weeks. baPWV was measured and calculated using an automated device. The patients also performed a symptom-limited graded exercise stress test using a bicycle ergometer, and parameters of cardiopulmonary fitness were recorded. Clinical outcome measures were categorized into 4 categories: activities of daily living, balance, ambulatory function, and paretic leg motor function and were evaluated before and after the 4-week intervention. Both groups exhibited significant functional recovery in all clinical outcome measures after the 4-week intervention. However, peak aerobic capacity, peak heart rate, exercise tolerance test duration, and baPWV improved only in the RAGT group, and the improvements in baPWV and peak aerobic capacity were more noticeable in the RAGT group than in the control group. Robot-assisted gait therapy combined with conventional rehabilitation therapy represents an effective method for reversing arterial stiffness and improving peak aerobic capacity in subacute stroke patients with totally dependent ambulation. However, further large-scale studies with longer term follow-up periods are warranted to measure the effects of RAGT on secondary prevention after stroke.
Continuous Time Random Walks for the Evolution of Lagrangian Velocities
Dentz, Marco; Comolli, Alessandro; Borgne, Tanguy Le; Lester, Daniel R
2016-01-01
We develop a continuous time random walk (CTRW) approach for the evolution of Lagrangian velocities in steady heterogeneous flows based on a stochastic relaxation process for the streamwise particle velocities. This approach describes persistence of velocities over a characteristic spatial scale, unlike classical random walk methods, which model persistence over a characteristic time scale. We first establish the relation between Eulerian and Lagrangian velocities for both equidistant and isochrone sampling along streamlines, under transient and stationary conditions. Based on this, we develop a space continuous CTRW approach for the spatial and temporal dynamics of Lagrangian velocities. While classical CTRW formulations have non-stationary Lagrangian velocity statistics, the proposed approach quantifies the evolution of the Lagrangian velocity statistics under both stationary and non-stationary conditions. We provide explicit expressions for the Lagrangian velocity statistics, and determine the behaviors of...
Flow interaction between a streamwise oscillating cylinder and a downstream stationary cylinder
Xu, S. J.; Gan, L.; Zhou, Y.
2016-11-01
In this paper, we present some experimental results about the physical effects of a cylinder's streamwise oscillation motion on a downstream one in a tandem arrangement. The upstream cylinder undergoes a controlled simple harmonic oscillation at amplitudes A/ d = 0.2-0.8, where d is the cylinder diameter, and the frequency ratio of f_e/f_s = 0-3.0, where f_e is the cylinder oscillation frequency and f_s is the natural frequency of vortex shedding from a single stationary cylinder. Under these conditions, the vortex shedding is locked to the controlled oscillation motion. Flow visualisation using the planar laser-induced fluorescence and qualitative measurements using hot-wire anemometry reveal three distinct flow regimes behind the downstream cylinder. For f_e/f_s > (f_e/f_s)_c, where (f_e/f_s)_c is a critical frequency ratio which depends on A/ d and Reynolds number Re, a so-called SA-mode occurs. The upstream oscillating cylinder generates binary vortices symmetrically arranged about the centreline, each containing a pair of counter-rotating vortices, and the downstream cylinder sheds vortices alternately at 0.5f_e. For 0.7-1.0 < f_e/f_s < (f_e/f_s)_c a complex vortex street that consists of two outer rows of vortices generated by the oscillating cylinder and two inner rows of vortices shed from the downstream stationary cylinder, which is referred to as AA-mode. For 0.3-0.6 < f_e/f_s< 0.8-1.0, one single staggered vortex street (A-mode) is observed. It is also found that, when f_e/f_s is near unity, the streamwise interaction of the two cylinders gives rise to the most energetic wake in the cross-stream direction, in terms of its maximum width, and the wake is AA-mode-like. The effects of other parameters such as the spacing between the two cylinders, Re and A/ d on the flow pattern are also discussed in details. The observations are further compared to the stationary tandem cylinder cases.
Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets
Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.
2010-01-01
We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.
Krishna Nandan Kumar
2011-01-01
Full Text Available The present study attempts to reduce secondary flow losses by application of streamwise endwall fence. After comprehensive analysis on selection of objective function for secondary flow loss reduction, coefficient of secondary kinetic energy (CSKE is selected as the objective function in this study. A fence whose height varies linearly from the leading edge to the trailing edge and located in the middle of the flow passage produces least CSKE and is the optimum fence. The reduction in CSKE by the optimum fence is 27% compared to the baseline case. The geometry of the fence is new and is reported for the first time. Idea of this fence comes from the fact that the size of the passage vortex (which is the prime component of secondary flow increases as it travels downstream, hence the height of fence should vary as the objective of fence is to block the passage vortex from crossing the passage and impinging on suction surface of the blade. Optimum fence reduced overturning and underturning of flow by more than 50% compared to the baseline case. Magnitude and spanwise penetration of the passage vortex were reduced considerably compared to the baseline case.
Streamwise-body-force-model for rapid simulation combining internal and external flow fields
Cui Rong
2016-10-01
Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.
A statistical model to predict streamwise turbulent dispersion from the wall at small times
Nguyen, Quoc; Papavassiliou, Dimitrios V.
2016-12-01
Data from simulations are used to develop a statistical model that can provide the streamwise dispersion distribution of passive particles released from the wall of a turbulent flow channel. It is found that a three-point gamma probability density function is the statistical distribution that can describe the dispersion of particles with Schmidt numbers ranging from 6 to 2400 at relatively short times after the release of the particles. Scaling arguments are used to physically justify and predict the parameters of the gamma three-point distribution. The model is used to predict particle separation that can occur in turbulent flow under special conditions. Close to the channel wall, turbulent convection is not the dominant transport mechanism, but molecular diffusion can dominate transport depending on the Schmidt number of the particles. This leads to turbulence-induced separation rather than mixing, and the currently proposed model can be used to predict the level of separation. Practically, these results can be applied for separating very small particles or even macromolecules in dilute suspensions.
Hasheminejad, S. M.
2016-01-05
A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.
Analysis of streamwise-oriented vortex interactions for two wings in close proximity
Barnes, Caleb J.; Visbal, Miguel R.; Gordnier, Raymond E.
2015-01-01
This investigation addresses the impingement of the trailing vortex provided by a leader-wing upon a follower-wing operating in close proximity. Exploration of the relative spacing between the two wings reveals several distinct flow regimes occur within a small range of lateral positions of the incident vortex. These changes effectively alter the evolution of the follower-wing wake via mutual induction between the incident and trailing vortices. Several unsteady mechanisms impact the general flow field in each regime. The incident vortex for an inboard impingement rapidly decays over the wing due to transition to turbulence. A tip-aligned vortex results in a highly unsteady interaction and generates enhanced surface pressure fluctuations beneath the tip vortex. Placing the incident vortex outboard elicits mutual instability between the leader and follower-wing trailing vortices. While lift-enhancement was found to be dominated by an inviscid increase in effective angle of attack, viscous effects in the near-tip region alter the local surface force distribution and influence the rolling moment coefficient. These flow variations which occur over a small range of lateral positions could generate buffeting loads in the presence of a wandering streamwise vortex.
A parabolic velocity-decomposition method for wind turbines
Mittal, Anshul; Briley, W. Roger; Sreenivas, Kidambi; Taylor, Lafayette K.
2017-02-01
An economical parabolized Navier-Stokes approximation for steady incompressible flow is combined with a compatible wind turbine model to simulate wind turbine flows, both upstream of the turbine and in downstream wake regions. The inviscid parabolizing approximation is based on a Helmholtz decomposition of the secondary velocity vector and physical order-of-magnitude estimates, rather than an axial pressure gradient approximation. The wind turbine is modeled by distributed source-term forces incorporating time-averaged aerodynamic forces generated by a blade-element momentum turbine model. A solution algorithm is given whose dependent variables are streamwise velocity, streamwise vorticity, and pressure, with secondary velocity determined by two-dimensional scalar and vector potentials. In addition to laminar and turbulent boundary-layer test cases, solutions for a streamwise vortex-convection test problem are assessed by mesh refinement and comparison with Navier-Stokes solutions using the same grid. Computed results for a single turbine and a three-turbine array are presented using the NREL offshore 5-MW baseline wind turbine. These are also compared with an unsteady Reynolds-averaged Navier-Stokes solution computed with full rotor resolution. On balance, the agreement in turbine wake predictions for these test cases is very encouraging given the substantial differences in physical modeling fidelity and computer resources required.
Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices
Martín, Juan A.; Paredes, Pedro
2016-08-01
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.
Energy velocity and group velocity
陈宇
1995-01-01
A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.
Correlative velocity fluctuations over a gravel river bed
Dinehart, R.L.
1999-01-01
Velocity fluctuations in a steep, coarse-bedded river were measured in flow depths ranging from 0.8 to 2.2 m, with mean velocities at middepth from 1.1 to 3.1 m s−1. Analyses of synchronous velocity records for two and three points in the vertical showed a broad range of high coherence for wave periods from 10 to 100 s, centering around 10–30 s. Streamwise correlations over distances of 9 and 14 m showed convection velocities near mean velocity for the same wave periods. The range of coherent wave periods was a small multiple of predicted “boil” periods. Correlative fluctuations in synchronous velocity records in the vertical direction suggested the blending of short pulses into longer wave periods. The highest spectral densities were measured beyond the range of coherent wave periods and were probably induced by migration of low-relief bed forms.
Liu, Xiaoyun; Sun, Ningling; Yu, Tao; Fan, Fangfang; Zheng, Meili; Qian, Geng; Wang, Binyan; Wang, Yu; Tang, Genfu; Li, Jianping; Qin, Xianhui; Hou, Fanfan; Xu, Xiping; Yang, Xinchun; Chen, Yundai; Wang, Xiaobin; Huo, Yong
2016-09-28
This study aimed to investigate the independent and joint association of blood pressure (BP), homocysteine (Hcy), and fasting blood glucose (FBG) levels with brachial-ankle pulse wave velocity (baPWV, a measure of arterial stiffness) in Chinese hypertensive adults.The analyses included 3967 participants whose BP, Hcy, FBG, and baPWV were measured along with other covariates. Systolic BP (SBP) was analyzed as 3 categories (SBP < 160 mmHg; 160 to 179 mmHg; ≥ 180 mmHg); Hcy as 3 categories (< 10 μmol/L; 10 to 14.9 μmol/L; ≥ 15.0 μmol/L) and FBG: normal (FBG < 5.6 mmol/L), impaired (5.6 mmol/L ≤ FBG < 7.0 mmol/L), and diabetes mellitus (FBG ≥ 7.0 mmol/L). We performed linear regression analyses to evaluate their associations with baPWV with adjustment for covariables.When analyzed individually, BP, Hcy, and FBG were each associated with baPWV. When BP and FBG were analyzed jointly, the highest baPWV value (mean ± SD: 2227 ± 466 cm/s) was observed in participants with FBG ≥ 7.0 mmol/L and SBP ≥ 180 mmHg (β = 432.5, P < 0.001), and the lowest baPWV value (mean ± SD: 1692 ± 289 cm/s) was seen in participants with NFG and SBP < 160 mmHg. When Hcy and FBG were analyzed jointly, the highest baPWV value (2072 ± 480 cm/s) was observed in participants with FBG ≥ 7.0 mmol/L and Hcy ≥ 15.0 μmol/L (β = 167.6, P < 0.001), while the lowest baPWV value (mean ± SD: 1773 ± 334 cm/s) was observed in participants with NFG and Hcy < 10 μmol/L.In Chinese hypertensive adults, SBP, Hcy, and FBG are individually and jointly associated with baPWV.Our findings underscore the importance of identifying individuals with multiple risk factors of baPWV including high SBP, FBG, and Hcy.
Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.
2014-10-01
Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.
Instantaneous velocity profile measurements in a turbulent boundary layer
Robinson, S. K.
1986-01-01
Instantaneous wall shear stress and streamwise velocities have been measured simultaneously in a flat-plate, turbulent boundary layer at moderate Reynolds number in an effort to provide experimental support for large eddy simulations. Data were obtained using a buried-wire, wall shear gage and a hot-wire rake positioned in the log region of the flow. Fluctuations of the instantaneous U(+) versus Y(+) profiles about a mean law of the wall are shown to be significant and complex. Peak cross-correlation values between wall shear stress and the velocities are high, and reflect the passage of a large structure inclined at a small angle to the wall. Estimates of this angle are consistent with those made by other investigators. Conditional sampling techniques were used to detect the passage of various sizes and types of flow disturbances (events), and to estimate their mean frequency of occurrence. Events characterized by large aand sudden streamwise accelerations were found to be highly coherent throughout the log region and were strongly correlated with large fluctuations in wall shear stress. Phase randomness between the near-wall quantities and the outer velocities was small. The results suggest that the flow events detected by conditional sampling applied to velocities in the log region may be related to the bursting process.
Computing discharge using the index velocity method
Levesque, Victor A.; Oberg, Kevin A.
2012-01-01
Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression
The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow
Vassilicos, J C; Foucaut, J -M; Stanislas, M
2014-01-01
The spectral model of Perry, Henbest & Chong (1986) predicts that the integral length-scale varies very slowly with distance to the wall in the intermediate layer. The only way for the integral length scale's variation to be more realistic while keeping with the Townsend-Perry attached eddy spectrum is to add a new wavenumber range to the model at wavenumbers smaller than that spectrum. This necessary addition can also account for the high Reynolds number outer peak of the turbulent kinetic energy in the intermediate layer. An analytic expression is obtained for this outer peak in agreement with extremely high Reynolds number data by Hultmark, Vallikivi, Bailey & Smits (2012, 2013). The finding of Dallas, Vassilicos & Hewitt (2009) that it is the eddy turnover time and not the mean flow gradient which scales with distance to the wall and skin friction velocity in the intermediate layer implies, when combined with Townsend's (1976) production-dissipation balance, that the mean flow gradient has an ...
Streamwise Evolution of Statistical Events in a Model Wind-Turbine Array
Viestenz, Kyle; Cal, Raúl Bayoán
2016-02-01
Hot-wire anemometry data, obtained from a wind-tunnel experiment containing a 3 × 3 model wind-turbine array, are used to conditionally average the Reynolds stresses. Nine profiles at the centreline behind the array are analyzed to characterize the turbulent velocity statistics of the wake flow. Quadrant analysis yields statistical events occurring in the wake of the wind farm where quadrants 2 and 4 produce ejections and sweeps, respectively. The scaled difference between these two events is expressed via the Δ R0 parameter and is based on the Δ S0 quantity as introduced by M. R. Raupach (J Fluid Mech 108:363-382, 1981). Δ R0 attains a maximum value at hub height and changes sign near the top of the rotor. The ratio of quadrant events of upward momentum flux to those of the downward flux, known as the exuberance, is examined and reveals the effect of root vortices persisting to eight rotor diameters downstream. These events are then associated with the triple correlation term present in the turbulent kinetic energy equation of the fluctuations where it is found that ejections play the dual role of entraining mean kinetic energy while convecting turbulent kinetic energy out of the turbine canopy. The development of these various quantities possesses significance in closure models, and is assessed in light of wake remediation, energy transport and power fluctuations, where it is found that the maximum fluctuation is about 30% of the mean power produced.
Khoo, B. C.; Chew, Y. T.; Teo, C. J.
This work continues the studies of Khoo et al. (Exp. Fluids 29: 448-460, 2001), where experiments were performed in turbulent-channel and flat-plate boundary-layer flows using near-wall hot-wire probes. The probability density function (pdf) of the wall-shear stress and streamwise velocity fluctuations in the viscous sublayer, buffer region and beyond were compared and analyzed. The convective velocity Uc of the streamwise velocity fluctuations in the very near-wall region was obtained using a two-point correlation technique. It was found that in the viscous sublayer, Uc is approximately constant at 13uτ and 15uτ, respectively, for the channel and boundary-layer flows. Spectra data for the viscous sublayer are presented for the first time, and the normalized spectral plots for different flow conditions collapse at high frequencies or wavenumbers, thus indicating the possible presence of small-scale universality at different Reynolds numbers. The integral time scale corresponding to the streamwise velocity fluctuations in the viscous sublayer is also presented.
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
刘璐璐; 张军; 翟树成; 张国平
2015-01-01
The analysis of detailed flow structure of a turbulent boundary layer is of great significance for establishing the link among the detailed flow structure characteristics, flow noise and wall friction, which can help lay the foundation for deeper research of the drag and noise reduction mechanism. PIV (particle image velocimetry) technique is applied in this paper to study the hairpin vortex signatures in the streamwise-spanwise plane in turbulent boundary layer flow on a flat plate. The experiment successfully identifies low-speed streaks from PIV instantaneous velocity field and the distributions of spanwise spacing of low-speed streaks along with wall-normal distance and Reynolds number are obtained through statistical analysis in the logarithmic layer. Meanwhile, the counter-rotating vortices surrounding the long low-speed streaks in the streamwise-spanwise plane are extracted through vortex identification criterion, which reveals the relationship between hairpin packets and long low-speed streaks. Besides, this paper performs a research about the distribution of spanwise spacing of hairpin vortex legs, considering various wall-normal distances and the effect of Reynolds numbers.%研究湍流边界层精细流动结构特征，有助于建立流动结构特征与壁面摩阻、流噪声之间的关联，从而为湍流边界层减阻降噪机理的深层次研究奠定基础。该文应用PIV（粒子图像测速）技术，对平板湍流边界层中发卡涡在流向-展向平面的涡迹特征进行研究。利用PIV瞬时速度场，捕捉到明显的低速条带，通过统计分析获得对数层范围低速条带间距随壁面法向距离的变化以及雷诺数的影响规律。同时，通过涡识别准则，提取在流向-展向平面内长低速条带两侧的反向漩涡带，揭示了发卡涡包与长低速条带的内在关系。此外，还研究了流向-展向平面发卡涡涡腿间距随壁面法向距离的变化规律以及雷诺数的影响。
Simultaneous PIV and PTV measurements of wind and sand particle velocities
Zhang, Wei; Wang, Yuan; Lee, Sang Joon
2008-08-01
Wind-blown sand is a typical example of two-phase particle-laden flows. Owing to lack of simultaneous measured data of the wind and wind-blown sand, interactions between them have not yet been fully understood. In this study, natural sand of 100-125 μm taken from Taklimakan Desert was tested at the freestream wind speed of 8.3 m/s in an atmospheric boundary layer wind tunnel. The captured flow images containing both saltating sand and small wind tracer particles, were separated by using a digital phase mask technique. The 2-D PIV (particle imaging velocimetry) and PTV (particle tracking velocimetry) techniques were employed to extract simultaneously the wind velocity field and the velocity field of dispersed sand particles, respectively. Comparison of the mean streamwise wind velocity profile and the turbulence statistics with and without sand transportation reveal a significant influence of sand movement on the wind field, especially in the dense saltating sand layer ( y/ δ < 0.1). The ensemble-averaged streamwise velocity profile of sand particles was also evaluated to investigate the velocity lag between the sand and the wind. This study would be helpful in improving the understanding of interactions between the wind and the wind-blown sand.
Normalized velocity profiles of field-measured turbidity currents
Xu, Jingping
2010-01-01
Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.
Structure of the velocity gradient tensor in turbulent shear flows
Pumir, Alain
2017-07-01
The expected universality of small-scale properties of turbulent flows implies isotropic properties of the velocity gradient tensor in the very large Reynolds number limit. Using direct numerical simulations, we determine the tensors formed by n =2 and 3 velocity gradients at a single point in turbulent homogeneous shear flows and in the log-layer of a turbulent channel flow, and we characterize the departure of these tensors from the corresponding isotropic prediction. Specifically, we separate the even components of the tensors, invariant under reflexion with respect to all axes, from the odd ones, which identically vanish in the absence of shear. Our results indicate that the largest deviation from isotropy comes from the odd component of the third velocity gradient correlation function, especially from the third moment of the derivative along the normal direction of the streamwise velocity component. At the Reynolds numbers considered (Reλ≈140 ), we observe that these second- and third-order correlation functions are significantly larger in turbulent channel flows than in homogeneous shear flow. Overall, our work demonstrates that a mean shear leads to relatively simple structure of the velocity gradient tensor. How isotropy is restored in the very large Reynolds limit remains to be understood.
徐万海; 杜杰; 余建星; 李敬成
2011-01-01
A wake oscillator model is presented for the stream-wise vortex-induced vibration of a circular cylinder in the second excitation region. The near wake dynamics related to the fluctuating nature of alternate vortex shedding is modeled based on the classical van der Pol equation. An appropriate approach used in cross-Sow VIV is developed to estimate the model empirical parameters. The comparison between our calculations and experiments is carried out to validate the proposed model. It is found that the present model results agree fairly well with the experimental data.%A wake oscillator model is presented for the stream-wise vortex-induced vibration of a circular cylinder in the second excitation region.The near wake dynamics related to the fluctuating nature of alternate vortex shedding is modeled based on the classical van der Pol equation.An appropriate approach used in cross-flow VIV is developed to estimate the nodel empirical parameters.The comparison between our calculations and experiments is carried out to validate the proposed model.It is found that the present model results agree fairly well with the experimental data.
PROBABILITY DISTRIBUTION FUNCTION OF NEAR-WALL TURBULENT VELOCITY FLUCTUATIONS
无
2005-01-01
By large eddy simulation (LES), turbulent databases of channel flows at different Reynolds numbers were established. Then, the probability distribution functions of the streamwise and wall-normal velocity fluctuations were obtained and compared with the corresponding normal distributions. By hypothesis test, the deviation from the normal distribution was analyzed quantitatively. The skewness and flatness factors were also calculated. And the variations of these two factors in the viscous sublayer, buffer layer and log-law layer were discussed. Still illustrated were the relations between the probability distribution functions and the burst events-sweep of high-speed fluids and ejection of low-speed fluids-in the viscous sub-layer, buffer layer and loglaw layer. Finally the variations of the probability distribution functions with Reynolds number were examined.
Velocity anticipation in the optimal velocity model
DONG Li-yun; WENG Xu-dan; LI Qing-ding
2009-01-01
In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.
Fabris, G
1978-05-01
In the measurement of turbulent flows the need has always existed to obtain correct instantaneous values of temperature and three components of velocity at a particular point. Many proposed lengthy approximate correction methods that attempt to account for ''nonlinear'' effects (cross contamination between different quantities) in hot-wire measurements cannot be considered satisfactory. The availability of powerful digital computers for theoretical and experimental studies has placed pressure on experimentalists to develop better probes and methods. This paper attempts to answer these pressures by describing the development of a special four-wire probe and a method of processing the obtained signals. The use of four 0.625-microm-diam sensors makes the probe practically interference free. The processing method is based on the simultaneous solution of four complete nonlinear response equations for the sensors, yielding in principle exact instantaneous values of velocity components and temperature. Additional features of the processing method include: instantaneous full correction for tunnel free stream velocity and temperature fluctuations, first-order correction for dc drifts of the signals during data acquisition, subtraction of all 60-Hz related noise, and correction for streamwise displacement of sensors based on instantaneous streamwise velocity.
Bianco, Vincenzo; Borreani, Walter; Lomonaco, Guglielmo
2017-06-01
The present paper reports a numerical investigation of a forced convection water flow within a two-dimensional ribbed channel. A uniform heat flux is applied on the external walls. The flow regime is turbulent and Reynolds numbers are in the range 10·103÷100·103. Square and chamfered rib shapes with different arrangements are analyzed in terms of various dimensionless heights and pitches of elements. The investigation is accomplished by using a CFD code and its aim consists in finding of arrangements to obtain a high Performance Evaluation Criterion (PEC). Results are presented in terms of temperature and velocity fields, profiles of average Nusselt number, average heat transfer coefficients and required pumping power. Heat transfer enhancement increases with the ribs presence, but it is accompanied by an increasing pumping power. In particular, the best performances in terms of Nusselt are shown for p/e = 4 and 12 for both the square and chamfered cases. The heat transfer improves as Reynolds number raises, but a substantial increase of pumping power is also observed. The utilization of chamfered ribs allows to increase the PEC, especially at low Re. The maximum PEC is equal to 1.3 and it is obtained for Re = 104 and p/e = 4.
Bretheim, Joel U; Gayme, Dennice F
2014-01-01
Numerical simulations of wall-turbulence using the restricted nonlinear (RNL) model generate realistic mean velocity profiles in plane Couette and channel flow at low Reynolds numbers. The results are less accurate at higher Re, and while a logarithmic region is observed, its von-K\\'arm\\'an constant is not consistent with the standard logarithmic law. In half-channel flow we show that limiting the streamwise-varying wavenumber support of RNL turbulence to one or few empirically determined modes improves its predictions considerably. In particular, the mean velocity profiles obtained with the band-limited RNL model follow standard logarithmic behavior for the higher Reynolds numbers in this study.
Wakker, BP; vanWoerden, H
1997-01-01
High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,
Transverse Spectral Velocity Estimation
Jensen, Jørgen Arendt
2014-01-01
A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...
... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...
The nature of near-wall convection velocity in turbulent channel flow
Yuhui Cao; Jun Chen; Zhensu She
2008-01-01
A novel notion of turbulent structure-the local cascade structure-is introduced to study the convection phenomenon in a turbulent channel flow. A space-time cross-correlation method is used to calculate the convection velo-city. It is found that there are two characteristic convection speeds near the wall, one associated with small-scale streaks of a lower speed and another with streamwise vortices and hairpin vortices of a higher speed. The new concept of tur-bulent structure is powerful to illustrate the dominant role of coherent structures in the near-wall convection, and to reveal also the nature of the convection-the propagation of patterns of velocity fluctuations-which is scale-dependent.
Decreased group velocity in compositionally graded films.
Gao, Lei
2006-03-01
A theoretical formalism is presented that describes the group velocity of electromagnetic signals in compositionally graded films. The theory is first based on effective medium approximation or the Maxwell-Garnett approximation to obtain the equivalent dielectric function in a z slice. Then the effective dielectric tensor of the graded film is directly determined, and the group velocities for ordinary and extraordinary waves in the film are derived. It is found that the group velocity is sensitively dependent on the graded profile. For a power-law graded profile f(x)=ax(m), increasing m results in the decreased extraordinary group velocity. Such a decreased tendency becomes significant when the incident angle increases. Therefore the group velocity in compositionally graded films can be effectively decreased by our suitable adjustment of the total volume fraction, the graded profile, and the incident angle. As a result, the compositionally graded films may serve as candidate material for realizing small group velocity.
Velocity selective optical pumping
Aminoff, C. G.; Pinard, M.
1982-01-01
We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...
Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ
2015-09-01
The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...
Tel, G.
1993-01-01
We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of distri
Scaling properties of the mean wall-normal velocity in zero-pressure-gradient boundary layers
Wei, Tie; Klewicki, Joseph
2016-12-01
The scaling properties of the mean wall-normal velocity V (x ,y ) in zero-pressure-gradient laminar and turbulent boundary-layer flows are investigated using numerical simulation data, physical experiment data, and integral analyses of the governing equations. The maximum mean wall-normal velocity V∞ and the boundary-layer thickness δ are evidenced to be the proper scaling for V over most if not all of the boundary layer. This is different from the behavior of the mean streamwise velocity U or the turbulent shear stress T =-ρ , which depend on different characteristic length scales in the regions near and away from the surface, respectively. The reason for this apparent difference in scaling behaviors is described physically relative to the downstream development of the U velocity profile and the mechanisms of boundary-layer growth. Insights pertaining to this are further surmised from an analytical relationship for the ratio of the displacement to momentum thickness, i.e., shape factor H . Integral analyses using the continuity and mean momentum equation show that U∞V∞/uτ2=H , where uτ is the friction velocity. Both the laminar similarity solution and direct numerical simulation data in post-transitional flows convincingly support this relation. Over the transitional regime, data of sufficiently high quality are lacking to check if this relation remains valid.
Bateson, Colin; Aliseda, Alberto
2015-11-01
We present results from wind tunnel experiments on the evolution of small inertial (d ~ 10 - 200 μm) water droplets in homogeneous, isotropic, slowly decaying grid turbulence. High-speed imaging and a Particle Tracking algorithm are used to calculate relative velocity distributions. We analyze the preferential concentration, via the 2D Radial Distribution Function, and enhanced relative velocity of droplets resulting from their inertial interactions with the underlying turbulence. The two-dimensional particle velocities, measured from multi-image tracks along a streamwise plane, are conditionally analyzed with respect to the distance from the nearest particle. We focus on the non-normality of the statistics for the particle-particle separation velocity component to examine the influence of the inertial interaction with the turbulence on the dynamics of the droplets. We observe a negative bias (in the mean and mode) in the separation velocity of particles for short separations, signaling a tendency of particles to collide more frequently than a random agitation by turbulence would predict. The tails of the distribution are interpreted in terms of the collision/coalescence process and the probability of collisions that do not lead to coalescence.
Superluminal Recession Velocities
Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.
2000-01-01
Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.
Perotti, Jose; Voska, Ned (Technical Monitor)
2002-01-01
This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.
Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.
1996-05-01
We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.
Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity
Higuera, F. J.; Jimenez, J.; Linan, A.
1996-01-01
The equations describing the first two terms of an asymptotic expansion of the solution of the planar turbulent mixing layer for values of the velocity ratio close to one are obtained. The first term of this expansion is the solution of the well-known time-evolving problem and the second, which includes the effects of the increase of the turbulence scales in the stream-wise direction, obeys a linear system of equations. Numerical solutions of these equations for a two-dimensional reacting mixing layer show that the correction to the time-evolving solution may explain the asymmetry of the entrainment and the differences in product generation observed in flip experiments.
Mean and fluctuating velocity fields of a diamond turbulent jet
Xu Min-Yi; Zhang Jian-Peng; Mi Jian-Chun; Nathan G.J.; Kalt P.A.M.
2013-01-01
The present paper reports the first investigation on a turbulent jet issuing from a diamond orifice (hereafter termed a "diamond jet") with an aspect ratio of 1.7.Velocity measurements were conducted in the transitional region,and the exit Reynolds number of the jet was 50000.For comparison,a round jet with identical normalized boundary conditions was also measured.It is shown that the diamond jet decays and spreads faster than the round jet does over the measured flow region.The axis-switching phenomenon is observed in the diamond jet.Although both jets display primary coherent structures in the near field,these structures are found to break down more rapidly in the diamond jet,due to the higher three-dimensionality of the flow.Moreover,the streamwise components of the Reynolds normal stress and all the shear stresses reach their maxima around the location of the maximal mean shear while the maxima of the lateral components of the Reynolds normal stresses occur around the centreline of the jet.
