WorldWideScience

Sample records for streams produce significant

  1. The significance of small streams

    Science.gov (United States)

    Wohl, Ellen

    2017-09-01

    Headwaters, defined here as first- and secondorder streams, make up 70%‒80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.

  2. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  3. Technique for producing a continuous interference-free stream of Argon-41 in air

    International Nuclear Information System (INIS)

    Tseng, T.-T.; Jester, W.A.

    1984-01-01

    A monitoring system was developed for the detection of 131 I in the presence of orders of magnitude higher concentrations of radioactive noble gas. During the course of this work, a technique was developed for producing a continuous air stream of 41 Ar required for testing this concept. The 41 Ar stream is produced by the neutron activation of air using a research reactor. The 41 Ar content of the air stream can be varied by many orders of magnitude by varying the reactor power level and the rate at which the air is pumped through a vertically positioned tube in or in front of the reactor. It was found that the neutrons also activate other air constituents, producing undesirable interference radionuclides. Selective filtering techniques have therefore been developed to remove these interference radionuclides from the 41 Ar air stream

  4. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment.

    Science.gov (United States)

    Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo

    2018-04-16

    We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.

  5. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, B.; Parys, P.; Wolowski, J.; Pisarek, M.

    2009-01-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 10 10 W/cm 2 ) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES

  6. Investigation of plasma stream collision produced by thin films irradiated by powerful pulsed electron beam

    International Nuclear Information System (INIS)

    Efremov, V P; Demidov, B A; Ivkin, M V; Mescheryakov, A N; Petrov, V A; Potapenko, A I

    2006-01-01

    Collision of fast plasma streams in vacuum is investigated. Plasma streams were produced by irradiation of thin foils with a powerful pulsed electron beam. Interaction of the plasma flows was studied by using frame and streak cameras. One-dimensional numerical simulation was carried out. Application of this method for porous ICF targets and high-energy physics is discussed

  7. The potential of using organic side-streams produced in Ghana for generation of bio-fuel

    International Nuclear Information System (INIS)

    Laryea, G. N; Abdul-Samii, R.; Tottimeh, G.

    2014-01-01

    Bio-fuel can be generated from organic side-streams of maize, rice, millet, sorghum and groundnut by using fast pyrolysis technology. Data on side-streams of these crops were obtained from the Ministry of Food and Agriculture (MoFA) in 2010 for the study. The study shows that the estimated total crop side-streams generated was 3,475,413 t of which 2,345,903.5 of bio-fuel can be produced, given a potential energy equivalent of 42,226 PJ/y. The result shows a growth rate of 12.9 per cent in energy equivalent potential for synthetic fuel production as compared to the estimated production in 2009. Northern Region had the highest energy potential of 9,676 PJ/y (22.91%) of the total energy equivalent of bio-fuel, whereas, Greater Accra Region had the lowest with 183 PJ/y (0.43%). It is recommended that the available energy potential at the three northern regions of Ghana be utilised effectively when renewable energy policy is improved for a wider applications of side-streams from crops.(au)

  8. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  9. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  10. Characteristics and applications of ion streams produced by long-pulse lasers

    International Nuclear Information System (INIS)

    Rohlena, K.; Laska, L.; Jungwirth, K.; Krasa, J.; Krousky, E.; Masek, M.; Pleifer, M.; Ullschmied, J.; Badziak, J.; Parys, P.; Wolowski, J.; Gammino, S.; Torrisi, L.; Boody, F. P.

    2005-01-01

    If a laser plasma generated on a target with a high Z if left to expand it becomes a very efficient source of highly charged ions. Depending on the parameters of the laser driver, ions with charge states from 1+up to more than 50+can be produced, with ion energies ranging from tens of eV up to tens of MeV, with no external acceleration. The ion current density may reach tens of mA/cm''3 at a distance of 1 m from the target. they can be used either for a direct to accelerator injection, for a hybrid ion source based on coupling of a laser with an Electron Cyclotron Resonance Ion Source for easier evaporation and pre-ionisation of the target material and a subsequent charge state enhancement, or for a direct ion implantation. As substrates for the implantation metallic and polymer materials are usually exposed to the laser produced ion streams with an appropriate tuning of the implantation regime to modify their surface properties. Although the interaction of the laser beam with the plasma is a fairly complex process certain fundamental phenomena have been identified based on a careful analysis of the charge-energy spectra of the outgoing ion streams. The most striking feature is a multi peak structure of the energy spectra suggesting the presence of several fast electron groups guiding the plasma expansion and assisting the charge freezing by its acceleration. On the other hand, an inherent asymmetry of the ion spectra with respect to the laser caustic can be interpreted as the onset of self focusing of the heating laser-beam inside the self-created plasma of the developing laser corona (or a pre-pulse plasma either formed by an engineered double pulse or generated spontaneously in the case of an unduly bad contrast of the heating pulse) with a dramatic increase in the power density impinging on the target. Experimental and theoretical arguments are given in support of this notion, which was first advanced by Hora. (Author)

  11. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  12. The ecology of methane in streams and rivers: Patterns, controls, and global significance

    Science.gov (United States)

    Stanley, Emily H.; Casson, Nora J.; Christel, Samuel T.; Crawford, John T.; Loken, Luke C.; Oliver, Samantha K.

    2016-01-01

    Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO2) is the major end-product of ecosystem respiration, methane (CH4) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH4, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global-scale estimate of fluvial CH4 efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH4 dynamics. Current understanding of CH4 in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH4 to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH4 production and loss. CH4 makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH4 sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH4 and we estimate an annual global emission of 26.8 Tg CH4, equivalent to ~15-40% of wetland and lake effluxes, respectively. Less clear is the role of CH4 oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH4 generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its

  13. Forecasting Significant Societal Events Using The Embers Streaming Predictive Analytics System.

    Science.gov (United States)

    Doyle, Andy; Katz, Graham; Summers, Kristen; Ackermann, Chris; Zavorin, Ilya; Lim, Zunsik; Muthiah, Sathappan; Butler, Patrick; Self, Nathan; Zhao, Liang; Lu, Chang-Tien; Khandpur, Rupinder Paul; Fayed, Youssef; Ramakrishnan, Naren

    2014-12-01

    Developed under the Intelligence Advanced Research Project Activity Open Source Indicators program, Early Model Based Event Recognition using Surrogates (EMBERS) is a large-scale big data analytics system for forecasting significant societal events, such as civil unrest events on the basis of continuous, automated analysis of large volumes of publicly available data. It has been operational since November 2012 and delivers approximately 50 predictions each day for countries of Latin America. EMBERS is built on a streaming, scalable, loosely coupled, shared-nothing architecture using ZeroMQ as its messaging backbone and JSON as its wire data format. It is deployed on Amazon Web Services using an entirely automated deployment process. We describe the architecture of the system, some of the design tradeoffs encountered during development, and specifics of the machine learning models underlying EMBERS. We also present a detailed prospective evaluation of EMBERS in forecasting significant societal events in the past 2 years.

  14. Methods of producing transportation fuel

    Science.gov (United States)

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  15. Arrest of cytoplasmic streaming induces algal proliferation in green paramecia.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Takahashi

    Full Text Available A green ciliate Paramecium bursaria, bearing several hundreds of endosymbiotic algae, demonstrates rotational microtubule-based cytoplasmic streaming, in which cytoplasmic granules and endosymbiotic algae flow in a constant direction. However, its physiological significance is still unknown. We investigated physiological roles of cytoplasmic streaming in P. bursaria through host cell cycle using video-microscopy. Here, we found that cytoplasmic streaming was arrested in dividing green paramecia and the endosymbiotic algae proliferated only during the arrest of cytoplasmic streaming. Interestingly, arrest of cytoplasmic streaming with pressure or a microtubule drug also induced proliferation of endosymbiotic algae independently of host cell cycle. Thus, cytoplasmic streaming may control the algal proliferation in P. bursaria. Furthermore, confocal microscopic observation revealed that a division septum was formed in the constricted area of a dividing paramecium, producing arrest of cytoplasmic streaming. This is a first report to suggest that cytoplasmic streaming controls proliferation of eukaryotic cells.

  16. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    Science.gov (United States)

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  17. Lattice Boltzmann simulations of attenuation-driven acoustic streaming

    International Nuclear Information System (INIS)

    Haydock, David; Yeomans, J M

    2003-01-01

    We show that lattice Boltzmann simulations can be used to model the attenuation-driven acoustic streaming produced by a travelling wave. Comparisons are made to analytical results and to the streaming pattern produced by an imposed body force approximating the Reynolds stresses. We predict the streaming patterns around a porous material in an attenuating acoustic field

  18. Alignment data stream for the ATLAS inner detector

    International Nuclear Information System (INIS)

    Pinto, B

    2010-01-01

    The ATLAS experiment uses a complex trigger strategy to be able to achieve the necessary Event Filter rate output, making possible to optimize the storage and processing needs of these data. These needs are described in the ATLAS Computing Model, which embraces Grid concepts. The output coming from the Event Filter will consist of three main streams: a primary stream, the express stream and the calibration stream. The calibration stream will be transferred to the Tier-0 facilities which will allow the prompt reconstruction of this stream with an admissible latency of 8 hours, producing calibration constants of sufficient quality to permit a first-pass processing. An independent calibration stream is developed and tested, which selects tracks at the level-2 trigger (LVL2) after the reconstruction. The stream is composed of raw data, in byte-stream format, and contains only information of the relevant parts of the detector, in particular the hit information of the selected tracks. This leads to a significantly improved bandwidth usage and storage capability. The stream will be used to derive and update the calibration and alignment constants if necessary every 24h. Processing is done using specialized algorithms running in Athena framework in dedicated Tier-0 resources, and the alignment constants will be stored and distributed using the COOL conditions database infrastructure. The work is addressing in particular the alignment requirements, the needs for track and hit selection, timing and bandwidth issues.

  19. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  20. Angular distributions of atomic vapor stream produced by electron beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Amekawa, Kazuhiro; Shibata, Takemasa

    1997-03-01

    The angular distributions were measured as a function of deposition rate for aluminium, copper, gadolinium and cerium vapor stream produced by an electron beam gun with water-cooled copper crucible. The distributions were recorded on the mounted on a semicircular (120mm in radius) mask over the evaporation source. The measured distributions were able to be described by a simple cosine law, that is cos n θ, except for the case of extremely high evaporation rate with a porous material, where n is a rate-dependent beaming exponent, θ is the angle from the vertical. For many kinds of evaporants, it was confirmed that the beaming exponents increase continuously from unity to 3 or 4 with increasing deposition rate and are approximately proportional to R 0.25 where R is the deposition rate. Moreover, it was found that the beaming exponents n are able to be expressed as n = α Kn 0 -0.25 , where Kn 0 -1 is the inverse of Knudsen number, which is defined by the mean free path of evaporated atoms and the evaporation spot size, and α is the constant. (author)

  1. Angular distributions of atomic vapor stream produced by electron beam heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Amekawa, Kazuhiro; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The angular distributions were measured as a function of deposition rate for aluminium, copper, gadolinium and cerium vapor stream produced by an electron beam gun with water-cooled copper crucible. The distributions were recorded on the mounted on a semicircular (120mm in radius) mask over the evaporation source. The measured distributions were able to be described by a simple cosine law, that is cos{sup n} {theta}, except for the case of extremely high evaporation rate with a porous material, where n is a rate-dependent beaming exponent, {theta} is the angle from the vertical. For many kinds of evaporants, it was confirmed that the beaming exponents increase continuously from unity to 3 or 4 with increasing deposition rate and are approximately proportional to R{sup 0.25} where R is the deposition rate. Moreover, it was found that the beaming exponents n are able to be expressed as n = {alpha} Kn{sub 0}{sup -0.25}, where Kn{sub 0}{sup -1} is the inverse of Knudsen number, which is defined by the mean free path of evaporated atoms and the evaporation spot size, and {alpha} is the constant. (author)

  2. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  3. Stream Deniable-Encryption Algorithms

    Directory of Open Access Journals (Sweden)

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  4. Principles for urban stormwater management to protect stream ecosystems

    Science.gov (United States)

    Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela

    2016-01-01

    Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly

  5. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    Science.gov (United States)

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  6. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  7. VALUE STREAM MAPPING AND ITS SIGNIFICANCE IN THE PRODUCTION PROCESS

    Directory of Open Access Journals (Sweden)

    Daniela Onofrejova

    2015-09-01

    Full Text Available Monitoring of flows (material, information, personal, energy, financial, etc. in the production process is always inevitable approach while searching for improvements. There are, radical improvements known as innovations, and continuous improvement established by KAIZEN principles and its useful methods. Both approaches focus on processes that add value, and minimise or eliminate those without added value. The main target of this paper is to analyse the Value stream mapping approach and its benefit to the practical world.

  8. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  9. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  10. Challenging the myths: the mid-stream asset provider's view

    International Nuclear Information System (INIS)

    Findlay, R.

    1996-01-01

    The term 'mid-stream asset business' implies custom processing and gathering, meaning that a gas producer sells his gas at the wellhead, thereby transferring the business of gathering, processing and marketing of the gas and liquids to a third party. The concept is popular in the United States, but is not yet common in Canada. In Canada, producers own the gas gathering and processing systems. The mid-stream asset business was claimed to be more user friendly than the old custom processing business. Three myths about the mid-stream asset business were challenged: (1) all the risk is on the producer, the processor takes no risk, (2) the mid-stream asset business is an expensive means of financing further exploration, and (3) owning and operating gathering and processing facilities is an integral part of a producer's business. Arguments were brought forth to dispel these myths and to emphasize that a processor should be prepared to accept risks associated with the commodity, prices, production and operations. To be operationally effective, the producer's flexibility and strategic advantages must approach the same level as if he were the owner of the facility

  11. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  12. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  13. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  14. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.

    Science.gov (United States)

    Kadam, Kiran L; Chin, Chim Y; Brown, Lawrence W

    2008-05-01

    A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin. A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are

  15. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    Science.gov (United States)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  16. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    Science.gov (United States)

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  17. Dispersal of plant fragments in small streams

    DEFF Research Database (Denmark)

    Riis, T.; Sand-Jensen, K.

    2006-01-01

    1. Streams are subject to frequent natural and anthropogenic disturbances that cause sediment erosion and loss of submerged vegetation. This loss makes downstream transport and retention of vegetative propagules on the streambed very important for re-establishing vegetation cover. We measured...... with the relative contact between the flowing water and streambed, bank and vegetation. Thus, the retention coefficients were highest (0.02-0.12 m-1) in shallow reaches with a narrow, vegetation-free flow channel. Here there were no significant differences between E. canadensis and R. peltatus. Retention...... coefficients were lowest (0.0005-0.0135 m-1) in deeper reaches with wider vegetation-free flow channels. Retention of E. canadensis was up to 16 times more likely than retention of R. peltatus. 5. Overall, the longitudinal position in the stream system of source populations of species capable of producing...

  18. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams

    International Nuclear Information System (INIS)

    Fonyuy, Ernest W.; Atekwana, Eliot A.

    2008-01-01

    Dissolved inorganic carbon (DIC) constitutes a significant fraction of a stream's carbon budget, yet the role of acid mine drainage (AMD) in DIC dynamics in receiving streams remains poorly understood. The objective of this study was to evaluate spatial and temporal effects of AMD and its chemical evolution on DIC and stable isotope ratio of DIC (δ 13 C DIC ) in receiving streams. We examined spatial and seasonal variations in physical and chemical parameters, DIC, and δ 13 C DIC in a stream receiving AMD. In addition, we mixed different proportions of AMD and tap water in a laboratory experiment to investigate AMD dilution and variable bicarbonate concentrations to simulate downstream and seasonal hydrologic conditions in the stream. Field and laboratory samples showed variable pH, overall decreases in Fe 2+ , alkalinity, and DIC, and variable increase in δ 13 C DIC . We attribute the decrease in alkalinity, DIC loss, and enrichment of 13 C of DIC in stream water to protons produced from oxidation of Fe 2+ followed by Fe 3+ hydrolysis and precipitation of Fe(OH) 3(s) . The extent of DIC decrease and 13 C enrichment of DIC was related to the amount of HCO 3 - dehydrated by protons. The laboratory experiment showed that lower 13 C enrichment occurred in unmixed AMD (2.7 per mille ) when the amount of protons produced was in excess of HCO 3 - or in tap water (3.2 per mille ) where no protons were produced from Fe 3+ hydrolysis for HCO 3 - dehydration. The 13 C enrichment increased and was highest for AMD-tap water mixture (8.0 per mille ) where Fe 2+ was proportional to HCO 3 - concentration. Thus, the variable downstream and seasonal 13 C enrichment in stream water was due in part to: (1) variations in the volume of stream water initially mixed with AMD and (2) to HCO 3 - input from groundwater and seepage in the downstream direction. Protons produced during the chemical evolution of AMD caused seasonal losses of 50 to >98% of stream water DIC. This loss of DIC

  19. Alignment data streams for the ATLAS inner detector

    CERN Document Server

    Pinto, B; Pereira, P; Elsing, M; Hawkings, R; Schieck, J; García, S; Schaffer, A; Ma, H; Anjos, A

    2008-01-01

    The ATLAS experiment uses a complex trigger strategy to be able to reduce the Event Filter rate output, down to a level that allows the storage and processing of these data. These concepts are described in the ATLAS Computing Model which embraces Grid paradigm. The output coming from the Event Filter consists of four main streams: physical stream, express stream, calibration stream, and diagnostic stream. The calibration stream will be transferred to the Tier-0 facilities that will provide the prompt reconstruction of this stream with a minimum latency of 8 hours, producing calibration constants of sufficient quality to allow a first-pass processing. The Inner Detector community is developing and testing an independent common calibration stream selected at the Event Filter after track reconstruction. It is composed of raw data, in byte-stream format, contained in Readout Buffers (ROBs) with hit information of the selected tracks, and it will be used to derive and update a set of calibration and alignment cons...

  20. Cellular Subcompartments through Cytoplasmic Streaming.

    Science.gov (United States)

    Pieuchot, Laurent; Lai, Julian; Loh, Rachel Ann; Leong, Fong Yew; Chiam, Keng-Hwee; Stajich, Jason; Jedd, Gregory

    2015-08-24

    Cytoplasmic streaming occurs in diverse cell types, where it generally serves a transport function. Here, we examine streaming in multicellular fungal hyphae and identify an additional function wherein regimented streaming forms distinct cytoplasmic subcompartments. In the hypha, cytoplasm flows directionally from cell to cell through septal pores. Using live-cell imaging and computer simulations, we identify a flow pattern that produces vortices (eddies) on the upstream side of the septum. Nuclei can be immobilized in these microfluidic eddies, where they form multinucleate aggregates and accumulate foci of the HDA-2 histone deacetylase-associated factor, SPA-19. Pores experiencing flow degenerate in the absence of SPA-19, suggesting that eddy-trapped nuclei function to reinforce the septum. Together, our data show that eddies comprise a subcellular niche favoring nuclear differentiation and that subcompartments can be self-organized as a consequence of regimented cytoplasmic streaming. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    Science.gov (United States)

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  2. Methodology to produce a water and energy stream map (WESM in the South African manufacturing industry

    Directory of Open Access Journals (Sweden)

    Davies, Edward

    2016-11-01

    Full Text Available The increasing demand for water and energy in South Africa, and the capacity constraints and restrictions of both resources, have led to a rapid increase in their cost. The manufacturing industry remains South Africa’s third-largest consumer of water and second- largest consumer of national energy. The improvement of water and energy efficiency is becoming an increasingly important theme for both organisational success and national economic sustainability. This paper presents the ‘lean based water and energy stream mapping framework’ developed for the manufacturing industry, with the specific objective of decreasing its water and energy intensity. As with the traditional value stream mapping tool, the water and energy stream mapping focuses on eliminating water- and energy-specific wastes within a process. Water and energy waste categories that will be used in conjunction with the framework will also be discussed. The key objective of this paper is to detail the process of creating the water and energy stream mapping, and the statistical forecasting methodology used to develop the baseline water and energy demand data. The outcome of the implementation of the framework is the future state water and energy stream mapping, which is effectively a blueprint for increased water and energy efficiency within a studied process.

  3. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.

    Science.gov (United States)

    Doinikov, Alexander A; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  4. Multimedia applications in nursing curriculum: the process of producing streaming videos for medication administration skills.

    Science.gov (United States)

    Sowan, Azizeh K

    2014-07-01

    Streaming videos (SVs) are commonly used multimedia applications in clinical health education. However, there are several negative aspects related to the production and delivery of SVs. Only a few published studies have included sufficient descriptions of the videos and the production process and design innovations. This paper describes the production of innovative SVs for medication administration skills for undergraduate nursing students at a public university in Jordan and focuses on the ethical and cultural issues in producing this type of learning resource. The curriculum development committee approved the modification of educational techniques for medication administration procedures to include SVs within an interactive web-based learning environment. The production process of the videos adhered to established principles for "protecting patients' rights when filming and recording" and included: preproduction, production and postproduction phases. Medication administration skills were videotaped in a skills laboratory where they are usually taught to students and also in a hospital setting with real patients. The lab videos included critical points and Do's and Don'ts and the hospital videos fostered real-world practices. The range of time of the videos was reasonable to eliminate technical difficulty in access. Eight SVs were produced that covered different types of the medication administration skills. The production of SVs required the collaborative efforts of experts in IT, multimedia, nursing and informatics educators, and nursing care providers. Results showed that the videos were well-perceived by students, and the instructors who taught the course. The process of producing the videos in this project can be used as a valuable framework for schools considering utilizing multimedia applications in teaching. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  6. Response of stream invertebrates to short-term salinization: A mesocosm approach

    International Nuclear Information System (INIS)

    Cañedo-Argüelles, Miguel; Grantham, Theodore E.; Perrée, Isabelle; Rieradevall, Maria; Céspedes-Sánchez, Raquel; Prat, Narcís

    2012-01-01

    Salinization is a major and growing threat to freshwater ecosystems, yet its effects on aquatic invertebrates have been poorly described at a community-level. Here we use a controlled experimental setting to evaluate short-term stream community responses to salinization, under conditions designed to replicate the duration (72 h) and intensity (up to 5 mS cm −1 ) of salinity pulses common to Mediterranean rivers subjected to mining pollution during runoff events. There was a significant overall effect, but differences between individual treatments and the control were only significant for the highest salinity treatment. The community response to salinization was characterized by a decline in total invertebrate density, taxon richness and diversity, an increase in invertebrate drift and loss of the most sensitive taxa. The findings indicate that short-term salinity increases have a significant impact on the stream invertebrate community, but concentrations of 5 mS cm −1 are needed to produce a significant ecological response. - Highlights: ► Short-term salinization has a significant impact on the aquatic invertebrates. ► A significant short-term ecological response is registered at 5 mS cm −1 . ► Salinization causes a decline in invertebrate density, richness and diversity. ► Biotic quality indices decline with increasing salinity and exposure time. - Short-term salinization in a stream mesocosm caused a significant response in the aquatic invertebrate community and led to declines in biological quality indices.

  7. Streaming simplification of tetrahedral meshes.

    Science.gov (United States)

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  8. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  9. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  10. Design methods of Coanda effect nozzle with two streams

    Directory of Open Access Journals (Sweden)

    Michele TRANCOSSI

    2014-03-01

    Full Text Available This paper continues recent research of the authors about the ACHEON Coanda effect two streams nozzle. This nozzle aims to produce an effective deflection of a propulsive jet with a correspondent deviation of the thrust vector in a 2D plane. On the basis of a previously published mathematical model, based on integral equations, it tries to produce an effective design guideline, which can be adopted for design activities of the nozzle for aeronautic propulsion. The presented model allows defining a governing method for this innovative two stream synthetic jet nozzle. The uncertainness level of the model are discussed and novel aircraft architectures based on it are presented. A CFD validation campaign is produced focusing on validating the model and the designs produced.

  11. Heavy-water extraction from non-electrolytic hydrogen streams

    International Nuclear Information System (INIS)

    LeRoy, R.L.; Hammerli, M.; Butler, J.P.

    1981-01-01

    Heavy water may be produced from non-electrolytic hydrogen streams using a combined electrolysis and catalytic exchange process. The method comprises contacting feed water in a catalyst column with hydrogen gas originating partly from a non-electrolytic hydrogen stream and partly from an electrolytic hydrogen stream, so as to enrich the feed water with the deuterium extracted from both the non-electrolytic and electrolytic hydrogen gas, and passing the deuterium water to an electrolyser wherein the electrolytic hydrogen gas is generated and then fed through the catalyst column. (L.L.)

  12. Membrane crystallization for recovery of salts from produced water

    DEFF Research Database (Denmark)

    Quist-Jensen, Cejna Anna; Jensen, Henriette Casper; Ali, Aamer

    Membrane Crystallization (MCr) is a novel technology able to recover freshwater and high-purity salts from complex solutions and therefore, is suggested for a better exploitation of wastewater streams. Unlike other membrane processes, MCr is not limited by high concentrations and, therefore, the ......, the membrane maintained its hydrophobic nature despite that produced water contained oil residues. Conductivity and HPLC was utilized to analyze the quality of the permeate stream......., the solutions can be treated to achieve saturation level. Hereby different salts can be precipitated and directly recovered from various streams. In this study, it is shown that MCr is able to treat produced water by producing clean water and simultaneously NaCl crystals. The recovered crystals exhibited high...

  13. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization: Human Factors in Streaming Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Aritra [Pacific Northwest National Laboratory, Richland Washington USA; Arendt, Dustin L. [Pacific Northwest National Laboratory, Richland Washington USA; Franklin, Lyndsey R. [Pacific Northwest National Laboratory, Richland Washington USA; Wong, Pak Chung [Pacific Northwest National Laboratory, Richland Washington USA; Cook, Kristin A. [Pacific Northwest National Laboratory, Richland Washington USA

    2017-09-01

    Real-world systems change continuously and across domains like traffic monitoring, cyber security, etc., such changes occur within short time scales. This leads to a streaming data problem and produces unique challenges for the human in the loop, as analysts have to ingest and make sense of dynamic patterns in real time. In this paper, our goal is to study how the state-of-the-art in streaming data visualization handles these challenges and reflect on the gaps and opportunities. To this end, we have three contributions: i) problem characterization for identifying domain-specific goals and challenges for handling streaming data, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space, and iii) reflections on the perceptually motivated design challenges and potential research directions for addressing them.

  14. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    Science.gov (United States)

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale.

  15. Reach-scale stream restoration in agricultural streams of southern Minnesota alters structural and functional responses of macroinvertebrates

    Science.gov (United States)

    Dolph, Christine L.; Eggert, Susan L.; Magner, Joe; Ferrington, Leonard C.; Vondracek, Bruce C.

    2015-01-01

    Recent studies suggest that stream restoration at the reach scale may not increase stream biodiversity, raising concerns about the utility of this conservation practice. We examined whether reach-scale restoration in disturbed agricultural streams was associated with changes in macroinvertebrate community structure (total macroinvertebrate taxon richness, total macroinvertebrate density, Ephemeroptera, Plecoptera, Trichoptera [EPT] taxon richness, % abundance of EPT taxa) or secondary production (macroinvertebrate biomass over time). We collected macroinvertebrate samples over the course of 1 y from restored and unrestored reaches of 3 streams in southern Minnesota and used generalized least-square (GLS) models to assess whether measures of community structure were related to reach type, stream site, or sampling month. After accounting for effects of stream site and time, we found no significant difference in total taxon richness or % abundance of EPT taxa between restored and unrestored reaches. However, the number of EPT taxa and macroinvertebrate density were significantly higher in restored than in unrestored reaches. We compared secondary production estimates among study reaches based on 95th-percentile confidence intervals generated via bootstrapping. In each study stream, secondary production was significantly (2–3×) higher in the restored than in the unrestored reach. Higher productivity in the restored reaches was largely a result of the disproportionate success of a few dominant, tolerant taxa. Our findings suggest that reach-scale restoration may have ecological effects that are not detected by measures of total taxon richness alone.

  16. Long-term biomonitoring of a produced water discharge from the Cedar Cove degasification field, Alabama. January 1991

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, P.E.; Harris, S.C.; Mettee, M.F.; McGregor, S.W.; Shepard, T.E.

    1991-01-01

    Development of coalbed methane has become a major industry for the state of Alabama. In excess of 1,300 wells were producing methane by the end of July 1990. A byproduct of methane production is produced water containing elevated concentrations of chloride, sodium, iron and bicarbonate. These waters are currently permitted for discharge into streams or as a land application. The purpose of the study was to examine the long-term impacts of produced waters to streams relative to water-quality changes and aquatic biological effects. Distinct water-quality changes in the receiving stream were documented and consisted primarily of increased dissolved solids, changes in the pH regime and changes in the carbonate buffering system. In contrast, no significant or consistent detrimental change in the structure or function of the stream biological community could be detected. Subtle changes in biological community structure and composition were noted and most likely due to effects associated with algal productivity in settling lagoons. These changes, however, were within the boundaries of variation typically observed for the communities. Based on the results of this and earlier studies, it was concluded that the national water-quality criterion for chloride was protective of stream life as examined in the study.

  17. Application of escape probability to line transfer in laser-produced plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; London, R.A.; Zimmerman, G.B.; Haglestein, P.L.

    1989-01-01

    In this paper the authors apply the escape probability method to treat transfer of optically thick lines in laser-produced plasmas in plan-parallel geometry. They investigate the effect of self-absorption on the ionization balance and ion level populations. In addition, they calculate such effect on the laser gains in an exploding foil target heated by an optical laser. Due to the large ion streaming motion in laser-produced plasmas, absorption of an emitted photon occurs only over the length in which the Doppler shift is equal to the line width. They find that the escape probability calculated with the Doppler shift is larger compared to the escape probability for a static plasma. Therefore, the ion streaming motion contributes significantly to the line transfer process in laser-produced plasmas. As examples, they have applied escape probability to calculate transfer of optically thick lines in both ablating slab and exploding foil targets under irradiation of a high-power optical laser

  18. Cosmic ray nucleonic intensity in low-amplitude days during the passage of high-speed solar wind streams

    International Nuclear Information System (INIS)

    Agarwal, R.; Mishra, R.K.; Tiwari, S.; or rm_jbp@yahoo.co.in

    2008-01-01

    One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically. (Authors)

  19. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...... was calculated for 1 km2 catchments (produced from topographical maps) on Funen, Denmark. The physical condition (substrate, meandering etc.) of 1st and 2nd order streams (based on existing data from the National Monitoring Programme and personal exploring) draining these catchments was, additionally, assessed...

  20. Interaction of Cu and plastic plasmas as a method of forming laser produced Cu plasma streams with a narrow jet or pipe geometry

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Ullschmied, Jiří; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Pisarczyk, P.

    2011-01-01

    Roč. 18, č. 4 (2011), 044503/1-044503/4 ISSN 1070-664X R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : laser-produced plasma * plasma streams * Cu-plasma jets * laser targets Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.147, year: 2011 http://pop.aip.org/ resource /1/phpaen/v18/i4/p044503_s1

  1. Frequency effects on the scale and behavior of acoustic streaming.

    Science.gov (United States)

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  2. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  3. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  4. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  5. Alignment data streams for the ATLAS inner detector

    International Nuclear Information System (INIS)

    Pinto, B; Amorim, A; Pereira, P; Elsing, M; Hawkings, R; Schieck, J; Garcia, S; Schaffer, A; Ma, H; Anjos, A

    2008-01-01

    The ATLAS experiment uses a complex trigger strategy to be able to reduce the Event Filter rate output, down to a level that allows the storage and processing of these data. These concepts are described in the ATLAS Computing Model which embraces Grid paradigm. The output coming from the Event Filter consists of four main streams: physical stream, express stream, calibration stream, and diagnostic stream. The calibration stream will be transferred to the Tier-0 facilities that will provide the prompt reconstruction of this stream with a minimum latency of 8 hours, producing calibration constants of sufficient quality to allow a first-pass processing. The Inner Detector community is developing and testing an independent common calibration stream selected at the Event Filter after track reconstruction. It is composed of raw data, in byte-stream format, contained in Readout Buffers (ROBs) with hit information of the selected tracks, and it will be used to derive and update a set of calibration and alignment constants. This option was selected because it makes use of the Byte Stream Converter infrastructure and possibly gives better bandwidth usage and storage optimization. Processing is done using specialized algorithms running in the Athena framework in dedicated Tier-0 resources, and the alignment constants will be stored and distributed using the COOL conditions database infrastructure. This work is addressing in particular the alignment requirements, the needs for track and hit selection, and the performance issues

  6. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  7. Corotating pressure waves without streams in the solar wind

    International Nuclear Information System (INIS)

    Burlaga, L.F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun

  8. Real-time lossless compression of depth streams

    KAUST Repository

    Schneider, Jens

    2017-08-17

    Various examples are provided for lossless compression of data streams. In one example, a Z-lossless (ZLS) compression method includes generating compacted depth information by condensing information of a depth image and a compressed binary representation of the depth image using histogram compaction and decorrelating the compacted depth information to produce bitplane slicing of residuals by spatial prediction. In another example, an apparatus includes imaging circuitry that can capture one or more depth images and processing circuitry that can generate compacted depth information by condensing information of a captured depth image and a compressed binary representation of the captured depth image using histogram compaction; decorrelate the compacted depth information to produce bitplane slicing of residuals by spatial prediction; and generate an output stream based upon the bitplane slicing.

  9. Real-time lossless compression of depth streams

    KAUST Repository

    Schneider, Jens

    2017-01-01

    Various examples are provided for lossless compression of data streams. In one example, a Z-lossless (ZLS) compression method includes generating compacted depth information by condensing information of a depth image and a compressed binary representation of the depth image using histogram compaction and decorrelating the compacted depth information to produce bitplane slicing of residuals by spatial prediction. In another example, an apparatus includes imaging circuitry that can capture one or more depth images and processing circuitry that can generate compacted depth information by condensing information of a captured depth image and a compressed binary representation of the captured depth image using histogram compaction; decorrelate the compacted depth information to produce bitplane slicing of residuals by spatial prediction; and generate an output stream based upon the bitplane slicing.

  10. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  11. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    Energy Technology Data Exchange (ETDEWEB)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: cking@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  12. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2012-01-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  13. HUNTING THE PARENT OF THE ORPHAN STREAM: IDENTIFYING STREAM MEMBERS FROM LOW-RESOLUTION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Casey, Andrew R.; Da Costa, Gary; Keller, Stefan C.; Maunder, Elizabeth

    2013-01-01

    We present candidate K-giant members in the Orphan Stream that have been identified from low-resolution data taken with the AAOmega spectrograph on the Anglo-Australian Telescope. From modest signal-to-noise spectra and independent cuts in photometry, kinematics, gravity, and metallicity we yield self-consistent, highly probable stream members. We find a revised stream distance of 22.5 ± 2.0 kpc near the celestial equator and our kinematic signature peaks at V GSR = 82.1 ± 1.4 km s –1 . The observed velocity dispersion of our most probable members is consistent with arising from the velocity uncertainties alone. This indicates that at least along this line of sight, the Orphan Stream is kinematically cold. Our data indicate an overall stream metallicity of [Fe/H] = –1.63 ± 0.19 dex which is more metal-rich than previously found and unbiased by spectral type. Furthermore, the significant metallicity dispersion displayed by our most probable members, σ([Fe/H]) = 0.56 dex, suggests that the unidentified Orphan Stream parent is a dSph satellite. We highlight likely members for high-resolution spectroscopic follow-up.