Velocity-vorticity correlation structures in compressible turbulent boundary layer
Chen, Jun; Li, Shi-Yao; She, Zhen-Su
2016-11-01
A velocity-vorticity correlation structure (VVCS) analysis is applied to analyze data of 3-dimensional (3-D) direct numerical simulations (DNS), to investigate the quantitative properties of the most correlated vortex structures in compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2 . 25 and 6 . 0 . It is found that the geometry variation of the VVCS closely reflects the streamwise development of CTBL. In laminar region, the VVCS captures the instability wave number of the boundary layer. The transition region displays a distinct scaling change of the dimensions of VVCS. The developed turbulence region is characterized by a constant spatial extension of the VVCS. For various Mach numbers, the maximum correlation coefficient of the VVCS presents a clear multi-layer structure with the same scaling laws as a recent symmetry analysis proposed to quantifying the sublayer, the log-layer, and the wake flow. A surprising discovery is that the wall friction coefficient, Cf, holds a "-1"-power law of the wall normal distance of the VVCS, ys. This validates the speculation that the wall friction is determined by the near-wall coherent structure, which clarifies the correlation between statistical structures and the near-wall dynamics. Project 11452002 and 11172006 supported by National Natural Science Foundation of China.
Quantitative velocity modulation spectroscopy
Hodges, James N.; McCall, Benjamin J.
2016-05-01
Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.
Fat mass measured by DXA varies with scan velocity
Black, Eva; Petersen, Liselotte; Kreutzer, Martin
2002-01-01
To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight.......To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight....
The Prescribed Velocity Method
Nielsen, Peter Vilhelm
The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....
Cirrus Crystal Terminal Velocities.
Heymsfield, Andrew J.; Iaquinta, Jean
2000-04-01
Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal
Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.
1982-01-01
Two orthogonal components of velocity and associated Reynolds stresses are determined in a square-sectioned, 90 degree bend of 2.3 radius ratio by utilizing laser-Doppler velocimetry for Reynolds numbers of 790 and 40,000. Results show that boundary layers at the bend inlet of 0.25 and 0.15 of the hydraulic diameter create secondary velocity maxima of 0.6 and 0.4 of the bulk flow velocity, respectively. It is concluded that the boundary layer thickness is important to the flow development, mainly in the first half of the bend, especially when it is reduced to 0.15 of the hydraulic diameter. Smaller secondary velocities are found for turbulent flow in an identical duct with a radius ratio of 7.0 than in the strongly curved bend, although their effect is more important to the streamwise flow development because of the smaller pressure gradients. In addition, the detail and accuracy of the measurements make them suitable for evaluation of numerical techniques and turbulence models.
Brand, Neal; Quintanilla, John A.
2013-01-01
Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…
Turbulence of non-uniform open channel flows and mean velocity scaling
Stewart, R.; Fox, J.
2014-12-01
Turbulence and mean velocity distributions are well studied for uniform flows, however fully turbulent non-uniform open channel flows over rough gravel beds are an understudied class of realistic flows with significant geomorphologic importance. The two-fold objectives of this study are to investigate the effects of flow deceleration on multi-layer turbulence and determine velocity scales that produce self-similar profiles using turbulent boundary layer theory. Turbulence statistics were calculated from data collected using a three-dimensional acoustic Doppler velocimeter in backwater region produced by placing cylindrical obstruction downstream of measuring location. Results indicate inner turbulent processes are set according to shear velocity while outer layer of turbulence is not. Mean streamwise velocity profiles of 101 published datasets including 2211 data points from non-uniform decelerating rivers and laboratory flumes are scaled using inner, outer and 2 mixed methods. Theoretical arguments indicate the outer velocity scale determined from the AIP definition of equilibrium provides a more appropriate scaling for the velocity deficit of non-uniform open channel flows than inner scaling determined from Clauser equilibrium. Scaling results of mean profiles show outer scaling collapses data better than inner scaling. Mixed scaling approaches, which account for upstream conditions and the effect of bed roughness felt throughout the flow, provide a better scaling choice for this class of flows than either inner or outer scales alone. Results of this analysis provide insight on the behavior of turbulence in decelerating fully turbulent open channel flow over a rough gravel bed and provides a scaling useful for predicting velocity distributions.
Wave propagation and group velocity
Brillouin, Léon
1960-01-01
Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter
Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.
2010-01-01
The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.
Bayliss, Matthew.B. [MIT, MKI; Zengo, Kyle [Colby Coll.; Ruel, Jonathan [Harvard U., Phys. Dept.; Benson, Bradford A. [Fermilab; Bleem, Lindsey E. [Argonne; Bocquet, Sebastian [Argonne; Bulbul, Esra [MIT, MKI; Brodwin, Mark [Missouri U., Kansas City; Capasso, Raffaella [Munich, Tech. U., Universe; Chiu, I-non [Taiwan, Natl. Tsing Hua U.; McDonald, Michael [MIT, MKI; Rapetti, David [NASA, Ames; Saro, Alex [Munich, Tech. U., Universe; Stalder, Brian [Inst. Astron., Honolulu; Stark, Antony A. [Harvard-Smithsonian Ctr. Astrophys.; Strazzullo, Veronica [Munich, Tech. U., Universe; Stubbs, Christopher W. [Harvard-Smithsonian Ctr. Astrophys.; Zenteno, Alfredo [Cerro-Tololo InterAmerican Obs.
2016-12-08
The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanning $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $17\\pm4$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($m < m^{*}-0.5$) cluster galaxies is $11\\pm4$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.
Anderson, O. L.; Briley, W. R.; Mcdonald, H.
1978-01-01
An approximate analysis is presented for calculating three-dimensional, low Mach number, laminar viscous flows in curved passages with large secondary flows and corner boundary layers. The analysis is based on the decomposition of the overall velocity field into inviscid and viscous components with the overall velocity being determined from superposition. An incompressible vorticity transport equation is used to estimate inviscid secondary flow velocities to be used as corrections to the potential flow velocity field. A parabolized streamwise momentum equation coupled to an adiabatic energy equation and global continuity equation is used to obtain an approximate viscous correction to the pressure and longitudinal velocity fields. A collateral flow assumption is invoked to estimate the viscous correction to the transverse velocity fields. The approximate analysis is solved numerically using an implicit ADI solution for the viscous pressure and velocity fields. An iterative ADI procedure is used to solve for the inviscid secondary vorticity and velocity fields. This method was applied to computing the flow within a turbine vane passage with inlet flow conditions of M = 0.1 and M = 0.25, Re = 1000 and adiabatic walls, and for a constant radius curved rectangular duct with R/D = 12 and 14 and with inlet flow conditions of M = 0.1, Re = 1000, and adiabatic walls.
Lopez Moris E
2016-06-01
Full Text Available Total thyroidectomy is a surgery that removes all the thyroid tissue from the patient. The suspect of cancer in a thyroid nodule is the most frequent indication and it is presume when previous fine needle puncture is positive or a goiter has significant volume increase or symptomes. Less frequent indications are hyperthyroidism when it is refractory to treatment with Iodine 131 or it is contraindicated, and in cases of symptomatic thyroiditis. The thyroid gland has an important anatomic relation whith the inferior laryngeal nerve and the parathyroid glands, for this reason it is imperative to perform extremely meticulous dissection to recognize each one of these elements and ensure their preservation. It is also essential to maintain strict hemostasis, in order to avoid any postoperative bleeding that could lead to a suffocating neck hematoma, feared complication that represents a surgical emergency and endangers the patient’s life.It is essential to run a formal technique, without skipping steps, and maintain prudence and patience that should rule any surgical act.
Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?
De Colle, Fabio; Riera, Angels
2016-01-01
Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could ...
Klotz, Lukasz; Lemoult, Gregoire; Wesfreid, Jose Eduardo
2015-11-01
We describe a new experimental set-up which allows us to study the sub-critical transition to turbulence in a two dimensional shear flow (including plane Couette, plane Couette-Poiseuille and plane Poiseuille flows). Our facility is an extension of a classical plane Couette experiment, in which one uses a single closed loop of plastic belt to generate the opposite sign velocity at each wall of the test section. However, in our case, we use two independent closed loops of plastic belt, one at each wall of the test section. The speed of these belts may be controlled separately. That enables to set two different velocities (in value and direction) as a boundary conditions at each of two test section's walls. In addition the pressure gradient in streamwise direction can be controlled. In particular, the plane Poiseuille flow with zero mean advection velocity can be created. We characterize by PIV the basic flow for different configurations. For a plane Poiseuille flows as base flow, we were able to observe for the first time the nearly stationary turbulent spots in this flow, with structures of characteristic wavelength ~ the distance between the two plates.
Dark Matter Velocity Spectroscopy.
Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan
2016-01-22
Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.
Minimum Length - Maximum Velocity
Panes, Boris
2011-01-01
We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.
Dark Matter Velocity Spectroscopy
Speckhard, Eric G; Beacom, John F; Laha, Ranjan
2016-01-01
Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.
Velocity centroids as tracers of the turbulent velocity statistics
Lazarian, A E A
2004-01-01
We use the results of magnetohydrodynamic (MHD) simulations to emulate spectroscopic observations, and produce maps of variations of velocity centroids to study their scaling properties. We compare them with those of the underlying velocity field, and analytic predictions presented in a previous paper (Lazarian & Esquivel 2003). We tested, with success, a criteria for recovering velocity statistics from velocity centroids derived in our previous work. That is, if >> (where S is a 2D map of ``unnormalized'', v velocity, and I integrated intensity map -column density-), then the structure function of the centroids is dominated by the structure function of velocity. We show that it is possible to extract the velocity statistics using centroids for subsonic and mildly supersonic turbulence (e.g. Mach numbers ~2.5). While, towards higher Mach numbers other effects could affect significantly the statistics of centroids.
Statistics of Velocity from Spectral Data Modified Velocity Centroids
Lazarian, A
2003-01-01
We address the problem of studying interstellar (ISM) turbulence using spectral line data. We construct a measure that we term modified velocity centroids (MVCs) and derive an analytical solution that relates the 2D spectra of the modified centroids with the underlying 3D velocity spectrum. We test our results using synthetic maps constructed with data obtained through simulations of compressible MHD turbulence. We prove that the MVCs are able to restore the underlying spectrum of turbulent velocity. We show that the modified velocity centroids (MVCs) are complementary to the the Velocity Channel Analysis (VCA) technique that we introduced earlier. Employed together they make determining of the velocity spectral index more reliable. At the same time we show that MVCs allow to determine velocity spectra when the underlying statistics is not a power law and/or the turbulence is subsonic.
Fall velocity of multi-shaped clasts
Le Roux, Jacobus P.
2014-12-01
Accurate settling velocity predictions of differently shaped micro- or macroclasts are required in many branches of science and engineering. Here, a single, dimensionally correct equation is presented that yields a significant improvement on previous settling formulas for a wide range of clast shapes. For smooth or irregular clasts with known axial dimensions, a partially polynomial equation based on the logarithmic values of dimensionless sizes and settling velocities is presented, in which the values of only one coefficient and one exponent need to be adapted for different shapes, irrespective of the Reynolds number. For irregular, natural clasts with unknown axial dimensions, a polynomial equation of the same form is applied, but with different coefficients. Comparison of the predicted and measured settling velocities of 8 different shape classes as well as natural grains with unknown axial dimensions in liquids, representing a total of 390 experimental data points, shows a mean percentage error of - 0.83% and a combined R2 value of 0.998. The settling data of 169 differently shaped particles of pumice, glass and feldspar falling in air were also analyzed, which demonstrates that the proposed equation is also valid for these conditions. Two additional shape classes were identified in the latter data set, although the resultant equations are less accurate than for liquids. An Excel spreadsheet is provided to facilitate the calculation of fall velocities for grains settling individually and in groups, or alternatively to determine the equivalent sieve size from the settling velocity, which can be used to calibrate settling tubes.
Minimal information in velocity space
Evrard, Guillaume
1995-01-01
Jaynes' transformation group principle is used to derive the objective prior for the velocity of a non-zero rest-mass particle. In the case of classical mechanics, invariance under the classical law of addition of velocities, leads to an improper constant prior over the unbounded velocity space of classical mechanics. The application of the relativistic law of addition of velocities leads to a less simple prior. It can however be rewritten as a uniform volumetric distribution if the relativistic velocity space is given a non-trivial metric.
Visual control of walking velocity.
François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles
2011-06-01
Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.
Development of an optimal velocity selection method with velocity obstacle
Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)
2015-08-15
The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.
Terminal Velocity Infall in QSO Absorption Line Halos
Benjamin, Robert A.
We explore the hypothesis that clouds detected in quasar absorption line systems are falling at a terminal velocity toward the center of high redshift gaseous galactic halos. Since both the ionization level and terminal velocity of halo clouds increase with increasing distance from the central galaxy, velocity resolved profiles of highly ionized gas are predicted to have a greater width than low ionization gas. A line of sight passing through the center of gaseous halo (an idealized damped Ly alpha system), yields low ionization absorption at the velocity of the galaxy, flanked by high ionization on either side. Reasonable halo parameters yield total velocity extents for C IV of Delta v_{C IV}=100-200 km s^{-1}, in agreement with many systems observed by Lu et al (1997). The remaining systems may better described by the rotating disk model of Prochaska & Wolfe (1998). Finally, observational tests are suggested for verifying or falsifying the terminal velocity hypothesis for these systems.
Velocity dependant splash behaviour
Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.
2012-04-01
Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.
Examples of Vector Velocity Imaging
Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.
2011-01-01
To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...... with a 90° angle on the vessel. Moreover secondary flow in the abdominal aorta is illustrated by scanning on the transversal axis....
Sodium Velocity Maps on Mercury
Potter, A. E.; Killen, R. M.
2011-01-01
The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.
Introduction to vector velocity imaging
Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;
Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making...
Instantaneous Velocity Using Photogate Timers
Wolbeck, John
2010-01-01
Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…
Kriging Interpolating Cosmic Velocity Field
Yu, Yu; Jing, Yipeng; Zhang, Pengjie
2015-01-01
[abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...
Modified Feynman ratchet with velocity-dependent fluctuations
Jack Denur
2004-03-01
Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.
Diffraction imaging and velocity analysis using oriented velocity continuation
Decker, Luke
2014-08-05
We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.
Consideration of wear rates at high velocity
Hale, Chad S.
The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models
Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.
2009-01-01
In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.
Neutrino Velocity and Neutrino Oscillations
Minakata, H
2012-01-01
We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\
Statistics of Centroids of Velocity
Esquivel, A
2009-01-01
We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfv\\'enic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.
Kriging interpolating cosmic velocity field
Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie
2015-10-01
Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.
Event Detection by Velocity Pyramid
2014-01-01
In this paper, we propose velocity pyramid for multimediaevent detection. Recently, spatial pyramid matching is proposed to in-troduce coarse geometric information into Bag of Features framework,and is eective for static image recognition and detection. In video, notonly spatial information but also temporal information, which repre-sents its dynamic nature, is important. In order to fully utilize it, wepropose velocity pyramid where video frames are divided into motionalsub-regions. Our meth...
Gait phase varies over velocities.
Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan
2014-02-01
We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.
Gousseau, P; Blocken, B; van Heijst, G J F
2012-08-01
Pollutant transport due to the turbulent wind flow around buildings is a complex phenomenon which is challenging to reproduce with Computational Fluid Dynamics (CFD). In the present study we use Large-Eddy Simulation (LES) to investigate the turbulent mass transport mechanism in the case of gas dispersion around an isolated cubical building. Close agreement is found between wind-tunnel measurements and the computed average and standard deviation of concentration in the wake of the building. Since the turbulent mass flux is equal to the covariance of velocity and concentration, we perform a detailed statistical analysis of these variables to gain insight into the dispersion process. In particular, the fact that turbulent mass flux in the streamwise direction is directed from the low to high levels of mean concentration (counter-gradient mechanism) is explained. The large vortical structures developing around the building are shown to play an essential role in turbulent mass transport.
Cheng, Wan
2015-06-30
We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.
Velocity Data in a Fully Developed Wind Turbine Array Boundary Layer
Turner, John; Wosnik, Martin
2016-11-01
Results are reported from an experimental study of an array of porous disks simulating offshore wind turbines. The disks mimic power extraction of similarly scaled wind turbines via drag matching, and the array consists of 19x5 disks of 0.25 m diameter. The study was conducted in the UNH Flow Physics Facility (FPF), which has test section dimensions of 6.0 m wide, 2.7 m high and 72.0 m long. The FPF can achieve a boundary layer height on the order of 1 m at the entrance of the wind turbine array which puts the model turbines in the bottom third of the boundary layer, which is typical of field application. Careful consideration was given to an expanded uncertainty analysis, to determine possible measurements in this type of flow. For a given configuration (spacing, initial conditions, etc.), the velocity levels out and the wind farm approaches fully developed behavior, even within the maintained growth of the simulated atmospheric boundary layer. Benchmark pitot tube data was acquired in vertical profiles progressing streamwise behind the centered column at every row in the array.
Velocity requirements for causality violation
Modanese, Giovanni
2013-01-01
It is known that the hypothetical existence of superluminal signals would imply the logical possibility of active causal violation: an observer in relative motion with respect to a primary source could in principle emit secondary superluminal signals (triggered by the primary ones) which go back in time and deactivate the primary source before the initial emission. This is a direct consequence of the structure of the Lorentz transformations, sometimes called "Regge-Tolman paradox". It is straightforward to find a formula for the velocity of the moving observer required to produce the causality violation. When applied to some recent claims of slight superluminal propagation, this formula yields a required velocity very close to the speed of light; this raises some doubts about the real physical observability of such violations. We re-compute this velocity requirement introducing a realistic delay between the reception of the primary signal and the emission of the secondary. It turns out that for -any- delay it...
Signal velocity in oscillator arrays
Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.
2016-09-01
We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.
Angle independent velocity spectrum determination
2014-01-01
An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....
Study on the Velocity of Partially Submerged Landslide
Wang Yang
2014-08-01
Full Text Available Hydraulic resistance is one of the most important factors which affect the velocity of the partially submerged landslide when it moves into river at a high speed. In this paper, an experiment system was designed including a water tank, a moving frame fixed over the tank with liquid level sensors, blocks, and velocity control apparatus. Six blocks with different areas were used for experiments and each block moved at five different velocities in water tank. Test results showed that the increment of the pressure head was proportional to the square velocity of submerged block. Based on that, the total water pressure and corresponding hydraulic resistance of the moving block in water tank were obtained, and the latter was used to analyze hydraulic resistance acting on partially submerged landslide. Method of slice was applied to calculate the forces of landslide with curved slip surface. The dynamics and kinematics equation of landslide were used to calculate the velocity. Taking the Dayantang landslide as an example, velocities with different travel distance were obtained. The results showed that the maximum velocity of Dayantang landslide considering hydraulic resistance was 18.6% less than that without considering hydraulic resistance.
Velocity dispersions and X-ray temperatures of galaxy clusters
Girardi, M; Giuricin, G; Mardirossian, F; Mezzetti, M; Biviano, A
1995-01-01
Using a large and well-controlled sample of clusters of galaxies, we investigate the relation between cluster velocity dispersions and X-ray temperatures of intra-cluster gas. In order to obtain a reliable estimate of the total velocity dispersion of a cluster, independent of the level of anisotropies in galaxy orbits, we analyze the integrated velocity dispersion profiles over increasing distances from the cluster centers. Distortions in the velocity fields, the effect of close clusters, the presence of substructures, and the presence of a population of (spiral) galaxies not in virial equilibrium with the cluster potential are taken into account. Using our final sample of 37 clusters, for which a reliable estimate of the velocity dispersion could be obtained, we derive a relation between the velocity dispersions and the X-ray temperatures, with a scatter reduced by more than 30 % with respect to previous works. A chi square fit to the temperature-velocity dispersion relation does not exclude the hypothesis t...
Tachoastrometry: astrometry with radial velocities
Pasquini, L; Lombardi, M; Monaco, L; Leão, I C; Delabre, B
2014-01-01
Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 \\ms, which corresponds to a separation between the two components at the time of the observations of 18 $\\pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record p...
Spatiotemporal velocity-velocity correlation function in fully developed turbulence
Canet, Léonie; Wschebor, Nicolás; Balarac, Guillaume
2016-01-01
Turbulence is an ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is from Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the {\\it space and time} dependent velocity-velocity correlation function of homogeneous and isotropic turbulence from the field theory associated to Navier-Stokes equation with stochastic forcing. This prediction is the analytical fixed-point solution of Non-Perturbative Renormalisation Group flow equations, which are exact in a certain large wave-number limit. This solution is compared to two-point two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement both in the inertial and in the dissipative ranges.
EFFECT OF VELOCITY ON DUCTILITY UNDER HIGH VELOCITY FORMING
LI Zhong; LI Chunfeng
2007-01-01
The ring expansion procedures over various forming velocities are calculated with ANSYS software in order to show the effect of forming velocity on ductility of rate insensitive materials. Ring expansion procedures are simplified to one-dimensional tension by constraining the radial deformation, with element birth and death method, fracture problem of circular ring are considered. The calculated results show that for insensitive materials of 1060 aluminum and 3A21 aluminum alloy, fracture strain increases corresponding to the increase of forming velocity. This trend agrees well with experimental results, and indicates inertia is the key factor to affect ductility; With element birth and death methods, fracture problems can be solved effectively. Experimental studies on formability of tubular workpieces are also conducted, experimental results show that the formability of 1060 aluminum and 3A21 aluminum alloy under electromagnetic forming is higher than that under quasistatic forming, according to the characteristics of electromagnetic forming, the forming limit diagrams of the two materials tube are also built respectively, this is very important to promote the development of electromagnetic forming and guide the engineering practices.
Restricted total stability and total attractivity
Giuseppe Zappala'
2006-08-01
Full Text Available In this paper the new concepts of restricted total stability and total attractivity is formulated. For this purpose the classical theory of Malkin with suitable changes and the theory of limiting equations, introduced by Sell developed by Artstein and Andreev, are used. Significant examples are presented.
Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan
2002-01-01
It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.
Signal velocity for anomalous dispersive waves
Mainardi, F. (Bologna Univ. (Italy))
1983-03-11
The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.
Computer program /TURBLE/ for calculating velocities and streamlines in turbomachines
Katsanis, T.; Mcnally, W. D.
1971-01-01
Program is used in design of turbomachinery blade rows, where fluid velocities in blade to blade passage must be obtained. TURBLE requires input data on blade geometry, meridional stream-channel geometry, total flow conditions, weight flow, and inlet and outlet flow angles.
The integration of angular velocity
Boyle, Michael
2016-01-01
A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...
The Pulsar Kick Velocity Distribution
Hansen, B M S; Hansen, Brad M. S.
1997-01-01
We analyse the sample of pulsar proper motions, taking detailed account of the selection effects of the original surveys. We treat censored data using survival statistics. From a comparison of our results with Monte Carlo simulations, we find that the mean birth speed of a pulsar is 250-300 km/s, rather than the 450 km/s foundby Lyne & Lorimer (1994). The resultant distribution is consistent with a maxwellian with dispersion $ \\sigma_v = 190 km/s$. Despite the large birth velocities, we find that the pulsars with long characteristic ages show the asymmetric drift, indicating that they are dynamically old. These pulsars may result from the low velocity tail of the younger population, although modified by their origin in binaries and by evolution in the galactic potential.
Multilogarithmic velocity renormalization in graphene
Sharma, Anand; Kopietz, Peter
2016-06-01
We reexamine the effect of long-range Coulomb interactions on the quasiparticle velocity in graphene. Using a nonperturbative functional renormalization group approach with partial bosonization in the forward scattering channel and momentum transfer cutoff scheme, we calculate the quasiparticle velocity, v (k ) , and the quasiparticle residue, Z , with frequency-dependent polarization. One of our most striking results is that v (k ) ∝ln[Ck(α ) /k ] where the momentum- and interaction-dependent cutoff scale Ck(α ) vanishes logarithmically for k →0 . Here k is measured with respect to one of the charge neutrality (Dirac) points and α =2.2 is the strength of dimensionless bare interaction. Moreover, we also demonstrate that the so-obtained multilogarithmic singularity is reconcilable with the perturbative expansion of v (k ) in powers of the bare interaction.
Velocity-aligned Doppler spectroscopy
Xu, Z.; Koplitz, B.; Wittig, C.
1989-03-01
The technique of velocity-aligned Doppler spectrosocopy (VADS) is presented and discussed. For photolysis/probe experiments with pulsed initiation, VADS can yield Doppler profiles for nascent photofragments that allow detailed center-of-mass (c.m.) kinetic energy distributions to be extracted. When compared with traditional forms of Doppler spectroscopy, the improvement in kinetic energy resolution is dramatic. Changes in the measured profiles are a consequence of spatial discrimination (i.e., focused and overlapping photolysis and probe beams) and delayed observation. These factors result in the selective detection of species whose velocities are aligned with the wave vector of the probe radiation k/sub pr/, thus revealing the speed distribution along k/sub pr/ rather than the distribution of nascent velocity components projected upon this direction. Mathematical details of the procedure used to model VADS are given, and experimental illustrations for HI, H/sub 2/S, and NH/sub 3/ photodissociation are presented. In these examples, pulsed photodissociation produces H atoms that are detected by sequential two-photon, two-frequency ionization via Lyman-..cap alpha.. with a pulsed laser (121.6+364.7 nm), and measuring the Lyman-..cap alpha.. Doppler profile as a function of probe delay reveals both internal and c.m. kinetic energy distributions for the photofragments. Strengths and weaknesses of VADS as a tool for investigating photofragmentation phenomena are also discussed.
High velocity collisions of nanoparticles
Johnson, Donald F.; Mattson, William D.
2017-01-01
Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.
Centroid Velocity Statistics of Molecular Clouds
Bertram, Erik; Shetty, Rahul; Glover, Simon C O; Klessen, Ralf S
2014-01-01
We compute structure functions and Fourier spectra of 2D centroid velocity (CV) maps in order to study the gas dynamics of typical molecular clouds (MCs) in numerical simulations. We account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas and use a 3D radiative transfer tool to model the CO line emission in a post-processing step. We perform simulations using three different initial mean number densities of n_0 = 30, 100 and 300 cm^{-3} to span a range of typical values for dense gas clouds in the solar neighbourhood. We compute slopes of the centroid velocity increment structure functions (CVISF) and of Fourier spectra for different chemical components: the total density, H2 number density, 12CO number density as well as the integrated intensity of 12CO (J=1-0) and 13CO (J=1-0). We show that optical depth effects can significantly affect the slopes derived for the CVISF, which also leads to different scaling properties for the Fourier spectra. The slopes of CVI...
Centroid velocity statistics of molecular clouds
Bertram, Erik; Konstandin, Lukas; Shetty, Rahul; Glover, Simon C. O.; Klessen, Ralf S.
2015-02-01
We compute structure functions and Fourier spectra of 2D centroid velocity maps in order to study the gas dynamics of typical molecular clouds in numerical simulations. We account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas and use a 3D radiative transfer tool to model the CO line emission in a post-processing step. We perform simulations using three different initial mean number densities of n0 = 30, 100 and 300 cm-3 to span a range of typical values for dense gas clouds in the solar neighbourhood. We compute slopes of the centroid velocity increment structure functions (CVISF) and of Fourier spectra for different chemical components: the total density, H2 number density, 12CO number density as well as the integrated intensity of 12CO (J = 1 → 0) and 13CO (J = 1 → 0). We show that optical depth effects can significantly affect the slopes derived for the CVISF, which also leads to different scaling properties for the Fourier spectra. The slopes of CVISF and Fourier spectra for H2 are significantly steeper than those for the different CO tracers, independent of the density and the numerical resolution. This is due to the larger space-filling factor of H2 as it is better able to self-shield in diffuse regions, leading to a larger fractal co-dimension compared to CO.
Highly Ionized Envelopes of High Velocity Clouds
Zekis, Erin E
2009-01-01
We present recent results on highly ionized gas in Galactic High-Velocity Clouds (HVCs), originally surveyed in OVI (Sembach et al. 2003). In a new FUSE/HST survey of SiII/III/IV (Shull et al. 2009) toward 37 AGN, we detected SiIII (lambda 1206.500 A) absorption with a sky coverage fraction 81 +/- 5% (61 HVCs along 30 of 37 high-latitude sight lines). The SiIII (lambda 1206.500 A) line is typically 4-5 times stronger than OVI (lambda 1031.926 A). The mean HVC column density of perhaps 10^19 cm^-2 of low-metallicity (0.1 - 0.2 Z_sun) ionized gas in the low halo. Recent determinations of HVC distances allow us to estimate a total reservoir of ~10^8 M_sun. Estimates of infall velocities indicate an infall rate of around 1 M_sun yr^-1, comparable to the replenishment rate for star formation in the disk. HVCs appear to be sheathed by intermediate-temperature gas (10^4.0 - 10^4.5 K) detectable in SiIII and SiIV, as well as hotter gas seen in OVI and other high ions. To prepare for HST observations of 10 HVC-selecte...
Velocity and directionality of the electrohysterographic signal propagation.
Lasse Lange
Full Text Available OBJECTIVE: The initiation of treatment for women with threatening preterm labor requires effective distinction between true and false labor. The electrohysterogram (EHG has shown great promise in estimating and classifying uterine activity. However, key issues remain unresolved and no clinically usable method has yet been presented using EHG. Recent studies have focused on the propagation velocity of the EHG signals as a potential discriminator between true and false labor. These studies have estimated the propagation velocity of individual spikes of the EHG signals. We therefore focus on estimating the propagation velocity of the entire EHG burst recorded during a contraction in two dimensions. STUDY DESIGN: EHG measurements were performed on six women in active labor at term, and a total of 35 contractions were used for the estimation of propagation velocity. The measurements were performed using a 16-channel two-dimensional electrode grid. The estimates were calculated with a maximum-likelihood approach. RESULTS: The estimated average propagation velocity was 2.18 (±0.68 cm/s. No single preferred direction of propagation was found. CONCLUSION: The propagation velocities estimated in this study are similar to those reported in other studies but with a smaller intra- and inter-patient variation. Thus a potential tool has been established for further studies on true and false labor contractions.
Velocity Correction and Measurement Uncertainty Analysis of Light Screen Velocity Measuring Method
ZHENG Bin; ZUO Zhao-lu; HOU Wen
2012-01-01
Light screen velocity measuring method with unique advantages has been widely used in the velocity measurement of various moving bodies.For large air resistance and friction force which the big moving bodies are subjected to during the light screen velocity measuring,the principle of velocity correction was proposed and a velocity correction equation was derived.A light screen velocity measuring method was used to measure the velocity of big moving bodies which have complex velocity attenuation,and the better results were gained in practical tests.The measuring uncertainty after the velocity correction was calculated.