  14. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  15. Rotenone persistence model for montane streams

    Science.gov (United States)

    Brown, Peter J.; Zale, Alexander V.

    2012-01-01

    The efficient and effective use of rotenone is hindered by its unknown persistence in streams. Environmental conditions degrade rotenone, but current label instructions suggest fortifying the chemical along a stream based on linear distance or travel time rather than environmental conditions. Our objective was to develop models that use measurements of environmental conditions to predict rotenone persistence in streams. Detailed measurements of ultraviolet radiation, water temperature, dissolved oxygen, total dissolved solids (TDS), conductivity, pH, oxidation–reduction potential (ORP), substrate composition, amount of organic matter, channel slope, and travel time were made along stream segments located between rotenone treatment stations and cages containing bioassay fish in six streams. The amount of fine organic matter, biofilm, sand, gravel, cobble, rubble, small boulders, slope, pH, TDS, ORP, light reaching the stream, energy dissipated, discharge, and cumulative travel time were each significantly correlated with fish death. By using logistic regression, measurements of environmental conditions were paired with the responses of bioassay fish to develop a model that predicted the persistence of rotenone toxicity in streams. This model was validated with data from two additional stream treatment reaches. Rotenone persistence was predicted by a model that used travel time, rubble, and ORP. When this model predicts a probability of less than 0.95, those who apply rotenone can expect incomplete eradication and should plan on fortifying rotenone concentrations. The significance of travel time has been previously identified and is currently used to predict rotenone persistence. However, rubble substrate, which may be associated with the degradation of rotenone by adsorption and volatilization in turbulent environments, was not previously considered.

  16. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  17. Do biofilm communities respond to the chemical signatures of fracking? A test involving streams in North-central Arkansas.

    Science.gov (United States)

    Johnson, Wilson H; Douglas, Marlis R; Lewis, Jeffrey A; Stuecker, Tara N; Carbonero, Franck G; Austin, Bradley J; Evans-White, Michelle A; Entrekin, Sally A; Douglas, Michael E

    2017-02-03

    Unconventional natural gas (UNG) extraction (fracking) is ongoing in 29 North American shale basins (20 states), with ~6000 wells found within the Fayetteville shale (north-central Arkansas). If the chemical signature of fracking is detectable in streams, it can be employed to bookmark potential impacts. We evaluated benthic biofilm community composition as a proxy for stream chemistry so as to segregate anthropogenic signatures in eight Arkansas River catchments. In doing so, we tested the hypothesis that fracking characteristics in study streams are statistically distinguishable from those produced by agriculture or urbanization. Four tributary catchments had UNG-wells significantly more dense and near to our sampling sites and were grouped as 'potentially-impacted catchment zones' (PICZ). Four others were characterized by significantly larger forested area with greater slope and elevation but reduced pasture, and were classified as 'minimally-impacted' (MICZ). Overall, 46 bacterial phyla/141 classes were identified, with 24 phyla (52%) and 54 classes (38%) across all samples. PICZ-sites were ecologically more variable than MICZ-sites, with significantly greater nutrient levels (total nitrogen, total phosphorous), and elevated Cyanobacteria as bioindicators that tracked these conditions. PICZ-sites also exhibited elevated conductance (a correlate of increased ion concentration) and depressed salt-intolerant Spartobacteria, suggesting the presence of brine as a fracking effect. Biofilm communities at PICZ-sites were significantly less variable than those at MICZ-sites. Study streams differed by Group according to morphology, land use, and water chemistry but not in biofilm community structure. Those at PICZ-sites covaried according to anthropogenic impact, and were qualitatively similar to communities found at sites disturbed by fracking. The hypothesis that fracking signatures in study streams are distinguishable from those produced by other anthropogenic effects

  18. Concentrating small particles in protoplanetary disks through the streaming instability

    Science.gov (United States)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  19. Considerations for producing re-usable and sustainable educational streaming materials

    Directory of Open Access Journals (Sweden)

    Gayle Calverley

    2006-02-01

    Full Text Available Useful lifetime of educational materials should be defined by their continuing ability to help meet defined learning objectives. More often lifetime is compromised by changes in the educational environment that do not specifically relate to the capacity of the material to assist learning. Approaches for integration of materials into the learning environment can be designed to maximise useful lifetime of materials against potential barriers created by, for example, instances of technological change. In this study, the impact of different approaches is demonstrated by examining the development of 163 learning objects, based on several licensed collections of streaming video procured for cross-sector educational use by the UK Lifesign project. Constraints relating to sustainability work within the limitations of a short-term project environment are specifically considered.

  20. Effects of logging on macroinvertebrates in streams with and without buffer strips

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Erman, D C; Roby, K B

    1980-01-01

    The impact of logging with and without buffer strip protection on stream macroinvertebrates was examined through comparisons of community structure in commercially logged and control watersheds throughout northern California. A nonparametric test of community dissimilarities within matched blocks of two control and one or two treated stations showed significant (P < 0.05) logging effects on unprotected streams when Euclidean distance and mutual information were used as dissimilarity indices, but not when chord distance was used. Shannon diversity in unprotected streams was lower (P < 0.01) than in control (unlogged) streams; densities of total macroinvertebrate fauna and of Chironomidae, Baetis, and Nemoura were higher in unprotected streams than in controls (P <0.05). Streams with narrow buffer strips (<30 m) showed significant effects by the Euclidean distance test, but diversity varied widely and was not significantly different from that in either unprotected or control streams than in controls (P < 0.05). Macroinvertebrate communities in streams with wide buffers (greater than or equal to 30m) could not be distinguished from those of controls by either Euclidean distance or diversity; however, diversity in wide-buffered streams was significantly greater than in streams without buffer strips, indicating effective protection from logging effects.

  1. Smart Streaming for Online Video Services

    OpenAIRE

    Chen, Liang; Zhou, Yipeng; Chiu, Dah Ming

    2013-01-01

    Bandwidth consumption is a significant concern for online video service providers. Practical video streaming systems usually use some form of HTTP streaming (progressive download) to let users download the video at a faster rate than the video bitrate. Since users may quit before viewing the complete video, however, much of the downloaded video will be "wasted". To the extent that users' departure behavior can be predicted, we develop smart streaming that can be used to improve user QoE with ...

  2. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams.

    Science.gov (United States)

    Rasilo, Terhi; Hutchins, Ryan H S; Ruiz-González, Clara; Del Giorgio, Paul A

    2017-02-01

    Streams are typically supersaturated in carbon dioxide (CO 2 ) and methane (CH 4 ), and are recognized as important components of regional carbon (C) emissions in northern landscapes. Whereas there is consensus that in most of the systems the CO 2 emitted by streams represents C fixed in the terrestrial ecosystem, the pathways delivering this C to streams are still not well understood. We assessed the contribution of direct soil CO 2 injection versus the oxidation of soil-derived dissolved organic C (DOC) and CH 4 in supporting CO 2 supersaturation in boreal streams in Québec. We measured the concentrations of CO 2 , CH 4 and DOC in 43 streams and adjacent soil waters during summer base-flow period. A mass balance approach revealed that all three pathways are significant, and that the mineralization of soil-derived DOC and CH 4 accounted for most of the estimated stream CO 2 emissions (average 75% and 10%, respectively), and that these estimated contributions did not change significantly between the studied low order (≤3) streams. Whereas some of these transformations take place in the channel proper, our results suggest that they mainly occur in the hyporheic zones of the streams. Our results further show that stream CH 4 emissions can be fully explained by soil CH 4 inputs. This study confirms that these boreal streams, and in particular their hyporheic zones, are extremely active processors of soil derived DOC and CH 4 , not just vents for soil produced CO 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Foundations for Streaming Model Transformations by Complex Event Processing.

    Science.gov (United States)

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  4. Assessment of the significance of direct and indirect pollution inputs to a major salmon-producing river using polyethylene membrane devices.

    Science.gov (United States)

    Moles, Adam; Holland, Larry; Andersson, Ole

    2006-08-01

    Conventional passive sampling devices for monitoring pollution input often prove to be cost-prohibitive when assessing large spatial and temporal scales. The Kenai River, a major salmon-producing river in Alaska (USA), served as the perfect laboratory to test the utility of polyethylene membrane devices for assessing chronic nonpoint-source inputs to a large riverine watershed. Comparison of the relative levels of polycyclic aromatic hydrocarbons (PAHs) at a large number of locations over time allowed us to assess the significance and potential source of these compounds in the river. Concentrations of PAH were greatest near urban areas and peaked during the late winter, when streams flows and dilution were low. Vessel activity and PAH levels peaked in July and were heaviest in the lower 16 km of the river, where fishing activity was concentrated. Nearly one-third of the vessels observed on the river were powered by two-stroke engines, which release a higher proportion of unburned fuel into the water than the cleaner burning four-stroke engines. The low concentrations of hydrocarbons upriver of the boat traffic suggest very little remote delivery of these contaminants to the watershed. Polyethylene strips proved to be an excellent, low-cost tool for determining the PAH patterns in a large watershed.

  5. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum

    Science.gov (United States)

    Bovy, Jo; Erkal, Denis; Sanders, Jason L.

    2017-04-01

    Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r matter is clumpy on the smallest scales relevant for galaxy formation.

  6. High capacity adsorption media and method of producing

    Science.gov (United States)

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  7. Relationship between the dough quality and content of specific glutenin proteins in wheat mill streams, and its application to making flour suitable for instant Chinese noodles.

    Science.gov (United States)

    Yahata, Eriko; Maruyama-Funatsuki, Wakako; Nishio, Zenta; Yamamoto, Yoshihiko; Hanaoka, Akihiro; Sugiyama, Hisashi; Tanida, Masatoshi; Saruyama, Haruo

    2006-04-01

    The content of specific proteins such as high-molecular-weight glutenin subunits HMW-GS 5+10 and low-molecular-weight glutenin subunits LMW-GS KS2 in wheat mill streams of extra-strong Kachikei 33 wheat was quantified by SDS-PAGE and 2D-PAGE. The mill streams showed varied quantities of HMW-GS 5+10 (0.077 to 2.007 mg/g of mill stream), LMW-GS KS2 (0.018 to 0.586 mg/g of mill stream) and total protein (9.42% to 18.98%). The contents of these specific proteins in the mill streams were significantly correlated with the SDS sedimentation volume and the mixing properties, which are respective indices of specific loaf volume and dough strength. The contents of these specific glutenin proteins in the mill streams were therefore found to be significantly important for improving the dough quality suitable for bread and Chinese noodles. Accordingly, we present here the application of this information to the development of an effective method for producing mill streams with high quality and yield that are suitable for instant Chinese noodles.

  8. Comparison of animated jet stream visualizations

    Science.gov (United States)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  9. Diatom diversity in chronically versus episodically acidified adirondack streams

    Science.gov (United States)

    Passy, S.I.; Ciugulea, I.; Lawrence, G.B.

    2006-01-01

    The relationship between algal species richness and diversity, and pH is controversial. Furthermore, it is still unknown how episodic stream acidification following atmospheric deposition affects species richness and diversity. Here we analyzed water chemistry and diatom epiphyton dynamics and showed their contrasting behavior in chronically vs. episodically acidic streams in the Adirondack region. Species richness and diversity were significantly higher in the chronically acidic brown water stream, where organic acidity was significantly higher and the ratio of inorganic to organic monomeric aluminum significantly lower. Conversely, in the episodically acidic clear water stream, the inorganic acidity and pH were significantly higher and the diatom communities were very species-poor. This suggests that episodic acidification in the Adirondacks may be more stressful for stream biota than chronic acidity. Strong negative linear relationships between species diversity, Eunotia exigua, and dissolved organic carbon against pH were revealed after the influence of non-linear temporal trends was partialled out using a novel way of temporal modeling. ?? 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

  10. The effect of in-stream activities on the Njoro River, Kenya. Part I: Stream flow and chemical water quality

    Science.gov (United States)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    For shallow streams in sub-Saharan Africa, in-stream activities could be described as the actions by people and livestock, which take place within or besides stream channels. This study examined the nature of in-stream activities along a rural stream in Kenya and established the inequality in water allocation for various livelihood needs, as well as the negative impact they have on dry weather stream flow and chemical water quality. Seven locations along the stream were studied in wet and dry weather of 2006. Enumeration consisted of making head counts of people and livestock and tallying visitors at hourly intervals from 6 a.m. to 7 p.m. To estimate water abstraction, filled containers of known volume were counted and the stream was sampled to examine the impact on water quality. Water samples were obtained upstream and downstream of in-stream activities before (6 a.m.) and during (11 a.m., 6 p.m.) activities. Samples were analyzed for suspended solids, turbidity, BOD 5, total nitrogen and total phosphorus. The daily total abstraction at the middle reaches during dry weather was 120-150 m 3 day -1. More than 60% of abstraction was done by water vendors. Vended water from the stream was sold at US 3.5-7.5 per m 3 and vendors earned between US 3-6 a day. Abstracted water contributed approximately 40-60% of the total daily consumptive water use in the riparian area during dry weather but >30% of the morning stream flow was abstracted thereby upsetting stream flow in the lower reaches. The daily total water abstraction correlated positively ( R2, 0.98) and significantly ( p < 0.05) with the daily total human visit, which was diurnally periodic with two peaks, occurring between 9 a.m. and 10 a.m. and from 4 p.m. to 5 p.m. This diurnal pattern of visits and the corresponding in-stream activities affected water quality. In particular, suspended solids, turbidity and BOD 5 levels increased significantly ( p < 0.05) downstream during in-stream activities. It was concluded

  11. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  12. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  13. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stolz, R.A.

    1992-01-01

    This patent describes a method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream from a sand chlorinator in which the silicon and metals present in sand fed to the chlorinator are converted to chlorides at temperatures over about 800 degrees C. It comprises cooling a vapor stream from a sand chlorinator, the vapor stream containing principally silicon tetrachloride, zirconium tetrachloride, and hafnium tetrachloride contaminated with ferric chloride, to a temperature of from about 335 degrees C to about 600 degrees C; flowing the vapor stream through a gaseous diffusion separative barrier to produce a silicon tetrachloride-containing vapor stream concentrated in zirconium tetrachloride and hafnium tetrachloride and a silicon tetrachloride-containing vapor stream depleted in zirconium tetrachloride and hafnium tetrachloride; adsorbing the ferric chloride in the separative barrier; and recovering the silicon tetrachloride stream concentrated in zirconium tetrachloride and hafnium tetrachloride separately from the silicon tetrachloride stream depleted in zirconium tetrachloride and hafnium tetrachloride

  14. Around the Way: Testing ΛCDM with Milky Way Stellar Stream Constraints

    Science.gov (United States)

    Dai, Biwei; Robertson, Brant E.; Madau, Piero

    2018-05-01

    Recent analyses of the Pal 5 and GD-1 tidal streams suggest that the inner dark matter halo of the Milky Way is close to spherical, in tension with predictions from collisionless N-body simulations of cosmological structure formation. We use the Eris simulation to test whether the combination of dissipative physics and hierarchical structure formation can produce Milky Way–like galaxies whose dark matter halos match the tidal stream constraints from the GD-1 and Pal 5 clusters. We use a dynamical model of the simulated Eris galaxy to generate many realizations of the GD-1 and Pal 5 tidal streams, marginalize over observational uncertainties in the cluster galactocentric positions and velocities, and compare with the observational constraints. We find that the total density and potential of Eris contributed by baryons and dark matter satisfies constraints from the existing Milky Way stellar stream data, as the baryons both round and redistribute the dark matter during the dissipative formation of the galaxy, and provide a centrally concentrated mass distribution that rounds the inner potential. The Eris dark matter halo or a spherical Navarro–Frenk–White dark matter work comparably well in modeling the stream data. In contrast, the equivalent dark matter–only ErisDark simulation produces a prolate halo that cannot reproduce the observed stream data. The ongoing Gaia mission will provide decisive tests of the consistency between {{Λ }}{CDM} and Milky Way streams, and should distinguish between models like Eris and more spherical halos.

  15. Determining hyporheic storage using the rSAS model in urban restored streams.

    Science.gov (United States)

    Stoll, E.; Putnam, S. M.; Cosans, C.; Harman, C. J.

    2017-12-01

    One aim of stream restoration is to increase the connectivity of the stream with the hyporheic zone, which is important for processes like denitrification. This study analyzed transects of different restoration techniques in an urban stream, Stony Run in Baltimore, Maryland. The extent of the hyporheic zone was determined using a combination of salt slug injection tracer studies to determine the breakthrough curves and the rank StorAge Selection (rSAS) model. Previous studies using salt tracer injections have often focused on the shape of the breakthrough curve and the transit time distributions of streams to infer indicies correlated with hyporheic zone storage. This study uses the rSAS model to determine the volume of storage that must be turning over to produce the breakthrough curve. This study looked at transects of two different restoration techniques, one with floodplain rehabilitation and one without. Both transects had cross vanes and pool and riffle systems and only differed in the steepness of the banks surrounding the stream. The utility and accuracy of rSAS method was found to be heavily dependent on accurate flow rates. To avoid potential skew in the results, normalized, relatively flow rate-independent metric of storage were compared among transects to reduce error resulting from the flow rate. The results suggested that stream water was retained for longer in a larger storage volume in the transect that did not have floodplain rehabilitation. When compared to the storage of a natural stream with similar geomorphologic characteristics, the restored transect without floodplain rehabilitation had a larger storage volume than the natural stream. The restored transect with floodplain rehabilitation not only had a smaller storage volume than the restored section without rehabilitation, but also had a smaller storage volume than the natural stream with similar bank slopes. This suggests that the floodplain restoration does not significantly contribute to

  16. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  17. Applications of spatial statistical network models to stream data

    Science.gov (United States)

    Daniel J. Isaak; Erin E. Peterson; Jay M. Ver Hoef; Seth J. Wenger; Jeffrey A. Falke; Christian E. Torgersen; Colin Sowder; E. Ashley Steel; Marie-Josee Fortin; Chris E. Jordan; Aaron S. Ruesch; Nicholas Som; Pascal. Monestiez

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for...

  18. Rapid grounding line migration induced by internal variability of a marine-terminating ice stream

    Science.gov (United States)

    Robel, A.; Schoof, C.; Tziperman, E.

    2013-12-01

    Numerous studies have found significant variability in the velocity of ice streams to be a prominent feature of geomorphologic records in the Siple Coast (Catania et al. 2012) and other regions in West Antarctica (Dowdeswell et al. 2008). Observations indicate that grounding line position is strongly influenced by ice stream variability, producing rapid grounding line migration in the recent past (Catania et al. 2006) and the modern (Joughin & Tulaczyk 2002). We analyze the interaction of grounding line mass flux and position in a marine-terminating ice stream using a stretch-coordinate flowline model. This model is based on that described in Schoof (2007), with a mesh refined near the grounding line to ensure accurate resolution of the mechanical transition zone. Here we have added lateral shear stress (Dupont & Alley 2005) and an undrained plastic bed (Tulaczyk et al. 2000). The parameter dependence of ice stream variability seen in this model compares favorably to both simpler (Robel et al. 2013) and more complex (van der Wel et al. 2013) models, though with some key differences. We find that thermally-induced internal ice stream variability can cause very rapid grounding line migration even in the absence of retrograde bed slopes or external forcing. Activation waves propagate along the ice stream length and trigger periods of rapid grounding line migration. We compare the behavior of the grounding line due to internal ice stream variability to changes triggered externally at the grounding line such as the rapid disintegration of buttressing ice shelves. Implications for Heinrich events and the Marine Ice Sheet Instability are discussed.

  19. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  20. Methods of removing a constituent from a feed stream using adsorption media

    Science.gov (United States)

    Tranter, Troy J [Idaho Falls, ID; Mann, Nicholas R [Rigby, ID; Todd, Terry A [Aberdeen, ID; Herbst, Ronald S [Idaho Falls, ID

    2011-05-24

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  1. Analyzing indicators of stream health for Minnesota streams

    Science.gov (United States)

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  2. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    Science.gov (United States)

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and

  3. Drivers of nitrogen transfer in stream food webs across continents.

    Science.gov (United States)

    Norman, Beth C; Whiles, Matt R; Collins, Sarah M; Flecker, Alexander S; Hamilton, Steve K; Johnson, Sherri L; Rosi, Emma J; Ashkenas, Linda R; Bowden, William B; Crenshaw, Chelsea L; Crowl, Todd; Dodds, Walter K; Hall, Robert O; El-Sabaawi, Rana; Griffiths, Natalie A; Marti, Eugènia; McDowell, William H; Peterson, Scot D; Rantala, Heidi M; Riis, Tenna; Simon, Kevin S; Tank, Jennifer L; Thomas, Steven A; von Schiller, Daniel; Webster, Jackson R

    2017-12-01

    Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15 N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean 11.5%, range 100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and percent canopy cover. N transfer efficiency did not respond consistently to environmental variables. Our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels. © 2017 by the Ecological Society of America.

  4. Methanotrophy in surface sediments of streams

    Science.gov (United States)

    Bagnoud, Alexandre; Pramateftaki, Paraskevi; Peter, Hannes; Battin, Tom

    2017-04-01

    Because streams are often found to be supersaturated in methane (CH4), they are considered as atmospheric sources of this greenhouse gas. However, little is known about the processes driving CH4 cycling in these environments, i.e. production, consumption and fluxes. CH4 is thought to be produced in deeper anoxic sediments, before it migrates up to reach the oxic stream water, where it can be oxidized by methanotrophs. In order to gain insights into this process, we investigated 14 different streams across Switzerland. We characterized the chemistry of surface and sediment waters by measuring dissolved chemical profiles. We also sampled surface sediments and determined methanotrophic rates with laboratory incubations and Michaelis-Menten modeling. Interestingly, rates were strongly correlated with the CH4 concentrations in stream waters, rather than in sediment waters. This indicates that methantrophic populations feed on CH4 from the surface streamwater, even though CH4 concentrations are higher in the sediment waters. Methanotrophy rates were also correlated with Crenothrix counts (based on 16S rRNA sequencing), a strict methanotroph, while this latter was correlated with pmoA counts (based on quantitative PCR), a gene involved in methanotrophy. These results show that Crenothrix genera are the most active methanotrophs in surface sediments of streams, and can represent more than 2% of microbial communities. Remarkably, the dominating Crenothrix species was detected in all 14 samples. This work allows the assessment of in situ methanotrophic rates, of the environmental parameters driving this process, and of the microbial populations carrying it out, and thus brings useful insights about carbon cycling in streams.

  5. Formation of magnetized plasma stream in the CTCC-I experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, K.; Ozaki, A.; Uyama, T.; Satomi, N.; Watenabe, K. (Osaka Univ., Suita (Japan). Faculty of Engineering)

    1981-10-01

    Magnetized plasma stream with the kinetic energy of more than 500 eV was produced successfully using a coaxial plasma gun with the subsidiary coils for providing the radial magnetic field at its muzzle. It was injected into the drift tube and the characteristics were investigated experimentally using the streak photographs, magnetic probes and flux loops. It was confirmed that this plasma stream had really both toroidal and poloidal magnetic fields.

  6. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data.

    Science.gov (United States)

    Wallace, J Bruce; Eggert, Susan L; Meyer, Judy L; Webster, Jackson R

    2015-05-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance, biomass, and secondary production in rockface (RF) and mixed substrates (MS) of forested headwater streams. Using a mesh canopy covering the entire treatment stream, we examined effects of litter ex'clusion, small- and large-wood removal, and addition of artificial wood (PVC) and leaves of varying quality on organic matter standing crops and invertebrate community structure and function. We assessed differences in functional feeding group distribution between substrate types as influenced by organic matter manipulations and long-term patterns of predator and prey production in manipulated vs. reference years. Particulate organic matter standing crops in MS of the treatment stream declined drastically with each successive year of litter exclusion, approaching zero after three years. Monthly invertebrate biomass and annual secondary production was positively related to benthic organic matter in the MS habitats. Rockface habitats exhibited fewer changes than MS habitats across all organic matter manipulations. With leaf addition, the patterns of functional group distribution among MS and RF habitats returned to patterns seen in reference streams. Secondary production per unit organic matter standing crop was greatest for the leaf addition period, followed by the reference streams, and significantly less for the litter exclusion and wood removal periods. These data indicate that the limited organic matter remaining in the stream following litter exclusion and wood removal was more refractory than that in the reference streams, whereas the added leaf material was more labile and readily converted into

  7. Enhanced winds and tidal streams in massive X-ray binaries

    International Nuclear Information System (INIS)

    Blondin, J.M.; Stevens, I.R.; Kallman, T.R.

    1991-01-01

    The tidal effects created by the presence of a compact companion are expected to induce a stream of enhanced wind from the early-type primary star in massive X-ray binary systems. In this paper, two-dimensional gasdynamical simulations of such streams are presented. It is found that the wind enhancement is a sensitive function of the binary separation, and develops into a tidal stream as the primary approaches its critical surface. For typical system parameters, the Coriolis force deflects the stream sufficiently that it does not impact directly on the compact companion but passes behind it. The density in the stream can reach values of 20-30 times the ambient wind density, leading to strong attenuation of the X-ray flux that passes through the tidal stream, providing a possible explanation of the enhanced absorption events seen at later phases in the X-ray observations of massive X-ray binary systems such as Vela X-1. In contrast to the time-variable accretion wake, the tidal stream is relatively stationary, producing absorption features that should remain fixed from orbit to orbit. For systems with a strong tidal stream, the large asymmetry in the accreting wind results in the accretion of angular momentum of constant sign, as opposed to systems without streams, where the sign of the accreted angular momentum can change. 39 refs

  8. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  9. Probing dark matter streams with CoGeNT

    International Nuclear Information System (INIS)

    Natarajan, Aravind; Savage, Christopher; Freese, Katherine

    2011-01-01

    We examine the future sensitivity of CoGeNT to the presence of dark matter streams and find that consideration of streams in the data may lead to differences in the interpretation of the results. We show the allowed particle mass and cross section for different halo parameters, assuming spin-independent elastic scattering. As an example, we choose a stream with the same velocity profile as that of the Sagittarius stream (and in the Solar neighborhood) and find that, with an exposure of ∼10 kg yr, the CoGeNT results can be expected to exclude the standard-halo-model-only halo in favor of a standard halo model+stream halo at the 95% (99.7%) confidence level, provided the stream contributes 3% (5%) of the local dark matter density. The presence of a significant stream component may result in incorrect estimates of the particle mass and cross section unless the presence of the stream is taken into account. We conclude that the CoGeNT experiment is sensitive to streams and care should be taken to include the possibility of streams when analyzing experimental results.

  10. Exploiting the Power of Relational Databases for Efficient Stream Processing

    NARCIS (Netherlands)

    E. Liarou (Erietta); R.A. Goncalves (Romulo); S. Idreos (Stratos)

    2009-01-01

    textabstractStream applications gained significant popularity over the last years that lead to the development of specialized stream engines. These systems are designed from scratch with a different philosophy than nowadays database engines in order to cope with the stream applications

  11. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  12. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    Science.gov (United States)

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  13. Directional bias of illusory stream caused by relative motion adaptation.

    Science.gov (United States)

    Tomimatsu, Erika; Ito, Hiroyuki

    2016-07-01

    Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes

    International Nuclear Information System (INIS)

    Artigas, Joan; García-Berthou, Emili; Gómez, Nora; Romaní, Anna M; Sabater, Sergi; Bauer, Delia E; Cochero, Joaquín; Cortelezzi, Agustina; Rodrigues-Capítulo, Alberto; Castro, Maria I; Donato, John C; Colautti, Darío C; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Leggieri, Leonardo; Muñoz, Isabel

    2013-01-01

    We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure. (letter)

  15. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-01-01

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  16. THE PAL 5 STAR STREAM GAPS

    International Nuclear Information System (INIS)

    Carlberg, R. G.; Hetherington, Nathan; Grillmair, C. J.

    2012-01-01

    Pal 5 is a low-mass, low-velocity-dispersion, globular cluster with spectacular tidal tails. We use the Sloan Digital Sky Survey Data Release 8 data to extend the density measurements of the trailing star stream to 23 deg distance from the cluster, at which point the stream runs off the edge of the available sky coverage. The size and the number of gaps in the stream are measured using a filter which approximates the structure of the gaps found in stream simulations. We find 5 gaps that are at least 99% confidence detections with about a dozen gaps at 90% confidence. The statistical significance of a gap is estimated using bootstrap resampling of the control regions on either side of the stream. The density minimum closest to the cluster is likely the result of the epicyclic orbits of the tidal outflow and has been discounted. To create the number of 99% confidence gaps per unit length at the mean age of the stream requires a halo population of nearly a thousand dark matter sub-halos with peak circular velocities above 1 km s –1 within 30 kpc of the galactic center. These numbers are a factor of about three below cold stream simulation at this sub-halo mass or velocity but, given the uncertainties in both measurement and more realistic warm stream modeling, are in substantial agreement with the LCDM prediction.

  17. Formation of magnetized plasma stream in the CTCC-I experiment

    International Nuclear Information System (INIS)

    Ikegami, Kazunori; Ozaki, Atsuhiko; Uyama, Tadao; Satomi, Norio; Watanabe, Kenji

    1981-01-01

    Magnetized plasma stream with the kinetic energy of more than 500 eV was produced successfully using a coaxial plasma gun with the subsidiary coils for providing the radial magnetic field at its muzzle. It was injected into the drift tube and the characteristics were investigated experimentally using the streak photographs, magnetic probes and flux loops. It was confirmed that this plasma stream had really both toroidal and poloidal magnetic fields. (author)

  18. Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon.

    Science.gov (United States)

    de Paiva, Carina Kaory Sasahara; de Faria, Ana Paula Justino; Calvão, Lenize Batista; Juen, Leandro

    2017-08-01

    The production of oil palm is expected to increase in the Amazon region. However, expansion of oil palm plantation leads to significant changes in the physical structure of aquatic ecosystems, mainly through the reduction of riparian vegetation that is essential for aquatic biodiversity. Here, we evaluated the effects of oil palm on the physical habitat structure of Amazonian stream environments and assemblages of Plecoptera and Trichoptera (PT), ​both found in these streams. We compared streams sampled in oil palm plantations (n = 13) with natural forest areas ("reference" streams, n = 8), located in the eastern Amazon, Brazil. Our results showed that oil palm streams were more likely to be in close proximity to roads, had higher pH values, and higher amounts of fine substrate deposited in the channel than reference streams. Further, these environmental changes had important effects on the aquatic invertebrate assemblages, reducing the abundance and richness of PT. Nevertheless, the genera composition of the assemblages did not differ between reference and oil palm (PERMANOVA, pseudo-F (1,19)  = 1.891; p = 0.111). We conclude that oil palm production has clear negative impacts on aquatic environments and PT assemblages in Amazonian streams. We recommend that oil palm producers invest more in planning of road networks to avoid the construction of roads near to the riparian vegetation. This planning can minimize impacts of oil palm production on aquatic systems in the Amazon.

  19. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    Science.gov (United States)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  20. Distinctive channel geometry and riparian vegetation: A geomorphic classification for arid ephemeral streams

    Science.gov (United States)

    Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.

    2012-12-01

    Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis

  1. Phytophthora Species in Rivers and Streams of the Southwestern United States.

    Science.gov (United States)

    Stamler, Rio A; Sanogo, Soumalia; Goldberg, Natalie P; Randall, Jennifer J

    2016-08-01

    Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Analysis of SRP waste streams for waste tank certification

    International Nuclear Information System (INIS)

    Coleman, C.J.

    1989-01-01

    The Savannah River Plant (SRP) will apply for certification from the State of South Carolina to operate the SRP High-Level Waste Tanks. The permit application will be submitted as a RCRA Part B, Volume 16, entitled ''RCRA Part B Application For the F and H-Area Radioactive Waste Farm.'' RCRA regulations require that influent and effluent streams of hazardous waste sites be characterized to obtain an operating permit. The Waste Management Technology Department requested ADD to determine 21 components (including pH and weight percent solids) in the current influent streams to SRP High-Level Waste Tanks. The analyses will be used to supplement existing data on the composition of High-Level Waste. Effluent streams, which will feed Saltstone and the DWPF, will be analyzed when they are produced. This report contains the data obtained from analyzing key influent streams to SRP High-Level Waste Tanks. The precision of the data and the analytical methods that were used are also discussed

  3. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  4. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  5. Pattern Discovery and Change Detection of Online Music Query Streams

    Science.gov (United States)

    Li, Hua-Fu

    In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.

  6. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  7. A new flow focusing technique to produce very thin jets

    International Nuclear Information System (INIS)

    Acero, A J; Rebollo-Muñoz, N; Montanero, J M; Gañán-Calvo, A M; Vega, E J

    2013-01-01

    A new technique is proposed in this paper to produce jets, droplets, and emulsions with sizes ranging from tens of microns down to the submicrometer scale. Liquid is injected at a constant flow rate through a hypodermic needle to form a film over the needle's outer surface. This film flows toward the needle tip until a liquid ligament is steadily ejected. Both the film motion and the liquid ejection are driven by the viscous and pressure forces exerted by a coflowing fluid stream. If this stream is a high-speed gas current, the outcome is a capillary jet which breaks up into droplets due to the Rayleigh instability. Micrometer emulsions are also produced by this instability mechanism when the injected liquid is focused by a viscous liquid stream. The minimum flow rates reached with the proposed technique are two orders of magnitude lower than those of the standard flow focusing configuration. This sharp reduction of the minimum flow rate allows one to form steady jets with radii down to the submicrometer scale. The stability of this new configuration is analyzed experimentally for both gas–liquid and liquid–liquid systems. In most of the cases, the loss of stability must be attributed to the liquid source because the critical Weber (capillary) number for the gas–liquid (liquid–liquid) case was significantly greater than the value corresponding to the convective/absolute instability transition in the jet. (paper)

  8. POLA RASIO KEUANGAN PADA SAAT UP STREAM DAN DOWN STREAM DI INDUSTRI REALESTAT YANG GO PUBLIC

    Directory of Open Access Journals (Sweden)

    David Sukardi Kodrat

    2006-01-01

    Full Text Available This research has purpose to explain differences on indicator financial ratio in up and down stream condition. This research uses real estate industries listed on Jakarta Stock Exchange as a sample. Sample selection is performed based on purposive sampling method with object to gain sample according to the research aim. Based on those criteria, there are 18 companies, which have fulfilling the conditions needed, starting from 1994 until 2002. The classification of business cycle on up and down stream conditions to used stock pricing indexes of property and real estate which calculated by arithmatic mean method. Based on those criteria, the classifications from 1994 until 1997 are represented by up stream condition and from 1998 until 2002 are represented by down stream condition. The result shows indicators: profitability ratios, gross margin ratios, capital turnover ratios, asset to equity ratios, growth ratios, liquidity ratios, leverage ratios, and cash flow ratios are different in up and down stream conditions, both simultaneously and partially. Simultaneously, there is a significant difference between up and down stream condition with wilks lambda of 0,346 and p value of 0,000. This research shows financial ratio indicator has differences on business cycle. Abstract in Bahasa Indonesia : Penelitan ini mempunyai tujuan untuk mengetahui perbedaan indikator rasio keuangan pada kondisi up stream dan down stream. Penelitian ini menggunakan sampel pada industri di sektor properti yang terdaftar di Bursa Efek Jakarta. Pemilihan sampel dalam penelitian ini menggunakan Purposive Sampling yaitu sampel diambil berdasarkan kriteria-kriteria tertentu yang sesuai dengan tujuan penelitian ini. Berdasarkan kriteria tersebut, terdapat 18 perusahaan yang dapat dijadikan sampel mulai tahun 1994 sampai dengan 2002. Untuk menentukan perubahan business cycle pada kondisi up stream dan down stream dilakukan dengan menggunakan indeks harga saham di sektor properti

  9. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  10. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture

    Science.gov (United States)

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Focazio, Michael J.; Meyer, Michael T.; Johnson, Heather E.; Oster, Ryan J.; Foreman, William T.