Radial velocity signatures of Zeeman broadening
Reiners, Ansgar; Anglada-Escude, Guillem; Jeffers, Sandra V; Morin, Julien; Zechmeister, Mathias; Kochukhov, Oleg; Piskunov, Nikolai
2013-01-01
Stellar activity signatures such as spots and plage can significantly limit the search for extrasolar planets. Current models of activity-induced radial velocity (RV) signals focused on the impact of temperature contrast in spots predicting the signal to diminish toward longer wavelengths. On the other hand, the relative importance of the Zeeman effect on RV measurements should grow with wavelength, because the Zeeman displacement itself grows with \\lambda, and because a magnetic and cool spot contributes more to the total flux at longer wavelengths. We model the impact of active regions on stellar RV measurements including both temperature contrast in spots and Zeeman line broadening. We calculate stellar line profiles using polarized radiative transfer models including atomic and molecular Zeeman splitting from 0.5 to 2.3\\mum. Our results show that the amplitude of the RV signal caused by the Zeeman effect alone can be comparable to that caused by temperature contrast. Furthermore, the RV signal caused by c...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
Tissue motion in blood velocity estimation and its simulation
Schlaikjer, Malene; Torp-Pedersen, Søren; Jensen, Jørgen Arendt;
1998-01-01
to the improvement of color flow imaging. Optimization based on in-vivo data is difficult since the blood and tissue signals cannot be accurately distinguished and the correct extend of the vessel under investigation is often unknown. This study introduces a model for the simulation of blood velocity data in which...... times to cover the whole cardiac cycle and a total of 400 independent RF measurements of 950 pulse echo lines were recorded. The motion of the tissue surrounding the hepatic vein from superficial breathing had a peak velocity of 6.2±3.4 mm/s over the cardiac cycle, when averaged over the 10 volunteers...
Electric rail gun projectile acceleration to high velocity
Bauer, D. P.; Mccormick, T. J.; Barber, J. P.
1982-01-01
Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.
Peculiar velocities in dynamic spacetimes
Bini, Donato
2014-01-01
We investigate the asymptotic behavior of peculiar velocities in certain physically significant time-dependent gravitational fields. Previous studies of the motion of free test particles have focused on the \\emph{collapse scenario}, according to which a double-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of complete gravitational collapse. In the present work, we identify a second \\emph{wave scenario}, in which a single-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of wave propagation. The possibility of a connection between the two scenarios for the formation of cosmic jets is critically examined.
Minimum length-maximum velocity
Panes, Boris
2012-03-01
We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example, we can predict the ratio between the minimum lengths in space and time using the results from OPERA on superluminal neutrinos.
Velocity condensation for magnetotactic bacteria
Rupprecht, Jean-Francois; Bocquet, Lydéric
2015-01-01
Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g. active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that L\\'evy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.
VizieR Online Data Catalog: Radial velocities for 1309 stars and 166 OCl (Mermilliod+, 2008)
Mermilliod, J.-C.; Mayor, M.; Udry, S.
2008-02-01
We present the final catalogues of a long term observing program performed with the two Coravel spectrovelocimeters for red giants in open clusters. The main aims were to detect spectroscopic binaries and determine their orbital parameters, determine the membership, and compute mean velocities for the stars and open clusters. We computed weighted mean radial velocities for 1309 stars from 10517 individual observations, including the systemic radial velocities from spectroscopic orbits and for Cepheids. The final results are contained in three catalogues collecting 10517 individual radial velocities, mean radial velocities for 1309 red giants, and mean radial velocities for 166 open clusters, among which 57 are new determinations. We identify 891 members and 418 non-members. We discovered a total of 288 spectroscopic binaries, among which 57 were classified as non-members. In addition 27 stars were judged to be variable in radial velocities, all of them being red supergiants. (5 data files).
Qualidade total do produto Products total quality
Henrique Silveira de Almeida
1992-06-01
Full Text Available O texto aborda o conceito de qualidade total do produto, seus determinantes, bem como as dimensões que compõem essa qualidade. Parte-se do pressuposto de que a qualidade do produto deve ser avaliada pela satisfação total do consumidor. Para o consumidor a qualidade do produto envolve pelo menos as seguintes dimensões: a qualidade do produto em si; a qualidade do produto ao longo do tempo; a qualidade dos serviços associados ao uso do produto; e o custo do ciclo de vida do produto. O trabalho procura detalhar e discutir cada uma dessas dimensões da qualidade, tendo em vista a satisfação do consumidor.The paper concerns to the concept of product's total quality, its determinants, and the dimensions wich constitute this quality. We admit that product quality should be evaluated via consumer's total satisfaction. Product quality for consumers includes at least the following dimensions: the product quality per se; the performance of product quality over time; the quality of services related to the use of the product; and the product lifecycle costs. This study seeks to specify and to discuss each of these quality dimensions related to consumer's satisfaction.
Velocity and suspended solids distributions in an oval-shaped channel with a side bank
Larrarte, Frédérique
2015-01-01
This study focuses on field measurements of both the velocity and total suspended solids within a combined sewer through use of a two-dimensional sampler called Hydre. The paper begins by presenting this instrument and its experimental applications. The discussion centers on the recorded velocities and concentrations; moreover, analyses of results demonstrate the ability of this Hydre device to provide robust suspended solids and velocity profiles in sewers for a range of flow conditions.
Velocity of sound in hadron matter
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Roulet, E.
1987-09-01
The velocity of sound in hadron matter, in both the confined and deconfined phases, is studied. This velocity of sound appears to be an important tool to distinguish among different bag-model-based thermodynamical descriptions of hadronic matter.
Inexpensive Time-of-Flight Velocity Measurements.
Everett, Glen E.; Wild, R. L.
1979-01-01
Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)
Velocity Measurement Based on Laser Doppler Effect
ZHANG Yan-Yan; HUO Yu-Jing; HE Shu-Fang; GONG Ke
2010-01-01
@@ A novel method for velocity measurement is presented.In this scheme,a parallel-linear-polarization dualfrequency laser is incident on the target and senses the target velocity with both the frequencies,which can increase the maximum measurable velocity significantly.The theoretical analysis and verification experiment of the novel method are presented,which show that high-velocity measurement can be achieved with high precision using this method.
... the rectum. This can cause an infection or abscess. Scarring of the connection between the small intestine ... More Crohn disease Ileostomy Total proctocolectomy and ileal - anal pouch Total proctocolectomy with ileostomy Ulcerative colitis Patient ...
Total parenteral nutrition - infants
... medlineplus.gov/ency/article/007239.htm Total parenteral nutrition - infants To use the sharing features on this page, please enable JavaScript. Total parenteral nutrition (TPN) is a method of feeding that bypasses ...
... medlineplus.gov/ency/patientinstructions/000177.htm Total parenteral nutrition To use the sharing features on this page, please enable JavaScript. Total parenteral nutrition (TPN) is a method of feeding that bypasses ...
Three-dimensional P velocity structure in Beijing area
于湘伟; 陈运泰; 王培德
2003-01-01
A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude ML=1.7~6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.
Weakly nonlinear density-velocity relation
Chodorowski, M J; Chodorowski, Michal J; Lokas, Ewa L
1996-01-01
We rigorously derive weakly nonlinear relation between cosmic density and velocity fields up to third order in perturbation theory. The density field is described by the mass density contrast, \\de. The velocity field is described by the variable \\te proportional to the velocity divergence, \\te = - f(\\Omega)^{-1} H_0^{-1} \
Balance velocities of the Greenland ice sheet
Joughin, I.; Fahnestock, M.; Ekholm, Simon;
1997-01-01
We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....
Application of Vectors to Relative Velocity
Tin-Lam, Toh
2004-01-01
The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…
Extending the unambiguous velocity range using multiple carrier frequencies
Zhang, Z.; Jakobsson, A.; Nikolov, Svetoslav;
2005-01-01
Typically, velocity estimators based on the estimation of the Doppler shift will suffer from a limited unambiguous velocity range. Proposed are two novel multiple carrier based velocity estimators extending the velocity range above the Nyquist velocity limit. Numerical simulations indicate...
Sánchez Vergel, Alfredo; Fundación Valle de Lili
2002-01-01
Definición/Tipos de prótesis/ ¿Qué pacientes se podrían beneficiar de un reemplazo total de cadera?/Artrosis de cadera/Tipos de artrosis de cadera/Alternativas al reemplazo total de cadera/Preguntas frecuentes sobre el reemplazo total de cadera.
Sánchez Vergel, Alfredo; Fundación Valle de Lili
2002-01-01
Definición/Tipos de prótesis/ ¿Qué pacientes se podrían beneficiar de un reemplazo total de cadera?/Artrosis de cadera/Tipos de artrosis de cadera/Alternativas al reemplazo total de cadera/Preguntas frecuentes sobre el reemplazo total de cadera.
Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.
cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....
Barbosa, Tiago M.; Lima, A.B.; Portela, A; Novais, D.; L Machado; Colaço, P.; Gonçalves, P; Fernandes, R. J.; Keskinen, K.L.; Vilas-Boas, J. P.
2006-01-01
The purpose of this study was to analyse the relationships between the total energy expenditure ( tot), the energy cost (EC), the intra-cycle variation of the horizontal velocity of displacement of centre of mass (dv) and the mean swimming velocity (v) in the four competitive swimming strokes.
Velocity-aligned Doppler spectroscopy
Xu, Z.; Koplitz, B.; Wittig, C.
1989-03-01
The use of velocity-aligned Doppler spectroscopy (VADS) to measure center-of-mass kinetic-energy distributions of nascent photofragments produced in pulsed-initiation photolysis/probe experiments is described and demonstrated. In VADS, pulsed photolysis and probe laser beams counterpropagate through the ionization region of a time-of-flight mass spectrometer. The theoretical principles of VADS and the mathematical interpretation of VADS data are explained and illustrated with diagrams; the experimental setup is described; and results for the photodissociation of HI, H2S, and NH3 are presented in graphs and characterized in detail. VADS is shown to give much higher kinetic-energy resolution than conventional Doppler spectroscopy.
The critical velocity in swimming.
di Prampero, Pietro E; Dekerle, Jeanne; Capelli, Carlo; Zamparo, Paola
2008-01-01
In supra-maximal exercise to exhaustion, the critical velocity (cv) is conventionally calculated from the slope of the distance (d) versus time (t) relationship: d = I + St. I is assumed to be the distance covered at the expense of the anaerobic capacity, S the speed maintained on the basis of the subject's maximal O(2) uptake (VO2max) This approach is based on two assumptions: (1) the energy cost of locomotion per unit distance (C) is constant and (2) VO2max is attained at the onset of exercise. Here we show that cv and the anaerobic distance (d (anaer)) can be calculated also in swimming, where C increases with the velocity, provided that VO2max its on-response, and the C versus v relationship are known. d (anaer) and cv were calculated from published data on maximal swims for the four strokes over 45.7, 91.4 and 182.9 m, on 20 elite male swimmers (18.9 +/- 0.9 years, 75.9 +/- 6.4 kg), whose VO2max and C versus speed relationship were determined, and compared to I and S obtained from the conventional approach. cv was lower than S (4, 16, 7 and 11% in butterfly, backstroke, breaststroke and front crawl) and I (=11.6 m on average in the four strokes) was lower than d (anaer). The latter increased with the distance: average, for all strokes: 38.1, 60.6 and 81.3 m over 45.7, 91.4 and 182.9 m. It is concluded that the d versus t relationship should be utilised with some caution when evaluating performance in swimmers.
Vector blood velocity estimation in medical ultrasound
Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper
2006-01-01
Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...
Turbulent Velocity Structure in Molecular Clouds
Ossenkopf, V; Ossenkopf, Volker; Low, Mordecai-Mark Mac
2002-01-01
We compare velocity structure observed in the Polaris Flare molecular cloud at scales ranging from 0.015 pc to 20 pc to the velocity structure of a suite of simulations of supersonic hydrodynamic and MHD turbulence computed with the ZEUS MHD code. We examine different methods of characterising the structure, including a scanning-beam size-linewidth relation, structure functions, velocity and velocity difference probability distribution functions (PDFs), and the Delta-variance wavelet transform, and use them to compare models and observations. The Delta-variance is most sensitive in detecting characteristic scales and varying scaling laws, but is limited in the observational application by its lack of intensity weighting. We compare the true velocity PDF in our models to simulated observations of velocity centroids and average line profiles in optically thin lines, and find that the line profiles reflect the true PDF better. The observed velocity structure is consistent with supersonic turbulence showing a com...
Berthon, P; Fellmann, N
2002-09-01
The maximal aerobic velocity concept developed since eighties is considered as either the minimal velocity which elicits the maximal aerobic consumption or as the "velocity associated to maximal oxygen consumption". Different methods for measuring maximal aerobic velocity on treadmill in laboratory conditions have been elaborated, but all these specific protocols measure V(amax) either during a maximal oxygen consumption test or with an association of such a test. An inaccurate method presents a certain number of problems in the subsequent use of the results, for example in the elaboration of training programs, in the study of repeatability or in the determination of individual limit time. This study analyzes 14 different methods to understand their interests and limits in view to propose a general methodology for measuring V(amax). In brief, the test should be progressive and maximal without any rest period and of 17 to 20 min total duration. It should begin with a five min warm-up at 60-70% of the maximal aerobic power of the subjects. The beginning of the trial should be fixed so that four or five steps have to be run. The duration of the steps should be three min with a 1% slope and an increasing speed of 1.5 km x h(-1) until complete exhaustion. The last steps could be reduced at two min for a 1 km x h(-1) increment. The maximal aerobic velocity is adjusted in relation to duration of the last step.
Revision Total Elbow Arthroplasty.
Ramirez, Miguel A; Cheung, Emilie V; Murthi, Anand M
2017-08-01
Despite recent technologic advances, total elbow arthroplasty has complication rates higher than that of total joint arthroplasty in other joints. With new antirheumatic treatments, the population receiving total elbow arthroplasty has shifted from patients with rheumatoid arthritis to those with posttraumatic arthritis, further compounding the high complication rate. The most common reasons for revision include infection, aseptic loosening, fracture, and component failure. Common mechanisms of total elbow arthroplasty failure include infection, aseptic loosening, fracture, component failure, and instability. Tension band fixation, allograft struts with cerclage wire, and/or plate and screw constructs can be used for fracture stabilization.
Totalization Data Exchange (TDEX)
Social Security Administration — The Totalization Data Exchange (TDEX) process is an exchange between SSA and its foreign country partners to identify deaths of beneficiaries residing abroad. The...
Frequency Comb Velocity Modulation Spectroscopy
Cossel, Kevin C.; Sinclair, Laura C.; Coffey, Tyler; Cornell, Eric; Ye, Jun
2011-06-01
We have developed a novel technique for rapid ion-sensitive spectroscopy over a broad spectral bandwidth by combining the high sensitivity of velocity modulation spectroscopy (VMS) with the parallel nature and high frequency accuracy of cavity-enhanced direct frequency comb spectroscopy. Prior to this research, no techniques have been capable of high sensitivity velocity modulation spectroscopy on every parallel detection channel over such a broad spectral range. We have demonstrated the power of this technique by measuring the A^2Π_u - X^2Σ_g^+ (4,2) band of N_2^+ at 830 nm with an absorption sensitivity of 1×10-6 for each of 1500 simultaneous measurement channels spanning 150 Cm-1. A densely sampled spectrum consisting of interleaved measurements to achieve 75 MHz spacing is acquired in under an hour. This technique is ideally suited for high resolution survey spectroscopy of molecular ions with applications including chemical physics, astrochemistry, and precision measurement. Currently, this system is being used to map the electronic transitions of HfF^+ for the JILA electron electric dipole moment (eEDM) experiment. The JILA eEDM experiment uses trapped molecular ions to significantly increase the coherence time of the measurement in addition to utilizing the strong electric field enhancement available from molecules. Previous theoretical work has shown that the metastable ^3Δ_1 state in HfF^+ and ThF^+ provides high sensitivity to the eEDM and good cancellation of systematic effects; however, the electronic level structure of these species have not previously been measured, and the theoretical uncertainties are hundreds to thousands of wavenumbers. This necessitates broad-bandwidth, high-resolution survey spectroscopy provided by frequency comb VMS in the 700-900 nm spectral window. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) A. E. Leanhardt, et. al. arXiv:1008.2997v2 E. Meyer, J. L. Bohn, and M. P. Deskevich
Measurement of the velocity of a quantum object: A role of phase and group velocities
Lapinski, Mikaila; Rostovtsev, Yuri V.
2017-08-01
We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the corresponding matter waves. We show that for long distances the measured velocity coincides with the matter wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently driven media or for radiation propagating in waveguides.
Rai, Man Mohan
2017-01-01
The near wake of a flat plate is investigated via direct numerical simulations (DNS). Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large theta divided by D (sub TE) values (theta is the boundary layer momentum thickness towards the end of the plate and D (sub TE) is the trailing edge thickness). In the present study the emphasis is on relatively thick plates with circular trailing edges (CTE) resulting in theta divided by D values less than one (D is the plate thickness and the diameter of the CTE), and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 x 10 (sup 6) and 10,000, respectively. Two cases are computed; one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and, a second with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained is of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor 1.27 weaker in terms of peak phase-averaged spanwise vorticity at first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x divided by D) that occurs nears the positive vortex cores. This behavior is
Rare events and their impact on velocity diffusion in a stochastic Fermi-Ulam model.
Karlis, A K; Diakonos, F K; Constantoudis, V; Schmelcher, P
2008-10-01
A simplified version of the stochastic Fermi-Ulam model is investigated in order to elucidate the effect of a class of rare low-velocity events on the velocity diffusion process and consequently Fermi acceleration. The relative fraction of these events, for sufficiently large times, decreases monotonically with increasing variance of the magnitude of the particle velocity. However, a treatment of the diffusion problem which totally neglects these events, gives rise to a glaring inconsistency associated with the mean value of the magnitude of the velocity in the ensemble. We propose a general scheme for treating the diffusion process in velocity space, which succeeds in capturing the effect of the low-velocity events on the diffusion, providing a consistent description of the acceleration process. The present study exemplifies the influence of low-probability events on the transport properties of time-dependent billiards.
Strictness and Totality Analysis
Solberg, K. L.; Nielson, Hanne Riis; Nielson, Flemming
1998-01-01
We define a novel inference system for strictness and totality analysis for the simply-typed lazy lambda-calculus with constants and fixpoints. Strictness information identifies those terms that definitely denote bottom (i.e. do not evaluate to WHNF) whereas totality information identifies those ...
Genoptraening efter total knaealloplastik
Holm, Bente; Kehlet, Henrik
2009-01-01
The short- and long-term benefits of post-discharge physiotherapy regimens after total knee arthroplasty are debatable. A national survey including hospitals in Denmark that perform total knee arthroplasty showed a large variability in indication and regimen for post-knee arthroplasty rehabilitat...
High velocity impact experiment (HVIE)
Toor, A.; Donich, T.; Carter, P.
1998-02-01
The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!
Reciprocally-Rotating Velocity Obstacles
Giese, Andrew
2014-05-01
© 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.
Geotail observations of FTE velocities
G. I. Korotova
2009-01-01
Full Text Available We discuss the plasma velocity signatures expected in association with flux transfer events (FTEs. Events moving faster than or opposite the ambient media should generate bipolar inward/outward (outward/inward flow perturbations normal to the nominal magnetopause in the magnetosphere (magnetosheath. Flow perturbations directly upstream and downstream from the events should be in the direction of event motion. Flows on the flanks should be in the direction opposite the motion of events moving at subsonic and subAlfvénic speeds relative to the ambient plasma. Events moving with the ambient flow should generate no flow perturbations in the ambient plasma. Alfvén waves propagating parallel (antiparallel to the axial magnetic field of FTEs may generate anticorrelated (correlated magnetic field and flow perturbations within the core region of FTEs. We present case studies illustrating many of these signatures. In the examples considered, Alfvén waves propagate along event axes away from the inferred reconnection site. A statistical study of FTEs observed by Geotail over a 3.5-year period reveals that FTEs within the magnetosphere invariably move faster than the ambient flow, while those in the magnetosheath move both faster and slower than the ambient flow.
Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter
Hare, D E; Holtkamp, D B; Strand, O T
2010-03-02
Detonation velocities for high explosives can be in the 7 to 8 km/s range. Previous work has shown that these velocities may be measured by inserting an optical fiber probe into the explosive assembly and recording the velocity time history using a Fabry-Perot velocimeter. The measured velocity using this method, however, is the actual velocity multiplied times the refractive index of the fiber core, which is on the order of 1.5. This means that the velocimeter diagnostic must be capable of measuring velocities as high as 12 km/s. Until recently, a velocity of 12 km/s was beyond the maximum velocity limit of a homodyne-based velocimeter. The limiting component in a homodyne system is usually the digitizer. Recently, however, digitizers have come on the market with 20 GHz bandwidth and 50 GS/s sample rate. Such a digitizer coupled with high bandwidth detectors now have the total bandwidth required to make velocity measurements in the 12 km/s range. This paper describes measurements made of detonation velocities using a high bandwidth homodyne system.
Refinement of turbulent flow velocity characteristics
Y.V. Bryanskaya
2013-10-01
Full Text Available The basic laws of Prandtl semi-empirical turbulence theory were analyzed in the article. It was shown, that the Prandtl – Nikuradse logarithmic distribution of velocities are not strictly universal. The change of the first and second turbulence constants was analyzed on the basis of experimental data of I. Nikuradse. The logarithmic velocity profiles for smooth and rough pipes have been transformed. A united velocity logarithmic profile for flows in pipes, appropriate for any rate of hydraulic resistance was received. A more precise, consistent with the resistance laws, description of the kinematic structure of the flow with varying parameters of the velocity profiles was set. It was shown that the position of the average velocity point for the flow in pipe remained constant when the parameters of the velocity profile changed.
Surface Velocities and Hydrology at Engabreen
Messerli, Alexandra
on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...... complicates comparisons with other surface-oriented glaciohydrological studies. One major aim of this thesis is to provide a longer record of surface velocity, enabling a more complete understanding of the glacial hydro-mechanical relationship at Engabreen. In order to extend the velocity dataset here, a time......-lapse camera based study was carried out, providing seasonal velocity maps over a large portion of an inaccessible region of the glacier. The processing and feature tracking of terrestrially based imagery, in order to obtain quantitative velocity measurements, is challenging. Whilst optical feature tracking...
VELOCITY PROFILES OF TURBULENT OPEN CHANNEL FLOWS
WANG Dianchang; WANG Xingkui; YU Mingzhong; LI Danxun
2001-01-01
The log-law and the wake law of velocity profile for open channel flows are discussed and compared in this paper. Experimental data from eight sources are used to verify the velocity distribution models.The effect of bed level on the velocity profile is analyzed. A formula to calculate the maximum velocity is proposed. In the region of y ＜δm , the velocity profile approximately follows the log-law. For the region of y ＞δm , the effect of the aspect ratio is considered. A new velocity profile model on the basis of log-law that can unify all of the hydraulic bed roughness is presented.
Middle cerebral artery blood velocity during running
Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T
2013-01-01
for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies......) blood flow velocity, photoplethysmographic finger BP, and step frequency were measured continuously during three consecutive 5-min intervals of treadmill running at increasing running intensities. Data were analysed in the time and frequency domains. BP data for seven subjects and MCA velocity data....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...
Local wavefield velocity imaging for damage evaluation
Chia, Chen Ciang; Gan, Chia Sheng; Mustapha, F.
2017-02-01
Ultrasonic Propagation Imaging or Acoustic Wavefield Imaging has been widely used to evaluate structural damages and internal features. Inspecting complete wavefield time history for damage identification is tedious and error-prone. A more effective way is by extracting damage-related information into a single image. A wavefield velocity imaging method that maps the local estimates of group or phase velocity is proposed. Actual velocity values rather than arbitrarily-scaled intensities are mapped, enabling damage sizing without the need of supervised training or inspecting wavefield propagation video. Performance of the proposed method was tested by inspecting a 100 mm by 100 mm area of a 2 mm thick stainless steel specimen. Local phase velocity maps of A0 mode showed a half-thickness hole of 2 mm diameter as significant change in local phase velocity from the nominal 2 m/ms. Full width at half maximum of relevant velocity profiles proved the accuracy and consistency of the damage sizing.
Laparoscopic total pancreatectomy
Wang, Xin; Li, Yongbin; Cai, Yunqiang; Liu, Xubao; Peng, Bing
2017-01-01
Abstract Rationale: Laparoscopic total pancreatectomy is a complicated surgical procedure and rarely been reported. This study was conducted to investigate the safety and feasibility of laparoscopic total pancreatectomy. Patients and Methods: Three patients underwent laparoscopic total pancreatectomy between May 2014 and August 2015. We reviewed their general demographic data, perioperative details, and short-term outcomes. General morbidity was assessed using Clavien–Dindo classification and delayed gastric emptying (DGE) was evaluated by International Study Group of Pancreatic Surgery (ISGPS) definition. Diagnosis and Outcomes: The indications for laparoscopic total pancreatectomy were intraductal papillary mucinous neoplasm (IPMN) (n = 2) and pancreatic neuroendocrine tumor (PNET) (n = 1). All patients underwent laparoscopic pylorus and spleen-preserving total pancreatectomy, the mean operative time was 490 minutes (range 450–540 minutes), the mean estimated blood loss was 266 mL (range 100–400 minutes); 2 patients suffered from postoperative complication. All the patients recovered uneventfully with conservative treatment and discharged with a mean hospital stay 18 days (range 8–24 days). The short-term (from 108 to 600 days) follow up demonstrated 3 patients had normal and consistent glycated hemoglobin (HbA1c) level with acceptable quality of life. Lessons: Laparoscopic total pancreatectomy is feasible and safe in selected patients and pylorus and spleen preserving technique should be considered. Further prospective randomized studies are needed to obtain a comprehensive understanding the role of laparoscopic technique in total pancreatectomy. PMID:28099344
Statistics of Peculiar Velocities from Cosmic Strings
Moessner, R.
1995-01-01
We calculate the probability distribution of a single component of peculiar velocities due to cosmic strings, smoothed over regions with a radius of several $h^{-1}$ Mpc. The probability distribution is shown to be Gaussian to good accuracy, in agreement with the distribution of peculiar velocities deduced from the 1.9 Jy IRAS redshift survey. Using the normalization of parameters of the cosmic string model from CMB measurements, we show that the rms values for peculiar velocities inferred fr...
Estonian total ozone climatology
K. Eerme
Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.
Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology
Velocity Structure Diagnostics of Simulated Galaxy Clusters
Biffi, Veronica; Boehringer, Hans
2010-01-01
Gas motions in the hot intracluster medium of galaxy clusters have an important effect on the mass determination of the clusters through X-ray observations. The corresponding dynamical pressure has to be accounted for in addition to the hydrostatic pressure support to achieve a precise mass measurement. An analysis of the velocity structure of the ICM for simulated cluster-size haloes, especially focusing on rotational patterns, has been performed, demonstrating them to be an intermittent phenomenon, strongly related to the internal dynamics of substructures. We find that the expected build-up of rotation due to mass assembly gets easily destroyed by passages of gas-rich substructures close to the central region. Though, if a typical rotation pattern is established, the corresponding mass contribution is estimated to be up to ~17% of the total mass in the innermost region, and one has to account for it. Extending the analysis to a larger sample of simulated haloes we statistically observe that (i) the distrib...
Magnetogenesis through Relativistic Velocity Shear
Miller, Evan
Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.
Spectra of Velocity components over Complex Terrain
Panofsky, H. A.; Larko, D.; Lipschut, R.
1982-01-01
Spectra have been measured over a variety of types of complex terrain: on tops of hills and escarpments, over land downstream of a water surface, and over rolling terrain. Differences between spectra over many types of complex terrain, and over uniform terrain, can be explained by these hypotheses...... is horizontal, and decrease when the flow is uphill, for the longitudinal velocity component only. Since vertical-velocity spectra contain relatively less low wavenumber energy than horizontal-velocity spectra, energetic vertical-velocity fluctuations tend to be in equilibrium with local terrain....
Algorithms for estimating blood velocities using ultrasound
Jensen, Jørgen Arendt
2000-01-01
Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes...... have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...
Effect of Pressure on Minimum Fluidization Velocity
Zhu Zhiping; Na Yongjie; Lu Qinggang
2007-01-01
Minimum fluidization velocity of quartz sand and glass bead under different pressures of 0.5, 1.0, 1.5 and 2.0 Mpa were investigated. The minimum fluidization velocity decreases with the increasing of pressure. The influence of pressure to the minimum fluidization velocities is stronger for larger particles than for smaller ones.Based on the test results and Ergun equation, an experience equation of minimum fluidization velocity is proposed and the calculation results are comparable to other researchers' results.
Conduction velocity of antigravity muscle action potentials.
Christova, L; Kosarov, D; Christova, P
1992-01-01
The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.
A method for determining critical swimming velocity.
Takahashi, S; Wakayoshi, K; Hayashi, A; Sakaguchi, Y; Kitagawa, K
2009-02-01
The purpose of this study was to determine whether the critical swimming velocity (Vcri) estimated by the swimming velocity for a distance of 300 m at maximal effort breaststroke reflects the maximal lactate steady state (MLSS). Twelve trained swimmers swam 50 m, 300 m and 2 000 m at maximal effort for determination of Vcri that averaged 1.167 +/- 0.045 m . sec (-1). Since Vcri was equivalent to 90.5 % of the mean swimming velocity over the distance of 300 m at maximal effort, the swimming velocity obtained by multiplying the swimming velocity for the distance of 300 m of each subject by 90.5 % was taken to be 100 % of the predicted critical swimming velocity (Vcri-pred). Then, in an MLSS test, the subjects were instructed to swim breaststroke 2 000 m (5 x 400 m) at three constant velocities (98 %, 100 %, and 102 % of Vcri-pred), interrupted by four short rest periods from 30 to 45 seconds for blood sampling and heart rate measurement. As a result, the blood lactate concentration at 100 % Vcri-pred showed a higher steady state than the slow velocity, but at high velocity did not show the steady state. In conclusion, we can accurately estimate the Vcri for breaststroke by a one-time 300-m maximal effort swimming test.
Total Water Management - slides
Total Water Management (TWM) examines urban water systems in an interconnected manner. It encompasses reducing water demands, increasing water recycling and reuse, creating water supply assets from stormwater management, matching water quality to end-use needs, and achieving envi...
NONE
2005-02-01
This document presents the 2004 results of Total Group: consolidated account, special items, number of shares, market environment, adjustment for amortization of Sanofi-Aventis merger-related intangibles, 4. quarter 2004 results (operating and net incomes, cash flow), upstream (results, production, reserves, recent highlights), downstream (results, refinery throughput, recent highlights), chemicals (results, recent highlights), Total's full year 2004 results (operating and net income, cash flow), 2005 sensitivities, Total SA parent company accounts and proposed dividend, adoption of IFRS accounting, summary and outlook, main operating information by segment for the 4. quarter and full year 2004: upstream (combined liquids and gas production by region, liquids production by region, gas production by region), downstream (refined product sales by region, chemicals), Total financial statements: consolidated statement of income, consolidated balance sheet (assets, liabilities and shareholder's equity), consolidated statements of cash flows, business segments information. (J.S.)
The Revised Total Coliform Rule (RTCR) aims to increase public health protection through the reduction of potential pathways for fecal contamination in the distribution system of a public water system (PWS).
U.S. Geological Survey, Department of the Interior — Total ecosystem carbon includes above- and below-ground live plant components (such as leaf, branch, stem and root), dead biomass (such as standing dead wood, down...
Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.
1983-05-01
Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.
Long velocity tails in plasmas and gravitational systems
Brenig, L; Filho, T M Rocha
2016-01-01
Long tails in the velocity distribution are observed in plasmas and gravitational systems. Some experiments and observations in far-from-equilibrium conditions show that these tails behave as 1/v^(5/2). We show here that such heavy tails are due to a universal mechanism related to the fluctuations of the total force field. Owing to the divergence in 1/r^2 of the binary interaction force, these fluctuations can be very large and their probability density exhibits a similar long tail. They induce large velocity fluctuations leading to the 1/v^(5/2) tail. We extract the mechanism causing these properties from the BBGKY hierarchy representation of Statistical Mechanics. This leads to a modification of the Vlasov equation by an additional term. The novel term involves a fractional power 3/4 of the Laplacian in velocity space and a fractional iterated time integral. Solving the new kinetic equation for a uniform system, we retrieve the observed 1/v^(5/2) tail for the velocity distribution. These results are confirm...
Seeing-Induced Errors in Solar Doppler Velocity Measurements
Padinhatteeri, Sreejith; Sankarasubramanian, K; 10.1007/s11207-010-9597-1
2010-01-01
Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth's atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocitie...
Precision radial velocities of 15 M5 - M9 dwarfs
Barnes, J R; Jones, H R A; Jeffers, S V; Rojo, P; Arriagada, P; Jordan, A; Minniti, D; Tuomi, M; Pinfield, D; Anglada-Escude, G
2014-01-01
We present radial velocity measurements of a sample of M5V-M9V stars from our Red-Optical Planet Survey, ROPS, operating at 0.65-1.025 micron. Radial velocities for 15 stars, with r.m.s. precision down to 2.5 m/s over a week long time scale are achieved using Thorium-Argon reference spectra. We are sensitive to planets with m_psin(i) >= 1.5 MEarth (3 MEarth at 2-sigma) in the classical habitable zone and our observations currently rule out planets with m_psin(i) > 0.5 MJup at 0.03 AU for all our targets. A total of 9 of the 15 targets exhibit r.m.s. 10 MEarth in 0.03 AU orbits. Since the mean rotation velocity is of order 8 km/s for an M6V star and 15 km/s by M9V, we avoid observing only slow rotators that would introduce a bias towards low axial inclination i << 90 deg systems, which are unfavourable for planet detection. Our targets with the highest vsini values exhibit radial velocities significantly above the photon-noise limited precision, even after accounting for vsini. We therefore monitored st...
Single velocity-component modeling of leading edge turbulence interaction noise.
Gill, J; Zhang, X; Joseph, P
2015-06-01
A computational aeroacoustics approach is used to predict leading edge turbulence interaction noise for real airfoils. One-component (transverse), two-component (transverse and streamwise), and three-component (transverse, streamwise, and spanwise) synthesized turbulence disturbances are modeled instead of harmonic transverse gusts, to which previous computational studies of leading edge noise have often been confined. The effects of the inclusion of streamwise and spanwise disturbances on the noise are assessed. It is shown that accurate noise predictions can be made by modeling only transverse disturbances which reduces the computational expense of simulations. The accuracy of using only transverse disturbances is assessed for symmetric and cambered airfoils, and also for airfoils at non-zero angle of attack.
Projectile Velocity and Crater Formation in Water
Pravitra Chaikulngamdee
2010-01-01
Full Text Available The relationship between the velocity of impact and maximum crater diameter was found for two steel balls dropped into water using 300 fps video. The maximum diameter of the crater was found to be proportional to the impact velocity and independent of the diameter of the ball.
Demonstration of a Vector Velocity Technique
Hansen, Peter Møller; Pedersen, Mads M.; Hansen, Kristoffer L.;
2011-01-01
With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa...
Velocity gradients and microturbulence in Cepheids.
Karp, A. H.
1973-01-01
Variations of the microturbulent velocity with phase and height in the atmosphere have been reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.
Position and velocity estimation through acceleration measurements
Estrada, Antonio; Efimov, Denis; Perruquetti, Wilfrid
2014-01-01
International audience; This paper proposes a solution to the problem of velocity and position estimation for a class of oscillating systems whose position, velocity and acceleration are zero mean signals. The proposed scheme considers that the dynamic model of the system is unknown and only noisy acceleration measurements are available.
Velocity spectrum for the Iranian plateau
Bastami, Morteza; Soghrat, M. R.
2017-09-01
Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.
Critical Landau Velocity in Helium Nanodroplets
N.B. Brauer; S. Smolarek; E. Loginov; D. Mateo; A. Hernando; M. Pi; M. Barranco; W.J. Buma; M. Drabbels
2013-01-01
The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitatio
Simulating river flow velocity on global scale
K. Schulze
2005-01-01
Full Text Available Flow velocity in rivers has a major impact on residence time of water and thus on high and low water as well as on water quality. For global scale hydrological modeling only very limited information is available for simulating flow velocity. Based on the Manning-Strickler equation, a simple algorithm to model temporally and spatially variable flow velocity was developed with the objective of improving flow routing in the global hydrological model of WaterGAP. An extensive data set of flow velocity measurements in US rivers was used to test and to validate the algorithm before integrating it into WaterGAP. In this test, flow velocity was calculated based on measured discharge and compared to measured velocity. Results show that flow velocity can be modeled satisfactorily at selected river cross sections. It turned out that it is quite sensitive to river roughness, and the results can be optimized by tuning this parameter. After the validation of the approach, the tested flow velocity algorithm has been implemented into the WaterGAP model. A final validation of its effects on the model results is currently performed.
Friedrich, S
2008-08-11
The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.
Algebraic totality, towards completeness
Tasson, Christine
2009-01-01
Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans ${\\mathcal{B}}$ and a conditional operator, which can be interpreted in this model. We prove completeness at type ${\\mathcal{B}}^n\\to{\\mathcal{B}}$ for every n by an algebraic metho...
Ultrasound systems for blood velocity estimation
Jensen, Jørgen Arendt
1998-01-01
color image of velocity at up to 20 to 60 frames a second. Both measurements are performedby repeatedly pulsing in the same direction and then usethe correlation from pulse to pulse to determine the velocity.The paper gives a simple model for the interactionbetween the ultrasound and the moving blood......Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic....... The calculation of the velocity distribution is then explainedalong with the different physical effects influencing the estimation.The estimation of mean velocities using auto- andcross-correlation for color flow mapping is also described....
Minimum and terminal velocities in projectile motion
Miranda, E N; Riba, R
2012-01-01
The motion of a projectile with horizontal initial velocity V0, moving under the action of the gravitational field and a drag force is studied analytically. As it is well known, the projectile reaches a terminal velocity Vterm. There is a curious result concerning the minimum speed Vmin; it turns out that the minimum velocity is lower than the terminal one if V0 > Vterm and is lower than the initial one if V0 < Vterm. These results show that the velocity is not a monotonous function. If the initial speed is not horizontal, there is an angle range where the velocity shows the same behavior mentioned previously. Out of that range, the volocity is a monotonous function. These results come out from numerical simulations.
A method to deconvolve stellar rotational velocities
Cure, Michel; Cassetti, Julia; Christen, Alejandra
2014-01-01
Rotational speed is an important physical parameter of stars and knowing the distribution of stellar rotational velocities is essential for the understanding stellar evolution. However, it cannot be measured directly but the convolution of the rotational speed and the sine of the inclination angle, $v \\sin i$. We developed a method to deconvolve this inverse problem and obtain the cumulative distribution function (CDF) for stellar rotational velocities extending the work of Chandrasekhar & M\\"unch (1950). This method is applied a) to theoretical synthetic data recovering the original velocity distribution with very small error; b) to a sample of about 12.000 field main--sequence stars, corroborating that the velocity distribution function is non--Maxwellian, but is better described by distributions based on the concept of maximum entropy, such as Tsallis or Kaniadakis distribution functions. This is a very robust and novel method that deconvolve the rotational velocity cumulative distribution function fro...
Velocity dependence of friction of confined polymers
Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.
2009-01-01
We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate, and (b) polymer sliding on polymer. We discuss the velocity dependence of the frictional...... cases the frictional shear stress increases monotonically with the sliding velocity. For polymer sliding on polymer [case (b)] the friction is much larger, and the velocity dependence is more complex. For hydrocarbons with molecular lengths from 60 to 140 C-atoms, the number of monolayers of lubricant...... shows no dependence on the sliding velocity, and for the shortest hydrocarbon (20 C-atoms) the frictional shear stress increases nearly linearly with the sliding velocity....
Velocity estimation using synthetic aperture imaging
Nikolov, Svetoslav; Jensen, Jørgen Arendt
2001-01-01
In a previous paper we have demonstrated that the velocity can be estimated for a plug flow using recursive ultrasound imaging [1]. The approach involved the estimation of the velocity at every emission and using the estimates for motion compensation. An error in the estimates, however, would lead...... to an error in the compensation further increasing the error in the estimates. In this paper the approach is further developed such that no motion compensation is necessary. In recursive ultrasound imaging a new high resolution image is created after every emission. The velocity was estimated by cross...... and significantly improves the velocity estimates. The approach is verified using simulations with the program Field II and measurements on a blood-mimicking phantom. The estimates from the simulations have a bias of -3.5% and a mean standard deviation less than 2.0% for a parabolic velocity profile. The estimates...
Typical object velocity influences motion extrapolation.
Makin, Alexis D J; Stewart, Andrew J; Poliakoff, Ellen
2009-02-01
Previous work indicates that extrapolation of object motion during occlusion is affected by the velocity of the immediately preceding trial. Here we ask whether longer-term velocity representations can also influence motion extrapolation. Red, blue or green targets disappeared behind an occluder. Participants pressed a button when they thought the target had reached the other side. Red targets were slower (10-20 deg/s), blue targets moved at medium velocities (14-26 deg/s) and green targets were faster (20-30 deg/s). We compared responses on a subset of red and green trials which always travelled at 20 deg/s. Although trial velocities were identical, participants responded as if the green targets moved faster (M = 22.64 deg/s) then the red targets (M = 19.72 deg/s). This indicates that motion extrapolation is affected by longer-term information about the typical velocity of different categories of stimuli.
The Velocity Distribution of Isolated Radio Pulsars
Arzoumanian, Z; Cordes, J M
2002-01-01
(Abridged) We infer the velocity distribution of radio pulsars by modelling their birth, evolution, and detection in large-scale 0.4 GHz pulsar surveys, and by comparing model distributions of measurable pulsar properties with survey data using a likelihood function. We test models that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as sqrt(Edot) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/s and 500 km/s is greatly preferred to any one-component distribution. We explore some consequences of the preferred birth velocity distribution: (i)...
Radial velocity moments of dark matter haloes
Wojtak, R; Gottlöber, S; Mamon, G A; Wojtak, Radoslaw; Lokas, Ewa L.; Gottloeber, Stefan; Mamon, Gary A.
2005-01-01
Using cosmological N-body simulations we study the radial velocity distribution in dark matter haloes focusing on the lowest-order even moments, dispersion and kurtosis. We determine the properties of ten massive haloes in the simulation box approximating their density distribution by the NFW formula characterized by the virial mass and concentration. We also calculate the velocity anisotropy parameter of the haloes and find it mildly radial and increasing with distance from the halo centre. The radial velocity dispersion of the haloes shows a characteristic profile with a maximum, while the radial kurtosis profile decreases with distance starting from a value close to Gaussian near the centre. We therefore confirm that dark matter haloes possess intrinsically non-Gaussian, flat-topped velocity distributions. We find that the radial velocity moments of the simulated haloes are very well reproduced by the solutions of the Jeans equations obtained for the halo parameters with the anisotropy measured in the simu...
[Total temporomandibular joint prostheses].
Zwetyenga, N; Amroun, S; Wajszczak, B-L; Moris, V
2016-09-01
The temporomandibular joint (TMJ) is probably the most complex human joint. As in all joints, its prosthetic replacement may be indicated in selected cases. Significant advances have been made in the design of TMJ prostheses during the last three decades and the indications have been clarified. The aim of our work was to make an update on the current total TMJ total joint replacement. Indications, contraindications, prosthetic components, advantages, disadvantages, reasons for failure or reoperation, virtual planning and surgical protocol have been exposed. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
The Velocity Campaign for Ignition on NIF
Callahan, Debra
2011-10-01
Achieving ignition requires a high velocity implosion since the energy required for ignition scales like 1/v8. Beyond ignition, a higher velocity produces more robust performance, which will be useful for applications of ignition. In the velocity campaign, we will explore three methods for increasing implosion velocity: increased laser power and energy, optimized hohlraum and capsule materials, and optimized capsule thickness. The main issue with increasing the laser power and energy is the way in which LPI (laser plasma interactions) and hot electron preheat will change as we increase the laser power. Based on scalings from previous data and theory, we expect to couple 80-85% of 1.5 MJ at 475-500 TW. We can also increase the velocity by optimizing the hohlraum and capsule materials. In this campaign, we will explore depleted uranium hohlraums to reduce wall loss and optimize the capsule dopant by replacing the germanium dopant with silicon. Those two changes are expected to increase velocity by 6-7%. Finally, we will optimize the capsule thickness. The optimal capsule thickness is a trade-off between velocity and mix. A thinner capsule has higher velocity, but is more susceptible to mix of the ablator material into the hotspot due to hydrodynamic instabilities seeded by ablation surface imperfections. Once we have achieved adequate capsule areal density, we will optimize the velocity/mix trade off by varying the capsule thickness. We will also make direct measure of Rayleigh-Taylor instability growth by backlighting the growth of engineered features on the surface of the capsule. This will allow us to benchmark our models of mix. In this paper, we will describe the designs and experimental results of the velocity campaign. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Total Quality Management Simplified.
Arias, Pam
1995-01-01
Maintains that Total Quality Management (TQM) is one method that helps to monitor and improve the quality of child care. Lists four steps for a child-care center to design and implement its own TQM program. Suggests that quality assurance in child-care settings is an ongoing process, and that TQM programs help in providing consistent, high-quality…
Total versus subtotal hysterectomy
Gimbel, Helga; Zobbe, Vibeke; Andersen, Anna Birthe;
2005-01-01
The aim of this study was to compare total and subtotal abdominal hysterectomy for benign indications, with regard to urinary incontinence, postoperative complications, quality of life (SF-36), constipation, prolapse, satisfaction with sexual life, and pelvic pain at 1-year postoperative. Eighty...
Total Quality Management Simplified.
Arias, Pam
1995-01-01
Maintains that Total Quality Management (TQM) is one method that helps to monitor and improve the quality of child care. Lists four steps for a child-care center to design and implement its own TQM program. Suggests that quality assurance in child-care settings is an ongoing process, and that TQM programs help in providing consistent, high-quality…
Total Quality Management Seminar.
Massachusetts Career Development Inst., Springfield.
This booklet is one of six texts from a workplace literacy curriculum designed to assist learners in facing the increased demands of the workplace. The booklet contains seven sections that cover the following topics: (1) meaning of total quality management (TQM); (2) the customer; (3) the organization's culture; (4) comparison of management…
Slavković Nemanja
2012-01-01
Full Text Available Total hip arthroplasty is most common reconstructive hip procedure in adults. In this surgery we replace some parts of the upper femur and acetabulum with biocompatible materials. The main goal of this surgery is to eliminate pain and regain full extent of joint motion, maintaining hip stability. Surgical technique, biomaterials, design of the prosthesis and fixation techniques have evolved with time adjusting to each other. After total hip arthroplasty patients’ quality of life should be improved. There are many various postoperative complications. Some of them are fatal, and some are minor, which may become manifested years after surgery. Each next surgical procedure following previous hip surgery is associated with considerably lower chances to be successful. Therefore, in primary total hip arthroplasty, preoperative evaluation and preparation of patients are essential. Every orthopaedic surgeon needs to improve already adopted surgical skills applying them with precision and without compromise, with the main goal to achieve long-term durability of the selected implant. The number of total hip arthroplasties will also increase in future, and newer and higher quality materials will be used.
CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...
Zachariassen, Frederik
2007-01-01
Total Cost of Ownership (TCO), som giver et bud på, hvordan virksomheder kan opnå en bedre indsigt i, hvilke leverandører der forårsager hvilke omkostninger og dermed danne et forbedret beslutningsgrundlag for besparelser i leverandørleddet. I artiklen argumenteres først og fremmest for, hvorfor TCO er...
Supravaginal eller total hysterektomi?
Edvardsen, L; Madsen, E M
1994-01-01
is examined. It is concluded that the risk of developing carcinoma of the cervical stump is low, and no longer a weighty indication for the total in preference to the supravaginal hysterectomy as long as subsequent screening of the cervix is performed. At the same time it is important to inform the women...
Saya, J.M.; Vos, K.; Klein Nijenhuis, R.A.; van Maarseveen, J.H.; Ingemann, S.; Hiemstra, H.
2015-01-01
A total synthesis of the sesquiterpene lactone aquatolide has been accomplished. The central step is an intramolecular [2 + 2]-photocycloaddition of an allene onto an alpha,beta-unsaturated delta-lactone. Other key steps are an intramolecular Horner-Wadsworth-Emmons reaction to close the lactone and
Schrøder, Henrik M.; Petersen, Michael M.
2016-01-01
Total knee arthroplasty (TKA) is a successful treatment of the osteoarthritic knee, which has increased dramatically over the last 30 years. The indication is a painful osteoarthritic knee with relevant radiographic findings and failure of conservative measures like painkillers and exercise. Trea...
HU Wen-Xiang; WANG Jian-Ying; XU Ming
2003-01-01
@@ Naloxone (1) is one of the 14-hydroxyl substituted opium antagonists which are valuable medications for treat ment of opiate abuse, opiate overdose, and alcohol addiction. Here, the total synthesis of naloxone was described. We selected 2,6-dihydroxynaphalene (2) as the starting material.
Focus in Change, 1992
1992-01-01
The philosophy known as Total Quality Management (TQM) is frequently presented as a way to change and improve public education. This issue of "Focus in Change" examines Deming's original 14 TQM points and their application to education. Myron Tribus lays out the core philosophy of the movement and discusses its possible application to…
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains near-real-time ocean surface velocities, also known as total vector velocities, derived from HF radar stations. The velocities are...
An inexpensive instrument for measuring wave exposure and water velocity
Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.
2011-01-01
Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.
Colin, Pierre; Kravtsov, A V; Colin, Pedro; Klypin, Anatoly; Kravtsov, Andrey V.
2000-01-01
We use N-body simulations to study the velocity bias of dark matter halos, the difference in the velocity fields of dark matter and halos, in a flat low- density LCDM model. The high force, 2kpc/h, and mass, 10^9Msun/h, resolution allows dark matter halos to survive in very dense environments of groups and clusters making it possible to use halos as galaxy tracers. We find that the velocity bias pvb measured as a ratio of pairwise velocities of the halos to that of the dark matter evolves with time and depends on scale. At high redshifts (z ~5) halos move generally faster than the dark matter almost on all scales: pvb(r)~1.2, r>0.5Mpc/h. At later moments the bias decreases and gets below unity on scales less than r=5Mpc/h: pvb(r)~(0.6-0.8) at z=0. We find that the evolution of the pairwise velocity bias follows and probably is defined by the spatial antibias of the dark matter halos at small scales. One-point velocity bias b_v, defined as the ratio of the rms velocities of halos and dark matter, provides a mo...
Anaerobic critical velocity in four swimming techniques.
Neiva, H P; Fernandes, R J; Vilas-Boas, J P
2011-03-01
The aim of this study was to assess critical velocity in order to control and evaluate anaerobic swimming training. 51 highly trained male swimmers performed maximal 15, 25, 37.5 and 50 m in the 4 swimming techniques to determine critical velocity from the distance-time relationship. Anaerobic critical velocity was compared with 100 m swimming performance and corresponding partials. Complementarily, 9 swimmers performed a 6×50 m (4 min interval) training series at front crawl individual anaerobic critical velocity, capillary blood lactate concentrations being assessed after each repetition. The mean±SD values of anaerobic critical velocity and its relationship with the 100 m event were: 1.61±0.07 (r=0.60, p=0.037), 1.53±0.05 (r=0.81, p=0.015), 1.33±0.05 (r=0.83, p=0.002), and 1.75±0.05 (r=0.74, p=0.001), for butterfly, backstroke, breaststroke and front crawl, respectively. However, differences between anaerobic critical velocity and performance were observed (with exception of the second half of the 100 m swimming events in breaststroke and butterfly). Lactate concentration values at the end of the series were 14.52±1.06 mmol.l (-1), which suggests that it was indeed an anaerobic training set. In this sense, anaerobic critical velocity can be used to prescribe anaerobic training intensities.
Velocities of Thwaites and Land glaciers
Lucchitta, B. K.; Mullins, Kevin F.; Ferrigno, J. G.
1993-01-01
Changes in the area of volume of polar ice sheets are intricately linked to changes in global climate and may severely impact the densely populated coastal regions on Earth. An ice sheet's velocity is a critical parameter, which, together with ice thickness, allows the determination of discharge rates. Using moderate-resolution satellite images such as Landsat, the velocity of floating ice can be measured quickly and relatively inexpensively by tracing crevasse patterns on shelves and ice tongues. Errors in measured velocities are as little as 0.02 km per year, if the following criteria are met: (1) the time interval is longer than 10 years; (2) the velocity is higher than 0.5 km per year; (3) the coregistration points are well dispersed and enclose the area to be measured; and (4) the image pair includes a Landsat 4 or 5 image. The fewer of these conditions that are met, the less accurate the results become; but even for poor conditions, the velocities are generally reliable to near 0.1 km per year. We are in the process of obtaining velocities of all ice shelves and ice tongues along the Bakutis and Ruppert coasts, wherever suitable crevasse patterns exist. So far, we have obtained velocities for the Thwaites and Land glacier tongues.
Estimating groundwater velocity using apparent resistivity tomography: A sandbox experiment
Chen, J. L.; Chen, C. H.; Kuo, C. L.; Fen, C. S.; Wu, C. C.
2016-08-01
The electrical resistivity tomography (ERT) technique can estimate groundwater velocity to within 5% of the pre-set groundwater velocity. The apparent conductivity obtained by the ERT technique is linearly related to the groundwater conductivity, as described by Archie's law. Gaussian-like profiles of the tracer concentration were demonstrated with the ERT technique, and the estimated dispersion coefficient was between 0.0015 and 0.0051 cm2/sec. In terms of monitoring changes in groundwater conductivity, the ERT technique has two major advantages over monitoring wells: (1) it measures a larger area and provides more representative results; and, (2) it does not withdraw groundwater samples, and therefore does not affect the groundwater flow. The objective of this research is to measure groundwater velocity with the ERT technique using only one well. The experiments in this research were divided into two parts. The first part evaluated the accuracy and repeatability of the ERT technique using a dipole-dipole array, and the second part estimated the groundwater velocity in a sandbox using the ERT technique. The length, width, and height of the sandbox, which was made of acrylic, were 1.5, 5, and 1.0 m, respectively. The ERT sandbox was sequentially filled with 5-cm layers of the silica sand to a total height of 70 cm. A total of 32 electrodes spaced every 5-cm were installed in the center of the sandbox. Three monitoring wells were installed along the line of the electrodes. Both no-flow and constant flow (NaCl solution with electrical conductivity and concentration of 5,000 μs/cm and 2.456 g/L, respectively) tracer experiments were conducted.
Velocity structure and seismicity of southeastern Tennessee
Kaufmann, Ronald Douglas; Long, Leland Timothy
1996-04-01
The seismic zone in southeastern Tennessee is at the confluence of major crustal features, which have been interpreted largely from potential data, and their relation to seismicity could help us understand why major earthquakes sometimes occur in the eastern United States. In this paper we solve for the previously unknown velocity structure of the upper crust by an inversion of travel time residuals from relocated earthquakes. The gravity anomalies are included by using a linear relation between average anomalous density and average anomalous velocity. The velocity model demonstrates that the seismicity is concentrated in areas of average to below average velocity and does not appear to be associated with one of the previously identified major crustal features. The high-velocity zones mark areas that are generally lacking in seismicity. The association of earthquake hypocenters with regions of low-velocity crustal rocks is consistent with other intraplate seismic zones, and this association supports the conjecture that intraplate earthquakes occur in crust that may have been weakened. The velocity anomalies at midcrustal depths do not support the New York-Alabama (NY-AL) lineament as a linear feature extending through southeastern Tennessee and parallel to contours in gravity anomalies as originally proposed. A continuation of the (NY-AL) lineament to the southwest requires either a 15 degree southwestward change in direction or a displacement to be consistent with the velocity anomalies. The seismically active areas in southeastern Tennessee do not appear to be constrained by the major crustal features, but instead, the seismicity is characterized by the distribution of hypocenters and their association with low-velocity regions at midcrustal depths.
The Calculations of Propeller Induced Velocity by RANS and Momentum Theory
Qiuxin Gao; Wei Jin; Dracos Vassalos
2012-01-01
In order to provide instructions for the calculation of the propeller induced velocity in the study of the hull-propeller interaction using the body force approach,three methods were used to calculate the propeller induced velocity:1) Reynolds-Averaged Navier-Stokes (RANS) simulation of the self-propulsion test,2)RANS simulation of the propeller open water test,and 3) momentum theory of the propeller.The results from the first two methods were validated against experimental data to assess the accuracy of the computed flow field.The thrust identity method was adopted to obtain the advance velocity,which was then used to derive the propeller induced velocity from the total velocity field.The results computed by the first two approaches were close,while those from the momentum theory were significantly overestimated.The presented results could prove to be useful for further calculations of self-propulsion using the body force approach.
Planetary Nebula Velocities in the Disk and Bulge of M31
Halliday, C; Carter, D; Douglas, N G; Evans, N W; Irwin, M J; Jackson, Z C; Kuijken, K; Merrett, H R; Merrifield, M R; Quinn, D P; Romanowsky, A J; Wilkinson, M I
2006-01-01
We present radial velocities for a sample of 723 planetary nebulae (PNe) in the disk and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel telescope. Velocities are determined using the [OIII] 5007 Angstrom emission line. Rotation and velocity dispersion are measured to a radius of 50 arcminutes (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4kpc, although our data beyond a radius of 5kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disk, bulge and halo of M31.
Performance of a vector velocity estimator
Munk, Peter; Jensen, Jørgen Arendt
1998-01-01
It is a well-known limitation of all commercially available scanners that only the velocity component along the propagation direction of the emitted pulse is measured, when evaluating blood velocities with ultrasound. Proposals for solving this limitation using several transducers or speckle...... tracking can be found in the literature, but no method with a satisfactory performance has been found that can be used in a commercial implementation. A method for estimation of the velocity vector is presented. Here an oscillation transverse to the ultrasound beam is generated, so that a transverse motion...
Measuring Bullet Velocity with a PC Soundcard
Courtney, M; Courtney, Michael; Edwards, Brian
2006-01-01
This article describes a simple method for using a PC soundcard to accurately measure bullet velocity. The method involves placing the microphone within a foot of the muzzle and firing at a steel target between 50 and 100 yards away. The time of flight for the bullet is simply the recorded time between muzzle blast and sound of the bullet hitting the target minus the time it takes the sound to return from the target to the microphone. The average bullet velocity is simply the distance from the muzzle to the target divided by the time of flight of the bullet. This method can also be applied to measurement of paintball velocities.
Low-Velocity Measurement in Water
Ellis, Christopher; Stefan, Heinz G.
1986-09-01
Water velocities in the centimeter per second range or less are measurable by only a few instruments. Experimental laboratory studies frequently require such measurements. A review of low water velocity measurement methods is presented. An inexpensive optical hydrogen bubble-tracing technique is described for velocity measurements in the range 0.5 to 8 cm/s. Modification to a thymol blue (pH) tracer method extends its applicability to the range 0.1 to 1.0 cm/s. Design and operational characteristics of the hydrogen bubble/thymol blue current meter are described.
Sound velocities in iron to 110 gigapascals.
Fiquet, G; Badro, J; Guyot, F; Requardt, H; Krisch, M
2001-01-19
The dispersion of longitudinal acoustic phonons was measured by inelastic x-ray scattering in the hexagonal closed-packed (hcp) structure of iron from 19 to 110 gigapascals. Phonon dispersion curves were recorded on polycrystalline iron compressed in a diamond anvil cell, revealing an increase of the longitudinal wave velocity (VP) from 7000 to 8800 meters per second. We show that hcp iron follows a Birch law for VP, which is used to extrapolate velocities to inner core conditions. Extrapolated longitudinal acoustic wave velocities compared with seismic data suggest an inner core that is 4 to 5% lighter than hcp iron.
Munch, Anders V.
2016-01-01
The idea of design as an art made not only for the people, but also by the people is an old dream going back at least to William Morris. It is, however, reappearing vigoriously in many kinds of design activism and grows out of the visions of a Total Design of society. The ideas of participation...... by Tim Brown can be compared to considerations by László Moholy-Nagy and Walter Gropuis on the training and education of active and capable citizens. This opens, though, some dilemmas to discuss: To what extend is the capability of creativity then a (pre)condition to be a citizen of the society wished...... for? To which degree should everyone be educated in ’design literacy’ to participate? Total design of participation is an artistic intervention in society and must be discussed in this utopian tradition....
Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F
2013-10-01
This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.
Total Synthesis of (-)-Conolutinine.
Feng, Xiangyang; Jiang, Guangde; Xia, Zilei; Hu, Jiadong; Wan, Xiaolong; Gao, Jin-Ming; Lai, Yisheng; Xie, Weiqing
2015-09-18
The first enantioselective synthesis of (-)-conolutinine was achieved in 10 steps. The synthesis featured a catalytic asymmetric bromocyclization of tryptamine to forge the tricycle intermediate. Hydration of an alkene catalyzed by Co(acac)2 was also employed as a key step to diastereoselectively introduce the tertiary alcohol moiety. The absolute configuration of (-)-conolutinine was established to be (2S,5aS,8aS,13aR) based on this asymmetric total synthesis.
Cervical Total Disc Arthroplasty
Basho, Rahul; Hood, Kenneth A.
2012-01-01
Symptomatic adjacent segment degeneration of the cervical spine remains problematic for patients and surgeons alike. Despite advances in surgical techniques and instrumentation, the solution remains elusive. Spurred by the success of total joint arthroplasty in hips and knees, surgeons and industry have turned to motion preservation devices in the cervical spine. By preserving motion at the diseased level, the hope is that adjacent segment degeneration can be prevented. Multiple cervical disc...
Anca ȘERBAN; Oana DUMITRAȘCU
2013-01-01
The purpose of this paper is to present the evolution of the Balanced Scorecard from a measurement instrument to a strategic performance management tool and to highlight the advantages of implementing the Total Performance Scorecard, especially for Human Resource Management. The study has been accomplished using the methodology of bibliographic study and various secondary sources. Implementing the classical Balanced Scorecard indicated over the years, repeatedly failure. It can be indicated t...
Total synthesis of teixobactin
Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H.; Chen, Sheng; Yuan, Yu; Li, Xuechen
2016-08-01
To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product.