    2016-01-01

    Animal waste, stream water, and streambed sediment from 19 small (animal agriculture (control, n = 4), or predominantly beef (n = 4), dairy (n = 3), swine (n = 5), or poultry (n = 3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions

  11. Contaminated Stream Water as Source for Escherichia coli O157 Illness in Children.

    Science.gov (United States)

    Probert, William S; Miller, Glen M; Ledin, Katya E

    2017-07-01

    In May 2016, an outbreak of Shiga toxin-producing Escherichia coli O157 infections occurred among children who had played in a stream flowing through a park. Analysis of E. coli isolates from the patients, stream water, and deer and coyote scat showed that feces from deer were the most likely source of contamination.

  12. Effects of sulphuric acid pollution on the biology of streams in the Transvaal, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A D

    1958-01-01

    Strongly acid effluents or drainage waters are produced during gold and coal mining activities in the Transvaal. Sulphuric acid is produced during oxidation of pyrites exposed by mining operations and much of it finds its way into streams and creates serious pollution problems. The object of this paper is to give a short account of the effects of this acid pollution on the biology of these streams. The first streams considered are the Klip and Klipspruit near their confluence at Olifantsvlei, near Johannesburg. These were studied during a two-year investigation of the area. Both receive acid pollution from gold mine dumps and slimes dams, the seepages from which have pH values as low as 2.3. Both streams run over dolomite formations so the acid is gradually neutralised but highly mineralised, permanently hard water results. The Klip and the Klipspruit join in the middle of a y-shaped, swampy area, each stream coming down one of the upper arms of the y. A sampling station was set up on each where it runs slowly through the swamp just before confluence.

  13. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  14. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  15. Akamai Streaming

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Akamai offers world-class streaming media services that enable Internet content providers and enterprises to succeed in today's Web-centric marketplace. They deliver live event Webcasts (complete with video production, encoding, and signal acquisition services), streaming media on demand, 24/7 Webcasts and a variety of streaming application services based upon their EdgeAdvantage.

  16. SAIChE Conference Poster: Irradiation treatment of dissolving pulps produced in South Africa

    CSIR Research Space (South Africa)

    Ocwelwang, A

    2014-07-01

    Full Text Available stream_source_info Ocwelwang_2014_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 876 Content-Encoding ISO-8859-1 stream_name Ocwelwang_2014_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 2014... International Conference on Chemical Thermodynamics and South African Institution of Chemical Engineering Conference, Durban, South Africa, 27 July - 1 August 2014 SAIChE Conference Poster: Irradiation treatment of dissolving pulps produced in South...

  17. Health risk assessment for radium discharged in produced waters

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-01-01

    Produced water generated during the production of oil and gas can contain enhanced levels of radium. This naturally occurring radioactive material (NORM) is discharged into freshwater streams, estuarine, coastal and outer continental shelf waters. Large volumes of produced waters are discharged to coastal waters along the Gulf Coast of Louisiana. The Gulf of Mexico is an important producer of fish and shellfish, and there is concern that radium discharged to coastal Louisiana could contaminate fish and shellfish used by people for food, and present a significant increase in cancer risk. This paper describes a screening-level assessment of the potential cancer risks posed by radium discharged to coastal Louisiana in oil-field produced waters. This screening analysis was performed to determine if a more comprehensive and realistic assessment is necessary, and because of the conservative assumptions embedded in the analysis overestimates the risk associated with the discharge of radium in produced waters. Two isotopes of radium (Ra-226 and Ra-228) are the radionuclides of most concern in produced water in terms of potential human health effects

  18. Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams

    Science.gov (United States)

    Davidson, S. L.; Eaton, B. C.

    2014-12-01

    In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is

  19. Headwater streams in the EU Water Framework Directive: Evidence-based decision support to select streams for river basin management plans

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, Annette; Larsen, Søren Erik; Andersen, Dagmar K.

    2018-01-01

    , however, it is intensely debated whether the small size and low slopes, typical of Danish streams, in combination with degraded habitat conditions obstruct their ability to fulfill the ecological quality objectives required by the EU Water Framework Directive (WFD). The purpose of this studywas to provide...... an analytically based framework for guiding the selection of headwater streams for RBMP. Specifically, the following hypotheses were addressed: i) stream slope, width, planform, and general physical habitat quality can act as criteria for selecting streams for the next generation of RBMPs, and ii) probability......-based thresholds for reaching good ecological status can be established for some or all of these criteria, thus creating a sound, scientifically based, and clear selection process. The hypotheses were tested using monitoring data on Danish streams from the period 2004–2015. Significant linear relationships were...

  20. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  1. Process and system for removing sulfur from sulfur-containing gaseous streams

    Science.gov (United States)

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  2. Stream-lined Gating Systems with Improved Yield - Dimensioning and Experimental Validation

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Skov-Hansen, Søren Peter

    the two types of lay-outs are cast in production. It is shown that flow in the stream-lined lay-out is well controlled and that the quality of the castings is as at least equal to that of castings produced with a traditional lay-out. Further, the yield is improved by 4 % relative to a traditional lay-out.......The paper describes how a stream-lined gating system where the melt is confined and controlled during filling can be designed. Commercial numerical modelling software has been used to compare the stream-lined design with a traditional gating system. These results are confirmed by experiments where...

  3. Method and apparatus for producing food grade carbon dioxide

    International Nuclear Information System (INIS)

    Nobles, J.E.; Swenson, L.K.

    1984-01-01

    A method is disclosed of producing food grade carbon dioxide from an impure carbon dioxide source stream containing contaminants which may include light and heavy hydrocarbons (at least C 1 to C 3 ) and light sulfur compounds such as hydrogen sulfide and carbonyl sulfide as well as heavier sulfur constituents in the nature of mercaptans (RSH) and/or organic mono and disulfides (RSR and RSSR). Nitrogen, water and/or oxygen may also be present in varying amounts in the impure feed stream. The feed gas is first rectified with liquid carbon dioxide condensed from a part of the feed stream to remove heavy hydrocarbons and heavy sulfur compounds, then passed through an absorber to effect removal of the light sulfur compounds, next subjected to an oxidizing atmosphere capable of converting all of the C 2 hydrocarbons and optionally a part of the methane to carbon oxides and water, chilled to condense the water in the remaining gas stream without formation of hydrates, liquefied for ease of handling and storage and finally stripped to remove residual contaminants such as methane, carbon monoxide and nitrogen to produce the final food grade carbon dioxide product

  4. Analysis of hydraulic characteristics for stream diversion in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jin; Jun, Kye-Won [Chungbuk National University, Cheongju(Korea)

    2001-10-31

    This study is the analysis of hydraulic characteristics for stream diversion reach by numerical model test. Through it we can provide the basis data in flood, and in grasping stream flow characteristics. Analysis of hydraulic characteristics in Seoknam stream were implemented by using computer model HEC-RAS(one-dimensional model) and RMA2(two-dimensional finite element model). As a result we became to know that RMA2 to simulate left, main channel, right in stream is more effective method in analysing flow in channel bends, steep slope, complex bed form effect stream flow characteristics, than HEC-RAS. (author). 13 refs., 3 tabs., 5 figs.

  5. Effect of harmonic rank on the streaming of complex tones

    DEFF Research Database (Denmark)

    Madsen, Sara Miay Kim; Dau, Torsten; Moore, Brian C.J.

    2015-01-01

    The effect of the rank of the harmonics on sequential stream segregation of complex tones was investigated for normal-hearing participants with no musical training. It was hypothesized that stream segregation would be greater for tones with high pitch salience, as assessed by fundamental frequency....... There was a significant trend for less stream segregation with increasing harmonic rank. The amount of stream segregation was inversely correlated with the f0 difference limens, consistent with the hypothesis....

  6. The metaphors we stream by: Making sense of music streaming

    OpenAIRE

    Hagen, Anja Nylund

    2016-01-01

    In Norway music-streaming services have become mainstream in everyday music listening. This paper examines how 12 heavy streaming users make sense of their experiences with Spotify and WiMP Music (now Tidal). The analysis relies on a mixed-method qualitative study, combining music-diary self-reports, online observation of streaming accounts, Facebook and last.fm scrobble-logs, and in-depth interviews. By drawing on existing metaphors of Internet experiences we demonstrate that music-streaming...

  7. Resource synergy in stream periphyton communities

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Walter [University of Illinois, Urbana-Champaign; Fanta, S.E. [University of Illinois; Roberts, Brian J [ORNL; Francoeur, Steven N. [Eastern Michigan University, Ypsilanti, MI

    2011-03-01

    1. Light and nutrients play pivotal roles in determining the growth of autotrophs, yet the potential for synergistic interactions between the two resources in algal communities is poorly understood, especially in stream ecosystems. In this study, light and phosphorus were manipulated in large experimental streams to examine resource colimitation and synergy in stream periphyton. 2. Whole-stream metabolism was simultaneously limited by light and phosphorus. Increasing the supply of either light or phosphorus resulted in significant increases in primary production and the transformation of the streams from heterotrophy to autotrophy. 3. Resource-driven changes in periphyton community structure occurred in concert with changes in production. Algal assemblages in highly shaded streams were composed primarily of small diatoms such as Achnanthidium minutissima, whereas larger diatoms such as Melosira varians predominated at higher irradiances. Phosphorus enrichment had relatively little effect on assemblage structure, but it did substantially diminish the abundance of Meridion circulare, a diatom whose mucilaginous colonies were conspicuously abundant in phosphorus-poor, high-light streams. Bacterial biomass declined relative to algal biomass with increases in primary productivity, regardless of whether the increases were caused by light or phosphorus. 4. Synergistic effects on primary production appeared to occur because the availability of one resource facilitated the utilization of the other. Light increased the abundance of large diatoms, which are known to convert high concentrations of nutrients into primary production more effectively than smaller taxa. Phosphorus enrichment led to the replacement of Meridion circulare by non-mucilaginous taxa in phosphorus-enriched streams, and we hypothesize that this change enabled more efficient use of light in photosynthesis. Higher ratios of chlorophyll a : biomass in phosphorus-enriched streams may have also led to more

  8. Large wood and in-stream habitat for juvenile coho salmon and larval lampreys in a Pacific Northwest stream

    Science.gov (United States)

    Gonzalez, Rosalinda; Dunham, Jason B.; Lightcap, Scott W.; McEnroe, Jeffery R.

    2017-01-01

    The influences of large wood on Pacific salmon are well-studied, but studies of nonsalmonid species such as lampreys are uncommon. To address this need, we evaluated the potential effects of large wood on larval lampreys (Pacific Lamprey, Entosphenus tridentatus; and potentially Western Brook Lamprey Lampetra richardsoni), as well as juvenile Coho Salmon Oncorhynchus kisutch, in a small coastal Oregon stream. Our objectives were to 1) identify in-stream habitat characteristics associated with the presence of larval lampreys and abundance of juvenile Coho Salmon; and 2) evaluate how these characteristics were associated with in-stream wood. To address habitat use, we quantified presence of larval lampreys in 92 pools and abundance of juvenile Coho Salmon in 44 pools during summer low flows. We focused on a study reach where large wood was introduced into the stream between 2008 and 2009. Results indicated that presence of larval lampreys was significantly associated with availability of fine sediment and deeper substrate. The abundance of juvenile Coho Salmon (fish/pool) was strongly associated with pool surface area and to a weaker extent with the proportion of cobble and boulder substrates in pools. Pools with wood, regardless of whether they were formed by wood, had significantly greater coverage of fine sediment, deeper substrate, and greater pool surface area. Taken together, these results suggest that in-stream wood can provide habitat associated with presence of larval lampreys and greater abundance of juvenile Coho Salmon.

  9. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    Science.gov (United States)

    Hladik, Michelle; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  10. Distribution, abundance, and diversity of stream fishes under variable environmental conditions

    Science.gov (United States)

    Christopher M. Taylor; Thomas L. Holder; Richard A. Fiorillo; Lance R. Williams; R. Brent Thomas; Melvin L. Warren

    2006-01-01

    The effects of stream size and flow regime on spatial and temporal variability of stream fish distribution, abundance, and diversity patterns were investigated. Assemblage variability and species richness were each significantly associated with a complex environmental gradient contrasting smaller, hydrologically variable stream localities with larger localities...

  11. The impact of Indian Ocean high pressure system on rainfall and stream flow

    International Nuclear Information System (INIS)

    Rehman, S.; Nasir, H.; Zia, S.S.; Ansari, W.A.; Salam, K.; Tayyab, N.

    2012-01-01

    Centre of Action approach is very useful in getting insight of rainfall and stream flow variability of specific region. Hameed et al. showed that Inter-annual variability of Gulf Stream north wall is influenced by low Icelandic pressure system and has more statistically significant correlation than North Atlantic Oscillation (NAO) with longitude of Icelandic low. This study also aims to explore possible relationships between rainfall and stream flow in Collie river catchment in Southwest Western Australia (SWWA) with Indian Ocean high pressure dynamics. The relationship between rainfall and stream flow with Indian Ocean high pressure system have been investigated using correlation analysis for early winter season (MJJA), lag correlation for MJJA versus SOND rainfall and stream flow are also calculated and found significant at 95% confidence level. By investigating the relationship between COA indices with rainfall and stream flow over the period 1976-2008, significant correlations suggests that rainfall and stream flow in Collie river basin is strongly influenced by COA indices. Multiple correlations between rainfall and stream flow with Indian Ocean high pressure (IOHPS and IOHLN) is 0.7 and 0.6 respectively. Centers of Action (COA) indices explain 51% and 36% of rainfall and stream flow respectively. The correlation between rainfall and stream flow with IOHPS is -0.4 and -0.3 whereas, with IOHLN is -0.47 and -0.52 respectively. (author)

  12. Bankfull discharge and channel characteristics of streams in New York State

    Science.gov (United States)

    Mulvihill, Christiane I.; Baldigo, Barry P.; Miller, Sarah J.; DeKoskie, Douglas; DuBois, Joel

    2009-01-01

    curves for region 3 were significantly different p(≤0.05) from the other six regions.It was hypothesized that some regional variability could be reduced by creating models for streams with similar physiographic and climatic characteristics. Available data on streamflow patterns and previous regional-curve research suggested that mean annual runoff, Rosgen stream type, and water-surface slope were the variables most likely to influence regional bankfull discharge and channel characteristics to drainage-area size relations. Results showed that although all of these factors had an influence on regional relations, most stratified models have lower 2 values and higher standard errors of estimate than the regional models.The New York statewide (pooled) bankfull-discharge equation and equations for regions 4 and 7 were compared with equations for four other regions in the Northeast to evaluate region-to-region differences, and assess the ability of individual curves to produce results more accurate than those that would be obtained from one model of the northeastern United States. Results indicated that model slopes lack significant diferences, though intercepts are significantly different. Comparison of bankfull-discharge estimates using different models shows that results could vary by as much as 100 percent depending on which model was used and indicated that regionalization improved model accuracy.

  13. Stream Response to an Extreme Defoliation Event

    Science.gov (United States)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  14. Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams

    Science.gov (United States)

    Bennamoun, Mohammed

    2014-01-01

    In prosthodontics, conventional methods of fabrication of oral and facial prostheses have been considered the gold standard for many years. The development of computer-aided manufacturing and the medical application of this industrial technology have provided an alternative way of fabricating oral and facial prostheses. This narrative review aims to evaluate the different streams of computer-aided manufacturing in prosthodontics. To date, there are two streams: the subtractive and the additive approaches. The differences reside in the processing protocols, materials used, and their respective accuracy. In general, there is a tendency for the subtractive method to provide more homogeneous objects with acceptable accuracy that may be more suitable for the production of intraoral prostheses where high occlusal forces are anticipated. Additive manufacturing methods have the ability to produce large workpieces with significant surface variation and competitive accuracy. Such advantages make them ideal for the fabrication of facial prostheses. PMID:24817888

  15. Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams

    Directory of Open Access Journals (Sweden)

    Jaafar Abduo

    2014-01-01

    Full Text Available In prosthodontics, conventional methods of fabrication of oral and facial prostheses have been considered the gold standard for many years. The development of computer-aided manufacturing and the medical application of this industrial technology have provided an alternative way of fabricating oral and facial prostheses. This narrative review aims to evaluate the different streams of computer-aided manufacturing in prosthodontics. To date, there are two streams: the subtractive and the additive approaches. The differences reside in the processing protocols, materials used, and their respective accuracy. In general, there is a tendency for the subtractive method to provide more homogeneous objects with acceptable accuracy that may be more suitable for the production of intraoral prostheses where high occlusal forces are anticipated. Additive manufacturing methods have the ability to produce large workpieces with significant surface variation and competitive accuracy. Such advantages make them ideal for the fabrication of facial prostheses.

  16. Rhodamine-WT dye losses in a mountain stream environment

    Science.gov (United States)

    Bencala, Kenneth E.; Rathburn, Ronald E.; Jackman, Alan P.; Kennedy, Vance C.; Zellweger, Gary W.; Avanzino, Ronald J.

    1983-01-01

    A significant fraction of rhodamine WT dye was lost during a short term multitracer injection experiment in a mountain stream environment. The conservative anion chloride and the sorbing cation lithium were concurrently injected. In-stream rhodamine WT concentrations were as low as 45 percent of that expected, based on chloride data. Concentration data were available from shallow‘wells’dug near the stream course and from a seep of suspected return flow. Both rhodamine WT dye and lithium were nonconservative with respect to the conservative chloride, with rhodamine WT dye closely following the behavior of the sorbing lithium.Nonsorption and sorption mechanisms for rhodamine WT loss in a mountain stream were evaluated in laboratory experiments. Experiments evaluating nonsorption losses indicated minimal losses by such mechanisms. Laboratory experiments using sand and gravel size streambed sediments show an appreciable capacity for rhodamine WT sorption.The detection of tracers in the shallow wells and seep indicates interaction between the stream and the flow in the surrounding subsurface, intergravel water, system. The injected tracers had ample opportunity for intimate contact with materials shown in the laboratory experiments to be potentially sorptive. It is suggested that in the study stream system, interaction with streambed gravel was a significant mechanism for the attenuation of rhodamine WT dye (relative to chloride).

  17. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA

    Science.gov (United States)

    Haroldson, M.A.; Gunther, K.A.; Reinhart, Daniel P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.

    2005-01-01

    to produce annual estimates of grizzly bears visiting streams. Approximately 68 grizzly bears visited the vicinity of cutthroat trout spawning streams annually. Thus, approximately 14–21% of grizzly bears in the Greater Yellowstone Ecosystem (GYE) may have used this threatened food resource annually. Yellowstone National Park (YNP) is attempting to control the lake trout population in Yellowstone Lake; our results underscore the importance of that effort to grizzly bears.

  18. Spatial simulation of smallmouth bass in streams

    International Nuclear Information System (INIS)

    Jager, H.I.; Schmoyer, D.D.; Sale, M.J.; Van Winkle, W.; DeAngelis, D.L.; Sabo, M.J.

    1993-01-01

    The hydropower industry and its regulators are hampered by the inability to predict the relationship between alternative flow regimes and fish population response. We have developed a spatially explicit, individual-based model of populations of small-mouth bass in streams as part of the Compensatory Mechanisms in Fish Populations Program (see Sale and Otto 1991). In the model, the profitability of alternative stream locations varies in response to habitat depth and velocity through changes in the frequency of prey encounters and the metabolic costs experienced by fish. We conducted an evaluation of our hydraulic simulation at the scale of individual stream cells. The potential error in predictions for individual cell velocities suggests that larger-scale model predictions for the representative reach are most appropriate. At this scale, the model appears to produce realistic patterns in the growth and dispersal of young-of-year small-mouth bass. This verification step allows us to proceed with greater confidence in evaluating the original question of how small-mouth bass populations respond to alternative flow regimes

  19. Stream Insect Production as a Function of Alkalinity and Detritus Processing

    OpenAIRE

    Osborn, Thomas G.

    1981-01-01

    The study was conducted to determine if aquatic insect production was significantly different between high and low alkalinity mountain streams and if any differences were associated with food availability factors. The major objectives included determining: (1) if annual production differences occur between high and low alkalinity streams; (2) if processing rates of terrestrial detritus differs between high and low alkalinity streams; (3) if detrital processing rates are related to stream inse...

  20. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    Directory of Open Access Journals (Sweden)

    Jacob D. Hosen

    2017-08-01

    Full Text Available Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition

  1. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  2. Method and apparatus for determining uranium concentration in a moving stream

    International Nuclear Information System (INIS)

    Bartko, J.; Wonn, J.W.

    1977-01-01

    The concentration of uranium in a moving stream is determined by agglomerating background microbubbles out of the 6 to 10 micron size range, counting microbubbles in the stream which are about 6 to about 10 microns in size, exposing the stream to a radiation source to cause uranium fission fragments to produce microbubbles, counting microbubbles which are about 6 to about 10 microns in size, and subtracting one count from the other and multiplying by a calibration constant. The subtraction can be performed on an earlier first count so that both counts are made on the same volume. The radiation exposure can be automatically increased when the difference between the first and second counts is low

  3. Stream habitat structure influences macroinvertebrate response to pesticides

    International Nuclear Information System (INIS)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette; Friberg, Nikolai; Kronvang, Brian

    2012-01-01

    Agricultural pesticides continue to impair surface water ecosystems, although there are few assessments of interactions with other modifications such as fine sediment and physical alteration for flood drainage. We, therefore, surveyed pesticide contamination and macroinvertebrates in 14 streams along a gradient of expected pesticide exposure using a paired-reach approach to differentiate effects between physically modified and less modified sites. Apparent pesticides effects on the relative abundance of SPEcies At Risk (SPEAR) were increased at sites with degraded habitats primarily due to the absence of species with specific preferences for hard substrates. Our findings highlight the importance of physical habitat degradation in the assessment and mitigation of pesticide risk in agricultural streams. - Highlights: ► %SPEAR abundance significantly decreased with increasing TU (D. magna). ► %SPEAR abundance was significantly lower when soft sediment was dominant. ► Species specific habitat preferences influenced the total effect of pesticides. ► This study has strong implications for future stream management and risk assessment. - Ecological impacts of pesticides on stream macroinvertebrates are influenced by the heterogeneity and physical structure of micro-habitats.

  4. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  5. Stream Crossings

    Data.gov (United States)

    Vermont Center for Geographic Information — Physical measurements and attributes of stream crossing structures and adjacent stream reaches which are used to provide a relative rating of aquatic organism...

  6. Measurements and Predictions of the Noise from Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.

    2015-01-01

    An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary-to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with

  7. Stream Width Dynamics in a Small Headwater Catchment

    Science.gov (United States)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  8. Analysis of the separation of protium from blanket tritium-product streams

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1981-07-01

    The case is considered in which the blanket product stream has been purified to the point where only protium, tritium, and a small quantity of deuterium remain. A cryogenic distillation cascade concept developed specifically to handle this enrichment problem is shown. The concept is based on a series of distillation columns and equilibrators capable of producing a protium-rich stream containing less than 1000 appm T and a tritium-rich stream containing less than 2000 appm H. It is envisioned that both of these streams could be blended with streams of comparable composition in the mainstream position of the fuel cycle without further processing. The computational analysis of the cascade was based on a fixed arrangement of columns and equilibrators and a fixed number of theoretical plates per columns, since these features are less easily varied in an actual system than reflux ratios and flow rates. In order to test the flexibility of this conceptual enruchment system to adjust to variations of the H/T ratio in the feed, H/T values of 0.333, 1.00, and 3.00 were investigated

  9. Influence of infrastructure on water quality and greenhouse gasdynamics in urban streams

    Science.gov (United States)

    Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4), and watershed management can alter greenhouse gas emissions from streams. GHG emissions from streams in agricultural watersheds have been investigated in numerous studies,...

  10. Methods and apparatus for carbon dioxide removal from a fluid stream

    Science.gov (United States)

    Wei, Wei; Ruud, James Anthony; Ku, Anthony Yu-Chung; Ramaswamy, Vidya; Liu, Ke

    2010-01-19

    An apparatus for producing hydrogen gas wherein the apparatus includes a reactor. In one embodiment, the reactor includes at least two conversion-removal portions. Each conversion-removal portion comprises a catalyst section configured to convert CO in the stream to CO.sub.2 and a membrane section located downstream of and in flow communication with the catalyst section. The membrane section is configured to selectively remove the CO.sub.2 from the stream and to be in flow communication with a sweep gas.

  11. High-speed packet filtering utilizing stream processors

    Science.gov (United States)

    Hummel, Richard J.; Fulp, Errin W.

    2009-04-01

    Parallel firewalls offer a scalable architecture for the next generation of high-speed networks. While these parallel systems can be implemented using multiple firewalls, the latest generation of stream processors can provide similar benefits with a significantly reduced latency due to locality. This paper describes how the Cell Broadband Engine (CBE), a popular stream processor, can be used as a high-speed packet filter. Results show the CBE can potentially process packets arriving at a rate of 1 Gbps with a latency less than 82 μ-seconds. Performance depends on how well the packet filtering process is translated to the unique stream processor architecture. For example the method used for transmitting data and control messages among the pseudo-independent processor cores has a significant impact on performance. Experimental results will also show the current limitations of a CBE operating system when used to process packets. Possible solutions to these issues will be discussed.

  12. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  13. Pilot-Streaming: Design Considerations for a Stream Processing Framework for High-Performance Computing

    OpenAIRE

    Andre Luckow; Peter Kasson; Shantenu Jha

    2016-01-01

    This White Paper (submitted to STREAM 2016) identifies an approach to integrate streaming data with HPC resources. The paper outlines the design of Pilot-Streaming, which extends the concept of Pilot-abstraction to streaming real-time data.

  14. Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics.

    Science.gov (United States)

    Thomaz, Edivaldo L; Peretto, Gustavo T

    2016-04-15

    Unpaved roads are ubiquitous features that have been transforming the landscape through human history. Unpaved roads affect the water and sediment pathways through a catchment and impacts the aquatic ecosystem. In this study, we describe the effect of unpaved road on the hydrogeomorphic connectivity at the rural headwater scale. Measurement was based on the stream crossing approach, i.e., road superimposing the drainage system. We installed a Parshall flume coupled with single-stage suspended sediment sampler at each stream crossing. In addition, we displayed our monitoring scheme with an upscaling perspective from second-order to third-order stream. We concluded that the road-stream coupling dramatically changed the stream dynamic. The increase of discharge caused by roads at the headwater was 50% larger compared to unaffected streams. Additionally, suspended sediment concentration enhancement at stream crossings ranged from to 413% at second-order streams to 145% at third-order streams. The landform characteristics associated with the road network produced an important hydrogeomorphic disruption in the landscape. As a result, the sediment filter function of the riparian zone was reduced dramatically. Therefore, we recommend that projects for aquatic system restoration or conservation in rural landscape consider the role of the road network on stream dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  16. Subglacial hydrology and the formation of ice streams.

    Science.gov (United States)

    Kyrke-Smith, T M; Katz, R F; Fowler, A C

    2014-01-08

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.

  17. Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars

    Science.gov (United States)

    Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.

    2018-05-01

    We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.

  18. Fish movement in an Atlantic Forest stream

    Directory of Open Access Journals (Sweden)

    Rosana Mazzoni

    2018-03-01

    Full Text Available ABSTRACT Given the importance of fish movement to the dynamics and maintenance of stream dwelling fish communities from the Atlantic Forest, we analysed patterns of fish movement in a coastal stream from Southeastern Brazil, using mark-recapture technique. Displacement distance of each species were presented and discussed considering seasonal (rainy and dry and body size patterns. We marked 10 species along the stream and recaptured 440 (34.6% of the 1,270 marked fishes. The species with significant number of upstream moving individuals were Astyanax janeiroensis, Characidium interruptum, Astyanax hastatus, Parotocinclus maculicauda and Awaous tajasica. Only Pimelodella lateristriga presented significant differences between resident and moving individuals. Characidium interruptum and A. tajasica demonstrated greater downstream and upstream movement, respectively, moving up to 2,100 m. Even after controlling for species identity we found no significant correlation between fish length and individual displacement distance. Fishes moved longer distances during the rainy season, in accordance to the breeding season. Patterns of fish movement were in agreement to life-history traits of many of the studied species and can be reflecting specific behaviour and morphologies.

  19. Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2017-02-01

    Full Text Available In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many programming languages popular among data mining researchers (e.g., C/C++, Java and Python. In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be extended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.

  20. Hybrid Multicast-Unicast Video Streaming over Heterogeneous Cellular Networks

    OpenAIRE

    Almowuena, Saleh Abdullah

    2016-01-01

    The demand for multimedia streaming over mobile networks has been steadily increasing in the past several years. For instance, it has become common for mobile users to stream full TV episodes, sports events, and movies while on the go. Unfortunately, this growth in demand has strained the wireless networks despite the significant increase in their capacities with recent generations. It has also caused a significant increase in the energy consumption at mobile terminals. To overcome these chal...

  1. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  2. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  3. Stream lines for a pure multipole current distribution

    International Nuclear Information System (INIS)

    Gongora-T, A.

    1990-01-01

    We give an equation describing the electric current stream-lines on the surface of a sphere that generates a magnetic field which contains a single multipole component. The equation shows how to wind a coil in order to produce a pure multipole field and helps to give an intuitive grasp of how well existing traps approximate multipoles. (Author)

  4. Ecoregions and stream morphology in eastern Oklahoma

    Science.gov (United States)

    Splinter, D.K.; Dauwalter, D.C.; Marston, R.A.; Fisher, W.L.

    2010-01-01

    Boston Mountains and Ozark Highlands were not statistically different. Significant differences existed, however, between the Boston Mountains and Ozark Highlands when compared individually to the Ouachita Mountains. We found that ecoregions afforded a good spatial structure that can help in understanding longitudinal trends in stream reach morphology surveyed at the reach scale. The hierarchy of the fluvial system begins within a broad, relatively homogenous setting that imparts control on processes that affect stream function. Ecoregions provide an adequate regional division to begin a large-scale geomorphic study of processes in stream channels. ?? 2010 Elsevier B.V.

  5. Time-Based Data Streams: Fundamental Concepts for a Data Resource for Streams

    Energy Technology Data Exchange (ETDEWEB)

    Beth A. Plale

    2009-10-10

    Real time data, which we call data streams, are readings from instruments, environmental, bodily or building sensors that are generated at regular intervals and often, due to their volume, need to be processed in real time. Often a single pass is all that can be made on the data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all practical purposes indefinite, so decisions must be made on incomplete knowledge. This notion of data streams has a different set of issues from a file, for instance, that is byte streamed to a reader. The file is finite, so the byte stream is becomes a processing convenience more than a fundamentally different kind of data. Through the duration of the project we examined three aspects of streaming data: the first, techniques to handle streaming data in a distributed system organized as a collection of web services, the second, the notion of the dashboard and real time controllable analysis constructs in the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined provenance collection of stream processing such as might occur as raw observational data flows from the source and undergoes correction, cleaning, and quality control. The impact of this work is severalfold. We were one of the first to advocate that streams had little value unless aggregated, and that notion is now gaining general acceptance. We were one of the first groups to grapple with the notion of provenance of stream data also.

  6. Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb – Zn Ore Mining. Areas of Ebonyi ... produced both for local consumption and also for food supplies to other .... of deionised water using a pH-meter (Aqualytica. Model pH 17).

  7. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  8. Sediment transport and channel morphology of small, forested streams.

    Science.gov (United States)

    Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant

    2005-01-01

    This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...

  9. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  10. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  11. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    Science.gov (United States)

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  12. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  13. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  14. Prevalence, characterization and clinical significance of Klebsiella pneumoniae carbapenemase (KPC producing Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    : Sarita Nayak, Suman Singh, Soeb Jankhwala, Riddhi Pradhan

    2014-11-01

    Full Text Available Klebsiella peumoniae, a capsulated gram negative bacillus is responsible for causing life threatening infections in humans. Carbapenems are the drug of choice for serious infection caused by multidrug resistant Klebsiella pneumoniae. The emergence of carbapenem resistance has made it extremely difficult to treat such infections resulting in significant morbidity and mortality. Aims: To study the prevalence of carbapenem resistance using ertapenem as a marker and to detect Klebsiella pneumoniae Carbapenemase (KPC producing Klebsiella pneumoniae as a mechanism of resistance. Material and Methods: The study included 102 patients from which Klebsiella pneumoniae isolated. Identification and antibiotic susceptibility testing of Klebsiella pneumoniae was performed on miniAPI (Analytical Profile Index, Semiautomated bacterial identification system according to Clinical and Laboratory Standards Institute (CLSI guidelines of 2011. The modified Hodge test was performed for detection of Carbapenemase production. Patient’s clinical and demographic details along with risk factors and co-morbid conditions, type of response to antimicrobial therapy and mortality were collected. Results: The prevalence of carbapenem resistance was found to be 30.41% with 16.6% KPC producing Klebsiella pneumoniae. The co-morbid conditions like immunocompromised state (p =0.042, prior antibiotics therapy (p=0.047, previous hospitalization (p =0.021, intensive care unit stay (p=0.047 and use of indwelling devices (p =0.013 were found to be significantly associated with carbapenem resistance. Adverse clinical outcomes (death or worsening among patients infected with ertapenem resistant patients was found to be statistically significant than ertapenem sensitive strains (p =0.008. Conclusions: A high degree of carbapenem resistance in present study is alarming and poses therapeutic dilemmas for clinicians. Initiating timely and appropriate infection control measures along with a

  15. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    Science.gov (United States)

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  16. Production of sodium bicarbonate from a basic process stream

    NARCIS (Netherlands)

    Witkamp, G.J.; Van Spronsen, J.; Hasselaar, M.

    2012-01-01

    The present invention is in the area of the treatment of a gas flow containing carbon dioxide obtained from burning at least one organic waste or feed stream, on the one hand to produce sodium bicarbonate and optionally remove and/or recover molybdenum compounds and/or other impurities from the said

  17. Soil Microbial Community Contribution to Small Headwater Stream Metabolism.

    Science.gov (United States)

    Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.

    2005-05-01

    The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.

  18. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  19. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    Science.gov (United States)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  20. Stream systems.

    Science.gov (United States)

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  1. Multi-format music use at the intersection of downloading and streaming practices

    DEFF Research Database (Denmark)

    Ægidius, Andreas Lenander

    2017-01-01

    in accordance with the licensed agreements between the music industry and the IT-industry. The listeners seem unaffected by the technological changes and even the less tech-savvy listeners can easily stream-rip to produce music files from stream, which they then re-commodify by adjusting the metadata inscribed......This paper will investigate the restructuring of digital online music use related to the remediation of the music download as a music stream. The paper draws on the empirical findings of my PhD-study based on qualitative interviews with young listeners (n16), professional musicians (n10......) and distributors from Spotify, TDC Play, Tidal, and 24/7 Entertainment (n4). Interviewing three different social groups (n30 total) represents a unique approach with which to answer the question how music files are understood and used in the intersection between download-based and stream-based music practices...