DYNAMIC ANALYSIS OF PARTICLE FLYING VELOCITY IN HIGH VELOCITY OXYGEN FUEL SPRAY
Wang Zhiping; Dong Zujue; Huo Shubin
2000-01-01
Based on gas dynamics,thermodynamics,fluid dynamics of multiphase systems and other theories,the dynamic analyses of the particle flying velocity in a high velocity oxygen fuel spray (HVOF) is accomplished.The relationships between the flying velocity of a particle and the flying time or flying length,particle size,hot gas velocity,and pressure or density of the gas are proposed.Meanwhile,the influences of the velocity and mass rate of flow of the flame gas of a HVOF gun,and particle size on the particle flying velocity are discussed in detail.The dynamic pressure concept is introduced to express the flow capacity of hot gas of a HVOF gun,and the relationship between the dynamic pressure of a HVOF gun and the velocity of a particle for depositing is presented.
Sobredentadura total superior implantosoportada
Luis Orlando Rodríguez García
2010-06-01
Full Text Available Se presenta un caso de un paciente desdentado total superior, rehabilitado en la consulta de implantología de la Clínica "Pedro Ortiz" del municipio Habana del Este en Ciudad de La Habana, Cuba, en el año 2009, mediante prótesis sobre implantes osteointegrados, técnica que se ha incorporado a la práctica estomatológica en Cuba como alternativa al tratamiento convencional en los pacientes desdentados totales. Se siguió un protocolo que comprendió una fase quirúrgica, procedimiento con o sin realización de colgajo y carga precoz o inmediata. Se presenta un paciente masculino de 56 años de edad, que acudió a la consulta multidisciplinaria, preocupado, porque se le habían elaborado tres prótesis en los últimos dos años y ninguna reunía los requisitos de retención que él necesitaba para sentirse seguro y cómodo con las mismas. El resultado final fue la satisfacción total del paciente, con el mejoramiento de la calidad estética y funcional.
Radial Velocity Fluctuations of RZ Psc
Potravnov, I. S.; Gorynya, N. A.; Grinin, V. P.; Minikulov, N. Kh.
2014-12-01
The behavior of the radial velocity of the UX Ori type star RZ Psc is studied. The existence of an inner cavity with a radius of about 0.7 a.u. in the circumstellar disk of this star allows to suggest the presence of a companion. A study of the radial velocity of RZ Psc based on our own measurements and published data yields no periodic component in its variability. The two most accurate measurements of V r , based on high resolution spectra obtained over a period of three months, show that the radial velocity is constant over this time interval to within 0.5 km/s. This imposes a limit of M p ≤10 M Jup on the mass of the hypothetical companion. Possible reasons for the observed strong fluctuations in the radial velocity of this star are discussed.
Computer program calculates transonic velocities in turbomachines
Katsanis, T.
1971-01-01
Computer program, TSONIC, combines velocity gradient and finite difference methods to obtain numerical solution for ideal, transonic, compressible flow for axial, radial, or mixed flow cascade of turbomachinery blades.
Optimal Moments for Velocity Fields Analysis
Feldman, H A; Melott, A; Feldman, Hume A; Watkins, Richard; Melott, Adrian; Proxy, Will Chambers; ccsd-00000954, ccsd
2003-01-01
We describe a new method of overcoming problems inherent in peculiar velocity surveys by using data compression as a filter with which to separate large-scale, linear flows from small-scale noise that biases the results systematically. We demonstrate the effectiveness of our method using realistic catalogs of galaxy velocities drawn from N--body simulations. Our tests show that a likelihood analysis of simulated catalogs that uses all of the information contained in the peculiar velocities results in a bias in the estimation of the power spectrum shape parameter $\\Gamma$ and amplitude $\\beta$, and that our method of analysis effectively removes this bias. We expect that this new method will cause peculiar velocity surveys to re--emerge as a useful tool to determine cosmological parameters.
The escape velocity and Schwarzschild metric
Murzagalieva, A G; Murzagaliev, G Z
2002-01-01
The escape velocity value in the terms of general relativity by means Schwarzschild metric is provided to make of the motion equation with Friedman cosmological model behavior build in the terms of Robertson-Worker metric. (author)
Velocity distributions in dilute granular systems.
van Zon, J S; MacKintosh, F C
2005-11-01
We investigate the idea that velocity distributions in granular gases are determined mainly by eta, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases as functions of eta, concentration phi, and particle number N with various heating mechanisms. For a wide range of parameters, we find Gaussian velocity distributions for uniform heating and non-Gaussian velocity distributions for boundary heating. Comparison between these results and velocity distributions obtained by other heating mechanisms and for a simple model of a granular gas without spatial degrees of freedom, shows that uniform and boundary heating can be understood as different limits of q, with q>1 and q < or approximately 1 respectively. We review the literature for evidence of the role of q in the recent experiments.
Transport velocities of coal and sand particles
Adanez, J. (Inst. de Carboquimica, Zaragoza (Spain)); Diego, L.F. de (Inst. de Carboquimica, Zaragoza (Spain)); Gayan, P. (Inst. de Carboquimica, Zaragoza (Spain))
1993-10-01
Transport velocities of narrow cut sizes of coarse particles of sand and coal were determined at room temperature and atmospheric pressure. These velocities were obtained by four different methods previously utilized by other authors with fine particles. The four methods tested gave good predictions of the transport velocities. The method based on the measurement of the time required for all the solids to leave the bed without feeding in any fresh solid is specially interesting because of its rapidity and simplicity. The determined transport velocities were strongly dependent on the solid particle size and density. The experimental values were fitted to an equation which fitted both the experimental results obtained in this work and other published results obtained with fine particles. (orig.)
Velocity Field in a Vertical Foam Film
Seiwert, Jacopo; Kervil, Ronan; Nou, Soniraks; Cantat, Isabelle
2017-01-01
The drainage of vertical foam films governs their lifetime. For a foam film supported on a rectangular solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves a complex flow pattern at the film scale, leading to a drainage time proportional to the frame width. Using an original velocimetry technique, based on fluorescent foam films and photobleaching, we measure the horizontal and vertical components of the velocity in a draining film, thus providing the first quantitative experimental evidence of this flow pattern. Upward velocities up to 10 cm /s are measured close to the lateral menisci, whereas a slower velocity field is obtained in the center of the film, with comparable downwards and horizontal components. Scaling laws are proposed for all characteristic velocities, coupling gravitational effects, and capillary suction.
Velocity in Lorentz-Violating Fermion Theories
Altschul, B D; Colladay, Don
2004-01-01
We consider the role of the velocity in Lorentz-violating fermionic quantum theory, especially emphasizing the nonrelativistic regime. Information about the velocity will be important for the kinematical analysis of scattering and other problems. Working within the minimal standard model extension, we derive new expressions for the velocity. We find that generic momentum and spin eigenstates may not have well-defined velocities. We also demonstrate how several different techniques may be used to shed light on different aspects of the problem. A relativistic operator analysis allows us to study the behavior of the Lorentz-violating Zitterbewegung. Alternatively, by studying the time evolution of Gaussian wave packets, we find that there are Lorentz-violating modifications to the wave packet spreading and the spin structure of the wave function.
Velocity moments of dark matter haloes
Wojtak, R; Gottlöber, S; Mamon, G A; Wojtak, Radoslaw; Lokas, Ewa L.; Gottloeber, Stefan; Mamon, Gary A.
2006-01-01
Using cosmological N-body simulations we study the line-of-sight velocity distribution of dark matter haloes focusing on the lowest-order even moments, dispersion and kurtosis, and their application to estimate the mass profiles of cosmological structures. For each of the ten massive haloes selected from the simulation box we determine the virial mass, concentration and the anisotropy parameter. In order to emulate observations from each halo we choose randomly 300 particles and project their velocities and positions along the line of sight and on the surface of the sky, respectively. After removing interlopers we calculate the profiles of the line-of-sight velocity moments and fit them with the solutions of the Jeans equations. The estimates of virial mass, concentration parameter and velocity anisotropy obtained in this way are in good agreement with the values found from the full 3D analysis.
Quantum rainbow scattering at tunable velocities
Strebel, M; Ruff, B; Stienkemeier, F; Mudrich, M
2012-01-01
Elastic scattering cross sections are measured for lithium atoms colliding with rare gas atoms and SF6 molecules at tunable relative velocities down to ~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam with a magneto-optic trap that provides an ultracold cloud of lithium atoms as a scattering target. Comparison with theory reveals the quantum nature of the collision dynamics in the studied regime, including both rainbows as well as orbiting resonances.
Velocity Fluctuations in Electrostatically Driven Granular Media
Aranson, I. S.; Olafsen, J. S.
2001-01-01
We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We have found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest t...
Velocity Fields as a Probe of Cosmology
Feldman, Hume
2003-01-01
Analyses of peculiar velocity surveys face several challenges, including low signal--to--noise in individual velocity measurements and the presence of small--scale, nonlinear flows. I will present three new analyses that attempt to address these inherent problems. The first is geared towards the better understanding of the estimated errors in the surveys, specifically sampling errors, and the resolution of the seeming disagreements between the surveys. Another develops a new statistic that do...
Acoustic measurement of potato cannon velocity
Courtney, M; Courtney, Amy; Courtney, Michael
2006-01-01
This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.
Improving estimation of microseismic focal mechanisms using a high-resolution velocity model
Chen, T.; Chen, Y.; Lin, Y.; Huang, L.
2015-12-01
Injection and migration of CO2 during the geological carbon sequestration change the pore pressure and stress distribution in the reservoir. The change in stress may induce brittle failure on fractures, causing microseismic events. Focal mechanisms of induced microseismic events are useful for understanding stress evolution in the reservoir. An accurate estimation of microseismic focal mechanism depends on the accuracy of velocity models. In this work, we study the improvement on estimation of microseismic focal mechanisms using a high-resolution velocity model. We obtain the velocity model using a velocity inversion algorithm with a modified total-variation scheme rather than the commonly used Tikhonov regularization technique. We demonstrate with synthetic microseismic data that the velocity inversion method with a modified total-variation regularization scheme improves velocity inversion, and the improved velocity models enhance the accuracy of estimated focal mechanisms of microseismic events. We apply the new methodology to microseismic data acquired at a CO2-EOR (enhanced oil recovery) site at Aneth, Utah.
Total ankle joint replacement.
2016-02-01
Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications.
Andrijašević Maja
2008-01-01
Full Text Available The focus of competitive "battle" shifted from the price towards non-price instruments, above all, towards quality that became the key variable for profitability increase and achievement of better comparative position of a company. Under such conditions, management of a company, which, according to the established and certified system of total quality, strives towards achieving of a better market position, faces the problem of quality cost measurement and determination. Management, above all, cost accounting can help in solving of this problem, but the question is how much of its potential is being used for that purpose.
Total Logistic Plant Solutions
Dusan Dorcak
2016-02-01
Full Text Available The Total Logistics Plant Solutions, plant logistics system - TLPS, based on the philosophy of advanced control processes enables complex coordination of business processes and flows and the management and scheduling of production in the appropriate production plans and planning periods. Main attributes of TLPS is to create a comprehensive, multi-level, enterprise logistics information system, with a certain degree of intelligence, which accepts the latest science and research results in the field of production technology and logistics. Logistic model of company understands as a system of mutually transforming flows of materials, energy, information, finance, which is realized by chain activities and operations
Mean Velocity Estimation of Viscous Debris Flows
Hongjuan Yang; Fangqiang Wei; Kaiheng Hu
2014-01-01
The mean velocity estimation of debris flows, especially viscous debris flows, is an impor-tant part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations for computing debris flow velocity with the one-phase flow assumption were re-viewed and used to analyze field data of viscous debris flows. Results show that the viscous debris flow is difficult to be classified as a Newtonian laminar flow, a Newtonian turbulent flow, a Bingham fluid, or a dilatant fluid in the strict sense. However, we can establish empirical formulas to compute its mean velocity following equations for Newtonian turbulent flows, because most viscous debris flows are tur-bulent. Factors that potentially influence debris flow velocity were chosen according to two-phase flow theories. Through correlation analysis and data fitting, two empirical formulas were proposed. In the first one, velocity is expressed as a function of clay content, flow depth and channel slope. In the second one, a coefficient representing the grain size nonuniformity is used instead of clay content. Both formu-las can give reasonable estimate of the mean velocity of the viscous debris flow.
Middle cerebral artery blood velocity during running.
Lyngeraa, T S; Pedersen, L M; Mantoni, T; Belhage, B; Rasmussen, L S; van Lieshout, J J; Pott, F C
2013-02-01
Running induces characteristic fluctuations in blood pressure (BP) of unknown consequence for organ blood flow. We hypothesized that running-induced BP oscillations are transferred to the cerebral vasculature. In 15 healthy volunteers, transcranial Doppler-determined middle cerebral artery (MCA) blood flow velocity, photoplethysmographic finger BP, and step frequency were measured continuously during three consecutive 5-min intervals of treadmill running at increasing running intensities. Data were analysed in the time and frequency domains. BP data for seven subjects and MCA velocity data for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies. During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow but also challenges cerebral autoregulation. © 2012 John Wiley & Sons A/S.
Güvenç, Tolga Sinan; Karaçimen, Denizhan; Erer, Hatice Betül; İlhan, Erkan; Sayar, Nurten; Karakuş, Gültekin; Çekirdekçi, Elif; Eren, Mehmet
2015-01-01
Management of aortic regurgitation depends on the assessment for severity. Echocardiography remains as the most widely available tool for evaluation of aortic regurgitation. In this manuscript, we describe a novel parameter, jet length/velocity ratio, for the diagnosis of severe aortic regurgitation. A total of 30 patients with aortic regurgitation were included to this study. Severity of aortic regurgitation was assessed with an aortic regurgitation index incorporating five echocardiographic parameters. Jet length/velocity ratio is calculated as the ratio of maximum jet penetrance to mean velocity of regurgitant flow. Jet length/velocity ratio was significantly higher in patients with severe aortic regurgitation (2.03 ± 0.53) compared to patients with less than severe aortic regurgitation (1.24 ± 0.32, P < 0.001). Correlation of jet length/velocity ratio with aortic regurgitation index was very good (r(2) = 0.86) and correlation coefficient was higher for jet length/velocity ratio compared to vena contracta, jet width/LVOT ratio and pressure half time. For a cutoff value of 1.61, jet length/velocity ratio had a sensitivity of 92% and specificity of 88%, with an AUC value of 0.955. Jet length/velocity ratio is a novel parameter that can be used to assess severity of chronic aortic regurgitation. Main limitation for usage of this novel parameter is jet impringement to left ventricular wall. © 2014, Wiley Periodicals, Inc.
High resolved velocity measurements using Laser Cantilever Anemometry
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2016-11-01
We have developed a new anemometer, namely the 2d-LCA (2d-Laser-Cantilever-Anemometer), that is capable of performing high resolved velocity measurements in fluids. The anemometer uses a micostructured cantilever made of silicon as a sensing element. The specific shape and the small dimensions (about 150µm) of the cantilever allow for precise measurements of two velocity component at a temporal resolution of about 150kHz. The angular acceptance range is 180° in total. The 2d-LCA is a simple to use alternative to x-wires and can be used in many areas of operation including measurements in liquids or in particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high-speed flows. In the recent past new cantilever designs were implemented with the goal to further improve the angular resolution and increase the stability. In addition, we have designed more robust cantilevers for measurements in rough environments such as offshore areas. Successful comparative measurements with hot-wires have been carried out in order to assess the performance of the 2d-LCA.
The Radial Velocity Experiment (RAVE): first data release
Steinmetz, M; Siebert, A; Watson, F G; Freeman, K C; Munari, U; Campbell, R; Williams, M; Seabroke, G M; Wyse, R F G; Parker, Q A; Bienaymé, O; Röser, S; Gibson, B K; Gilmore, G; Grebel, E K; Helmi, A; Navarro, J F; Burton, D; Cass, C J P; Dawe, J A; Fiegert, K; Hartley, M; Russell, K S; Saunders, W; Enke, H; Bailin, J; Binney, J; Bland-Hawthorn, J; Boeche, C; Dehnen, W; Eisenstein, D J; Evans, N W; Fiorucci, M; Fulbright, J P; Gerhard, O; Jauregi, U; Kelz, A; Mijovic, L; Minchev, I; Parmentier, G; Penarrubia, J; Quillen, A C; Read, M A; Ruchti, G; Scholz, R D; Siviero, A; Smith, M C; Sordo, R; Veltz, L; Vidrih, S; Von Berlepsch, R; Boyle, B J; Schilbach, E
2006-01-01
We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, surface gravity) of up to one million stars using the 6dF multi-object spectrograph on the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE program started in 2003, obtaining medium resolution spectra (median R=7,500) in the Ca-triplet region ($\\lambda\\lambda$ 8,410--8,795 \\AA) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogs, in the magnitude range 9velocities for 24,748 individual stars (25,274 measurements when including re-observations). Those data were obtained on 67 nights between 11 April 2003 to 03 April 2004. The total sky coverage within this data release is $\\sim$4,760 square degrees. The average signal to noise ratio of the observed spectra is 29.5, and 80% of t...
Solution to causality paradox upon total reflection
LIU Xiang-min; CAO Zhuang-qi; ZHU Peng-fei; SHEN Qi-shun
2006-01-01
A dispute about the existence of an additional time (named as the Goos-H(a)nchen time) associated with the Goos-H(a)nchen shift in total reflection has recently arisen.At the same time,an inconsistency between the optical ray model and the electromagnetic theory also appears in the optical planar waveguide.By analyzing light propagation in an optical planar waveguide with both the zigzag-ray model and the electromagnetic theory,this paper shows that the Goos-H(a)nchen time really exists,and the total time delay upon total reflection upon an ideal nonabsorbing plasma mirror is the sum of the group-delay time and the Goos-H(a)nchen time.The causality paradox of total reflection of a TM wave upon an ideal nonabsorbing plasma mirror is also solved taking into consideration the negative Goos-H(a)nchen shift.Finally,the expression of the group velocity of the guided mode in optical planar waveguide was obtained,which clearly shows that the time delay upon total reflection is the sum of the group-delay time and the Goos-H(a)nchen time at given any time.
Identity and total institution
Ljubičić Milana
2015-01-01
Full Text Available This paper analyses a psychiatric institution resident’s identity (self- construction processes. Our quest was grounded on constructivist theoretical paradigm that sees identity as a manner a person defines oneself in accordance with offered social repertoire. In other words, the total institution milieu offers limited range of identities to its residents. On the other hand, the latter are not just passive subjects that identity is imposed upon. They are able to use a number of adjustment mechanisms to the knowledge about themselves - ranging from symbolic escape to open resistance against the imposed image about them; to obedience, and we were interested to understand the (supposed complex dynamic of identity (re-building in, so-called, special or forensic patients. In order to understand this process and attempting to discover, besides the manifest also the latent layer of the story about self, the local, or personal, identity understanding was examined.
Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.
The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.
Seismic velocity structure of the Guerrero gap, Mexico
Dominguez, Jaime [Colegio de Ciencias y Humanidades, Plantel Sur, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Suarez, Gerardo [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Comte, Diana [Departamento de Geofisica, Universidad de Chile, Santiago (Chile); Quintanar, Luis [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)
2006-04-15
A two-dimensional velocity structure of the Guerrero gap was obtained by applying a damped least square method to hypocenters of local seismicity recorded by a telemetric network situated on the Guerrero coast, above Cocos plate subduction zone. The region was parameterized by a mesh of 64 cubes in six layers, a total of 384 blocks. The results of 3-D inversion showed that differences of P-wave velocity values among blocks along the strike of the subduction zone were {approx}0.25 km/s, effectively showing a two-dimensional symmetry. A 2-D inversion taking into account velocity similarities among the 2-D bands generated megablocks. A final inversion procedure yields P-wave velocity values ranging from 5.4 to 8.2 km/s, and S-wave values from 3.2 and 4.7 km/s, suggesting a continental crust with a thickness of {approx}32 km composed of four flat megablocks with a P-wave velocity interval of 5.4 to 7.1 km/s. The Moho interface lies at {approx}32 km depth and above a mantle wedge between continental and oceanic crust. The downgoing oceanic crust has three layers (7.2-7.7 km/s), dipping at an angle of {approx}26 degrees. A sharp velocity change at a depth of {approx}30 km suggests a phase change from basalt to eclogite (7.2 to 7.6 km/s). The mantle has an average velocity of 8.2 km/s. The new velocity model reduced the error in locations and fits better the characteristics of the Guerrero gap. [Spanish] Se obtiene la estructura bidimensional de velocidades sismicas de la brecha de Guerrero aplicando el metodo de minimos cuadrados amortiguados a los datos de la sismicidad local registrada por una red telemetrica situada en la costa, ubicada en la zona de subduccion de la placa de Cocos. La region se parametrizo con una malla de 64 cubos en seis capas, un total de 384 bloques. Los resultados de esta inversion tridimensional (3-D) mostraron una diferencia de velocidad de onda P, entre bloques adyacentes y paralelos a la costa, no mayor de 0.25 km/s, mostrando una simetria
Optical refraction in silver: counterposition, negative phase velocity and orthogonal phase velocity
Naqvi, Qaisar A [Department of Electronics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mackay, Tom G [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Lakhtakia, Akhlesh, E-mail: nqaisar@yahoo.com, E-mail: T.Mackay@ed.ac.uk, E-mail: akhlesh@psu.edu [NanoMM-Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States)
2011-07-15
Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable changes in the Abraham and Minkowski momentum densities. In particular, orthogonal phase velocity is associated with nonzero Abraham and Minkowski momentum densities.
Range/velocity limitations for time-domain blood velocity estimation
Jensen, Jørgen Arendt
1993-01-01
The traditional range/velocity limitation for blood velocity estimation systems using ultrasound is elucidated. It is stated that the equation is a property of the estimator used, not the actual physical measurement situation, as higher velocities can be estimated by the time domain cross......-correlation approach. It is demonstrated that the time domain technique under certain measurement conditions will yield unsatisfactory results, when trying to estimate high velocities. Various methods to avoid these artifacts using temporal and spatial clustering techniques are suggested. The improvement...
Park, H M; Kim, T W
2009-01-21
Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.
Acute hormonal responses following different velocities of eccentric exercise.
Libardi, Cleiton A; Nogueira, Felipe R D; Vechin, Felipe C; Conceição, Miguel S; Bonganha, Valéria; Chacon-Mikahil, Mara Patricia T
2013-11-01
The aim of this study was to compare the acute hormonal responses following two different eccentric exercise velocities. Seventeen healthy, untrained, young women were randomly placed into two groups to perform five sets of six maximal isokinetic eccentric actions at slow (30° s(-1) ) and fast (210° s(-1) ) velocities with 60-s rest between sets. Growth hormone, cortisol, free and total testosterone were assessed by blood samples collected at baseline, immediately postexercise, 5, 15 and 30 min following eccentric exercise. Changes in hormonal responses over time were compared between groups, using a mixed model followed by a Tukey's post hoc test. The main findings of the present study were that the slow group showed higher growth hormone values immediately (5·08 ± 2·85 ng ml(-1) , P = 0·011), 5 (5·54 ± 3·01 ng ml(-1) , P = 0·004) and 15 min (4·30 ± 2·87 ng ml(-1) , P = 0·021) posteccentric exercise compared with the fast group (1·39 ± 2·41 ng ml(-1) , 1·34 ± 1·97 ng ml(-1) and 1·24 ± 1·87 ng ml(-1) , respectively), and other hormonal responses were not different between groups (P>0·05). In conclusion, slow eccentric exercise velocity enhances more the growth hormone(GH) response than fast eccentric exercise velocity without cortisol and testosterone increases. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Seismic velocity estimation from time migration
Cameron, Maria Kourkina [Univ. of California, Berkeley, CA (United States)
2007-01-01
reliable as the earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.
Seismic velocity estimation from time migration
Cameron, Maria Kourkina
earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a "velocity model". We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the "time migration velocities" using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.
POTENT Reconstruction from Mark III Velocities
Dekel, A.; Eldar, A.; Kolatt, T.; Yahil, A.; Willick, J. A.; Faber, S. M.; Courteau, S.; Burstein, D.
1999-09-01
We present an improved version of the POTENT method for reconstructing the cosmological velocity and mass density fields from radial peculiar velocities, test it with mock catalogs, and apply it to the Mark III Catalog of Galaxy Peculiar Velocities. The method is improved in several ways: (1) the inhomogeneous Malmquist bias is reduced by grouping and corrected statistically in either forward or inverse analyses of inferred distances, (2) the smoothing into a radial velocity field is optimized such that window and sampling biases are reduced, (3) the density field is derived from the velocity field using an improved weakly nonlinear approximation in Eulerian space, and (4) the computational errors are made negligible compared to the other errors. The method is carefully tested and optimized using realistic mock catalogs based on an N-body simulation that mimics our cosmological neighborhood, and the remaining systematic and random errors are evaluated quantitatively. The Mark III catalog, with ~3300 grouped galaxies, allows a reliable reconstruction with fixed Gaussian smoothing of 10-12 h-1 Mpc out to ~60 h-1 Mpc and beyond in some directions. We present maps of the three-dimensional velocity and mass-density fields and the corresponding errors. The typical systematic and random errors in the density fluctuations inside 40 h-1 Mpc are +/-0.13 and +/-0.18 (for Ω=1). In its gross features, the recovered mass distribution resembles the galaxy distribution in redshift surveys and the mass distribution in a similar POTENT analysis of a complementary velocity catalog (SFI), including such features as the Great Attractor, Perseus-Pisces, and the large void in between. The reconstruction inside ~40 h-1 Mpc is not affected much by a revised calibration of the distance indicators (VM2, tailored to match the velocities from the IRAS 1.2 Jy redshift survey). The volume-weighted bulk velocity within the sphere of radius 50 h-1 Mpc about the Local Group is V50=370+/-110 km s-1
Boosting Moving Object Indexing through Velocity Partitioning
Nguyen, Thi; Zhang, Rui; Ward, Phillip
2012-01-01
There have been intense research interests in moving object indexing in the past decade. However, existing work did not exploit the important property of skewed velocity distributions. In many real world scenarios, objects travel predominantly along only a few directions. Examples include vehicles on road networks, flights, people walking on the streets, etc. The search space for a query is heavily dependent on the velocity distribution of the objects grouped in the nodes of an index tree. Motivated by this observation, we propose the velocity partitioning (VP) technique, which exploits the skew in velocity distribution to speed up query processing using moving object indexes. The VP technique first identifies the "dominant velocity axes (DVAs)" using a combination of principal components analysis (PCA) and k-means clustering. Then, a moving object index (e.g., a TPR-tree) is created based on each DVA, using the DVA as an axis of the underlying coordinate system. An object is maintained in the index whose DVA...
Imaging thermal plasma mass and velocity analyzer
Yau, Andrew W.; Howarth, Andrew
2016-07-01
We present the design and principle of operation of the imaging ion mass and velocity analyzer on the Enhanced Polar Outflow Probe (e-POP), which measures low-energy (1-90 eV/e) ion mass composition (1-40 AMU/e) and velocity distributions using a hemispherical electrostatic analyzer (HEA), a time-of-flight (TOF) gate, and a pair of toroidal electrostatic deflectors (TED). The HEA and TOF gate measure the energy-per-charge and azimuth of each detected ion and the ion transit time inside the analyzer, respectively, providing the 2-D velocity distribution of each major ionospheric ion species and resolving the minor ion species under favorable conditions. The TED are in front of the TOF gate and optionally sample ions at different elevation angles up to ±60°, for measurement of 3-D velocity distribution. We present examples of observation data to illustrate the measurement capability of the analyzer, and show the occurrence of enhanced densities of heavy "minor" O++, N+, and molecular ions and intermittent, high-velocity (a few km/s) upward and downward flowing H+ ions in localized regions of the quiet time topside high-latitude ionosphere.
Power Spectrum Estimation from Peculiar Velocity Catalogues
Macaulay, Edward; Ferreira, Pedro G; Jaffe, Andrew H; Agarwal, Shankar; Hudson, Michael J; Watkins, Richard
2011-01-01
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 s...
Measuring Global Monopole Velocities, one by one
Lopez-Eiguren, Asier; Achúcarro, Ana
2016-01-01
We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scaling solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics...
Measuring global monopole velocities, one by one
Lopez-Eiguren, Asier; Urrestilla, Jon; Achúcarro, Ana
2017-01-01
We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scaling solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics of the complicated dynamics of individual monopoles. Finally we use our large simulation volume to compare the results from the different estimator methods, as well as to asses the validity of the numerical approximations made.
Indentation of aluminium foam at low velocity
Shi Xiaopeng
2015-01-01
Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.
Distinct patterns of seasonal Greenland glacier velocity.
Moon, Twila; Joughin, Ian; Smith, Ben; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Usher, Mika
2014-10-28
Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. First multi-region seasonal velocity measurements show regional differencesSeasonal velocity fluctuations on most glaciers appear meltwater controlledSeasonal development of efficient subglacial drainage geographically divided.
Distinct patterns of seasonal Greenland glacier velocity
Moon, Twila; Joughin, Ian; Smith, Ben; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Usher, Mika
2014-01-01
Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. Key Points First multi-region seasonal velocity measurements show regional differences Seasonal velocity fluctuations on most glaciers appear meltwater controlled Seasonal development of efficient subglacial drainage geographically divided PMID:25821275
Primary total elbow arthroplasty
Suresh Kumar
2013-01-01
Full Text Available Background: Primary total elbow arthroplasty (TEA is a challenging procedure for orthopedic surgeons. It is not performed as frequently as compared to hip or knee arthroplasty. The elbow is a nonweight-bearing joint; however, static loading can create forces up to three times the body weight and dynamic loading up to six times. For elderly patients with deformity and ankylosis of the elbow due to posttraumatic arthritis or rheumatoid arthritis or comminuted fracture distal humerus, arthroplasty is one of the option. The aim of this study is to analyze the role of primary total elbow arthroplasty in cases of crippling deformity of elbow. Materials and Methods: We analyzed 11 cases of TEA, between December 2002 and September 2012. There were 8 females and 3 males. The average age was 40 years (range 30-69 years. The indications for TEA were rheumatoid arthritis, comminuted fracture distal humerus with intraarticular extension, and posttraumatic bony ankylosis of elbow joint. The Baksi sloppy (semi constrained hinge elbow prosthesis was used. Clinico-radiological followup was done at 1 month, 3 months, 6 months, 1 year, and then yearly basis. Results: In the present study, average supination was 70° (range 60-80° and average pronation was 70° (range 60-80°. Average flexion was 135° (range 130-135°. However, in 5 cases, there was loss of 15 to 35° (average 25° of extension (45° out of 11 cases. The mean Mayo elbow performance score was 95.4 points (range 70-100. Arm length discrepancy was only in four patients which was 36% out of 11 cases. Clinico-radiologically all the elbows were stable except in one case and no immediate postoperative complication was noted. Radiolucency or loosening of ulnar stem was seen in 2 cases (18% out of 11 cases, in 1 case it was noted after 5 years and in another after 10 years. In second case, revision arthroplasty was done, in which only ulnar hinge section, hinge screw and lock screw with hexagonal head
Cook, Jason A; Shah, Keyur B; Quader, Mohammed A; Cooke, Richard H; Kasirajan, Vigneshwar; Rao, Kris K; Smallfield, Melissa C; Tchoukina, Inna; Tang, Daniel G
2015-12-01
The total artificial heart (TAH) is a form of mechanical circulatory support in which the patient's native ventricles and valves are explanted and replaced by a pneumatically powered artificial heart. Currently, the TAH is approved for use in end-stage biventricular heart failure as a bridge to heart transplantation. However, with an increasing global burden of cardiovascular disease and congestive heart failure, the number of patients with end-stage heart failure awaiting heart transplantation now far exceeds the number of available hearts. As a result, the use of mechanical circulatory support, including the TAH and left ventricular assist device (LVAD), is growing exponentially. The LVAD is already widely used as destination therapy, and destination therapy for the TAH is under investigation. While most patients requiring mechanical circulatory support are effectively treated with LVADs, there is a subset of patients with concurrent right ventricular failure or major structural barriers to LVAD placement in whom TAH may be more appropriate. The history, indications, surgical implantation, post device management, outcomes, complications, and future direction of the TAH are discussed in this review.
Vital, J-M; Boissière, L
2014-02-01
Total disc replacement (TDR) (partial disc replacement will not be described) has been used in the lumbar spine since the 1980s, and more recently in the cervical spine. Although the biomechanical concepts are the same and both are inserted through an anterior approach, lumbar TDR is conventionally indicated for chronic low back pain, whereas cervical TDR is used for soft discal hernia resulting in cervicobrachial neuralgia. The insertion technique must be rigorous, with precise centering in the disc space, taking account of vascular anatomy, which is more complex in the lumbar region, particularly proximally to L5-S1. All of the numerous studies, including prospective randomized comparative trials, have demonstrated non-inferiority to fusion, or even short-term superiority regarding speed of improvement. The main implant-related complication is bridging heterotopic ossification with resulting loss of range of motion and increased rates of adjacent segment degeneration, although with an incidence lower than after arthrodesis. A sufficiently long follow-up, which has not yet been reached, will be necessary to establish definitively an advantage for TDR, particularly in the cervical spine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Vector Velocity Imaging Using Cross-Correlation and Virtual Sources
Holfort, Iben Kraglund; Kortbek, Jacob; Jensen, Jørgen Arendt
2006-01-01
Previous investigations have shown promising results in using the directional cross-correlation method to estimate velocity vectors. The velocity vector estimate provides information on both velocity direction and magnitude. The direction is estimated by beamforming signals along directions...
Automatic stabilization of velocity for ultrasonic vibration system
无
2001-01-01
Describes the structure of a current feedback ultrasonicgeneration system with such characteristic as velocity stabilization and automatic frequency tracking, discusses the velocity stabilization principle, and points out that successful frequency tracking is precondition for velocity stabilization.
Velocity Controller for a Class of Vehicles
Herman Przemyslaw
2017-02-01
Full Text Available This paper addresses the problem of velocity tracking control for various fully-actuated robotic vehicles. The presented method, which is based on transformation of equations of motion allows one to use, in the control gain matrix, the dynamical couplings existing in the system. Consequently, the dynamics of the vehicle is incorporated into the control process what leads to fast velocity error convergence. The stability of the system under the controller is derived based on Lyapunov argument. Moreover, the robustness of the proposed controller is shown too. The general approach is valid for 6 DOF models as well as other reduced models of vehicles. Simulation results on a 6 DOF indoor airship validate the described velocity tracking methodology.
Velocity and Magnetic Compressions in FEL Drivers
Serafini, L
2005-01-01
We will compare merits and issues of these two techniques suitable for increasing the peak current of high brightness electron beams. The typical range of applicability is low energy for the velocity bunching and middle to high energy for magnetic compression. Velocity bunching is free from CSR effects but requires very high RF stability (time jitters), as well as a dedicated additional focusing and great cure in the beam transport: it is very well understood theoretically and numerical simulations are pretty straightforward. Several experiments of velocity bunching have been performed in the past few years: none of them, nevertheless, used a photoinjector designed and optimized for that purpose. Magnetic compression is a much more consolidated technique: CSR effects and micro-bunch instabilities are its main drawbacks. There is a large operational experience with chicanes used as magnetic compressors and their theoretical understanding is quite deep, though numerical simulations of real devices are still cha...
JET VELOCITY OF LINEAR SHAPED CHARGES
Vječislav Bohanek
2012-12-01
Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.
Magnetized galactic halos and velocity lags
Henriksen, Richard N
2016-01-01
We present an analytic model of a magnetized galactic halo surrounding a Mestel gravitating disc. The magnetic field is taken to be in energy equipartition with the pressure dominant rotating halo gas ({\\it not} with the cosmic rays), and the whole system is in a steady state. A more flexible `anisotropic equipartition' model is also explored. A definite pressure law is required to maintain the equilibrium, but the halo density is constant. The velocity/magnetic system is scale-free. The objective is to find the rotational velocity lag in such a halo. The magnetic field is not force-free so that angular momentum may be transported from the halo to the intergalactic medium. We find that the `X'-shaped structure observed for halo magnetic fields can be obtained together with a simple analytic formula for the rate of decline of the velocity with height $z$. The formula also predicts the change in lag with radius, $r$.
Critical Landau velocity in helium nanodroplets.
Brauer, Nils B; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J; Drabbels, Marcel
2013-10-11
The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.
Constraining cosmology with pairwise velocity estimator
Ma, Yin-Zhe; He, Ping
2015-01-01
In this paper, we develop a full statistical method for the pairwise velocity estimator previously proposed, and apply Cosmicflows-2 catalogue to this method to constrain cosmology. We first calculate the covariance matrix for line-of-sight velocities for a given catalogue, and then simulate the mock full-sky surveys from it, and then calculate the variance for the pairwise velocity field. By applying the $8315$ independent galaxy samples and compressed $5224$ group samples from Cosmicflows-2 catalogue to this statistical method, we find that the joint constraint on $\\Omega^{0.6}_{\\rm m}h$ and $\\sigma_{8}$ is completely consistent with the WMAP 9-year and Planck 2015 best-fitting cosmology. Currently, there is no evidence for the modified gravity models or any dynamic dark energy models from this practice, and the error-bars need to be reduced in order to provide any concrete evidence against/to support $\\Lambda$CDM cosmology.
Cosmology with Peculiar Velocities: Observational Effects
Andersen, Per; Howlett, Cullan
2016-01-01
In this paper we investigate how observational effects could possibly bias cosmological inferences from peculiar velocity measurements. Specifically, we look at how bulk flow measurements are compared with theoretical predictions. Usually bulk flow calculations try to approximate the flow that would occur in a sphere around the observer. Using the Horizon Run 2 simulation we show that the traditional methods for bulk flow estimation can overestimate the magnitude of the bulk flow for two reasons: when the survey geometry is not spherical (the data do not cover the whole sky), and when the observations undersample the velocity distributions. Our results may explain why several bulk flow measurements found bulk flow velocities that seem larger than those expected in standard {\\Lambda}CDM cosmologies. We recommend a different approach when comparing bulk flows to cosmological models, in which the theoretical prediction for each bulk flow measurement is calculated specifically for the geometry and sampling rate o...
Hewett, Timothy E; Myer, Gregory D; Zazulak, Bohdanna T
2008-09-01
Our purpose was to determine if females demonstrate decreased hamstrings to quadriceps peak torque (H/Q) ratios compared to males and if H/Q ratios increase with increased isokinetic velocity in both sexes. Maturation disproportionately increases hamstrings peak torque at high velocity in males, but not females. Therefore, we hypothesised that mature females would demonstrate decreased H/Q ratios compared to males and the difference in H/Q ratio between sexes would increase as isokinetic velocity increased. Studies that analysed the H/Q ratio with gravity corrected isokinetic strength testing reported between 1967 and 2004 were included in our review and analysis. Keywords were hamstrings/quadriceps, isokinetics, peak torque and gravity corrected. Medline and Smart databases were searched combined with cross-checked bibliographic reference lists of the publications to determine studies to be included. Twenty-two studies were included with a total of 1568 subjects (1145 male, 423 female). Males demonstrated a significant correlation between H/Q ratio and isokinetic velocity (R=0.634, pratio at the lowest angular velocity (47.8+/-2.2% at 30 degrees /s) compared to the highest velocity (81.4+/-1.1% at 360 degrees /s, pratio and isokinetic velocity (R=0.065, p=0.77) or a change in relative hamstrings strength as the speed increased (49.5+/-8.8% at 30 degrees /s; 51.0+/-5.7% at 360 degrees /s, p=0.84). Gender differences in isokinetic H/Q ratios were not observed at slower angular velocities. However, at high knee flexion/extension angular velocities, approaching those that occur during sports activities, significant gender differences were observed in the H/Q ratio. Females, unlike males, do not increase hamstrings to quadriceps torque ratios at velocities that approach those of functional activities.
Aerobic evaluation of young swimmers using the critical velocity test a brief report
FERNANDES, RICARDO
2011-06-01
Full Text Available Critical velocity is the maximal swimming velocity that could be maintained for a long time without exhaustion.As it is considered to be well related with the exercise intensity corresponding to the individual anaerobicthreshold, critical velocity has been used to monitor the swimmer’s aerobic performance. However, studiesconducted in age-group swimmers are scarce and some literature does not use a long distance test as required forobtaining reliable critical velocity results. The aim of the present study was to assess critical velocity in 11-14years old swimmers in order to characterize their aerobic capacity. So, 56 girls and 62 boys performed 200 and800m front crawl tests at maximum intensity, being critical velocity assessed by the slope of the regression linebetween the test distances and the respective times. Critical velocity values were 1.21±0.06, 1.28±0.05 and1.25±0.06 m/s for the girls, boys and total group, with significant differences being observed between gendergroups. As expected, these results were lower than the values presented in the literature for older swimmers.However, some of these studies that reported significantly higher critical velocity values used short distancestests for its assessment, which could lead to the overestimation of the final results. It is suggested the use of theindividual critical velocity converted in 100m time to implement specific training series for aerobic capacitydevelopment, as well as for the more precise definition of training volumes and intensities. Thus, the usedcritical velocity test could be considered a useful training strategy used to increase swimmers conditioning
Lupotti, F.A.; Steen, A.F.W. van der; Mastik, F.; Korte, C.L. de
2002-01-01
In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow us
Velocity, acceleration and gravity in Einstein's relativity
Abramowicz, Marek A
2016-01-01
Einstein's relativity theory demands that all meaningful physical objects should be defined covariantly, i.e. in a coordinate independent way. Concepts of relative velocity, acceleration, gravity acceleration and gravity potential are fundamental in Newton's theory and they are imprinted in everyone's physical intuition. Unfortunately, relativistic definitions of them are not commonly known or appreciated. Every now and then some confused authors use wrong, non-covariant, definitions of velocity, acceleration and gravity, based on their vague Newtonian intuitions and hidden in a superficial, often purely semantic, relativistic disguise. A recent example of such a confusion (Gorkavyi & Vasilkov, 2016) is discussed at the end of this Note.
Pulse Wave Velocity in the Carotid Artery
Sørensen, Gertrud Laura; Jensen, Julie Brinck; Udesen, Jesper;
2008-01-01
The pulse wave velocity (PWV) in the carotid artery (CA) has been estimated based on ultrasound data collected by the experimental scanner RASMUS at DTU. Data is collected from one test subject using a frame rate (FR) of 4000 Hz. The influence of FRs is also investigated. The PWV is calculated from...... distension wave forms (DWF) estimated using cross-correlation. The obtained velocities give results in the area between 3-4 m/s, and the deviations between estimated PWV from two beats of a pulse are around 10%. The results indicate that the method presented is applicable for detecting the local PWV...
STARE velocities: 2. Evening westward electron flow
M. Uspensky
2004-04-01
Full Text Available Four evening events and one morning event of joint EISCAT/STARE observations during ~22h are considered and the differences between observed STARE line-of-sight (l-o-s velocities and EISCAT electron drift velocities projected onto the STARE beams are studied. We demonstrate that the double-pulse technique, which is currently in use in the STARE routine data handling, typically underestimates the true phase velocity as inferred from the multi-pulse STARE data. We show that the STARE velocities are persistently smaller (1.5–2 times than the EISCAT velocities, even for the multi-pulse data. The effect seems to be more pronounced in the evening sector when the Finland radar observes at large flow angles. We evaluate the performance of the ion-acoustic approach (IAA, Nielsen and Schlegel, 1985 and the off-orthogonal fluid approach (OOFA, Uspensky et al., 2003 techniques to predict the true electron drift velocity for the base event of 12 February 1999. The IAA technique predicts the convection reasonably well for enhanced flows of >~1000m/s, but not so well for slower ones. By considering the EISCAT N(h profiles, we derive the effective aspect angle and effective altitude of backscatter, and use this information for application of the OOFA technique. We demonstrate that the OOFA predictions for the base event are superior over the IAA predictions and thus, we confirm that OOFA predicts the electron velocities reasonably well in the evening sector, in addition to the morning sector, as concluded by Uspensky et al. (2003. To check how "robust" the OOFA model is and how successful it is for convection estimates without the EISCAT support, we analysed three additional evening events and one additional morning event for which information on N(h profiles was intentionally ignored. By accepting the mean STARE/EISCAT velocity ratio of 0.55 and the mean azimuth rotation of 9° (derived for the basic event, we show that the OOFA performs
Inner Harbor Navigation Canal Basin Velocity Analysis
2014-10-01
ER D C/ CH L TR -1 4- 12 Inner Harbor Navigation Canal Basin Velocity Analysis Co as ta l a nd H yd ra ul ic s La bo ra to ry...library at http://acwc.sdp.sirsi.net/client/default. ERDC/CHL TR-14-12 October 2014 Inner Harbor Navigation Canal Basin Velocity Analysis...system of levees, gates, and drainage structures in the Inner Harbor Navigation Canal (IHNC) basin and the greater New Orleans, Louisiana, area. Two
Analyses of hydraulic performance of velocity caps
Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe
2014-01-01
The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...... in order to analyse the effect of different layouts on the flow characteristics. In particular, flow configurations going all the way through the structure were revealed. A couple of suggestions to minimize the risk for flow through have been tested....
Precise Near-Infrared Radial Velocities
Plavchan, Peter; Gagne, Jonathan; Furlan, Elise; Brinkworth, Carolyn; Bottom, Michael; Tanner, Angelle; Anglada-Escude, Guillem; White, Russel; Davison, Cassy; Mills, Sean; Beichman, Chas; Johnson, John Asher; Ciardi, David; Wallace, Kent; Mennesson, Bertrand; Vasisht, Gautam; Prato, Lisa; Kane, Stephen; Crawford, Sam; Crawford, Tim; Sung, Keeyoon; Drouin, Brian; Lin, Sean; Leifer, Stephanie; Catanzarite, Joe; Henry, Todd; von Braun, Kaspar; Walp, Bernie; Geneser, Claire; Ogden, Nick; Stufflebeam, Andrew; Pohl, Garrett; Regan, Joe
2016-01-01
We present the results of two 2.3 micron near-infrared radial velocity surveys to detect exoplanets around 36 nearby and young M dwarfs. We use the CSHELL spectrograph (R ~46,000) at the NASA InfraRed Telescope Facility, combined with an isotopic methane absorption gas cell for common optical path relative wavelength calibration. We have developed a sophisticated RV forward modeling code that accounts for fringing and other instrumental artifacts present in the spectra. With a spectral grasp of only 5 nm, we are able to reach long-term radial velocity dispersions of ~20-30 m/s on our survey targets.
Hubble expansion is not a velocity
Ma, Yin-Zhe; Zhang, Shuang-Nan
2016-11-01
In this paper, we clarify the difference between the Hubble expansion and the Doppler shift pedagogically and illustrate both physically and mathematically why the Hubble expansion cannot be regarded as a velocity. Therefore, we suggest to replace the misleading word ‘recession velocity’ to be ‘Hubble recession’ to describe the cosmic expansion. We further derive how the peculiar velocity of a galaxy is related to its observed redshift and proper distance, which has practical use in the galaxy redshift and distance surveys.
Antarctica: measuring glacier velocity from satellite images.
Lucchitta, B K; Ferguson, H M
1986-11-28
Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.
STUDY ON STARTING VELOCITY OF COHESIVE SEDIMENTATION
无
2000-01-01
In this paper, with the starting velocity experiments of natural cohesive sedimentation, the author proposes an assumption concerning the starting mechanism of cohesive sedimentation and gives a formula to determine the starting velocity of compact clay. It is pointed out that the fluctuating function of flow is a main factor for the starting of sedimentation. And the component and the structure of cohesive sedimentation are also the affecting factors for the starting. Consequently, the study shows that modern results of soil mechanics, clay mineralogy and fluid mechanics are helpful in the investigation of this kind of engineering problem.
Optical Refraction in Silver: Counterposition, Negative Phase Velocity and Orthogonal Phase Velocity
Naqvi, Qaisar A.; Mackay, Tom G.; Lakhtakia, Akhlesh
2011-01-01
Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable…
Lakhtakia, A.; McCall, M. W.
2004-01-01
When a plane wave is launched from a plane surface in a linear, homogenous, dielectric-magnetic, uniaxial medium, we show that its phase velocity and the energy-transport velocity vectors can be counterposed (i.e., lie on different sides of the surface normal) under certain circumstances.
Optical Refraction in Silver: Counterposition, Negative Phase Velocity and Orthogonal Phase Velocity
Naqvi, Qaisar A.; Mackay, Tom G.; Lakhtakia, Akhlesh
2011-01-01
Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable…
Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo
2017-03-01
The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.
Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)
2015-08-15
While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)
Prediction of the Shear Wave Velocity from Compressional Wave Velocity for Gachsaran Formation
Parvizi Saeed
2015-10-01
Full Text Available Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.
Constraints on Shear Velocity in the Cratonic Upper Mantle From Rayleigh Wave Phase Velocity
Hirsch, A. C.; Dalton, C. A.
2014-12-01
In recent years, the prevailing notion of Precambrian continental lithosphere as a thick boundary layer (200-300 km), defined by a depleted composition and a steady-state conductively cooled temperature structure, has been challenged by several lines of seismological evidence. One, profiles of shear velocity with depth beneath cratons exhibit lower wave speed at shallow depths and higher wave speed at greater depths than can be explained by temperature alone. These profiles are also characterized by positive or flat velocity gradients with depth and anomalously high attenuation in the uppermost mantle, both of which are difficult to reconcile with the low temperatures and large thermal gradient expected with a thermal boundary layer. Two, body-wave receiver-function studies have detected a mid-lithospheric discontinuity that requires a large and abrupt velocity decrease with depth in cratonic regions that cannot be achieved by thermal gradients alone. Here, we used forward-modeling to identify the suite of shear-velocity profiles that are consistent with phase-velocity observations made for Rayleigh waves that primarily traversed cratons in North America, South America, Africa, and Australia. We considered two approaches; with the first, depth profiles of shear velocity were predicted from thermal models of the cratonic upper mantle that correspond to a range of assumed values of mantle potential temperature, surface heat flow, and radiogenic heat production in the crust and upper mantle. With the second approach, depth profiles of shear velocity were randomly generated. In both cases, Rayleigh wave phase velocity was calculated from the Earth models and compared to the observed values. We show that it is very difficult to match the observations with an Earth model containing a low-velocity zone in the upper mantle; instead, the best-fit models contain a flat or positive velocity gradient with depth. We explore the implications of this result for the thermal and
Orlando Díaz Tabares
1997-04-01
Full Text Available Se realizó un estudio longitudinal, descriptivo y retrospectivo con el objetivo de conocer el comportamiento de la incapacidad permanente para el trabajo en el municipio "San Cristóbal" durante el decenio 1982-1991, y se aplicó el método de encuesta por el que se recogieron datos que fueron extraídos del modelo oficial de peritaje médico laboral y de la entrevista con el peritado. Los resultados fueron plasmados en tablas de contingencias donde se relacionan las variables por cada año estudiado, y se aplicó la prueba estadística de chi cuadrado. El número de individuos dictaminados con incapacidad laboral total fue de 693; predominó en reportes el año 1988 con 114 casos y muy discretamente el sexo femenino sobre el masculino, el grupo etáreo de 45 a 54 años con 360 casos y la artrosis como entidad valorada por ortopedia, con análisis estadísticos significativos. No resultó estadísticamente significativo, el predominio de la hipertensión arterial sistémica entre las entidades valoradas por la especialidad de medicina interna como causas de incapacidad laboral. Fue muy significativa la variación del número de dictaminados por la comisión en cada uno de los años estudiados y que el porcentaje de ellos que se encontraban realizando trabajos que demandan esfuerzo físico de moderado a intenso al momento de aplicar la encuesta, ascendió al 64,9.A longitudinal, descriptive and retrospective study was conducted in order to know the behavior of permanent labor disability at the municipality of San Cristóbal during 1982-1991. A survey was done to collect data taken from the official model of medical inspections and from the interview with the disabled worker. The results were shown in contingency tables where the variables are related by every year studied. The chi square statistical test was applied. The number of individuals with labor disability was 693. As for reports, the year 1988 predominated with 114. There was a discreet
Machicoane, Nathanaël
2015-01-01
We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding partical dynamics and may permit stochastic process modelization using two-time models (for instance Saw-ford's). As particles are tracked over long times in the quasi totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly usef...
Stellar Velocity Dispersion in Mergers: The Effects of Dust and Star Formation
Stickley, Nathaniel R
2016-01-01
We investigate the effects of stellar evolution and dust on measurements of stellar velocity dispersion in mergers of disk galaxies. $N$-body simulations and radiative transfer analysis software are used to obtain mass-weighted and flux-weighted measurements of stellar velocity dispersion. We find that the distribution of dust with respect to the distribution of young stars in such systems is more important than the total degree of attenuation. The presence of dust typically causes flux-weighted measurements of stellar velocity dispersion to be elevated with respect to mass-weighted measurements because dust preferentially obscures young stars, which tend to be dynamically cooler than older stellar populations in such systems. In exceptional situations, in which young stars are not preferentially obscured by dust, flux-weighted velocity dispersion measurements tend to be negatively offset with respect to mass-weighted measurements because the dynamically cool young stellar populations are more luminous, per u...
VELOCITY OF DETONATION OF LOW DENSITY
Vinko Škrlec
2012-12-01
Full Text Available Blasting operations in built-up areas, at short distances from structures, impose new requirements on blasting techniques and properties of explosives in order to mitigate seismic effect of blasting. Explosives for civil uses are mixtures of different chemical composition of explosive and/or non-explosive substances. Chemical and physical properties, along with means of initiation, environment and the terms of application define detonation and blasting parameters of a particular type of the explosive for civil uses. Velocity of detonation is one of the most important measurable characteristics of detonation parameters which indirectly provide information about the liberated energy, quality of explosives and applicability for certain purposes. The level of shock effect of detonated charge on the rock, and therefore the level of seismic effect in the area, depends on the velocity of detonation. Since the velocity of detonation is proportional to the density of an explosive, the described research is carried out in order to determine the borderline density of the mixture of an emulsion explosive with expanded polystyrene while achieving stable detonation, and to determine the dependency between the velocity of detonation and the density of mixture (the paper is published in Croatian.
Calculations supporting HyperVelocity Launcher development
Trucano, T.G.; Chhabildas, L.C.
1993-08-01
Sandia National Laboratories has developed a HyperVelocity Launcher (also referred to as HVL) in which a thin flier plate (nominally 1 mm thick) is launched to velocities in excess of 12 km/s. The length to diameter ratio of these launched flier plates varies from 0.02 to 0.06. The launch technique is based upon using structured, time-dependant, high-pressure, high-acceleration pulses to drive the flier plates. Such pulses are achieved by using a graded-density material to impact a stationary flier. A computational and experimental program at Sandia seeks to extend this technique to allow launching thick plates whose length-to-diameter ratio is 10 to 20 times larger than thin plates. Hydrodynamic codes are used to design modifications to the basic technique. The authors have controlled and used these effects to successfully launch a chunk-flier, consisting of 0.33 gm of titanium alloy, 0.3 cm thick by 0.6 cm in diameter, to a velocity of 10.2 km/s. This is the largest chunky size ever launched at this velocity from a gas gun configuration.
Spectral Velocity Estimation in the Transverse Direction
Jensen, Jørgen Arendt
2013-01-01
estimation scheme can reliably find the spectrum at 90, where a traditional estimator yields zero velocity. Measurements have been conducted with the SARUS experimental scanner and a BK 8820e convex array transducer (BK Medical, Herlev, Denmark). A CompuFlow 1000 (Shelley Automation, Inc, Toronto, Canada...
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Velocity Dependence of Friction of Confined Hydrocarbons
Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.
2010-01-01
We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence of the f......We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence...... in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all...... cases the frictional shear stress increases monotonically with the sliding velocity. For polymer sliding on polymer (case b) the friction is much larger, and the velocity dependence is more complex. For hydrocarbons with molecular lengths from 60 to 140 C atoms, the number of monolayers of lubricant...
Quantum transport velocity in strongly scattering media
Malfliet, R
1998-01-01
Based on the Kadanoff-Baym equations of quantum transport: theory, an approach is proposed which goes beyond the usual quasiparticle approximation. It allows one to deduct the correct transport velocity for propagation in strongly scattering media, a quantity of great importance for localization phe
Kinematic determination of Electron-Hole velocities
Hutchinson, Ian H.; Zhou, C.
2016-10-01
Coherent self-sustaining BGK potential structures, like the electron holes that often form during nonlinear electrostatic instabilities and are frequently observed in space plasmas, have ``kinematic'' momentum conservation properties that determine their velocity. The electron and ion momentum, both internal and external to the hole, must be included. Momentum changes arise from hole acceleration and from hole depth growth, by energization processes we call jetting; and these must balance any additional external forces on the particles. Comprehensive analytic expressions for the contributions have been calculated for holes of arbitrary localized potential form. Using these, we can deduce velocity changes in various interesting situations such as the self-acceleration of electron holes during formation, the circumstances under which holes accelerate at the rate of the electrons in a background electric field, the influence of the ion stream pushing and pulling holes to higher or lower speeds, and the trapping of hole velocity between the velocity of two ion streams. The predictions are in excellent quantitative agreement with targeted PIC simulations. The kinematic theory thus explains why isolated holes behave the way they do. Partially supported by NSF/DOE Basic Plasma Grant DE-SC0010491.
Wave Velocity Estimation in Heterogeneous Media
Asiri, Sharefa M.
2016-03-21
In this paper, modulating functions-based method is proposed for estimating space-time dependent unknown velocity in the wave equation. The proposed method simplifies the identification problem into a system of linear algebraic equations. Numerical simulations on noise-free and noisy cases are provided in order to show the effectiveness of the proposed method.
Radar velocity tomography in anisotropic media
Kim, Jung Ho; Cho, Seong Jun; Yi Myeong Jong; Chung, Seung Hwan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)
1996-12-01
Radar tomography inversion method was developed in the elliptic anisotropic environment with the parametrization of maximum, minimum velocity, and the direction of symmetry axis. Nonlinear least-square method with smoothness constraint was adopted as inversion scheme. Newly developed algorithm was successfully tested with the 2-D numerical cross-borehole data in isotropic environment. Seismic data from physical modelling in partially anisotropic environment was also inverted and compared with the reconstruction technique assuming isotropic media. We could confirm the effectiveness of our algorithm, even though the tested data were generated from isotropic or partially anisotropic media. Cross-hole radar field data in limestone area in Korea was analyzed that the limestone bedrock is systematically anisotropic in the sense of radar application. The data set was inverted with the new anisotropy algorithm. The anisotropic effect in the data was corrected and also inverted for the comparison through the algorithm with isotropic assumption. Applying two different algorithm and comparing the various images, the tomographic image of maximum velocity from anisotropic inversion could give the most excellent way to visualize underground. An addition to the high resolution image, we could grasp some information on the material type from the feature of maximum velocity distribution the degree of anisotropy which can be inferred from the ratio of maximum and minimum velocity. The newly developed algorithm will be expected to provide a good way to image underground, especially in sedimentary or metamorphosed bedrock. (author). 9 refs., 21 figs.
(AJST) ON THE PRESSURE VELOCITY AND TEMPERATURE ...
the pressure and fluid velocity are average over the ... describing the flow are sets of nonlinear first-order ... resemble those of the one-dimensional gas dynamics. [5]. .... blood constituents (solid corpuscles and plasma) flow ... where ρ is the varying fluid density, u axial fluid ..... (1989): Biofluid mechanics, Annual review fluid.
Velocity Estimation in Medical Ultrasound [Life Sciences
Jensen, Jørgen Arendt; Villagómez Hoyos, Carlos Armando; Holbek, Simon
2017-01-01
This article describes the application of signal processing in medical ultrasound velocity estimation. Special emphasis is on the relation among acquisition methods, signal processing, and estimators employed. The description spans from current clinical systems for one-and two-dimensional (1-D an...
Steel Spheres and Skydiver--Terminal Velocity
Costa Leme, J.; Moura, C.; Costa, Cintia
2009-01-01
This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.
Adaptive blood velocity estimation in medical ultrasound
Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt
2007-01-01
This paper investigates the use of data-adaptive spectral estimation techniques for blood velocity estimation in medical ultrasound. Current commercial systems are based on the averaged periodogram, which requires a large observation window to give sufficient spectral resolution. Herein, we propose...
Fine velocity structures collisional dissipation in plasmas
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures
Device for measuring mechanical drilling velocity
Turchaninov, Y.N.; Ippolitova, L.G.; Khizgilov, A.I.; Rolik, V.A.
1980-12-17
A device is proposed for measuring the mechanical drilling velocity which includes a primary drilling tool supply transformer, control block, trigger, range switch; control block, block for determining motion direction, time counter and measurement instrument. In order to guarantee continuous measurement of the mechanical velocity and to improve the accuracy of measuring the average mechanical velocity during drilling at sea, it is equipped with a block for multiplying the number of pulses, four I circuits, supply counter, supply recorder, primary neutral transformer, two controllable frequency dividers, first frequency divider, generator of prime pulses consisting of a generatror of reference frequencies and second frequency divider, time recorder, counter and velocity recorder, time recorder and digital-analog transformer. In this case the outlet of the primary transformer for drilling tool supply is connected through a in-series connected block for determining the movement direction, block for multiplying the number of pulses, first circuit I and supply counter to one of the inlets of the supply counter. Its second inlet is connected through a block of control to the primary neutral transformer and one of the inlets of the time recorder. Its second inlet is connected through a in-series connected time counter, fourth I circuit, second frequency divider, generator of reference frequency, first frequency divider, third circuit I, second controllable frequency divider, counter and velocity recorder and digital-analog transformer of the measurement instrument. The outlet of the supply recorder is connected to one of the inlets of the first controllable divider. Its second inlet is connected to the second I circuit to the outlet of the first frequency divider, and the outlet is connected to one of the trigger inlets.