  2. Using gaps in N-body tidal streams to probe missing satellites

    International Nuclear Information System (INIS)

    Ngan, W. H. W.; Carlberg, R. G.

    2014-01-01

    We use N-body simulations to model the tidal disruption of a star cluster in a Milky-Way-sized dark matter halo, which results in a narrow stream comparable to (but slightly wider than) Pal-5 or GD-1. The mean Galactic dark matter halo is modeled by a spherical Navarro-Frenk-White potential with subhalos predicted by the ΛCDM cosmological model. The distribution and mass function of the subhalos follow the results from the Aquarius simulation. We use a matched filter approach to look for 'gaps' in tidal streams at 12 length scales from 0.1 kpc to 5 kpc, which appear as characteristic dips in the linear densities along the streams. We find that, in addition to the subhalos' perturbations, the epicyclic overdensities (EOs) due to the coherent epicyclic motions of particles in a stream also produce gap-like signals near the progenitor. We measure the gap spectra—the gap formation rates as functions of gap length—due to both subhalo perturbations and EOs, which have not been accounted for together by previous studies. Finally, we project the simulated streams onto the sky to investigate issues when interpreting gap spectra in observations. In particular, we find that gap spectra from low signal-to-noise observations can be biased by the orbital phase of the stream. This indicates that the study of stream gaps will benefit greatly from high-quality data from future missions.

  3. Time-dependent 2-stream particle transport

    International Nuclear Information System (INIS)

    Corngold, Noel

    2015-01-01

    Highlights: • We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. • After reviewing some classical problems in homogeneous media we discuss transport in materials with whose density may vary. • There we achieve a significant contraction of the underlying Telegrapher’s equation. • We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.” - Abstract: We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. After reviewing some classical problems in homogeneous media we discuss transport in materials whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.”

  4. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  5. THE DAWNING OF THE STREAM OF AQUARIUS IN RAVE

    International Nuclear Information System (INIS)

    Williams, M. E. K.; Steinmetz, M.; De Jong, R. S.; Minchev, I.; Sharma, S.; Bland-Hawthorn, J.; Parker, Q. A.; Seabroke, G. M.; Helmi, A.; Freeman, K. C.; Binney, J.; Bienayme, O.; Campbell, R.; Fulbright, J. P.; Gibson, B. K.; Gilmore, G. F.; Grebel, E. K.; Munari, U.; Navarro, J. F.; Reid, W.

    2011-01-01

    We identify a new, nearby (0.5kpc ∼ 0 0 and -70 0 0 , with heliocentric line-of-sight velocities V los ∼ -200 km s -1 . The members are outliers in the radial velocity distribution, and the overdensity is statistically significant when compared to mock samples created with both the Besancon Galaxy model and newly developed code Galaxia. The metallicity distribution function and isochrone fit in the log g-T eff plane suggest that the stream consists of a 10 Gyr old population with [M/H] ∼ -1.0. We explore relations to other streams and substructures, finding that the stream cannot be identified with known structures: it is a new, nearby substructure in the Galaxy's halo. Using a simple dynamical model of a dissolving satellite galaxy, we account for the localization of the stream. We find that the stream is dynamically young and therefore likely the debris of a recently disrupted dwarf galaxy or globular cluster. The Aquarius stream is thus a specimen of ongoing hierarchical Galaxy formation, rare for being right in the solar suburb.

  6. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  7. PROXY-BASED PATCHING STREAM TRANSMISSION STRATEGY IN MOBILE STREAMING MEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liao Jianxin; Lei Zhengxiong; Ma Xutao; Zhu Xiaomin

    2006-01-01

    A mobile transmission strategy, PMPatching (Proxy-based Mobile Patching) transmission strategy is proposed, it applies to the proxy-based mobile streaming media system in Wideband Code Division Multiple Access (WCDMA) network. Performance of the whole system can be improved by using patching stream to transmit anterior part of the suffix that had been played back, and by batching all the demands for the suffix arrived in prefix period and patching stream transmission threshold period. Experimental results show that this strategy can efficiently reduce average network transmission cost and number of channels consumed in central streaming media server.

  8. Relating Hydrogeomorphic Attributes to Nutrient Uptake in Alluvial Streams of a Mountain Lake District

    Science.gov (United States)

    Arp, C. D.; Baker, M. A.

    2005-05-01

    Stream form and hydrologic processes may indirectly drive nutrient uptake, however developing predictive relationships has been elusive. Problems in establishing such relationships may lie in the sets of streams analyzed, which often span diverse channel-sizes, geology, and regions, or are too geomorphically similar. We collected field data on stream geomorphology and hydrologic and nutrient transport processes using solute injections at 22 alluvial stream reaches in the Sawtooth Mountains, Idaho, USA. Many of these streams occur near lakes, which create contrasting fluvial form and functions that we hoped would produce a broad geomorphic dataset to compare to hyporheic and dead-zone transient storage and NO3 and PO4 spiraling metrics. Preliminary results suggest that storage zone residence time (Tsto) was best predicted by sediment D50, wood abundance (CWD), and discharge (r2=0.84, pnutrient cycling processes should be further considered and investigated.

  9. Link between DOC in near surface peat and stream water in an upland catchment.

    Science.gov (United States)

    Clark, Joanna M; Lane, Stuart N; Chapman, Pippa J; Adamson, John K

    2008-10-15

    Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

  10. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  11. Biologically produced sulfur particles and polysulfide ions

    NARCIS (Netherlands)

    Kleinjan, W.E.

    2005-01-01

    This thesis deals with the effects of particles of biologically produced sulfur (or 'biosulfur') on a biotechnological process for the removal of hydrogen sulfide from gas streams. Particular emphasis is given to the role of polysulfide ions in such a process. These

  12. The determination of critical nuclides in PWR waste streams

    International Nuclear Information System (INIS)

    Centner, B.

    1993-01-01

    A current method for the determination of critical nuclides in the waste streams produced by a nuclear power reactor consists in applying correlation factors or scaling factors between those critical nuclides and so called key radionuclides, which can be easily measured and are representatives for the occurrence of activation products (Co-60) and fission products (Cs-137) in the waste streams. BELGATOM (BA) has developed a code (low level waste Activity Assessment-LLWAA code). The use of the code can clarify the analytical technique lower detection level that has to be achieved for each critical nuclide, in order to accurately measure it's activity in the different types of waste. (1 tab., 1 fig.)

  13. Linkage between the temporal and spatial variability of dissolved organic matter and whole-stream metabolism

    Directory of Open Access Journals (Sweden)

    S. Halbedel

    2013-08-01

    Full Text Available Dissolved organic matter (DOM is an important resource for microbes, thus affecting whole-stream metabolism. However, the factors influencing its chemical composition and thereby also its bio-availability are complex and not thoroughly understood. It was hypothesized that whole-stream metabolism is linked to DOM composition and that the coupling of both is influenced by seasonality and different land-use types. We tested this hypothesis in a comparative study on two pristine forestry streams and two non-forestry streams. The investigated streams were located in the Harz Mountains (central Europe, Germany. The metabolic rate was measured with a classical two-station oxygen change technique and the variability of DOM with fluorescence spectroscopy. All streams were clearly net heterotrophic, whereby non-forestry streams showed a higher primary production, which was correlated to irradiance and phosphorus concentration. We detected three CDOM components (C1, C2, C3 using parallel factor (PARAFAC analysis. We compared the excitation and emission maxima of these components with the literature and correlated the PARAFAC components with each other and with fluorescence indices. The correlations suggest that two PARAFAC components are derived from allochthonous sources (C1, C3 and one is derived autochthonously (C2. The chromophoric DOM matrix was dominated by signals of humic-like substances with a highly complex structure, followed by humic-like, fulfic acids, low-molecular-weight substances, and with minor amounts of amino acids and proteins. The ratios of these PARAFAC components (C1 : C2, C1 : C3, C3 : C2 differed with respect to stream types (forestry versus non-forestry. We demonstrated a significant correlation between gross primary production (GPP and signals of autochthonously derived, low-molecular-weight humic-like substances. A positive correlation between P / R (i.e. GPP/daily community respiration and the fluorescence index FI suggests

  14. Rehabilitation of an Incised Stream Using Plant Materials: the Dominance of Geomorphic Processes

    Directory of Open Access Journals (Sweden)

    F. Douglas. Shields, Jr.

    2008-12-01

    Full Text Available The restoration of potentially species-rich stream ecosystems in physically unstable environments is challenging, and few attempts have been evaluated scientifically. Restoration approaches that involve living and dead native vegetation are attractive economically and from an ecological standpoint. A 2-km reach of an incised, sand-bed stream in northern Mississippi was treated with large wood structures and willow plantings to trigger responses that would result in increasing similarity with a lightly degraded reference stream. Experimental approaches for stream bank and gully stabilization were also examined. Although the project was initially successful in producing improved aquatic habitat, after 4 yr it had failed to effectively address issues related to flashy watershed hydrology and physical instability manifest by erosion and sedimentation. The success of ecosystem rehabilitation was thus governed by landscape-scale hydrological and geomorphological processes.

  15. Music Radio as a Format Remediated for the Stream-Based Music Use

    DEFF Research Database (Denmark)

    Ægidius, Andreas Lenander

    What do music radio and music streaming have in common? The curated flow of music. Radio is featured in the main section of the Spotify user interface. Apple employs radio host for their streaming service, Apple Music. Music streaming and music radio seem closely related. Even in their use...... this theoretical contribution with reference to several empirical studies of everyday music streaming use and the fact that radio holds a significant position as both a stand-alone medium and as a contributing format within streaming music use. Why else does Spotify provide radio(s) and Apple Music likewise employ...

  16. Evaluation of the successive approximations method for acoustic streaming numerical simulations.

    Science.gov (United States)

    Catarino, S O; Minas, G; Miranda, J M

    2016-05-01

    This work evaluates the successive approximations method commonly used to predict acoustic streaming by comparing it with a direct method. The successive approximations method solves both the acoustic wave propagation and acoustic streaming by solving the first and second order Navier-Stokes equations, ignoring the first order convective effects. This method was applied to acoustic streaming in a 2D domain and the results were compared with results from the direct simulation of the Navier-Stokes equations. The velocity results showed qualitative agreement between both methods, which indicates that the successive approximations method can describe the formation of flows with recirculation. However, a large quantitative deviation was observed between the two methods. Further analysis showed that the successive approximation method solution is sensitive to the initial flow field. The direct method showed that the instantaneous flow field changes significantly due to reflections and wave interference. It was also found that convective effects contribute significantly to the wave propagation pattern. These effects must be taken into account when solving the acoustic streaming problems, since it affects the global flow. By adequately calculating the initial condition for first order step, the acoustic streaming prediction by the successive approximations method can be improved significantly.

  17. Identify the dominant variables to predict stream water temperature

    Science.gov (United States)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  18. Vitrification of Three Low-Activity Radioactive Waste Streams from Hanford

    International Nuclear Information System (INIS)

    Ferrara, D.M.; Crawford, C.L.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    As part of a demonstration for British Nuclear Fuels Limited, Incorporated (BNFL), the Immobilization Technology Section (ITS) of the Savannah River Technology Center (SRTC) has produced and characterized three low-activity waste (LAW) glasses from Hanford radioactive waste samples. The three LAW glasses were produced from radioactive supernate samples that had been treated by the Waste Processing Technology Section (WPTS) at SRTC to remove most of the radionuclides. These three glasses were produced by mixing the waste streams with between four and nine glass-forming chemicals in platinum/gold crucibles and heating the mixture to between 1120 and 1150 degrees C. Compositions of the resulting glass waste forms were close to the target compositions. Low concentrations of radionuclides in the LAW feed streams and, therefore, in the glass waste forms supported WPTS conclusions that pretreatment had been successful. No crystals were detected in the LAW glasses. In addition, all glass waste forms passed the leach tests that were performed. These included a 20 degrees C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP)

  19. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  20. Learning From Short Text Streams With Topic Drifts.

    Science.gov (United States)

    Li, Peipei; He, Lu; Wang, Haiyan; Hu, Xuegang; Zhang, Yuhong; Li, Lei; Wu, Xindong

    2017-09-18

    Short text streams such as search snippets and micro blogs have been popular on the Web with the emergence of social media. Unlike traditional normal text streams, these data present the characteristics of short length, weak signal, high volume, high velocity, topic drift, etc. Short text stream classification is hence a very challenging and significant task. However, this challenge has received little attention from the research community. Therefore, a new feature extension approach is proposed for short text stream classification with the help of a large-scale semantic network obtained from a Web corpus. It is built on an incremental ensemble classification model for efficiency. First, more semantic contexts based on the senses of terms in short texts are introduced to make up of the data sparsity using the open semantic network, in which all terms are disambiguated by their semantics to reduce the noise impact. Second, a concept cluster-based topic drifting detection method is proposed to effectively track hidden topic drifts. Finally, extensive studies demonstrate that as compared to several well-known concept drifting detection methods in data stream, our approach can detect topic drifts effectively, and it enables handling short text streams effectively while maintaining the efficiency as compared to several state-of-the-art short text classification approaches.

  1. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  2. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    Science.gov (United States)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle

  3. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  4. Streaming instabilities in a collisional dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2000-01-01

    A pair of low-frequency electrostatic modes, which are very similar to those experimentally observed by Praburam and Goree [Phys. Plasmas 3, 1212 (1996)], are found to exist in a dusty plasma with a significant background neutral pressure and background ion streaming. One of these two modes is the dust-acoustic mode and the other one is a new mode which is due to the combined effects of the ion streaming and ion--neutral collisions. It has been shown that in the absence of the ion streaming, the dust-acoustic mode is damped due to the combined effects of the ion--neutral and dust--neutral collisions and the electron--ion recombination onto the dust grain surface. This result disagrees with Kaw and Singh [Phys. Rev. Lett. 79, 423 (1997)], who reported collisional instability of the dust-acoustic mode in such a dusty plasma. It has also been found that a streaming instability with the growth rate of the order of the dust plasma frequency is triggered when the background ion streaming speed relative to the charged dust particles is comparable or higher than the ion--thermal speed. This point completely agrees with Rosenberg [J. Vac. Soc. Technol. A 14, 631 (1996)

  5. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes.

    Science.gov (United States)

    Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K

    2018-06-01

    Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  7. Event Streams Clustering Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Hanen Bouali

    2015-10-01

    Full Text Available Data streams are usually of unbounded lengths which push users to consider only recent observations by focusing on a time window, and ignore past data. However, in many real world applications, past data must be taken in consideration to guarantee the efficiency, the performance of decision making and to handle data streams evolution over time. In order to build a selectively history to track the underlying event streams changes, we opt for the continuously data of the sliding window which increases the time window based on changes over historical data. In this paper, to have the ability to access to historical data without requiring any significant storage or multiple passes over the data. In this paper, we propose a new algorithm for clustering multiple data streams using incremental support vector machine and data representative points’ technique. The algorithm uses a sliding window model for the most recent clustering results and data representative points to model the old data clustering results. Our experimental results on electromyography signal show a better clustering than other present in the literature

  8. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    Science.gov (United States)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  9. Quantification of the multi-streaming effect in redshift space distortion

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Oh, Minji [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Zhang, Pengjie, E-mail: yizheng@kasi.re.kr, E-mail: zhangpj@sjtu.edu.cn, E-mail: minjioh@kasi.re.kr [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 (China)

    2017-05-01

    Both multi-streaming (random motion) and bulk motion cause the Finger-of-God (FoG) effect in redshift space distortion (RSD). We apply a direct measurement of the multi-streaming effect in RSD from simulations, proving that it induces an additional, non-negligible FoG damping to the redshift space density power spectrum. We show that, including the multi-streaming effect, the RSD modelling is significantly improved. We also provide a theoretical explanation based on halo model for the measured effect, including a fitting formula with one to two free parameters. The improved understanding of FoG helps break the f σ{sub 8}−σ {sub v} degeneracy in RSD cosmology, and has the potential of significantly improving cosmological constraints.

  10. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    International Nuclear Information System (INIS)

    De Bruin, D.

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab

  11. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    Energy Technology Data Exchange (ETDEWEB)

    De Bruin, D

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab.

  12. Adding Live-Streaming to Recorded Lectures in a Non-Distributed Pre-Clerkship Medical Education Model.

    Science.gov (United States)

    Sandhu, Amanjot; Fliker, Aviva; Leitao, Darren; Jones, Jodi; Gooi, Adrian

    2017-01-01

    Live-streaming video has had increasing uses in medical education, especially in distributed education models. The literature on the impact of live-streaming in non-distributed education models, however, is scarce. To determine the attitudes towards live-streaming and recorded lectures as a resource to pre-clerkship medical students in a non-distributed medical education model. First and second year medical students were sent a voluntary cross-sectional survey by email, and were asked questions on live-streaming, recorded lectures and in person lectures using a 5-point Likert and open answers. Of the 118 responses (54% response rate), the data suggested that both watching recorded lectures (Likert 4.55) and live-streaming lectures (4.09) were perceived to be more educationally valuable than face-to-face attendance of lectures (3.60). While responses indicated a statistically significant increase in anticipated classroom attendance if both live-streaming and recorded lectures were removed (from 63% attendance to 76%, p =0.002), there was no significant difference in attendance if live-streaming lectures were removed but recorded lectures were maintained (from 63% to 66%, p=0.76). The addition of live-streaming lectures in the pre-clerkship setting was perceived to be value added to the students. The data also suggests that the removal of live-streaming lectures would not lead to a statistically significant increase in classroom attendance by pre-clerkship students.

  13. Progressive Conversion from B-rep to BSP for Streaming Geometric Modeling.

    Science.gov (United States)

    Bajaj, Chandrajit; Paoluzzi, Alberto; Scorzelli, Giorgio

    2006-01-01

    We introduce a novel progressive approach to generate a Binary Space Partition (BSP) tree and a convex cell decomposition for any input triangles boundary representation (B-rep), by utilizing a fast calculation of the surface inertia. We also generate a solid model at progressive levels of detail. This approach relies on a variation of standard BSP tree generation, allowing for labeling cells as in, out and fuzzy, and which permits a comprehensive representation of a solid as the Hasse diagram of a cell complex. Our new algorithm is embedded in a streaming computational framework, using four types of dataflow processes that continuously produce, transform, combine or consume subsets of cells depending on their number or input/output stream. A varied collection of geometric modeling techniques are integrated in this streaming framework, including polygonal, spline, solid and heterogeneous modeling with boundary and decompositive representations, Boolean set operations, Cartesian products and adaptive refinement. The real-time B-rep to BSP streaming results we report in this paper are a large step forward in the ultimate unification of rapid conceptual and detailed shape design methodologies.

  14. Late summer and fall use of stream margins by young-of year brown trout in a high-elevation stream

    Science.gov (United States)

    La Voie, W. J.; Hubert, W.A.

    1997-01-01

    We determined the relative abundance of young-of-year (YOY) brown trout (Salmo trutta) from late summer to fall during day and night in stream margin habitats of Douglas Creek, Wyoming. No significant differences in relative abundance were observed from August 14 through October 26. Few YOY brown trout were observed during the day over the entire sampling period, but significantly greater numbers were seen at night. Within stream margins, YOY brown trout of 36-75 mm total length primarily resided in concealment cover among interstices of cobbie during the day and emerged at night. Because no significant change in relative abundance was observed throughout the study period, we conclude that a shift to winter habitat did not occur up until three days prior to ice formation when the diurnal range in water temperature was 2.5-7.5??C.

  15. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    Science.gov (United States)

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  16. InSTREAM: the individual-based stream trout research and environmental assessment model

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  17. Impact of the emergency department streaming decision on patients' outcomes.

    Science.gov (United States)

    Kim, S W; Horwood, C; Li, J Y; Hakendorf, P H; Teubner, D J O; Thompson, C H

    2015-12-01

    Streaming occurs in emergency department (ED) to reduce crowding, but misallocation of patients may impact patients' outcome. The study aims to determine the outcomes of patients misallocated by the ED process of streaming into likely admission or discharge. This is a retrospective cohort study, at an Australian, urban, tertiary referral hospital's ED between January 2010 and March 2012, using propensity score matching for comparison. Total and partitioned ED lengths of stay, inpatient length of stay, in-hospital mortality and 7- and 28-day unplanned readmission rate were compared between patients who were streamed to be admitted against those streamed to be discharged. Total ED length of stay did not differ significantly for admitted patients if allocated to the wrong stream (median 7.6 h, interquartile range 5.7-10.6, cf. 7.5 h, 5.3-11.2; P = 0.34). The median inpatient length of stay was shorter for those initially misallocated to the discharge stream (1.8 days, 1.1-3.0, cf. 2.4 days, 1.4-3.9; P stream stayed in the ED longer than those appropriately allocated (5.2 h, 3.7-7.3, cf. 4.6 h, 3.3-6.4; P streaming process. Patients' discharge from the ED was slower if they had been allocated to the admission stream. Streaming carries few risks for patients misallocated by such a process. © 2015 Royal Australasian College of Physicians.

  18. Compensatory stream and wetland mitigation in North Carolina: an evaluation of regulatory success.

    Science.gov (United States)

    Hill, Tammy; Kulz, Eric; Munoz, Breda; Dorney, John R

    2013-05-01

    Data from a probability sample were used to estimate wetland and stream mitigation success from 2007 to 2009 across North Carolina (NC). "Success" was defined as whether the mitigation site met regulatory requirements in place at the time of construction. Analytical results were weighted by both component counts and mitigation size. Overall mitigation success (including preservation) was estimated at 74 % (SE = 3 %) for wetlands and 75 % (SE = 4 %) for streams in NC. Compared to the results of previous studies, wetland mitigation success rates had increased since the mid-1990s. Differences between mitigation providers (mitigation banks, NC Ecosystem Enhancement Program's design-bid-build and full-delivery programs, NC Department of Transportation and private permittee-responsible mitigation) were generally not significant although permittee-responsible mitigation yielded higher success rates in certain circumstances. Both wetland and stream preservation showed high rates of success and the stream enhancement success rate was significantly higher than that of stream restoration. Additional statistically significant differences when mitigation size was considered included: (1) the Piedmont yielded a lower stream mitigation success rate than other areas of the state, and (2) recently constructed wetland mitigation projects demonstrated a lower success rate than those built prior to 2002. Opportunities for improvement exist in the areas of regulatory record-keeping, understanding the relationship between post-construction establishment and long-term ecological trajectories of stream and wetland restoration projects, incorporation of numeric ecological metrics into mitigation monitoring and success criteria, and adaptation of stream mitigation designs to achieve greater success in the Piedmont.

  19. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  20. FACT. Streamed data analysis and online application of machine learning models

    Energy Technology Data Exchange (ETDEWEB)

    Bruegge, Kai Arno; Buss, Jens [Technische Universitaet Dortmund (Germany). Astroteilchenphysik; Collaboration: FACT-Collaboration

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) like FACT produce a continuous flow of data during measurements. Analyzing the data in near real time is essential for monitoring sources. One major task of a monitoring system is to detect changes in the gamma-ray flux of a source, and to alert other experiments if some predefined limit is reached. In order to calculate the flux of an observed source, it is necessary to run an entire data analysis process including calibration, image cleaning, parameterization, signal-background separation and flux estimation. Software built on top of a data streaming framework has been implemented for FACT and generalized to work with the data acquisition framework of the Cherenkov Telescope Array (CTA). We present how the streams-framework is used to apply supervised machine learning models to an online data stream from the telescope.

  1. Process Design and Techno-economic Analysis for Materials to Treat Produced Waters.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon Walter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Paap, Scott M [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sasan, Koroush [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variability in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.

  2. Flow of a stream through a reservoir

    International Nuclear Information System (INIS)

    Sauerwein, K.

    1967-01-01

    If a reservoir is fed from a single source, which may not always be pure, the extent to which the inflowing stream mixes with the water in the reservoir is important for the quality of the water supplied by the reservoir. This question was investigated at the Lingese Reservoir, containing between one and two million cubic metres of water, in the Bergisches Land (North Rhine-Westphalia). The investigation was carried out at four different seasons so that the varying effects of the stream-water temperatures could be studied in relation to the temperature of the reservoir water. The stream was radioactively labelled at the point of inflow into the reservoir, and its flow through the reservoir was measured in length and depth from boats, by means of 1-m-long Geiger counters. In two cases the radioactivity of the outflowing water was also measured at fixed points. A considerable variety of intermixing phenomena were observed; these were mainly of limnological interest. The results of four experiments corresponding to the four different seasons are described in detail. They were as follows: (1) The mid-October experiment where the stream, with a temperature of 8.0 deg. C, was a good 5 deg. C colder than the water of the reservoir, whose temperature was almost uniform, ranging from 13.2 deg. C at the bed to 13.6 deg. C at the surface. (2) The spring experiment (second half of March), when the stream temperature was only 0.3 deg. C below that of the reservoir surface (7.8 deg. C), while the temperature of the bed was 5.8 deg. C. (3) The winter experiment (early December) where at first the temperature of the stream was approximately the same as that of the surface so that, once again, the stream at first flowed 1/2 - 1 m below the surface. During the almost wind-free night a sudden fall in temperature occurred, and the air temperature dropped from 0 deg. C to -12 deg. C. (4) The summer experiment (end of July to mid-August) when the stream was nearly 1 deg. C colder than

  3. The response of macroinvertebrates to artificially enhanced detritus levels in plantation streams

    Science.gov (United States)

    Pretty, J. L.; Dobson, M.

    The leaves and wood from vegetation surrounding headwater streams constitute a major food source for aquatic invertebrates, providing they are retained upon the streambed and not transported downstream. This study investigated the response of aquatic invertebrates to artificially increased detritus retention, in an effort to reproduce the naturally occurring build up of dead organic matter associated with streams in old-growth forest. The background detrital standing stock in streams in Kielder Forest (Northumberland, UK) was low, approximately 32 gm-2. Two streams flowing through dense conifer plantation and one in open broadleaved woodland were manipulated by the addition of logs over a 10 m stream reach. After several months, log addition significantly enhanced detrital standing stocks in both conifer and broadleaved streams. Total invertebrate abundance, taxon richness and the numbers of certain numerically dominant families were significantly higher in experimental than reference reaches in both conifer and broadleaved streams. This response was most marked for detritivores, whilst non-detritivore groups often showed no response to the manipulation. Whilst in the short term the responses to enhanced retention may reflect a redistribution of the local fauna, it is argued that over a longer time-scale, a genuine increase in invertebrate density and diversity could occur. Allowing old-growth forest to develop in planted valley bottoms may be a viable management option for conservation. If established alongside streams, it would ensure continuous input of woody material and the fauna may benefit from the resulting increase in detritus retention.

  4. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  5. Ooishi's Observation: Viewed in the Context of Jet Stream Discovery.

    Science.gov (United States)

    Lewis, John M.

    2003-03-01

    Although aircraft encounters with strong westerly winds during World War II provided the stimulus for postwar research on the jet stream, Wasaburo Ooishi observed these winds in the 1920s. Ooishi's work is reviewed in the context of earlier work in upperair observation and postwar work on the jet stream. An effort is made to reconstruct Ooishi's path to the directorship of Japan's first upper-air observatory by reliance on historical studies and memoirs from the Central Meteorological Observatory.Archival records from Japan's Aerological Observatory have been used to document Ooishi's upperair observations. The first official report from the observatory (written in 1926 and in the auxiliary language of Esperanto) assumes a central role in the study. In this report, data are stratified by season and used to produce the mean seasonal wind profiles. The profile for winter gives the first known evidence of the persistent strong westerlies over Japan that would later become known as the jet stream.

  6. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  7. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  8. VELOCITY VARIATIONS IN THE PHOENIX–HERMUS STAR STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, R. G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Grillmair, C. J., E-mail: carlberg@astro.utoronto.ca, E-mail: carl@ipac.caltech.edu [Spitzer Science Center, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2016-10-20

    Measurements of velocity and density perturbations along stellar streams in the Milky Way provide a time-integrated measure of dark matter substructure at larger galactic radius than the complementary instantaneous inner-halo strong lensing detection of dark matter sub-halos in distant galaxies. An interesting case to consider is the proposed Phoenix–Hermus star stream, which is long, thin, and on a nearly circular orbit, making it a particular good target to study for velocity variations along its length. In the presence of dark matter sub-halos, the stream velocities are significantly perturbed in a manner that is readily understood with the impulse approximation. A set of simulations shows that only sub-halos above a few 10{sup 7} M {sub ⊙} lead to reasonably long-lived observationally detectable velocity variations of amplitude of order 1 km s{sup −1}, with an average of about one visible hit per (two-armed) stream over a 3 Gyr interval. An implication is that globular clusters themselves will not have a visible impact on the stream. Radial velocities have the benefit of being completely insensitive to distance errors. Distance errors scatter individual star velocities perpendicular and tangential to the mean orbit, but their mean values remain unbiased. Calculations like these help build the quantitative case to acquire large, fairly deep, precision velocity samples of stream stars.

  9. RED CLUMP STARS IN THE SAGITTARIUS TIDAL STREAMS

    International Nuclear Information System (INIS)

    Carrell, Kenneth; Chen Yuqin; Wilhelm, Ronald

    2012-01-01

    We have probed a section (l ∼ 150, b ∼ –60) of the trailing tidal arm of the Sagittarius dwarf spheroidal galaxy by identifying a sample of Red Clump (RC) stream stars. RC stars are not generally found in the halo field, but are found in significant numbers in both the Sagittarius galaxy and its tidal streams, making them excellent probes of stream characteristics. Our target sample was selected using photometric data from the Sloan Digital Sky Survey, Data Release 6, which was constrained in color to match the Sagittarius RC stars. Spectroscopic observations of the target stars were conducted at Kitt Peak National Observatory using the WIYN telescope. The resulting spectroscopic sample is magnitude limited and contains both main-sequence disk stars and evolved RC stars. We have developed a method to systematically separate these two stellar classes using kinematic information and a Bayesian approach for surface gravity determination. The resulting RC sample allows us to determine an absolute stellar density of ρ = 2.7 ± 0.5 RC stars kpc –3 at this location in the stream. Future measurements of stellar densities for a variety of populations and at various locations along the streams will lead to a much improved understanding of the original nature of the Sagittarius galaxy and the physical processes controlling its disruption and subsequent stream generation.

  10. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    Science.gov (United States)

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  11. Productivity of Stream Definitions

    NARCIS (Netherlands)

    Endrullis, Jörg; Grabmayer, Clemens; Hendriks, Dimitri; Isihara, Ariya; Klop, Jan

    2007-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as the limit. Whereas productivity is undecidable

  12. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas

  13. Relationship between bifenthrin sediment toxic units and benthic community metrics in urban California streams.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D

    2013-08-01

    The objective of this study was to use ecologically relevant field measurements for determining the relationship between bifenthrin sediment toxic units (TUs) (environmental concentrations/Hyalella acute LC50 value) and 15 benthic metrics in four urban California streams sampled from 2006 to 2011. Data from the following four California streams were used in the analysis: Kirker Creek (2006, 2007), Pleasant Grove Creek (2006, 2007, and 2008), Arcade Creek (2009, 2010, and 2011), and Salinas streams (2009, 2010, and 2011). The results from univariate analysis of benthic metrics versus bifenthrin TU calculations for the four California streams with multiple-year datasets combined by stream showed that there were either nonsignificant relationships or lack of metric data for 93 % of cases. For 7 % of the data (4 cases) where significant relationships were reported between benthic metrics and bifenthrin TUs, these relationships were ecologically meaningful. Three of these significant direct relationships were an expression of tolerant benthic taxa (either % tolerant taxa or tolerance values, which are similar metrics), which would be expected to increase in a stressed environment. These direct significant tolerance relationships were reported for Kirker Creek, Pleasant Grove Creek, and Arcade Creek. The fourth significant relationship was an inverse relationship between taxa richness and bifenthrin TUs for the 3-year Pleasant Grove Creek dataset. In summary, only a small percent of the benthic metric × bifenthrin TU relationships were significant for the four California streams. Therefore, the general summary conclusion from this analysis is that there is no strong case for showing consistent meaningful relationships between various benthic metrics used to characterize the status of benthic communities and bifenthrin TUs for these four California streams.

  14. Flood-frequency characteristics of Wisconsin streams

    Science.gov (United States)

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  15. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  16. Streams and their future inhabitants

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Friberg, Nikolai

    2006-01-01

    In this fi nal chapter we look ahead and address four questions: How do we improve stream management? What are the likely developments in the biological quality of streams? In which areas is knowledge on stream ecology insuffi cient? What can streams offer children of today and adults of tomorrow?...

  17. Salamander occupancy in headwater stream networks

    Science.gov (United States)

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  18. Determination of mercury evasion in a contaminated headwater stream.

    Science.gov (United States)

    Maprani, Antu C; Al, Tom A; Macquarrie, Kerry T; Dalziel, John A; Shaw, Sean A; Yeats, Phillip A

    2005-03-15

    Evasion from first- and second-order streams in a watershed may be a significant factor in the atmospheric recycling of volatile pollutants such as mercury; however, methods developed for the determination of Hg evasion rates from larger water bodies are not expected to provide satisfactory results in highly turbulent and morphologically complex first- and second-order streams. A new method for determining the Hg evasion rates from these streams, involving laboratory gas-indexing experiments and field tracer tests, was developed in this study to estimate the evasion rate of Hg from Gossan Creek, a first-order stream in the Upsalquitch River watershed in northern New Brunswick, Canada. Gossan Creek receives Hg-contaminated groundwater discharge from a gold mine tailings pile. Laboratory gas-indexing experiments provided the ratio of gas-exchange coefficients for zero-valent Hg to propane (tracer gas) of 0.81+/-0.16, suggesting that the evasion mechanism in highly turbulent systems can be described by the surface renewal model with an additional component of enhanced gas evasion probably related to the formation of bubbles. Deliberate field tracer tests with propane and chloride tracers were found to be a reliable and practical method for the determination of gas-exchange coefficients for small streams. Estimation of Hg evasion from the first 1 km of Gossan Creek indicates that about 6.4 kg of Hg per year is entering the atmosphere, which is a significant fraction of the regional sources of Hg to the atmosphere.

  19. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    Science.gov (United States)

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  20. A study of the effects of implementing agricultural best management practices and in-stream restoration on suspended sediment, stream habitat, and benthic macroinvertebrates at three stream sites in Surry County, North Carolina, 2004-2007-Lessons learned

    Science.gov (United States)

    Smith, Douglas G.; Ferrell, G.M.; Harned, Douglas A.; Cuffney, Thomas F.

    2011-01-01

    The effects of agricultural best management practices and in-stream restoration on suspended-sediment concentrations, stream habitat, and benthic macroinvertebrate assemblages were examined in a comparative study of three small, rural stream basins in the Piedmont and Blue Ridge Physiographic Provinces of North Carolina and Virginia between 2004 and 2007. The study was designed to assess changes in stream quality associated with stream-improvement efforts at two sites in comparison to a control site (Hogan Creek), for which no improvements were planned. In the drainage basin of one of the stream-improvement sites (Bull Creek), several agricultural best management practices, primarily designed to limit cattle access to streams, were implemented during this study. In the drainage basin of the second stream-improvement site (Pauls Creek), a 1,600-foot reach of the stream channel was restored and several agricultural best management practices were implemented. Streamflow conditions in the vicinity of the study area were similar to or less than the long-term annual mean streamflows during the study. Precipitation during the study period also was less than normal, and the geographic distribution of precipitation indicated drier conditions in the southern part of the study area than in the northern part. Dry conditions during much of the study limited opportunities for acquiring high-flow sediment samples and streamflow measurements. Suspended-sediment yields for the three basins were compared to yield estimates for streams in the southeastern United States. Concentrations of suspended sediment and nutrients in samples from Bull Creek, the site where best management practices were implemented, were high compared to the other two sites. No statistically significant change in suspended-sediment concentrations occurred at the Bull Creek site following implementation of best management practices. However, data collected before and after channel stabilization at the Pauls

  1. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  2. Characteristics of mercury speciation in Minnesota rivers and streams

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Steven J. [Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106-6724 (United States)], E-mail: steve.balogh@metc.state.mn.us; Swain, Edward B. [Minnesota Pollution Control Agency, 520 Lafayette Road, St. Paul, MN 55155-4194 (United States)], E-mail: edward.swain@state.mn.us; Nollet, Yabing H. [Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106-6724 (United States)], E-mail: yabing.nollet@metc.state.mn.us

    2008-07-15

    Patterns of mercury (Hg) speciation were examined in four Minnesota streams ranging from the main-stem Mississippi River to small tributaries in the basin. Filtered phase concentrations of methylmercury (MeHg), inorganic Hg (IHg), and dissolved organic carbon (DOC) were higher in all streams during a major summertime runoff event, and DOC was enriched with MeHg but not with IHg. Particulate-phase MeHg and IHg concentrations generally increased with total suspended solids (TSS) concentrations but the event data did not diverge greatly from the non-event data, suggesting that sources of suspended sediments in these streams did not vary significantly between event and non-event samplings. The dissolved fractions (filtered concentration/unfiltered concentration) of both MeHg and IHg increased with increasing DOC concentrations, but varied inversely with TSS concentrations. While MeHg typically constitutes only a minor portion of the total Hg (THg) in these streams, this contribution is not constant and can vary greatly over time in response to watershed inputs. - Methylmercury and inorganic mercury concentrations in four Minnesota streams were characterized to determine controlling variables.

  3. Characteristics of mercury speciation in Minnesota rivers and streams

    International Nuclear Information System (INIS)

    Balogh, Steven J.; Swain, Edward B.; Nollet, Yabing H.

    2008-01-01

    Patterns of mercury (Hg) speciation were examined in four Minnesota streams ranging from the main-stem Mississippi River to small tributaries in the basin. Filtered phase concentrations of methylmercury (MeHg), inorganic Hg (IHg), and dissolved organic carbon (DOC) were higher in all streams during a major summertime runoff event, and DOC was enriched with MeHg but not with IHg. Particulate-phase MeHg and IHg concentrations generally increased with total suspended solids (TSS) concentrations but the event data did not diverge greatly from the non-event data, suggesting that sources of suspended sediments in these streams did not vary significantly between event and non-event samplings. The dissolved fractions (filtered concentration/unfiltered concentration) of both MeHg and IHg increased with increasing DOC concentrations, but varied inversely with TSS concentrations. While MeHg typically constitutes only a minor portion of the total Hg (THg) in these streams, this contribution is not constant and can vary greatly over time in response to watershed inputs. - Methylmercury and inorganic mercury concentrations in four Minnesota streams were characterized to determine controlling variables

  4. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  5. On-stream analysis of coal by prompt neutron activation analysis

    International Nuclear Information System (INIS)

    Barker, D.

    1981-01-01

    The need for rapid continuous on-stream analysis of coal was recognised in 1975. Analytical systems capable of determining some of the most important compositional properties of coal have been developed. The research programme has produced a series of analysers suitable for on-stream, batch, slurry and laboratory analytical determination of coal. This series of analysers is marketed under the name of 'Nucoalyzer'. The Nucoalyzer - CONAC (Continuous On-line Nuclear Analyzer for Coal) offers real-time, continuous determination of calorific value, percentage ash, percentage moisture, percentage sulphur, boiler fouling and slagging indices. The CONAC model is described in this article. The analytical principle employed in the various Nucoalyzer systems is based on prompt neutron activation analysis

  6. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management.

    Science.gov (United States)

    Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R

    2016-05-01

    Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  8. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    Science.gov (United States)

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  9. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  10. The response of macroinvertebrates to artificially enhanced detritus levels in plantation streams

    Directory of Open Access Journals (Sweden)

    J. L. Pretty

    2004-01-01

    Full Text Available The leaves and wood from vegetation surrounding headwater streams constitute a major food source for aquatic invertebrates, providing they are retained upon the streambed and not transported downstream. This study investigated the response of aquatic invertebrates to artificially increased detritus retention, in an effort to reproduce the naturally occurring build up of dead organic matter associated with streams in old-growth forest. The background detrital standing stock in streams in Kielder Forest (Northumberland, UK was low, approximately 32 gm-2. Two streams flowing through dense conifer plantation and one in open broadleaved woodland were manipulated by the addition of logs over a 10 m stream reach. After several months, log addition significantly enhanced detrital standing stocks in both conifer and broadleaved streams. Total invertebrate abundance, taxon richness and the numbers of certain numerically dominant families were significantly higher in experimental than reference reaches in both conifer and broadleaved streams. This response was most marked for detritivores, whilst non-detritivore groups often showed no response to the manipulation. Whilst in the short term the responses to enhanced retention may reflect a redistribution of the local fauna, it is argued that over a longer time-scale, a genuine increase in invertebrate density and diversity could occur. Allowing old-growth forest to develop in planted valley bottoms may be a viable management option for conservation. If established alongside streams, it would ensure continuous input of woody material and the fauna may benefit from the resulting increase in detritus retention. Keywords: forestry, detritivores, old-growth conifers, river management, woody debris

  11. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  12. Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, Daniel; Johansen, Anders; Davies, Melvyn B. [Lund Observatory, Dept. of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Gorti, Uma [NASA Ames Research Center, Moffett Field, CA (United States)

    2017-04-10

    Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60–130 M {sub ⊕}) planetesimal belts beyond 100 au and up to ∼20 M {sub ⊕} of planetesimals in the middle regions (3–100 au). Our most comprehensive model forms 8 M {sub ⊕} of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet-forming regions of protoplanetary disks.

  13. Diel changes in stream periphyton extracellular enzyme activity throughout community development on inert and organic substrates

    Science.gov (United States)

    Rier, S. T.; Francoeur, S. N.; Kuehn, K. A.

    2005-05-01

    We tested the hypothesis that algal photosynthesis in stream periphyton communities would influence the activities of extracellular enzymes produced by associated heterotrophic bacteria and fungi to acquire organic compounds and inorganic nutrients. We approached this question by looking for diurnal variation in activities of four extracellular enzymes in periphyton communities that were grown on either inert (glass fiber filters) or organic (leaves) substrata that there were incubated in stream-side channels that were either open to full sun or shaded. Substrata were subsampled for β-glucosidase, alkaline phosphotase, leucine-aminopeptidase, and phenol oxidase activities at 3-5 hr. intervals over two consecutive diurnal cycles that were repeated at an early and later stage of periphyton community development. Activities of all enzymes displayed diurnal periodicity but the strength of the diurnal effects depended largely on the substrate type and stage of community development. The most consistent diurnal change was observed with phenol oxidase activity with significantly greater (p<0.05) activities being observed in during the day for both stages of community development and for both substrate types. It is likely that oxygen produced by algal photosynthesis is driving the activity of this oxidative enzyme and that algae might indirectly influence the decomposition of phenolic compounds.

  14. Stream Phosphorus Dynamics Along a Suburbanizing Gradient in Southern Ontario, Canada

    Science.gov (United States)

    Duval, T. P.

    2017-12-01

    While it is well known that urban streams are subject to impaired water quality relative to natural analogues, far less research has been directed at stream water quality during the process of (sub-) urbanization. This study determines the role of housing construction activities in Brampton, Canada on the concentration and flux of phosphorus (P) of a headwater stream. Prior to development the stream was engineered with a riffle-pool sequence, riparian plantings, and a floodplain corridor that was lined with sediment fencing. Stream sites were sampled daily over a period of six months at locations representing varying stages of subdivision completion (upper site -active construction; middle site -finished construction and natural vegetation; lower site -finished construction and active construction). A nearby urban stream site developed ten years prior to this study was selected as a reference site. There were no differences in total phosphorus (TP) levels or flux between the suburbanizing and urban streams; however, the forms of P differed between sites. The urban stream TP load was dominated by particulate phosphorus (PP) while suburbanizing stream P was mainly in the dissolved organic phosphorus (DOP) form. The importance of DOP to TP flux increased with the onset of the growing season. TP levels in all stream segments frequently exceeded provincial water quality guidelines during storm events but were generally low during baseflow conditions. During storm events PP and total suspended solid levels in the suburbanizing stream reached levels of the urban stream due to sediment fence failure at several locations along the construction-hillslope interface. Along the suburbanizing gradient, the hydrological connection to a mid-reach zone of no-construction activity / fallow field and native forest resulted in significantly lower P levels than the upper suburbanizing stream site. This suggests that stream channel design features as well as timing of construction

  15. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  16. Symmetric Stream Cipher using Triple Transposition Key Method and Base64 Algorithm for Security Improvement

    Science.gov (United States)

    Nurdiyanto, Heri; Rahim, Robbi; Wulan, Nur

    2017-12-01

    Symmetric type cryptography algorithm is known many weaknesses in encryption process compared with asymmetric type algorithm, symmetric stream cipher are algorithm that works on XOR process between plaintext and key, to improve the security of symmetric stream cipher algorithm done improvisation by using Triple Transposition Key which developed from Transposition Cipher and also use Base64 algorithm for encryption ending process, and from experiment the ciphertext that produced good enough and very random.

  17. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  18. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  19. Different cesium-137 transfers to forest and stream ecosystems

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N.; Iwamoto, Aimu; Okada, Kengo

    2016-01-01

    Understanding the mechanisms of "1"3"7Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of "1"3"7Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of "1"3"7Cs in stream litter was significantly lower than in forest litter, the result of "1"3"7Cs leaching from litter in stream water. The difference in "1"3"7Cs concentrations between the two types of litter was reflected in the "1"3"7Cs concentrations in the animal community. While the importance of "1"3"7Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of "1"3"7Cs through terrestrial and aquatic ecosystems, and that "1"3"7Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem. - Highlights: • Detrital-based food web structure was observed in both forest and stream ecosystems. • The "1"3"7Cs concentration in litter was 4 times lower in stream than in forest. • The difference of "1"3"7Cs concentration in litter reflected in animal contamination. • "1"3"7Cs leaching from litter decreases contamination level of stream food web. - Leaching from litter in stream decreases "1"3"7Cs concentration in litter, and the contamination level of food web in stream ecosystem is lower than that in adjacent forest ecosystem.

  20. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    Science.gov (United States)

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Site investigation SFR. Vegetation in streams in the Forsmark area

    International Nuclear Information System (INIS)

    Andersson, Eva; Aquilonius, Karin; Sivars Becker, Lena; Borgiel, Mikael

    2011-09-01

    The streams in the model area of Forsmark have previously been thoroughly investigated regarding water chemistry, hydrology, bottom substrate, flooding, percentage coverage of macrophytes and fish migration. Retention of radionuclides in a stream ecosystem is assumed to occur by sorption to sediments or by uptake of radionuclides by macrophytes and it is therefore of interest to know the biomass and production of macrophytes in the streams included in a safety assessment. The general aim of this study was to examine the relation between biomass and the percentage cover of vegetation in streams in the Forsmark area. In this study streams within and nearby the candidate area in Forsmark was investigated. The somewhat larger streams Forsmarksaan and Olandsaan nearby the candidate area, are assumed to be more similar to future streams developing in Forsmark due to landrise, than the smaller streams present in the candidate area today. In total 22 vegetation samples were gathered in order to estimate the biomass at the sites. Percentage coverage of macrophytes, and dominating species were noted and the above ground macrophytes were sampled for biomass analysis. In the smaller streams, the biomass varied between 6 and almost 358 g dry weight per square metre. In the larger streams, the dry biomass varied between 0 and 247 g dry weight per square meter. There were no significant difference between macrophyte biomass in smaller and the larger stream. In total 13 macrophyte species were found. The biomass dry weight at 100% covering degree varied depending on macrophyte species. Although this was a rather small study, it is evident that the biomasses do vary a wide range between sampling squares in the area. However, although it may be difficult to use this data set to estimate the biomass in a specific square meter in the stream section, the relation between biomass weight and covering degree is sufficient to be used when fitting biomass to macrophyte coverage for entire

  2. Site investigation SFR. Vegetation in streams in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Eva (Svensk Nuclear Fuel and Waste Management Co. (Sweden)); Aquilonius, Karin; Sivars Becker, Lena (Studsvik Nuclear AB (Sweden)); Borgiel, Mikael (Sveriges Vattenekologer AB (Sweden))

    2011-09-15

    The streams in the model area of Forsmark have previously been thoroughly investigated regarding water chemistry, hydrology, bottom substrate, flooding, percentage coverage of macrophytes and fish migration. Retention of radionuclides in a stream ecosystem is assumed to occur by sorption to sediments or by uptake of radionuclides by macrophytes and it is therefore of interest to know the biomass and production of macrophytes in the streams included in a safety assessment. The general aim of this study was to examine the relation between biomass and the percentage cover of vegetation in streams in the Forsmark area. In this study streams within and nearby the candidate area in Forsmark was investigated. The somewhat larger streams Forsmarksaan and Olandsaan nearby the candidate area, are assumed to be more similar to future streams developing in Forsmark due to landrise, than the smaller streams present in the candidate area today. In total 22 vegetation samples were gathered in order to estimate the biomass at the sites. Percentage coverage of macrophytes, and dominating species were noted and the above ground macrophytes were sampled for biomass analysis. In the smaller streams, the biomass varied between 6 and almost 358 g dry weight per square metre. In the larger streams, the dry biomass varied between 0 and 247 g dry weight per square meter. There were no significant difference between macrophyte biomass in smaller and the larger stream. In total 13 macrophyte species were found. The biomass dry weight at 100% covering degree varied depending on macrophyte species. Although this was a rather small study, it is evident that the biomasses do vary a wide range between sampling squares in the area. However, although it may be difficult to use this data set to estimate the biomass in a specific square meter in the stream section, the relation between biomass weight and covering degree is sufficient to be used when fitting biomass to macrophyte coverage for entire

  3. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  4. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  5. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  6. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    Science.gov (United States)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  7. Tar Removal from Biomass Producer Gas by Using Biochar

    DEFF Research Database (Denmark)

    Ravenni, Giulia; Henriksen, Ulrik Birk; Ahrenfeldt, Jesper

    2017-01-01

    The biomass-derived char (biochar) produced in the gasifier as a residue, is a potential solution for removing tars from producer gas. This work investigates the interaction between tar compounds and biochar. Residual biochar from a TwoStage gasifier was tested as bed material in a laboratory setup....... Phenol and naphthalene were chosen as model tars, and entrained in a nitrogen flow. The gaseous stream was sampled before and after the biochar bed to evaluate the extent of conversion. The biochar bed (30g) was tested at 250°C, 500°C and 600°C, with for 3 consecutive hours. The compounds concentration...... in the gas phase was quantified by stable isotope dilution analysis, using Gas Chromatography-Mass Spectrometry (GC-MS). Results showed a significant effect of biochar on the removal of phenol, at all temperatures. Naphthalene was removed less efficiently at higher temperature, and this trend was even more...

  8. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali; Wang, Suojin; Zhang, Xiangliang

    2016-01-01

    Recent developments in sensors, global positioning system devices and smart phones have increased the availability of spatiotemporal data streams. Developing models for mining such streams is challenged by the huge amount of data that cannot be stored in the memory, the high arrival speed and the dynamic changes in the data distribution. Density estimation is an important technique in stream mining for a wide variety of applications. The construction of kernel density estimators is well studied and documented. However, existing techniques are either expensive or inaccurate and unable to capture the changes in the data distribution. In this paper, we present a method called KDE-Track to estimate the density of spatiotemporal data streams. KDE-Track can efficiently estimate the density function with linear time complexity using interpolation on a kernel model, which is incrementally updated upon the arrival of new samples from the stream. We also propose an accurate and efficient method for selecting the bandwidth value for the kernel density estimator, which increases its accuracy significantly. Both theoretical analysis and experimental validation show that KDE-Track outperforms a set of baseline methods on the estimation accuracy and computing time of complex density structures in data streams.

  9. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali

    2016-11-08

    Recent developments in sensors, global positioning system devices and smart phones have increased the availability of spatiotemporal data streams. Developing models for mining such streams is challenged by the huge amount of data that cannot be stored in the memory, the high arrival speed and the dynamic changes in the data distribution. Density estimation is an important technique in stream mining for a wide variety of applications. The construction of kernel density estimators is well studied and documented. However, existing techniques are either expensive or inaccurate and unable to capture the changes in the data distribution. In this paper, we present a method called KDE-Track to estimate the density of spatiotemporal data streams. KDE-Track can efficiently estimate the density function with linear time complexity using interpolation on a kernel model, which is incrementally updated upon the arrival of new samples from the stream. We also propose an accurate and efficient method for selecting the bandwidth value for the kernel density estimator, which increases its accuracy significantly. Both theoretical analysis and experimental validation show that KDE-Track outperforms a set of baseline methods on the estimation accuracy and computing time of complex density structures in data streams.

  10. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  11. Coupling nutrient uptake and energy flow in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Thomas, Steve [University of Nebraska

    2006-08-01

    Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate-nitrogen (NO{sub 3}-N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO{sub 3}-N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO{sub 3}-N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light-dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO{sub 3}-N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO{sub 3}-N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.

  12. CAMS: OLAPing Multidimensional Data Streams Efficiently

    Science.gov (United States)

    Cuzzocrea, Alfredo

    In the context of data stream research, taming the multidimensionality of real-life data streams in order to efficiently support OLAP analysis/mining tasks is a critical challenge. Inspired by this fundamental motivation, in this paper we introduce CAMS (C ube-based A cquisition model for M ultidimensional S treams), a model for efficiently OLAPing multidimensional data streams. CAMS combines a set of data stream processing methodologies, namely (i) the OLAP dimension flattening process, which allows us to obtain dimensionality reduction of multidimensional data streams, and (ii) the OLAP stream aggregation scheme, which aggregates data stream readings according to an OLAP-hierarchy-based membership approach. We complete our analytical contribution by means of experimental assessment and analysis of both the efficiency and the scalability of OLAPing capabilities of CAMS on synthetic multidimensional data streams. Both analytical and experimental results clearly connote CAMS as an enabling component for next-generation Data Stream Management Systems.

  13. Effects of golf course construction and operation on water chemistry of headwater streams on the Precambrian Shield

    International Nuclear Information System (INIS)

    Winter, Jennifer G.; Dillon, Peter J.

    2005-01-01

    To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations. - Golf course construction and operation had a significant impact on alkalinity, nitrogen and base cation concentrations of streams

  14. Analyzing Hydro-Geomorphic Responses in Post-Fire Stream Channels with Terrestrial LiDAR

    Science.gov (United States)

    Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.

    2015-12-01

    Wildfires have potential to significantly alter soil properties and vegetation within watersheds. These alterations often contribute to accelerated erosion, runoff, and sediment transport in stream channels and hillslopes. This research applies repeated Terrestrial Laser Scanning (TLS) Light Detection and Ranging (LiDAR) to stream reaches within the Pike National Forest in Colorado following the 2012 Waldo Canyon Fire. These scans allow investigation of the relationship between sediment delivery and environmental characteristics such as precipitation, soil burn severity, and vegetation. Post-fire LiDAR images provide high resolution information of stream channel changes in eight reaches for three years (2012-2014). All images are processed with RiSCAN PRO to remove vegetation and triangulated and smoothed to create a Digital Elevation Model (DEM) with 0.1 m resolution. Study reaches with two or more successive DEM images are compared using a differencing method to estimate the volume of sediment erosion and deposition. Preliminary analysis of four channel reaches within Williams Canyon and Camp Creek yielded erosion estimates between 0.035 and 0.618 m3 per unit area. Deposition was estimated as 0.365 to 1.67 m3 per unit area. Reaches that experienced higher soil burn severity or larger rainfall events produced the greatest geomorphic changes. Results from LiDAR analyses can be incorporated into post-fire hydrologic models to improve estimates of runoff and sediment yield. These models will, in turn, provide guidance for water resources management and downstream hazards mitigation.

  15. Impacts of drought and crayfish invasion on stream ecosystem structure and function

    Science.gov (United States)

    Magoulick, Daniel D.

    2014-01-01

    Drought and seasonal drying can be important disturbance events in many small streams, leading to intermittent or isolated habitats. Many small streams contain crayfish populations that are often keystone or dominant species in these systems. I conducted an experiment in stream mesocosms to examine the effects of drought and potential ecological redundancy of a native and invasive crayfish species. I examined the effects of drought (drought or control) and crayfish presence (none, native crayfish Orconectes eupunctus or invasive crayfish Orconectes neglectus) on stream mesocosm structure and function (leaf breakdown, community metabolism, periphyton, sediment and chironomid densities) in a fully factorial design. Each mesocosm contained a deep and shallow section, and drought treatments had surface water present (5-cm depth) in deep sections where tiles and leaf packs were placed. Drought and crayfish presence did not interact for any response variable. Drought significantly reduced leaf breakdown, and crayfish presence significantly increased leaf breakdown. However, the native and invasive crayfish species did not differ significantly in their effects on leaf breakdown. Drought significantly reduced primary production and community respiration overall, whereas crayfish presence did not significantly affect primary production and community respiration. Neither drought nor crayfish presence significantly affected periphyton overall. However, drought significantly reduced autotrophic index (AI), and crayfish presence increased AI. Inorganic sediment and chironomid density were not affected by drought, but both were significantly reduced by crayfish presence. O. eupunctus reduced AI and sediment more than O. neglectus did. Neither drought nor crayfish species significantly affected crayfish growth or survival. Drought can have strong effects on ecosystem function, but weaker effects on benthic structure. Crayfish can have strong effects on ecosystem

  16. Hydrologic control of nitrogen removal, storage, and export in a mountain stream

    Science.gov (United States)

    Hall, R.O.; Baker, M.A.; Arp, C.D.; Kocha, B.J.

    2009-01-01

    Nutrient cycling and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient transformation do not include hydrologic variability. We used a stable isotope tracer of nitrogen (15N) to measure nitrate (NO3) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We conducted two tracer tests of 2-week duration during snowmelt and baseflow. Dissolved and particulate forms of 15N were monitored over three seasons to test the hypothesis that stream N cycling would be dominated by export during floods, and storage during low flow. Floods exported more N than during baseflow conditions; however, snowmelt floods had higher than expected demand for NO{3 because of hyporheic exchange. Residence times of benthic N during both tracer tests were longer than 100 d for ephemeral pools such as benthic algae and wood biofilms. Residence times were much longer in fine detritus, insects, and the particulate N from the hyporheic zone, showing that assimilation and hydrologic storage can be important mechanisms for retaining particulate N. Of the tracer N stored in the stream, the primary form of export was via seston during periods of high flows, produced by summer rainstorms or spring snowmelt the following year. Spring Creek is not necessarily a conduit for nutrients during high flow; hydrologic exchange between the stream and its valley represents an important storage mechanism.

  17. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment

    Science.gov (United States)

    Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia

    2018-03-01

    Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.

  18. Activity Based Costing in Value Stream Mapping

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2010-12-01

    Full Text Available This paper attempts to integrate Value Stream Map (VSM with the cost aspects. A value stream map provides a blueprint for implementing lean manufacturing concepts by illustrating information and materials flow in a value stream. The objective of the present work is to integrate the various cost aspects. The idea is to introduce a cost line, which enhances the clarity in decision making. The redesigned map proves to be effective in highlighting the improvement areas, in terms of quantitative data. TAKT time calculation is carried out to set the pace of production. Target cost is set as a bench mark for product cost. The results of the study indicates that implementing VSM led to reduction in the following areas: processing lead time by 34%, processing cycle time was reduced by 35%, Inventory level by 66% and product cost from Rs 137 to Rs 125. It was found that adopting VSM in a small scale industry can make significant improvements.

  19. Environmental technology applications: fact file on toxic contaminants in industrial waste process streams

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1977-05-11

    This report is a compendium of facts related to chemical materials present in industrial waste process streams which have already been declared or are being evaluated as hazardous under the Toxic Substances Control Act. Since some 400 chemicals are presently covered by consensus standards, the substances reviewed are only those considered to be a major threat to public health and welfare by Federal and State regulatory agencies. For each hazardous material cited, the facts relate, where possible, to an identification of the stationary industrial sources, the kind of waste stream impacted, proposed regulations and established effluent standards, the volume of emissions produced each year, the volume of emissions per unit of industrial product produced, present clean-up capabilities, limitations, and costs. These data should be helpful in providing information for the assessment of potential problems, should be of use to the manufacturers of pollution control equipment or of chemicals for pollution control, should be of use to the operators or potential operators of processes which produce pollutants, and should help to define industry-wide emission practices and magnitudes.

  20. Cytoplasmic Streaming in the Drosophila Oocyte.

    Science.gov (United States)

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  1. Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events

    International Nuclear Information System (INIS)

    Chen, K.

    2010-01-01

    STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

  2. Size-based sorting of micro-particles using microbubble streaming

    Science.gov (United States)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2009-11-01

    Oscillating microbubbles driven by ultrasound have shown great potential in microfluidic applications, such as transporting particles and promoting mixing [1-3]. The oscillations generate secondary steady streaming that can also trap particles. We use the streaming to develop a method of sorting particles of different sizes in an initially well-mixed solution. The solution is fed into a channel consisting of bubbles placed periodically along a side wall. When the bubbles are excited by an ultrasound piezo-electric transducer to produce steady streaming, the flow field is altered by the presence of the particles. This effect is dependent on particle size and results in size-based sorting of the particles. The effectiveness of the separation depends on the dimensions of the bubbles and particles as well as on the ultrasound frequency. Our experimental studies are aimed at a better understanding of the design and control of effective microfluidic separating devices. Ref: [1] P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003). [2] P. Marmottant and S. Hilgenfeldt, Proc. Natl. Acad. Science USA, 101, 9523 (2004). [3] P. Marmottant, J.-P. Raven, H. Gardeniers, J. G. Bomer, and S. Hilgenfeldt, J. Fluid Mech., vol.568, 109 (2006).

  3. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Farmington Project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Farmington project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 71 groundwater samples, 345 stream sediment samples, and 178 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from <0.20 to 21.77 ppB. The highest values are from groundwaters producing from areas in or near the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations, and the Farmington Canyon Complex. The uranium:boron ratio delineates an anomalous trend associated with the Farmington Canyon Complex. Variables associated with uranium in groundwaters producing from the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations include the uranium:sulfate ratio, boron, barium, potassium, lithium, silicon, chloride, selenium, and vanadium. Soluble uranium concentrations (U-FL) in stream sediments range from 0.99 to 86.41 ppM. Total uranium concentrations (U-NT) range from 1.60 to 92.40 ppM. Thorium concentrations range from <2 to 47 ppM. Anomalous concentrations of these variables are associated with the Farmington Canyon Complex. Variables which are associated with uranium include cerium, sodium, niobium, phosphorus, titanium, and yttrium

  4. Stream Clustering of Growing Objects

    Science.gov (United States)

    Siddiqui, Zaigham Faraz; Spiliopoulou, Myra

    We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of Customer and Transaction. As the Transactions stream accumulates, the Customers’ profiles grow. First, we use an incremental propositionalisation to convert the multi-table stream into a single-table stream upon which we apply clustering. For this purpose, we develop an online version of K-Means algorithm that can handle these swelling objects and any new objects that arrive. The algorithm also monitors the quality of the model and performs re-clustering when it deteriorates. We evaluate our method on the PKDD Challenge 1999 dataset.

  5. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  6. LHCb trigger streams optimization

    Science.gov (United States)

    Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.

    2017-10-01

    The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.

  7. A framework to preserve the privacy of electronic health data streams.

    Science.gov (United States)

    Kim, Soohyung; Sung, Min Kyoung; Chung, Yon Dohn

    2014-08-01

    The anonymization of health data streams is important to protect these data against potential privacy breaches. A large number of research studies aiming at offering privacy in the context of data streams has been recently conducted. However, the techniques that have been proposed in these studies generate a significant delay during the anonymization process, since they concentrate on applying existing privacy models (e.g., k-anonymity and l-diversity) to batches of data extracted from data streams in a period of time. In this paper, we present delay-free anonymization, a framework for preserving the privacy of electronic health data streams. Unlike existing works, our method does not generate an accumulation delay, since input streams are anonymized immediately with counterfeit values. We further devise late validation for increasing the data utility of the anonymization results and managing the counterfeit values. Through experiments, we show the efficiency and effectiveness of the proposed method for the real-time release of data streams. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1998-10-26

    Since beginning operations in 1954, the Savannah River Site FB-Line produced Weapons Grade Plutonium for the United States National Defense Program. The facility mission was mainly to process dilute plutonium solution received from the 221-F Canyon into highly purified plutonium metal. As a result of various activities (maintenance, repair, clean up, etc.) in support of the mission, the facility generated a transuranic heterogeneous debris waste stream. Prior to January 25, 1990, the waste stream was considered suspect mixed transuranic waste (based on potential for inclusion of F-Listed solvent rags/wipes) and is not included in this characterization. Beginning January 25, 1990, Savannah River Site began segregation of rags and wipes containing F-Listed solvents thus creating a mixed transuranic waste stream and a non-mixed transuranic waste stream. This characterization addresses the non-mixed transuranic waste stream packaged in 55-gallon drums after January 25, 1990.Characterization of the waste stream was achieved using knowledge of process operations, facility safety basis documentation, facility specific waste management procedures and storage / disposal records. The report is fully responsive to the requirements of Section 4.0 "Acceptable Knowledge" from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  9. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  10. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    Science.gov (United States)

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Characterization of Sea Lamprey stream entry using dual‐frequency identification sonar

    Science.gov (United States)

    McCain, Erin L.; Johnson, Nicholas; Hrodey, Peter J.; Pangle, Kevin L.

    2018-01-01

    Effective methods to control invasive Sea Lampreys Petromyzon marinus in the Laurentian Great Lakes often rely on knowledge of the timing of the Sea Lamprey spawning migration, which has previously been characterized using data gathered from traps. Most assessment traps are located many kilometers upstream from the river mouth, so less is known about when Sea Lampreys enter spawning streams and which environmental cues trigger their transition from lakes to rivers. To decide how to develop barriers and traps that target Sea Lampreys when they enter a stream, the stream entry of Sea Lampreys into a Lake Huron tributary during 2 years was assessed using dual‐frequency identification sonar (DIDSON). Sea Lampreys entered the stream in low densities when temperatures first reached 4°C, which was up to 6 weeks and a mean of 4 weeks earlier than when they were first captured in traps located upstream. The probability of stream entry was significantly affected by stream temperature and discharge, and stream entry timing peaked when stream temperatures rose to 12°C and discharge was high. Examination of the entry at a finer temporal resolution (i.e., minutes) indicated that Sea Lampreys did not exhibit social behavior (e.g., shoaling) during stream entry. Our findings indicate that Sea Lampreys may be vulnerable to alternative trap types near river mouths and hydraulic challenges associated with traditional traps. Also, seasonal migration barriers near stream mouths may need to be installed soon after ice‐out to effectively block the entire adult Sea Lamprey cohort from upstream spawning habitat.

  12. An Approach for Removing Redundant Data from RFID Data Streams

    Science.gov (United States)

    Mahdin, Hairulnizam; Abawajy, Jemal

    2011-01-01

    Radio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches. PMID:22163730

  13. An Approach for Removing Redundant Data from RFID Data Streams

    Directory of Open Access Journals (Sweden)

    Hairulnizam Mahdin

    2011-10-01

    Full Text Available Radio frequency identification (RFID systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches.

  14. Designer solvents for the extraction of glycols and alcohols from aqueous streams

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.

    2013-01-01

    The separation of polar compounds from aqueous streams is one of the most energy intensive operations within the chemical industry, because of the formation of hydrogen bonds that should be broken and the high heat of vaporization of water. Important bulk chemicals like glycols and alcohols produced

  15. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Science.gov (United States)

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  16. Sediment exchange between groin fields and main-stream

    Science.gov (United States)

    Qin, Jie; Zhong, Deyu; Wu, Teng; Wu, Lingli

    2017-10-01

    Sediment exchange between groin fields and the main-stream influences the transport and distribution of polluted sediment that represents a hazard for rivers and neighboring floodplains. Despite its practical significance, little research has been done on the sediment exchange process itself, and existing studies used to estimate the sediment exchange by morphological change. The sediment exchange process, however, differs from morphological variation and includes two behaviors: the entrance of main-stream sediment into groin fields and the movement of groin field sediment out of groin fields. Therefore, this study aims at examining this exchange process and exploring the mechanisms of different exchange phenomena. Experiments were conducted in a mobile-bed laboratory flume by using a novel experimental method that successfully separates the movement of groin fields sediment from that of main-stream sediment. In addition to traditional measurements, such as measurements of morphological changes, surface flow velocities, and bed-form propagation, the deposition of main-stream sediment in groin fields is measured in detail. The results demonstrate that morphological change cannot reflect the sediment exchange process. The deposition of main-stream sediment in groin fields is determined by the dynamics of sediment movement, in which bedload- and suspended-sediment-dominated processes exhibit different deposition patterns. The movement of groin field sediment out of groin fields is determined mainly by local scouring around groins.

  17. The Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the conterminous USA

    Science.gov (United States)

    We developed an extensive database of landscape metrics for ~2.65 million streams, and their associated catchments, within the conterminous USA: The Stream-Catchment (StreamCat) Dataset. These data are publically available and greatly reduce the specialized geospatial expertise n...

  18. Stream processing health card application.

    Science.gov (United States)

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.

  19. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Science.gov (United States)

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  20. Honey locust (Gleditsia triacanthos l. (Fabaceae)) invasion effect on temperature, light and metabolism of a Pampean Stream

    International Nuclear Information System (INIS)

    Giorgi, Adonis David; Vilches, Carolina; Rodriguez Castro, Maria Carolina; Zunino, Eduardo; Debandi, Juan; Kravetz, Sebastian; Torremorell, Ana

    2014-01-01

    The establishment of invader species in a region generally modifies the ecosystems where they are introduced. In this study we analyze the effect produced by a gleditsia triacanthos (Honey locust) invasion on a Pampean Stream. This organism modifies the temperature and the light reaching the stream. Thermal range shows significant differences between reaches but mean tem between 85 and 95 % down the trees. These modifications reduce the primary gross production of 2.7 to 1.7 g 02. M"2 at spring and of 25 to 20 g 02. M"2 at summer. Respiration in spring and summer is halved at invaded reaches, but net ecosystem metabolism is similar in both reach and seasons. Moreover, the reach invaded by honey locust show scarce macrophytes. We argue that the honey locust reduces the diversity by reduction of macrophytes and their associated organisms but also reduce the primary production causing changes in the food web

  1. Orientation study of northern Arkansas. National Uranium Resource Evaluation program. Hydrogeochemical and stream-sediment reconnaissance

    International Nuclear Information System (INIS)

    Steele, K.F.

    1982-08-01

    Samples of ground water, stream water, and sediment were collected at 335 sites for an orientation study of northern Arkansas. Each stream site consisted of both sediment and stream water (if available), and each sediment sample was sieved to produce four size fractions for analysis. The orientation area included all or parts of Benton, Carroll, Madison, and Washington Counties. Several black shales, including the Chattanooga Shale, crop out in this area, and the Sylamore Sandstone Member has local radiation anomalies. The following analyses were performed for all water samples (both ground water and stream water): pH, conductivity, total alkalinity, temperature, nitrate, ammonia, phosphate and sulfate. Additional water was collected, filtered, and reacted with a resin that was then analyzed by neutron activation analysis for U, Br, Cl, F, Mn, Na, Al, and Dy. In addition, ground water samples were analyzed for He. The stream sediments were analyzed by neutron activation for U, Th, Hf, Ce, Fe, Mn, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu

  2. Forensics of subhalo-stream encounters: the three phases of gap growth

    Science.gov (United States)

    Erkal, Denis; Belokurov, Vasily

    2015-06-01

    There is hope to discover dark matter subhaloes free of stars (predicted by the current theory of structure formation) by observing gaps they produce in tidal streams. In fact, this is the most promising technique for dark substructure detection and characterization as such gaps grow with time, magnifying small perturbations into clear signatures observable by ongoing and planned Galaxy surveys. To facilitate such future inference, we develop a comprehensive framework for studies of the growth of the stream density perturbations. Starting with simple assumptions and restricting to streams on circular orbits, we derive analytic formulae that describe the evolution of all gap properties (size, density contrast, etc.) at all times. We uncover complex, previously unnoticed behaviour, with the stream initially forming a density enhancement near the subhalo impact point. Shortly after, a gap forms due to the relative change in period induced by the subhalo's passage. There is an intermediate regime where the gap grows linearly in time. At late times, the particles in the stream overtake each other, forming caustics, and the gap grows like √{t}. In addition to the secular growth, we find that the gap oscillates as it grows due to epicyclic motion. We compare this analytic model to N-body simulations and find an impressive level of agreement. Importantly, when analysing the observation of a single gap we find a large degeneracy between the subhalo mass, the impact geometry and kinematics, the host potential, and the time since flyby.

  3. Validation of abundance estimates from mark-recapture and removal techniques for rainbow trout captured by electrofishing in small streams

    Science.gov (United States)

    Amanda E. Rosenberger; Jason B. Dunham

    2005-01-01

    Estimation of fish abundance in streams using the removal model or the Lincoln–Peterson mark–recapture model is a common practice in fisheries. These models produce misleading results if their assumptions are violated. We evaluated the assumptions of these two models via electrofishing of rainbow trout Oncorhynchus mykiss in central Idaho streams....

  4. Coronal holes and high-speed wind streams

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1977-01-01

    Coronal holes low have been identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the Sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. The latitude variation of the divergence of the coronal magnetic field lines produces corresponding variations in wind speed.During the years of declining solar activity the global field of the corona approximates a perturbed dipole. The divergence of field lines in each hemisphere produces a high-speed wind near the poles and low-speed wind in a narrow belt that coincides with the magnetic neutral sheet. The analysis of electron density measurements within a polar hole indicates that solar wind is accelerated principally in the region between 2 and 5 R/sub s/ and that mechanical wave pressure (possibly Alfven wave) may be responsible for the accleration of the wind. Phenomenological models for the birth and decay of coronal holes have been proposed. Attempts to explain the birth and rigid rotation of holes through dynamo action have been only partially successful. The 11-year variation of cosmic ray intensities at the earth may result from cyclic variation of open field regions associated with coronal holes

  5. Streaming potential revisited: the influence of convection on the surface conductivity.

    Science.gov (United States)

    Saini, Rakesh; Garg, Abhinandan; Barz, Dominik P J

    2014-09-16

    Electrokinetic phenomena play an important role in the electrical characterization of surfaces. In terms of planar or porous substrates, streaming potential and/or streaming current measurements can be used to determine the zeta potential of the substrates in contact with aqueous electrolytes. In this work, we perform electrical impedance spectroscopy measurements to infer the electrical resistance in a microchannel with the same conditions as for a streaming potential experiment. Novel correlations are derived to relate the streaming current and streaming potential to the Reynolds number of the channel flow. Our results not only quantify the influence of surface conductivity, and here especially the contribution of the stagnant layer, but also reveal that channel resistance and therefore zeta potential are influenced by the flow in the case of low ionic strengths. We conclude that convection can have a significant impact on the electrical double layer configuration which is reflected by changes in the surfaces conductivity.

  6. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    Science.gov (United States)

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  7. Mining Frequent Item Sets in Asynchronous Transactional Data Streams over Time Sensitive Sliding Windows Model

    International Nuclear Information System (INIS)

    Javaid, Q.; Memon, F.; Talpur, S.; Arif, M.; Awan, M.D.

    2016-01-01

    EPs (Extracting Frequent Patterns) from the continuous transactional data streams is a challenging and critical task in some of the applications, such as web mining, data analysis and retail market, prediction and network monitoring, or analysis of stock market exchange data. Many algorithms have been developed previously for mining FPs (Frequent Patterns) from a data stream. Such algorithms are currently highly required to develop new solutions and approaches to the precise handling of data streams. New techniques, solutions, or approaches are developed to address unbounded, ordered, and continuous sequences of data and for the generation of data at a rapid speed from data streams. Hence, extracting FPs using fresh or recent data involves the high-level analysis of data streams. We have suggested an efficient technique for the window sliding model; this technique extracts new and fresh FPs from high-speed data streams. In this study, a CPILT (Compacted Tree Compact Pattern Tree) is developed to capture the latest contents in the stream and to efficiently remove outdated contents from the data stream. The main concept introduced in this work on CPILT is the dynamic restructuring of a tree, which is helpful in producing a compacted tree and the frequency descending structure of a tree on runtime. With the help of the mining technique of FP growth, a complete list of new and fresh FPs is obtained from a CPILT using an existing window. The memory usage and time complexity of the latest FPs in high-speed data streams can efficiently be determined through proper experimentation and analysis. (author)

  8. MEKANISME SEGMENTASI LAJU BIT PADA DYNAMIC ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    Muhammad Audy Bazly

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG- DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  9. IMPACT OF MUNICIPAL LANDFILL SITE ON WATER QUALITY IN THE WŁOSANKA STREAM

    Directory of Open Access Journals (Sweden)

    Włodzimierz Kanownik

    2016-09-01

    Full Text Available Hydrochemical research conducted in the years 2007–2010 comprised monitoring of the Włosanka stream waters and leachate waters from the municipal landfill in Kulerzów in the Malopolskie province. 16 leachate samples were collected from the container taking into consideration the vertical stratification of the quality and samples of water from the Włosanka stream in measurement points situated before and after the landfill. Concentrations of metals: calcium, magnesium, sodium, potassium, iron, manganese and heavy metals: chromium, zinc, copper, cadmium, nickel and lead were determined in the leachates and the stream water. Analysis of the studied metals in the leachates revealed that only potassium concentration exceeded the highest admissible value which is the condition of introducing sewage to water bodies or to soil. Water along the investigated reach of the Włosanka stream, both above and below the municipal landfill was of quality class 1. The landfill had no significant effect on the studied metal concentrations in the stream water – no statistically significant differences were registered between the concentrations of the studied metals (including heavy metals either in the point above or below the landfill. However, statistical tests comparing values of metal concentrations in the landfill leachates with the stream water revealed that the concentrations of 7 out of 12 tested metals were significantly higher in the leachates. Therefore, the landfill site monitoring should be continued, leachate waters should be collected in the container and supplied to the sewage treatment plant to prevent any threat to human life and health, or to the environment.

  10. Detrital processing in streams exposed to acidic precipitation in the Central Appalachian Mountains

    International Nuclear Information System (INIS)

    Meegan, S.K.; Perry, S.A.; Perry, W.B.

    1996-01-01

    Continuing high rates of acidic deposition in the eastern United States may lead to long-term effects on stream communities, because sensitive catchments are continuing to lose anions and cations. A two-year study of the effects of pH and associated water chemistry variables on detrital processing in three streams with different bedrock geology in the Monongahela National Forest, West Virginia were investigated. Leaf pack processing rates and macroinvertebrate colonization and microbial biomass (ATP concentration) on the packs in the three stream were compared. It was found that macroinvertebrate and microbial communities differed both among streams that differed in their capacity to buffer the effects of acidic precipitation and among years in the same stream; these differences in biotic communities were not large enough to affect rates of leaf processing between the two years of the study, but they did significantly affect processing rates between acidic and circumneutral streams

  11. Supporting seamless mobility for P2P live streaming.

    Science.gov (United States)

    Kim, Eunsam; Kim, Sangjin; Lee, Choonhwa

    2014-01-01

    With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme.

  12. Supporting Seamless Mobility for P2P Live Streaming

    Directory of Open Access Journals (Sweden)

    Eunsam Kim

    2014-01-01

    Full Text Available With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme.

  13. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    Science.gov (United States)

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  14. Hydrogeochemical and stream sediment reconnaissance basic data for Lubbock NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1979-01-01

    Field and laboratory data are presented for 994 groundwater and 602 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicate that the area which appears most promising for uranium mineralization is located in the southwestern part of the quadrangle, particularly in Crosby, Garza, Lynn, and Lubbock Counties. The waters produced from the Ogallala Formation in this area have high values for arsenic, molybdenum, selenium, and vanadium. Groundwaters from the Dockum Group in Garza County where uranium is associated with selenium, molybdenum, and copper indicate potential for uranium mineralization. Uranium is generally associated with copper, iron, and sulfate in the Permian aquifers reflecting the red bed evaporite lithology of those units. The stream sediment data indicate that the Dockum Group has the highest potential for uranium mineralization, particularly in and around Garza County. Associated elements indicate that uranium may occur in residual minerals or in hydrous manganese oxides. Sediment data also indicate that the Blaine Formation shows limited potential for small red bed copper-uranium deposits

  15. In-stream nutrient uptake kinetics along stream size and development gradients in a rapidly developing mountain resort watershed

    Science.gov (United States)

    Covino, T.; McGlynn, B.; McNamarra, R.; Gardner, K.

    2012-04-01

    Land use / land cover (LULC) change including mountain resort development often lead to increased nutrient loading to streams, however the potential influence on stream ecosystem nutrient uptake kinetics and transport remain poorly understood. Given the deleterious impacts elevated nutrient loading can have on aquatic ecosystems, it is imperative to improve understanding of nutrient retention capacities across stream scales and watershed development intensities. We performed seventeen nutrient addition experiments on six streams across the West Fork Gallatin Watershed, Montana, USA, to quantify nitrogen (N) uptake kinetics and retention dynamics across stream sizes (1st to 4th order) and along a mountain resort development gradient. We observed that stream N uptake kinetics and spiraling parameters varied across streams of different development intensity and scale. In more developed watersheds we observed a fertilization affect, however, none of the streams exhibited saturation with respect to N. Additionally, we observed that elevated loading led to increased biomass and retentive capacities in developed streams that helped maintain export at low levels during baseflow. Our results indicate that LULC can enhance in-stream uptake of limiting nutrients and highlight the value of characterizing uptake kinetic curves from ambient to saturation.

  16. How do land-based salmonid farms affect stream ecology?

    International Nuclear Information System (INIS)

    Tello, A.; Corner, R.A.; Telfer, T.C.

    2010-01-01

    Increasing research is highlighting the fact that streams provide crucial ecosystem services through the biogeochemical and ecological processes they sustain. Freshwater land-based salmonid farms commonly discharge their effluents into low order, headwater streams, partly due to the fact that adequate freshwater resources for production are commonly found in undisturbed areas. We review the effects of salmonid farm effluents on different biological components of stream ecosystems. Relevant considerations related to the temporal and spatial scales of effluent discharge and ecological effects are discussed. These highlight the need to characterize the patterns of stressor discharge when assessing environmental impacts and designing ecological effects studies. The potential role of multiple stressors in disrupting ecosystem structure and function is discussed with an emphasis on aquaculture veterinary medicines. Further research on the effects of veterinary medicines using relevant exposure scenarios would significantly contribute to our understanding of their impact in relation to other effluent stressors. - This article reviews the effects of aquaculture effluents on stream ecosystems with an emphasis on veterinary medicines and the temporal patterns of effluent discharge.

  17. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    Science.gov (United States)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of

  18. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data

    Science.gov (United States)

    J. Bruce Wallace; Susan L Eggert; Judy L. Meyer; Jackson R. Webster

    2015-01-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance,...

  19. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  20. Inferring Light-cycle-oil Stream Properties Using Soft Sensors

    OpenAIRE

    Joucowski, J.; Ndiaye, P. M.; Corazza, M. L.; Lenzi, M. K.

    2013-01-01

    The intensive necessity of hydrotreatment units for diesel production is pushing petroleum companies to seek alternatives to frame the produced streams into ultra low sulphur diesel (ULSD) specifications. One of the main difficulties in ULSD production is the presence of compounds from dibenzothiophenes (DBT), which are of difficult hydrotreatment. The LCO cutpoint control represents an interesting alternative to overcome this situation. Thus, the objective of this work was to develop a soft ...

  1. How wide is a stream? Spatial extent of the potential "stream signature" in terrestrial food webs using meta-analysis.

    Science.gov (United States)

    Muehlbauer, Jeffrey D; Collins, Scott F; Doyle, Martin W; Tockner, Klement

    2014-01-01

    The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the "biological stream width," complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a "stream signature" on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found > 0.5 km from the water's edge. The meta-analysis also identified explanatory variables that affect the stream signature. This improves our understanding of ecosystem conditions that permit spatially extensive subsidy transmission, such as in highly productive, middle-order streams and rivers. Resultant multivariate models from this analysis may be useful to managers implementing buffer rules and conservation strategies for stream and riparian function, as they facilitate prediction of the extent of subsidies. Our results stress that much of the subsidy remains near the stream, but also that subsidies (and aquatic organisms) are capable of long-distance dispersal into adjacent environments, and that the effective "biological stream width" of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone. Limited data available from marine and lake sources overlap well with the stream signature data, indicating that the "signature" approach may also be applicable to subsidy spatial dynamics across other ecosystems.

  2. The Northeast Stream Quality Assessment

    Science.gov (United States)

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  3. Effects of agricultural and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Ubiratan Hepp

    2010-02-01

    Full Text Available This study evaluates the effects of agricultural and urban activities on the structure and composition of benthic communities of streams in the state of Rio Grande do Sul, Brazil. Benthic macroinvertebrates were collected in streams influenced by urbanization and agriculture and in streams with no anthropogenic disturbances (reference streams. Organism density was superior in urban streams when compared with streams in the other two areas. The taxonomic richness and Shannon diversity index were higher in reference streams. The benthic fauna composition was significantly different among land uses. The classification and ordination analyses corroborated the results of variance analyses demonstrating the formation of clusters corresponding to streams with similar land use. Seasonality was also found to influence the benthic community, though in a lesser degree than land use.

  4. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    Science.gov (United States)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  5. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    Much effort has been put into building data streams management systems for querying data streams. Here, data streams have been viewed as a flow of low-level data items, e.g., sensor readings or IP packet data. Stream query languages have mostly been SQL-based, with the STREAM and TelegraphCQ lang...

  6. StreamSqueeze: a dynamic stream visualization for monitoring of event data

    Science.gov (United States)

    Mansmann, Florian; Krstajic, Milos; Fischer, Fabian; Bertini, Enrico

    2012-01-01

    While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.

  7. Stream temperature responses to timber harvest and best management practices—findings from the ODF RipStream project

    Science.gov (United States)

    Jeremy D. Groom

    2013-01-01

    Studies over the past 40 years have established that riparian buff er retention along streams protects against stream temperature increase. Th is protection is neither universal nor complete; some buff ered streams still warm, while other streams’ temperatures remain stable. Oregon Department of Forestry developed riparian rules in the Forest Practices Act (FPA) to...

  8. Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream

    Science.gov (United States)

    Eaton, B. C.; Hassan, M. A.; Davidson, S. L.

    2012-12-01

    In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive

  9. Percent Forest Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  10. Percent Agriculture Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  11. Ecological health in the Nation's streams

    Science.gov (United States)

    Carlisle, Daren M.; Woodside, Michael D.

    2013-01-01

    Aquatic biological communities, which are collections of organisms, are a direct measure of stream health because they indicate the ability of a stream to support life. This fact sheet highlights selected findings of a national assessment of stream health by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The assessment was unique in that it integrated the condition of three biological communities—algae, macroinvertebrates, and fish—as well as measures of streamflow modification, pesticides, nutrients, and other factors. At least one biological community was altered at 83 percent of assessed streams, and the occurrence of altered communities was highest in urban streams. Streamflows were modified at 86 percent of assessed streams, and increasing severity of streamflow modification was associated with increased occurrence of altered biological communities. Agricultural and urban land use in watersheds may contribute pesticides and nutrients to stream waters, and increasing concentrations of these chemicals were associated with increased occurrence of altered biological communities.

  12. Dynamics of physicochemical parameter concentrations in the Graniczna Woda stream water

    Directory of Open Access Journals (Sweden)

    Żarnowiec Wioletta

    2017-12-01

    Full Text Available The paper presents variability of physicochemical parameter concentrations and determined the potential and chemical status of water in the Graniczna Woda stream, the right bank tributary to the Stoła River. The stream catchment area of 41.5 km2 is covered mainly by forests. A lowland stream flows through part of the Upper Silesia Industrial Region through three districts. A biological-mechanical municipal sewage treatment plant operates in the area of Miasteczko Śląskie, as well as a factory sewage treatment plant of Zinc Plant. The data base used in the papers consisted of the results obtained from the Provincial Inspectorate of the Environmental Protection in Katowice, monthly analyses of water samples collected in the years 2009–2013 in the control-measurement points located by the mouth of the Stoła River. 34 physicochemical indices were analyzed in the paper. Statistically significant upward trends were determined over the period of investigations for values of electrical conductivity (EC, total suspended solids, Cl, SO4, NO2-N and Zn in the stream water. Statistically significant downward trend was noted for total hardness. It was stated that both the potential and chemical status o the stream water were below good. Exceeded limit values for quality class II determined for oxygen and organic indices (chemical oxygen demand COD-Mn, total organic carbon TOC, salinity (EC, SO4, Cl, Ca, hardness and biogenic indices and substances particularly harmful for aquatic environment (Zn, Tl as well as exceeded allowable heavy metal concentrations may evidence a constant inflow of heavy metals to the aquatic environment of the Graniczna Woda stream from municipal and industrial sewage.

  13. Methods for estimating drought streamflow probabilities for Virginia streams

    Science.gov (United States)

    Austin, Samuel H.

    2014-01-01

    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  14. In-stream biogeochemical processes of a temporary river.

    Science.gov (United States)

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Amaxidis, Yorgos; Skoulikidis, Nikolaos Th

    2007-02-15

    A reach at the estuary of Krathis River in Greece was used to assess how in-stream processes alter its hydrologic and biogeochemical regime. Krathis River exhibited high annual flow variability and its transmission losses become significant, especially during the dry months. These transmission losses are enhanced in chemistry due to release of nutrients from river sediments. These fluxes are significant because they correspond to 11% of the dissolved inorganic nitrogen flux of the river. Release of nitrogen species was influenced by temperature, while release of phosphate was not because phosphate levels were below the equilibrium concentration. There is a significant amount of sediments with fine composition that create "hot spot" areas in the river reach. These sediments are mobilized during the first flush events in the fall carrying with them a significant load of nutrient and suspended matter to the coastal zone. The nutrient organic content of sediments was also significant and it was studied in terms of its mineralization capacity. The capacity for mineralization was influenced by soil moisture, exhibiting significant capacity even at moisture levels of 40%. Temporary rivers are sensitive ecosystems, vulnerable to climate changes. In-stream processes play a significant role in altering the hydrology and biogeochemistry of the water and its impacts to the coastal zone.

  15. Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams

    International Nuclear Information System (INIS)

    Rosa, Rodrigo dos Santos; Aguiar, Anna Carolina Fornero; Boëchat, Iola Gonçalves; Gücker, Björn

    2013-01-01

    We investigated the impacts of effluent discharge from small flow-through fish farms on stream water characteristics, the benthic invertebrate community, whole-system nitrate uptake, and ecosystem metabolism of three tropical headwater streams in southeastern Brazil. Effluents were moderately, i.e. up to 20-fold enriched in particulate organic matter (POM) and inorganic nutrients in comparison to stream water at reference sites. Due to high dilution with stream water, effluent discharge resulted in up to 2.0-fold increases in stream water POM and up to 1.8-fold increases in inorganic nutrients only. Moderate impacts on the benthic invertebrate community were detected at one stream only. There was no consistent pattern of effluent impact on whole-stream nitrate uptake. Ecosystem metabolism, however, was clearly affected by effluent discharge. Stream reaches impacted by effluents exhibited significantly increased community respiration and primary productivity, stressing the importance of ecologically sound best management practices for small fish farms in the tropics. -- Highlights: ► Fish farm effluent discharge had moderate effects on stream water quality. ► Impacts on the benthic invertebrate community occurred at one stream. ► Whole-stream nitrate uptake showed no consistent impact pattern. ► Effluents caused considerable increases in stream ecosystem metabolism. ► Compliance with best management practices is important for small fish farms. -- Moderate water pollution by small fish farms caused considerable eutrophication responses in tropical headwater streams

  16. Estimating stream discharge using stage and multi-level acoustic Doppler velocimetry

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    than traditional stage-discharge methods. In this presentation we shall present results from a study where, at two sites in Denmark, the stream velocity field has been mapped by the use of three Acoustic Doppler Velocity Meter (ADVM) instruments. The ADVM instruments are mounted in three different......For temperate region countries with small or moderately sized streams, such as those in Denmark, seasonal weed growth imposes a significant temporal change of the stage-discharge relation. In the past such problems were often avoided by using hydraulic structures, however, firm ecology based...... in the Northern part of Europe may further violate a stable relation between stage and discharge in streams. Extreme high flow situations cause abrupt rise in stage, and consequently weed can be partly uprooted and partly bend down along the bed, thereby changing the conveyance of the stream. In addition, extreme...

  17. Defocusing of an ion beam propagating in background plasma due to two-stream instability

    Energy Technology Data Exchange (ETDEWEB)

    Tokluoglu, Erinc; Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-04-15

    The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.

  18. Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms

    Science.gov (United States)

    Daniel J. Isaak; Bruce E. Rieman

    2013-01-01

    Stream ecosystems are especially vulnerable to climate warming because most aquatic organisms are ectothermic and live in dendritic networks that are easily fragmented. Many bioclimatic models predict significant range contractions in stream biotas, but subsequent biological assessments have rarely been done to determine the accuracy of these predictions. Assessments...

  19. Measurement of Streaming Potential in Downhole Application: An Insight for Enhanced Oil Recovery Monitoring

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2017-01-01

    Full Text Available Downhole monitoring using streaming potential measurement has been developing in order to respond to actual reservoir condition. Most studies have emphasized on monitoring water flooding at various reservoir condition and improving the approaches of measurement. Enhanced Oil Recovery (EOR could significantly improve oil recovery and the efficiency of the process should be well-monitored. Alkaline-surfactant-polymer (ASP flooding is the most promising chemical EOR method due to its synergy of alkaline, surfactant and polymer, which could enhance the extraction of residual oil. However, limited studies have been focused on the application of streaming potential in EOR processes, particularly ASP. Thus, this paper aims to review the streaming potential measurement in downhole monitoring with an insight for EOR application and propose the potential measurement in monitoring ASP flooding. It is important for a preliminary study to investigate the synergy in ASP and the effects on oil recovery. The behaviour of streaming potential should be investigated when the environment of porous media changes with respect to ASP flooding. Numerical model can be generated from the experimental data to forecast the measured streaming potential signal during production associated with ASP flooding. Based on the streaming potential behaviour on foam assisted water alternate gas (FAWAG and water alternate gas (WAG processes, it is expected that the streaming potential could change significantly when ASP flooding alters the environment and surface properties of porous media. The findings could provide new prospect and knowledge in the relationship between streaming potential and ASP mechanisms, which could be a potential approach in monitoring the efficiency of the process.

  20. Comparison of active and passive stream restoration

    DEFF Research Database (Denmark)

    Kristensen, Esben Astrup; Thodsen, Hans; Dehli, Bjarke

    2013-01-01

    Modification and channelization of streams and rivers have been conducted extensively throughout the world during the past century. Subsequently, much effort has been directed at re-creating the lost habitats and thereby improving living conditions for aquatic organisms. However, as restoration...... methods are plentiful, it is difficult to determine which one to use to get the anticipated result. The aim of this study was to compare two commonly used methods in small Danish streams to improve the physical condition: re-meandering and passive restoration through cease of maintenance. Our...... investigation included measurement of the physical conditions in 29 stream reaches covering four different groups: (1) re-meandered streams, (2) LDC streams (the least disturbed streams available), (3) passively restored streams (>10 years stop of aintenance) and (4) channelized and non-restored streams. The in...

  1. Dynamics of dissolved organic carbon in a stream during a quarter century of forest succession

    Science.gov (United States)

    Judy L. Meyer; Jackson Webster; Jennifer Knoepp; E.F. Benfield

    2014-01-01

    Dissolved organic carbon (DOC) is a heterogeneous mixture of compounds that makes up a large fraction of the organic matter transported in streams. It plays a significant role in many ecosystems. Riverine DOC links organic carbon cycles of continental and oceanic ecosystems. It is a significant trophic resource in stream food webs. DOC imparts color to lakes,...

  2. Design and implementation of streaming media server cluster based on FFMpeg.

    Science.gov (United States)

    Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao

    2015-01-01

    Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system.

  3. Design and Implementation of Streaming Media Server Cluster Based on FFMpeg

    Science.gov (United States)

    Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao

    2015-01-01

    Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system. PMID:25734187

  4. Larval aquatic insect responses to cadmium and zinc in experimental streams.

    Science.gov (United States)

    Mebane, Christopher A; Schmidt, Travis S; Balistrieri, Laurie S

    2017-03-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration-response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pK a bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams. Environ Toxicol Chem 2017;36:749-762. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the

  5. Significance of mangrove swamps for aquaculture

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, S.; Untawale, A.G.

    stream_size 9 stream_content_type text/plain stream_name I.O_21_Century_Linkage_Networking_1998_249.pdf.txt stream_source_info I.O_21_Century_Linkage_Networking_1998_249.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  6. Small mammal populations in a restored stream corridor

    International Nuclear Information System (INIS)

    Wike, L.D.

    2000-01-01

    An opportunity to study the response of a small mammal community to restoration of a riparian wetland was provided by the Pen Branch project at the Savannah River Site (SRS). Live trapping of small mammals was conducted on six transects at Pen Branch in 1996 and 1998 and at three transects at Meyer's Branch, an unimpacted stream at SRS, in 1997 and 1998. Distributions of rates of capture of the four most common species were both spatially and temporally uneven. Kruskal-Wallis one-way analysis of variance found no significant differences in the relationship of capture rates between species and between treatment and both the within-stream control and Meyers Branch. Habitat use and movement within stream corridors appears to be dependent primarily on species, with age and sex perhaps contributing to preference and distance moved. The lack of differences in capture rates related to transect or treatment may be due to the close proximity of sample transects relative to the movement potential of the species sampled

  7. The Pacific northwest stream quality assessment

    Science.gov (United States)

    Van Metre, Peter C.; Morace, Jennifer L.; Sheibley, Rich W.

    2015-01-01

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program is assessing stream quality in the Pacific Northwest. The goals of the Pacific Northwest Stream Quality Assessment (Pacific Northwest study) are to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and to evaluate the relation between these stressors and biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowlands and Willamette Valley are the focus of this regional study. Findings will provide the public and policymakers with information regarding which human and environmental factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect or improve the health of streams in the region.

  8. Relationships among rotational and conventional grazing systems, stream channels, and macroinvertebrates

    Science.gov (United States)

    Raymond, K.L.; Vondracek, B.

    2011-01-01

    Cattle grazing in riparian areas can reduce water quality, alter stream channel characteristics, and alter fish and macroinvertebrate assemblage structure. The U.S. Department of Agriculture, Natural Resources Conservation Services has recommended Rotational Grazing (RG) as an alternative management method on livestock and dairy operations to protect riparian areas and water quality. We evaluated 13 stream channel characteristics, benthic macroinvertebrate larvae (BML), and chironomid pupal exuviae (CPE) from 18 sites in the Upper Midwest of the United States in relation to RG and conventional grazing (CG). A Biotic Composite Score comprised of several macroinvertebrate metrics was developed for both the BML assemblage and the CPE assemblage. Multi-Response Permutation Procedures (MRPP) indicated a significant difference in stream channel characteristics between RG and CG. Nonmetric Multidimensional Scaling indicated that RG sites were associated with more stable stream banks, higher quality aquatic habitat, lower soil compaction, and larger particles in the streambed. However, neither MRPP nor Mann-Whitney U tests demonstrated a difference in Biotic Composite Scores for BML or CPE along RG and CG sites. The BML and CPE metrics were significantly correlated, indicating that they were likely responding to similar variables among the study sites. Although stream channel characteristics appeared to respond to grazing management, BML and CPE may have responded to land use throughout the watershed, as well as local land use. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  9. An ecohydrological stream type cassification of intermittent and ephemeral streams in the Southwestern United States 2397

    Science.gov (United States)

    Ephemeral and intermittent streams are the predominant fluvial forms in arid and semi-arid environments. Various studies have shown biological and habitat diversity in these lands to be considerably higher along stream corridors in comparison to adjacent uplands, yet knowledge of how these streams f...

  10. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams

    DEFF Research Database (Denmark)

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian

    2015-01-01

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradabilit...

  11. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    Science.gov (United States)

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total

  12. Streaming Media Seminar--Effective Development and Distribution of Streaming Multimedia in Education

    Science.gov (United States)

    Mainhart, Robert; Gerraughty, James; Anderson, Kristine M.

    2004-01-01

    Concisely defined, "streaming media" is moving video and/or audio transmitted over the Internet for immediate viewing/listening by an end user. However, at Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA), streaming media is approached from a broader perspective. The working definition includes…

  13. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  14. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  15. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    Science.gov (United States)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  16. Structured multi-stream command language

    International Nuclear Information System (INIS)

    Glad, A.S.

    1982-12-01

    A multi-stream command language was implemented to provide the sequential and decision-making operations necessary to run the neutral-beam ion sources connected to the Doublet III tokamak fusion device. A multi-stream command language was implemented in Pascal on a Classic 7870 running under MAX IV. The purpose of this paper is threefold. First, to provide a brief description of the programs comprising the command language including the operating system interaction. Second, to give a description of the language syntax and commands necessary to develop a procedure stream. Third, to provide a description of the normal operating procedures for executing either the sequential or interactive streams

  17. Diel turbidity cycles in a headwater stream: evidence of nocturnal bioturbation?

    OpenAIRE

    Cooper, Richard J.; Outram, Faye; Hiscock, Kevin M.

    2016-01-01

    Purpose: A small number of recent studies have linked daily cycles in stream turbidity to nocturnal bioturbation by aquatic fauna, principally crayfish, and demonstrated this process can significantly impact upon water quality under baseflow conditions. Adding to this limited body of research, we use high-resolution water quality monitoring data to investigate evidence of diel turbidity cycles in a lowland, headwater stream with a known signal crayfish (Pacifastacus leniusculus) population an...

  18. A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda; Papamoschou, Dimitri

    2014-01-01

    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated

  19. Extreme Changes in Stream Geomorphic Conditions induced by Fluvial Scour in Bridges

    Science.gov (United States)

    Özcan, O.; Ozcan, O.

    2016-12-01

    The numerous complexities associated with bridge scour have caused scour to be one of the most active topics of stream geomorphic research. The assessment of local scouring mechanism around bridge piers provides information for decision-making regarding the pile footing design, predicting the safety of bridges under critical scoured conditions, and as a result, may help prevent unnecessary loses. In the study, bridge design plans and HEC-RAS modeling were used for the assessment of changes in stream geomorphic conditions. The derived fluvial scour depths were compared with the field measurements and the empirical formula which is based on stream flow discharge rate, streambed condition and shape of river. Preliminary results revealed that bridge damage resulting from the flood event in 2003 induced substantial scour around bridge piles. Afterwards, significant stream bed change was observed under the influence of fluvial scour in another flood occurred in 2009. Consequently, geomorphic conditions of the stream bed should be considered in the structural design of the bridges.

  20. Isolation and characterization of new lignin streams derived from extractive-ammonia (EA) pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    da Costa Sousa, Leonardo [Michigan State Univ., East Lansing, MI (United States); Foston, Marcus [Washington Univ., St. Louis, MO (United States); Bokade, Vijay [National Chemical Lab., Pune (India); Azarpira, Ali [Univ. of Wisconsin, Madison, WI (United States); Lu, Fachuang [Univ. of Wisconsin, Madison, WI (United States); Ragauskas, Arthur J. [Univ. of Tennessee, Knoxville, TN (United States); Ralph, John [Univ. of Wisconsin, Madison, WI (United States); Dale, Bruce [Michigan State Univ., East Lansing, MI (United States); Balan, Venkatesh [Michigan State Univ., East Lansing, MI (United States)

    2016-05-05

    One of the key challenges facing lignin conversion to fuels and chemicals is related to the level of carbohydrate and ash impurities found in extracted lignin. Structural modifications of lignin may also occur as a result of biomass pretreatment and harsh lignin extraction protocols. Extractive-Ammonia (EA) is a new pretreatment technology that uses liquid ammonia to cleave lignin–carbohydrate complexes, decrystallize cellulose, solubilize lignin, and selectively extract lignin from lignocellulosic biomass, enabling better utilization of both lignin and carbohydrate components in a biorefinery. The EA-based biorefinery produces two different lignin-rich streams, with different properties, that could potentially be upgraded to fuels and chemicals using green processes. Here, a water/ethanol-based fractionation method was developed to enrich the ammonia-soluble extractives, resulting in a major product stream containing 92% lignin. Detailed characterization of the various streams resulting from EA treatment, including compositional analysis, structural characterization by nuclear magnetic resonance (NMR) spectrometry, elemental analysis, molecular weight analysis, and thermo-gravimetric analysis provides a broad evaluation of the EA-derived lignin product stream structures and properties, assessing their potential for commercial applications. In conclusion, EA-derived lignins preserve much of lignin's functionality, including the sensitive β-aryl ether units. Furthermore, we observed nitrogen incorporation in the lignin-rich streams, notably due to the presence of hydroxycinnamoyl amides formed during ammonia pretreatment.

  1. Acoustic streaming of a sharp edge.

    Science.gov (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  2. Quantification of Groundwater Discharge in a Subalpine Stream Using Radon-222

    Directory of Open Access Journals (Sweden)

    Elizabeth Avery

    2018-01-01

    Full Text Available During the dry months of the water year in Mediterranean climates, groundwater influx is essential to perennial streams for sustaining ecosystem health and regulating water temperature. Predicted earlier peak flow due to climate change may result in decreased baseflow and the transformation of perennial streams to intermittent streams. In this study, naturally occurring radon-222 (222Rn was used as a tracer of groundwater influx to Martis Creek, a subalpine stream near Lake Tahoe, CA. Groundwater 222Rn is estimated based on measurements of 222Rn activity in nearby deep wells and springs. To determine the degassing constant (needed for quantification of water and gas flux, an extrinsic tracer, xenon (Xe, was introduced to the stream and monitored at eight downstream locations. The degassing constant for 222Rn is based on the degassing constant for Xe, and was determined to be 1.9–9.0 m/day. Applying a simple model in which stream 222Rn activity is a balance between the main 222Rn source (groundwater and sink (volatilization, the influx in reaches of the upstream portion of Martis Creek was calculated to be <1 to 15 m3/day/m, which cumulatively constitutes a significant portion of the stream discharge. Experiments constraining 222Rn emanation from hyporheic zone sediments suggest that this should be considered a maximum rate of influx. Groundwater influx is typically difficult to identify and quantify, and the method employed here is useful for identifying locations for focused stream flow measurements, for formulating a water budget, and for quantifying streamwater–groundwater interaction.

  3. Global perspectives on the urban stream syndrome

    Science.gov (United States)

    Roy, Allison; Booth, Derek B.; Capps, Krista A.; Smith, Benjamin

    2016-01-01

    Urban streams commonly express degraded physical, chemical, and biological conditions that have been collectively termed the “urban stream syndrome”. The description of the syndrome highlights the broad similarities among these streams relative to their less-impaired counterparts. Awareness of these commonalities has fostered rapid improvements in the management of urban stormwater for the protection of downstream watercourses, but the focus on the similarities among urban streams has obscured meaningful differences among them. Key drivers of stream responses to urbanization can vary greatly among climatological and physiographic regions of the globe, and the differences can be manifested in individual stream channels even through the homogenizing veneer of urban development. We provide examples of differences in natural hydrologic and geologic settings (within similar regions) that can result in different mechanisms of stream ecosystem response to urbanization and, as such, should lead to different management approaches. The idea that all urban streams can be cured using the same treatment is simplistic, but overemphasizing the tremendous differences among natural (or human-altered) systems also can paralyze management. Thoughtful integration of work that recognizes the commonalities of the urban stream syndrome across the globe has benefitted urban stream management. Now we call for a more nuanced understanding of the regional, subregional, and local attributes of any given urban stream and its watershed to advance the physical, chemical, and ecological recovery of these systems.

  4. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  5. Opportunities for membrane technologies in the treatment of mining and mineral process streams and effluents

    International Nuclear Information System (INIS)

    Awadalla, F.T.; Kumar, A.

    1994-01-01

    The membrane separation technologies of microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are suitable for treating many dilute streams and effluents generated in mining and mineral processing. Membrane technologies are capable of treating these dilute streams in order to produce clean permeate water for recycle and a concentrate that can potentially be used for valuable metals recovery. Membrane technologies can be utilized alone, or in combination with other techniques as a polishing step, in these separation processes. A review of potential applications of membranes for the treatment of different process streams and effluents for water recycling and pollution control is given here. Although membranes may not be optimum in all applications, these technologies are recognized in the mining sector for the many potential advantages they can provide. 59 refs

  6. Land use/land cover and scale influences on in-stream nitrogen uptake kinetics

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; McNamara, Rebecca

    2012-06-01

    Land use/land cover change often leads to increased nutrient loading to streams; however, its influence on stream ecosystem nutrient transport remains poorly understood. Given the deleterious impacts elevated nutrient loading can have on aquatic ecosystems, it is imperative to improve understanding of nutrient retention capacities across stream scales and watershed development gradients. We performed 17 nutrient addition experiments on six streams across the West Fork Gallatin Watershed, Montana, USA, to quantify nitrogen uptake kinetics and retention dynamics across stream sizes (first to fourth order) and along a watershed development gradient. We observed that stream nitrogen (N) uptake kinetics and spiraling parameters varied across streams of different development intensity and scale. In more developed watersheds we observed a fertilization affect. This fertilization affect was evident as increased ash-free dry mass, chlorophylla, and ambient and maximum uptake rates in developed as compared to undeveloped streams. Ash-free dry mass, chlorophylla, and the number of structures in a subwatershed were significantly correlated to nutrient spiraling and kinetic parameters, while ambient and average annual N concentrations were not. Additionally, increased maximum uptake capacities in developed streams contributed to low in-stream nutrient concentrations during the growing season, and helped maintain watershed export at low levels during base flow. Our results indicate that land use/land cover change can enhance in-stream uptake of limiting nutrients and highlight the need for improved understanding of the watershed dynamics that control nutrient export across scales and development intensities for mitigation and protection of aquatic ecosystems.

  7. Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams

    Science.gov (United States)

    Writer, Jeffrey H.; Ryan, Joseph N.; Barber, Larry B.

    2011-01-01

    Stream biofilms play an important role in geochemical processing of organic matter and nutrients, however, the significance of this matrix in sorbing trace organic contaminants is less understood. This study focused on the role of stream biofilms in sorbing steroidal hormones and 4-nonylphenol compounds from surface waters using biofilms colonized in situ on artificial substrata and subsequently transferred to the laboratory for controlled batch sorption experiments. Steroidal hormones and 4-nonylphenol compounds readily sorb to stream biofilms as indicated by organic matter partition coefficients (Kom, L kg–1) for 17β-estradiol (102.5–2.8 L kg–1), 17α-ethynylestradiol (102.5–2.9 L kg–1), 4-nonylphenol (103.4–4.6 L kg–1), 4-nonylphenolmonoethoxylate (103.5–4.0 L kg–1), and 4-nonylphenoldiethoxylate (103.9–4.3 L kg–1). Experiments using water quality differences to induce changes in the relative composition of periphyton and heterotrophic bacteria in the stream biofilm did not significantly affect the sorptive properties of the stream biofilm, providing additional evidence that stream biofilms will sorb trace organic compounds under of variety of environmental conditions. Because sorption of the target compounds to stream biofilms was linearly correlated with organic matter content, hydrophobic partition into organic matter appears to be the dominant mechanism. An analysis of 17β-estradiol and 4-nonylphenol hydrophobic partition into water, biofilm, sediment, and dissolved organic matter matrices at mass/volume ratios typical of smaller rivers showed that the relative importance of the stream biofilm as a sorptive matrix was comparable to bed sediments. Therefore, stream biofilms play a primary role in attenuating these compounds in surface waters. Because the stream biofilm represents the base of the stream ecosystem, accumulation of steroidal hormones and 4-nonylphenol compounds in the stream biofilm may be an exposure pathway for

  8. Stream permanence influences crayfish occupancy and abundance in the Ozark Highlands, USA

    Science.gov (United States)

    Yarra, Allyson N.; Magoulick, Daniel D.

    2018-01-01

    Crayfish use of intermittent streams is especially important to understand in the face of global climate change. We examined the influence of stream permanence and local habitat on crayfish occupancy and species densities in the Ozark Highlands, USA. We sampled in June and July 2014 and 2015. We used a quantitative kick–seine method to sample crayfish presence and abundance at 20 stream sites with 32 surveys/site in the Upper White River drainage, and we measured associated local environmental variables each year. We modeled site occupancy and detection probabilities with the software PRESENCE, and we used multiple linear regressions to identify relationships between crayfish species densities and environmental variables. Occupancy of all crayfish species was related to stream permanence. Faxonius meeki was found exclusively in intermittent streams, whereas Faxonius neglectus and Faxonius luteushad higher occupancy and detection probability in permanent than in intermittent streams, and Faxonius williamsi was associated with intermittent streams. Estimates of detection probability ranged from 0.56 to 1, which is high relative to values found by other investigators. With the exception of F. williamsi, species densities were largely related to stream permanence rather than local habitat. Species densities did not differ by year, but total crayfish densities were significantly lower in 2015 than 2014. Increased precipitation and discharge in 2015 probably led to the lower crayfish densities observed during this year. Our study demonstrates that crayfish distribution and abundance is strongly influenced by stream permanence. Some species, including those of conservation concern (i.e., F. williamsi, F. meeki), appear dependent on intermittent streams, and conservation efforts should include consideration of intermittent streams as an important component of freshwater biodiversity.

  9. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  10. On-stream chemical element monitor

    International Nuclear Information System (INIS)

    Averitt, O.R.; Dorsch, R.R.

    1979-01-01

    An apparatus and method for on-stream chemical element monitoring are described wherein a multiplicity of sample streams are flowed continuously through individual analytical cells and fluorescence analyses are performed on the sample streams in sequence, together with a method of controlling the time duration of each analysis as a function of the concomitant radiation exposure of a preselected perforate reference material interposed in the sample-radiation source path

  11. Reconfigurable Multicore Architectures for Streaming Applications

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Rauwerda, G.K.; Jacobs, J.W.M.; Nicolescu, G.; Mosterman, P.J.

    2009-01-01

    This chapter addresses reconfigurable heterogenous and homogeneous multicore system-on-chip (SoC) platforms for streaming digital signal processing applications, also called DSP applications. In streaming DSP applications, computations can be specified as a data flow graph with streams of data items

  12. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  13. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  14. Self-focusing relativistic electron streams in plasmas

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1975-01-01

    A relativistic electron stream propagating through a dense plasma induces current and charge densities which determine how the stream can self-focus. Magnetic self-focusing is possible because stream-current neutralization, although extensive, is not complete. Electric self-focusing can occur because the stream charge becomes overneutralized when the net current is smaller than a critical value. Under some circumstances, the latter process can cause the stream to focus into a series of electron bunches

  15. BLOSTREAM: A HIGH SPEED STREAM CIPHER

    Directory of Open Access Journals (Sweden)

    ALI H. KASHMAR

    2017-04-01

    Full Text Available Although stream ciphers are widely utilized to encrypt sensitive data at fast speeds, security concerns have led to a shift from stream to block ciphers, judging that the current technology in stream cipher is inferior to the technology of block ciphers. This paper presents the design of an improved efficient and secure stream cipher called Blostream, which is more secure than conventional stream ciphers that use XOR for mixing. The proposed cipher comprises two major components: the Pseudo Random Number Generator (PRNG using the Rabbit algorithm and a nonlinear invertible round function (combiner for encryption and decryption. We evaluate its performance in terms of implementation and security, presenting advantages and disadvantages, comparison of the proposed cipher with similar systems and a statistical test for randomness. The analysis shows that the proposed cipher is more efficient, high speed, and secure than current conventional stream ciphers.

  16. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  17. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    Science.gov (United States)

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  18. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    Science.gov (United States)

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  19. Collaborative Media Streaming

    OpenAIRE

    Kahmann, Verena

    2008-01-01

    Mit Hilfe der IP-Technologie erbrachte Multimedia-Dienste wie IPTV oder Video-on-Demand sind zur Zeit ein gefragtes Thema. Technisch werden solche Dienste unter dem Begriff "Streaming" eingeordnet. Ein Server sendet Mediendaten kontinuierlich an Empfänger, welche die Daten sofort weiterverarbeiten und anzeigen. Über einen Rückkanal hat der Kunde die Möglichkeit der Einflussnahme auf die Wiedergabe. Eine Weiterentwicklung dieser Streaming-Dienste ist die Möglichkeit, gemeinsam mit anderen dens...

  20. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    International Nuclear Information System (INIS)

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands

  1. Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon

    International Nuclear Information System (INIS)

    Nagorski, Sonia A.; Engstrom, Daniel R.; Hudson, John P.; Krabbenhoft, David P.; Hood, Eran; DeWild, John F.; Aiken, George R.

    2014-01-01

    Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg. -- Highlights: • We sampled 21 streams in southeastern Alaska for water, sediments, and biota. • Aqueous Hg showed significant relationships with wetlands and DOC. • Biota had higher mercury in wetland-rich streams than in glacier-fed streams. • Spawning salmon appear to contribute methylmercury to stream foodwebs. -- This original survey of mercury concentration and form in southeastern Alaskan streamwater and biota shows substantial spatial variation linked to landscape factors and salmon influence

  2. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    Science.gov (United States)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (hour). The high temporal sampling resolution of the sensors permits a more realistic

  3. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  4. Wadeable Streams Assessment Data

    Science.gov (United States)

    The Wadeable Streams Assessment (WSA) is a first-ever statistically-valid survey of the biological condition of small streams throughout the U.S. The U.S. Environmental Protection Agency (EPA) worked with the states to conduct the assessment in 2004-2005. Data for each parameter sampled in the Wadeable Streams Assessment (WSA) are available for downloading in a series of files as comma separated values (*.csv). Each *.csv data file has a companion text file (*.txt) that lists a dataset label and individual descriptions for each variable. Users should view the *.txt files first to help guide their understanding and use of the data.

  5. Industrial-Strength Streaming Video.

    Science.gov (United States)

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  6. Effects of Urbanization on the Flow Regimes of Semi-Arid Southern California Streams

    Science.gov (United States)

    Hawley, R. J.; Bledsoe, B. P.; Stein, E. D.

    2010-12-01

    Stream channel erosion and associated habitat degradation are pervasive in streams draining urban areas in the southwestern US. The prevalence of these impacts results from the inherent sensitivity of streams in semi-arid climates to changes in flow and sediment regimes, and past inattention to management of geomorphically effective flows. Addressing this issue is difficult due to the lack of data linking ranges of flow (from small to large runoff events) to geomorphic channel response. Forty-three U. S. Geological Survey gages with record lengths greater than ~15 yrs and watershed areas less than ~250 square kilometers were used to empirically model the effects of urbanization on streams in southern California. The watersheds spanned a gradient of urban development and ranged from 0 to 23% total impervious area in 2001. With little flow control at the subdivision scale to date, most impervious area in the region is relatively well-connected to surface-drainage networks. Consequently, total impervious area was an effective surrogate for urbanization, and emerged as a significant (p approach expands on previous scaling procedures to produce histogram-style cumulative flow duration graphs for ungaged sites based on urbanization extent and other watershed descriptors. Urbanization resulted in proportionally-longer durations of all geomorphically-effective flows, with a more pronounced effect on the durations of moderate flows. For example, an average watershed from the study domain with ~20% imperviousness could experience five times as many days of mean daily flows on the order of 100 cfs (3 cubic meters per second) and approximately three times as many days on the order of 1,000 cfs (30 cubic meters per second) relative to the undeveloped setting. Increased duration of sediment-transporting flows is a primary driver of accelerated changes in channel form that are often concurrent with urbanization throughout southern California, particularly in unconfined, fine

  7. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  8. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    Science.gov (United States)

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  9. Assessing effects of water abstraction on fish assemblages in Mediterranean streams

    Science.gov (United States)

    Benejam, Lluis; Angermeier, Paul L.; Munne, Antoni; García-Berthou, Emili

    2010-01-01

    1. Water abstraction strongly affects streams in arid and semiarid ecosystems, particularly where there is a Mediterranean climate. Excessive abstraction reduces the availability of water for human uses downstream and impairs the capacity of streams to support native biota. 2. We investigated the flow regime and related variables in six river basins of the Iberian Peninsula and show that they have been strongly altered, with declining flows (autoregressive models) and groundwater levels during the 20th century. These streams had lower flows and more frequent droughts than predicted by the official hydrological model used in this region. Three of these rivers were sometimes dry, whereas there were predicted by the model to be permanently flowing. Meanwhile, there has been no decrease in annual precipitation. 3. We also investigated the fish assemblage of a stream in one of these river basins (Tordera) for 6 years and show that sites more affected by water abstraction display significant differences in four fish metrics (catch per unit effort, number of benthic species, number of intolerant species and proportional abundance of intolerant individuals) commonly used to assess the biotic condition of streams. 4. We discuss the utility of these metrics in assessing impacts of water abstraction and point out the need for detailed characterisation of the natural flow regime (and hence drought events) prior to the application of biotic indices in streams severely affected by water abstraction. In particular, in cases of artificially dry streams, it is more appropriate for regulatory agencies to assign index scores that reflect biotic degradation than to assign ‘missing’ scores, as is presently customary in assessments of Iberian streams.

  10. Side-stream products of edible oil refining as feedstocks in biodiesel production

    Directory of Open Access Journals (Sweden)

    Cvetković Bojan S.

    2016-01-01

    Full Text Available Biodiesel, a diesel fuel alternative, is produced from vegetable oils and animal fats by the transesterification reaction of triacylglycerols and lower aliphatic alcohols. Beside number advantages related to fossil fuels, the main barrier to biodiesel wider commercial use is the high price of edible oils. Recently, the special attention was given to side-stream products of edible oil refining as low-cost triacylglycerol sources for biodiesel production because of their positive economic and ecological effects. In this paper, the different procedures for biodiesel production from side-stream refining products such as soapstock, spent bleaching earth and deodorizer distillate were analyzed. The main goal of this paper is to analyze the possibilities for reusing the by-products of edible oil refinement in the biodiesel production.

  11. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant

    International Nuclear Information System (INIS)

    Liu, Hao; Shao, Yingjuan

    2010-01-01

    Whilst all three main carbon capture technologies (post-combustion, pre-combustion and oxy-fuel combustion) can produce a CO 2 dominant stream, other impurities are expected to be present in the CO 2 stream. The impurities in the CO 2 stream can adversely affect other processes of the carbon capture and storage (CCS) chain including the purification, compression, transportation and storage of the CO 2 stream. Both the nature and the concentrations of potential impurities expected to be present in the CO 2 stream of a CCS-integrated power plant depend on not only the type of the power plant but also the carbon capture method used. The present paper focuses on the predictions of impurities expected to be present in the CO 2 stream of an oxy-coal combustion plant. The main gaseous impurities of the CO 2 stream of oxy-coal combustion are N 2 /Ar, O 2 and H 2 O. Even the air ingress to the boiler and its auxiliaries is small enough to be neglected, the N 2 /Ar concentration of the CO 2 stream can vary between ca. 1% and 6%, mainly depending on the O 2 purity of the air separation unit, and the O 2 concentration can vary between ca. 3% and 5%, mainly depending on the combustion stoichiometry of the boiler. The H 2 O concentration of the CO 2 stream can vary from ca. 10% to over 40%, mainly depending on the fuel moisture and the partitioning of recycling flue gas (RFG) between wet-RFG and dry-RFG. NO x and SO 2 are the two main polluting impurities of the CO 2 stream of an oxy-coal combustion plant and their concentrations are expected to be well above those found in the flue gas of an air-coal combustion plant. The concentration of NO x in the flue gas of an oxy-coal combustion plant can be up to ca. two times to that of an equivalent air-coal combustion plant. The amount of NO x emitted by the oxy-coal combustion plant, however, is expected to be much smaller than that of the air-coal combustion plant. The reductions of the recirculated NO x within the combustion

  12. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    Science.gov (United States)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  13. Effects of acid mine drainage on a headwater stream ecosystem in Colorado

    International Nuclear Information System (INIS)

    Niyogi, D.K.; Lewis, W.M. Jr.; McKnight, D.M.

    1994-01-01

    The ecological effects of acid mine drainage were investigated during the summer of 1993 on St. Kevin Gulch, a headwater stream near Leadville, Colorado. The stream currently receives acidic water from an abandoned mine. The pH downstream of the mine is between 3.5 and 4.5, and several metals exceed concentrations toxic to aquatic organisms. Zinc is present at especially high concentrations (1 to 10 mg/L) Furthermore, the stream bottom is covered with a thick layer of iron hydroxide precipitates. Effects on stream biota have been dramatic. Aquatic flora in the affected reach is limited to a green filamentous alga, Ulothrix subtilissima. Macroinvertebrate densities are significantly lower in the affected reach (mean = 99 indiv/m 2 ; SD = 88 indiv/M 2 ) compared to an upstream (pristine) reference reach (mean = 1,735 indiv/m 2 ; SD = 652 indiv/M 2 ). Functional processes were also studied in the stream. Net primary production (NPP) was measured during midday with recirculating chambers. Production was significantly lower in the affected reach (mean NPP 13.3 MgO 2 hr -1 m -2 ; SD = 87 MgO 2 hr -1 m -2 ) than the upstream reference reach (NPP = 64.1 MgO 2 hr -1 m -2 ; SD = 27.7 MgO 2 hr -1 m -2 ). Decomposition, measured with litter bags, was also lower in the affected reach than the upstream site. In 1994, St. Kevin Gulch is scheduled to undergo remediation that will treat the acidic water from the mine. Further studies on this stream will provide information on the recovery processes in lotic ecosystems

  14. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-11-01

    Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power 12 ρv3 merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant

  15. Influence of Soils, Riparian Zones, and Hydrology on Nutrients, Herbicides, and Biological Relations in Midwestern Agricultural Streams

    Science.gov (United States)

    Porter, S.

    2001-12-01

    Chemical, biological, and habitat conditions were characterized in 70 streams in the upper Mississippi River basin during August 1997, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study was designed to evaluate algal and macroinvertebrate responses to high agricultural intensity in relation to nonpoint sources of nutrients and herbicides, characteristics of basin soils, wooded-riparian vegetation, and hydrology. Concentrations and forms of nutrients, herbicides and their metabolites, and seston constituents varied significantly with regional differences in soil properties, ground and surface water relations, density of riparian trees, and precedent rainfall-runoff conditions. Dissolved nitrate concentrations were relatively low in streams with high algal productivity; however, nitrate concentrations increased with basin water yield, which was associated with the regional distribution of rainfall during the month prior to the study. Stream productivity and respiration were positively correlated with seston (phytoplankton) chlorophyll concentrations, which were significantly larger in streams in areas with poorly drained soils and low riparian-tree density. Concentrations of dissolved phosphorus were low in streams where periphyton biomass was high. Periphyton biomass was relatively larger in streams with clear water and low abundance of macroinvertebrates that consume algae. Periphyton biomass decreased rapidly with modest increases in the abundance of scrapers such as snails and certain mayfly taxa. Differences in dissolved oxygen, organic carbon, stream velocity, and precedent hydrologic conditions explained much of the variance in macroinvertebrate community structure. The overall number of macroinvertebrate species and number of mayfly, caddisfly, and stonefly (EPT) taxa that are sensitive to organic enrichment were largest in streams with moderate periphyton biomass, in areas with moderately-well drained soils

  16. Adaptive responses to cefotaxime treatment in ESBL-producing Escherichia coli and the possible use of significantly regulated pathways as novel secondary targets

    DEFF Research Database (Denmark)

    Møller, Thea S. B.; Rau, Martin Holm; Bonde, Charlotte S

    2016-01-01

    The aim of the study was to determine how ESBL-producing Escherichia coli change the expression of metabolic and biosynthesis genes when adapting to inhibitory concentrations of cefotaxime. Secondly, it was investigated whether significantly regulated pathways constitute putative secondary targets......-fold). Inhibition and/or mutations in other genes that were significantly regulated, belonging to energy synthesis, purine synthesis, proline uptake or potassium uptake, also rendered the resistant bacteria more susceptible to cefotaxime. The results show that ESBL-producing E. coli adapt to treatment...

  17. STREAMS - Technology Programme. Yearbook 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The STREAMS Technology Programme addresses municipal waste. Municipal waste is composed of waste from households and small businesses. The programme focuses on five areas Waste prevention, Collection, transportation, and management of waste streams, Waste treatment technologies, Waste recycling into raw materials and new products, Landfill technologies. The development projects of the STREAMS Programme utilize a number of different technologies, such as biotechnology, information technology, materials technology, measurement and analysis, and automation technology. Finnish expertise in materials recycling technologies and related electronics and information technology is extremely high on a worldwide scale even though the companies represent SMEs. Started in 2001, the STREAMS programme has a total volume of 27 million euros, half of which is funded by Tekes. The programme runs through the end of 2004. (author)

  18. Quantifying Forested Riparian Buffer Ability to Ameliorate Stream Temperature in a Missouri Ozark Border Stream of the Central U.S

    Science.gov (United States)

    Bulliner, E. A.; Hubbart, J. A.

    2009-12-01

    than the N-S reach and 2.2°C lower than air temperature measured at the reference flux tower, reflecting the increased effects of topographic shading and potential cold air drainage. Average net shortwave radiation for the N-S reach was 3.2% higher than the E-W reach, while the maximum net longwave radiation was 62.4% lower. Average soil temperature at 15 cm was 0.2°C lower for the E-W reach than the N-S reach and 0.4°C lower than soil temperature measured at the reference flux tower. Preliminary analyses suggest significant differences between the surface energy balance in the riparian zones vs the reference site, as well as differences between the individual stream reach orientations of this study. These differences will be reflected in mass and energy balance estimates, and thus stream temperature. This critical research will a) lead to an improved understanding of the impact riparian buffers have on stream water quality, b) validate multiple current best management practices for riparian forest management and c), equip land managers with much improved tools (i.e. models) for better management of these complex fresh water ecosystems.

  19. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data

    Science.gov (United States)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.

    2015-12-01

    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  20. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  1. Quality of streams in Johnson County, Kansas, 2002--10

    Science.gov (United States)

    Rasmussen, Teresa J.; Stone, Mandy S.; Poulton, Barry C.; Graham, Jennifer L.

    2012-01-01

    significantly negatively correlated with biological conditions. Specific conductance of water and sum of PAH concentrations in streambed sediment also were significantly negatively correlated with biological conditions. Total nitrogen in water and total phosphorus in streambed sediment were correlated with most of the invertebrate variables, which is a notable difference from previous analyses using smaller datasets, in which nutrient relations were weak or not detected. The most important habitat variables were sinuosity, length and continuity of natural buffers, riffle substrate embeddedness, and substrate cover diversity, each of which was correlated with all invertebrate metrics including a 10-metric combined score. Correlation analysis indicated that if riparian and in-stream habitat conditions improve then so might invertebrate communities and stream biological quality. Sixty-two percent of the variance in macroinvertebrate community metrics was explained by the single environmental factor, percent impervious surface. Invertebrate responses to urbanization in Johnson County indicated linearity rather than identifiable thresholds. Multiple linear regression models developed for each of the four macroinvertebrate metrics used to determine aquatic-life-support status indicated that percent impervious surface, as a measure of urban land use, explained 34 to 67 percent of the variability in biological communities. Results indicate that although multiple factors are correlated with stream quality degradation, general urbanization, as indicated by impervious surface area or urban land use, consistently is determined to be the fundamental factor causing change in stream quality. Effects of urbanization on Johnson County streams are similar to effects described in national studies that assess effects of urbanization on stream health. Individually important environmental factors such as specific conductance of water, PAHs in streambed sediment, and stream buffer conditions, are

  2. Continuity-Aware Scheduling Algorithm for Scalable Video Streaming

    Directory of Open Access Journals (Sweden)

    Atinat Palawan

    2016-05-01

    Full Text Available The consumer demand for retrieving and delivering visual content through consumer electronic devices has increased rapidly in recent years. The quality of video in packet networks is susceptible to certain traffic characteristics: average bandwidth availability, loss, delay and delay variation (jitter. This paper presents a scheduling algorithm that modifies the stream of scalable video to combat jitter. The algorithm provides unequal look-ahead by safeguarding the base layer (without the need for overhead of the scalable video. The results of the experiments show that our scheduling algorithm reduces the number of frames with a violated deadline and significantly improves the continuity of the video stream without compromising the average Y Peek Signal-to-Noise Ratio (PSNR.

  3. Predictive Modeling of Transient Storage and Nutrient Uptake: Implications for Stream Restoration

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-12-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO-3)(NO3-) uptake rates inferred using the nutrient spiraling model underestimated the total NO-3NO3- mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO-3NO3- mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  4. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.

    2016-01-01

    Streams and rivers are active processors of carbon, leading to significant emissions of CO2 and possibly CH4 to the atmosphere. Patterns and controls of CH4 in fluvial ecosystems remain relatively poorly understood. Furthermore, little is known regarding how major human impacts to fluvial ecosystems may be transforming their role as CH4 producers and emitters. Here, we examine the consequences of two distinct ecosystem changes as a result of human land use: increased nutrient loading (primarily as nitrate), and increased sediment loading and deposition of fine particles in the benthic zone. We did not find support for the hypothesis that enhanced nitrate loading down-regulates methane production via thermodynamic or toxic effects. We did find strong evidence that increased sedimentation and enhanced organic matter content of the benthos lead to greater methane production (diffusive + ebullitive flux) relative to pristine fluvial systems in northern Wisconsin (upper Midwest, USA). Overall, streams in a human-dominated landscape of southern Wisconsin were major regional sources of CH4 to the atmosphere, equivalent to ~20% of dairy cattle emissions, or ~50% of a landfill’s annual emissions. We suggest that restoration of the benthic environment (reduced fine deposits) could lead to reduced CH4 emissions, while decreasing nutrient loading is likely to have limited impacts to this ecosystem process.

  5. Fish populations in Plynlimon streams

    Directory of Open Access Journals (Sweden)

    D. T. Crisp

    1997-01-01

    Full Text Available In Plynlimon streams, brown trout (Salmo trutta L. are widespread in the upper Wye at population densities of 0.03 to 0.32 fish m-2 and show evidence of successful recruitment in most years. In the upper Severn, brown trout are found only in an area of c. 1670 -2 downstream of Blaenhafren Falls at densities of 0.03 to 0.24 fish -2 and the evidence suggests very variable year to year success in recruitment (Crisp & Beaumont, 1996. Analyses of the data show that temperature differences between afforested and unafforested streams may affect the rates of trout incubation and growth but are not likely to influence species survival. Simple analyses of stream discharge data suggest, but do not prove, that good years for recruitment in the Hafren population were years of low stream discharge. This may be linked to groundwater inputs detected in other studies in this stream. More research is needed to explain the survival of the apparently isolated trout population in the Hafren.

  6. Device interactions in reducing the cost of tidal stream energy

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2015-01-01

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h −1 , occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  7. Ammonium release from a blanket peatland into headwater stream systems

    International Nuclear Information System (INIS)

    Daniels, S.M.; Evans, M.G.; Agnew, C.T.; Allott, T.E.H.

    2012-01-01

    Hydrochemical sampling of South Pennine (UK) headwater streams draining eroded upland peatlands demonstrates these systems are nitrogen saturated, with significant leaching of dissolved inorganic nitrogen (DIN), particularly ammonium, during both stormflow and baseflow conditions. DIN leaching at sub-catchment scale is controlled by geomorphological context; in catchments with low gully densities ammonium leaching dominates whereas highly gullied catchments leach ammonium and nitrate since lower water tables and increased aeration encourages nitrification. Stormflow flux calculations indicate that: approximately equivalent amounts of nitrate are deposited and exported; ammonium export significantly exceeds atmospheric inputs. This suggests two ammonium sources: high atmospheric loadings; and mineralisation of organic nitrogen stored in peat. Downstream trends indicate rapid transformation of leached ammonium into nitrate. It is important that low-order headwater streams are adequately considered when assessing impacts of atmospheric loads on the hydrochemistry of stream networks, especially with respect to erosion, climate change and reduced precipitation. - Highlights: ► Headwaters draining eroded South Pennine (UK) peatlands are nitrogen saturated. ► Ammonium and nitrate leaching arises from aeration due to lower water tables. ► Nitrate deposition equals export during storms; ammonium export exceeds input. ► Ammonia input from high atmospheric loading and mineralisation of organic nitrogen. ► Downstream nitrogen trends indicate rapid transformation of ammonium into nitrate. - Inorganic nitrogen leaching from South Pennine peatlands is dominated by ammonium that is rapidly transformed within-streams to nitrate.

  8. Oviposition of aquatic insects in a tropical high altitude stream.

    Science.gov (United States)

    Rios-Touma, Blanca; Encalada, A C; Prat, N

    2012-12-01

    The persistence of aquatic insect populations in streams depends on the recruitment of larval populations from egg masses deposited by adults, especially after disturbance. However, recruitment of aquatic populations by oviposition is a process that remains unstudied in streams and rivers. The objectives of our study were to document flying and oviposition patterns of aquatic insects in a high altitude tropical stream during both dry and wet seasons. In particular we studied 1) richness and abundance of adult forms of aquatic insects flying and ovipositing; 2) number of eggs (oviposition pattern), egg mass identity, and morphology; and 3) substrate preferences by ovipositing females. We found 2,383 aquatic insects corresponding to 28 families, with dipterans representing 89% of total individuals collected. Adult insects had lower richness (28 taxa) than larval diversity (up to 52 taxa) and distinct community composition. Richness and relative abundance of most taxa (adults) were not significantly different between seasons, behaviors, diel period, or all three. During both sampling periods we found females with eggs in a total of 15 different families (13 in the dry season and 14 in the wet season). There were no significant differences in the proportion of females with eggs between seasons, diel periods, or different behaviors (flying versus ovipositing traps) of the different female taxa. Few types of egg masses were found in rocks at the stream during both seasons, and most egg masses found corresponded to families Baetidae and Chironomidae. Finally, we provide the first description of eggs masses (size, shape, color, and number of eggs per female) of gravid females (10 taxa) and those found in the stream substrate (six taxa) of Andean macroinvertebrates. This is the first study reporting oviposition, adult diversity, and oviposition patterns of aquatic insects in the Andean region.

  9. Hydraulic Properties related to Stream Reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  10. Hydraulic properties related to stream reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  11. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    Science.gov (United States)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  12. Fast algorithm for automatically computing Strahler stream order

    Science.gov (United States)

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  13. Waste streams from reprocessing operations

    International Nuclear Information System (INIS)

    Andersson, B.; Ericsson, A.-M.

    1978-03-01

    The three main products from reprocessing operations are uranium, plutonium and vitrified high-level-waste. The purpose of this report is to identify and quantify additional waste streams containing radioactive isotops. Special emphasis is laid on Sr, Cs and the actinides. The main part, more than 99 % of both the fission-products and the transuranic elements are contained in the HLW-stream. Small quantities sometimes contaminate the U- and Pu-streams and the rest is found in the medium-level-waste

  14. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA

    Science.gov (United States)

    Hladik, Michelle; Kolpin, Dana W.; Kuivila, Kathryn

    2014-01-01

    Neonicotinoid insecticides are of environmental concern, but little is known about their occurrence in surface water. An area of intense corn and soybean production in the Midwestern United States was chosen to study this issue because of the high agricultural use of neonicotinoids via both seed treatments and other forms of application. Water samples were collected from nine stream sites during the 2013 growing season. The results for the 79 water samples documented similar patterns among sites for both frequency of detection and concentration (maximum:median) with clothianidin (75%, 257 ng/L:8.2 ng/L) > thiamethoxam (47%, 185 ng/L: imidacloprid (23%, 42.7 ng/L: treatments as their likely source.

  15. Potential stream density in Mid-Atlantic US watersheds.

    Science.gov (United States)

    Elmore, Andrew J; Julian, Jason P; Guinn, Steven M; Fitzpatrick, Matthew C

    2013-01-01

    Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts.

  16. Jet stream winds - Comparisons of analyses with independent aircraft data over Southwest Asia

    Science.gov (United States)

    Tenenbaum, J.

    1991-01-01

    Cruise-level wind data from commercial aircraft are obtained, and these data are compared with operational jet stream analyses over southwest Asia, an area of limited conventional data. Results from an ensemble of 11 cases during January 1989 and individual cases during December 1988-March 1989 are presented. The key results are: (1) European Centre for Medium-Range Weather Forecasts (ECMWF), National Meteorological Center, and United Kingdom Meteorological Office analyses of the subtropical jet in southwest Asia are 11 percent, 17 percent, and 17 percent weaker, respectively, than aircraft observations; (2) analyzed poleward shears range up to 1 f (0.00007/s) compared with up to 3 f (0.00021/s) in the aircraft observations where f is the local Coriolis parameters; (3) the ECMWF errors are largest at the base of the jet; (4) the mean ECMWF core location is latitudinally correct but has an rms latitude variance of 1.5 deg; (5) isolated erroneous radiosondes produce unmeteorological structures in the analyzed subtropical jet stream; and (6) the increased utilization of automated aircraft reports is likely to produce a spurious secular increase in the apparent strength of the jets. The magnitude and spatial extent of the errors seen are near limits of current GCM resolution (100 km) but should be resolvable. The results imply that studies of GCM systematic jet stream wind errors in weather and climate forecasts must be interpreted with caution in this region.

  17. Effect of the addition of wheat bran stream on dough rheology and bread quality

    Directory of Open Access Journals (Sweden)

    Iuliana Banu

    2012-08-01

    Full Text Available The milling by-products have high nutritional value and can be incorporated into white flour. This study was aimed at comparatively examining the rheological behaviour of the doughs made from wheat white flour with different levels (3-30% of bran streams incorporated and from wholewheat. The results indicated significant correlations between the ash content of the wheat bran streams incorporated into flour and Alveograph, Rheofermentograph and Mixolab parameters. The white flour sample with 25% wheat bran streams had the ash content similar to wholewheat, but the dough rheology was improved. The quality of the white flour bread with 25% wheat bran streams was improved compared to the wholemeal bread.

  18. Optimizing Reservoir-Stream-Aquifer Interactions for Conjunctive Use and Hydropower Production

    Directory of Open Access Journals (Sweden)

    Hala Fayad

    2012-01-01

    Full Text Available Conjunctive management of water resources involves coordinating use of surface water and groundwater resources. Very few simulation/optimization (S-O models for stream-aquifer system management have included detailed interactions between groundwater, streams, and reservoir storage. This paper presents an S-O model doing that via artificial neural network simulators and genetic algorithm optimizer for multiobjective conjunctive water use problems. The model simultaneously addresses all significant flows including reservoir-stream-diversion-aquifer interactions in a more detailed manner than previous models. The model simultaneously maximizes total water provided and hydropower production. A penalty function implicitly poses constraints on state variables. The model effectively finds feasible optimal solutions and the Pareto optimum. Illustrated is application for planning water resource and minihydropower system development.

  19. Retrieval of Sentence Sequences for an Image Stream via Coherence Recurrent Convolutional Networks.

    Science.gov (United States)

    Park, Cesc Chunseong; Kim, Youngjin; Kim, Gunhee

    2018-04-01

    We propose an approach for retrieving a sequence of natural sentences for an image stream. Since general users often take a series of pictures on their experiences, much online visual information exists in the form of image streams, for which it would better take into consideration of the whole image stream to produce natural language descriptions. While almost all previous studies have dealt with the relation between a single image and a single natural sentence, our work extends both input and output dimension to a sequence of images and a sequence of sentences. For retrieving a coherent flow of multiple sentences for a photo stream, we propose a multimodal neural architecture called coherence recurrent convolutional network (CRCN), which consists of convolutional neural networks, bidirectional long short-term memory (LSTM) networks, and an entity-based local coherence model. Our approach directly learns from vast user-generated resource of blog posts as text-image parallel training data. We collect more than 22 K unique blog posts with 170 K associated images for the travel topics of NYC, Disneyland , Australia, and Hawaii. We demonstrate that our approach outperforms other state-of-the-art image captioning methods for text sequence generation, using both quantitative measures and user studies via Amazon Mechanical Turk.

  20. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge

    Science.gov (United States)

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.

    1994-01-01

    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration

  1. Effects of Student-Induced Trampling on Aquatic Macroinvertebrates in Agricultural Headwater Streams

    Directory of Open Access Journals (Sweden)

    Jon P. Bossley

    2018-01-01

    Full Text Available Outdoor education (OE stream classes provide students with an opportunity to gain hands-on experience with sampling methods for evaluating stream water quality. Trampling by students as a result of stream classes may disrupt the substrate and negatively impact aquatic macroinvertebrates. The impact of student-induced trampling in headwaters as a result of stream classes on aquatic macroinvertebrates has not been evaluated. Our aim was to document the short-term macroinvertebrate responses to an experimental disturbance that simulated the impacts of trampling by students in riffles within small headwater streams. We measured hydrologic variables, visually estimated substrate composition and sampled aquatic macroinvertebrates within control and experimental riffles in three agricultural headwater streams in central Ohio one day prior to experimental disturbance, immediately after disturbance and one day after disturbance. Hydrologic variables and substrate type did not differ daily or between riffle types. Macroinvertebrate abundance, percentage of Ephemeroptera Plecoptera Trichoptera and percentage of Leuctridae increased after experimental disturbance, while diversity, evenness, percentage of clingers and non-metric multidimensional scaling (NMS axis 1 site scores declined after disturbance. Macroinvertebrate diversity, percent clingers and NMS axis 1 site scores were lower in experimental riffles than control riffles. None of the macroinvertebrate response variables exhibited a significant interaction effect of day × riffle type that is indicative of an effect of the experimental disturbance. Our results suggest the one-time use of an undisturbed riffle within an agricultural headwater stream for an OE stream class is not likely to impact aquatic macroinvertebrates.

  2. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Natural Resource Agency — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  3. Red River Stream Improvement Final Design Nez Perce National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Watershed Consulting, LLC

    2007-03-15

    This report details the final stream improvement design along the reach of Red River between the bridge below Dawson Creek, upstream for approximately 2 miles, Idaho County, Idaho. Geomorphic mapping, hydrologic profiles and cross-sections were presented along with existing fish habitat maps in the conceptual design report. This information is used to develop a stream improvement design intended to improve aquatic habitat and restore riparian health in the reach. The area was placer mined using large bucket dredges between 1938 and 1957. This activity removed most of the riparian vegetation in the stream corridor and obliterated the channel bed and banks. The reach was also cut-off from most valley margin tributaries. In the 50 years since large-scale dredging ceased, the channel has been re-established and parts of the riparian zone have grown in. However, the recruitment of large woody debris to the stream has been extremely low and overhead cover is poor. Pool habitat makes up more than 37% of the reach, and habitat diversity is much better than the project reach on Crooked River. There is little large woody debris in the stream to provide cover for spawning and juvenile rearing, because the majority of the woody debris does not span a significant part of the channel, but is mainly on the side slopes of the stream. Most of the riparian zone has very little soil or subsoil left after the mining and so now consists primarily of unconsolidated cobble tailings or heavily compacted gravel tailings. Knapweed and lodgepole pine are the most successful colonizers of these post mining landforms. Tributary fans which add complexity to many other streams in the region, have been isolated from the main reach due to placer mining and road building.

  4. New approaches to e-reserve linking, sharing and streaming

    CERN Document Server

    Cheung, Ophelia; Patrick, Susan

    2010-01-01

    Aimed at academic library practitioners, this book describes how e-reserve services can evolve and adapt to the changing virtual learning environment of higher education. New approaches discussed include: the integration of subscribed, free, and copyrighted resources within course management systems; innovative employment of open URL link resolvers to connect e-reserve with library e-resources and services; video streaming within course documents; and the creative use of bibliographic software to produce customized reading lists. New Approaches to E-Reserve includes detailed descriptions and e

  5. Fluid aspects of electron streaming instability in electron-ion plasmas

    International Nuclear Information System (INIS)

    Jao, C.-S.; Hau, L.-N.

    2014-01-01

    Electrons streaming in a background electron and ion plasma may lead to the formation of electrostatic solitary wave (ESW) and hole structure which have been observed in various space plasma environments. Past studies on the formation of ESW are mostly based on the particle simulations due to the necessity of incorporating particle's trapping effects. In this study, the fluid aspects and thermodynamics of streaming instabilities in electron-ion plasmas including bi-streaming and bump-on-tail instabilities are addressed based on the comparison between fluid theory and the results from particle-in-cell simulations. The energy closure adopted in the fluid model is the polytropic law of d(pρ −γ )/dt=0 with γ being a free parameter. Two unstable modes are identified for the bump-on-tail instability and the growth rates as well as the dispersion relation of the streaming instabilities derived from the linear theory are found to be in good agreement with the particle simulations for both bi-streaming and bump-on-tail instabilities. At the nonlinear saturation, 70% of the electrons are trapped inside the potential well for the drift velocity being 20 times of the thermal velocity and the pρ −γ value is significantly increased. Effects of ion to electron mass ratio on the linear fluid theory and nonlinear simulations are also examined

  6. Hydrogeochemical and stream sediment reconnaissance basic data for Ashland NTMS Quadrangle, Wisconsin; Michigan; Minnesota

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Ashland Quadrangle, Wisconsin; Michigan; Minnesota are reported. Field and laboratory data are presented for 312 groundwater and 383 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising area for potential uranium mineralization occurs along the Douglas Thrust Fault in northern Douglas County, Wisconsin. The Douglas Fault brings Fond du Lac Formation sediments in contact with Chengwatana volcanics where carbonate-rich water derived from the mafic volcanics enter the arkosic Fond du Lac Formation. Another area of interest surrounds the Bad River Indian Reservation in northern Ashland and Iron Counties. The waters here are produced from red lithic sandstone and are also associated with the Douglas Fault. Water chemistry of these waters appears similar to the waters from the Douglas County area. The stream sediment data are inconclusive because of the extensive cover of glacial deposits. A moderately favorable area is present in a strip along Lake Superior in Douglas County, where sediments are derived from arkoses of the Fond du Lac Formation

  7. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  8. Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Couceiro, Sheyla Regina Marques; Hamada, Neusa [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Forsberg, Bruce Rider [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Ecologia, Manaus, AM (Brazil); Padovesi-Fonseca, Claudia [Univ. de Brasilia, Dept. de Ecologia, Brasilia, DF (Brazil)

    2010-01-15

    Purpose: While environmental risks associated with petroleum extraction such as oil spills or leaks are relatively well known, little attention has been given to the impacts of silt. The increase in petroleum exploitation in Amazonia has resulted in sediment input to aquatic systems, with impacts on their biodiversity. Here we use a combination of field measurements and statistical analyses to evaluate the impacts of anthropogenic silt derived from the construction of roads, borrow pits, and wells during the terrestrial development of gas and oil, on macroinvertebrate communities in streams of the Urucu Petroleum Province in the Central Brazilian Amazon. Material and methods: Ten impacted and nine non-impacted streams were sampled in January, April, and November of 2007. Macroinvertebrates were sampled along a 100-m continuous reach in each stream at 10-m intervals using a dip net. Abiotic variables including, a siltation index (SI), suspended inorganic sediment (SIS), sediment color index (SCI), suspend organic sediment (SOS), pH, electrical conductivity, dissolved oxygen, temperature, water velocity, channel width, and depth, were measured at three equidistant points in each stream ({proportional_to}30-m intervals). Results and discussion: SI did not differ between impacted and undisturbed streams. SIS was higher and SCI lower (more reddish) in impacted than in non-impacted streams. SCI had a positive and SIS a negative effect on both macroinvertebrate richness and density. SIS and SCI also influenced macrophyte taxonomic composition. In impacted streams, taxonomic richness and density were 1.5 times lower than in non-impacted streams. No taxon was significantly associated with impacted streams. SIS was positively correlated with SOS and electrical conductivity while SCI was negatively correlated with SOS, electrical conductivity, and pH. The lack of difference in SI between impacted and nonimpacted streams suggests that anthropogenic sediment does not accumulate

  9. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  10. Knowledge discovery from data streams

    CERN Document Server

    Gama, Joao

    2010-01-01

    Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents a coherent overview of state-of-the-art research in learning from data streams.The book covers the fundamentals that are imperative to understanding data streams and describes important applications, such as TCP/IP traffic, GPS data, sensor networks,

  11. The relation between project management education and newer streams in project management research

    DEFF Research Database (Denmark)

    Leimbach, Timo; Goodall, Julie Bladt

    2017-01-01

    In the last decades, research in project management (PM) has experienced significant new inputs from a range of new PM methodologies and critical research streams. As a consequence, members of the more critical streams have called for the education of project managers to advance from that of trai......In the last decades, research in project management (PM) has experienced significant new inputs from a range of new PM methodologies and critical research streams. As a consequence, members of the more critical streams have called for the education of project managers to advance from...... that of training technicians, to fostering reflective practitioners that are better equipped to handle the increasing complexity of the profession. This paper is based on a recently commenced re-search project titled "Rethinking Project Management Education – the Role of Universities" that is aimed at analysing...... how the development of PM research is reflected in the education of project managers. On the basis of a short overview of the state of the art of PM education research and practices, the possible challenges for the development of PM education are discussed, and, finding that there is a lack...

  12. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    Science.gov (United States)

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and

  13. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  14. Changes in Stream Flow and Their Relationships with Climatic Variations and Anthropogenic Activities in the Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Chaojun Gu

    2016-12-01

    Full Text Available The Poyang Lake Basin has been suffering from severe water problems such as floods and droughts. This has led to great adverse impacts on local ecosystems and water resource utilization. It is therefore important to understand stream flow changes and their driving factors. In this paper, the dynamics of stream flow and precipitation in the Poyang Lake Basin between 1961 and 2012 were evaluated with the Mann–Kendall test, Theil–Sen approaches, Pettitt test, and Pearson’s correlation. Stream flow was measured at the outlets of five major tributaries of Poyang Lake, while precipitation was recorded by fourteen meteorological stations located within the Poyang Lake Basin. Results showed that annual stream flow of all tributaries and the precipitation over the study area had insignificant (P > 0.1 temporal trends and change points, while significant trends and shifts were found in monthly scale. Stream flow concentration indices (SCI at Waizhou, Meigang, and Wanjiabu stations showed significant (P < 0.05 decreasing trends with change points emerging in 1984 at Waizhou and 1978 at Wanjiabu, while there was no significant temporal trend and change point detected for the precipitation concentration indices (PCI. Correlation analysis indicated that area-average stream flow was closely related to area-average precipitation, but area-average SCI was insignificantly correlated with area-average PCI after change point (1984. El Niño/Southern Oscillation (ENSO had greater impacts on stream flow than other climate indices, and La Niña events played a more important role in stream flow changes than EI Niño. Human activities, particularly in terms of reservoir constructions, largely altered the intra-annual distribution of stream flow but its effects on the amount of stream flow were relatively low. Results of this study provided a useful reference to regional water resource management and the prevention of flood and drought disasters.

  15. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  16. Control of aromatic-waste air streams by soil bioreactors

    International Nuclear Information System (INIS)

    Miller, D.E.; Canter, L.W.

    1991-01-01

    Contamination of groundwater resources is a serious environmental problem which is continuing to increase in occurrence in the United States. It has been reported that leaking underground gasoline storage tanks may pose the most serious threat of all sources of groundwater contamination. Gasolines are comprised of a variety of aliphatic and aromatic hydrocarbons. The aromatic portion consists primarily of benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). BTEX compounds are also among the most frequency identified substances at Superfund sites. Pump and treat well systems are the most common and frequently used technique for aquifer restoration. Treatment is often in the form of air stripping to remove the volatile components from the contaminated water. Additionally, soil ventilation processes have been used to remove volatile components from the vadose zone. Both air stripping and soil ventilation produce a waste gas stream containing volatile compounds which is normally treated by carbon adsorption or incineration. Both treatment processes require a substantial capital investment and continual operation and maintenance expenditures. The objective of the study was to examine the potential of using soil bioreactors to treat a waste gas stream produced by air stripping or soil ventilation process. Previous studies have shown that various hydrocarbons can be successfully treated with soils. The study examined the removal of BTEX compounds within soil columns and the influence of soil type, inlet concentration, and inlet flow rate on the removal efficiency

  17. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams

    International Nuclear Information System (INIS)

    McKnight, Ursula S.; Rasmussen, Jes J.; Kronvang, Brian; Binning, Philip J.; Bjerg, Poul L.

    2015-01-01

    We couple current findings of pesticides in surface and groundwater to the history of pesticide usage, focusing on the potential contribution of legacy pesticides to the predicted ecotoxicological impact on benthic macroinvertebrates in headwater streams. Results suggest that groundwater, in addition to precipitation and surface runoff, is an important source of pesticides (particularly legacy herbicides) entering surface water. In addition to current-use active ingredients, legacy pesticides, metabolites and impurities are important for explaining the estimated total toxicity attributable to pesticides. Sediment-bound insecticides were identified as the primary source for predicted ecotoxicity. Our results support recent studies indicating that highly sorbing chemicals contribute and even drive impacts on aquatic ecosystems. They further indicate that groundwater contaminated by legacy and contemporary pesticides may impact adjoining streams. Stream observations of soluble and sediment-bound pesticides are valuable for understanding the long-term fate of pesticides in aquifers, and should be included in stream monitoring programs. - Highlights: • Findings comprised a range of contemporary and banned legacy pesticides in streams. • Groundwater is a significant pathway for some herbicides entering streams. • Legacy pesticides increased predicted aquatic toxicity by four orders of magnitude. • Sediment-bound insecticides were identified as the primary source for ecotoxicity. • Stream monitoring programs should include legacy pesticides to assess impacts. - Legacy pesticides, particularly sediment-bound insecticides were identified as the primary source for predicted ecotoxicity impacting benthic macroinvertebrates in headwater streams

  18. RStorm: Developing and Testing Streaming Algorithms in R

    NARCIS (Netherlands)

    Kaptein, M.C.

    2014-01-01

    Streaming data, consisting of indefinitely evolving sequences, are becoming ubiquitous in many branches of science and in various applications. Computer scientists have developed streaming applications such as Storm and the S4 distributed stream computing platform1 to deal with data streams.

  19. RStorm : Developing and testing streaming algorithms in R

    NARCIS (Netherlands)

    Kaptein, M.C.

    2014-01-01

    Streaming data, consisting of indefinitely evolving sequences, are becoming ubiquitous in many branches of science and in various applications. Computer scientists have developed streaming applications such as Storm and the S4 distributed stream computing platform1 to deal with data streams.

  20. Sampling, Splitting and Merging in Coinductive Stream Calculus

    NARCIS (Netherlands)

    M. Niqui (Milad); J.J.M.M. Rutten (Jan); C. Bolduc; J. Desharnais; B. Ktari

    2010-01-01

    textabstractWe study various operations for partitioning, projecting and merging streams of data. These operations are motivated by their use in dataflow programming and the stream processing languages. We use the framework of \\emph{stream calculus} and \\emph{stream circuits} for defining and

  1. Sampling, splitting and merging in coinductive stream calculus

    NARCIS (Netherlands)

    M. Niqui (Milad); J.J.M.M. Rutten (Jan)

    2009-01-01

    htmlabstractWe study various operations for partitioning, projecting and merging streams of data. These operations are motivated by their use in dataflow programming and the stream processing languages. We use the framework of stream calculus and stream circuits for defining and proving properties

  2. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  3. Online feature selection with streaming features.

    Science.gov (United States)

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  4. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    Science.gov (United States)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  5. Sensitivity of intermittent streams to climate variations in the United States

    Science.gov (United States)

    Eng, K.

    2015-12-01

    There is growing interest in the effects of climate change on streamflows because of the potential negative effects on aquatic biota and water supplies. Previous studies of climate controls on flows have primarily focused on perennial streams, and few studies have examined the effect of climate variability on intermittent streams. Our objectives in this study were to (1) identify regions showing similar patterns of intermittency, and (2) evaluate the sensitivity of intermittent streams to historical variability in climate in the United States. This study was carried out at 265 intermittent streams by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with precipitation (magnitudes, durations and intensity) and temperature, and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results identified five distinct seasonal patterns of flow intermittency: fall, fall-to-winter, non-seasonal, summer, and summer-to-winter intermittent streams. In addition, strong associations between the low-flow metrics and historical climate variability were found. However, the lack of trends in historical variations in precipitation results in no significant seasonal shifts or decade-to-decade trends in the low-flow metrics over the period of record (1950 to 2013).

  6. Poly-P storage by natural biofilms in streams with varying biogeochemistry

    Science.gov (United States)

    Carrick, H. J.

    2015-12-01

    Anthropogenic inputs of nitrogen (N) and phosphorus (P) have increased in many watersheds throughout the world; these inputs have been linked to the eutrophication of inland and coastal waters worldwide. We selected and surveyed 20, third-order streams that supported a range of water column biogeochemical conditions (conductivity, nutrient concentrations) located in the mid-Atlantic region, USA. Biofilm biomass, algal taxonomic composition, and nutrient stoichiometry (C, N, P, and poly-P) were measured at all stream sites. Pulse-amplitude modulation fluorometry (PAM) was used to estimate photosynthetic parameters for stream biofilms (e.g., alpha, Pmax), while microbiology techniques were used to verify poly-P storage by pro- and eukaryotic components of the biofilm (e.g., epi-fluorescent staining). As anticipated, chlorophyll ranged over 2 orders of magnitude among the streams (range 10-1,000 mg/m2). Biofilm chlorophyll and algal biovolume levels increased with water column nutrient contents, while the C:P ratio within the biofilm decreased. Both pro and eukaryotic organisms were present in resident biofilms and actively stored intracellular poly-P. Finally, the rate of photosynthetic within the biofilms appeared to be driven the nutritional condition of the biofilms; pmax and alpha values increased with significantly with stream biofilm poly-P content (r2 = 0.35 and 0.44, respectively). These results indicated that where nutrients are plentiful, biofilms P storage is favored, and this is likely a key regulator of stream biofilm biomass and productivity.

  7. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    Science.gov (United States)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  8. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  9. A method to assess longitudinal riverine connectivity in tropical streams dominated by migratory data

    Science.gov (United States)

    Kelly E. Crook; Catherine M. Pringle; Mary C. Freeman

    2009-01-01

    1. One way in which dams affect ecosystem function is by altering the distribution and abundance of aquatic species. 2. Previous studies indicate that migratory shrimps have significant effects on ecosystem processes in Puerto Rican streams, but are vulnerable to impediments to upstream or downstream passage, such as dams and associated water intakes where stream water...

  10. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    Science.gov (United States)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach

  11. Temperature of the Gulf Stream

    Science.gov (United States)

    2002-01-01

    The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using

  12. The Influence of Geology and Other Environmental Factors on Stream Water Chemistry and Benthic Invertebrate Assemblages

    OpenAIRE

    Olson, John R.

    2012-01-01

    Catchment geology is known to influence water chemistry, which can significantly affect both species composition and ecosystem processes in streams. However, current predictions of how stream water chemistry varies with geology are limited in both scope and precision, and we have not adequately tested the specific mechanisms by which water chemistry influences stream biota. My dissertation research goals were to (1) develop empirical models to predict natural base-flow water chemistry from ca...

  13. Macro Invertebrates As Bio Indicators Of Water Quality In Nzovwe Stream In Mbeya Tanzania

    Directory of Open Access Journals (Sweden)

    Fredrick Ojija

    2015-08-01

    Full Text Available This study was carried out to assess the water quality of Nzovwe stream using macroinvertebrates as bioindicators. Biological monitoring working party BMWP scoring system was the index used to assess the ecosystem health of Nzovwe stream. A total of 584 aquatic macroinvertebrates were identified from Nzovwe stream. They belonged to 22 families. The most abundant taxa were Odonata 35.959 Hemiptera 25.514 Coleoptera 18.493 and Diptera 12.842. Whereas the least abundant taxa were Ephemeroptera and Gastropoda each constituting 1.028 of all macroinvertebrates. The most abundant macroinvertebrates were Dragonflies 27.226 Water striders 13.185 and Creeping water bugs 10.274 whereas the least abundant were Giant water bugs 0.514 and Backswimmers 0.514. The BMWP score of Nzovwe stream was 115. Based on this score the water of Nzovwe stream is neither very clean nor significantly altered aquatic environment. Hence the Nzovwe stream is moderately polluted due to non-point source pollution from several sources. Moreover it was found that agricultural activities washing and bathing could alter physico-chemical parameters of the stream and hence changing the abundance of macroinvertebrates as well as the quality of water. This study therefore recommends that the source of pollutants should be controlled and the stream regularly monitored by the relevant authorities. Additionally biological indicators and their indices are suggested to be used in assessing the condition of a stream ecosystem.

  14. A survey of systems for massive stream analytics

    OpenAIRE

    Singh, Maninder Pal; Hoque, Mohammad A.; Tarkoma, Sasu

    2016-01-01

    The immense growth of data demands switching from traditional data processing solutions to systems, which can process a continuous stream of real time data. Various applications employ stream processing systems to provide solutions to emerging Big Data problems. Open-source solutions such as Storm, Spark Streaming, and S4 are the attempts to answer key stream processing questions. The recent introduction of real time stream processing commercial solutions such as Amazon Kinesis, IBM Infospher...

  15. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at th...

  16. Web Audio/Video Streaming Tool

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2003-01-01

    In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.

  17. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    Science.gov (United States)

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  18. Dynamic Programming Optimization of Multi-rate Multicast Video-Streaming Services

    Directory of Open Access Journals (Sweden)

    Nestor Michael Caños Tiglao

    2010-06-01

    Full Text Available In large scale IP Television (IPTV and Mobile TV distributions, the video signal is typically encoded and transmitted using several quality streams, over IP Multicast channels, to several groups of receivers, which are classified in terms of their reception rate. As the number of video streams is usually constrained by both the number of TV channels and the maximum capacity of the content distribution network, it is necessary to find the selection of video stream transmission rates that maximizes the overall user satisfaction. In order to efficiently solve this problem, this paper proposes the Dynamic Programming Multi-rate Optimization (DPMO algorithm. The latter was comparatively evaluated considering several user distributions, featuring different access rate patterns. The experimental results reveal that DPMO is significantly more efficient than exhaustive search, while presenting slightly higher execution times than the non-optimal Multi-rate Step Search (MSS algorithm.

  19. Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream.

    Science.gov (United States)

    Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang

    2017-09-01

    Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Local Geomorphology as a Determinant of Macrofaunal Production in a Mountain Stream.

    Science.gov (United States)

    Huryn, Alexander D; Wallace, J Bruce

    1987-12-01

    By comparing distributions of functional group production among different habitats in an Appalachian mountain stream, the influence of site-specific geomorphology upon the overall functional group composition of the animal community was demonstrated. By replicated monthly sampling, substrate particle size distributions, current velocity, standing crops of benthic organic matter, and production of macrofauna were measured in each of three principal habitats: bedrock-outcrop, riffle, and pool. Samples were taken at randomly assigned locations and the relative number of samples taken from each habitat was assumed to be proportional to the area of the habitat within the stream. These proportions were used to weight production measured in each habitat and the resulting values were summed to obtain production per unit area of average stream bed. The bedrock-outcrop habitat was characterized by high material entertainment and export as indicated by significantly higher current velocities and lower standing crops of detritus compared to the riffle and pool habitats. Pools were sites of low entertainment and high retention of organic matter as demonstrated by significantly lower current velocities and higher accumulations of detritus than other habitats. The riffle habitat was intermediate to the bedrock-outcrop and pool habitats in all parameters measured. Annual production of collector-filterers was highest in the bedrock-outcrop (ash-free dry mass 1920 mg/m 2 ), followed by riffle (278 mg/m 2 ) and pool (32 mg/m 2 ). Although constituting only 19% of the stream area, the bedrock-outcrop habitat contributed 68% of the habitat-weighted collector-filterer production. Annual production of shredders was highest in pools (2616 mg/m 2 ), followed by riffles (1657 mg/m 2 ) and bedrock-outcrop (579 mg/m 2 ). The pool habitat, constituting 23% of stream area, contributed 36% of shredder production. Annual production of scrapers was highest in the riffle habitat (905 mg/m 2

  1. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    Science.gov (United States)

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  2. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States); Mertz, Carol J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate salt feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.

  3. Effect of land use on the composition, diversity and abundance of insects drifting in neotropical streams

    Directory of Open Access Journals (Sweden)

    B. C. G. Gimenez

    Full Text Available Abstract Streams may exhibit differences in community structure of invertebrate drift, which may be a reflex of variation in environmental factors, able to change in conditions of anthropogenic interventions. The aim of this study was to analyze the composition, diversity and abundance of insects drifting in two neotropical streams under different land use and to identify the environmental factors involved in determining such patterns. 54 taxa of aquatic insects were identified in urban and rural streams. The results indicated significant differences in species composition due to the replacement of specialist species by generalist species in the urban stream. Higher diversity of taxa was recorded in the rural stream, with high levels of dissolved oxygen and high water flow, which favored the occurrence of sensitive groups to environmental disturbances, such as Ephemeroptera, Plecoptera, Trichoptera and Coleoptera taxa, that living mainly in clean and well oxygenated waters. On the other hand, a higher density of insects drifting, especially Chironomidae, was observed in the urban stream, where high values of pH, electrical conductivity and nitrogen were observed. These larvae are able to explore a wide range of environmental conditions, owing to their great capacity for physiological adaptation. Despite observing the expected patterns, there were no significant differences between streams for the diversity and abundance of species. Thus, the species composition can be considered as the best predictor of impacts on the drifting insect community.

  4. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  5. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  6. Round-Robin Streaming with Generations

    DEFF Research Database (Denmark)

    Li, Yao; Vingelmann, Peter; Pedersen, Morten Videbæk

    2012-01-01

    We consider three types of application layer coding for streaming over lossy links: random linear coding, systematic random linear coding, and structured coding. The file being streamed is divided into sub-blocks (generations). Code symbols are formed by combining data belonging to the same...

  7. Effect of residential development on stream phosphorus dynamics in headwater suburbanizing watersheds of southern Ontario, Canada.

    Science.gov (United States)

    Duval, Tim P

    2018-10-01

    Suburban landscapes are known to have degraded water quality relative to natural settings, including increased total phosphorus (TP) levels; however, the effect of subdivision construction activities on stream TP dynamics are less understood. This study measured TP and its constituents particulate, dissolved organic, and dissolved inorganic phosphorus (PP, DOP, and DIP, respectively) in two headwater streams of contrasting urbanization activity to examine whether the land-use conversion process itself contributed to TP concentrations and export. The nested watershed undergoing significant active residential community construction contained large areas of cleared former agricultural field and associated sediment mounds with elevated soil TP (~1000 mg kg -1 ), and twice as many stormwater management (SWM) ponds than the watershed with completed suburban communities. Daily stream sampling for six months revealed limited differences in TP between urbanized and urbanizing watersheds regardless of season or stream flow condition; however, the forms of TP varied significantly. The proportion of TP as DOP was consistently higher in the urbanizing stream relative to the urban stream, which was in line with significant decreases in DOP concentration as proportion of cleared former agricultural land decreased and density of SWM ponds increased. The DOP, and to a lesser extent DIP and PP, dynamics resulted in a 2.5× greater areal export of TP from a small watershed actively being suburbanized during the study period compared to the larger watershed with greater land urbanized 3-5 years ago. The results of this study suggest stream TP concentrations are relatively unresponsive to active versus established suburban cover, but the forms of TP can be quite different, and the period of home construction can increase phosphorus (P) delivery to and export through nearby streams. This information can aid land managers and urban planners update best management practices to

  8. Stream Evaluation

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital representation of the map accompanying the "Kansas stream and river fishery resource evaluation" (R.E. Moss and K. Brunson, 1981.U.S. Fish and Wildlife...

  9. Stream dynamics: An overview for land managers

    Science.gov (United States)

    Burchard H. Heede

    1980-01-01

    Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.

  10. A MULTICORE COMPUTER SYSTEM FOR DESIGN OF STREAM CIPHERS BASED ON RANDOM FEEDBACK

    Directory of Open Access Journals (Sweden)

    Borislav BEDZHEV

    2013-01-01

    Full Text Available The stream ciphers are an important tool for providing information security in the present communication and computer networks. Due to this reason our paper describes a multicore computer system for design of stream ciphers based on the so - named random feedback shift registers (RFSRs. The interest to this theme is inspired by the following facts. First, the RFSRs are a relatively new type of stream ciphers which demonstrate a significant enhancement of the crypto - resistance in a comparison with the classical stream ciphers. Second, the studding of the features of the RFSRs is in very initial stage. Third, the theory of the RFSRs seems to be very hard, which leads to the necessity RFSRs to be explored mainly by the means of computer models. The paper is organized as follows. First, the basics of the RFSRs are recalled. After that, our multicore computer system for design of stream ciphers based on RFSRs is presented. Finally, the advantages and possible areas of application of the computer system are discussed.

  11. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    Science.gov (United States)

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  12. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Wiklund, Martin; Green, Roy; Ohlin, Mathias

    2012-07-21

    In part 14 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we provide a qualitative description of acoustic streaming and review its applications in lab-on-a-chip devices. The paper covers boundary layer driven streaming, including Schlichting and Rayleigh streaming, Eckart streaming in the bulk fluid, cavitation microstreaming and surface-acoustic-wave-driven streaming.

  13. Factors influencing detection of eDNA from a stream-dwelling amphibian

    Science.gov (United States)

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting and estimating abundance of aquatic species are emerging rapidly, but little is known about how processes such as secretion rate, environmental degradation, and time since colonization or extirpation from a given site affect eDNA measurements. Using stream-dwelling salamanders and quantitative PCR (qPCR) analysis, we conducted three experiments to assess eDNA: (i) production rate; (ii) persistence time under different temperature and light conditions; and (iii) detectability and concentration through time following experimental introduction and removal of salamanders into previously unoccupied streams. We found that 44–50 g individuals held in aquaria produced 77 ng eDNA/h for 2 h, after which production either slowed considerably or began to equilibrate with degradation. eDNA in both full-sun and shaded treatments degraded exponentially to 2) and when samples were collected within 5 m of the animals. Concentrations of eDNA detected were very low and increased steadily from 6–24 h after introduction, reaching 0.0022 ng/L. Within 1 h of removing salamanders from the stream, eDNA was no longer detectable. These results suggest that eDNA detectability and concentration depend on production rates of individuals, environmental conditions, density of animals, and their residence time.

  14. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    Science.gov (United States)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  15. About the theory of congested transport streams

    OpenAIRE

    Valeriy GUK

    2009-01-01

    Talked about a theory, based on integrity of continuous motion of a transport stream. Placing of car and its speed is in a stream - second. Principle of application of the generalized methods of design and new descriptions of the states of transport streams opens up. Travelling and transport potentials are set, and also external capacity of the system a «transport stream» is an exergy, that allows to make differential equation and decide the applied tasks of organization of travelling motion....

  16. Catchment hydrochemical processes controlling acidity and nitrogen in forest stream water

    International Nuclear Information System (INIS)

    Foelster, Jens

    2001-01-01

    all cases. In the five most acidified streams, a recovery from acidification was detected, although at a low rate. Sulphate mobilisation and decreased leaching of base cations probably delayed the recovery. Similar trends of declining sulphate concentrations and a tendency for decreasing acidity were also found in soil water in two of the southern sites. The possibilities of a continued acidification of the soil with a concurrent recovery of runoff was discussed and indicated at one site as a decrease in the Ca/H 2 ratio. Leaching of inorganic nitrogen did not show any general trends in the reference streams, but a significant decrease of TOC/TON in most streams indicated a change in the quality of the organic matter in runoff

  17. ATLAS Live: Collaborative Information Streams

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, Steven [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Collaboration: ATLAS Collaboration

    2011-12-23

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  18. ATLAS Live: Collaborative Information Streams

    International Nuclear Information System (INIS)

    Goldfarb, Steven

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  19. Periodic-drop-take calculus for stream transformers

    NARCIS (Netherlands)

    Mak, R.H.

    2005-01-01

    Stream transformers are a formalism to specify and reason about stream processing systems. Many application specific circuits, e.g. in the area of signal processing, classify as such systems. This paper presents a two- operator calculus to reason about a specific class of stream operators, viz. the

  20. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.