A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES
Welsch, Brian T.; Fisher, George H. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)
2013-03-10
The zero point of measured photospheric Doppler shifts is uncertain for at least two reasons: instrumental variations (from, e.g., thermal drifts); and the convective blueshift, a known correlation between intensity and upflows. Accurate knowledge of the zero point is, however, useful for (1) improving estimates of the Poynting flux of magnetic energy across the photosphere, and (2) constraining processes underlying flux cancellation, the mutual apparent loss of magnetic flux in closely spaced, opposite-polarity magnetogram features. We present a method to absolutely calibrate line-of-sight (LOS) velocities in solar active regions (ARs) near disk center using three successive vector magnetograms and one Dopplergram coincident with the central magnetogram. It exploits the fact that Doppler shifts measured along polarity inversion lines (PILs) of the LOS magnetic field determine one component of the velocity perpendicular to the magnetic field, and optimizes consistency between changes in LOS flux near PILs and the transport of transverse magnetic flux by LOS velocities, assuming that ideal electric fields govern the magnetic evolution. Previous calibrations fitted the center-to-limb variation of Doppler velocities, but this approach cannot, by itself, account for residual convective shifts at the limb. We apply our method to vector magnetograms of AR 11158, observed by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and find clear evidence of offsets in the Doppler zero point in the range of 50-550 m s{sup -1}. In addition, we note that a simpler calibration can be determined from an LOS magnetogram and Dopplergram pair from the median Doppler velocity among all near-disk-center PIL pixels. We briefly discuss shortcomings in our initial implementation, and suggest ways to address these. In addition, as a step in our data reduction, we discuss the use of temporal continuity in the transverse magnetic field direction to correct apparently
TQM - Total Quality Management (Bibliography)
1990-05-01
TOTAL QUALITY MANAGEMENT (BIBLIOORAPHY) PREPARED BY... Total Quality Management (TQM), it is an appropriate time to provide an overview of the literature available on the topic. The Total Quality Management bibliography...Secretary 32 CFR Part 281 Total Quality Management Agency: Office of the Secretary, DOD Action: Proposed rule Summary: This proposed rule establishes
A modified full velocity difference model with the consideration of velocity deviation
Zhou, Jie; Shi, Zhong-Ke
2016-01-01
In this paper, a modified full velocity difference model (FVDM) based on car-following theory is proposed with the consideration of velocity deviation which represents the inexact judgement of velocity. The stability condition is obtained by the use of linear stability analysis. It is shown that the stability of traffic flow varies with the deviation extent of velocity. The Burgers, Korteweg-de Vries (KdV) and modified K-dV (MKdV) equations are derived to describe the triangular shock waves, soliton waves and kink-antikink waves in the stable, metastable and unstable region, respectively. The numerical simulations show a good agreement with the analytical results, such as density wave, hysteresis loop, acceleration, deceleration and so on. The results show that traffic congestion can be suppressed by taking the positive effect of velocity deviation into account. By taking the positive effect of high estimate of velocity into account, the unrealistic high deceleration and negative velocity which occur in FVDM will be eliminated in the proposed model.
Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud
2017-07-01
Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.
Rational Characterization Complex Geology Model——Macro Velocity Model
SongWei
2004-01-01
The accuracy of migration velocity construction is always a key problem of the image quality of pre-stack depth migration. The velocity model construction process is a process from an unknown to unknown iteration procedure and involves three important steps -- model building, migration and model modification. It is necessary to rationally describe the velocity model, according to the complexity of the problem. Taking the Marmousi model as a study object, We established some standards for a rational description of the velocity model on the basis of different velocity space scales, analysis varieties of travel time, and image quality. It is considered that for any given seismic data gathered in the migration velocity model the space wavelength of velocity, which should be expressed in variation of space wavelength of various frequency contents, appears in the seismic data. Some space wavelengths, which are necessary for a description of the model velocity field, are also varying with the layer complexity. For a simple layer velocity structure it is sufficient to apply a simple velocity model (the space wavelength is large enough), whereas, for a complicated layer velocity structure it is necessary to take a velocity model of a more precise scale. In fact, when we establish a velocity model, it is difficult to describe the velocity model at a full space scale, so it is important to limit the space scale of the velocity model according to the complexity of a layer structure and establish a rational macro velocity model.
Experimental Measurement for Shock Velocity-Mass Velocity Relationship of Liquid Argon Up to 46 GPa
孟川民; 施尚春; 董石; 杨向东; 谭华; 经福谦
2003-01-01
Shock properties of liquid argon were measured in the shock pressure up to 46 GPa by employing the two-stage light gas gun. Liquid nitrogen was used as coolant liquid. The cryogenic target system has been improved to compare with the previous work. Shock velocities were measured with self-shorting electrical probes. Impactor velocities were measured with an electrical-magnetic induction system. Mass velocities were obtained by mean of shock impedance matching method. The experimental data shows that the slope of experimental Hugoniot curve of liquid argon begins to decrease above 30 GPa.
Migration velocity modeling based on common reflection surface gather
李振春; 姚云霞; 马在田; 王华忠
2003-01-01
The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.
Radial velocities of population II binary stars. II
Bartkevicius, A
2006-01-01
Here we publish the second list of radial velocities for 91 Hipparcos stars, mostly high transverse velocity binaries without previous radial velocity measurements. The measurements of radial velocities are done with a CORAVEL-type radial velocity spectrometer with an accuracy better than 1 km/s. We also present the information on eight new radial velocity variables - HD 29696, HD 117466AB, BD +28 4035AB, BD +30 2129A, BD +39 1828AB, BD +69 230A, BD +82 565A and TYC 2267-1300-1 - found from our measurements. Two stars (HD 27961AB and HD 75632AB) are suspected as possible radial velocity variables.
Rotational total skin and total nodal radiotherapy in mycosis fungoides
Bamberg, M.; Molls, M.; Langrock, J.; Muskalla, K.; Quast, U.
1987-04-01
The following report describes our technique of rotational total skin radiotherapy with electrons (TSER). We present stage related treatment results. Furthermore our first experiences with the combination of TSER and total nodal irradiation (TNI) are communicated.
Prediction of Cerebral Hyperperfusion Syndrome with Velocity Blood Pressure Index
Zhi-Chao Lai
2015-01-01
Full Text Available Background: Cerebral hyperperfusion syndrome is an important complication of carotid endarterectomy (CEA. An >100% increase in middle cerebral artery velocity (MCAV after CEA is used to predict the cerebral hyperperfusion syndrome (CHS development, but the accuracy is limited. The increase in blood pressure (BP after surgery is a risk factor of CHS, but no study uses it to predict CHS. This study was to create a more precise parameter for prediction of CHS by combined the increase of MCAV and BP after CEA. Methods: Systolic MCAV measured by transcranial Doppler and systematic BP were recorded preoperatively; 30 min postoperatively. The new parameter velocity BP index (VBI was calculated from the postoperative increase ratios of MCAV and BP. The prediction powers of VBI and the increase ratio of MCAV (velocity ratio [VR] were compared for predicting CHS occurrence. Results: Totally, 6/185 cases suffered CHS. The best-fit cut-off point of 2.0 for VBI was identified, which had 83.3% sensitivity, 98.3% specificity, 62.5% positive predictive value and 99.4% negative predictive value for CHS development. This result is significantly better than VR (33.3%, 97.2%, 28.6% and 97.8%. The area under the curve (AUC of receiver operating characteristic: AUC VBI = 0.981, 95% confidence interval [CI] 0.949-0.995; AUC VR = 0.935, 95% CI 0.890-0.966, P = 0.02. Conclusions: The new parameter VBI can more accurately predict patients at risk of CHS after CEA. This observation needs to be validated by larger studies.
张红
2013-01-01
Objective To explore the clinical characteristics of pulse wave velocity,arterial compliance and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus.Methods A total of 363 patients were selected and divided into 4 groups:diabetic group,diabetic
Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane
Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.
2011-01-01
Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.
Polarization and Velocity Dependence of Associative Ionization in Na(3p)+Na(3p) Collisions
Meijer, H.A.J.; Meulen, H.P. van der; Morgenstern, R.
1987-01-01
We have excited Na atoms of two counterrunning thermal beams by means of linearly polarized laser light and have investigated associative ionization processes. To this end we measured the total ionization signal as a function of the angle θ between light polarization and the relative collision veloc
VizieR Online Data Catalog: Radial velocity curves of alpha Lib A (Fuhrmann+, 2014)
Fuhrmann, K.; Chini, R.; Barr, A.; Buda, L.-S.; Kaderhandt, L.; Pozo, F.; Ramolla, M.
2015-03-01
Our observations of α Lib A consist of optical spectra secured with the BESO high-resolution echelle spectrograph of the Universitetssternwarte Bochum near Cerro Armazones in Chile. The full record of the total of 55 radial velocities is given in Table 1. Intense Doppler-monitoring of alpha Lib A started in 2012 August and was continued until 2013 September. (1 data file).
Multiplicative Inhibitory Velocity Detector and Multi-Velocity Motion Detection Neural Network Model
无
1998-01-01
Motion perception is one of the most important aspects of the biological visual system,from which people get a lot of information of the natural world.In this paper,trying to simulate the neurons in MT(motion area in visual cortex)which respond selectively both in direction and speed,the authors propose a novel multiplicative inhibitory velocity detector(MIVD)model,whose spatiotemporal joint parameter K determines its optimal velocity.Based on the Response Amplitude Disparity(RAD) property of MIVD,two multi-velocity fusion neural networks(a simple one and an active one)are built to detect the velocity of 1-Dimension motion.The experiments show that the active MIVD Neural Network with a feedback fusion method has a relatively better result.
Signals embedded in the radial velocity noise. Periodic variations in the tau Ceti velocities
Tuomi, Mikko; Jenkins, James S; Tinney, Chris G; Butler, R Paul; Vogt, Steve S; Barnes, John R; Wittenmyer, Robert A; O'Toole, Simon; Horner, Jonathan; Bailey, Jeremy; Carter, Brad D; Wright, Duncan J; Salter, Graeme S; Pinfield, David
2012-01-01
The abilities of radial velocity exoplanet surveys to detect the lowest-mass extra-solar planets are currently limited by a combination of instrument precision, lack of data, and "jitter". Jitter is a general term for any unknown features in the noise, and reflects a lack of detailed knowledge of stellar physics (asteroseismology, starspots, magnetic cycles, granulation, and other stellar surface phenomena), as well as the possible underestimation of instrument noise. We study an extensive set of radial velocities for the star HD 10700 ($\\tau$ Ceti) to determine the properties of the jitter arising from stellar surface inhomogeneities, activity, and telescope-instrument systems, and perform a comprehensive search for planetary signals in the radial velocities. We perform Bayesian comparisons of statistical models describing the radial velocity data to quantify the number of significant signals and the magnitude and properties of the excess noise in the data. We reach our goal by adding artificial signals to t...
Automatic gesture analysis using constant affine velocity.
Cifuentes, Jenny; Boulanger, Pierre; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio
2014-01-01
Hand human gesture recognition has been an important research topic widely studied around the world, as this field offers the ability to identify, recognize, and analyze human gestures in order to control devices or to interact with computer interfaces. In particular, in medical training, this approach is an important tool that can be used to obtain an objective evaluation of a procedure performance. In this paper, some obstetrical gestures, acquired by a forceps, were studied with the hypothesis that, as the scribbling and drawing movements, they obey the one-sixth power law, an empirical relationship which connects path curvature, torsion, and euclidean velocity. Our results show that obstetrical gestures have a constant affine velocity, which is different for each type of gesture and based on this idea this quantity is proposed as an appropriate classification feature in the hand human gesture recognition field.
The velocity field in MOND cosmology
Candlish, G N
2016-01-01
The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAyMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAyMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to $\\Lambda$CDM, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard $\\Lambda$CDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAyMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field ...
Velocity Fields as Probes of Cosmology
Feldman, H A
2003-01-01
Analyses of peculiar velocity surveys face several challenges, including low signal-to-noise in individual velocity measurements and the presence of small--scale, nonlinear flows. I will present three new analyses that attempt to address these inherent problems. The first is geared towards the better understanding of the estimated errors in the surveys, specifically sampling errors, and the resolution of the seeming disagreements between the surveys. Another develops a new statistic that does not suffer from the usual problems and gives robust results that are galaxy-morphology and distance-estimator independent. The third introduces a formalism that allows for the accounting of most of the non-linear signal whereby the signal to noise is increased and small--scale aliasing is removed.
Velocity Fields as a Probe of Cosmology
Feldman, H A
2003-01-01
Analyses of peculiar velocity surveys face several challenges, including low signal--to--noise in individual velocity measurements and the presence of small--scale, nonlinear flows. I will present three new analyses that attempt to address these inherent problems. The first is geared towards the better understanding of the estimated errors in the surveys, specifically sampling errors, and the resolution of the seeming disagreements between the surveys. Another develops a new statistic that does not suffer from the usual problems and gives robust results that are galaxy--morphology and distance--estimator independent. The third introduces a formalism that allows for the accounting of most of the non--linear signal whereby the signal to noise is increased and small--scale aliasing is removed.
Surface Velocities and Hydrology at Engabreen
Messerli, Alexandra
Recent studies have likened the seasonal observations of ice flow at the marginal regions of the Greenland Ice Sheet (GrIS) to those found on smaller alpine and valley counterparts. These similarities highlight the need for further small scale studies of seasonal evolution in the hydrological...... and dynamic structure of valley glaciers, to aid interpretation of observations from the margins of the GrIS. This thesis aims to collate a large suit of glacio-hydrological data from the outlet glacier Engabreen, Norway, in order to better understand the role the subglacial drainage configuration has...... on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...
Estimation of blood velocities using ultrasound
Jensen, Jørgen Arendt
Ultrasound systems are especially useful in estimating blood velocities in the human body because they are noninvasive and can display an estimate in real time. This book offers a comprehensive treatment of this relatively new, important technology. The book begins with an introduction to ultraso......Ultrasound systems are especially useful in estimating blood velocities in the human body because they are noninvasive and can display an estimate in real time. This book offers a comprehensive treatment of this relatively new, important technology. The book begins with an introduction...... to ultrasound, flow physics, and the circulatory system. Next, the interaction of ultrasound with blood is discussed. The special contribution of the book lies in the remaining chapters, which offer a lucid, thorough description of continuous and pulsed wave systems, the latest systems for doing color flow...
Beam loading compensation with variable group velocity
Farkas, Z.D.
1992-08-01
Consider a section with linearly variable group velocity and a beam pulse shorter than the section fill time. Choose the current amplitude so that the gradient of the last bunch equals the gradient of the first bunch. For beam pulses less than about 15% of fill time, the voltage deviation during the beam pulse is small, but as the pulse width increases the voltage deviation also increases. We show that by decreasing the output to input group velocity ratio, we can reduce the first order voltage deviation, and that we can remove the remaining second-order voltage deviation by linearly decreasing the section input power by a small amount starting at beam injection time. This way we can increase the beam pulse width to more than half the fill time, and thereby increase the RF to beam energy transfer efficiency and the luminosity without increasing the voltage deviation.
Sound velocities in shocked liquid deuterium
Holmes, N.C.; Nellis, W.J.; Ross, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
1998-07-01
Recent measurements of shock temperatures and laser-driven Hugoniot measurements of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the effect of dissociation is small on the Hugoniot pressure up to the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, a derivative quantity. We used the shock overtake method to measure the shock velocity at 28 GPa. These preliminary data provide support for a recently developed molecular dissociation model. {copyright} {ital 1998 American Institute of Physics.}
Slipher, galaxies, and cosmological velocity fields
Peacock, John A
2013-01-01
By 1917, V.M. Slipher had singlehandedly established a tendency for 'spiral nebulae' to be redshifted (21 out of 25 cases). From a modern perspective, it could seem surprising that the expansion of the universe was not announced at this point. Examination of Slipher's papers shows that he reached a more subtle conclusion: the identification of cosmological peculiar velocities, including the bulk motion of the Milky Way, leading to a beautiful argument in favour of nebulae as distant stellar systems. Nevertheless, Slipher's data actually contain evidence at >8sigma for a positive mean velocity, even after subtracting the dipole owing to the motion of the observer. In 1929, Hubble estimated distances for a sample of no greater depth, using redshifts due almost entirely to Slipher. Hubble's distances were flawed in two distinct ways: in addition to an incorrect absolute calibration, the largest distances were systematically under-estimated. Nevertheless, he claimed the detection of a linear distance-redshift rel...
Butterfly velocity bound and reverse isoperimetric inequality
Feng, Xing-Hui; Lü, H.
2017-03-01
We study the butterfly effect of the AdS planar black holes in the framework of Einstein's general relativity. We find that the butterfly velocities can be expressed by a universal formula vB2=T S /(2 VthP ). In doing so, we come upon a near-horizon geometrical formula for the thermodynamical volume Vth . We verify the volume formula by examining a variety of AdS black holes. We also show that the volume formula implies that the conjectured reverse isoperimetric inequality follows straightforwardly from the null-energy condition, for static AdS black holes. The inequality is thus related to an upper bound of the butterfly velocities.
Subluminal velocity of OAM-carrying beam
Bareza, Nestor D
2015-01-01
We report a consequence of the orbital angular momentum (OAM) of a beam to its group velocity. We calculate the group velocity $v_g$ of Laguerre-Gauss beam ($\\emph{LG}$) with $\\ell$ and at $p=0$. The $v_g$ reduction of $\\emph{LG}$ beam even in free space is observed to have dependence on both orbital or winding number $\\ell$ and the beam's divergence $\\theta_0$. We found that light possessing higher $\\ell$ travels relatively slower than that with lower $\\ell$ values. This suggests that light of different OAM separate in the temporal domain along propagation and it is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in light with OAM from astronomical sources and/or data transmission in free space.
Radial velocity eclipse mapping of exoplanets
Nikolov, Nikolay
2015-01-01
Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planet's spectral line profiles resulting in an anomaly in the planet's radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetrie...
Formation Tracking Based on Approximate Velocities
Eduardo Gamaliel Hernandez-Martinez
2015-12-01
Full Text Available This paper analyses the formation tracking of groups of mobile robots moving on the plane. A leader robot is chosen to follow a prescribed trajectory whilst the rest, considered as followers, are formed in an open-chain configuration. Two formation-tracking control laws using approximate velocities are proposed, in which some velocities must be communicated between robots in order to ensure the simultaneous preservation of the formation and the following of the group path. The main result is analysis of the convergence of the two proposed control laws. The restriction of inaccurate information occurs in decentralized multi-robot platforms, in which the mobile agents are only able to measure positions and the velocities’ functions are estimated using online numerical methods. A numerical simulation of both controllers in the case of omnidirectional robots is shown. For the case of the unicycle-type robots, real-time experiments of both controllers were implemented and tested.
Experiment Determination of the Velocity of Light
2007-11-02
elaborate memoir upon the determination of the velocity of light, several objections are made to the plan followed by Foucault , which will be Page 2...arrangements. The first experiment tried with the revolving mirror produced a deflection considerably greater than that obtained by Foucault . Thus far the...the deflection was about twenty times that obtained by Foucault .[1] These experiments, made with very crude apparatus and under great difficulties
pvextractor: Position-Velocity Diagram Extractor
Ginsburg, Adam; Robitaille, Thomas; Ginsburg, Adam; Beaumont, Chris
2016-08-01
Given a path defined in sky coordinates and a spectral cube, pvextractor extracts a slice of the cube along that path and along the spectral axis to produce a position-velocity or position-frequency slice. The path can be defined programmatically in pixel or world coordinates, and can also be drawn interactively using a simple GUI. Pvextractor is the main function, but also includes a few utilities related to header trimming and parsing.
Variable velocity in solar external receivers
Rodríguez-Sánchez, M. R.; Sánchez-González, A.; Acosta-Iborra, A.; Santana, D.
2017-06-01
One of the major problems in solar external receivers is tube overheating, which accelerates the risk of receiver failure. It can be solved implementing receivers with high number of panels. However, it exponentially increases the pressure drop in the receiver and the parasitic power consumption of the Solar Power Tower (SPT), reducing the global efficiency of the SPT. A new concept of solar external receiver, named variable velocity receiver, is able to adapt their configuration to the different flux density distributions. A set of valves allows splitting in several independent panels those panels in which the wall temperature is over the limit. It increases the velocity of the heat transfer fluid (HTF) and its cooling capacity. This receiver does not only reduce the wall temperature of the tubes, but also simplifies the control of the heliostat field and allows to employ more efficient aiming strategies. In this study, it has been shown that variable velocity receiver presents high advantages with respect to traditional receiver. Nevertheless, more than two divisions per panels are not recommendable, due to the increment of the pressure drop over 70 bars. In the design point (12 h of the Spring Equinox), the use of a variable number of panels between 18 and 36 (two divisions per panel), in a SPT similar to Gemasolar, improves the power capacity of the SPT in 5.7%, with a pressure drop increment of 10 bars. Off-design, when the flux distribution is high and not symmetric (e.g. 10-11 h), the power generated by the variable velocity receiver is 18% higher than the generated by the traditional receiver, at these hours the pressure drop increases almost 20 bars.
GROUP VELOCITY CONTROL SCHEME WITH LOW DISSIPATION
无
2000-01-01
In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non-physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock-density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.
宋海斌; 马在田; 张关泉
1996-01-01
A layer-stripping method is presented for simultaneous inversion of compressional velocity and shear velocity in layered medium from single precritical-incident-angle data of P-P and P-SV plane wave seismogram. A finite bandwidth algorithm is provided and results obviously better than previous research work are obtained by the numerical experiments for band-limited seismogram and synthetic data including noise.
A neural circuit for angular velocity computation
Samuel B Snider
2010-12-01
Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.
Solvable Optimal Velocity Models and Asymptotic Trajectory
Nakanishi, K; Igarashi, Y; Bando, M
1996-01-01
In the Optimal Velocity Model proposed as a new version of Car Following Model, it has been found that a congested flow is generated spontaneously from a homogeneous flow for a certain range of the traffic density. A well-established congested flow obtained in a numerical simulation shows a remarkable repetitive property such that the velocity of a vehicle evolves exactly in the same way as that of its preceding one except a time delay $T$. This leads to a global pattern formation in time development of vehicles' motion, and gives rise to a closed trajectory on $\\Delta x$-$v$ (headway-velocity) plane connecting congested and free flow points. To obtain the closed trajectory analytically, we propose a new approach to the pattern formation, which makes it possible to reduce the coupled car following equations to a single difference-differential equation (Rondo equation). To demonstrate our approach, we employ a class of linear models which are exactly solvable. We also introduce the concept of ``asymptotic traj...
Radial velocities of southern visual multiple stars
Tokovinin, Andrei [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Pribulla, Theodor [Astronomical Institute, Slovak Academy of Sciences, 059 60 Tatranská Lomnica (Slovakia); Fischer, Debra, E-mail: atokovinin@ctio.noao.edu, E-mail: pribulla@ta3.sk, E-mail: debra.fischer@gmail.com [Department of Astronomy, Yale University, New Haven, CT 06511 (United States)
2015-01-01
High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out to have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.
RADIAL VELOCITY ECLIPSE MAPPING OF EXOPLANETS
Nikolov, Nikolay; Sainsbury-Martinez, Felix, E-mail: nikolay@astro.ex.ac.uk [Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)
2015-07-20
Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter–McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resulting in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin–orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.
Tomographic Particle Localization and Velocity Measurement
Kirner, S.; Forster, G.; Schein, J.
2015-01-01
Wire arc spraying is one of the most common and elementary thermal spray processes. Due to its easy handling, high deposition rate, and relative low process costs, it is a frequently used coating technology for the production of wear and corrosion resistant coatings. In order to produce reliable and reproducible coatings, it is necessary to be able to control the coating process. This can be achieved by analyzing the parameters of the particles deposited. Essential for the coating quality are, for example, the velocity, the size, and the temperature of the particles. In this work, an innovative diagnostic for particle velocity and location determination is presented. By the use of several synchronized CMOS-Cameras positioned around the particle jet, a series of images from different directions is simultaneously taken. The images contain the information that is necessary to calculate the 3D-location-vector of the particles and finally with the help of the exposure time the trajectory can be determined. In this work, the experimental setup of the tomographic diagnostic is presented, the mathematical method of the reconstruction is explained, and first measured velocity distributions are shown.
Iterative reconstruction of the transducer surface velocity.
Alles, Erwin; van Dongen, Koen
2013-05-01
Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented to reconstruct the velocity distribution from far-field pressure field measurements acquired over an arbitrary surface. The distribution is retrieved from the measurements by solving an integral equation, derived from the Rayleigh integral of the first kind, using a conjugate gradient inversion scheme. This approach has the advantages that it allows for arbitrary transducer and pressure field measurement geometries, as well as the application of regularization techniques. Numerical experiments show that measuring the pressure field along a hemisphere enclosing the transducer yields significantly more accurate reconstructions than measuring along a parallel plane. In addition, it is shown that an increase in accuracy is achieved when the assumption is made that all points on the transducer surface vibrate in phase. Finally, the method has been tested on an actual transducer with an active element of 700 × 200 μm which operates at a center frequency of 12.2 MHz. For this transducer, the velocity distribution has been reconstructed accurately to within 50 μm precision from pressure measurements at a distance of 1.98 mm (=16λ0) using a 200-μm-diameter needle hydrophone.
Pairwise Velocity Statistics of Dark Halos
Hai-Yan Zhang; Yi-Peng Jing
2004-01-01
We have accurately evaluated the halo pairwise velocity dispersion and the halo mean streaming velocity in the LCDM model (the flat ω0 = 0.3 model)using a set of high-resolution N-body simulations. Based on the simulation results,we have developed a model for the pairwise velocity dispersion of halos. Our model agrees with the simulation results over all scales we studied. We have also tested the model of Sheth et al. for the mean streaming motion of halos derived from the pair-conservation equation. We found that their model reproduces the simulation data very well on large scale, but under-predicts the streaming motion on scales r ＜ 10 h-1 Mpc. We have introduced an empirical relation to improve their model.These improved models are useful for predicting the redshift correlation functions and the redshift power spectrum of galaxies if the halo occupation number model,e.g. the cluster weighted model, is given for the galaxies.
Cosmology with peculiar velocities: observational effects
Andersen, P.; Davis, T. M.; Howlett, C.
2016-12-01
In this paper we investigate how observational effects could possibly bias cosmological inferences from peculiar velocity measurements. Specifically, we look at how bulk flow measurements are compared with theoretical predictions. Usually bulk flow calculations try to approximate the flow that would occur in a sphere around the observer. Using the Horizon Run 2 simulation we show that the traditional methods for bulk flow estimation can overestimate the magnitude of the bulk flow for two reasons: when the survey geometry is not spherical (the data do not cover the whole sky), and when the observations undersample the velocity distributions. Our results may explain why several bulk flow measurements found bulk flow velocities that seem larger than those expected in standard Λ cold dark matter cosmologies. We recommend a different approach when comparing bulk flows to cosmological models, in which the theoretical prediction for each bulk flow measurement is calculated specifically for the geometry and sampling rate of that survey. This means that bulk flow values will not be comparable between surveys, but instead they are comparable with cosmological models, which is the more important measure.
High Velocity Features in the Orion Nebula
O'Dell, C R
2008-01-01
We have used widely spaced in time Hubble Space Telescope images to determine tangential velocities of features associated with outflows from young stars. These observations were supplemented by groundbased telescope spectroscopy and from the resultant radial velocities, space velocities were determined for many outflows. Numerous new moving features were found and grouped into known and newly assigned Herbig Haro objects. It was found that stellar outflow is highly discontinuous, as frequently is the case, with long-term gaps of a few hundred years and that these outflow periods are marked by staccato bursts over periods of about ten years. Although this has been observed in other regions, the Orion Nebula Cluster presents the richest display of this property. Most of the large scale Herbig Haro objects in the brightest part of the Orion Nebula appear to originate from a small region northeast of the strong Orion-S radio and infrared sources. With the possible exception of HH 203, we are not able to identify...
Giovanni Corato
2014-10-01
Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.
Intermediate- and High-Velocity Ionized Gas toward zeta Orionis
Welty, D E; Raymond, J C; Mallouris, C; York, D G
2002-01-01
We combine UV spectra obtained with the HST/GHRS echelle, IMAPS, and Copernicus to study the abundances and physical conditions in the predominantly ionized gas seen at high (-105 to -65 km/s) and intermediate velocities (-60 to -10 km/s) toward zeta Ori. We have high resolution (FWHM ~ 3.3-4.5 km/s) and/or high S/N spectra for at least two significant ions of C, N, Al, Si, S, and Fe -- enabling accurate estimates for both the total N(H II) and the elemental depletions. C, N, and S have essentially solar relative abundances; Al, Si, and Fe appear to be depleted by about 0.8, 0.3-0.4, and 0.95 dex, respectively. While various ion ratios would be consistent with collisional ionization equilibrium (CIE) for T ~ 25,000-80,000 K, the widths of individual high-velocity absorption components indicate that T ~ 9000 K -- so the gas is not in CIE. Analysis of the C II fine-structure excitation equilibrium yields estimated densities (n_e ~ n_H ~ 0.1-0.2 cm^{-3}), thermal pressures (2 n_H T ~ 2000-4000 cm^{-3}K), and thi...
Accurate mass and velocity functions of dark matter haloes
Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly
2017-08-01
N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (model of the distinct halo mass function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z occupation distribution using Vmax. The data and the analysis code are made publicly available in the Skies and Universes data base.
High-velocity molecular outflows hear massive young stellar objects
吴月芳; 李月兴; 杨传义; 雷成明; 孙金江; 吕静; 韩溥
1999-01-01
By mapping the 12CO J=1—0 lines in IRAS 05391-0217, 06114+1745 and 06291+0421, three new high-velocity bipolar molecular outflows are found. Parameters of these outflows are derived, which suggest that they are massive and energetic outflows with total kinetic energies of about 1038 J and mass loss rates about 10-5 M⊙/a. The driving sources are identified by analyzing the positions, intensities and color temperatures of the associated infrared sources. These outflows are most likely driven by single sources which correspond to massive young stellar objects. In these regions H2O masers have been detected located near the embedded infrared sources, which indicates that their exciting mechanism may be correlated with that of the CO outflows. The relationship between the parameters of outflows and central sources shows that high-velocity outflow and thermal radiation of a star are two basic correlated but different features in the evolution of young stars.
Total Restrained Bondage in Graphs
Nader JAFARI RAD; Roslan HASNI; Joanna RACZEK; Lutz VOLKMANN
2013-01-01
A subset S of vertices of a graph G with no isolated vertex is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex in V(G)-S is also adjacent to a vertex in V(G)-S.The total restrained domination number of G is the minimum cardinality of a total restrained dominating set of G.In this paper we initiate the study of total restrained bondage in graphs.The total restrained bondage number in a graph G with no isolated vertex,is the minimum cardinality of a subset of edges E such that G-E has no isolated vertex and the total restrained domination number of G-E is greater than the total restrained domination number of G.We obtain several properties,exact values and bounds for the total restrained bondage number of a graph.
Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.
2002-01-01
Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.
Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?
Bullimore, Sharon R; Siddiqui, Sana; Donovan, Graham M; Martin, James G; Sneyd, James; Bates, Jason H T; Lauzon, Anne-Marie
2011-01-01
Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially (P shortening during the force oscillation protocol (P shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR.
Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum
Austin, Daniel; Barney, Brandon
We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.
Sinking velocity of particulate radiocesium in the northwestern North Pacific
Honda, Makio C.; Kawakami, Hajime
2014-06-01
Sinking particles (SP) were collected by time series sediment traps at two depths in the northwestern Pacific before and after the Fukushima Daiichi Nuclear Power Plant accident, and accident-derived particulate radiocesium was measured. Radiocesium (137Cs) was first detected at 500 m (4810 m) about 2 weeks (1 month) after the accident. 137Cs of SP collected over 1 year revealed that the time lag between two depths was larger than that for the first 137Cs detection (about 2 weeks). We estimated the transient sinking velocity (SV) from the cumulative temporal 137Cs flux and the time lags at the two depths. Although the SV of SP collected in very early period was large, the estimated SV of most particulate 137Cs (about 80%) was about 50 m d-1. Based on comparison of 137Cs concentration in total SP with that in SP without organic materials, we suspect that most of the 137Cs was likely incorporated into aluminosilicates.
The San Andreas fault experiment. [gross tectonic plates relative velocity
Smith, D. E.; Vonbun, F. O.
1973-01-01
A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.
Classification and assessment of rock mass parameters in Choghart iron mine using P-wave velocity
Mohammadreza Hemmati Nourani
2017-04-01
Full Text Available Engineering rock mass classification, based on empirical relations between rock mass parameters and engineering applications, is commonly used in rock engineering and forms the basis for designing rock structures. The basic data required may be obtained from visual observation and laboratory or field tests. However, owing to the discontinuous and variable nature of rock masses, it is difficult for rock engineers to directly obtain the specific design parameters needed. As an alternative, the use of geophysical methods in geomechanics such as seismography may largely address this problem. In this study, 25 seismic profiles with the total length of 543 m have been scanned to determine the geomechanical properties of the rock mass in blocks I, III and IV-2 of the Choghart iron mine. Moreover, rock joint measurements and sampling for laboratory tests were conducted. The results show that the rock mass rating (RMR and Q values have a close relation with P-wave velocity parameters, including P-wave velocity in field (VPF, P-wave velocity in the laboratory (VPL and the ratio of VPF to VPL (i.e. KP = VPF/VPL. However, Q value, totally, has greater correlation coefficient and less error than the RMR. In addition, rock mass parameters including rock quality designation (RQD, uniaxial compressive strength (UCS, joint roughness coefficient (JRC and Schmidt number (RN show close relationship with P-wave velocity. An equation based on these parameters was obtained to estimate the P-wave velocity in the rock mass with a correlation coefficient of 91%. The velocities in two orthogonal directions and the results of joint study show that the wave velocity anisotropy in rock mass may be used as an efficient tool to assess the strong and weak directions in rock mass.
VizieR Online Data Catalog: Radial velocities of K-M dwarfs (Sperauskas+, 2016)
Sperauskas, J.; Bartasiute, S.; Boyle, R. P.; Deveikis, V.; Raudeliunas, S.; Upgren, A. R.
2016-09-01
We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability. Of these, 776 stars are from the MCC sample and 173 stars are K-M dwarfs from the CNS4. The catalog consists of two parts: Table 2 lists the mean radial velocities, and Table 2a contains individual measurements. Our radial velocities agree with the best published standard stars to within 0.7km/s in precision. Combining these and supplementary radial-velocity data with Hipparcos/Tycho-2 astrometry (Table 4 summarizes input observational data) we calculated the space velocity components and parameters of the galactic orbits in a three-component model potential by Johnston K.V. et al. (1995ApJ...451..598J) for a total of 1088 K-M dwarfs (Table 5), that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. We identified 146 stars as possible candidate members of the classical moving groups and known or suspected subgroups (Table 7). We show that the distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane for nearby K-M dwarfs are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction (3%) of stars with the thick disk kinematics. (7 data files).
Nonlinear Relationship of Near-Bed Velocity and Growth of Riverbed Periphyton
Mohamed Ateia
2016-10-01
Full Text Available Artificial streams were set up to test the relationship between near-bed water velocity and periphyton growth. Periphyton community samples collected from a Japanese stream were incubated for 44 days under a light intensity of 252 ± 72 μmol·photons/m2·s, a temperature of 20–25 °C, and three near-bed water velocity classes: low (<17.9 cm/s, moderate (17.9–32.8 cm/s, and high (>32.8 cm/s. A logistic model was applied to estimate the maximum net growth rate (μmax and carrying capacity (Bmax. A response surface method was also applied to estimate chlorophyll a (Chl-a and ash-free dry mass (AFDM with respect to the independent variables (i.e., time and water velocity. We detected both the highest μmax (1.99 d−1 and highest Bmax (7.01 mg/m2 for Chl-a at the moderate water velocity. For AFDM, we observed the highest μmax (0.57 d−1 and Bmax (1.47 g/m2 at the low and moderate velocity classes, respectively. The total algae density in the region of moderate velocity at the end of the experiment was 6.47 × 103 cells/cm2, corresponding to levels 1.7 and 1.3 times higher than those at lower and higher velocities, respectively. Our findings indicated that the moderate near-bed water velocity provided favorable conditions for algal growth and corresponding biomass accumulation.
Weak Total Resolvability In Graphs
Casel Katrin
2016-02-01
Full Text Available A vertex v ∈ V (G is said to distinguish two vertices x, y ∈ V (G of a graph G if the distance from v to x is di erent from the distance from v to y. A set W ⊆ V (G is a total resolving set for a graph G if for every pair of vertices x, y ∈ V (G, there exists some vertex w ∈ W − {x, y} which distinguishes x and y, while W is a weak total resolving set if for every x ∈ V (G−W and y ∈ W, there exists some w ∈ W −{y} which distinguishes x and y. A weak total resolving set of minimum cardinality is called a weak total metric basis of G and its cardinality the weak total metric dimension of G. Our main contributions are the following ones: (a Graphs with small and large weak total metric bases are characterised. (b We explore the (tight relation to independent 2-domination. (c We introduce a new graph parameter, called weak total adjacency dimension and present results that are analogous to those presented for weak total dimension. (d For trees, we derive a characterisation of the weak total (adjacency metric dimension. Also, exact figures for our parameters are presented for (generalised fans and wheels. (e We show that for Cartesian product graphs, the weak total (adjacency metric dimension is usually pretty small. (f The weak total (adjacency dimension is studied for lexicographic products of graphs.
Sediment motion and velocity in a glacier-fed stream
Mao, L.; Dell'Agnese, A.; Comiti, F.
2017-08-01
Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT
Reynolds number effects on the fluctuating velocity distribution in wall-bounded shear layers
Li, Wenfeng; Roggenkamp, Dorothee; Jessen, Wilhelm; Klaas, Michael; Schröder, Wolfgang
2017-01-01
The streamwise turbulence intensity and wall-shear stress fluctuations of zero pressure gradient (ZPG) turbulent boundary layers are investigated for seven Reynolds numbers based on the momentum thickness in the range of 1009 ⩽ Re θ ⩽ 4070 by particle-image velocimetry (PIV) and micro-particle tracking velocimetry (µ-PTV) at a spatial resolution up to 0.06-0.23 wall units such that the viscous sublayer is well resolved. The statistics evidence good agreement with direct numerical simulations (DNS) and experimental results from the literature. The experimental results show the streamwise turbulence intensity and wall-shear stress fluctuation to grow at increasing Reynolds numbers.
Quantification of aortic regurgitation by magnetic resonance velocity mapping
Søndergaard, Lise; Lindvig, K; Hildebrandt, P
1993-01-01
The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients, and the regurgit......The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients......, and the regurgitant volume determined with MR velocity mapping agreed well with the grade obtained by aortic root angiography (p stroke volume (ml) measured by MR velocity mapping...
Detection probabilities for time-domain velocity estimation
Jensen, Jørgen Arendt
1991-01-01
Estimation of blood velocities by time-domain cross-correlation of successive high frequency sampled ultrasound signals is investigated. It is shown that any velocity can result from the estimator regardless of the true velocity due to the nonlinear technique employed. Using a simple simulation...... as a filter with a transfer function depending on the actual velocity. This influences the detection probability, which gets lower at certain velocities. An index directly reflecting the probability of detection can easily be calculated from the cross-correlation estimated. This makes it possible to assess...... the reliability of the velocity estimate in real time...
MOTION VELOCITY SMOOTH LINK IN HIGH SPEED MACHINING
REN Kun; FU Jianzhong; CHEN Zichen
2007-01-01
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.
Brody, Adam R.
1989-01-01
Simulated docking maneuvers were performed to assess the effect of initial velocity on docking failure rate, mission duration, and total impulse (fuel consumption). The effect of the removal of the range and rate displays was also examined. Since duration and impulse decrease and increase respectively with increases in initial velocity, two parameters were created by subtracting a reference value from each. These values were termed 'reserve time' and 'radial impulse'. Naive subjects were capable of achieving a high success rate in performing simulated docking maneuvers without extensive experience, and failure rate did not significantly increase with increased velocity. The amount of time pilots reserved for final approach increased with starting velocity. Piloting of docking maneuvers was not significantly affected in any way by the removal of range and rate displays. Values for reserve time, and radial impulse were lowest for docking maneuvers begun at the lowest initial velocity.
High Velocity Droplet Rebound On Liquid Pools
Doak, William; Laiacona, Danielle; Chiarot, Paul; German, Guy
2015-11-01
Rebound of high velocity, periodic droplet streams off viscous liquid pools is studied experimentally. Droplets, approximately 60 micrometers in diameter, impact the oil surface at velocities up to 13 m/s and at angles between 2-25 degrees. The oil surface does not degrade or lose its ability to provide rebound even after millions of droplet impacts. The oil was varied to examine the effect that surface tension and viscosity had on droplet rebound. Stable rebound is achievable on oils varying in dynamic viscosity in the range 13-970 Pa.s and surface tensions in the range 19-28 mN/m. When rebound occurs, a consistent 29% loss of droplet kinetic energy is observed. This is a surprising relationship due to the fact that it holds true for all cases of stable rebound regardless of the oil used. We further observe an upper inertial limit where droplets no longer provide stable rebound and instead become fully entrained in the oil pool. This limit is governed by the Rayleigh-Plateau instability and can be characterized and predicted using a modified version of the Weber number. The droplet rebound presented in this study is unique due to the size, velocity, and frequency of the droplets used. Another unique feature is that the rebound manifests itself as an effectively static phenomenon. No motion of the interface - oscillations, waves, or otherwise - was observed during rebound. The quasi-static nature of rebound enabled distinctions to be made regarding energy dissipation and the transition from droplet rebound to entrainment.
Late Quaternary temperature change velocity in Mesoamerica
Correa-Metrio, A.; Lozano, S.; Sosa-Nájera, S.; Bush, M. B.
2013-05-01
Quaternary climate has been highly variable, and yet few quantitative continental reconstructions are available for tropical areas. Quantitative records of temperature change during the Quaternary are especially relevant for putting modern climate change into a historic context. Within this perspective, two aspects are of singular relevance: i) Identifying and quantifying past climatic variability, and ii) Providing a means to estimate the seed at which climate change happened in the past. Here we show temperature reconstructions and temperature change velocity calculations for two locations in northern tropical America. Temperature reconstruction was based on two sedimentary records form Lake Chalco (30,000 years), central Mexican highlands, and Lake Petén-Itzá, Guatemalan lowlands (86,000 years). Temperature reconstruction was based on the analysis of fossil pollen on the light of pollen-temperature transfer functions. These functions were calibrated through an extensive survey of modern pollen samples covering an elevational gradient from 0 to 4,218 m asl. Derived temperature profiles show a parallel long-term trend and a similar cooling of approximately 5 oC during the Last Glacial Maximum in the lowlands and highlands of Mexico and Guatemala. Using a digital elevation model, we ere able to reconstruct the velocity at which isotherms displaced to produce the observed temperature anomalies. Spatial velocities of temperature change in the studied areas were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. This study demonstrates that modern temperature change has no precedent within the last 86,000 years, but also that tropical climate has been more variable than it has been assumed to date.
Shallow velocity imaging of an active volcano
Fry, B.; Chardot, L.; Jolly, A. D.
2014-12-01
We use a linear array of temporary seismometers to derive a shear-wave velocity model of the upper ~1000m of the crater area of White Island, an active volcano in New Zealand. We use noise interferometry to generate dispersion curves and invert these dispersion curves to obtain a layered 1D model. By exploiting the varying interstation distances along the array, we are able to define a strong shallow impedance contrast in the upper 10 meters as well as a depth to 'effective' bedrock at about 100m. We limit the bandwidth of the measured dispersion using a 2-wave cycle approximation and construct a composite dispersion curve. We then invert the dispersion curves with two separate inversion algorithms in an effort to test the validity of using this broadband approach for monitoring active volcanoes. The first method is a non-linear approach and is useful when an a-priori starting model is poorly known or if a velocity inversion is likely. Unfortunately, this type of non-linear inversion is more sensitive to small perturbations in the recovered Green's Functions, which may be due to non-equipartitioning of the wavefield as well as to velocity changes. The second is a linearized and damped LSQR approach which we envision will be more useful for routine monitoring in situations in which the starting model is well defined. In this case, selective regularization can be used to stablize moving time-window inversion. Lastly, our results will be used as input for hydrothermal fluid flow modelling conducted in a concurrent study.
Advanced Ice Velocity Mapping Using Landsat 8
Klinger, M. J.; Scambos, T. A.; Fahnestock, M. A.; Haran, T. M.
2014-12-01
Improved image-to-image cross correlation software is applied to pairs of sequential Landsat 8 satellite imagery to accurately measure ice surface velocity over ice sheets and glaciers (±0.1 pixel displacement, 15 meter pixels). The high radiometric fidelity of Landsat 8's panchromatic band (12-bit), and exceptional geolocation accuracy (typically ±5 m) supports the generation of ice velocity fields over very short time intervals (e.g., 16-, 32-, or 48-day repeat images of the same scene location). The high radiometry supports velocity mapping in areas with very subtle topographic detail, including un-crevassed sastrugi regions on ice dome flanks or the ice sheet interior. New Python-based software presently under development (named PyCorr), takes two sequential Landsat 8 OLI scenes (or suitably processed ETM+ or TM scenes) and matches small sub-scenes ('chips') between the images based on similarity in their gray-scale value patterns, using an image correlation algorithm. Peak fitting in the region of maximum correlation for a chip pair yields sub-pixel fits to the feature offset vector. Vector editing after the image correlation runs seeks to eliminate spurious and cloud-impacted vectors, and correct residual geo-location error. This processing is based on plausible values of ice strain rates and known areas of near-zero ice flow (rock outcrops, ice dome areas, etc.). In preliminary processing, we have examined ~800 Landsat 8 image pairs having <20% cloud cover spanning the near-coastal Antarctic ice sheet during the 2013-14 summer season.
Diffusion and butterfly velocity at finite density
Niu, Chao; Kim, Keun-Young
2017-06-01
We study diffusion and butterfly velocity ( v B ) in two holographic models, linear axion and axion-dilaton model, with a momentum relaxation parameter ( β) at finite density or chemical potential ( μ). Axion-dilaton model is particularly interesting since it shows linear- T -resistivity, which may have something to do with the universal bound of diffusion. At finite density, there are two diffusion constants D ± describing the coupled diffusion of charge and energy. By computing D ± exactly, we find that in the incoherent regime ( β/T ≫ 1 , β/μ ≫ 1) D + is identified with the charge diffusion constant ( D c ) and D - is identified with the energy diffusion constant ( D e ). In the coherent regime, at very small density, D ± are `maximally' mixed in the sense that D +( D -) is identified with D e ( D c ), which is opposite to the case in the incoherent regime. In the incoherent regime D e ˜ C - ℏv B 2 / k B T where C - = 1 /2 or 1 so it is universal independently of β and μ. However, {D}_c˜ {C}+\\hslash {v}{^B}^2/{k}_BT where C + = 1 or β 2 /16 π 2 T 2 so, in general, C + may not saturate to the lower bound in the incoherent regime, which suggests that the characteristic velocity for charge diffusion may not be the butterfly velocity. We find that the finite density does not affect the diffusion property at zero density in the incoherent regime.
Lubrication regimes in lumbar total disc arthroplasty.
Shaheen, A; Shepherd, D E T
2007-08-01
A number of total disc arthroplasty devices have been developed. Some concern has been expressed that wear may be a potential failure mode for these devices, as has been seen with hip arthroplasty. The aim of this paper was to investigate the lubrication regimes that occur in lumbar total disc arthroplasty devices. The disc arthroplasty was modelled as a ball-and-socket joint. Elastohydrodynamic lubrication theory was used to calculate the minimum film thickness of the fluid between the bearing surfaces. The lubrication regime was then determined for different material combinations, size of implant, and trunk velocity. Disc arthroplasties with a metal-polymer or metal-metal material combination operate with a boundary lubrication regime. A ceramic-ceramic material combination has the potential to operate with fluid-film lubrication. Disc arthroplasties with a metal-polymer or metal-metal material combination are likely to generate wear debris. In future, it is worth considering a ceramic-ceramic material combination as this is likely to reduce wear.
Entropy production by active particles: Coupling of odd and even functions of velocity
Chaudhuri, Debasish
2016-01-01
Non-equilibrium stochastic dynamics of several active Brownian systems are modeled in terms of non-linear velocity dependent force. In general, this force may consist of both even and odd functions of velocity. We derive the expression for total entropy production in such systems using Fokker-Planck equation. The result is consistent with the expression for stochastic entropy production in the reservoir, that we obtain from probabilities of time-forward and time-reversed trajectories, leading to fluctuation theorems. Numerical simulation is used to find probability distribution of entropy production, which shows good agreement with the detailed fluctuation theorem.
Shear wave velocity is a useful marker for managing nonalcoholic steatohepatitis
Akihiko; Osaki; Tomoyuki; Kubota; Takeshi; Suda; Masato; Igarashi; Keisuke; Nagasaki; Atsunori; Tsuchiya; Masahiko; Yano; Yasushi; Tamura; Masaaki; Takamura; Hirokazu; Kawai; Satoshi; Yamagiwa; Toru; Kikuchi; Minoru; Nomoto; Yutaka; Aoyagi
2010-01-01
AIM:To investigate whether a noninvasive measurement of tissue strain has a potential usefulness for management of nonalcoholic steatohepatitis(NASH).METHODS:In total 26 patients,23 NASHs and 3 normal controls were enrolled in this study.NASH was staged based on Brunt criterion.At a region of interest(ROI),a shear wave was evoked by implementing an acoustic radiation force impulse(ARFI),and the propagation velocity was quantif ied.RESULTS:Shear wave velocity(SWV) could be reproducibly quantified at all ROIs...
Intended rather than actual movement velocity determines velocity-specific training response.
Behm, D G; Sale, D G
1993-01-01
Eight men and eight women trained 3 days/wk for 16 wk by doing attempted ballistic unilateral ankle dorsiflexions against resistance that either rendered the resultant contractions isometric (one limb) or allowed a relatively high-velocity (5.23 rad/s on an isokinetic dynamometer) movement (other limb). Training sessions consisted of five sets of 10 contractions of each type. Training produced the same high-velocity-specific training response in both limbs (P rad/s (38%) in comparison to lower velocities (0, 0.26, 0.52, 1.04, 1.55, 3.02, and 4.19 rad/s). Both limbs also showed similar increases in voluntary isometric rate of torque development (26%) and relaxation (47%) and in evoked tetanus rate of torque development (14%). A similar decrease in evoked twitch time to peak torque (6%) and half-relaxation time (11%) was also observed. Thus, all of these training responses, previously associated specifically with high-velocity resistance training, were produced by a training regimen that prevented an actual rapid movement through a range of movement. The results suggest that the principal stimuli for the high-velocity training response are the repeated attempts to perform ballistic contractions and the high rate of force development of the ensuing contraction. The type of muscle action (isometric or concentric) appears to be of lesser importance.
Analytical fit of radial velocity data
Delisle, J -B; Buchschacher, N; Alesina, F
2015-01-01
We describe an analytical method for computing the orbital parameters of planets from the periodogram of a radial velocity signal. The method is very efficient and provides a good approximation of the orbital parameters. The accuracy is mainly limited by the accuracy of the computation of the Fourier decomposition of the signal which is sensible to sampling and noise. Our method is complementary with more accurate (and more computer time expensive) numerical algorithms (e.g. Levenberg-Marquardt, MCMC, genetic algorithms). Indeed, the analytical approximation can be used as initial condition to accelerate the convergence of these numerical methods.
Frequency comb velocity-modulation spectroscopy.
Sinclair, Laura C; Cossel, Kevin C; Coffey, Tyler; Ye, Jun; Cornell, Eric A
2011-08-26
We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity-modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF⁺ and achieved a fractional absorption sensitivity of 3×10⁻⁷ recorded over 1500 simultaneous channels spanning 150 cm⁻¹ around 800 nm with an absolute frequency accuracy of 30 MHz (0.001 cm⁻¹). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 min.
Frequency Comb Velocity-Modulation Spectroscopy
Sinclair, Laura C; Coffey, Tyler; Ye, Jun; Cornell, Eric A
2011-01-01
We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF+ and achieved a fractional absorption sensitivity of 3 x 10-7 recorded over 1500 simultaneous channels spanning 150 cm-1 around 800 nm with an absolute frequency accuracy of 30 MHz (0.001 cm-1). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 minutes.
Copernicus observations of Iota Herculis velocity variations
Rogerson, J. B., Jr.
1984-01-01
Observations of Iota Her at 109.61-109.67 nm obtained with the U1 channel of the Copernicus spectrophotometer at resolution 5 pm during 3.6 days in May, 1979, are reported. Radial-velocity variations are detected and analyzed as the sum of two sinusoids with frequencies 0.660 and 0.618 cycles/day and amplitudes 9.18 and 8.11 km/s, respectively. Weak evidence supporting the 13.9-h periodicity seen in line-profile variations by Smith (1978) is found.
Boundary layer heights derived from velocity spectra
Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)
1997-10-01
It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)
Velocity dispersion around ellipticals in MOND
Tiret, O; Angus, G W; Famaey, B; Zhao, H S
2007-01-01
We investigate how different models that have been proposed for solving the dark matter problem can fit the velocity dispersion observed around elliptical galaxies, on either a small scale (~ 20kpc) with stellar tracers, such as planetary nebulae, or large scale (~ 200kpc) with satellite galaxies as tracers. Predictions of Newtonian gravity, either containing pure baryonic matter, or embedded in massive cold dark matter (CDM) haloes, are compared with predictions of the modified gravity of MOND. The standard CDM model has problems on a small scale, and the Newtonian pure baryonic model has difficulties on a large scale, while a fit with MOND is possible on both scales.
A novel differential velocity modulation laser spectroscopy
无
2001-01-01
Experimental investigation of a novel differential velocity modulation laser spectroscopy is reported and demonstrated with the spectra of Meinel system. The S/N ratio excesses 500︰1, about 60 times higher than that with the traditional non-differential technique. With this technique, we obtained the high-resolution electronic absorption spectra of (1, 0) vibration-al band of CS+ for the first time. It is confirmed that this technique will be a powerful method and receive wide application in studies of new molecular ions.
Two-Dimensional Distributed Velocity Collision Avoidance
2014-02-11
trigonometry . For convex polygon agents, the tangents are found by iterating over each point, calculating the z-component of the cross product between a...the modifications to the basic VO to favor the source bot’s current velocity (i.e., encourage the bot to change course as little as possible). To...the source agent on a collision course . However, if ignore factors are used, then A2 is more important (i.e., has a lower ignore factor), and so the
Robotic velocity generation using neural network
无
2001-01-01
The fast-paced nature of robotic soccer necessitates real-time sensing coupled with quick decision making and behaving. The robot must have high response-rate, exact motion ability, and must robust enough to confront interfere during drastic match. But during the match, we find that the robot usually do not act exactly as the commands from host computer. In this paper, we analyze the reason and present a method that uses BP neural network to output robotic velocity directly instead of conventional path-plan strategy, to reduce the error between actual motion and ideal plan.
Diffusive transport by thermal velocity fluctuations.
Donev, Aleksandar; Bell, John B; de la Fuente, Anton; Garcia, Alejandro L
2011-05-20
We study the contribution of advection by thermal velocity fluctuations to the effective diffusion coefficient in a mixture of two identical fluids. We find good agreement between a simple fluctuating hydrodynamics theory and particle and finite-volume simulations. The enhancement of the diffusive transport depends on the system size L and grows as ln(L/L₀) in quasi-two-dimensional systems, while in three dimensions it scales as L₀⁻¹ - L⁻¹, where L₀ is a reference length. Our results demonstrate that fluctuations play an important role in the hydrodynamics of small-scale systems.
Adaptive noncolocated velocity feedback for vibration damping
Bayard, David S.; Spanos, John T.
1990-01-01
A method is proposed for adaptive noncolocated velocity feedback control of flexible structure vibrations. The approach, denoted as auto-tuning, is to drive the system into a sequence of controlled oscillations to provide accurate knowledge of the plant characteristics in the vicinity of the phase cross-over frequencies. An allpass phase notch filter cascade is used as the control architecture to phase stabilize each destabilizing mode in the plant transfer function. The allpass phase notch filter cascade is tuned precisely by the information extracted from the controlled oscillations.
Detecting Dark Matter in High Velocity Clouds
Lewis, G F; Putman, M E; Lewis, Geraint F; Bland-Hawthorn, Joss; Putman, Mary E; Gibson, Brad C
2000-01-01
Many high velocity HI clouds (HVCs) are now believed to be scattered throughout the Galactic halo on scales of tens of kiloparsecs. Some of these clouds appear to contain substantial HI masses (>10^6 Msun). It has been suggested that these structures may be associated with dark matter `mini halos' accreting onto the Galactic halo. For a compact HVC along the sight line to a more distant galaxy, we demonstrate that `pixel gravitational lensing' provides a crucial test for the presence of a dark halo in the form of massive compact objects. The detection of pixel lensing will provide an independent means to map the mass distribution within HVCs.
Mccolgan, C. J.; Larson, R. S.
1978-01-01
The effect of light on the mean flow and turbulence properties of a 0.056 m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. Normalization factors were determined for the mean velocity and turbulence convection velocity.
The stability analysis of the full velocity and acceleration velocity model
Xiaomei, Zhao; Ziyou, Gao
2007-03-01
The stability analysis is one of the important problems in the traffic flow theory, since the congestion phenomena can be regarded as the instability and the phase transition of a dynamical system. Theoretically, we analyze the stable conditions of the full velocity and acceleration difference model (FVADM), which is proposed by introducing the acceleration difference term based on the previous car-following models (the optimal velocity model and the full velocity difference model, OVM and FVDM). By numerical simulations, it is found that when the traffic flow is unstable, the traffic jam in the FVADM is weaker than that in the FVDM. Also it is observed that the spreading speed of the jam is slower in the FVADM than that in the FVDM and the fluctuations of vehicles in the FVADM are smaller than those in the FVDM. Therefore, the acceleration difference term has strong effects on traffic dynamics and plays an important role in stabilizing the traffic flow.
Study of velocity centroids based on the theory of fluctuations in position-position-velocity space
Kandel, D; Pogosyan, D
2016-01-01
We study possibility of obtaining velocity spectra by studying turbulence in an optically thick medium using velocity centroids (VCs).We find that the regime of universal, i.e. independent of underlying turbulence statistics, fluctuations discovered originally within the velocity channel analysis (VCA) carries over to the statistics of VCs. In other words, for large absorptions the VC lose their ability to reflect the spectra of turbulence. Combining our present study with the earlier studies of centroids in Esquivel & Lazarian, we conclude that centroids are applicable for studies subsonic/transsonic turbulence for the range of scales that is limited by the absorption effects. We also consider VCs based on absorption lines and define the range of their applicability. We address the problem of analytical description of spectra and anisotropies of fluctuations that are available through studies using VC. We obtain spectra and anisotropy of VC fluctuations arising from Alfv\\'en, slow and fast modes that con...
Esquivel, A; Pogosyan, D; Cho, J; Esquivel, Alejandro; Cho, Jungyeon
2003-01-01
In a previous work Lazarian and Pogosyan suggested a technique to extract velocity and density statistics, of interstellar turbulence, by means of analysing statistics of spectral line data cubes. In this paper we test that technique, by studying the effect of correlation between velocity and density fields, providing a systematic analysis of the noise, and exploring the effect of a linear shear. We make use of both compressible MHD simulations and synthetic data to emulate spectroscopic observations. With such synthetic spectroscopic data, we studied anisotropies of the two point statistics and related those anisotropies with the magnetic field direction. This presents a new technique for magnetic field studies. The results show that the velocity and density spectral indices measured are consistent with the analytical predictions. We identified the dominant source of error with the limited number of data points along a given line of sight. We argue that in real observations the number of emmiting elements is...
Total Quality Management (TQM) Bibliography
1990-04-01
GTE FIE COPY DTIC c" ECTE 8JUL 25 1990u TOTAL QUALITY MANAGEMENT (TQM) BIBLIOGRAPHY APRIL-1990 Jointly supported by __’__________-_________ Jointly...Arsenal, AL 35898-5241 1I. TITLE (Include Security Classification) TOTAL QUALITY MANAGEMENT (TQM) BIBL IRAPHY APRIL-1990 12. PERSONAL AUTHOR(S) Knott...implementation of the concept of total quality management (TQM). The selected coverage includes books, periodical articles, conference papers and reports. Coded
Selective measurement of digital nerve conduction velocity.
Terai, Y; Senda, M; Hashizume, H; Nagashima, H; Inoue, H
2001-01-01
We developed a new method to measure the nerve conduction velocity of a single digital nerve. In 27 volunteers (27 hands), we separately stimulated each digital nerve on the radial and ulnar sides of the middle and ring fingers. A double-peaked potential was recorded above the median nerve at the wrist joint when either the radial-side nerve or the ulnar-side nerve of the middle finger was stimulated. The first peak of this potential had disappeared after the digital nerve was blocked under the stimulating electrodes, and the peak appeared again coinciding with the decrease of anesthesia. Shifting the stimulating electrodes on the digital nerve resulted in no significant difference in the peak conduction velocity. It is possible that each peak of the potential was attributable to conduction of an action potential along one of the two digital nerves. This new method allows the assessment of a single digital nerve, and may be clinically useful for assessing the rupture of a digital nerve and the sensory nerve action potentials in carpal tunnel syndrome.
Radial Velocity Variability of Field Brown Dwarfs
Prato, L; Rice, E L; McLean, I S; Kirkpatrick, J D; Burgasser, A J; Kim, S S
2015-01-01
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant ...