WorldWideScience

Sample records for streamlining gpu applications

  1. GPU computing and applications

    CERN Document Server

    See, Simon

    2015-01-01

    This book presents a collection of state of the art research on GPU Computing and Application. The major part of this book is selected from the work presented at the 2013 Symposium on GPU Computing and Applications held in Nanyang Technological University, Singapore (Oct 9, 2013). Three major domains of GPU application are covered in the book including (1) Engineering design and simulation; (2) Biomedical Sciences; and (3) Interactive & Digital Media. The book also addresses the fundamental issues in GPU computing with a focus on big data processing. Researchers and developers in GPU Computing and Applications will benefit from this book. Training professionals and educators can also benefit from this book to learn the possible application of GPU technology in various areas.

  2. GPU applications for data processing

    Energy Technology Data Exchange (ETDEWEB)

    Vladymyrov, Mykhailo, E-mail: mykhailo.vladymyrov@cern.ch [LPI - Lebedev Physical Institute of the Russian Academy of Sciences, RUS-119991 Moscow (Russian Federation); Aleksandrov, Andrey [LPI - Lebedev Physical Institute of the Russian Academy of Sciences, RUS-119991 Moscow (Russian Federation); INFN sezione di Napoli, I-80125 Napoli (Italy); Tioukov, Valeri [INFN sezione di Napoli, I-80125 Napoli (Italy)

    2015-12-31

    Modern experiments that use nuclear photoemulsion imply fast and efficient data acquisition from the emulsion can be performed. The new approaches in developing scanning systems require real-time processing of large amount of data. Methods that use Graphical Processing Unit (GPU) computing power for emulsion data processing are presented here. It is shown how the GPU-accelerated emulsion processing helped us to rise the scanning speed by factor of nine.

  3. Parallelization and checkpointing of GPU applications through program transformation

    Energy Technology Data Exchange (ETDEWEB)

    Solano-Quinde, Lizandro Damian [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solve the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and

  4. Application-Tailored I/O with Streamline

    NARCIS (Netherlands)

    de Bruijn, W.J.; Bos, H.J.; Bal, H.E.

    2011-01-01

    Streamline is a stream-based OS communication subsystem that spans from peripheral hardware to userspace processes. It improves performance of I/O-bound applications (such as webservers and streaming media applications) by constructing tailor-made I/O paths through the operating system for each

  5. GPU-based Parallel Application Design for Emerging Mobile Devices

    Science.gov (United States)

    Gupta, Kshitij

    A revolution is underway in the computing world that is causing a fundamental paradigm shift in device capabilities and form-factor, with a move from well-established legacy desktop/laptop computers to mobile devices in varying sizes and shapes. Amongst all the tasks these devices must support, graphics has emerged as the 'killer app' for providing a fluid user interface and high-fidelity game rendering, effectively making the graphics processor (GPU) one of the key components in (present and future) mobile systems. By utilizing the GPU as a general-purpose parallel processor, this dissertation explores the GPU computing design space from an applications standpoint, in the mobile context, by focusing on key challenges presented by these devices---limited compute, memory bandwidth, and stringent power consumption requirements---while improving the overall application efficiency of the increasingly important speech recognition workload for mobile user interaction. We broadly partition trends in GPU computing into four major categories. We analyze hardware and programming model limitations in current-generation GPUs and detail an alternate programming style called Persistent Threads, identify four use case patterns, and propose minimal modifications that would be required for extending native support. We show how by manually extracting data locality and altering the speech recognition pipeline, we are able to achieve significant savings in memory bandwidth while simultaneously reducing the compute burden on GPU-like parallel processors. As we foresee GPU computing to evolve from its current 'co-processor' model into an independent 'applications processor' that is capable of executing complex work independently, we create an alternate application framework that enables the GPU to handle all control-flow dependencies autonomously at run-time while minimizing host involvement to just issuing commands, that facilitates an efficient application implementation. Finally, as

  6. GPU accelerated FDTD solver and its application in MRI.

    Science.gov (United States)

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  7. VISMASHUP: streamlining the creation of custom visualization applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, James P [Los Alamos National Laboratory; Santos, Emanuele [UNIV OF UTAH; Lins, Lauro [UNIV OF UTAH; Freire, Juliana [UNIV OF UTAH; Silva, Cl' audio T [UNIV OF UTAH

    2010-01-01

    Visualization is essential for understanding the increasing volumes of digital data. However, the process required to create insightful visualizations is involved and time consuming. Although several visualization tools are available, including tools with sophisticated visual interfaces, they are out of reach for users who have little or no knowledge of visualization techniques and/or who do not have programming expertise. In this paper, we propose VISMASHUP, a new framework for streamlining the creation of customized visualization applications. Because these applications can be customized for very specific tasks, they can hide much of the complexity in a visualization specification and make it easier for users to explore visualizations by manipulating a small set of parameters. We describe the framework and how it supports the various tasks a designer needs to carry out to develop an application, from mining and exploring a set of visualization specifications (pipelines), to the creation of simplified views of the pipelines, and the automatic generation of the application and its interface. We also describe the implementation of the system and demonstrate its use in two real application scenarios.

  8. GPU Lossless Hyperspectral Data Compression System for Space Applications

    Science.gov (United States)

    Keymeulen, Didier; Aranki, Nazeeh; Hopson, Ben; Kiely, Aaron; Klimesh, Matthew; Benkrid, Khaled

    2012-01-01

    On-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. At JPL, a novel, adaptive and predictive technique for lossless compression of hyperspectral data, named the Fast Lossless (FL) algorithm, was recently developed. This technique uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. Because of its outstanding performance and suitability for real-time onboard hardware implementation, the FL compressor is being formalized as the emerging CCSDS Standard for Lossless Multispectral & Hyperspectral image compression. The FL compressor is well-suited for parallel hardware implementation. A GPU hardware implementation was developed for FL targeting the current state-of-the-art GPUs from NVIDIA(Trademark). The GPU implementation on a NVIDIA(Trademark) GeForce(Trademark) GTX 580 achieves a throughput performance of 583.08 Mbits/sec (44.85 MSamples/sec) and an acceleration of at least 6 times a software implementation running on a 3.47 GHz single core Intel(Trademark) Xeon(Trademark) processor. This paper describes the design and implementation of the FL algorithm on the GPU. The massively parallel implementation will provide in the future a fast and practical real-time solution for airborne and space applications.

  9. An integrated billing application to streamline clinician workflow.

    Science.gov (United States)

    Vawdrey, David K; Walsh, Colin; Stetson, Peter D

    2014-01-01

    Between 2008 and 2010, our academic medical center transitioned to electronic provider documentation using a commercial electronic health record system. For attending physicians, one of the most frustrating aspects of this experience was the system's failure to support their existing electronic billing workflow. Because of poor system integration, it was difficult to verify the supporting documentation for each bill and impractical to track whether billable notes had corresponding charges. We developed and deployed in 2011 an integrated billing application called "iCharge" that streamlines clinicians' documentation and billing workflow, and simultaneously populates the inpatient problem list using billing diagnosis codes. Each month, over 550 physicians use iCharge to submit approximately 23,000 professional service charges for over 4,200 patients. On average, about 2.5 new problems are added to each patient's problem list. This paper describes the challenges and benefits of workflow integration across disparate applications and presents an example of innovative software development within a commercial EHR framework.

  10. Application of GPU to computational multiphase fluid dynamics

    International Nuclear Information System (INIS)

    Nagatake, T; Kunugi, T

    2010-01-01

    The MARS (Multi-interfaces Advection and Reconstruction Solver) [1] is one of the surface volume tracking methods for multi-phase flows. Nowadays, the performance of GPU (Graphics Processing Unit) is much higher than the CPU (Central Processing Unit). In this study, the GPU was applied to the MARS in order to accelerate the computation of multi-phase flows (GPU-MARS), and the performance of the GPU-MARS was discussed. From the performance of the interface tracking method for the analyses of one-directional advection problem, it is found that the computing time of GPU(single GTX280) was around 4 times faster than that of the CPU (Xeon 5040, 4 threads parallelized). From the performance of Poisson Solver by using the algorithm developed in this study, it is found that the performance of the GPU showed around 30 times faster than that of the CPU. Finally, it is confirmed that the GPU showed the large acceleration of the fluid flow computation (GPU-MARS) compared to the CPU. However, it is also found that the double-precision computation of the GPU must perform with very high precision.

  11. GPU - Accelerated Monte Carlo electron transport methods: development and application for radiation dose calculations using 6 GPU cards

    International Nuclear Information System (INIS)

    Su, L.; Du, X.; Liu, T.; Xu, X. G.

    2013-01-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software test-bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs (Graphics Processing Units). This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. As for photon part, photoelectric effect, Compton scattering and pair production were simulated. Voxelized geometry was supported. A serial CPU (Central Processing Unit)code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6*10 6 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy. (authors)

  12. Improving Utility of GPU in Accelerating Industrial Applications with User-centred Automatic Code Translation

    DEFF Research Database (Denmark)

    Yang, Po; Dong, Feng; Codreanu, Valeriu

    2018-01-01

    design and hard-to-use. Little attentions have been paid to the applicability, usability and learnability of these tools for normal users. In this paper, we present an online automated CPU-to-GPU source translation system, (GPSME) for inexperienced users to utilize GPU capability in accelerating general...... SME applications. This system designs and implements a directive programming model with new kernel generation scheme and memory management hierarchy to optimize its performance. A web service interface is designed for inexperienced users to easily and flexibly invoke the automatic resource translator...

  13. The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran

    Directory of Open Access Journals (Sweden)

    Hamed Kargaran

    2016-04-01

    Full Text Available The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL_MODE and SHARED_MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showed a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core for GLOBAL_MODE and SHARED_MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.

  14. The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran

    Energy Technology Data Exchange (ETDEWEB)

    Kargaran, Hamed, E-mail: h-kargaran@sbu.ac.ir; Minuchehr, Abdolhamid; Zolfaghari, Ahmad [Department of nuclear engineering, Shahid Behesti University, Tehran, 1983969411 (Iran, Islamic Republic of)

    2016-04-15

    The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG) have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL-MODE and SHARED-MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showed a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core) for GLOBAL-MODE and SHARED-MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.

  15. Interior Point Methods on GPU with application to Model Predictive Control

    DEFF Research Database (Denmark)

    Gade-Nielsen, Nicolai Fog

    The goal of this thesis is to investigate the application of interior point methods to solve dynamical optimization problems, using a graphical processing unit (GPU) with a focus on problems arising in Model Predictice Control (MPC). Multi-core processors have been available for over ten years now...... software package called GPUOPT, available under the non-restrictive MIT license. GPUOPT includes includes a primal-dual interior-point method, which supports both the CPU and the GPU. It is implemented as multiple components, where the matrix operations and solver for the Newton directions is separated...

  16. R-GPU : A reconfigurable GPU architecture

    NARCIS (Netherlands)

    van den Braak, G.J.; Corporaal, H.

    2016-01-01

    Over the last decade, Graphics Processing Unit (GPU) architectures have evolved from a fixed-function graphics pipeline to a programmable, energy-efficient compute accelerator for massively parallel applications. The compute power arises from the GPU's Single Instruction/Multiple Threads

  17. A Performance/Cost Evaluation for a GPU-Based Drug Discovery Application on Volunteer Computing

    Science.gov (United States)

    Guerrero, Ginés D.; Imbernón, Baldomero; García, José M.

    2014-01-01

    Bioinformatics is an interdisciplinary research field that develops tools for the analysis of large biological databases, and, thus, the use of high performance computing (HPC) platforms is mandatory for the generation of useful biological knowledge. The latest generation of graphics processing units (GPUs) has democratized the use of HPC as they push desktop computers to cluster-level performance. Many applications within this field have been developed to leverage these powerful and low-cost architectures. However, these applications still need to scale to larger GPU-based systems to enable remarkable advances in the fields of healthcare, drug discovery, genome research, etc. The inclusion of GPUs in HPC systems exacerbates power and temperature issues, increasing the total cost of ownership (TCO). This paper explores the benefits of volunteer computing to scale bioinformatics applications as an alternative to own large GPU-based local infrastructures. We use as a benchmark a GPU-based drug discovery application called BINDSURF that their computational requirements go beyond a single desktop machine. Volunteer computing is presented as a cheap and valid HPC system for those bioinformatics applications that need to process huge amounts of data and where the response time is not a critical factor. PMID:25025055

  18. A Performance/Cost Evaluation for a GPU-Based Drug Discovery Application on Volunteer Computing

    Directory of Open Access Journals (Sweden)

    Ginés D. Guerrero

    2014-01-01

    Full Text Available Bioinformatics is an interdisciplinary research field that develops tools for the analysis of large biological databases, and, thus, the use of high performance computing (HPC platforms is mandatory for the generation of useful biological knowledge. The latest generation of graphics processing units (GPUs has democratized the use of HPC as they push desktop computers to cluster-level performance. Many applications within this field have been developed to leverage these powerful and low-cost architectures. However, these applications still need to scale to larger GPU-based systems to enable remarkable advances in the fields of healthcare, drug discovery, genome research, etc. The inclusion of GPUs in HPC systems exacerbates power and temperature issues, increasing the total cost of ownership (TCO. This paper explores the benefits of volunteer computing to scale bioinformatics applications as an alternative to own large GPU-based local infrastructures. We use as a benchmark a GPU-based drug discovery application called BINDSURF that their computational requirements go beyond a single desktop machine. Volunteer computing is presented as a cheap and valid HPC system for those bioinformatics applications that need to process huge amounts of data and where the response time is not a critical factor.

  19. GPU Performance and Power Consumption Analysis: A DCT based denoising application

    OpenAIRE

    Pi Puig, Martín; De Giusti, Laura Cristina; Naiouf, Marcelo; De Giusti, Armando Eduardo

    2017-01-01

    It is known that energy and power consumption are becoming serious metrics in the design of high performance workstations because of heat dissipation problems. In the last years, GPU accelerators have been integrating many of these expensive systems despite they are embedding more and more transistors on their chips producing a quick increase of power consumption requirements. This paper analyzes an image processing application, in particular a Discrete Cosine Transform denoising algorithm, i...

  20. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    Science.gov (United States)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  1. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    International Nuclear Information System (INIS)

    Lemaréchal, Yannick; Bert, Julien; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris; Falconnet, Claire; Després, Philippe; Valeri, Antoine

    2015-01-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125 I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10 −6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications. (paper)

  2. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    Science.gov (United States)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  3. Software Graphics Processing Unit (sGPU) for Deep Space Applications

    Science.gov (United States)

    McCabe, Mary; Salazar, George; Steele, Glen

    2015-01-01

    A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

  4. Moving-Target Position Estimation Using GPU-Based Particle Filter for IoT Sensing Applications

    Directory of Open Access Journals (Sweden)

    Seongseop Kim

    2017-11-01

    Full Text Available A particle filter (PF has been introduced for effective position estimation of moving targets for non-Gaussian and nonlinear systems. The time difference of arrival (TDOA method using acoustic sensor array has normally been used to for estimation by concealing the location of a moving target, especially underwater. In this paper, we propose a GPU -based acceleration of target position estimation using a PF and propose an efficient system and software architecture. The proposed graphic processing unit (GPU-based algorithm has more advantages in applying PF signal processing to a target system, which consists of large-scale Internet of Things (IoT-driven sensors because of the parallelization which is scalable. For the TDOA measurement from the acoustic sensor array, we use the generalized cross correlation phase transform (GCC-PHAT method to obtain the correlation coefficient of the signal using Fast Fourier Transform (FFT, and we try to accelerate the calculations of GCC-PHAT based TDOA measurements using FFT with GPU compute unified device architecture (CUDA. The proposed approach utilizes a parallelization method in the target position estimation algorithm using GPU-based PF processing. In addition, it could efficiently estimate sudden movement change of the target using GPU-based parallel computing which also can be used for multiple target tracking. It also provides scalability in extending the detection algorithm according to the increase of the number of sensors. Therefore, the proposed architecture can be applied in IoT sensing applications with a large number of sensors. The target estimation algorithm was verified using MATLAB and implemented using GPU CUDA. We implemented the proposed signal processing acceleration system using target GPU to analyze in terms of execution time. The execution time of the algorithm is reduced by 55% from to the CPU standalone operation in target embedded board, NVIDIA Jetson TX1. Also, to apply large

  5. GPU-based stochastic-gradient optimization for non-rigid medical image registration in time-critical applications

    NARCIS (Netherlands)

    Staring, M.; Al-Ars, Z.; Berendsen, Floris; Angelini, Elsa D.; Landman, Bennett A.

    2018-01-01

    Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical applications. Existing implementations that focus on speed typically address this by either parallelization on GPU-hardware, or by introducing methodically novel techniques into

  6. A comparison of native GPU computing versus OpenACC for implementing flow-routing algorithms in hydrological applications

    Science.gov (United States)

    Rueda, Antonio J.; Noguera, José M.; Luque, Adrián

    2016-02-01

    In recent years GPU computing has gained wide acceptance as a simple low-cost solution for speeding up computationally expensive processing in many scientific and engineering applications. However, in most cases accelerating a traditional CPU implementation for a GPU is a non-trivial task that requires a thorough refactorization of the code and specific optimizations that depend on the architecture of the device. OpenACC is a promising technology that aims at reducing the effort required to accelerate C/C++/Fortran code on an attached multicore device. Virtually with this technology the CPU code only has to be augmented with a few compiler directives to identify the areas to be accelerated and the way in which data has to be moved between the CPU and GPU. Its potential benefits are multiple: better code readability, less development time, lower risk of errors and less dependency on the underlying architecture and future evolution of the GPU technology. Our aim with this work is to evaluate the pros and cons of using OpenACC against native GPU implementations in computationally expensive hydrological applications, using the classic D8 algorithm of O'Callaghan and Mark for river network extraction as case-study. We implemented the flow accumulation step of this algorithm in CPU, using OpenACC and two different CUDA versions, comparing the length and complexity of the code and its performance with different datasets. We advance that although OpenACC can not match the performance of a CUDA optimized implementation (×3.5 slower in average), it provides a significant performance improvement against a CPU implementation (×2-6) with by far a simpler code and less implementation effort.

  7. Application of GPU to Multi-interfaces Advection and Reconstruction Solver (MARS)

    International Nuclear Information System (INIS)

    Nagatake, Taku; Takase, Kazuyuki; Kunugi, Tomoaki

    2010-01-01

    In the nuclear engineering fields, a high performance computer system is necessary to perform the large scale computations. Recently, a Graphics Processing Unit (GPU) has been developed as a rendering computational system in order to reduce a Central Processing Unit (CPU) load. In the graphics processing, the high performance computing is needed to render the high-quality 3D objects in some video games. Thus the GPU consists of many processing units and a wide memory bandwidth. In this study, the Multi-interfaces Advection and Reconstruction Solver (MARS) which is one of the interface volume tracking methods for multi-phase flows has been performed. The multi-phase flow computation is very important for the nuclear reactors and other engineering fields. The MARS consists of two computing parts: the interface tracking part and the fluid motion computing part. As for the interface tracking part, the performance of GPU (GTX280) was 6 times faster than that of the CPU (Dual-Xeon 5040), and in the fluid motion computing part the Poisson Solver by the GPU (GTX285) was 22 times faster than that by the CPU(Core i7). As for the Dam Breaking Problem, the result of GPU-MARS showed slightly different from the experimental result. Because the GPU-MARS was developed using the single-precision GPU, it can be considered that the round-off error might be accumulated. (author)

  8. GPU Computing For Particle Tracking

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

    2011-01-01

    This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ (2) is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

  9. A Programming Framework for Scientific Applications on CPU-GPU Systems

    Energy Technology Data Exchange (ETDEWEB)

    Owens, John

    2013-03-24

    At a high level, my research interests center around designing, programming, and evaluating computer systems that use new approaches to solve interesting problems. The rapid change of technology allows a variety of different architectural approaches to computationally difficult problems, and a constantly shifting set of constraints and trends makes the solutions to these problems both challenging and interesting. One of the most important recent trends in computing has been a move to commodity parallel architectures. This sea change is motivated by the industry’s inability to continue to profitably increase performance on a single processor and instead to move to multiple parallel processors. In the period of review, my most significant work has been leading a research group looking at the use of the graphics processing unit (GPU) as a general-purpose processor. GPUs can potentially deliver superior performance on a broad range of problems than their CPU counterparts, but effectively mapping complex applications to a parallel programming model with an emerging programming environment is a significant and important research problem.

  10. GPU implementation of Bayesian neural network construction for data-intensive applications

    International Nuclear Information System (INIS)

    Perry, Michelle; Meyer-Baese, Anke; Prosper, Harrison B

    2014-01-01

    We describe a graphical processing unit (GPU) implementation of the Hybrid Markov Chain Monte Carlo (HMC) method for training Bayesian Neural Networks (BNN). Our implementation uses NVIDIA's parallel computing architecture, CUDA. We briefly review BNNs and the HMC method and we describe our implementations and give preliminary results.

  11. Vulnerable GPU Memory Management: Towards Recovering Raw Data from GPU

    Directory of Open Access Journals (Sweden)

    Zhou Zhe

    2017-04-01

    Full Text Available According to previous reports, information could be leaked from GPU memory; however, the security implications of such a threat were mostly over-looked, because only limited information could be indirectly extracted through side-channel attacks. In this paper, we propose a novel algorithm for recovering raw data directly from the GPU memory residues of many popular applications such as Google Chrome and Adobe PDF reader. Our algorithm enables harvesting highly sensitive information including credit card numbers and email contents from GPU memory residues. Evaluation results also indicate that nearly all GPU-accelerated applications are vulnerable to such attacks, and adversaries can launch attacks without requiring any special privileges both on traditional multi-user operating systems, and emerging cloud computing scenarios.

  12. A GPU Parallelization of the Absolute Nodal Coordinate Formulation for Applications in Flexible Multibody Dynamics

    Science.gov (United States)

    2012-02-17

    to be solved. Disclaimer: Reference herein to any specific commercial company , product, process, or service by trade name, trademark...data processing rather than data caching and control flow. To make use of this computational power, NVIDIA introduced a general purpose parallel...GPU implementations were run on an Intel Nehalem Xeon E5520 2.26GHz processor with an NVIDIA Tesla C2070 graphics card for varying numbers of

  13. SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification

    International Nuclear Information System (INIS)

    Folkerts, M; Graves, Y; Tian, Z; Gu, X; Jia, X; Jiang, S

    2014-01-01

    Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is able to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA

  14. SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); University of California, San Diego, La Jolla, CA (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States); Tian, Z; Gu, X; Jia, X; Jiang, S [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-01

    Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is able to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.

  15. 47 CFR 63.03 - Streamlining procedures for domestic transfer of control applications.

    Science.gov (United States)

    2010-10-01

    ... Commission will treat the discontinuance request as sufficient to fulfill the pro forma post-transaction... of control applications. 63.03 Section 63.03 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... to section 214 of the Communications Act of 1934, as amended, shall be subject to the following...

  16. Quality improvement at GPU nuclear through application of the Deming management method

    International Nuclear Information System (INIS)

    Keaten, R.W.

    1991-01-01

    GPU Nuclear Corporation (GPUNC) is taking significant initiatives to upgrade the quality of our activities, both at the plant sites and at the corporate headquarters. One part of the corporation's basic philosophy has been a continuing Search for Excellence which recognizes that any level of performance can always be improved. About two years ago the company did an evaluation of management and decided to adapt relevant aspects of this philosophy to the specific needs of GPUNC. One reason for this decision was that many ideas advocated by Dr. Deming were consistent with company activities already completed or in progress. This paper discusses our progress in applying this philosophy to GPUNC activities

  17. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues.

    Science.gov (United States)

    Nicolaou, K C; Chen, Pengxi; Zhu, Shugao; Cai, Quan; Erande, Rohan D; Li, Ruofan; Sun, Hongbao; Pulukuri, Kiran Kumar; Rigol, Stephan; Aujay, Monette; Sandoval, Joseph; Gavrilyuk, Julia

    2017-11-01

    A streamlined total synthesis of the naturally occurring antitumor agents trioxacarcins is described, along with its application to the construction of a series of designed analogues of these complex natural products. Biological evaluation of the synthesized compounds revealed a number of highly potent, and yet structurally simpler, compounds that are effective against certain cancer cell lines, including a drug-resistant line. A novel one-step synthesis of anthraquinones and chloro anthraquinones from simple ketone precursors and phenylselenyl chloride is also described. The reported work, featuring novel chemistry and cascade reactions, has potential applications in cancer therapy, including targeted approaches as in antibody-drug conjugates.

  18. Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers

    Science.gov (United States)

    Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi

    2017-10-01

    Nowadays, high performance computing (HPC) systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for direct numerical simulation (DNS) and large eddy simulation (LES) of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the nonlinear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.

  19. The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing

    Science.gov (United States)

    2017-08-01

    used for its GPU computing capability during the experiment. It has Nvidia Tesla K40 GPU accelerators containing 32 GPU nodes consisting of 1024...cores. CUDA is a parallel computing platform and application programming interface (API) model that was created and designed by Nvidia to give direct...Agricultural and Forest Meteorology. 1995:76:277–291, ISSN 0168-1923. 3. GPU vs. CPU? What is GPU computing? Santa Clara (CA): Nvidia Corporation; 2017

  20. SU-E-T-36: A GPU-Accelerated Monte-Carlo Dose Calculation Platform and Its Application Toward Validating a ViewRay Beam Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Mazur, T; Green, O; Hu, Y; Wooten, H; Yang, D; Zhao, T; Mutic, S; Li, H [Washington University School of Medicine, St. Louis, MO (United States)

    2015-06-15

    Purpose: To build a fast, accurate and easily-deployable research platform for Monte-Carlo dose calculations. We port the dose calculation engine PENELOPE to C++, and accelerate calculations using GPU acceleration. Simulations of a Co-60 beam model provided by ViewRay demonstrate the capabilities of the platform. Methods: We built software that incorporates a beam model interface, CT-phantom model, GPU-accelerated PENELOPE engine, and GUI front-end. We rewrote the PENELOPE kernel in C++ (from Fortran) and accelerated the code on a GPU. We seamlessly integrated a Co-60 beam model (obtained from ViewRay) into our platform. Simulations of various field sizes and SSDs using a homogeneous water phantom generated PDDs, dose profiles, and output factors that were compared to experiment data. Results: With GPU acceleration using a dated graphics card (Nvidia Tesla C2050), a highly accurate simulation – including 100*100*100 grid, 3×3×3 mm3 voxels, <1% uncertainty, and 4.2×4.2 cm2 field size – runs 24 times faster (20 minutes versus 8 hours) than when parallelizing on 8 threads across a new CPU (Intel i7-4770). Simulated PDDs, profiles and output ratios for the commercial system agree well with experiment data measured using radiographic film or ionization chamber. Based on our analysis, this beam model is precise enough for general applications. Conclusions: Using a beam model for a Co-60 system provided by ViewRay, we evaluate a dose calculation platform that we developed. Comparison to measurements demonstrates the promise of our software for use as a research platform for dose calculations, with applications including quality assurance and treatment plan verification.

  1. SU-E-T-36: A GPU-Accelerated Monte-Carlo Dose Calculation Platform and Its Application Toward Validating a ViewRay Beam Model

    International Nuclear Information System (INIS)

    Wang, Y; Mazur, T; Green, O; Hu, Y; Wooten, H; Yang, D; Zhao, T; Mutic, S; Li, H

    2015-01-01

    Purpose: To build a fast, accurate and easily-deployable research platform for Monte-Carlo dose calculations. We port the dose calculation engine PENELOPE to C++, and accelerate calculations using GPU acceleration. Simulations of a Co-60 beam model provided by ViewRay demonstrate the capabilities of the platform. Methods: We built software that incorporates a beam model interface, CT-phantom model, GPU-accelerated PENELOPE engine, and GUI front-end. We rewrote the PENELOPE kernel in C++ (from Fortran) and accelerated the code on a GPU. We seamlessly integrated a Co-60 beam model (obtained from ViewRay) into our platform. Simulations of various field sizes and SSDs using a homogeneous water phantom generated PDDs, dose profiles, and output factors that were compared to experiment data. Results: With GPU acceleration using a dated graphics card (Nvidia Tesla C2050), a highly accurate simulation – including 100*100*100 grid, 3×3×3 mm3 voxels, <1% uncertainty, and 4.2×4.2 cm2 field size – runs 24 times faster (20 minutes versus 8 hours) than when parallelizing on 8 threads across a new CPU (Intel i7-4770). Simulated PDDs, profiles and output ratios for the commercial system agree well with experiment data measured using radiographic film or ionization chamber. Based on our analysis, this beam model is precise enough for general applications. Conclusions: Using a beam model for a Co-60 system provided by ViewRay, we evaluate a dose calculation platform that we developed. Comparison to measurements demonstrates the promise of our software for use as a research platform for dose calculations, with applications including quality assurance and treatment plan verification

  2. SU-F-BRD-02: Application of ARCHERRT-- A GPU-Based Monte Carlo Dose Engine for Radiation Therapy -- to Tomotherapy and Patient-Independent IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Su, L; Du, X; Liu, T; Xu, X [Rensselaer Polytechnic Institute, Troy, NY (United States); Yang, Y; Bednarz, B [University of Wisconsin - Madison, Madison, Wisconsin (United States); Sterpin, E [Universite catholique de Louvain, Brussels, Brussels (Belgium)

    2014-06-15

    Purpose: As a module of ARCHER -- Accelerated Radiation-transport Computations in Heterogeneous EnviRonments, ARCHER{sub RT} is designed for RadioTherapy (RT) dose calculation. This paper describes the application of ARCHERRT on patient-dependent TomoTherapy and patient-independent IMRT. It also conducts a 'fair' comparison of different GPUs and multicore CPU. Methods: The source input used for patient-dependent TomoTherapy is phase space file (PSF) generated from optimized plan. For patient-independent IMRT, the open filed PSF is used for different cases. The intensity modulation is simulated by fluence map. The GEANT4 code is used as benchmark. DVH and gamma index test are employed to evaluate the accuracy of ARCHER{sub RT} code. Some previous studies reported misleading speedups by comparing GPU code with serial CPU code. To perform a fairer comparison, we write multi-thread code with OpenMP to fully exploit computing potential of CPU. The hardware involved in this study are a 6-core Intel E5-2620 CPU and 6 NVIDIA M2090 GPUs, a K20 GPU and a K40 GPU. Results: Dosimetric results from ARCHER{sub RT} and GEANT4 show good agreement. The 2%/2mm gamma test pass rates for different clinical cases are 97.2% to 99.7%. A single M2090 GPU needs 50~79 seconds for the simulation to achieve a statistical error of 1% in the PTV. The K40 card is about 1.7∼1.8 times faster than M2090 card. Using 6 M2090 card, the simulation can be finished in about 10 seconds. For comparison, Intel E5-2620 needs 507∼879 seconds for the same simulation. Conclusion: We successfully applied ARCHER{sub RT} to Tomotherapy and patient-independent IMRT, and conducted a fair comparison between GPU and CPU performance. The ARCHER{sub RT} code is both accurate and efficient and may be used towards clinical applications.

  3. Graphics Processing Units (GPU) and the Goddard Earth Observing System atmospheric model (GEOS-5): Implementation and Potential Applications

    Science.gov (United States)

    Putnam, William M.

    2011-01-01

    Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions

  4. High Performance Multi-GPU SpMV for Multi-component PDE-Based Applications

    KAUST Repository

    Abdelfattah, Ahmad; Ltaief, Hatem; Keyes, David E.

    2015-01-01

    -block structure. While these optimizations are important for high performance dense kernel executions, they are even more critical when dealing with sparse linear algebra operations. The most time-consuming phase of many multicomponent applications, such as models

  5. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.

    Science.gov (United States)

    Mejía-Roa, Edgardo; Tabas-Madrid, Daniel; Setoain, Javier; García, Carlos; Tirado, Francisco; Pascual-Montano, Alberto

    2015-02-13

    In the last few years, the Non-negative Matrix Factorization ( NMF ) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units ( GPUs ). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. NMF-mGPU is based on CUDA ( Compute Unified Device Architecture ), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI ( Message Passing Interface ). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the

  6. Improving Utility of GPU in Accelerating Industrial Applications With User-Centered Automatic Code Translation

    NARCIS (Netherlands)

    Yang, Po; Dong, Feng; Codreanu, Valeriu; Williams, David; Roerdink, Jos B. T. M.; Liu, Baoquan; Anvari-Moghaddam, Amjad; Min, Geyong

    Small to medium enterprises (SMEs), particularly those whose business is focused on developing innovative produces, are limited by a major bottleneck in the speed of computation in many applications. The recent developments in GPUs have been the marked increase in their versatility in many

  7. Seismic Shot Processing on GPU

    OpenAIRE

    Johansen, Owe

    2009-01-01

    Today s petroleum industry demand an ever increasing amount of compu- tational resources. Seismic processing applications in use by these types of companies have generally been using large clusters of compute nodes, whose only computing resource has been the CPU. However, using Graphics Pro- cessing Units (GPU) for general purpose programming is these days becoming increasingly more popular in the high performance computing area. In 2007, NVIDIA corporation launched their framework for develo...

  8. High Performance Multi-GPU SpMV for Multi-component PDE-Based Applications

    KAUST Repository

    Abdelfattah, Ahmad

    2015-07-25

    Leveraging optimization techniques (e.g., register blocking and double buffering) introduced in the context of KBLAS, a Level 2 BLAS high performance library on GPUs, the authors implement dense matrix-vector multiplications within a sparse-block structure. While these optimizations are important for high performance dense kernel executions, they are even more critical when dealing with sparse linear algebra operations. The most time-consuming phase of many multicomponent applications, such as models of reacting flows or petroleum reservoirs, is the solution at each implicit time step of large, sparse spatially structured or unstructured linear systems. The standard method is a preconditioned Krylov solver. The Sparse Matrix-Vector multiplication (SpMV) is, in turn, one of the most time-consuming operations in such solvers. Because there is no data reuse of the elements of the matrix within a single SpMV, kernel performance is limited by the speed at which data can be transferred from memory to registers, making the bus bandwidth the major bottleneck. On the other hand, in case of a multi-species model, the resulting Jacobian has a dense block structure. For contemporary petroleum reservoir simulations, the block size typically ranges from three to a few dozen among different models, and still larger blocks are relevant within adaptively model-refined regions of the domain, though generally the size of the blocks, related to the number of conserved species, is constant over large regions within a given model. This structure can be exploited beyond the convenience of a block compressed row data format, because it offers opportunities to hide the data motion with useful computations. The new SpMV kernel outperforms existing state-of-the-art implementations on single and multi-GPUs using matrices with dense block structure representative of porous media applications with both structured and unstructured multi-component grids.

  9. A survey and measurement study of GPU DVFS on energy conservation

    Directory of Open Access Journals (Sweden)

    Xinxin Mei

    2017-05-01

    Full Text Available Energy efficiency has become one of the top design criteria for current computing systems. The dynamic voltage and frequency scaling (DVFS has been widely adopted by laptop computers, servers, and mobile devices to conserve energy, while the GPU DVFS is still at a certain early age. This paper aims at exploring the impact of GPU DVFS on the application performance and power consumption, and furthermore, on energy conservation. We survey the state-of-the-art GPU DVFS characterizations, and then summarize recent research works on GPU power and performance models. We also conduct real GPU DVFS experiments on NVIDIA Fermi and Maxwell GPUs. According to our experimental results, GPU DVFS has significant potential for energy saving. The effect of scaling core voltage/frequency and memory voltage/frequency depends on not only the GPU architectures, but also the characteristic of GPU applications.

  10. GPU: the biggest key processor for AI and parallel processing

    Science.gov (United States)

    Baji, Toru

    2017-07-01

    Two types of processors exist in the market. One is the conventional CPU and the other is Graphic Processor Unit (GPU). Typical CPU is composed of 1 to 8 cores while GPU has thousands of cores. CPU is good for sequential processing, while GPU is good to accelerate software with heavy parallel executions. GPU was initially dedicated for 3D graphics. However from 2006, when GPU started to apply general-purpose cores, it was noticed that this architecture can be used as a general purpose massive-parallel processor. NVIDIA developed a software framework Compute Unified Device Architecture (CUDA) that make it possible to easily program the GPU for these application. With CUDA, GPU started to be used in workstations and supercomputers widely. Recently two key technologies are highlighted in the industry. The Artificial Intelligence (AI) and Autonomous Driving Cars. AI requires a massive parallel operation to train many-layers of neural networks. With CPU alone, it was impossible to finish the training in a practical time. The latest multi-GPU system with P100 makes it possible to finish the training in a few hours. For the autonomous driving cars, TOPS class of performance is required to implement perception, localization, path planning processing and again SoC with integrated GPU will play a key role there. In this paper, the evolution of the GPU which is one of the biggest commercial devices requiring state-of-the-art fabrication technology will be introduced. Also overview of the GPU demanding key application like the ones described above will be introduced.

  11. GPU-based high-performance computing for radiation therapy

    International Nuclear Information System (INIS)

    Jia, Xun; Jiang, Steve B; Ziegenhein, Peter

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. (topical review)

  12. GPU-accelerated computation of electron transfer.

    Science.gov (United States)

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.

  13. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)

    2016-07-15

    Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this

  14. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model

    International Nuclear Information System (INIS)

    Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold

    2016-01-01

    Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this

  15. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model.

    Science.gov (United States)

    Wang, Yuhe; Mazur, Thomas R; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H Harold

    2016-07-01

    The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian's kmc. An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and

  16. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  17. Algorithms for GPU-based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals.

    Science.gov (United States)

    Kazachenko, Sergey; Giovinazzo, Mark; Hall, Kyle Wm; Cann, Natalie M

    2015-09-15

    A custom code for molecular dynamics simulations has been designed to run on CUDA-enabled NVIDIA graphics processing units (GPUs). The double-precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse-grained and atomistic models, holonomic constraints, Nosé-Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard-Jones and Gay-Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n-hexane/2-propanol mixture; and a liquid crystal mesogen, 2-(4-butyloxyphenyl)-5-octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33-119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69-287 fold improvement and three GPUs yield a 101-377 fold speedup. © 2015 Wiley Periodicals, Inc.

  18. Computing Low-Rank Approximation of a Dense Matrix on Multicore CPUs with a GPU and Its Application to Solving a Hierarchically Semiseparable Linear System of Equations

    Directory of Open Access Journals (Sweden)

    Ichitaro Yamazaki

    2015-01-01

    of their low-rank properties. To compute a low-rank approximation of a dense matrix, in this paper, we study the performance of QR factorization with column pivoting or with restricted pivoting on multicore CPUs with a GPU. We first propose several techniques to reduce the postprocessing time, which is required for restricted pivoting, on a modern CPU. We then examine the potential of using a GPU to accelerate the factorization process with both column and restricted pivoting. Our performance results on two eight-core Intel Sandy Bridge CPUs with one NVIDIA Kepler GPU demonstrate that using the GPU, the factorization time can be reduced by a factor of more than two. In addition, to study the performance of our implementations in practice, we integrate them into a recently developed software StruMF which algebraically exploits such low-rank structures for solving a general sparse linear system of equations. Our performance results for solving Poisson's equations demonstrate that the proposed techniques can significantly reduce the preconditioner construction time of StruMF on the CPUs, and the construction time can be further reduced by 10%–50% using the GPU.

  19. Streamlining the Hiring Process

    Science.gov (United States)

    DePrater, Karen

    2011-01-01

    Historically, education employees have been hired after a process that consists of these steps: Determining the need for a position, posting the vacancy, paper-screening applications, an interview with a panel or committee, background check, reference calling, and finally the selection of a candidate. This is a very time-consuming and costly…

  20. Development of parallel GPU based algorithms for problems in nuclear area; Desenvolvimento de algoritmos paralelos baseados em GPU para solucao de problemas na area nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Adino Americo Heimlich

    2009-07-01

    Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in two typical problems of Nuclear area. The neutron transport simulation using Monte Carlo method and solve heat equation in a bi-dimensional domain by finite differences method. To achieve this, we develop parallel algorithms for GPU and CPU in the two problems described above. The comparison showed that the GPU-based approach is faster than the CPU in a computer with two quad core processors, without precision loss. (author)

  1. Gfargo: Fargo for Gpu

    Science.gov (United States)

    Masset, Frédéric

    2015-09-01

    GFARGO is a GPU version of FARGO. It is written in C and C for CUDA and runs only on NVIDIA’s graphics cards. Though it corresponds to the standard, isothermal version of FARGO, not all functionnalities of the CPU version have been translated to CUDA. The code is available in single and double precision versions, the latter compatible with FERMI architectures. GFARGO can run on a graphics card connected to the display, allowing the user to see in real time how the fields evolve.

  2. Parallel GPU implementation of iterative PCA algorithms.

    Science.gov (United States)

    Andrecut, M

    2009-11-01

    Principal component analysis (PCA) is a key statistical technique for multivariate data analysis. For large data sets, the common approach to PCA computation is based on the standard NIPALS-PCA algorithm, which unfortunately suffers from loss of orthogonality, and therefore its applicability is usually limited to the estimation of the first few components. Here we present an algorithm based on Gram-Schmidt orthogonalization (called GS-PCA), which eliminates this shortcoming of NIPALS-PCA. Also, we discuss the GPU (Graphics Processing Unit) parallel implementation of both NIPALS-PCA and GS-PCA algorithms. The numerical results show that the GPU parallel optimized versions, based on CUBLAS (NVIDIA), are substantially faster (up to 12 times) than the CPU optimized versions based on CBLAS (GNU Scientific Library).

  3. Advantages of GPU technology in DFT calculations of intercalated graphene

    Science.gov (United States)

    Pešić, J.; Gajić, R.

    2014-09-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  4. Advantages of GPU technology in DFT calculations of intercalated graphene

    International Nuclear Information System (INIS)

    Pešić, J; Gajić, R

    2014-01-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  5. GPU Computing Gems Emerald Edition

    CERN Document Server

    Hwu, Wen-mei W

    2011-01-01

    ".the perfect companion to Programming Massively Parallel Processors by Hwu & Kirk." -Nicolas Pinto, Research Scientist at Harvard & MIT, NVIDIA Fellow 2009-2010 Graphics processing units (GPUs) can do much more than render graphics. Scientists and researchers increasingly look to GPUs to improve the efficiency and performance of computationally-intensive experiments across a range of disciplines. GPU Computing Gems: Emerald Edition brings their techniques to you, showcasing GPU-based solutions including: Black hole simulations with CUDA GPU-accelerated computation and interactive display of

  6. GPU Implementation of High Rayleigh Number Three-Dimensional Mantle Convection

    Science.gov (United States)

    Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.

    2010-12-01

    Although we have entered the age of petascale computing, many factors are still prohibiting high-performance computing (HPC) from infiltrating all suitable scientific disciplines. For this reason and others, application of GPU to HPC is gaining traction in the scientific world. With its low price point, high performance potential, and competitive scalability, GPU has been an option well worth considering for the last few years. Moreover with the advent of NVIDIA's Fermi architecture, which brings ECC memory, better double-precision performance, and more RAM to GPU, there is a strong message of corporate support for GPU in HPC. However many doubts linger concerning the practicality of using GPU for scientific computing. In particular, GPU has a reputation for being difficult to program and suitable for only a small subset of problems. Although inroads have been made in addressing these concerns, for many scientists GPU still has hurdles to clear before becoming an acceptable choice. We explore the applicability of GPU to geophysics by implementing a three-dimensional, second-order finite-difference model of Rayleigh-Benard thermal convection on an NVIDIA GPU using C for CUDA. Our code reaches sufficient resolution, on the order of 500x500x250 evenly-spaced finite-difference gridpoints, on a single GPU. We make extensive use of highly optimized CUBLAS routines, allowing us to achieve performance on the order of O( 0.1 ) µs per timestep*gridpoint at this resolution. This performance has allowed us to study high Rayleigh number simulations, on the order of 2x10^7, on a single GPU.

  7. Development of parallel GPU based algorithms for problems in nuclear area

    International Nuclear Information System (INIS)

    Almeida, Adino Americo Heimlich

    2009-01-01

    Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in two typical problems of Nuclear area. The neutron transport simulation using Monte Carlo method and solve heat equation in a bi-dimensional domain by finite differences method. To achieve this, we develop parallel algorithms for GPU and CPU in the two problems described above. The comparison showed that the GPU-based approach is faster than the CPU in a computer with two quad core processors, without precision loss. (author)

  8. GPU-based high performance Monte Carlo simulation in neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Inteligencia Artificial Aplicada], e-mail: cmnap@ien.gov.br

    2009-07-01

    Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)

  9. GPU-based high performance Monte Carlo simulation in neutron transport

    International Nuclear Information System (INIS)

    Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A.

    2009-01-01

    Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)

  10. Overview of implementation of DARPA GPU program in SAIC

    Science.gov (United States)

    Braunreiter, Dennis; Furtek, Jeremy; Chen, Hai-Wen; Healy, Dennis

    2008-04-01

    This paper reviews the implementation of DARPA MTO STAP-BOY program for both Phase I and II conducted at Science Applications International Corporation (SAIC). The STAP-BOY program conducts fast covariance factorization and tuning techniques for space-time adaptive process (STAP) Algorithm Implementation on Graphics Processor unit (GPU) Architectures for Embedded Systems. The first part of our presentation on the DARPA STAP-BOY program will focus on GPU implementation and algorithm innovations for a prototype radar STAP algorithm. The STAP algorithm will be implemented on the GPU, using stream programming (from companies such as PeakStream, ATI Technologies' CTM, and NVIDIA) and traditional graphics APIs. This algorithm will include fast range adaptive STAP weight updates and beamforming applications, each of which has been modified to exploit the parallel nature of graphics architectures.

  11. Streamlining the license renewal review process

    International Nuclear Information System (INIS)

    Dozier, J.; Lee, S.; Kuo, P.T.

    2001-01-01

    The staff of the NRC has been developing three regulatory guidance documents for license renewal: the Generic Aging Lessons Learned (GALL) report, Standard Review Plan for License Renewal (SRP-LR), and Regulatory Guide (RG) for Standard Format and Content for Applications to Renew Nuclear Power Plant Operating Licenses. These documents are designed to streamline the license renewal review process by providing clear guidance for license renewal applicants and the NRC staff in preparing and reviewing license renewal applications. The GALL report systematically catalogs aging effects on structures and components; identifies the relevant existing plant programs; and evaluates the existing programs against the attributes considered necessary for an aging management program to be acceptable for license renewal. The GALL report also provides guidance for the augmentation of existing plant programs for license renewal. The revised SRP-LR allows an applicant to reference the GALL report to preclude further NRC staff evaluation if the plant's existing programs meet the criteria described in the GALL report. During the review process, the NRC staff will focus primarily on existing programs that should be augmented or new programs developed specifically for license renewal. The Regulatory Guide is expected to endorse the Nuclear Energy Institute (NEI) guideline, NEI 95-10, Revision 2, entitled 'Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule', which provides guidance for preparing a license renewal application. This paper will provide an introduction to the GALL report, SRP-LR, Regulatory Guide, and NEI 95-10 to show how these documents are interrelated and how they will be used to streamline the license renewal review process. This topic will be of interest to domestic power utilities considering license renewal and international ICONE participants seeking state-of-the-art information about license renewal in the United States

  12. Streamline-based microfluidic device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Kasdan, Harvey (Inventor)

    2013-01-01

    The present invention provides a streamline-based device and a method for using the device for continuous separation of particles including cells in biological fluids. The device includes a main microchannel and an array of side microchannels disposed on a substrate. The main microchannel has a plurality of stagnation points with a predetermined geometric design, for example, each of the stagnation points has a predetermined distance from the upstream edge of each of the side microchannels. The particles are separated and collected in the side microchannels.

  13. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.

    Science.gov (United States)

    Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X George

    2014-07-01

    Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm

  14. ARCHERRT – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    Science.gov (United States)

    Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George

    2014-01-01

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified

  15. GPU-Accelerated Text Mining

    International Nuclear Information System (INIS)

    Cui, X.; Mueller, F.; Zhang, Y.; Potok, Thomas E.

    2009-01-01

    Accelerating hardware devices represent a novel promise for improving the performance for many problem domains but it is not clear for which domains what accelerators are suitable. While there is no room in general-purpose processor design to significantly increase the processor frequency, developers are instead resorting to multi-core chips duplicating conventional computing capabilities on a single die. Yet, accelerators offer more radical designs with a much higher level of parallelism and novel programming environments. This present work assesses the viability of text mining on CUDA. Text mining is one of the key concepts that has become prominent as an effective means to index the Internet, but its applications range beyond this scope and extend to providing document similarity metrics, the subject of this work. We have developed and optimized text search algorithms for GPUs to exploit their potential for massive data processing. We discuss the algorithmic challenges of parallelization for text search problems on GPUs and demonstrate the potential of these devices in experiments by reporting significant speedups. Our study may be one of the first to assess more complex text search problems for suitability for GPU devices, and it may also be one of the first to exploit and report on atomic instruction usage that have recently become available in NVIDIA devices

  16. Medical image processing on the GPU - past, present and future.

    Science.gov (United States)

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. gPGA: GPU Accelerated Population Genetics Analyses.

    Directory of Open Access Journals (Sweden)

    Chunbao Zhou

    Full Text Available The isolation with migration (IM model is important for studies in population genetics and phylogeography. IM program applies the IM model to genetic data drawn from a pair of closely related populations or species based on Markov chain Monte Carlo (MCMC simulations of gene genealogies. But computational burden of IM program has placed limits on its application.With strong computational power, Graphics Processing Unit (GPU has been widely used in many fields. In this article, we present an effective implementation of IM program on one GPU based on Compute Unified Device Architecture (CUDA, which we call gPGA.Compared with IM program, gPGA can achieve up to 52.30X speedup on one GPU. The evaluation results demonstrate that it allows datasets to be analyzed effectively and rapidly for research on divergence population genetics. The software is freely available with source code at https://github.com/chunbaozhou/gPGA.

  18. How General-Purpose can a GPU be?

    Directory of Open Access Journals (Sweden)

    Philip Machanick

    2015-12-01

    Full Text Available The use of graphics processing units (GPUs in general-purpose computation (GPGPU is a growing field. GPU instruction sets, while implementing a graphics pipeline, draw from a range of single instruction multiple datastream (SIMD architectures characteristic of the heyday of supercomputers. Yet only one of these SIMD instruction sets has been of application on a wide enough range of problems to survive the era when the full range of supercomputer design variants was being explored: vector instructions. This paper proposes a reconceptualization of the GPU as a multicore design with minimal exotic modes of parallelism so as to make GPGPU truly general.

  19. Better Faster Noise with the GPU

    DEFF Research Database (Denmark)

    Wyvill, Geoff; Frisvad, Jeppe Revall

    Filtered noise [Perlin 1985] has, for twenty years, been a fundamental tool for creating functional texture and it has many other applications; for example, animating water waves or the motion of grass waving in the wind. Perlin noise suffers from a number of defects and there have been many atte...... attempts to create better or faster noise but Perlin’s ‘Gradient Noise’ has consistently proved to be the best compromise between speed and quality. Our objective was to create a better noise cheaply by use of the GPU....

  20. Strategies for regular segmented reductions on GPU

    DEFF Research Database (Denmark)

    Larsen, Rasmus Wriedt; Henriksen, Troels

    2017-01-01

    We present and evaluate an implementation technique for regular segmented reductions on GPUs. Existing techniques tend to be either consistent in performance but relatively inefficient in absolute terms, or optimised for specific workloads and thereby exhibiting bad performance for certain input...... is in the context of the Futhark compiler, the implementation technique is applicable to any library or language that has a need for segmented reductions. We evaluate the technique on four microbenchmarks, two of which we also compare to implementations in the CUB library for GPU programming, as well as on two...

  1. An Out-of-Core GPU based dimensionality reduction algorithm for Big Mass Spectrometry Data and its application in bottom-up Proteomics.

    Science.gov (United States)

    Awan, Muaaz Gul; Saeed, Fahad

    2017-08-01

    Modern high resolution Mass Spectrometry instruments can generate millions of spectra in a single systems biology experiment. Each spectrum consists of thousands of peaks but only a small number of peaks actively contribute to deduction of peptides. Therefore, pre-processing of MS data to detect noisy and non-useful peaks are an active area of research. Most of the sequential noise reducing algorithms are impractical to use as a pre-processing step due to high time-complexity. In this paper, we present a GPU based dimensionality-reduction algorithm, called G-MSR, for MS2 spectra. Our proposed algorithm uses novel data structures which optimize the memory and computational operations inside GPU. These novel data structures include Binary Spectra and Quantized Indexed Spectra (QIS) . The former helps in communicating essential information between CPU and GPU using minimum amount of data while latter enables us to store and process complex 3-D data structure into a 1-D array structure while maintaining the integrity of MS data. Our proposed algorithm also takes into account the limited memory of GPUs and switches between in-core and out-of-core modes based upon the size of input data. G-MSR achieves a peak speed-up of 386x over its sequential counterpart and is shown to process over a million spectra in just 32 seconds. The code for this algorithm is available as a GPL open-source at GitHub at the following link: https://github.com/pcdslab/G-MSR.

  2. Streamlining Smart Meter Data Analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    of the so-called big data possible. This can improve energy management, e.g., help utilities improve the management of energy and services, and help customers save money. As this regard, the paper focuses on building an innovative software solution to streamline smart meter data analytic, aiming at dealing......Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social......-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, data-mining and the emerging cloud computing technologies make the collection, management, and analysis...

  3. GPU-BSM: a GPU-based tool to map bisulfite-treated reads.

    Directory of Open Access Journals (Sweden)

    Andrea Manconi

    Full Text Available Cytosine DNA methylation is an epigenetic mark implicated in several biological processes. Bisulfite treatment of DNA is acknowledged as the gold standard technique to study methylation. This technique introduces changes in the genomic DNA by converting cytosines to uracils while 5-methylcytosines remain nonreactive. During PCR amplification 5-methylcytosines are amplified as cytosine, whereas uracils and thymines as thymine. To detect the methylation levels, reads treated with the bisulfite must be aligned against a reference genome. Mapping these reads to a reference genome represents a significant computational challenge mainly due to the increased search space and the loss of information introduced by the treatment. To deal with this computational challenge we devised GPU-BSM, a tool based on modern Graphics Processing Units. Graphics Processing Units are hardware accelerators that are increasingly being used successfully to accelerate general-purpose scientific applications. GPU-BSM is a tool able to map bisulfite-treated reads from whole genome bisulfite sequencing and reduced representation bisulfite sequencing, and to estimate methylation levels, with the goal of detecting methylation. Due to the massive parallelization obtained by exploiting graphics cards, GPU-BSM aligns bisulfite-treated reads faster than other cutting-edge solutions, while outperforming most of them in terms of unique mapped reads.

  4. Distributed GPU Computing in GIScience

    Science.gov (United States)

    Jiang, Y.; Yang, C.; Huang, Q.; Li, J.; Sun, M.

    2013-12-01

    Geoscientists strived to discover potential principles and patterns hidden inside ever-growing Big Data for scientific discoveries. To better achieve this objective, more capable computing resources are required to process, analyze and visualize Big Data (Ferreira et al., 2003; Li et al., 2013). Current CPU-based computing techniques cannot promptly meet the computing challenges caused by increasing amount of datasets from different domains, such as social media, earth observation, environmental sensing (Li et al., 2013). Meanwhile CPU-based computing resources structured as cluster or supercomputer is costly. In the past several years with GPU-based technology matured in both the capability and performance, GPU-based computing has emerged as a new computing paradigm. Compare to traditional computing microprocessor, the modern GPU, as a compelling alternative microprocessor, has outstanding high parallel processing capability with cost-effectiveness and efficiency(Owens et al., 2008), although it is initially designed for graphical rendering in visualization pipe. This presentation reports a distributed GPU computing framework for integrating GPU-based computing within distributed environment. Within this framework, 1) for each single computer, computing resources of both GPU-based and CPU-based can be fully utilized to improve the performance of visualizing and processing Big Data; 2) within a network environment, a variety of computers can be used to build up a virtual super computer to support CPU-based and GPU-based computing in distributed computing environment; 3) GPUs, as a specific graphic targeted device, are used to greatly improve the rendering efficiency in distributed geo-visualization, especially for 3D/4D visualization. Key words: Geovisualization, GIScience, Spatiotemporal Studies Reference : 1. Ferreira de Oliveira, M. C., & Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE

  5. Visualizing whole-brain DTI tractography with GPU-based Tuboids and LoD management.

    Science.gov (United States)

    Petrovic, Vid; Fallon, James; Kuester, Falko

    2007-01-01

    Diffusion Tensor Imaging (DTI) of the human brain, coupled with tractography techniques, enable the extraction of large-collections of three-dimensional tract pathways per subject. These pathways and pathway bundles represent the connectivity between different brain regions and are critical for the understanding of brain related diseases. A flexible and efficient GPU-based rendering technique for DTI tractography data is presented that addresses common performance bottlenecks and image-quality issues, allowing interactive render rates to be achieved on commodity hardware. An occlusion query-based pathway LoD management system for streamlines/streamtubes/tuboids is introduced that optimizes input geometry, vertex processing, and fragment processing loads, and helps reduce overdraw. The tuboid, a fully-shaded streamtube impostor constructed entirely on the GPU from streamline vertices, is also introduced. Unlike full streamtubes and other impostor constructs, tuboids require little to no preprocessing or extra space over the original streamline data. The supported fragment processing levels of detail range from texture-based draft shading to full raycast normal computation, Phong shading, environment mapping, and curvature-correct text labeling. The presented text labeling technique for tuboids provides adaptive, aesthetically pleasing labels that appear attached to the surface of the tubes. Furthermore, an occlusion query aggregating and scheduling scheme for tuboids is described that reduces the query overhead. Results for a tractography dataset are presented, and demonstrate that LoD-managed tuboids offer benefits over traditional streamtubes both in performance and appearance.

  6. ARCHERRT – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    International Nuclear Information System (INIS)

    Su, Lin; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond

    2014-01-01

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHER RT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head and neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHER RT . Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHER RT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHER RT agree well with DOSXYZnrc. For clinical cases, results from ARCHER RT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head and neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU

  7. Travel Software using GPU Hardware

    CERN Document Server

    Szalwinski, Chris M; Dimov, Veliko Atanasov; CERN. Geneva. ATS Department

    2015-01-01

    Travel is the main multi-particle tracking code being used at CERN for the beam dynamics calculations through hadron and ion linear accelerators. It uses two routines for the calculation of space charge forces, namely, rings of charges and point-to-point. This report presents the studies to improve the performance of Travel using GPU hardware. The studies showed that the performance of Travel with the point-to-point simulations of space-charge effects can be speeded up at least 72 times using current GPU hardware. Simple recompilation of the source code using an Intel compiler can improve performance at least 4 times without GPU support. The limited memory of the GPU is the bottleneck. Two algorithms were investigated on this point: repeated computation and tiling. The repeating computation algorithm is simpler and is the currently recommended solution. The tiling algorithm was more complicated and degraded performance. Both build and test instructions for the parallelized version of the software are inclu...

  8. Computing treewidth on the GPU

    NARCIS (Netherlands)

    Van Der Zanden, Tom C.; Bodlaender, Hans L.

    2018-01-01

    We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based on an O∗(2n)-time algorithm that explores the elimination orderings of the graph using a Held-Karp like dynamic

  9. Computing treewidth on the GPU

    NARCIS (Netherlands)

    van der Zanden, T.C.; Bodlaender, Hans L.

    2017-01-01

    We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based on an $O^*(2^{n})$-time algorithm that explores the elimination orderings of the graph using a Held-Karp like

  10. GPU TECHNOLOGIES EMBODIED IN PARALLEL SOLVERS OF LINEAR ALGEBRAIC EQUATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sidorov Alexander Vladimirovich

    2012-10-01

    Full Text Available The author reviews existing shareware solvers that are operated by graphical computer devices. The purpose of this review is to explore the opportunities and limitations of the above parallel solvers applicable for resolution of linear algebraic problems that arise at Research and Educational Centre of Computer Modeling at MSUCE, and Research and Engineering Centre STADYO. The author has explored new applications of the GPU in the PETSc suite and compared them with the results generated absent of the GPU. The research is performed within the CUSP library developed to resolve the problems of linear algebra through the application of GPU. The author has also reviewed the new MAGMA project which is analogous to LAPACK for the GPU.

  11. Streamlining genomes: toward the generation of simplified and stabilized microbial systems

    NARCIS (Netherlands)

    Leprince, A.; Passel, van M.W.J.; Martins Dos Santos, V.A.P.

    2012-01-01

    At the junction between systems and synthetic biology, genome streamlining provides a solid foundation both for increased understanding of cellular circuitry, and for the tailoring of microbial chassis towards innovative biotechnological applications. Iterative genomic deletions (targeted and

  12. Ultrafast convolution/superposition using tabulated and exponential kernels on GPU

    Energy Technology Data Exchange (ETDEWEB)

    Chen Quan; Chen Mingli; Lu Weiguo [TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States)

    2011-03-15

    Purpose: Collapsed-cone convolution/superposition (CCCS) dose calculation is the workhorse for IMRT dose calculation. The authors present a novel algorithm for computing CCCS dose on the modern graphic processing unit (GPU). Methods: The GPU algorithm includes a novel TERMA calculation that has no write-conflicts and has linear computation complexity. The CCCS algorithm uses either tabulated or exponential cumulative-cumulative kernels (CCKs) as reported in literature. The authors have demonstrated that the use of exponential kernels can reduce the computation complexity by order of a dimension and achieve excellent accuracy. Special attentions are paid to the unique architecture of GPU, especially the memory accessing pattern, which increases performance by more than tenfold. Results: As a result, the tabulated kernel implementation in GPU is two to three times faster than other GPU implementations reported in literature. The implementation of CCCS showed significant speedup on GPU over single core CPU. On tabulated CCK, speedups as high as 70 are observed; on exponential CCK, speedups as high as 90 are observed. Conclusions: Overall, the GPU algorithm using exponential CCK is 1000-3000 times faster over a highly optimized single-threaded CPU implementation using tabulated CCK, while the dose differences are within 0.5% and 0.5 mm. This ultrafast CCCS algorithm will allow many time-sensitive applications to use accurate dose calculation.

  13. Streamlining Transportation Corridors Planning Processes and Validating the Application of Commercial Remote Sensing and Spatial Information (CRS-SI) Technologies for Environmental Impact Assessments

    Science.gov (United States)

    2008-02-05

    The new US DOT RITA program has selected MSU for addressing corridor planning and environmental assessment in new and innovative ways that can be compared to traditional approaches. Our primary focus is on the application and validation of new and in...

  14. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System

    Science.gov (United States)

    Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954

  15. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    Directory of Open Access Journals (Sweden)

    Nishikant P Deshmukh

    Full Text Available A system for real-time ultrasound (US elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU based accelerated normalized cross-correlation (NCC elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE, which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM tracker, the system selects in-plane radio frequency (RF data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  16. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    Science.gov (United States)

    Deshmukh, Nishikant P; Kang, Hyun Jae; Billings, Seth D; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  17. ACHP | News | ACHP Issues Program Comment to Streamline Communication

    Science.gov (United States)

    Program Comment to Streamline Communication Facilities Construction and Modification ACHP Issues Program Comment to Streamline Communication Facilities Construction and Modification The Advisory Council on

  18. GPU-accelerated denoising of 3D magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  19. GPU based numerical simulation of core shooting process

    Directory of Open Access Journals (Sweden)

    Yi-zhong Zhang

    2017-11-01

    Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model (TFM and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit (GPU has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture (CUDA platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications.

  20. Accelerated Logistics: Streamlining the Army's Supply Chain

    National Research Council Canada - National Science Library

    Wang, Mark

    2000-01-01

    ...) initiative, the Army has dramatically streamlined its supply chain, cutting order and ship times for repair parts by nearly two-thirds nationwide and over 75 percent at several of the major Forces Command (FORSCOM) installations...

  1. Creating customer value by streamlining business processes.

    Science.gov (United States)

    Vantrappen, H

    1992-02-01

    Much of the strategic preoccupation of senior managers in the 1990s is focusing on the creation of customer value. Companies are seeking competitive advantage by streamlining the three processes through which they interact with their customers: product creation, order handling and service assurance. 'Micro-strategy' is a term which has been coined for the trade-offs and decisions on where and how to streamline these three processes. The article discusses micro-strategies applied by successful companies.

  2. Simulating spin models on GPU

    Science.gov (United States)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  3. GPU Parallel Bundle Block Adjustment

    Directory of Open Access Journals (Sweden)

    ZHENG Maoteng

    2017-09-01

    Full Text Available To deal with massive data in photogrammetry, we introduce the GPU parallel computing technology. The preconditioned conjugate gradient and inexact Newton method are also applied to decrease the iteration times while solving the normal equation. A brand new workflow of bundle adjustment is developed to utilize GPU parallel computing technology. Our method can avoid the storage and inversion of the big normal matrix, and compute the normal matrix in real time. The proposed method can not only largely decrease the memory requirement of normal matrix, but also largely improve the efficiency of bundle adjustment. It also achieves the same accuracy as the conventional method. Preliminary experiment results show that the bundle adjustment of a dataset with about 4500 images and 9 million image points can be done in only 1.5 minutes while achieving sub-pixel accuracy.

  4. GPU PRO 3 Advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2012-01-01

    GPU Pro3, the third volume in the GPU Pro book series, offers practical tips and techniques for creating real-time graphics that are useful to beginners and seasoned game and graphics programmers alike. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Wessam Bahnassi, and Sebastien St-Laurent have once again brought together a high-quality collection of cutting-edge techniques for advanced GPU programming. With contributions by more than 50 experts, GPU Pro3: Advanced Rendering Techniques covers battle-tested tips and tricks for creating interesting geometry, realistic sha

  5. GPU Accelerated Vector Median Filter

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  6. FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations

    Directory of Open Access Journals (Sweden)

    G Boroni

    2017-03-01

    Full Text Available Lattice Boltzmann Method (LBM has shown great potential in fluid simulations, but performance issues and difficulties to manage complex boundary conditions have hindered a wider application. The upcoming of Graphic Processing Units (GPU Computing offered a possible solution for the performance issue, and methods like the Immersed Boundary (IB algorithm proved to be a flexible solution to boundaries. Unfortunately, the implicit IB algorithm makes the LBM implementation in GPU a non-trivial task. This work presents a fully parallel GPU implementation of LBM in combination with IB. The fluid-boundary interaction is implemented via GPU kernels, using execution configurations and data structures specifically designed to accelerate each code execution. Simulations were validated against experimental and analytical data showing good agreement and improving the computational time. Substantial reductions of calculation rates were achieved, lowering down the required time to execute the same model in a CPU to about two magnitude orders.

  7. GPU Based Software Correlators - Perspectives for VLBI2010

    Science.gov (United States)

    Hobiger, Thomas; Kimura, Moritaka; Takefuji, Kazuhiro; Oyama, Tomoaki; Koyama, Yasuhiro; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun

    2010-01-01

    Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec.

  8. GPU-Accelerated Real-Time Surveillance De-Weathering

    OpenAIRE

    Pettersson, Niklas

    2013-01-01

    A fully automatic de-weathering system to increase the visibility/stability in surveillance applications during bad weather has been developed. Rain, snow and haze during daylight are handled in real-time performance with acceleration from CUDA implemented algorithms. Video from fixed cameras is processed on a PC with no need of special hardware except an NVidia GPU. The system does not use any background model and does not require any precalibration. Increase in contrast is obtained in all h...

  9. Impact assessment: Eroding benefits through streamlining?

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Alan, E-mail: alan.bond@uea.ac.uk [School of Environmental Sciences, University of East Anglia (United Kingdom); School of Geo and Spatial Sciences, North-West University (South Africa); Pope, Jenny, E-mail: jenny@integral-sustainability.net [Integral Sustainability (Australia); Curtin University Sustainability Policy Institute (Australia); Morrison-Saunders, Angus, E-mail: A.Morrison-Saunders@murdoch.edu.au [School of Geo and Spatial Sciences, North-West University (South Africa); Environmental Science, Murdoch University (Australia); Retief, Francois, E-mail: francois.retief@nwu.ac.za [School of Geo and Spatial Sciences, North-West University (South Africa); Gunn, Jill A.E., E-mail: jill.gunn@usask.ca [Department of Geography and Planning and School of Environment and Sustainability, University of Saskatchewan (Canada)

    2014-02-15

    This paper argues that Governments have sought to streamline impact assessment in recent years (defined as the last five years) to counter concerns over the costs and potential for delays to economic development. We hypothesise that this has had some adverse consequences on the benefits that subsequently accrue from the assessments. This hypothesis is tested using a framework developed from arguments for the benefits brought by Environmental Impact Assessment made in 1982 in the face of the UK Government opposition to its implementation in a time of economic recession. The particular benefits investigated are ‘consistency and fairness’, ‘early warning’, ‘environment and development’, and ‘public involvement’. Canada, South Africa, the United Kingdom and Western Australia are the jurisdictions tested using this framework. The conclusions indicate that significant streamlining has been undertaken which has had direct adverse effects on some of the benefits that impact assessment should deliver, particularly in Canada and the UK. The research has not examined whether streamlining has had implications for the effectiveness of impact assessment, but the causal link between streamlining and benefits does sound warning bells that merit further investigation. -- Highlights: • Investigation of the extent to which government has streamlined IA. • Evaluation framework was developed based on benefits of impact assessment. • Canada, South Africa, the United Kingdom, and Western Australia were examined. • Trajectory in last five years is attrition of benefits of impact assessment.

  10. Impact assessment: Eroding benefits through streamlining?

    International Nuclear Information System (INIS)

    Bond, Alan; Pope, Jenny; Morrison-Saunders, Angus; Retief, Francois; Gunn, Jill A.E.

    2014-01-01

    This paper argues that Governments have sought to streamline impact assessment in recent years (defined as the last five years) to counter concerns over the costs and potential for delays to economic development. We hypothesise that this has had some adverse consequences on the benefits that subsequently accrue from the assessments. This hypothesis is tested using a framework developed from arguments for the benefits brought by Environmental Impact Assessment made in 1982 in the face of the UK Government opposition to its implementation in a time of economic recession. The particular benefits investigated are ‘consistency and fairness’, ‘early warning’, ‘environment and development’, and ‘public involvement’. Canada, South Africa, the United Kingdom and Western Australia are the jurisdictions tested using this framework. The conclusions indicate that significant streamlining has been undertaken which has had direct adverse effects on some of the benefits that impact assessment should deliver, particularly in Canada and the UK. The research has not examined whether streamlining has had implications for the effectiveness of impact assessment, but the causal link between streamlining and benefits does sound warning bells that merit further investigation. -- Highlights: • Investigation of the extent to which government has streamlined IA. • Evaluation framework was developed based on benefits of impact assessment. • Canada, South Africa, the United Kingdom, and Western Australia were examined. • Trajectory in last five years is attrition of benefits of impact assessment

  11. Acceleration of PIC simulation with GPU

    International Nuclear Information System (INIS)

    Suzuki, Junya; Shimazu, Hironori; Fukazawa, Keiichiro; Den, Mitsue

    2011-01-01

    Particle-in-cell (PIC) is a simulation technique for plasma physics. The large number of particles in high-resolution plasma simulation increases the volume computation required, making it vital to increase computation speed. In this study, we attempt to accelerate computation speed on graphics processing units (GPUs) using KEMPO, a PIC simulation code package. We perform two tests for benchmarking, with small and large grid sizes. In these tests, we run KEMPO1 code using a CPU only, both a CPU and a GPU, and a GPU only. The results showed that performance using only a GPU was twice that of using a CPU alone. While, execution time for using both a CPU and GPU is comparable to the tests with a CPU alone, because of the significant bottleneck in communication between the CPU and GPU. (author)

  12. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen

    2008-10-31

    the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of

  13. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    Science.gov (United States)

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  14. Enhancing professionalism at GPU Nuclear

    International Nuclear Information System (INIS)

    Coe, R.P.

    1992-01-01

    Late in 1988, GPU Nuclear embarked on a major program aimed at enhancing professionalism at its Oyster Creek and Three Mile Island nuclear generating stations. The program was also to include its corporate headquarters in Parsippany, New Jersey. The overall program was to take several directions, including on-site degree programs, a sabbatical leave-type program for personnel to finish college degrees, advanced technical training for licensed staff, career progression for senior reactor operators, and expanded teamwork and leadership training for control room crew. The largest portion of this initiative was the development and delivery of professionalism training to the nearly 2,000 people at both nuclear generating sites

  15. NAVIER-STOKES EM GPU

    OpenAIRE

    ALEX LAIER BORDIGNON

    2006-01-01

    Nesse trabalho, mostramos como simular um fluido em duas dimensões em um domínio com fronteiras arbitrárias. Nosso trabalho é baseado no esquema stable fluids desenvolvido por Joe Stam. A implementação é feita na GPU (Graphics Processing Unit), permitindo velocidade de interação com o fluido. Fazemos uso da linguagem Cg (C for Graphics), desenvolvida pela companhia NVidia. Nossas principais contribuições são o tratamento das múltiplas fronteiras, o...

  16. Parallel hyperbolic PDE simulation on clusters: Cell versus GPU

    Science.gov (United States)

    Rostrup, Scott; De Sterck, Hans

    2010-12-01

    Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational performance. Two technologies that have received significant attention are IBM's Cell Processor and NVIDIA's CUDA programming model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code performance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32 Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications. Program summaryProgram title: SWsolver Catalogue identifier: AEGY_v1_0 Program summary URL

  17. Enhancing professionalism at GPU nuclear

    International Nuclear Information System (INIS)

    Coe, R.P.; Landy, F.J.

    1991-01-01

    Late in 1988, GPU Nuclear embarked on a major program aimed at enhancing Professionalism at its Oyster Creek and Three Mile Island Nuclear Generating Stations. The program was also to include its Corporate Headquarters in Parsippany, New Jersey. The overall program was to take several directions which included on-site degree programs, a sabbatical leave-type program for personnel to finish college degrees, advanced technical training for licensed staff, career progression for SROs and expanded teamwork and leadership training for control room crews. The largest portion of this initiative was the development and delivery of professionalism training to the nearly two thousand people at both sites. Three primary philosophies guided the development of the program. Employees as Experts: First, GPU Nuclear employees were considered to be the most valuable source of information for designing a Professionalism program because it is these individuals who are sensitive to the issues encountered in the workplace. Realism: The second philosophy guiding this effort was that the program must be grounded in real life challenges that employees face and must address. Active Learning: The third guiding philosophy was that, in order to have any real impact on the way employees think about professionalism, the program must utilize active rather than passive learning techniques

  18. Risk management at GPU Nuclear

    International Nuclear Information System (INIS)

    Long, R.L.

    1991-01-01

    This paper reports on GPU Nuclear. Among other goals, it established the independence of key safety functions as highlighted by the lessons learned from the accident. In particular, an independent Nuclear Assurance Division was established which include Quality Assurance, Training and Education, Emergency Preparedness, and Nuclear Safety Assessment. The latter consisted of corporate and site independent-safety-review groups. As the GPU Nuclear organization matured, a mid-1987 reorganization created an even more focused Planning and Nuclear Safety Division bringing together Nuclear Safety Assessment with Licensing and Regulatory Affairs and Risk Management. The Risk Management Group (RMG), which began its work in fall 1987, was formed to develop a framework for proactive identification, evaluation, and cost-effective reduction and management of risks of all types. The RMG set out to learn as much as possible about risks and their management in nuclear and other high-technology industries. This began with a thorough literature search. It progressed to interviews with individuals and organizations which have demonstrated innovative ideas, experience, and reputations for safe and reliable operation

  19. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    Science.gov (United States)

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  20. GASPRNG: GPU accelerated scalable parallel random number generator library

    Science.gov (United States)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or

  1. Streamlining the Bankability Process using International Standards

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, George [Sunset Technology, Mount Airy, MD; Ramu, Govind [SunPower, San Jose, California; Heinz, Matthias [TUV Rheinland, Cologne, Germany; Chen, Yingnan [CGC (China General Certification Center), Beijing; Wohlgemuth, John [PowerMark, Union Hall, VA; Lokanath, Sumanth [First Solar, Tempe, Arizona; Daniels, Eric [Suncycle USA, Frederick MD; Hsi, Edward [Swiss RE, Zurich, Switzerland; Yamamichi, Masaaki [RTS, Trumbull, CT

    2017-09-27

    NREL has supported the international efforts to create a streamlined process for documenting bankability and/or completion of each step of a PV project plan. IECRE was created for this purpose in 2014. This poster describes the goals, current status of this effort, and how individuals and companies can become involved.

  2. High-speed optical coherence tomography signal processing on GPU

    International Nuclear Information System (INIS)

    Li Xiqi; Shi Guohua; Zhang Yudong

    2011-01-01

    The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in many medical applications. Recently, a time-domain interpolation method was proposed. This method not only gets a better signal-to noise ratio (SNR) but also gets a faster signal processing time for the SD-OCT than the widely used zero-padding interpolation method. Furthermore, the re-sampled data is obtained by convoluting the acquired data and the coefficients in time domain. Thus, a lot of interpolations can be performed concurrently. So, this interpolation method is suitable for parallel computing. An ultra-high optical coherence tomography signal processing can be realized by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This paper will introduce the signal processing steps of SD-OCT on GPU. An experiment is performed to acquire a frame SD-OCT data (400A-linesx2048 pixel per A-line) and real-time processed the data on GPU. The results show that it can be finished in 6.208 milliseconds, which is 37 times faster than that on Central Processing Unit (CPU).

  3. A streamlined ribosome profiling protocol for the characterization of microorganisms

    DEFF Research Database (Denmark)

    Latif, Haythem; Szubin, Richard; Tan, Justin

    2015-01-01

    Ribosome profiling is a powerful tool for characterizing in vivo protein translation at the genome scale, with multiple applications ranging from detailed molecular mechanisms to systems-level predictive modeling. Though highly effective, this intricate technique has yet to become widely used...... in the microbial research community. Here we present a streamlined ribosome profiling protocol with reduced barriers to entry for microbial characterization studies. Our approach provides simplified alternatives during harvest, lysis, and recovery of monosomes and also eliminates several time-consuming steps...

  4. Clinical implementation of a GPU-based simplified Monte Carlo method for a treatment planning system of proton beam therapy

    International Nuclear Information System (INIS)

    Kohno, R; Hotta, K; Nishioka, S; Matsubara, K; Tansho, R; Suzuki, T

    2011-01-01

    We implemented the simplified Monte Carlo (SMC) method on graphics processing unit (GPU) architecture under the computer-unified device architecture platform developed by NVIDIA. The GPU-based SMC was clinically applied for four patients with head and neck, lung, or prostate cancer. The results were compared to those obtained by a traditional CPU-based SMC with respect to the computation time and discrepancy. In the CPU- and GPU-based SMC calculations, the estimated mean statistical errors of the calculated doses in the planning target volume region were within 0.5% rms. The dose distributions calculated by the GPU- and CPU-based SMCs were similar, within statistical errors. The GPU-based SMC showed 12.30–16.00 times faster performance than the CPU-based SMC. The computation time per beam arrangement using the GPU-based SMC for the clinical cases ranged 9–67 s. The results demonstrate the successful application of the GPU-based SMC to a clinical proton treatment planning. (note)

  5. Software Tools Streamline Project Management

    Science.gov (United States)

    2009-01-01

    Three innovative software inventions from Ames Research Center (NETMARK, Program Management Tool, and Query-Based Document Management) are finding their way into NASA missions as well as industry applications. The first, NETMARK, is a program that enables integrated searching of data stored in a variety of databases and documents, meaning that users no longer have to look in several places for related information. NETMARK allows users to search and query information across all of these sources in one step. This cross-cutting capability in information analysis has exponentially reduced the amount of time needed to mine data from days or weeks to mere seconds. NETMARK has been used widely throughout NASA, enabling this automatic integration of information across many documents and databases. NASA projects that use NETMARK include the internal reporting system and project performance dashboard, Erasmus, NASA s enterprise management tool, which enhances organizational collaboration and information sharing through document routing and review; the Integrated Financial Management Program; International Space Station Knowledge Management; Mishap and Anomaly Information Reporting System; and management of the Mars Exploration Rovers. Approximately $1 billion worth of NASA s projects are currently managed using Program Management Tool (PMT), which is based on NETMARK. PMT is a comprehensive, Web-enabled application tool used to assist program and project managers within NASA enterprises in monitoring, disseminating, and tracking the progress of program and project milestones and other relevant resources. The PMT consists of an integrated knowledge repository built upon advanced enterprise-wide database integration techniques and the latest Web-enabled technologies. The current system is in a pilot operational mode allowing users to automatically manage, track, define, update, and view customizable milestone objectives and goals. The third software invention, Query

  6. Streamlining Research by Using Existing Tools

    OpenAIRE

    Greene, Sarah M.; Baldwin, Laura-Mae; Dolor, Rowena J.; Thompson, Ella; Neale, Anne Victoria

    2011-01-01

    Over the past two decades, the health research enterprise has matured rapidly, and many recognize an urgent need to translate pertinent research results into practice, to help improve the quality, accessibility, and affordability of U.S. health care. Streamlining research operations would speed translation, particularly for multi-site collaborations. However, the culture of research discourages reusing or adapting existing resources or study materials. Too often, researchers start studies and...

  7. GPU-Monte Carlo based fast IMRT plan optimization

    Directory of Open Access Journals (Sweden)

    Yongbao Li

    2014-03-01

    Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z

  8. Study of the acceleration of nuclide burnup calculation using GPU with CUDA

    International Nuclear Information System (INIS)

    Okui, S.; Ohoka, Y.; Tatsumi, M.

    2009-01-01

    The computation costs of neutronics calculation code become higher as physics models and methods are complicated. The degree of them in neutronics calculation tends to be limited due to available computing power. In order to open a door to the new world, use of GPU for general purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing mechanism enabled with multi-processors which realize mush higher performance than CPUs. NVIDIA recently released the CUDA language for general purpose computation which is a C-like programming language. It is relatively easy to learn compared to the conventional ones used for GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 4.-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup calculation and the 4.-order Runge-Kutta method were suitable to the first step of introduction CUDA into numerical calculation because these consist of simple operations of matrices and vectors of single precision where actual codes were written in the C++ language. Our experimental results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 100 compared to that with CPU. (authors)

  9. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    International Nuclear Information System (INIS)

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-01-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S n ) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  10. Fast 3D elastic micro-seismic source location using new GPU features

    Science.gov (United States)

    Xue, Qingfeng; Wang, Yibo; Chang, Xu

    2016-12-01

    In this paper, we describe new GPU features and their applications in passive seismic - micro-seismic location. Locating micro-seismic events is quite important in seismic exploration, especially when searching for unconventional oil and gas resources. Different from the traditional ray-based methods, the wave equation method, such as the method we use in our paper, has a remarkable advantage in adapting to low signal-to-noise ratio conditions and does not need a person to select the data. However, because it has a conspicuous deficiency due to its computation cost, these methods are not widely used in industrial fields. To make the method useful, we implement imaging-like wave equation micro-seismic location in a 3D elastic media and use GPU to accelerate our algorithm. We also introduce some new GPU features into the implementation to solve the data transfer and GPU utilization problems. Numerical and field data experiments show that our method can achieve a more than 30% performance improvement in GPU implementation just by using these new features.

  11. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  12. GPU accelerated population annealing algorithm

    Science.gov (United States)

    Barash, Lev Yu.; Weigel, Martin; Borovský, Michal; Janke, Wolfhard; Shchur, Lev N.

    2017-11-01

    steps and multi-histogram reweighting. Additional comments: Code repository at https://github.com/LevBarash/PAising. The system size and size of the population of replicas are limited depending on the memory of the GPU device used. For the default parameter values used in the sample programs, L = 64, θ = 100, β0 = 0, βf = 1, Δβ = 0 . 005, R = 20 000, a typical run time on an NVIDIA Tesla K80 GPU is 151 seconds for the single spin coded (SSC) and 17 seconds for the multi-spin coded (MSC) program (see Section 2 for a description of these parameters).

  13. Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

    Science.gov (United States)

    Kestener, Pierre

    2017-10-01

    RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

  14. High performance technique for database applicationsusing a hybrid GPU/CPU platform

    KAUST Repository

    Zidan, Mohammed A.

    2012-07-28

    Many database applications, such as sequence comparing, sequence searching, and sequence matching, etc, process large database sequences. we introduce a novel and efficient technique to improve the performance of database applica- tions by using a Hybrid GPU/CPU platform. In particular, our technique solves the problem of the low efficiency result- ing from running short-length sequences in a database on a GPU. To verify our technique, we applied it to the widely used Smith-Waterman algorithm. The experimental results show that our Hybrid GPU/CPU technique improves the average performance by a factor of 2.2, and improves the peak performance by a factor of 2.8 when compared to earlier implementations. Copyright © 2011 by ASME.

  15. A GPU-paralleled implementation of an enhanced face recognition algorithm

    Science.gov (United States)

    Chen, Hao; Liu, Xiyang; Shao, Shuai; Zan, Jiguo

    2013-03-01

    Face recognition algorithm based on compressed sensing and sparse representation is hotly argued in these years. The scheme of this algorithm increases recognition rate as well as anti-noise capability. However, the computational cost is expensive and has become a main restricting factor for real world applications. In this paper, we introduce a GPU-accelerated hybrid variant of face recognition algorithm named parallel face recognition algorithm (pFRA). We describe here how to carry out parallel optimization design to take full advantage of many-core structure of a GPU. The pFRA is tested and compared with several other implementations under different data sample size. Finally, Our pFRA, implemented with NVIDIA GPU and Computer Unified Device Architecture (CUDA) programming model, achieves a significant speedup over the traditional CPU implementations.

  16. Reliability Lessons Learned From GPU Experience With The Titan Supercomputer at Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gallarno, George [Christian Brothers University; Rogers, James H [ORNL; Maxwell, Don E [ORNL

    2015-01-01

    The high computational capability of graphics processing units (GPUs) is enabling and driving the scientific discovery process at large-scale. The world s second fastest supercomputer for open science, Titan, has more than 18,000 GPUs that computational scientists use to perform scientific simu- lations and data analysis. Understanding of GPU reliability characteristics, however, is still in its nascent stage since GPUs have only recently been deployed at large-scale. This paper presents a detailed study of GPU errors and their impact on system operations and applications, describing experiences with the 18,688 GPUs on the Titan supercom- puter as well as lessons learned in the process of efficient operation of GPUs at scale. These experiences are helpful to HPC sites which already have large-scale GPU clusters or plan to deploy GPUs in the future.

  17. Non-parametric co-clustering of large scale sparse bipartite networks on the GPU

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mørup, Morten; Hansen, Lars Kai

    2011-01-01

    of row and column clusters from a hypothesis space of an infinite number of clusters. To reach large scale applications of co-clustering we exploit that parameter inference for co-clustering is well suited for parallel computing. We develop a generic GPU framework for efficient inference on large scale...... sparse bipartite networks and achieve a speedup of two orders of magnitude compared to estimation based on conventional CPUs. In terms of scalability we find for networks with more than 100 million links that reliable inference can be achieved in less than an hour on a single GPU. To efficiently manage...

  18. A GPU code for analytic continuation through a sampling method

    Directory of Open Access Journals (Sweden)

    Johan Nordström

    2016-01-01

    Full Text Available We here present a code for performing analytic continuation of fermionic Green’s functions and self-energies as well as bosonic susceptibilities on a graphics processing unit (GPU. The code is based on the sampling method introduced by Mishchenko et al. (2000, and is written for the widely used CUDA platform from NVidia. Detailed scaling tests are presented, for two different GPUs, in order to highlight the advantages of this code with respect to standard CPU computations. Finally, as an example of possible applications, we provide the analytic continuation of model Gaussian functions, as well as more realistic test cases from many-body physics.

  19. Streamlined approach to waste management at CRL

    International Nuclear Information System (INIS)

    Adams, L.; Campbell, B.

    2011-01-01

    Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at Chalk River Laboratories (CRL) as a result of research and development activities and operations since the 1940s. Over the years, the wastes produced as a byproduct of activities delivering the core missions of the CRL site have been of many types, and today, over thirty distinct waste streams have been identified, all requiring efficient management. With the commencement of decommissioning of the legacy created as part of the development of the Canadian nuclear industry, the volumes and range of wastes to be managed have been increasing in the near term, and this trend will continue into the future. The development of a streamlined approach to waste management is a key to successful waste management at CRL. Waste management guidelines that address all of the requirements have become complex, and so have the various waste management groups receiving waste, with their many different processes and capabilities. This has led to difficulties for waste generators in understanding all of the requirements to be satisfied for the various CRL waste receivers, whose primary concerns are to be safe and in compliance with their acceptance criteria and license conditions. As a result, waste movement on site can often be very slow, especially for non-routine waste types. Recognizing an opportunity for improvement, the Waste Management organization at CRL has implemented a more streamlined approach with emphasis on early identification of waste type and possible disposition path. This paper presents a streamlined approach to waste identification and waste management at CRL, the implementation methodology applied and the early results achieved from this process improvement. (author)

  20. Unique encoding for streamline topologies of incompressible and inviscid flows in multiply connected domains

    Energy Technology Data Exchange (ETDEWEB)

    Sakajo, T [Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Sawamura, Y; Yokoyama, T, E-mail: sakajo@math.kyoto-u.ac.jp [JST CREST, Kawaguchi, Saitama 332-0012 (Japan)

    2014-06-01

    This study considers the flow of incompressible and inviscid fluid in two-dimensional multiply connected domains. For such flows, encoding algorithms to assign a unique sequence of words to any structurally stable streamline topology based on the theory presented by Yokoyama and Sakajo (2013 Proc. R. Soc. A 469 20120558) are proposed. As an application, we utilize the algorithms to characterize the evolution of an incompressible and viscid flow around a flat plate inclined to the uniform flow in terms of the change of the word representations for their instantaneous streamline topologies. (papers)

  1. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    Science.gov (United States)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  2. Lightroom 5 streamlining your digital photography process

    CERN Document Server

    Sylvan, Rob

    2014-01-01

    Manage your images with Lightroom and this beautifully illustrated guide Image management can soak up huge amounts of a photographer's time, but help is on hand. This complete guides teaches you how to use Adobe Lightroom 5 to import, manage, edit, and showcase large quantities of images with impressive results. The authors, both professional photographers and Lightroom experts, walk you through step by step, demonstrating real-world techniques as well as a variety of practical tips, tricks, and shortcuts that save you time. Streamline image management tasks like a pro, and get back to doing

  3. Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA Tesla GPU Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Veerendra, Benjegerdes, Troy; Bode, Brett

    2009-08-31

    Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as the workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.

  4. Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA Tesla GPU Cluster

    International Nuclear Information System (INIS)

    Allada, Veerendra; Benjegerdes, Troy; Bode, Brett

    2009-01-01

    Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as the workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.

  5. PIConGPU - How to build one of the fastest GPU particle-in-cell codes in the world

    Energy Technology Data Exchange (ETDEWEB)

    Burau, Heiko; Debus, Alexander; Helm, Anton; Huebl, Axel; Kluge, Thomas; Widera, Rene; Bussmann, Michael; Schramm, Ulrich; Cowan, Thomas [HZDR, Dresden (Germany); Juckeland, Guido; Nagel, Wolfgang [TU Dresden (Germany); ZIH, Dresden (Germany); Schmitt, Felix [NVIDIA (United States)

    2013-07-01

    We present the algorithmic building blocks of PIConGPU, one of the fastest implementations of the particle-in-cell algortihm on GPU clusters. PIConGPU is a highly-scalable, 3D3V electromagnetic PIC code that is used in laser plasma and astrophysical plasma simulations.

  6. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  7. irGPU.proton.Net: Irregular strong charge interaction networks of protonatable groups in protein molecules--a GPU solver using the fast multipole method and statistical thermodynamics.

    Science.gov (United States)

    Kantardjiev, Alexander A

    2015-04-05

    A cluster of strongly interacting ionization groups in protein molecules with irregular ionization behavior is suggestive for specific structure-function relationship. However, their computational treatment is unconventional (e.g., lack of convergence in naive self-consistent iterative algorithm). The stringent evaluation requires evaluation of Boltzmann averaged statistical mechanics sums and electrostatic energy estimation for each microstate. irGPU: Irregular strong interactions in proteins--a GPU solver is novel solution to a versatile problem in protein biophysics--atypical protonation behavior of coupled groups. The computational severity of the problem is alleviated by parallelization (via GPU kernels) which is applied for the electrostatic interaction evaluation (including explicit electrostatics via the fast multipole method) as well as statistical mechanics sums (partition function) estimation. Special attention is given to the ease of the service and encapsulation of theoretical details without sacrificing rigor of computational procedures. irGPU is not just a solution-in-principle but a promising practical application with potential to entice community into deeper understanding of principles governing biomolecule mechanisms. © 2015 Wiley Periodicals, Inc.

  8. Fully 3-D list-mode positron emission tomography image reconstruction on a multi-GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jingyu [Stanford Univ., CA (United States). Dept. of Electrical Engineering; Prevrhal, Sven; Shao, Lingxiong [Philips Healthcare, San Jose, CA (United States); Pratx, Guillem [Stanford Univ., CA (United States). Dept. of Radiation Oncology; Levin, Craig S. [Stanford Univ., CA (United States). Dept. of Radiology, Electrical Engineering, and Physics; Stanford Univ., CA (United States). Molecular Imaging Program at Stanford (MIPS); Stanford Univ., CA (United States). School of Medicine

    2011-07-01

    List-mode processing is an efficient way of dealing with the sparse nature of PET data sets, and is the processing method of choice for time-of-flight (ToF) PET. We present a novel method of computing line projection operations required for list-mode ordered subsets expectation maximization (OSEM) for fully 3-D PET image reconstruction on a graphics processing unit (GPU) using the compute unified device architecture (CUDA) framework. Our method overcomes challenges such as compute thread divergence, and exploits GPU capabilities such as shared memory and atomic operations. When applied to line projection operations for list-mode time-of-flight PET, this new GPU-CUDA reformulation is 188X faster than a single-threaded reference CPU implementation. When embedded in a multi-process environment on a GPU-equipped small cluster, a speedup of 4X was observed over the same configuration but without GPU support. Image quality is preserved with root mean squared (RMS) deviation of 0.05% between CPU and GPU-generated images, which has negligible effect in typical clinical applications. (orig.)

  9. GPU Acceleration of DSP for Communication Receivers.

    Science.gov (United States)

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  10. Quick plasma equilibrium reconstruction based on GPU

    International Nuclear Information System (INIS)

    Xiao Bingjia; Huang, Y.; Luo, Z.P.; Yuan, Q.P.; Lao, L.

    2014-01-01

    A parallel code named P-EFIT which could complete an equilibrium reconstruction iteration in 250 μs is described. It is built with the CUDA TM architecture by using Graphical Processing Unit (GPU). It is described for the optimization of middle-scale matrix multiplication on GPU and an algorithm which could solve block tri-diagonal linear system efficiently in parallel. Benchmark test is conducted. Static test proves the accuracy of the P-EFIT and simulation-test proves the feasibility of using P-EFIT for real-time reconstruction on 65x65 computation grids. (author)

  11. GPU Pro 4 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2013-01-01

    GPU Pro4: Advanced Rendering Techniques presents ready-to-use ideas and procedures that can help solve many of your day-to-day graphics programming challenges. Focusing on interactive media and games, the book covers up-to-date methods producing real-time graphics. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Sebastien St-Laurent have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book begins with discussions on the abi

  12. GPU Pro 5 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2014-01-01

    In GPU Pro5: Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light

  13. Streamlining environmental product declarations: a stage model

    Science.gov (United States)

    Lefebvre, Elisabeth; Lefebvre, Louis A.; Talbot, Stephane; Le Hen, Gael

    2001-02-01

    General public environmental awareness and education is increasing, therefore stimulating the demand for reliable, objective and comparable information about products' environmental performances. The recently published standard series ISO 14040 and ISO 14025 are normalizing the preparation of Environmental Product Declarations (EPDs) containing comprehensive information relevant to a product's environmental impact during its life cycle. So far, only a few environmentally leading manufacturing organizations have experimented the preparation of EPDs (mostly from Europe), demonstrating its great potential as a marketing weapon. However the preparation of EPDs is a complex process, requiring collection and analysis of massive amounts of information coming from disparate sources (suppliers, sub-contractors, etc.). In a foreseeable future, the streamlining of the EPD preparation process will require product manufacturers to adapt their information systems (ERP, MES, SCADA) in order to make them capable of gathering, and transmitting the appropriate environmental information. It also requires strong functional integration all along the product supply chain in order to ensure that all the information is made available in a standardized and timely manner. The goal of the present paper is two fold: first to propose a transitional model towards green supply chain management and EPD preparation; second to identify key technologies and methodologies allowing to streamline the EPD process and subsequently the transition toward sustainable product development

  14. PIConGPU - A highly-scalable particle-in-cell implementation for GPU clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael; Burau, Heiko; Debus, Alexander; Huebl, Axel; Kluge, Thomas; Pausch, Richard; Schmeisser, Nils; Steiniger, Klaus; Widera, Rene; Wyderka, Nikolai; Schramm, Ulrich; Cowan, Thomas [HZDR, Dresden (Germany); Schneider, Benjamin [HZDR, Dresden (Germany); TU Dresden (Germany); Schmitt, Felix [NVIDIA, Austin, TX (United States); Grottel, Sebastian; Gumhold, Stefan [TU Dresden (Germany); Juckeland, Guido; Angel, Wolfgang [TU Dresden (Germany); ZIH, Dresden (Germany)

    2013-07-01

    PIConGPU can handle large-scale simulations of laser plasma and astrophysical plasma dynamics on GPU clusters with thousands of GPUs. High data throughput allows to conduct large parameter surveys but makes it necessary to rethink data analysis and look for new ways of analyzing large simulation data sets. The speedup seen on GPUs enables scientists to add physical effects to their code that up until recently have been too computationally demanding. We present recent results obtained with PIConGPU, discuss scaling behaviour, the most important building blocks of the code and new physics modules recently added. In addition we give an outlook on data analysis, resiliance and load balancing with PIConGPU.

  15. GPU Nuclear Corporation's radiation exposure management system

    International Nuclear Information System (INIS)

    Slobodien, M.J.; Bovino, A.A.; Perry, O.R.; Hildebrand, J.E.

    1984-01-01

    GPU Nuclear Corporation has developed a central main frame (IBM 3081) based radiation exposure management system which provides real time and batch transactions for three separate reactor facilities. The structure and function of the data base are discussed. The system's main features include real time on-line radiation work permit generation and personnel exposure tracking; dose accountability as a function of system and component, job type, worker classification, and work location; and personnel dosemeter (TLD and self-reading pocket dosemeters) data processing. The system also carries the qualifications of all radiation workers including RWP training, respiratory protection training, results of respirator fit tests and medical exams. A warning system is used to prevent non-qualified persons from entering controlled areas. The main frame system is interfaced with a variety of mini and micro computer systems for dosemetry, statistical and graphics applications. These are discussed. Some unique dosemetry features which are discussed include assessment of dose for up to 140 parts of the body with dose evaluations at 7,300 and 1000 mg/cm 2 for each part, tracking of MPC hours on a 7 day rolling schedule; automatic pairing of TLD and self-reading pocket dosemeter values, creation and updating of NRC Forms 4 and 5, generation of NRC required 20.407 and Reg Guide 1.16 reports. As of July 1983, over 20 remote on-line stations were in use with plans to add 20-30 more by May 1984. The system provides response times for on-line activities of 2-7 seconds and 23 1/2 hours per day ''up time''. Examples of the various on-line and batch transactions are described

  16. Parallel fuzzy connected image segmentation on GPU.

    Science.gov (United States)

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  17. High performance GPU processing for inversion using uniform grid searches

    Science.gov (United States)

    Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios

    2017-04-01

    both platforms, and execution time as a function of the grid dimension for each problem was recorded. Results indicate an average speedup in calculations by a factor of 100 on the GPU platform; for example problems with 1012 grid-points require less than two hours instead of several days on conventional desktop computers. Such a speedup encourages the application of TOPINV on high performance platforms, as a GPU, in cases where nearly real time decisions are necessary, for example finite fault modeling to identify possible tsunami sources.

  18. Operator training and requalification at GPU Nuclear

    International Nuclear Information System (INIS)

    Long, R.L.; Barrett, R.J.; Newton, S.L.

    1982-01-01

    The operator training and requalification programs at GPU Nuclear's Oyster Creek (650 MWe BWR) and Three Mile Island-1 (776 MWe PWR) nuclear plants have undergone significant revisions since the Three Mile Island-2 accident. This paper describes the Training and Education organization, the expanded training facilities, including basic principle trainers and replica simulators, and the present operator training and requalification programs

  19. Fully 3D GPU PET reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L., E-mail: joaquin@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cal-Gonzalez, J. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J.J. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Desco, M. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.

  20. Fully 3D GPU PET reconstruction

    International Nuclear Information System (INIS)

    Herraiz, J.L.; Espana, S.; Cal-Gonzalez, J.; Vaquero, J.J.; Desco, M.; Udias, J.M.

    2011-01-01

    Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.

  1. Parallel generation of architecture on the GPU

    KAUST Repository

    Steinberger, Markus

    2014-05-01

    In this paper, we present a novel approach for the parallel evaluation of procedural shape grammars on the graphics processing unit (GPU). Unlike previous approaches that are either limited in the kind of shapes they allow, the amount of parallelism they can take advantage of, or both, our method supports state of the art procedural modeling including stochasticity and context-sensitivity. To increase parallelism, we explicitly express independence in the grammar, reduce inter-rule dependencies required for context-sensitive evaluation, and introduce intra-rule parallelism. Our rule scheduling scheme avoids unnecessary back and forth between CPU and GPU and reduces round trips to slow global memory by dynamically grouping rules in on-chip shared memory. Our GPU shape grammar implementation is multiple orders of magnitude faster than the standard in CPU-based rule evaluation, while offering equal expressive power. In comparison to the state of the art in GPU shape grammar derivation, our approach is nearly 50 times faster, while adding support for geometric context-sensitivity. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  2. Graph coarsening and clustering on the GPU

    NARCIS (Netherlands)

    Fagginger Auer, B.O.; Bisseling, R.H.

    2013-01-01

    Agglomerative clustering is an effective greedy way to quickly generate graph clusterings of high modularity in a small amount of time. In an effort to use the power offered by multi-core CPU and GPU hardware to solve the clustering problem, we introduce a fine-grained sharedmemory parallel graph

  3. GPU based acceleration of first principles calculation

    International Nuclear Information System (INIS)

    Tomono, H; Tsumuraya, K; Aoki, M; Iitaka, T

    2010-01-01

    We present a Graphics Processing Unit (GPU) accelerated simulations of first principles electronic structure calculations. The FFT, which is the most time-consuming part, is about 10 times accelerated. As the result, the total computation time of a first principles calculation is reduced to 15 percent of that of the CPU.

  4. GPU Accelerated Surgical Simulators for Complex Morhpology

    DEFF Research Database (Denmark)

    Mosegaard, Jesper; Sørensen, Thomas Sangild

    2005-01-01

    a springmass system in order to simulate a complex organ such as the heart. Computations are accelerated by taking advantage of modern graphics processing units (GPUs). Two GPU implementations are presented. They vary in their generality of spring connections and in the speedup factor they achieve...

  5. Synthetic Aperture Beamformation using the GPU

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Schaa, Dana; Jensen, Jørgen Arendt

    2011-01-01

    A synthetic aperture ultrasound beamformer is implemented for a GPU using the OpenCL framework. The implementation supports beamformation of either RF signals or complex baseband signals. Transmit and receive apodization can be either parametric or dynamic using a fixed F-number, a reference...

  6. Length-Bounded Hybrid CPU/GPU Pattern Matching Algorithm for Deep Packet Inspection

    Directory of Open Access Journals (Sweden)

    Yi-Shan Lin

    2017-01-01

    Full Text Available Since frequent communication between applications takes place in high speed networks, deep packet inspection (DPI plays an important role in the network application awareness. The signature-based network intrusion detection system (NIDS contains a DPI technique that examines the incoming packet payloads by employing a pattern matching algorithm that dominates the overall inspection performance. Existing studies focused on implementing efficient pattern matching algorithms by parallel programming on software platforms because of the advantages of lower cost and higher scalability. Either the central processing unit (CPU or the graphic processing unit (GPU were involved. Our studies focused on designing a pattern matching algorithm based on the cooperation between both CPU and GPU. In this paper, we present an enhanced design for our previous work, a length-bounded hybrid CPU/GPU pattern matching algorithm (LHPMA. In the preliminary experiment, the performance and comparison with the previous work are displayed, and the experimental results show that the LHPMA can achieve not only effective CPU/GPU cooperation but also higher throughput than the previous method.

  7. permGPU: Using graphics processing units in RNA microarray association studies

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2010-06-01

    Full Text Available Abstract Background Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. Results We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. Conclusions permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  8. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-05-01

    Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.

  9. Quantum mechanical streamlines. I - Square potential barrier

    Science.gov (United States)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  10. A streamlined failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287 (United States)

    2014-06-15

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  11. A streamlined failure mode and effects analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-01-01

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed

  12. A streamlined failure mode and effects analysis.

    Science.gov (United States)

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  13. CPU and GPU (Cuda Template Matching Comparison

    Directory of Open Access Journals (Sweden)

    Evaldas Borcovas

    2014-05-01

    Full Text Available Image processing, computer vision or other complicated opticalinformation processing algorithms require large resources. It isoften desired to execute algorithms in real time. It is hard tofulfill such requirements with single CPU processor. NVidiaproposed CUDA technology enables programmer to use theGPU resources in the computer. Current research was madewith Intel Pentium Dual-Core T4500 2.3 GHz processor with4 GB RAM DDR3 (CPU I, NVidia GeForce GT320M CUDAcompliable graphics card (GPU I and Intel Core I5-2500K3.3 GHz processor with 4 GB RAM DDR3 (CPU II, NVidiaGeForce GTX 560 CUDA compatible graphic card (GPU II.Additional libraries as OpenCV 2.1 and OpenCV 2.4.0 CUDAcompliable were used for the testing. Main test were made withstandard function MatchTemplate from the OpenCV libraries.The algorithm uses a main image and a template. An influenceof these factors was tested. Main image and template have beenresized and the algorithm computing time and performancein Gtpix/s have been measured. According to the informationobtained from the research GPU computing using the hardwarementioned earlier is till 24 times faster when it is processing abig amount of information. When the images are small the performanceof CPU and GPU are not significantly different. Thechoice of the template size makes influence on calculating withCPU. Difference in the computing time between the GPUs canbe explained by the number of cores which they have.

  14. Porting AMG2013 to Heterogeneous CPU+GPU Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Samfass, Philipp [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-26

    LLNL's future advanced technology system SIERRA will feature heterogeneous compute nodes that consist of IBM PowerV9 CPUs and NVIDIA Volta GPUs. Conceptually, the motivation for such an architecture is quite straightforward: While GPUs are optimized for throughput on massively parallel workloads, CPUs strive to minimize latency for rather sequential operations. Yet, making optimal use of heterogeneous architectures raises new challenges for the development of scalable parallel software, e.g., with respect to work distribution. Porting LLNL's parallel numerical libraries to upcoming heterogeneous CPU+GPU architectures is therefore a critical factor for ensuring LLNL's future success in ful lling its national mission. One of these libraries, called HYPRE, provides parallel solvers and precondi- tioners for large, sparse linear systems of equations. In the context of this intern- ship project, I consider AMG2013 which is a proxy application for major parts of HYPRE that implements a benchmark for setting up and solving di erent systems of linear equations. In the following, I describe in detail how I ported multiple parts of AMG2013 to the GPU (Section 2) and present results for di erent experiments that demonstrate a successful parallel implementation on the heterogeneous ma- chines surface and ray (Section 3). In Section 4, I give guidelines on how my code should be used. Finally, I conclude and give an outlook for future work (Section 5).

  15. Heterogeneous CPU-GPU moving targets detection for UAV video

    Science.gov (United States)

    Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan

    2017-07-01

    Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.

  16. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  17. Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method

    CSIR Research Space (South Africa)

    Govender, Nicolin

    2015-09-01

    Full Text Available consideration due to the architectural differences between CPU and GPU platforms. This paper describes the DEM algorithms and heuristics that are optimized for the parallel NVIDIA Kepler GPU architecture in detail. This includes a GPU optimized collision...

  18. Parallel computing in cluster of GPU applied to a problem of nuclear engineering

    International Nuclear Information System (INIS)

    Moraes, Sergio Ricardo S.; Heimlich, Adino; Resende, Pedro

    2013-01-01

    Cluster computing has been widely used as a low cost alternative for parallel processing in scientific applications. With the use of Message-Passing Interface (MPI) protocol development became even more accessible and widespread in the scientific community. A more recent trend is the use of Graphic Processing Unit (GPU), which is a powerful co-processor able to perform hundreds of instructions in parallel, reaching a capacity of hundreds of times the processing of a CPU. However, a standard PC does not allow, in general, more than two GPUs. Hence, it is proposed in this work development and evaluation of a hybrid low cost parallel approach to the solution to a nuclear engineering typical problem. The idea is to use clusters parallelism technology (MPI) together with GPU programming techniques (CUDA - Compute Unified Device Architecture) to simulate neutron transport through a slab using Monte Carlo method. By using a cluster comprised by four quad-core computers with 2 GPU each, it has been developed programs using MPI and CUDA technologies. Experiments, applying different configurations, from 1 to 8 GPUs has been performed and results were compared with the sequential (non-parallel) version. A speed up of about 2.000 times has been observed when comparing the 8-GPU with the sequential version. Results here presented are discussed and analyzed with the objective of outlining gains and possible limitations of the proposed approach. (author)

  19. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    Directory of Open Access Journals (Sweden)

    Cheng-Ying Chou

    Full Text Available Positron emission tomography (PET is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU, NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  20. Transportable GPU (General Processor Units) chip set technology for standard computer architectures

    Science.gov (United States)

    Fosdick, R. E.; Denison, H. C.

    1982-11-01

    The USAFR-developed GPU Chip Set has been utilized by Tracor to implement both USAF and Navy Standard 16-Bit Airborne Computer Architectures. Both configurations are currently being delivered into DOD full-scale development programs. Leadless Hermetic Chip Carrier packaging has facilitated implementation of both architectures on single 41/2 x 5 substrates. The CMOS and CMOS/SOS implementations of the GPU Chip Set have allowed both CPU implementations to use less than 3 watts of power each. Recent efforts by Tracor for USAF have included the definition of a next-generation GPU Chip Set that will retain the application-proven architecture of the current chip set while offering the added cost advantages of transportability across ISO-CMOS and CMOS/SOS processes and across numerous semiconductor manufacturers using a newly-defined set of common design rules. The Enhanced GPU Chip Set will increase speed by an approximate factor of 3 while significantly reducing chip counts and costs of standard CPU implementations.

  1. SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry

    International Nuclear Information System (INIS)

    Chi, Y; Tian, Z; Jiang, S; Jia, X

    2015-01-01

    Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged

  2. SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Y; Tian, Z; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2015-06-15

    Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged

  3. High performance MRI simulations of motion on multi-GPU systems.

    Science.gov (United States)

    Xanthis, Christos G; Venetis, Ioannis E; Aletras, Anthony H

    2014-07-04

    MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation

  4. A Versatile and Efficient GPU Data Structure for Spatial Indexing

    KAUST Repository

    Schneider, Jens

    2016-08-10

    In this paper we present a novel GPU-based data structure for spatial indexing. Based on Fenwick trees—a special type of binary indexed trees—our data structure allows construction in linear time. Updates and prefixes can be computed in logarithmic time, whereas point queries require only constant time on average. Unlike competing data structures such as summed-area tables and spatial hashing, our data structure requires a constant amount of bits for each data element, and it offers unconstrained point queries. This property makes our data structure ideally suited for applications requiring unconstrained indexing of large data, such as block-storage of large and block-sparse volumes. Finally, we provide asymptotic bounds on both run-time and memory requirements, and we show applications for which our new data structure is useful.

  5. A Versatile and Efficient GPU Data Structure for Spatial Indexing

    KAUST Repository

    Schneider, Jens; Rautek, Peter

    2016-01-01

    In this paper we present a novel GPU-based data structure for spatial indexing. Based on Fenwick trees—a special type of binary indexed trees—our data structure allows construction in linear time. Updates and prefixes can be computed in logarithmic time, whereas point queries require only constant time on average. Unlike competing data structures such as summed-area tables and spatial hashing, our data structure requires a constant amount of bits for each data element, and it offers unconstrained point queries. This property makes our data structure ideally suited for applications requiring unconstrained indexing of large data, such as block-storage of large and block-sparse volumes. Finally, we provide asymptotic bounds on both run-time and memory requirements, and we show applications for which our new data structure is useful.

  6. GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison

    Science.gov (United States)

    Ma, Chao; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447

  7. Haptic Feedback for the GPU-based Surgical Simulator

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Mosegaard, Jesper

    2006-01-01

    The GPU has proven to be a powerful processor to compute spring-mass based surgical simulations. It has not previously been shown however, how to effectively implement haptic interaction with a simulation running entirely on the GPU. This paper describes a method to calculate haptic feedback...... with limited performance cost. It allows easy balancing of the GPU workload between calculations of simulation, visualisation, and the haptic feedback....

  8. GPU-CC : a reconfigurable GPU architecture with communicating cores

    NARCIS (Netherlands)

    Braak, van den G.J.W.; Corporaal, H.

    2013-01-01

    Us have evolved to programmable, energy efficient compute accelerators for massively parallel applications. Still, compute power is lost in many applications because of cycles spent on data movement and control instead of computations on actual data. Additional cycles can be lost as well on pipeline

  9. GPU seeks new funding for TMI cleanup

    International Nuclear Information System (INIS)

    Utroska, D.

    1982-01-01

    General Public Utilities (GPU) wants approval for annual transfer of money from base rate increases in other accounts to pay for the cleanup at Three Mile Island (TMI) until TMI-1 returns to service or the public utility commission takes further action. This proposal confirms fears of a delay in TMI-1 startup and demonstrates that the January negotiated settlement will produce little funding for TMI-2 cleanup. A review of the settlement terms outlines the three-step process for base rate increases and revenue adjustments after the startup of TMI-1, and points out where controversy and delays due to psychological stress make a new source of money essential. GPU thinks customer funding will motivate other parties to a broad-based cost-sharing agreement

  10. Validation of GPU based TomoTherapy dose calculation engine.

    Science.gov (United States)

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  11. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred

    2010-08-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one billion elements. We investigate communication protocols for the GPU cluster to compensate for the slow Gigabit Ethernet network between the GPU compute nodes and to maintain overall efficiency. A diesel engine intake-port and a nozzle, meshed in different resolutions, give good real world examples for the scalability tests on the GPU cluster. © 2010 IEEE.

  12. Solving global optimization problems on GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)

    2016-06-08

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  13. Bayer image parallel decoding based on GPU

    Science.gov (United States)

    Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua

    2012-11-01

    In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.

  14. ALICE HLT high speed tracking on GPU

    CERN Document Server

    Gorbunov, Sergey; Aamodt, Kenneth; Alt, Torsten; Appelshauser, Harald; Arend, Andreas; Bach, Matthias; Becker, Bruce; Bottger, Stefan; Breitner, Timo; Busching, Henner; Chattopadhyay, Sukalyan; Cleymans, Jean; Cicalo, Corrado; Das, Indranil; Djuvsland, Oystein; Engel, Heiko; Erdal, Hege Austrheim; Fearick, Roger; Haaland, Oystein Senneset; Hille, Per Thomas; Kalcher, Sebastian; Kanaki, Kalliopi; Kebschull, Udo Wolfgang; Kisel, Ivan; Kretz, Matthias; Lara, Camillo; Lindal, Sven; Lindenstruth, Volker; Masoodi, Arshad Ahmad; Ovrebekk, Gaute; Panse, Ralf; Peschek, Jorg; Ploskon, Mateusz; Pocheptsov, Timur; Ram, Dinesh; Rascanu, Theodor; Richter, Matthias; Rohrich, Dieter; Ronchetti, Federico; Skaali, Bernhard; Smorholm, Olav; Stokkevag, Camilla; Steinbeck, Timm Morten; Szostak, Artur; Thader, Jochen; Tveter, Trine; Ullaland, Kjetil; Vilakazi, Zeblon; Weis, Robert; Yin, Zhong-Bao; Zelnicek, Pierre

    2011-01-01

    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be cri...

  15. ARCHER{sub RT} – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lin; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George, E-mail: xug2@rpi.edu [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Yang, Youming; Bednarz, Bryan [Medical Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Sterpin, Edmond [Molecular Imaging, Radiotherapy and Oncology, Université catholique de Louvain, Brussels, Belgium 1348 (Belgium)

    2014-07-15

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHER{sub RT} is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head and neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHER{sub RT}. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHER{sub RT} and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHER{sub RT} agree well with DOSXYZnrc. For clinical cases, results from ARCHER{sub RT} are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head and neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to

  16. High energy electromagnetic particle transportation on the GPU

    Energy Technology Data Exchange (ETDEWEB)

    Canal, P. [Fermilab; Elvira, D. [Fermilab; Jun, S. Y. [Fermilab; Kowalkowski, J. [Fermilab; Paterno, M. [Fermilab; Apostolakis, J. [CERN

    2014-01-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  17. Singular value decomposition for collaborative filtering on a GPU

    Science.gov (United States)

    Kato, Kimikazu; Hosino, Tikara

    2010-06-01

    A collaborative filtering predicts customers' unknown preferences from known preferences. In a computation of the collaborative filtering, a singular value decomposition (SVD) is needed to reduce the size of a large scale matrix so that the burden for the next phase computation will be decreased. In this application, SVD means a roughly approximated factorization of a given matrix into smaller sized matrices. Webb (a.k.a. Simon Funk) showed an effective algorithm to compute SVD toward a solution of an open competition called "Netflix Prize". The algorithm utilizes an iterative method so that the error of approximation improves in each step of the iteration. We give a GPU version of Webb's algorithm. Our algorithm is implemented in the CUDA and it is shown to be efficient by an experiment.

  18. Singular value decomposition for collaborative filtering on a GPU

    International Nuclear Information System (INIS)

    Kato, Kimikazu; Hosino, Tikara

    2010-01-01

    A collaborative filtering predicts customers' unknown preferences from known preferences. In a computation of the collaborative filtering, a singular value decomposition (SVD) is needed to reduce the size of a large scale matrix so that the burden for the next phase computation will be decreased. In this application, SVD means a roughly approximated factorization of a given matrix into smaller sized matrices. Webb (a.k.a. Simon Funk) showed an effective algorithm to compute SVD toward a solution of an open competition called 'Netflix Prize'. The algorithm utilizes an iterative method so that the error of approximation improves in each step of the iteration. We give a GPU version of Webb's algorithm. Our algorithm is implemented in the CUDA and it is shown to be efficient by an experiment.

  19. GPU-computing in econophysics and statistical physics

    Science.gov (United States)

    Preis, T.

    2011-03-01

    A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.

  20. Case studies in geographic information systems for environmental streamlining

    Science.gov (United States)

    2012-05-31

    This 2012 summary report addresses the current use of geographic information systems (GIS) and related technologies by State Departments of Transportation (DOTs) for environmental streamlining and stewardship, particularly in relation to the National...

  1. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    Science.gov (United States)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  2. Heterogeneous Gpu&Cpu Cluster For High Performance Computing In Cryptography

    Directory of Open Access Journals (Sweden)

    Michał Marks

    2012-01-01

    Full Text Available This paper addresses issues associated with distributed computing systems andthe application of mixed GPU&CPU technology to data encryption and decryptionalgorithms. We describe a heterogenous cluster HGCC formed by twotypes of nodes: Intel processor with NVIDIA graphics processing unit and AMDprocessor with AMD graphics processing unit (formerly ATI, and a novel softwareframework that hides the heterogeneity of our cluster and provides toolsfor solving complex scientific and engineering problems. Finally, we present theresults of numerical experiments. The considered case study is concerned withparallel implementations of selected cryptanalysis algorithms. The main goal ofthe paper is to show the wide applicability of the GPU&CPU technology tolarge scale computation and data processing.

  3. Streamline segment statistics of premixed flames with nonunity Lewis numbers

    Science.gov (United States)

    Chakraborty, Nilanjan; Wang, Lipo; Klein, Markus

    2014-03-01

    The interaction of flame and surrounding fluid motion is of central importance in the fundamental understanding of turbulent combustion. It is demonstrated here that this interaction can be represented using streamline segment analysis, which was previously applied in nonreactive turbulence. The present work focuses on the effects of the global Lewis number (Le) on streamline segment statistics in premixed flames in the thin-reaction-zones regime. A direct numerical simulation database of freely propagating thin-reaction-zones regime flames with Le ranging from 0.34 to 1.2 is used to demonstrate that Le has significant influences on the characteristic features of the streamline segment, such as the curve length, the difference in the velocity magnitude at two extremal points, and their correlations with the local flame curvature. The strengthenings of the dilatation rate, flame normal acceleration, and flame-generated turbulence with decreasing Le are principally responsible for these observed effects. An expression for the probability density function (pdf) of the streamline segment length, originally developed for nonreacting turbulent flows, captures the qualitative behavior for turbulent premixed flames in the thin-reaction-zones regime for a wide range of Le values. The joint pdfs between the streamline length and the difference in the velocity magnitude at two extremal points for both unweighted and density-weighted velocity vectors are analyzed and compared. Detailed explanations are provided for the observed differences in the topological behaviors of the streamline segment in response to the global Le.

  4. GPU-Accelerated Parallel FDTD on Distributed Heterogeneous Platform

    Directory of Open Access Journals (Sweden)

    Ronglin Jiang

    2014-01-01

    Full Text Available This paper introduces a (finite difference time domain FDTD code written in Fortran and CUDA for realistic electromagnetic calculations with parallelization methods of Message Passing Interface (MPI and Open Multiprocessing (OpenMP. Since both Central Processing Unit (CPU and Graphics Processing Unit (GPU resources are utilized, a faster execution speed can be reached compared to a traditional pure GPU code. In our experiments, 64 NVIDIA TESLA K20m GPUs and 64 INTEL XEON E5-2670 CPUs are used to carry out the pure CPU, pure GPU, and CPU + GPU tests. Relative to the pure CPU calculations for the same problems, the speedup ratio achieved by CPU + GPU calculations is around 14. Compared to the pure GPU calculations for the same problems, the CPU + GPU calculations have 7.6%–13.2% performance improvement. Because of the small memory size of GPUs, the FDTD problem size is usually very small. However, this code can enlarge the maximum problem size by 25% without reducing the performance of traditional pure GPU code. Finally, using this code, a microstrip antenna array with 16×18 elements is calculated and the radiation patterns are compared with the ones of MoM. Results show that there is a well agreement between them.

  5. GPU-Vote: A Framework for Accelerating Voting Algorithms on GPU.

    NARCIS (Netherlands)

    Braak, van den G.J.W.; Nugteren, C.; Mesman, B.; Corporaal, H.; Kaklamanis, C.; Papatheodorou, T.; Spirakis, P.G.

    2012-01-01

    Voting algorithms, such as histogram and Hough transforms, are frequently used algorithms in various domains, such as statistics and image processing. Algorithms in these domains may be accelerated using GPUs. Implementing voting algorithms efficiently on a GPU however is far from trivial due to

  6. GPU in Physics Computation: Case Geant4 Navigation

    CERN Document Server

    Seiskari, Otto; Niemi, Tapio

    2012-01-01

    General purpose computing on graphic processing units (GPU) is a potential method of speeding up scientific computation with low cost and high energy efficiency. We experimented with the particle physics simulation toolkit Geant4 used at CERN to benchmark its geometry navigation functionality on a GPU. The goal was to find out whether Geant4 physics simulations could benefit from GPU acceleration and how difficult it is to modify Geant4 code to run in a GPU. We ported selected parts of Geant4 code to C99 & CUDA and implemented a simple gamma physics simulation utilizing this code to measure efficiency. The performance of the program was tested by running it on two different platforms: NVIDIA GeForce 470 GTX GPU and a 12-core AMD CPU system. Our conclusion was that GPUs can be a competitive alternate for multi-core computers but porting existing software in an efficient way is challenging.

  7. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  8. The impact of groundwater velocity fields on streamlines in an aquifer system with a discontinuous aquitard (Inner Mongolia, China)

    Science.gov (United States)

    Wu, Qiang; Zhao, Yingwang; Xu, Hua

    2018-04-01

    Many numerical methods that simulate groundwater flow, particularly the continuous Galerkin finite element method, do not produce velocity information directly. Many algorithms have been proposed to improve the accuracy of velocity fields computed from hydraulic potentials. The differences in the streamlines generated from velocity fields obtained using different algorithms are presented in this report. The superconvergence method employed by FEFLOW, a popular commercial code, and some dual-mesh methods proposed in recent years are selected for comparison. The applications to depict hydrogeologic conditions using streamlines are used, and errors in streamlines are shown to lead to notable errors in boundary conditions, the locations of material interfaces, fluxes and conductivities. Furthermore, the effects of the procedures used in these two types of methods, including velocity integration and local conservation, are analyzed. The method of interpolating velocities across edges using fluxes is shown to be able to eliminate errors associated with refraction points that are not located along material interfaces and streamline ends at no-flow boundaries. Local conservation is shown to be a crucial property of velocity fields and can result in more accurate streamline densities. A case study involving both three-dimensional and two-dimensional cross-sectional models of a coal mine in Inner Mongolia, China, are used to support the conclusions presented.

  9. GPU-based cone beam computed tomography.

    Science.gov (United States)

    Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Corso, Jason J; Hoffmann, Kenneth R; Schafer, Sebastian

    2010-06-01

    The use of cone beam computed tomography (CBCT) is growing in the clinical arena due to its ability to provide 3D information during interventions, its high diagnostic quality (sub-millimeter resolution), and its short scanning times (60 s). In many situations, the short scanning time of CBCT is followed by a time-consuming 3D reconstruction. The standard reconstruction algorithm for CBCT data is the filtered backprojection, which for a volume of size 256(3) takes up to 25 min on a standard system. Recent developments in the area of Graphic Processing Units (GPUs) make it possible to have access to high-performance computing solutions at a low cost, allowing their use in many scientific problems. We have implemented an algorithm for 3D reconstruction of CBCT data using the Compute Unified Device Architecture (CUDA) provided by NVIDIA (NVIDIA Corporation, Santa Clara, California), which was executed on a NVIDIA GeForce GTX 280. Our implementation results in improved reconstruction times from minutes, and perhaps hours, to a matter of seconds, while also giving the clinician the ability to view 3D volumetric data at higher resolutions. We evaluated our implementation on ten clinical data sets and one phantom data set to observe if differences occur between CPU and GPU-based reconstructions. By using our approach, the computation time for 256(3) is reduced from 25 min on the CPU to 3.2 s on the GPU. The GPU reconstruction time for 512(3) volumes is 8.5 s. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  10. GPU-accelerated adjoint algorithmic differentiation

    Science.gov (United States)

    Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe

    2016-03-01

    Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the ;tape;. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.

  11. Acoustic reverse-time migration using GPU card and POSIX thread based on the adaptive optimal finite-difference scheme and the hybrid absorbing boundary condition

    Science.gov (United States)

    Cai, Xiaohui; Liu, Yang; Ren, Zhiming

    2018-06-01

    Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.

  12. Data assimilation using a GPU accelerated path integral Monte Carlo approach

    Science.gov (United States)

    Quinn, John C.; Abarbanel, Henry D. I.

    2011-09-01

    The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.

  13. The orthorectified technology for UAV aerial remote sensing image based on the Programmable GPU

    International Nuclear Information System (INIS)

    Jin, Liu; Ying-cheng, Li; De-long, Li; Chang-sheng, Teng; Wen-hao, Zhang

    2014-01-01

    Considering the time requirements of the disaster emergency aerial remote sensing data acquisition and processing, this paper introduced the GPU parallel processing in orthorectification algorithm. Meanwhile, our experiments verified the correctness and feasibility of CUDA parallel processing algorithm, and the algorithm can effectively solve the problem of calculation large, time-consuming for ortho rectification process, realized fast processing of UAV airborne remote sensing image orthorectification based on GPU. The experimental results indicate that using the assumption of same accuracy of proposed method with CPU, the processing time is reduced obviously, maximum acceleration can reach more than 12 times, which greatly enhances the emergency surveying and mapping processing of rapid reaction rate, and has a broad application

  14. A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit

    Science.gov (United States)

    Acharya, P. K.; Berk, A.; Guiang, C.; Kennett, R.; Perkins, T.; Realmuto, V. J.

    2013-12-01

    single function for calculating the Voigt in-band transmittance, and subsequently for integration into the re-architectured MODTRAN6 code. Our overall objective is that by combining the GPU processing with more efficient Plume Tracker retrieval algorithms, a 100-fold increase in the computational speed will be realized. Since the Plume Tracker runs on Windows-based platforms, the GPU-enhanced MODTRAN6 will be packaged as a DLL. We do however anticipate that the accelerated option will be made available to the general MODTRAN community through an application programming interface (API).

  15. Array abstractions for GPU programming

    DEFF Research Database (Denmark)

    Dybdal, Martin

    The shift towards massively parallel hardware platforms for highperformance computing tasks has introduced a need for improved programming models that facilitate ease of reasoning for both users and compiler optimization. A promising direction is the field of functional data-parallel programming......, for which functional invariants can be utilized by optimizing compilers to perform large program transformations automatically. However, the previous work in this area allow users only limited ability to reason about the performance of algorithms. For this reason, such languages have yet to see wide...... industrial adoption. We present two programming languages that attempt at both supporting industrial applications and providing reasoning tools for hierarchical data-parallel architectures, such as GPUs. First, we present TAIL, an array based intermediate language and compiler framework for compiling a large...

  16. Sop-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors.

    Science.gov (United States)

    Zhmurov, A; Dima, R I; Kholodov, Y; Barsegov, V

    2010-11-01

    Theoretical exploration of fundamental biological processes involving the forced unraveling of multimeric proteins, the sliding motion in protein fibers and the mechanical deformation of biomolecular assemblies under physiological force loads is challenging even for distributed computing systems. Using a C(α)-based coarse-grained self organized polymer (SOP) model, we implemented the Langevin simulations of proteins on graphics processing units (SOP-GPU program). We assessed the computational performance of an end-to-end application of the program, where all the steps of the algorithm are running on a GPU, by profiling the simulation time and memory usage for a number of test systems. The ∼90-fold computational speedup on a GPU, compared with an optimized central processing unit program, enabled us to follow the dynamics in the centisecond timescale, and to obtain the force-extension profiles using experimental pulling speeds (v(f) = 1-10 μm/s) employed in atomic force microscopy and in optical tweezers-based dynamic force spectroscopy. We found that the mechanical molecular response critically depends on the conditions of force application and that the kinetics and pathways for unfolding change drastically even upon a modest 10-fold increase in v(f). This implies that, to resolve accurately the free energy landscape and to relate the results of single-molecule experiments in vitro and in silico, molecular simulations should be carried out under the experimentally relevant force loads. This can be accomplished in reasonable wall-clock time for biomolecules of size as large as 10(5) residues using the SOP-GPU package. © 2010 Wiley-Liss, Inc.

  17. Accelerating the XGBoost algorithm using GPU computing

    Directory of Open Access Journals (Sweden)

    Rory Mitchell

    2017-07-01

    Full Text Available We present a CUDA-based implementation of a decision tree construction algorithm within the gradient boosting library XGBoost. The tree construction algorithm is executed entirely on the graphics processing unit (GPU and shows high performance with a variety of datasets and settings, including sparse input matrices. Individual boosting iterations are parallelised, combining two approaches. An interleaved approach is used for shallow trees, switching to a more conventional radix sort-based approach for larger depths. We show speedups of between 3× and 6× using a Titan X compared to a 4 core i7 CPU, and 1.2× using a Titan X compared to 2× Xeon CPUs (24 cores. We show that it is possible to process the Higgs dataset (10 million instances, 28 features entirely within GPU memory. The algorithm is made available as a plug-in within the XGBoost library and fully supports all XGBoost features including classification, regression and ranking tasks.

  18. GPU Linear algebra extensions for GNU/Octave

    International Nuclear Information System (INIS)

    Bosi, L B; Mariotti, M; Santocchia, A

    2012-01-01

    Octave is one of the most widely used open source tools for numerical analysis and liner algebra. Our project aims to improve Octave by introducing support for GPU computing in order to speed up some linear algebra operations. The core of our work is a C library that executes some BLAS operations concerning vector- vector, vector matrix and matrix-matrix functions on the GPU. OpenCL functions are used to program GPU kernels, which are bound within the GNU/octave framework. We report the project implementation design and some preliminary results about performance.

  19. Work-Efficient Parallel Skyline Computation for the GPU

    DEFF Research Database (Denmark)

    Bøgh, Kenneth Sejdenfaden; Chester, Sean; Assent, Ira

    2015-01-01

    offers the potential for parallelizing skyline computation across thousands of cores. However, attempts to port skyline algorithms to the GPU have prioritized throughput and failed to outperform sequential algorithms. In this paper, we introduce a new skyline algorithm, designed for the GPU, that uses...... a global, static partitioning scheme. With the partitioning, we can permit controlled branching to exploit transitive relationships and avoid most point-to-point comparisons. The result is a non-traditional GPU algorithm, SkyAlign, that prioritizes work-effciency and respectable throughput, rather than...

  20. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-01-01

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we

  1. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    Science.gov (United States)

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  2. GPU-Based FFT Computation for Multi-Gigabit WirelessHD Baseband Processing

    Directory of Open Access Journals (Sweden)

    Nicholas Hinitt

    2010-01-01

    Full Text Available The next generation Graphics Processing Units (GPUs are being considered for non-graphics applications. Millimeter wave (60 Ghz wireless networks that are capable of multi-gigabit per second (Gbps transfer rates require a significant baseband throughput. In this work, we consider the baseband of WirelessHD, a 60 GHz communications system, which can provide a data rate of up to 3.8 Gbps over a short range wireless link. Thus, we explore the feasibility of achieving gigabit baseband throughput using the GPUs. One of the most computationally intensive functions commonly used in baseband communications, the Fast Fourier Transform (FFT algorithm, is implemented on an NVIDIA GPU using their general-purpose computing platform called the Compute Unified Device Architecture (CUDA. The paper, first, investigates the implementation of an FFT algorithm using the GPU hardware and exploiting the computational capability available. It then outlines the limitations discovered and the methods used to overcome these challenges. Finally a new algorithm to compute FFT is proposed, which reduces interprocessor communication. It is further optimized by improving memory access, enabling the processing rate to exceed 4 Gbps, achieving a processing time of a 512-point FFT in less than 200 ns using a two-GPU solution.

  3. Accelerating the numerical simulation of magnetic field lines in tokamaks using the GPU

    International Nuclear Information System (INIS)

    Kalling, R.C.; Evans, T.E.; Orlov, D.M.; Schissel, D.P.; Maingi, R.; Menard, J.E.; Sabbagh, S.A.

    2011-01-01

    Highlights: → Tokamak magnetic field lines are simulated on a GPU. → Numerical integration of a set of nonlinear differential equations is required. → Using the GPU yields a significant reduction in processing time compared to the CPU. → Computational runs that took days now take hours. → These gains have been accomplished without significant hardware expense. - Abstract: TRIP3D is a field line simulation code that numerically integrates a set of nonlinear magnetic field line differential equations. The code is used to study properties of magnetic islands and stochastic or chaotic field line topologies that are important for designing non-axisymmetric magnetic perturbation coils for controlling plasma instabilities in future machines. The code is very computationally intensive and for large runs can take on the order of days to complete on a traditional single CPU. This work describes how the code was converted from Fortran to C and then restructured to take advantage of GPU computing using NVIDIA's CUDA. The reduction in computing time has been dramatic where runs that previously took days now take hours allowing a scale of problem to be examined that would previously not have been attempted. These gains have been accomplished without significant hardware expense. Performance, correctness, code flexibility, and implementation time have been analyzed to gauge the success and applicability of these methods when compared to the traditional multi-CPU approach.

  4. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvadore, Francesco [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)

    2013-02-15

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  5. A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Juraj Fosin

    2013-06-01

    Full Text Available The Travelling Salesman Problem (TSP is one of the most studied combinatorial optimization problem which is significant in many practical applications in transportation problems. The TSP problem is NP-hard problem and requires large computation power to be solved by the exact algorithms. In the past few years, fast development of general-purpose Graphics Processing Units (GPUs has brought huge improvement in decreasing the applications’ execution time. In this paper, we implement 2-opt and 3-opt local search operators for solving the TSP on the GPU using CUDA. The novelty presented in this paper is a new parallel iterated local search approach with 2-opt and 3-opt operators for symmetric TSP, optimized for the execution on GPUs. With our implementation large TSP problems (up to 85,900 cities can be solved using the GPU. We will show that our GPU implementation can be up to 20x faster without losing quality for all TSPlib problems as well as for our CRO TSP problem.

  6. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  7. TH-E-BRE-08: GPU-Monte Carlo Based Fast IMRT Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Shi, F; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-15

    Purpose: Intensity-modulated radiation treatment (IMRT) plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC) methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow. Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, rough beamlet dose calculations is conducted with only a small number of particles per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final Result. Results: For a lung case with 5317 beamlets, 10{sup 5} particles per beamlet in the first round, and 10{sup 8} particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec. Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.

  8. Performance of Сellular Automata-based Stream Ciphers in GPU Implementation

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2016-01-01

    Full Text Available Earlier the author had developed methods to build high-performance generalized cellular automata-based symmetric ciphers, which allow obtaining the encryption algorithms that show extremely high performance in hardware implementation. However, their implementation based on the conventional microprocessors lacks high performance. The mere fact is quite common - it shows a scope of applications for these ciphers. Nevertheless, the use of graphic processors enables achieving an appropriate performance for a software implementation.The article is extension of a series of the articles, which study various aspects to construct and implement cryptographic algorithms based on the generalized cellular automata. The article is aimed at studying the capabilities to implement the GPU-based cryptographic algorithms under consideration.Representing a key generator, the implemented encryption algorithm comprises 2k generalized cellular automata. The cellular automata graphs are Ramanujan’s ones. The cells of produced k gamma streams alternate, thereby allowing the GPU capabilities to be better used.To implement was used OpenCL, as the most universal and platform-independent API. The software written in C ++ was designed so that the user could set various parameters, including the encryption key, the graph structure, the local communication function, various constants, etc. To test were used a variety of graphics processors (NVIDIA GTX 650; NVIDIA GTX 770; AMD R9 280X.Depending on operating conditions, and GPU used, a performance range is from 0.47 to 6.61 Gb / s, which is comparable to the performance of the countertypes.Thus, the article has demonstrated that using the GPU makes it is possible to provide efficient software implementation of stream ciphers based on the generalized cellular automata.This work was supported by the RFBR, the project №16-07-00542.

  9. GPU-based simulation of optical propagation through turbulence for active and passive imaging

    Science.gov (United States)

    Monnier, Goulven; Duval, François-Régis; Amram, Solène

    2014-10-01

    IMOTEP is a GPU-based (Graphical Processing Units) software relying on a fast parallel implementation of Fresnel diffraction through successive phase screens. Its applications include active imaging, laser telemetry and passive imaging through turbulence with anisoplanatic spatial and temporal fluctuations. Thanks to parallel implementation on GPU, speedups ranging from 40X to 70X are achieved. The present paper gives a brief overview of IMOTEP models, algorithms, implementation and user interface. It then focuses on major improvements recently brought to the anisoplanatic imaging simulation method. Previously, we took advantage of the computational power offered by the GPU to develop a simulation method based on large series of deterministic realisations of the PSF distorted by turbulence. The phase screen propagation algorithm, by reproducing higher moments of the incident wavefront distortion, provides realistic PSFs. However, we first used a coarse gaussian model to fit the numerical PSFs and characterise there spatial statistics through only 3 parameters (two-dimensional displacements of centroid and width). Meanwhile, this approach was unable to reproduce the effects related to the details of the PSF structure, especially the "speckles" leading to prominent high-frequency content in short-exposure images. To overcome this limitation, we recently implemented a new empirical model of the PSF, based on Principal Components Analysis (PCA), ought to catch most of the PSF complexity. The GPU implementation allows estimating and handling efficiently the numerous (up to several hundreds) principal components typically required under the strong turbulence regime. A first demanding computational step involves PCA, phase screen propagation and covariance estimates. In a second step, realistic instantaneous images, fully accounting for anisoplanatic effects, are quickly generated. Preliminary results are presented.

  10. Accelerating Computation of DCM for ERP in MATLAB by External Function Calls to the GPU

    Science.gov (United States)

    Wang, Wei-Jen; Hsieh, I-Fan; Chen, Chun-Chuan

    2013-01-01

    This study aims to improve the performance of Dynamic Causal Modelling for Event Related Potentials (DCM for ERP) in MATLAB by using external function calls to a graphics processing unit (GPU). DCM for ERP is an advanced method for studying neuronal effective connectivity. DCM utilizes an iterative procedure, the expectation maximization (EM) algorithm, to find the optimal parameters given a set of observations and the underlying probability model. As the EM algorithm is computationally demanding and the analysis faces possible combinatorial explosion of models to be tested, we propose a parallel computing scheme using the GPU to achieve a fast estimation of DCM for ERP. The computation of DCM for ERP is dynamically partitioned and distributed to threads for parallel processing, according to the DCM model complexity and the hardware constraints. The performance efficiency of this hardware-dependent thread arrangement strategy was evaluated using the synthetic data. The experimental data were used to validate the accuracy of the proposed computing scheme and quantify the time saving in practice. The simulation results show that the proposed scheme can accelerate the computation by a factor of 155 for the parallel part. For experimental data, the speedup factor is about 7 per model on average, depending on the model complexity and the data. This GPU-based implementation of DCM for ERP gives qualitatively the same results as the original MATLAB implementation does at the group level analysis. In conclusion, we believe that the proposed GPU-based implementation is very useful for users as a fast screen tool to select the most likely model and may provide implementation guidance for possible future clinical applications such as online diagnosis. PMID:23840507

  11. The performances of R GPU implementations of the GMRES method

    Directory of Open Access Journals (Sweden)

    Bogdan Oancea

    2018-03-01

    Full Text Available Although the performance of commodity computers has improved drastically with the introduction of multicore processors and GPU computing, the standard R distribution is still based on single-threaded model of computation, using only a small fraction of the computational power available now for most desktops and laptops. Modern statistical software packages rely on high performance implementations of the linear algebra routines there are at the core of several important leading edge statistical methods. In this paper we present a GPU implementation of the GMRES iterative method for solving linear systems. We compare the performance of this implementation with a pure single threaded version of the CPU. We also investigate the performance of our implementation using different GPU packages available now for R such as gmatrix, gputools or gpuR which are based on CUDA or OpenCL frameworks.

  12. GPU-accelerated micromagnetic simulations using cloud computing

    International Nuclear Information System (INIS)

    Jermain, C.L.; Rowlands, G.E.; Buhrman, R.A.; Ralph, D.C.

    2016-01-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  13. GPU-accelerated micromagnetic simulations using cloud computing

    Energy Technology Data Exchange (ETDEWEB)

    Jermain, C.L., E-mail: clj72@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Rowlands, G.E.; Buhrman, R.A. [Cornell University, Ithaca, NY 14853 (United States); Ralph, D.C. [Cornell University, Ithaca, NY 14853 (United States); Kavli Institute at Cornell, Ithaca, NY 14853 (United States)

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  14. Synergia CUDA: GPU-accelerated accelerator modeling package

    International Nuclear Information System (INIS)

    Lu, Q; Amundson, J

    2014-01-01

    Synergia is a parallel, 3-dimensional space-charge particle-in-cell accelerator modeling code. We present our work porting the purely MPI-based version of the code to a hybrid of CPU and GPU computing kernels. The hybrid code uses the CUDA platform in the same framework as the pure MPI solution. We have implemented a lock-free collaborative charge-deposition algorithm for the GPU, as well as other optimizations, including local communication avoidance for GPUs, a customized FFT, and fine-tuned memory access patterns. On a small GPU cluster (up to 4 Tesla C1070 GPUs), our benchmarks exhibit both superior peak performance and better scaling than a CPU cluster with 16 nodes and 128 cores. We also compare the code performance on different GPU architectures, including C1070 Tesla and K20 Kepler.

  15. GPU credit reduced, tie to TMI-1 cheating discounted

    International Nuclear Information System (INIS)

    Utroska, D.

    1981-01-01

    The recent reduction of credit available to General Public Utilities (GPU) Nuclear may be linked to a cheating incident involving two reactor operators at the Three Mile Island-1 (TMI-1) reactor. The incident caused the Nuclear Regulatory Commission to reopen the managerial portion of the restart hearings and may delay the restart. The delay and the lower credit line will worsen GPU's financial position. Banks claim that misgivings about TMI-1 influence them more than the cheating, although GPU had been gradually improving its financial situation since the TMI-2 accident. The new agreement gives GPU $150 million in immediate credit, but lowers the interim ceiling from $292 million to $200 million. A spokesman from the Office of Management and Budget acknowledges that administration plans to limit the federal role to research and development softened under political pressure

  16. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran

  17. An efficient spectral crystal plasticity solver for GPU architectures

    Science.gov (United States)

    Malahe, Michael

    2018-03-01

    We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.

  18. GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF

    Science.gov (United States)

    Mielikainen, J.; Huang, B.; Huang, A.

    2011-12-01

    The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has

  19. Evolution of GPU nuclear's training program

    International Nuclear Information System (INIS)

    Long, R.L.; Coe, R.P.

    1987-01-01

    GPU Nuclear Corporation (GPUN) manages the operators of Three Mile Island Unit 1 and Oyster Creek Nuclear Generating Stations and the recovery activities at the Three Mile Island Unit 2 plant. From the time it was formed in January 1980 GPUN emphasized the use of behavioral learning objectives as the basis for all its training programs. This paper describes the evolution to a formalized performance based Training System Development (TSD) Process. The Training and Education Department staff increased from 10 in 1979 to the current 120 dedicated professionals, with a corresponding increase in facilities and acquisition of sophisticated Basic Principles Training Simulators and a Three Mile Island Unit 1 control Room Replica Simulator. The impact of these developments and achievement of full INPO accreditation are discussed and related to plant performance improvements

  20. LDPC Decoding on GPU for Mobile Device

    Directory of Open Access Journals (Sweden)

    Yiqin Lu

    2016-01-01

    Full Text Available A flexible software LDPC decoder that exploits data parallelism for simultaneous multicode words decoding on the mobile device is proposed in this paper, supported by multithreading on OpenCL based graphics processing units. By dividing the check matrix into several parts to make full use of both the local memory and private memory on GPU and properly modify the code capacity each time, our implementation on a mobile phone shows throughputs above 100 Mbps and delay is less than 1.6 millisecond in decoding, which make high-speed communication like video calling possible. To realize efficient software LDPC decoding on the mobile device, the LDPC decoding feature on communication baseband chip should be replaced to save the cost and make it easier to upgrade decoder to be compatible with a variety of channel access schemes.

  1. GPU-based large-scale visualization

    KAUST Repository

    Hadwiger, Markus

    2013-11-19

    Recent advances in image and volume acquisition as well as computational advances in simulation have led to an explosion of the amount of data that must be visualized and analyzed. Modern techniques combine the parallel processing power of GPUs with out-of-core methods and data streaming to enable the interactive visualization of giga- and terabytes of image and volume data. A major enabler for interactivity is making both the computational and the visualization effort proportional to the amount of data that is actually visible on screen, decoupling it from the full data size. This leads to powerful display-aware multi-resolution techniques that enable the visualization of data of almost arbitrary size. The course consists of two major parts: An introductory part that progresses from fundamentals to modern techniques, and a more advanced part that discusses details of ray-guided volume rendering, novel data structures for display-aware visualization and processing, and the remote visualization of large online data collections. You will learn how to develop efficient GPU data structures and large-scale visualizations, implement out-of-core strategies and concepts such as virtual texturing that have only been employed recently, as well as how to use modern multi-resolution representations. These approaches reduce the GPU memory requirements of extremely large data to a working set size that fits into current GPUs. You will learn how to perform ray-casting of volume data of almost arbitrary size and how to render and process gigapixel images using scalable, display-aware techniques. We will describe custom virtual texturing architectures as well as recent hardware developments in this area. We will also describe client/server systems for distributed visualization, on-demand data processing and streaming, and remote visualization. We will describe implementations using OpenGL as well as CUDA, exploiting parallelism on GPUs combined with additional asynchronous

  2. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.

    Science.gov (United States)

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S

    2014-03-11

    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.

  3. 48 CFR 12.602 - Streamlined evaluation of offers.

    Science.gov (United States)

    2010-10-01

    ... offers. 12.602 Section 12.602 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... for Commercial Items 12.602 Streamlined evaluation of offers. (a) When evaluation factors are used... evaluation factors. (b) Offers shall be evaluated in accordance with the criteria contained in the...

  4. Prefiltering Model for Homology Detection Algorithms on GPU.

    Science.gov (United States)

    Retamosa, Germán; de Pedro, Luis; González, Ivan; Tamames, Javier

    2016-01-01

    Homology detection has evolved over the time from heavy algorithms based on dynamic programming approaches to lightweight alternatives based on different heuristic models. However, the main problem with these algorithms is that they use complex statistical models, which makes it difficult to achieve a relevant speedup and find exact matches with the original results. Thus, their acceleration is essential. The aim of this article was to prefilter a sequence database. To make this work, we have implemented a groundbreaking heuristic model based on NVIDIA's graphics processing units (GPUs) and multicore processors. Depending on the sensitivity settings, this makes it possible to quickly reduce the sequence database by factors between 50% and 95%, while rejecting no significant sequences. Furthermore, this prefiltering application can be used together with multiple homology detection algorithms as a part of a next-generation sequencing system. Extensive performance and accuracy tests have been carried out in the Spanish National Centre for Biotechnology (NCB). The results show that GPU hardware can accelerate the execution times of former homology detection applications, such as National Centre for Biotechnology Information (NCBI), Basic Local Alignment Search Tool for Proteins (BLASTP), up to a factor of 4.

  5. Real-Time Incompressible Fluid Simulation on the GPU

    Directory of Open Access Journals (Sweden)

    Xiao Nie

    2015-01-01

    Full Text Available We present a parallel framework for simulating incompressible fluids with predictive-corrective incompressible smoothed particle hydrodynamics (PCISPH on the GPU in real time. To this end, we propose an efficient GPU streaming pipeline to map the entire computational task onto the GPU, fully exploiting the massive computational power of state-of-the-art GPUs. In PCISPH-based simulations, neighbor search is the major performance obstacle because this process is performed several times at each time step. To eliminate this bottleneck, an efficient parallel sorting method for this time-consuming step is introduced. Moreover, we discuss several optimization techniques including using fast on-chip shared memory to avoid global memory bandwidth limitations and thus further improve performance on modern GPU hardware. With our framework, the realism of real-time fluid simulation is significantly improved since our method enforces incompressibility constraint which is typically ignored due to efficiency reason in previous GPU-based SPH methods. The performance results illustrate that our approach can efficiently simulate realistic incompressible fluid in real time and results in a speed-up factor of up to 23 on a high-end NVIDIA GPU in comparison to single-threaded CPU-based implementation.

  6. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements

    Science.gov (United States)

    Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew

    1996-09-01

    Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The

  7. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai

    2018-01-01

    GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and

  8. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  9. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  10. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    International Nuclear Information System (INIS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon–electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783–97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48–0.53% for the electron beam cases and 0.15–0.17% for the photon beam cases. In terms of efficiency, goMC was ∼4–16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was

  11. GPU Based N-Gram String Matching Algorithm with Score Table Approach for String Searching in Many Documents

    Science.gov (United States)

    Srinivasa, K. G.; Shree Devi, B. N.

    2017-10-01

    String searching in documents has become a tedious task with the evolution of Big Data. Generation of large data sets demand for a high performance search algorithm in areas such as text mining, information retrieval and many others. The popularity of GPU's for general purpose computing has been increasing for various applications. Therefore it is of great interest to exploit the thread feature of a GPU to provide a high performance search algorithm. This paper proposes an optimized new approach to N-gram model for string search in a number of lengthy documents and its GPU implementation. The algorithm exploits GPGPUs for searching strings in many documents employing character level N-gram matching with parallel Score Table approach and search using CUDA API. The new approach of Score table used for frequency storage of N-grams in a document, makes the search independent of the document's length and allows faster access to the frequency values, thus decreasing the search complexity. The extensive thread feature in a GPU has been exploited to enable parallel pre-processing of trigrams in a document for Score Table creation and parallel search in huge number of documents, thus speeding up the whole search process even for a large pattern size. Experiments were carried out for many documents of varied length and search strings from the standard Lorem Ipsum text on NVIDIA's GeForce GT 540M GPU with 96 cores. Results prove that the parallel approach for Score Table creation and searching gives a good speed up than the same approach executed serially.

  12. Joint statistics and conditional mean strain rates of streamline segments

    International Nuclear Information System (INIS)

    Schaefer, P; Gampert, M; Peters, N

    2013-01-01

    Based on four different direct numerical simulations of turbulent flows with Taylor-based Reynolds numbers ranging from Re λ = 50 to 300 among which are two homogeneous isotropic decaying, one forced and one homogeneous shear flow, streamlines are identified and the obtained space curves are parameterized with the pseudo-time as well as the arclength. Based on local extrema of the absolute value of the velocity along the streamlines, the latter are partitioned into segments following Wang (2010 J. Fluid Mech. 648 183–203). Streamline segments are then statistically analyzed based on both parameterizations using the joint probability density function of the pseudo-time lag τ (arclength l, respectively) between and the velocity difference Δu at the extrema: P(τ,Δu), (P(l,Δu)). We distinguish positive and negative streamline segments depending on the sign of the velocity difference Δu. Differences as well as similarities in the statistical description for both parameterizations are discussed. In particular, it turns out that the normalized probability distribution functions (pdfs) (of both parameterizations) of the length of positive, negative and all segments assume a universal shape for all Reynolds numbers and flow types and are well described by a model derived in Schaefer P et al (2012 Phys. Fluids 24 045104). Particular attention is given to the conditional mean velocity difference at the ending points of the segments, which can be understood as a first-order structure function in the context of streamline segment analysis. It determines to a large extent the stretching (compression) of positive (negative) streamline segments and corresponds to the convective velocity in phase space in the transport model equation for the pdf. While based on the random sweeping hypothesis a scaling ∝ (u rms ετ) 1/3 is found for the parameterization based on the pseudo-time, the parameterization with the arclength l yields a much larger than expected l 1/3 scaling. A

  13. Streamlining the path from physics to medicine

    CERN Multimedia

    2013-01-01

    We all know them: the well-established cases of knowledge transfer from physics to medicine in which CERN has played an important role. From technology for PET scanners to dedicated accelerator designs for cancer therapy, we have contributed a lot over the years. But until recently, the pathway has been a little ad hoc, depending largely on enthusiastic individuals. That’s about to change.   CERN’s commitment to formalising the transfer of knowledge to the field of medicine has been growing over recent years. Notable successes are the establishment of a new conference series, ICTR-PHE, that brings together medical practitioners and members of the physics community, and the establishment of cancer therapy centres like CNAO in Italy and MedAustron in Austria, built on CERN accelerator technology. These are important, but there’s still more that we can and should do. To this end, we’ve created a new Office for CERN Medical Applications, whose first head w...

  14. Fast magnetic field computation in fusion technology using GPU technology

    Energy Technology Data Exchange (ETDEWEB)

    Chiariello, Andrea Gaetano [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Formisano, Alessandro, E-mail: Alessandro.Formisano@unina2.it [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Martone, Raffaele [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy)

    2013-10-15

    Highlights: ► The paper deals with high accuracy numerical simulations of high field magnets. ► The porting of existing codes of High Performance Computing architectures allowed to obtain a relevant speedup while not reducing computational accuracy. ► Some examples of applications, referred to ITER-like magnets, are reported. -- Abstract: One of the main issues in the simulation of Tokamaks functioning is the reliable and accurate computation of actual field maps in the plasma chamber. In this paper a tool able to accurately compute magnetic field maps produced by active coils of any 3D shape, wound with high number of conductors, is presented. Under linearity assumption, the coil winding is modeled by means of “sticks”, following each conductor's shape, and the contribution of each stick is computed using high speed Graphic Computing Units (GPU's). Relevant speed enhancements with respect to standard parallel computing environment are achieved in this way.

  15. cellGPU: Massively parallel simulations of dynamic vertex models

    Science.gov (United States)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  16. Incompressible SPH (ISPH) with fast Poisson solver on a GPU

    Science.gov (United States)

    Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.

    2018-05-01

    This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.

  17. Streamlining geospatial metadata in the Semantic Web

    Science.gov (United States)

    Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola

    2016-04-01

    In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.

  18. Semi-automatic tool to ease the creation and optimization of GPU programs

    DEFF Research Database (Denmark)

    Jepsen, Jacob

    2014-01-01

    We present a tool that reduces the development time of GPU-executable code. We implement a catalogue of common optimizations specific to the GPU architecture. Through the tool, the programmer can semi-automatically transform a computationally-intensive code section into GPU-executable form...... of the transformations can be performed automatically, which makes the tool usable for both novices and experts in GPU programming....

  19. An Evaluation of the Acquisition Streamlining Methods at the Fleet and Industrial Supply Center Pearl Harbor Hawaii

    National Research Council Canada - National Science Library

    Henry, Mark

    1999-01-01

    ...) Pearl Harbor's implementation of acquisition streamlining initiatives and recommends viable methods of streamlining the acquisition process at FISC Pearl Harbor and other Naval Supply Systems Command...

  20. Streamlining: Reducing costs and increasing STS operations effectiveness

    Science.gov (United States)

    Petersburg, R. K.

    1985-01-01

    The development of streamlining as a concept, its inclusion in the space transportation system engineering and operations support (STSEOS) contract, and how it serves as an incentive to management and technical support personnel is discussed. The mechanics of encouraging and processing streamlining suggestions, reviews, feedback to submitters, recognition, and how individual employee performance evaluations are used to motivation are discussed. Several items that were implemented are mentioned. Information reported and the methodology of determining estimated dollar savings are outlined. The overall effect of this activity on the ability of the McDonnell Douglas flight preparation and mission operations team to support a rapidly increasing flight rate without a proportional increase in cost is illustrated.

  1. Streamline topology: Patterns in fluid flows and their bifurcations

    DEFF Research Database (Denmark)

    Brøns, Morten

    2007-01-01

    Using dynamical systems theory, we consider structures such as vortices and separation in the streamline patterns of fluid flows. Bifurcation of patterns under variation of external parameters is studied using simplifying normal form transformations. Flows away from boundaries, flows close to fix...... walls, and axisymmetric flows are analyzed in detail. We show how to apply the ideas from the theory to analyze numerical simulations of the vortex breakdown in a closed cylindrical container....

  2. Damage Detection with Streamlined Structural Health Monitoring Data

    OpenAIRE

    Li, Jian; Deng, Jun; Xie, Weizhi

    2015-01-01

    The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems’ capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compressio...

  3. Zephyr: A secure Internet process to streamline engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, C.W.; Niven, W.A.; Cavitt, R.E. [and others

    1998-05-12

    Lawrence Livermore National Laboratory (LLNL) is implementing an Internet-based process pilot called `Zephyr` to streamline engineering and commerce using the Internet. Major benefits have accrued by using Zephyr in facilitating industrial collaboration, speeding the engineering development cycle, reducing procurement time, and lowering overall costs. Programs at LLNL are potentializing the efficiencies introduced since implementing Zephyr. Zephyr`s pilot functionality is undergoing full integration with Business Systems, Finance, and Vendors to support major programs at the Laboratory.

  4. A Streamlined Artificial Variable Free Version of Simplex Method

    OpenAIRE

    Inayatullah, Syed; Touheed, Nasir; Imtiaz, Muhammad

    2015-01-01

    This paper proposes a streamlined form of simplex method which provides some great benefits over traditional simplex method. For instance, it does not need any kind of artificial variables or artificial constraints; it could start with any feasible or infeasible basis of an LP. This method follows the same pivoting sequence as of simplex phase 1 without showing any explicit description of artificial variables which also makes it space efficient. Later in this paper, a dual version of the new ...

  5. A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.

    2011-01-01

    We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...

  6. GPU accelerated manifold correction method for spinning compact binaries

    Science.gov (United States)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  7. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation.

  8. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    International Nuclear Information System (INIS)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho

    2008-01-01

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation

  9. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  10. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    Directory of Open Access Journals (Sweden)

    Yong Xia

    2015-01-01

    Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  11. Dividing Streamline Formation Channel Confluences by Physical Modeling

    Directory of Open Access Journals (Sweden)

    Minarni Nur Trilita

    2010-02-01

    Full Text Available Confluence channels are often found in open channel network system and is the most important element. The incoming flow from the branch channel to the main cause various forms and cause vortex flow. Phenomenon can cause erosion of the side wall of the channel, the bed channel scour and sedimentation in the downstream confluence channel. To control these problems needed research into the current width of the branch channel. The incoming flow from the branch channel to the main channel flow bounded by a line distributors (dividing streamline. In this paper, the wide dividing streamline observed in the laboratory using a physical model of two open channels, a square that formed an angle of 30º. Observations were made with a variety of flow coming from each channel. The results obtained in the laboratory observation that the width of dividing streamline flow is influenced by the discharge ratio between the channel branch with the main channel. While the results of a comparison with previous studies showing that the observation in the laboratory is smaller than the results of previous research.

  12. Research on GPU acceleration for Monte Carlo criticality calculation

    International Nuclear Information System (INIS)

    Xu, Q.; Yu, G.; Wang, K.

    2013-01-01

    The Monte Carlo (MC) neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The 'neutron transport step' is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the 'neutron transport step' strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs. (authors)

  13. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU.

    Science.gov (United States)

    Arefan, D; Talebpour, A; Ahmadinejhad, N; Kamali Asl, A

    2015-06-01

    Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU). At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU) card and the Graphics Processing Unit (GPU). It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU).

  14. GPU's for event reconstruction in the FairRoot framework

    International Nuclear Information System (INIS)

    Al-Turany, M; Uhlig, F; Karabowicz, R

    2010-01-01

    FairRoot is the simulation and analysis framework used by CBM and PANDA experiments at FAIR/GSI. The use of graphics processor units (GPUs) for event reconstruction in FairRoot will be presented. The fact that CUDA (Nvidia's Compute Unified Device Architecture) development tools work alongside the conventional C/C++ compiler, makes it possible to mix GPU code with general-purpose code for the host CPU, based on this some of the reconstruction tasks can be send to the graphic cards. Moreover, tasks that run on the GPU's can also run in emulation mode on the host CPU, which has the advantage that the same code is used on both CPU and GPU.

  15. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico

    2011-12-01

    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  16. Accelerating Pseudo-Random Number Generator for MCNP on GPU

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu

    2010-09-01

    Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.

  17. Graphics processing unit (GPU) real-time infrared scene generation

    Science.gov (United States)

    Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.

    2007-04-01

    VIRSuite, the GPU-based suite of software tools developed at DSTO for real-time infrared scene generation, is described. The tools include the painting of scene objects with radiometrically-associated colours, translucent object generation, polar plot validation and versatile scene generation. Special features include radiometric scaling within the GPU and the presence of zoom anti-aliasing at the core of VIRSuite. Extension of the zoom anti-aliasing construct to cover target embedding and the treatment of translucent objects is described.

  18. SU-D-206-01: Employing a Novel Consensus Optimization Strategy to Achieve Iterative Cone Beam CT Reconstruction On a Multi-GPU Platform

    International Nuclear Information System (INIS)

    Li, B; Tian, Z; Jiang, S; Jia, X; Zhou, L

    2016-01-01

    Purpose: While compressed sensing-based cone-beam CT (CBCT) iterative reconstruction techniques have demonstrated tremendous capability of reconstructing high-quality images from undersampled noisy data, its long computation time still hinders wide application in routine clinic. The purpose of this study is to develop a reconstruction framework that employs modern consensus optimization techniques to achieve CBCT reconstruction on a multi-GPU platform for improved computational efficiency. Methods: Total projection data were evenly distributed to multiple GPUs. Each GPU performed reconstruction using its own projection data with a conventional total variation regularization approach to ensure image quality. In addition, the solutions from GPUs were subject to a consistency constraint that they should be identical. We solved the optimization problem with all the constraints considered rigorously using an alternating direction method of multipliers (ADMM) algorithm. The reconstruction framework was implemented using OpenCL on a platform with two Nvidia GTX590 GPU cards, each with two GPUs. We studied the performance of our method and demonstrated its advantages through a simulation case with a NCAT phantom and an experimental case with a Catphan phantom. Result: Compared with the CBCT images reconstructed using conventional FDK method with full projection datasets, our proposed method achieved comparable image quality with about one third projection numbers. The computation time on the multi-GPU platform was ∼55 s and ∼ 35 s in the two cases respectively, achieving a speedup factor of ∼ 3.0 compared with single GPU reconstruction. Conclusion: We have developed a consensus ADMM-based CBCT reconstruction method which enabled performing reconstruction on a multi-GPU platform. The achieved efficiency made this method clinically attractive.

  19. SU-D-206-01: Employing a Novel Consensus Optimization Strategy to Achieve Iterative Cone Beam CT Reconstruction On a Multi-GPU Platform

    Energy Technology Data Exchange (ETDEWEB)

    Li, B [University of Texas Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou, Guangdong (China); Tian, Z; Jiang, S; Jia, X [University of Texas Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: While compressed sensing-based cone-beam CT (CBCT) iterative reconstruction techniques have demonstrated tremendous capability of reconstructing high-quality images from undersampled noisy data, its long computation time still hinders wide application in routine clinic. The purpose of this study is to develop a reconstruction framework that employs modern consensus optimization techniques to achieve CBCT reconstruction on a multi-GPU platform for improved computational efficiency. Methods: Total projection data were evenly distributed to multiple GPUs. Each GPU performed reconstruction using its own projection data with a conventional total variation regularization approach to ensure image quality. In addition, the solutions from GPUs were subject to a consistency constraint that they should be identical. We solved the optimization problem with all the constraints considered rigorously using an alternating direction method of multipliers (ADMM) algorithm. The reconstruction framework was implemented using OpenCL on a platform with two Nvidia GTX590 GPU cards, each with two GPUs. We studied the performance of our method and demonstrated its advantages through a simulation case with a NCAT phantom and an experimental case with a Catphan phantom. Result: Compared with the CBCT images reconstructed using conventional FDK method with full projection datasets, our proposed method achieved comparable image quality with about one third projection numbers. The computation time on the multi-GPU platform was ∼55 s and ∼ 35 s in the two cases respectively, achieving a speedup factor of ∼ 3.0 compared with single GPU reconstruction. Conclusion: We have developed a consensus ADMM-based CBCT reconstruction method which enabled performing reconstruction on a multi-GPU platform. The achieved efficiency made this method clinically attractive.

  20. A new method for calculating volumetric sweeps efficiency using streamline simulation concepts

    International Nuclear Information System (INIS)

    Hidrobo, E A

    2000-01-01

    One of the purposes of reservoir engineering is to quantify the volumetric sweep efficiency for optimizing reservoir management decisions. The estimation of this parameter has always been a difficult task. Until now, sweep efficiency correlations and calculations have been limited to mostly homogeneous 2-D cases. Calculating volumetric sweep efficiency in a 3-D heterogeneous reservoir becomes difficult due to inherent complexity of multiple layers and arbitrary well configurations. In this paper, a new method for computing volumetric sweep efficiency for any arbitrary heterogeneity and well configuration is presented. The proposed method is based on Datta-Gupta and King's formulation of streamline time-of-flight (1995). Given the fact that the time-of-flight reflects the fluid front propagation at various times, then the connectivity in the time-of-flight represents a direct measure of the volumetric sweep efficiency. The proposed approach has been applied to synthetic as well as field examples. Synthetic examples are used to validate the volumetric sweep efficiency calculations using the streamline time-of-flight connectivity criterion by comparison with analytic solutions and published correlations. The field example, which illustrates the feasibility of the approach for large-scale field applications, is from the north Robertson unit, a low permeability carbonate reservoir in west Texas

  1. A multi-GPU real-time dose simulation software framework for lung radiotherapy.

    Science.gov (United States)

    Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A

    2012-09-01

    Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.

  2. Opticks : GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiX™

    Science.gov (United States)

    C, Blyth Simon

    2017-10-01

    Opticks is an open source project that integrates the NVIDIA OptiX GPU ray tracing engine with Geant4 toolkit based simulations. Massive parallelism brings drastic performance improvements with optical photon simulation speedup expected to exceed 1000 times Geant4 when using workstation GPUs. Optical photon simulation time becomes effectively zero compared to the rest of the simulation. Optical photons from scintillation and Cherenkov processes are allocated, generated and propagated entirely on the GPU, minimizing transfer overheads and allowing CPU memory usage to be restricted to optical photons that hit photomultiplier tubes or other photon detectors. Collecting hits into standard Geant4 hit collections then allows the rest of the simulation chain to proceed unmodified. Optical physics processes of scattering, absorption, scintillator reemission and boundary processes are implemented in CUDA OptiX programs based on the Geant4 implementations. Wavelength dependent material and surface properties as well as inverse cumulative distribution functions for reemission are interleaved into GPU textures providing fast interpolated property lookup or wavelength generation. Geometry is provided to OptiX in the form of CUDA programs that return bounding boxes for each primitive and ray geometry intersection positions. Some critical parts of the geometry such as photomultiplier tubes have been implemented analytically with the remainder being tessellated. OptiX handles the creation and application of a choice of acceleration structures such as boundary volume hierarchies and the transparent use of multiple GPUs. OptiX supports interoperation with OpenGL and CUDA Thrust that has enabled unprecedented visualisations of photon propagations to be developed using OpenGL geometry shaders to provide interactive time scrubbing and CUDA Thrust photon indexing to enable interactive history selection.

  3. Fully 3D iterative scatter-corrected OSEM for HRRT PET using a GPU

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Sang; Ye, Jong Chul, E-mail: kssigari@kaist.ac.kr, E-mail: jong.ye@kaist.ac.kr [Bio-Imaging and Signal Processing Lab., Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-no, Yuseong-gu, Daejon 305-701 (Korea, Republic of)

    2011-08-07

    Accurate scatter correction is especially important for high-resolution 3D positron emission tomographies (PETs) such as high-resolution research tomograph (HRRT) due to large scatter fraction in the data. To address this problem, a fully 3D iterative scatter-corrected ordered subset expectation maximization (OSEM) in which a 3D single scatter simulation (SSS) is alternatively performed with a 3D OSEM reconstruction was recently proposed. However, due to the computational complexity of both SSS and OSEM algorithms for a high-resolution 3D PET, it has not been widely used in practice. The main objective of this paper is, therefore, to accelerate the fully 3D iterative scatter-corrected OSEM using a graphics processing unit (GPU) and verify its performance for an HRRT. We show that to exploit the massive thread structures of the GPU, several algorithmic modifications are necessary. For SSS implementation, a sinogram-driven approach is found to be more appropriate compared to a detector-driven approach, as fast linear interpolation can be performed in the sinogram domain through the use of texture memory. Furthermore, a pixel-driven backprojector and a ray-driven projector can be significantly accelerated by assigning threads to voxels and sinograms, respectively. Using Nvidia's GPU and compute unified device architecture (CUDA), the execution time of a SSS is less than 6 s, a single iteration of OSEM with 16 subsets takes 16 s, and a single iteration of the fully 3D scatter-corrected OSEM composed of a SSS and six iterations of OSEM takes under 105 s for the HRRT geometry, which corresponds to acceleration factors of 125x and 141x for OSEM and SSS, respectively. The fully 3D iterative scatter-corrected OSEM algorithm is validated in simulations using Geant4 application for tomographic emission and in actual experiments using an HRRT.

  4. Bridging FPGA and GPU technologies for AO real-time control

    Science.gov (United States)

    Perret, Denis; Lainé, Maxime; Bernard, Julien; Gratadour, Damien; Sevin, Arnaud

    2016-07-01

    Our team has developed a common environment for high performance simulations and real-time control of AO systems based on the use of Graphics Processors Units in the context of the COMPASS project. Such a solution, based on the ability of the real time core in the simulation to provide adequate computing performance, limits the cost of developing AO RTC systems and makes them more scalable. A code developed and validated in the context of the simulation may be injected directly into the system and tested on sky. Furthermore, the use of relatively low cost components also offers significant advantages for the system hardware platform. However, the use of GPUs in an AO loop comes with drawbacks: the traditional way of offloading computation from CPU to GPUs - involving multiple copies and unacceptable overhead in kernel launching - is not well suited in a real time context. This last application requires the implementation of a solution enabling direct memory access (DMA) to the GPU memory from a third party device, bypassing the operating system. This allows this device to communicate directly with the real-time core of the simulation feeding it with the WFS camera pixel stream. We show that DMA between a custom FPGA-based frame-grabber and a computation unit (GPU, FPGA, or Coprocessor such as Xeon-phi) across PCIe allows us to get latencies compatible with what will be needed on ELTs. As a fine-grained synchronization mechanism is not yet made available by GPU vendors, we propose the use of memory polling to avoid interrupts handling and involvement of a CPU. Network and Vision protocols are handled by the FPGA-based Network Interface Card (NIC). We present the results we obtained on a complete AO loop using camera and deformable mirror simulators.

  5. A GPU-based incompressible Navier-Stokes solver on moving overset grids

    Science.gov (United States)

    Chandar, Dominic D. J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.

    2013-07-01

    In pursuit of obtaining high fidelity solutions to the fluid flow equations in a short span of time, graphics processing units (GPUs) which were originally intended for gaming applications are currently being used to accelerate computational fluid dynamics (CFD) codes. With a high peak throughput of about 1 TFLOPS on a PC, GPUs seem to be favourable for many high-resolution computations. One such computation that involves a lot of number crunching is computing time accurate flow solutions past moving bodies. The aim of the present paper is thus to discuss the development of a flow solver on unstructured and overset grids and its implementation on GPUs. In its present form, the flow solver solves the incompressible fluid flow equations on unstructured/hybrid/overset grids using a fully implicit projection method. The resulting discretised equations are solved using a matrix-free Krylov solver using several GPU kernels such as gradient, Laplacian and reduction. Some of the simple arithmetic vector calculations are implemented using the CU++: An Object Oriented Framework for Computational Fluid Dynamics Applications using Graphics Processing Units, Journal of Supercomputing, 2013, doi:10.1007/s11227-013-0985-9 approach where GPU kernels are automatically generated at compile time. Results are presented for two- and three-dimensional computations on static and moving grids.

  6. Edge-preserving image denoising via group coordinate descent on the GPU.

    Science.gov (United States)

    McGaffin, Madison Gray; Fessler, Jeffrey A

    2015-04-01

    Image denoising is a fundamental operation in image processing, and its applications range from the direct (photographic enhancement) to the technical (as a subproblem in image reconstruction algorithms). In many applications, the number of pixels has continued to grow, while the serial execution speed of computational hardware has begun to stall. New image processing algorithms must exploit the power offered by massively parallel architectures like graphics processing units (GPUs). This paper describes a family of image denoising algorithms well-suited to the GPU. The algorithms iteratively perform a set of independent, parallel 1D pixel-update subproblems. To match GPU memory limitations, they perform these pixel updates in-place and only store the noisy data, denoised image, and problem parameters. The algorithms can handle a wide range of edge-preserving roughness penalties, including differentiable convex penalties and anisotropic total variation. Both algorithms use the majorize-minimize framework to solve the 1D pixel update subproblem. Results from a large 2D image denoising problem and a 3D medical imaging denoising problem demonstrate that the proposed algorithms converge rapidly in terms of both iteration and run-time.

  7. Streamlining digital signal processing a tricks of the trade guidebook

    CERN Document Server

    2012-01-01

    Streamlining Digital Signal Processing, Second Edition, presents recent advances in DSP that simplify or increase the computational speed of common signal processing operations and provides practical, real-world tips and tricks not covered in conventional DSP textbooks. It offers new implementations of digital filter design, spectrum analysis, signal generation, high-speed function approximation, and various other DSP functions. It provides:Great tips, tricks of the trade, secrets, practical shortcuts, and clever engineering solutions from seasoned signal processing professionalsAn assortment.

  8. Streamlined library programming how to improve services and cut costs

    CERN Document Server

    Porter-Reynolds, Daisy

    2014-01-01

    In their roles as community centers, public libraries offer many innovative and appealing programs; but under current budget cuts, library resources are stretched thin. With slashed budgets and limited staff hours, what can libraries do to best serve their publics? This how-to guide provides strategies for streamlining library programming in public libraries while simultaneously maintaining-or even improving-quality delivery. The wide variety of principles and techniques described can be applied on a selective basis to libraries of all sizes. Based upon the author's own extensive experience as

  9. Topology of streamlines and vorticity contours for two - dimensional flows

    DEFF Research Database (Denmark)

    Andersen, Morten

    on the vortex filament by the localised induction approximation the stream function is slightly modified and an extra parameter is introduced. In this setting two new flow topologies arise, but not more than two critical points occur for any combination of the parameters. The analysis of the closed form show...... by a point vortex above a wall in inviscid fluid. There is no reason to a priori expect equivalent results of the three vortex definitions. However, the study is mainly motivated by the findings of Kudela & Malecha (Fluid Dyn. Res. 41, 2009) who find good agreement between the vorticity and streamlines...

  10. GPU accelerated CT reconstruction for clinical use: quality driven performance

    Science.gov (United States)

    Vaz, Michael S.; Sneyders, Yuri; McLin, Matthew; Ricker, Alan; Kimpe, Tom

    2007-03-01

    We present performance and quality analysis of GPU accelerated FDK filtered backprojection for cone beam computed tomography (CBCT) reconstruction. Our implementation of the FDK CT reconstruction algorithm does not compromise fidelity at any stage and yields a result that is within 1 HU of a reference C++ implementation. Our streaming implementation is able to perform reconstruction as the images are acquired; it addresses low latency as well as fast throughput, which are key considerations for a "real-time" design. Further, it is scaleable to multiple GPUs for increased performance. The implementation does not place any constraints on image acquisition; it works effectively for arbitrary angular coverage with arbitrary angular spacing. As such, this GPU accelerated CT reconstruction solution may easily be used with scanners that are already deployed. We are able to reconstruct a 512 x 512 x 340 volume from 625 projections, each sized 1024 x 768, in less than 50 seconds. The quoted 50 second timing encompasses the entire reconstruction using bilinear interpolation and includes filtering on the CPU, uploading the filtered projections to the GPU, and also downloading the reconstructed volume from GPU memory to system RAM.

  11. Parallel Computer System for 3D Visualization Stereo on GPU

    Science.gov (United States)

    Al-Oraiqat, Anas M.; Zori, Sergii A.

    2018-03-01

    This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.

  12. Optimizing a mobile robot control system using GPU acceleration

    Science.gov (United States)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  13. GPU based contouring method on grid DEM data

    Science.gov (United States)

    Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong

    2017-08-01

    This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.

  14. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred; Douglas, Craig C.; Haase, Gundolf; Horvá th, Zoltá n

    2010-01-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one

  15. High-Performance Matrix-Vector Multiplication on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2012-01-01

    In this paper, we develop a high-performance GPU kernel for one of the most popular dense linear algebra operations, the matrix-vector multiplication. The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture), which is designed from the ground up for scientific computing...

  16. STEM image simulation with hybrid CPU/GPU programming

    International Nuclear Information System (INIS)

    Yao, Y.; Ge, B.H.; Shen, X.; Wang, Y.G.; Yu, R.C.

    2016-01-01

    STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. - Highlights: • STEM image simulation is achieved by hybrid CPU/GPU programming under parallel algorithm architecture to speed up the calculation in the personal computer (PC). • In order to fully utilize the calculation power of the PC, the simulation is performed by GPU core and multi-CPU cores at the same time so efficiency is improved significantly. • GaSb and artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. The results reveal some unintuitive phenomena about the contrast variation with the atom numbers.

  17. GPU accelerated likelihoods for stereo-based articulated tracking

    DEFF Research Database (Denmark)

    Friborg, Rune Møllegaard; Hauberg, Søren; Erleben, Kenny

    2010-01-01

    than a traditional CPU implementation. We explain the non-intuitive steps required to attain an optimized GPU implementation, where the dominant part is to hide the memory latency effectively. Benchmarks show that computations which previously required several minutes, are now performed in few seconds....

  18. STEM image simulation with hybrid CPU/GPU programming

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y., E-mail: yaoyuan@iphy.ac.cn; Ge, B.H.; Shen, X.; Wang, Y.G.; Yu, R.C.

    2016-07-15

    STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. - Highlights: • STEM image simulation is achieved by hybrid CPU/GPU programming under parallel algorithm architecture to speed up the calculation in the personal computer (PC). • In order to fully utilize the calculation power of the PC, the simulation is performed by GPU core and multi-CPU cores at the same time so efficiency is improved significantly. • GaSb and artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. The results reveal some unintuitive phenomena about the contrast variation with the atom numbers.

  19. The GPU implementation of micro - Doppler period estimation

    Science.gov (United States)

    Yang, Liyuan; Wang, Junling; Bi, Ran

    2018-03-01

    Aiming at the problem that the computational complexity and the deficiency of real-time of the wideband radar echo signal, a program is designed to improve the performance of real-time extraction of micro-motion feature in this paper based on the CPU-GPU heterogeneous parallel structure. Firstly, we discuss the principle of the micro-Doppler effect generated by the rolling of the scattering points on the orbiting satellite, analyses how to use Kalman filter to compensate the translational motion of tumbling satellite and how to use the joint time-frequency analysis and inverse Radon transform to extract the micro-motion features from the echo after compensation. Secondly, the advantages of GPU in terms of real-time processing and the working principle of CPU-GPU heterogeneous parallelism are analysed, and a program flow based on GPU to extract the micro-motion feature from the radar echo signal of rolling satellite is designed. At the end of the article the results of extraction are given to verify the correctness of the program and algorithm.

  20. GPU-Boosted Camera-Only Indoor Localization

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Kristensen, Jens Klæstrup

    relies on local image features detection, description and matching; by parallelizing these computationally intensive tasks on the graphical processing unit (GPU), it is possible to do online localization using a Topometric Appearance Map. The method is developed as an integral part of a mobile service...

  1. Optimizing memory-bound SYMV kernel on GPU hardware accelerators

    KAUST Repository

    Abdelfattah, Ahmad; Dongarra, Jack; Keyes, David E.; Ltaief, Hatem

    2013-01-01

    and increasing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30% fold improvement over the Matrix Algebra on GPU and Multicore Architectures (MAGMA) library in single and double

  2. Evaluation of two streamlined life cycle assessment methods

    International Nuclear Information System (INIS)

    Hochschomer, Elisabeth; Finnveden, Goeran; Johansson, Jessica

    2002-02-01

    Two different methods for streamlined life cycle assessment (LCA) are described: the MECO-method and SLCA. Both methods are tested on an already made case-study on cars fuelled with petrol or ethanol, and electric cars with electricity produced from hydro power or coal. The report also contains some background information on LCA and streamlined LCA, and a deschption of the case study used. The evaluation of the MECO and SLCA-methods are based on a comparison of the results from the case study as well as practical aspects. One conclusion is that the SLCA-method has some limitations. Among the limitations are that the whole life-cycle is not covered, it requires quite a lot of information and there is room for arbitrariness. It is not very flexible instead it difficult to develop further. We are therefore not recommending the SLCA-method. The MECO-method does in comparison show several attractive features. It is also interesting to note that the MECO-method produces information that is complementary compared to a more traditional quantitative LCA. We suggest that the MECO method needs some further development and adjustment to Swedish conditions

  3. Study of streamline flow in the portal system

    International Nuclear Information System (INIS)

    Atkins, H.L.; Deitch, J.S.; Oster, Z.H.; Perkes, E.A.

    1985-01-01

    The study was undertaken to determine if streamline flow occurs in the portal vein, thus separating inflow from the superior mesenteric artery (SMA) and the inferior mesenteric artery. Previously published data on this subject is inconsistent. Patients undergoing abdominal angiography received two administrations of Tc-99m sulfur colloid, first via the SMA during angiography and, after completion of the angiographic procedure, via a peripheral vein (IV). Anterior images of the liver were recorded over a three minute acquisition before and after the IV injection without moving the patient. The image from the SMA injection was subtracted from the SMA and IV image to provide a pure IV image. Analysis of R to L ratios for selected regions of interest as well as whole lobes was carried out and the shift of R to L (SMA to IV) determined. Six patients had liver metastases from the colon, four had cirrhosis and four had no known liver disease. The shift in the ratio was highly variable without a consistent pattern. Large changes in some patients could be attributed to hepatic artery flow directed to metastases. No consistent evidence for streamlining of portal flow was discerned

  4. Fast Simulation of Dynamic Ultrasound Images Using the GPU.

    Science.gov (United States)

    Storve, Sigurd; Torp, Hans

    2017-10-01

    Simulated ultrasound data is a valuable tool for development and validation of quantitative image analysis methods in echocardiography. Unfortunately, simulation time can become prohibitive for phantoms consisting of a large number of point scatterers. The COLE algorithm by Gao et al. is a fast convolution-based simulator that trades simulation accuracy for improved speed. We present highly efficient parallelized CPU and GPU implementations of the COLE algorithm with an emphasis on dynamic simulations involving moving point scatterers. We argue that it is crucial to minimize the amount of data transfers from the CPU to achieve good performance on the GPU. We achieve this by storing the complete trajectories of the dynamic point scatterers as spline curves in the GPU memory. This leads to good efficiency when simulating sequences consisting of a large number of frames, such as B-mode and tissue Doppler data for a full cardiac cycle. In addition, we propose a phase-based subsample delay technique that efficiently eliminates flickering artifacts seen in B-mode sequences when COLE is used without enough temporal oversampling. To assess the performance, we used a laptop computer and a desktop computer, each equipped with a multicore Intel CPU and an NVIDIA GPU. Running the simulator on a high-end TITAN X GPU, we observed two orders of magnitude speedup compared to the parallel CPU version, three orders of magnitude speedup compared to simulation times reported by Gao et al. in their paper on COLE, and a speedup of 27000 times compared to the multithreaded version of Field II, using numbers reported in a paper by Jensen. We hope that by releasing the simulator as an open-source project we will encourage its use and further development.

  5. Parallel, distributed and GPU computing technologies in single-particle electron microscopy.

    Science.gov (United States)

    Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-07-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.

  6. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation

    International Nuclear Information System (INIS)

    Jia Xun; Lou Yifei; Li Ruijiang; Song, William Y.; Jiang, Steve B.

    2010-01-01

    Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. Results: It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of ∼360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

  7. Evaluation of speedup of Monte Carlo calculations of two simple reactor physics problems coded for the GPU/CUDA environment

    International Nuclear Information System (INIS)

    Ding, Aiping; Liu, Tianyu; Liang, Chao; Ji, Wei; Shephard, Mark S.; Xu, X George; Brown, Forrest B.

    2011-01-01

    Monte Carlo simulation is ideally suited for solving Boltzmann neutron transport equation in inhomogeneous media. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop system. The interest in adopting GPUs for Monte Carlo acceleration is rapidly mounting, fueled partially by the parallelism afforded by the latest GPU technologies and the challenge to perform full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem and an eigenvalue/criticality problem were developed for CPU and GPU environments, respectively, to evaluate issues associated with computational speedup afforded by the use of GPUs. The results suggest that a speedup factor of 30 in Monte Carlo radiation transport of neutrons is within reach using the state-of-the-art GPU technologies. However, for the eigenvalue/criticality problem, the speedup was 8.5. In comparison, for a task of voxelizing unstructured mesh geometry that is more parallel in nature, the speedup of 45 was obtained. It was observed that, to date, most attempts to adopt GPUs for Monte Carlo acceleration were based on naïve implementations and have not yielded the level of anticipated gains. Successful implementation of Monte Carlo schemes for GPUs will likely require the development of an entirely new code. Given the prediction that future-generation GPU products will likely bring exponentially improved computing power and performances, innovative hardware and software solutions may make it possible to achieve full-core Monte Carlo calculation within one hour using a desktop computer system in a few years. (author)

  8. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.

    Science.gov (United States)

    Jia, Xun; Lou, Yifei; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-04-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of approximately 360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

  9. Performance analysis of the FDTD method applied to holographic volume gratings: Multi-core CPU versus GPU computing

    Science.gov (United States)

    Francés, J.; Bleda, S.; Neipp, C.; Márquez, A.; Pascual, I.; Beléndez, A.

    2013-03-01

    The finite-difference time-domain method (FDTD) allows electromagnetic field distribution analysis as a function of time and space. The method is applied to analyze holographic volume gratings (HVGs) for the near-field distribution at optical wavelengths. Usually, this application requires the simulation of wide areas, which implies more memory and time processing. In this work, we propose a specific implementation of the FDTD method including several add-ons for a precise simulation of optical diffractive elements. Values in the near-field region are computed considering the illumination of the grating by means of a plane wave for different angles of incidence and including absorbing boundaries as well. We compare the results obtained by FDTD with those obtained using a matrix method (MM) applied to diffraction gratings. In addition, we have developed two optimized versions of the algorithm, for both CPU and GPU, in order to analyze the improvement of using the new NVIDIA Fermi GPU architecture versus highly tuned multi-core CPU as a function of the size simulation. In particular, the optimized CPU implementation takes advantage of the arithmetic and data transfer streaming SIMD (single instruction multiple data) extensions (SSE) included explicitly in the code and also of multi-threading by means of OpenMP directives. A good agreement between the results obtained using both FDTD and MM methods is obtained, thus validating our methodology. Moreover, the performance of the GPU is compared to the SSE+OpenMP CPU implementation, and it is quantitatively determined that a highly optimized CPU program can be competitive for a wider range of simulation sizes, whereas GPU computing becomes more powerful for large-scale simulations.

  10. SU-E-T-37: A GPU-Based Pencil Beam Algorithm for Dose Calculations in Proton Radiation Therapy

    International Nuclear Information System (INIS)

    Kalantzis, G; Leventouri, T; Tachibana, H; Shang, C

    2015-01-01

    Purpose: Recent developments in radiation therapy have been focused on applications of charged particles, especially protons. Over the years several dose calculation methods have been proposed in proton therapy. A common characteristic of all these methods is their extensive computational burden. In the current study we present for the first time, to our best knowledge, a GPU-based PBA for proton dose calculations in Matlab. Methods: In the current study we employed an analytical expression for the protons depth dose distribution. The central-axis term is taken from the broad-beam central-axis depth dose in water modified by an inverse square correction while the distribution of the off-axis term was considered Gaussian. The serial code was implemented in MATLAB and was launched on a desktop with a quad core Intel Xeon X5550 at 2.67GHz with 8 GB of RAM. For the parallelization on the GPU, the parallel computing toolbox was employed and the code was launched on a GTX 770 with Kepler architecture. The performance comparison was established on the speedup factors. Results: The performance of the GPU code was evaluated for three different energies: low (50 MeV), medium (100 MeV) and high (150 MeV). Four square fields were selected for each energy, and the dose calculations were performed with both the serial and parallel codes for a homogeneous water phantom with size 300×300×300 mm3. The resolution of the PBs was set to 1.0 mm. The maximum speedup of ∼127 was achieved for the highest energy and the largest field size. Conclusion: A GPU-based PB algorithm for proton dose calculations in Matlab was presented. A maximum speedup of ∼127 was achieved. Future directions of the current work include extension of our method for dose calculation in heterogeneous phantoms

  11. SU-D-BRD-03: A Gateway for GPU Computing in Cancer Radiotherapy Research

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X; Folkerts, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); Shi, F; Yan, H; Yan, Y; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States); Sivagnanam, S; Majumdar, A [University of California San Diego, La Jolla, CA (United States)

    2014-06-01

    Purpose: Graphics Processing Unit (GPU) has become increasingly important in radiotherapy. However, it is still difficult for general clinical researchers to access GPU codes developed by other researchers, and for developers to objectively benchmark their codes. Moreover, it is quite often to see repeated efforts spent on developing low-quality GPU codes. The goal of this project is to establish an infrastructure for testing GPU codes, cross comparing them, and facilitating code distributions in radiotherapy community. Methods: We developed a system called Gateway for GPU Computing in Cancer Radiotherapy Research (GCR2). A number of GPU codes developed by our group and other developers can be accessed via a web interface. To use the services, researchers first upload their test data or use the standard data provided by our system. Then they can select the GPU device on which the code will be executed. Our system offers all mainstream GPU hardware for code benchmarking purpose. After the code running is complete, the system automatically summarizes and displays the computing results. We also released a SDK to allow the developers to build their own algorithm implementation and submit their binary codes to the system. The submitted code is then systematically benchmarked using a variety of GPU hardware and representative data provided by our system. The developers can also compare their codes with others and generate benchmarking reports. Results: It is found that the developed system is fully functioning. Through a user-friendly web interface, researchers are able to test various GPU codes. Developers also benefit from this platform by comprehensively benchmarking their codes on various GPU platforms and representative clinical data sets. Conclusion: We have developed an open platform allowing the clinical researchers and developers to access the GPUs and GPU codes. This development will facilitate the utilization of GPU in radiation therapy field.

  12. A FPGA-based Network Interface Card with GPUDirect enabling realtime GPU computing in HEP experiments

    CERN Document Server

    Lonardo, Alessandro; Ammendola, Roberto; Biagioni, Andrea; Cotta Ramusino, Angelo; Fiorini, Massimiliano; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Martinelli, Michele; Neri, Ilaria; Paolucci, Pier Stanislao; Pastorelli, Elena; Pontisso, Luca; Rossetti, Davide; Simeone, Francesco; Simula, Francesco; Sozzi, Marco; Tosoratto, Laura; Vicini, Piero

    2015-01-01

    The capability of processing high bandwidth data streams in real-time is a computational requirement common to many High Energy Physics experiments. Keeping the latency of the data transport tasks under control is essential in order to meet this requirement. We present NaNet, a FPGA-based PCIe Network Interface Card design featuring Remote Direct Memory Access towards CPU and GPU memories plus a transport protocol offload module characterized by cycle-accurate upper-bound handling. The combination of these two features allows to relieve almost entirely the OS and the application from data tranfer management, minimizing the unavoidable jitter effects associated to OS process scheduling. The design currently supports one GbE (1000Base-T) and three custom 34 Gbps APElink I/O channels, but four-channels 10GbE (10Base-R) and 2.5 Gbps deterministic latency KM3link versions are being implemented. Two use cases of NaNet will be discussed: the GPU-based low level trigger for the RICH detector in the NA62 experiment an...

  13. Fully accelerating quantum Monte Carlo simulations of real materials on GPU clusters

    Science.gov (United States)

    Esler, Kenneth

    2011-03-01

    Quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting the properties of matter from fundamental principles, combining very high accuracy with extreme parallel scalability. By solving the many-body Schrödinger equation through a stochastic projection, it achieves greater accuracy than mean-field methods and better scaling with system size than quantum chemical methods, enabling scientific discovery across a broad spectrum of disciplines. In recent years, graphics processing units (GPUs) have provided a high-performance and low-cost new approach to scientific computing, and GPU-based supercomputers are now among the fastest in the world. The multiple forms of parallelism afforded by QMC algorithms make the method an ideal candidate for acceleration in the many-core paradigm. We present the results of porting the QMCPACK code to run on GPU clusters using the NVIDIA CUDA platform. Using mixed precision on GPUs and MPI for intercommunication, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core CPUs alone, while reproducing the double-precision CPU results within statistical error. We discuss the algorithm modifications necessary to achieve good performance on this heterogeneous architecture and present the results of applying our code to molecules and bulk materials. Supported by the U.S. DOE under Contract No. DOE-DE-FG05-08OR23336 and by the NSF under No. 0904572.

  14. JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure

    KAUST Repository

    Labschutz, Matthias

    2015-08-12

    Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.

  15. JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure

    KAUST Repository

    Labschutz, Matthias; Bruckner, Stefan; Groller, M. Eduard; Hadwiger, Markus; Rautek, Peter

    2015-01-01

    Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.

  16. Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2017-07-01

    Full Text Available The use of unmanned aerial vehicles (UAV can allow individual tree detection for forest inventories in a cost-effective way. The scale-space filtering (SSF algorithm is commonly used and has the capability of detecting trees of different crown sizes. In this study, we made two improvements with regard to the existing method and implementations. First, we incorporated SSF with a Lab color transformation to reduce over-detection problems associated with the original luminance image. Second, we ported four of the most time-consuming processes to the graphics processing unit (GPU to improve computational efficiency. The proposed method was implemented using PyCUDA, which enabled access to NVIDIA’s compute unified device architecture (CUDA through high-level scripting of the Python language. Our experiments were conducted using two images captured by the DJI Phantom 3 Professional and a most recent NVIDIA GPU GTX1080. The resulting accuracy was high, with an F-measure larger than 0.94. The speedup achieved by our parallel implementation was 44.77 and 28.54 for the first and second test image, respectively. For each 4000 × 3000 image, the total runtime was less than 1 s, which was sufficient for real-time performance and interactive application.

  17. Deep Classifiers-Based License Plate Detection, Localization and Recognition on GPU-Powered Mobile Platform

    Directory of Open Access Journals (Sweden)

    Syed Tahir Hussain Rizvi

    2017-10-01

    Full Text Available The realization of a deep neural architecture on a mobile platform is challenging, but can open up a number of possibilities for visual analysis applications. A neural network can be realized on a mobile platform by exploiting the computational power of the embedded GPU and simplifying the flow of a neural architecture trained on the desktop workstation or a GPU server. This paper presents an embedded platform-based Italian license plate detection and recognition system using deep neural classifiers. In this work, trained parameters of a highly precise automatic license plate recognition (ALPR system are imported and used to replicate the same neural classifiers on a Nvidia Shield K1 tablet. A CUDA-based framework is used to realize these neural networks. The flow of the trained architecture is simplified to perform the license plate recognition in real-time. Results show that the tasks of plate and character detection and localization can be performed in real-time on a mobile platform by simplifying the flow of the trained architecture. However, the accuracy of the simplified architecture would be decreased accordingly.

  18. Implementation of GPU parallel equilibrium reconstruction for plasma control in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yao, E-mail: yaohuang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science & Technology, University of Science & Technology of China (China); Luo, Z.P.; Yuan, Q.P.; Pei, X.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yue, X.N. [School of Nuclear Science & Technology, University of Science & Technology of China (China)

    2016-11-15

    Highlights: • We described parallel equilibrium reconstruction code P-EFIT running on GPU was integrated with EAST plasma control system. • Compared with RT-EFIT used in EAST, P-EFIT has better spatial resolution and full algorithm of EFIT per iteration. • With the data interface through RFM, 65 × 65 spatial grids P-EFIT can satisfy the accuracy and time feasibility requirements for plasma control. • Successful control using ISOFLUX/P-EFIT was established in the dedicated experiment during the EAST 2014 campaign. • This work is a stepping-stone towards versatile ISOFLUX/P-EFIT control, such as real-time equilibrium reconstruction with more diagnostics. - Abstract: Implementation of P-EFIT code for plasma control in EAST is described. P-EFIT is based on the EFIT framework, but built with the CUDA™ architecture to take advantage of massively parallel Graphical Processing Unit (GPU) cores to significantly accelerate the computation. 65 × 65 grid size P-EFIT can complete one reconstruction iteration in 300 μs, with one iteration strategy, it can satisfy the needs of real-time plasma shape control. Data interface between P-EFIT and PCS is realized and developed by transferring data through RFM. First application of P-EFIT to discharge control in EAST is described.

  19. JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure.

    Science.gov (United States)

    Labschütz, Matthias; Bruckner, Stefan; Gröller, M Eduard; Hadwiger, Markus; Rautek, Peter

    2016-01-01

    Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.

  20. Analytical Work in Support of the Design and Operation of Two Dimensional Self Streamlining Test Sections

    Science.gov (United States)

    Judd, M.; Wolf, S. W. D.; Goodyer, M. J.

    1976-01-01

    A method has been developed for accurately computing the imaginary flow fields outside a flexible walled test section, applicable to lifting and non-lifting models. The tolerances in the setting of the flexible walls introduce only small levels of aerodynamic interference at the model. While it is not possible to apply corrections for the interference effects, they may be reduced by improving the setting accuracy of the portions of wall immediately above and below the model. Interference effects of the truncation of the length of the streamlined portion of a test section are brought to an acceptably small level by the use of a suitably long test section with the model placed centrally.

  1. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    Science.gov (United States)

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  2. Blaze-DEMGPU: Modular high performance DEM framework for the GPU architecture

    Directory of Open Access Journals (Sweden)

    Nicolin Govender

    2016-01-01

    Full Text Available Blaze-DEMGPU is a modular GPU based discrete element method (DEM framework that supports polyhedral shaped particles. The high level performance is attributed to the light weight and Single Instruction Multiple Data (SIMD that the GPU architecture offers. Blaze-DEMGPU offers suitable algorithms to conduct DEM simulations on the GPU and these algorithms can be extended and modified. Since a large number of scientific simulations are particle based, many of the algorithms and strategies for GPU implementation present in Blaze-DEMGPU can be applied to other fields. Blaze-DEMGPU will make it easier for new researchers to use high performance GPU computing as well as stimulate wider GPU research efforts by the DEM community.

  3. Survey of using GPU CUDA programming model in medical image analysis

    Directory of Open Access Journals (Sweden)

    T. Kalaiselvi

    2017-01-01

    Full Text Available With the technology development of medical industry, processing data is expanding rapidly and computation time also increases due to many factors like 3D, 4D treatment planning, the increasing sophistication of MRI pulse sequences and the growing complexity of algorithms. Graphics processing unit (GPU addresses these problems and gives the solutions for using their features such as, high computation throughput, high memory bandwidth, support for floating-point arithmetic and low cost. Compute unified device architecture (CUDA is a popular GPU programming model introduced by NVIDIA for parallel computing. This review paper briefly discusses the need of GPU CUDA computing in the medical image analysis. The GPU performances of existing algorithms are analyzed and the computational gain is discussed. A few open issues, hardware configurations and optimization principles of existing methods are discussed. This survey concludes the few optimization techniques with the medical imaging algorithms on GPU. Finally, limitation and future scope of GPU programming are discussed.

  4. Streamlining of the Decontamination and Demolition Document Preparation Process

    International Nuclear Information System (INIS)

    Durand, Nick; Meincke, Carol; Peek, Georgianne

    1999-01-01

    During the past five years, the Sandia National Labo- ratories Decontamination, Decommissioning, Demolition, and Reuse (D3R) Program has evolved and become more focused and efficient. Historical approaches to project documentation, requirements, and drivers are discussed detailing key assumptions, oversight authority, and proj- ect approvals. Discussion of efforts to streamline the D3R project planning and preparation process include the in- corporation of the principles of graded approach, Total Quality Management, and the Observational Method (CH2MHILL April 1989).1 Process improvements were realized by clearly defining regulatory requirements for each phase of a project, establishing general guidance for the program and combining project-specific documents to eliminate redundant and unneeded information. Proc- ess improvements to cost, schedule, and quality are dis- cussed in detail for several projects

  5. The Zig-zag Instability of Streamlined Bodies

    Science.gov (United States)

    Guillet, Thibault; Coux, Martin; Quere, David; Clanet, Christophe

    2017-11-01

    When a floating bluff body, like a sphere, impacts water with a vertical velocity, its trajectory is straight and the depth of its dive increases with its initial velocity. Even though we observe the same phenomenon at low impact speed for axisymmetric streamlined bodies, the trajectory is found to deviate from the vertical when the velocity overcomes a critical value. This instability results from a competition between the destabilizing torque of the lift and the stabilizing torque of the Archimede's force. Balancing these torques yields a prediction on the critical velocity above which the instability appears. This theoretical value is found to depend on the position of the gravity center of the projectile and predicts with a full agreement the behaviour observed in our different experiments. Project funded by DGA.

  6. Streamlining air import operations by trade facilitation measures

    Directory of Open Access Journals (Sweden)

    Yuri da Cunha Ferreira

    2017-12-01

    Full Text Available Global operations are subject to considerable uncertainties. Due to the Trade Facilitation Agreement that became effective in February 2017, the study of measures to streamline customs controls is urgent. This study aims to assess the impact of trade facilitation measures on import flows. An experimental study was performed in the largest cargo airport in South America through discrete-event simulation and design of experiments. Operation impacts of three trade facilitation measures are assessed on import flow by air. We shed light in the following trade facilitation measures: the use of X-ray equipment for physical inspection; increase of the number of qualified companies in the trade facilitation program; performance targets for customs officials. All trade facilitation measures used indicated potential to provide more predictability, cost savings, time reduction, and increase in security in international supply chain.

  7. State Models to Incentivize and Streamline Small Hydropower Development

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Taylor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Levine, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, Kurt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-31

    In 2016, the hydropower fleet in the United States produced more than 6 percent (approximately 265,829 gigawatt-hours [GWh]) of the total net electricity generation. The median-size hydroelectric facility in the United States is 1.6 MW and 75 percent of total facilities have a nameplate capacity of 10 MW or less. Moreover, the U.S. Department of Energy's Hydropower Vision study identified approximately 79 GW hydroelectric potential beyond what is already developed. Much of the potential identified is at low-impact new stream-reaches, existing conduits, and non-powered dams with a median project size of 10 MW or less. To optimize the potential and value of small hydropower development, state governments are crafting policies that provide financial assistance and expedite state and federal review processes for small hydroelectric projects. This report analyzes state-led initiatives and programs that incentivize and streamline small hydroelectric development.

  8. Streamlining cardiovascular clinical trials to improve efficiency and generalisability.

    Science.gov (United States)

    Zannad, Faiez; Pfeffer, Marc A; Bhatt, Deepak L; Bonds, Denise E; Borer, Jeffrey S; Calvo-Rojas, Gonzalo; Fiore, Louis; Lund, Lars H; Madigan, David; Maggioni, Aldo Pietro; Meyers, Catherine M; Rosenberg, Yves; Simon, Tabassome; Stough, Wendy Gattis; Zalewski, Andrew; Zariffa, Nevine; Temple, Robert

    2017-08-01

    Controlled trials provide the most valid determination of the efficacy and safety of an intervention, but large cardiovascular clinical trials have become extremely costly and complex, making it difficult to study many important clinical questions. A critical question, and the main objective of this review, is how trials might be simplified while maintaining randomisation to preserve scientific integrity and unbiased efficacy assessments. Experience with alternative approaches is accumulating, specifically with registry-based randomised controlled trials that make use of data already collected. This approach addresses bias concerns while still capitalising on the benefits and efficiencies of a registry. Several completed or ongoing trials illustrate the feasibility of using registry-based controlled trials to answer important questions relevant to daily clinical practice. Randomised trials within healthcare organisation databases may also represent streamlined solutions for some types of investigations, although data quality (endpoint assessment) is likely to be a greater concern in those settings. These approaches are not without challenges, and issues pertaining to informed consent, blinding, data quality and regulatory standards remain to be fully explored. Collaboration among stakeholders is necessary to achieve standards for data management and analysis, to validate large data sources for use in randomised trials, and to re-evaluate ethical standards to encourage research while also ensuring that patients are protected. The rapidly evolving efforts to streamline cardiovascular clinical trials have the potential to lead to major advances in promoting better care and outcomes for patients with cardiovascular disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. The gputools package enables GPU computing in R.

    Science.gov (United States)

    Buckner, Joshua; Wilson, Justin; Seligman, Mark; Athey, Brian; Watson, Stanley; Meng, Fan

    2010-01-01

    By default, the R statistical environment does not make use of parallelism. Researchers may resort to expensive solutions such as cluster hardware for large analysis tasks. Graphics processing units (GPUs) provide an inexpensive and computationally powerful alternative. Using R and the CUDA toolkit from Nvidia, we have implemented several functions commonly used in microarray gene expression analysis for GPU-equipped computers. R users can take advantage of the better performance provided by an Nvidia GPU. The package is available from CRAN, the R project's repository of packages, at http://cran.r-project.org/web/packages/gputools More information about our gputools R package is available at http://brainarray.mbni.med.umich.edu/brainarray/Rgpgpu

  10. GPU-accelerated simulations of isolated black holes

    Science.gov (United States)

    Lewis, Adam G. M.; Pfeiffer, Harald P.

    2018-05-01

    We present a port of the numerical relativity code SpEC which is capable of running on NVIDIA GPUs. Since this code must be maintained in parallel with SpEC itself, a primary design consideration is to perform as few explicit code changes as possible. We therefore rely on a hierarchy of automated porting strategies. At the highest level we use TLoops, a C++ library of our design, to automatically emit CUDA code equivalent to tensorial expressions written into C++ source using a syntax similar to analytic calculation. Next, we trace out and cache explicit matrix representations of the numerous linear transformations in the SpEC code, which allows these to be performed on the GPU using pre-existing matrix-multiplication libraries. We port the few remaining important modules by hand. In this paper we detail the specifics of our port, and present benchmarks of it simulating isolated black hole spacetimes on several generations of NVIDIA GPU.

  11. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  12. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    Directory of Open Access Journals (Sweden)

    Changsheng Zhu

    2018-03-01

    Full Text Available In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  13. GPU based Monte Carlo for PET image reconstruction: detector modeling

    International Nuclear Information System (INIS)

    Légrády; Cserkaszky, Á; Lantos, J.; Patay, G.; Bükki, T.

    2011-01-01

    Monte Carlo (MC) calculations and Graphical Processing Units (GPUs) are almost like the dedicated hardware designed for the specific task given the similarities between visible light transport and neutral particle trajectories. A GPU based MC gamma transport code has been developed for Positron Emission Tomography iterative image reconstruction calculating the projection from unknowns to data at each iteration step taking into account the full physics of the system. This paper describes the simplified scintillation detector modeling and its effect on convergence. (author)

  14. Proton Testing of nVidia GTX 1050 GPU

    Science.gov (United States)

    Wyrwas, E. J.

    2017-01-01

    Single-Event Effects (SEE) testing was conducted on the nVidia GTX 1050 Graphics Processor Unit (GPU); herein referred to as device under test (DUT). Testing was conducted at Massachusetts General Hospitals (MGH) Francis H. Burr Proton Therapy Center on April 9th, 2017 using 200-MeV protons. This testing trip was purposed to provide a baseline assessment of the radiation susceptibility of the DUT as no previous testing had been conducted on this component.

  15. Engineering a static verification tool for GPU kernels

    OpenAIRE

    Bardsley, E; Betts, A; Chong, N; Collingbourne, P; Deligiannis, P; Donaldson, AF; Ketema, J; Liew, D; Qadeer, S

    2014-01-01

    We report on practical experiences over the last 2.5 years related to the engineering of GPUVerify, a static verification tool for OpenCL and CUDA GPU kernels, plotting the progress of GPUVerify from a prototype to a fully functional and relatively efficient analysis tool. Our hope is that this experience report will serve the verification community by helping to inform future tooling efforts. ? 2014 Springer International Publishing.

  16. Basket Option Pricing Using GP-GPU Hardware Acceleration

    KAUST Repository

    Douglas, Craig C.

    2010-08-01

    We introduce a basket option pricing problem arisen in financial mathematics. We discretized the problem based on the alternating direction implicit (ADI) method and parallel cyclic reduction is applied to solve the set of tridiagonal matrices generated by the ADI method. To reduce the computational time of the problem, a general purpose graphics processing units (GP-GPU) environment is considered. Numerical results confirm the convergence and efficiency of the proposed method. © 2010 IEEE.

  17. A GPU Accelerated Spring Mass System for Surgical Simulation

    DEFF Research Database (Denmark)

    Mosegaard, Jesper; Sørensen, Thomas Sangild

    2005-01-01

    There is a growing demand for surgical simulators to dofast and precise calculations of tissue deformation to simulateincreasingly complex morphology in real-time. Unfortunately, evenfast spring-mass based systems have slow convergence rates for largemodels. This paper presents a method to accele...... to accelerate computation of aspring-mass system in order to simulate a complex organ such as theheart. This acceleration is achieved by taking advantage of moderngraphics processing units (GPU)....

  18. Avaliação de desempenho e consumo energético para configurações de Wavefront pools de uma GPU AMD

    Directory of Open Access Journals (Sweden)

    Ariel Gustavo Zuquello

    2016-07-01

    Full Text Available O uso de sistemas heterogêneos CPU-GPU para atender à crescente demanda por aplicações com grande paralelismo de dados resulta na necessidade de estudar e avaliar tais arquiteturas para melhorá-las continuamente. Neste artigo foram feitas simulações da execução de uma suíte de benchmark em uma GPU AMD ATI RadeonTM HD 7970, de modo a avaliar o impacto sobre o desempenho e o consumo energético quando alterado o número de Wavefront Pools presentes em cada compute unit da GPU, que é 4 por padrão. O resultado mais significante evidencia um aumento de velocidade de cerca de 5,7% para a configuração com duas Wavefront Pools em conjunto com um aumento no consumo de energia de cerca de 5,1%. Todavia, as outras configurações avaliadas também representam opções para diferentes tipos de necessidades, conforme a categoria de demanda computacional.Palavras-chave: Sistemas heterogêneos. Simulações. Desempenho.Performance evaluation and energy consumption for settings of Wavefront pools of a GPU AMDAbstractThe use of CPU-GPU heterogeneous systems to meet the growing demand for applications with large data parallelism results in the need to study and evaluate these architectures in order to improve them continuously. In this paper we made simulations of running a benchmark suite on an AMD GPU ATI RadeonTM HD 7970 in order to assess the impact on performance and power consumption when tuning the number of Wavefront Pools present in each GPU compute unit, which is 4 by default. The most significant result shows a speedup of about 5.7% for configuration with two Wavefront Pools in conjunction with an increase of about 5.1% in the energy consumption. However, the other evaluated configuration also represent options for different kinds of needs, according to   the  computational demand.Keyworks: Heterogeneous systems. Simulation. Performance.

  19. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)

    Science.gov (United States)

    Alvanos, Michail; Christoudias, Theodoros

    2017-10-01

    This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  20. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC Earth system model (version 2.52

    Directory of Open Access Journals (Sweden)

    M. Alvanos

    2017-10-01

    Full Text Available This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate–chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC, used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 ×  and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 ×  speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  1. THEWASP library. Thermodynamic water and steam properties library in GPU

    International Nuclear Information System (INIS)

    Waintraub, M.; Lapa, C.M.F.; Mol, A.C.A.; Heimlich, A.

    2011-01-01

    In this paper we present a new library for thermodynamic evaluation of water properties, THEWASP. This library consists of a C++ and CUDA based programs used to accelerate a function evaluation using GPU and GPU clusters. Global optimization problems need thousands of evaluations of the objective functions to nd the global optimum implying in several days of expensive processing. This problem motivates to seek a way to speed up our code, as well as to use MPI on Beowulf clusters, which however increases the cost in terms of electricity, air conditioning and others. The GPU based programming can accelerate the implementation up to 100 times and help increase the number of evaluations in global optimization problems using, for example, the PSO or DE Algorithms. THEWASP is based on Water-Steam formulations publish by the International Association for the properties of water and steam, Lucerne - Switzerland, and provides several temperature and pressure function evaluations, such as specific heat, specific enthalpy, specific entropy and also some inverse maps. In this study we evaluated the gain in speed and performance and compared it a CPU based processing library. (author)

  2. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  3. Study on GPU Computing for SCOPE2 with CUDA

    International Nuclear Information System (INIS)

    Kodama, Yasuhiro; Tatsumi, Masahiro; Ohoka, Yasunori

    2011-01-01

    For improving safety and cost effectiveness of nuclear power plants, a core calculation code SCOPE2 has been developed, which adopts detailed calculation models such as the multi-group nodal SP3 transport calculation method in three-dimensional pin-by-pin geometry to achieve high predictability. However, it is difficult to apply the code to loading pattern optimizations since it requires much longer computation time than that of codes based on the nodal diffusion method which is widely used in core design calculations. In this study, we studied possibility of acceleration of SCOPE2 with GPU computing capability which has been recognized as one of the most promising direction of high performance computing. In the previous study with an experimental programming framework, it required much effort to convert the algorithms to ones which fit to GPU computation. It was found, however, that this conversion was tremendously difficult because of the complexity of algorithms and restrictions in implementation. In this study, to overcome this complexity, we utilized the CUDA programming environment provided by NVIDIA which is a versatile and flexible language as an extension to the C/C++ languages. It was confirmed that we could enjoy high performance without degradation of maintainability through test implementation of GPU kernels for neutron diffusion/simplified P3 equation solvers. (author)

  4. Multicore and GPU algorithms for Nussinov RNA folding

    Science.gov (United States)

    2014-01-01

    Background One segment of a RNA sequence might be paired with another segment of the same RNA sequence due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence's secondary structure. Several algorithms have been proposed to predict an RNA sequence's secondary structure. These algorithms are referred to as RNA folding algorithms. Results We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov's algorithm. Conclusions Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive straightforward single core code. The multicore version of the cache efficient single core algorithm provides a speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between 5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding. PMID:25082539

  5. GPU acceleration of Dock6's Amber scoring computation.

    Science.gov (United States)

    Yang, Hailong; Zhou, Qiongqiong; Li, Bo; Wang, Yongjian; Luan, Zhongzhi; Qian, Depei; Li, Hanlu

    2010-01-01

    Dressing the problem of virtual screening is a long-term goal in the drug discovery field, which if properly solved, can significantly shorten new drugs' R&D cycle. The scoring functionality that evaluates the fitness of the docking result is one of the major challenges in virtual screening. In general, scoring functionality in docking requires a large amount of floating-point calculations, which usually takes several weeks or even months to be finished. This time-consuming procedure is unacceptable, especially when highly fatal and infectious virus arises such as SARS and H1N1, which forces the scoring task to be done in a limited time. This paper presents how to leverage the computational power of GPU to accelerate Dock6's (http://dock.compbio.ucsf.edu/DOCK_6/) Amber (J. Comput. Chem. 25: 1157-1174, 2004) scoring with NVIDIA CUDA (NVIDIA Corporation Technical Staff, Compute Unified Device Architecture - Programming Guide, NVIDIA Corporation, 2008) (Compute Unified Device Architecture) platform. We also discuss many factors that will greatly influence the performance after porting the Amber scoring to GPU, including thread management, data transfer, and divergence hidden. Our experiments show that the GPU-accelerated Amber scoring achieves a 6.5× speedup with respect to the original version running on AMD dual-core CPU for the same problem size. This acceleration makes the Amber scoring more competitive and efficient for large-scale virtual screening problems.

  6. A Kepler Workflow Tool for Reproducible AMBER GPU Molecular Dynamics.

    Science.gov (United States)

    Purawat, Shweta; Ieong, Pek U; Malmstrom, Robert D; Chan, Garrett J; Yeung, Alan K; Walker, Ross C; Altintas, Ilkay; Amaro, Rommie E

    2017-06-20

    With the drive toward high throughput molecular dynamics (MD) simulations involving ever-greater numbers of simulation replicates run for longer, biologically relevant timescales (microseconds), the need for improved computational methods that facilitate fully automated MD workflows gains more importance. Here we report the development of an automated workflow tool to perform AMBER GPU MD simulations. Our workflow tool capitalizes on the capabilities of the Kepler platform to deliver a flexible, intuitive, and user-friendly environment and the AMBER GPU code for a robust and high-performance simulation engine. Additionally, the workflow tool reduces user input time by automating repetitive processes and facilitates access to GPU clusters, whose high-performance processing power makes simulations of large numerical scale possible. The presented workflow tool facilitates the management and deployment of large sets of MD simulations on heterogeneous computing resources. The workflow tool also performs systematic analysis on the simulation outputs and enhances simulation reproducibility, execution scalability, and MD method development including benchmarking and validation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Proceedings of the GPU computing in high-energy physics conference 2014 GPUHEP2014

    International Nuclear Information System (INIS)

    Bonati, Claudio; D'Elia, Massimo; Lamanna, Gianluca; Sozzi, Marco

    2015-06-01

    The International Conference on GPUs in High-Energy Physics was held from September 10 to 12, 2014 at the University of Pisa, Italy. It represented a larger scale follow-up to a set of workshops which indicated the rising interest of the HEP community, experimentalists and theorists alike, towards the use of inexpensive and massively parallel computing devices, for very diverse purposes. The conference was organized in plenary sessions of invited and contributed talks, and poster presentations on the following topics: - GPUs in triggering applications - Low-level trigger systems based on GPUs - Use of GPUs in high-level trigger systems - GPUs in tracking and vertexing - Challenges for triggers in future HEP experiments - Reconstruction and Monte Carlo software on GPUs - Software frameworks and tools for GPU code integration - Hard real-time use of GPUs - Lattice QCD simulation - GPUs in phenomenology - GPUs for medical imaging purposes - GPUs in neutron and photon science - Massively parallel computations in HEP - Code parallelization. ''GPU computing in High-Energy Physics'' attracted 78 registrants to Pisa. The 38 oral presentations included talks on specific topics in experimental and theoretical applications of GPUs, as well as review talks on applications and technology. 5 posters were also presented, and were introduced by a short plenary oral illustration. A company exhibition was hosted on site. The conference consisted of 12 plenary sessions, together with a social program which included a banquet and guided excursions around Pisa. It was overall an enjoyable experience, offering an opportunity to share ideas and opinions, and getting updated on other participants' work in this emerging field, as well as being a valuable introduction for newcomers interested to learn more about the use of GPUs as accelerators for scientific progress on the elementary constituents of matter and energy.

  8. Proceedings of the GPU computing in high-energy physics conference 2014 GPUHEP2014

    Energy Technology Data Exchange (ETDEWEB)

    Bonati, Claudio; D' Elia, Massimo; Lamanna, Gianluca; Sozzi, Marco (eds.)

    2015-06-15

    The International Conference on GPUs in High-Energy Physics was held from September 10 to 12, 2014 at the University of Pisa, Italy. It represented a larger scale follow-up to a set of workshops which indicated the rising interest of the HEP community, experimentalists and theorists alike, towards the use of inexpensive and massively parallel computing devices, for very diverse purposes. The conference was organized in plenary sessions of invited and contributed talks, and poster presentations on the following topics: - GPUs in triggering applications - Low-level trigger systems based on GPUs - Use of GPUs in high-level trigger systems - GPUs in tracking and vertexing - Challenges for triggers in future HEP experiments - Reconstruction and Monte Carlo software on GPUs - Software frameworks and tools for GPU code integration - Hard real-time use of GPUs - Lattice QCD simulation - GPUs in phenomenology - GPUs for medical imaging purposes - GPUs in neutron and photon science - Massively parallel computations in HEP - Code parallelization. ''GPU computing in High-Energy Physics'' attracted 78 registrants to Pisa. The 38 oral presentations included talks on specific topics in experimental and theoretical applications of GPUs, as well as review talks on applications and technology. 5 posters were also presented, and were introduced by a short plenary oral illustration. A company exhibition was hosted on site. The conference consisted of 12 plenary sessions, together with a social program which included a banquet and guided excursions around Pisa. It was overall an enjoyable experience, offering an opportunity to share ideas and opinions, and getting updated on other participants' work in this emerging field, as well as being a valuable introduction for newcomers interested to learn more about the use of GPUs as accelerators for scientific progress on the elementary constituents of matter and energy.

  9. Streamlined islands and the English Channel megaflood hypothesis

    Science.gov (United States)

    Collier, J. S.; Oggioni, F.; Gupta, S.; García-Moreno, D.; Trentesaux, A.; De Batist, M.

    2015-12-01

    Recognising ice-age catastrophic megafloods is important because they had significant impact on large-scale drainage evolution and patterns of water and sediment movement to the oceans, and likely induced very rapid, short-term effects on climate. It has been previously proposed that a drainage system on the floor of the English Channel was initiated by catastrophic flooding in the Pleistocene but this suggestion has remained controversial. Here we examine this hypothesis through an analysis of key landform features. We use a new compilation of multi- and single-beam bathymetry together with sub-bottom profiler data to establish the internal structure, planform geometry and hence origin of a set of 36 mid-channel islands. Whilst there is evidence of modern-day surficial sediment processes, the majority of the islands can be clearly demonstrated to be formed of bedrock, and are hence erosional remnants rather than depositional features. The islands display classic lemniscate or tear-drop outlines, with elongated tips pointing downstream, typical of streamlined islands formed during high-magnitude water flow. The length-to-width ratio for the entire island population is 3.4 ± 1.3 and the degree-of-elongation or k-value is 3.7 ± 1.4. These values are comparable to streamlined islands in other proven Pleistocene catastrophic flood terrains and are distinctly different to values found in modern-day rivers. The island geometries show a correlation with bedrock type: with those carved from Upper Cretaceous chalk having larger length-to-width ratios (3.2 ± 1.3) than those carved into more mixed Paleogene terrigenous sandstones, siltstones and mudstones (3.0 ± 1.5). We attribute these differences to the former rock unit having a lower skin friction which allowed longer island growth to achieve minimum drag. The Paleogene islands, although less numerous than the Chalk islands, also assume more perfect lemniscate shapes. These lithologies therefore reached island

  10. Characterization of photomultiplier tubes with a realistic model through GPU-boosted simulation

    Science.gov (United States)

    Anthony, M.; Aprile, E.; Grandi, L.; Lin, Q.; Saldanha, R.

    2018-02-01

    The accurate characterization of a photomultiplier tube (PMT) is crucial in a wide-variety of applications. However, current methods do not give fully accurate representations of the response of a PMT, especially at very low light levels. In this work, we present a new and more realistic model of the response of a PMT, called the cascade model, and use it to characterize two different PMTs at various voltages and light levels. The cascade model is shown to outperform the more common Gaussian model in almost all circumstances and to agree well with a newly introduced model independent approach. The technical and computational challenges of this model are also presented along with the employed solution of developing a robust GPU-based analysis framework for this and other non-analytical models.

  11. Gpufit: An open-source toolkit for GPU-accelerated curve fitting.

    Science.gov (United States)

    Przybylski, Adrian; Thiel, Björn; Keller-Findeisen, Jan; Stock, Bernd; Bates, Mark

    2017-11-16

    We present a general purpose, open-source software library for estimation of non-linear parameters by the Levenberg-Marquardt algorithm. The software, Gpufit, runs on a Graphics Processing Unit (GPU) and executes computations in parallel, resulting in a significant gain in performance. We measured a speed increase of up to 42 times when comparing Gpufit with an identical CPU-based algorithm, with no loss of precision or accuracy. Gpufit is designed such that it is easily incorporated into existing applications or adapted for new ones. Multiple software interfaces, including to C, Python, and Matlab, ensure that Gpufit is accessible from most programming environments. The full source code is published as an open source software repository, making its function transparent to the user and facilitating future improvements and extensions. As a demonstration, we used Gpufit to accelerate an existing scientific image analysis package, yielding significantly improved processing times for super-resolution fluorescence microscopy datasets.

  12. An Efficient GPU General Sparse Matrix-Matrix Multiplication for Irregular Data

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2014-01-01

    General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method, breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM algorithm has to handle extra...... irregularity from three aspects: (1) the number of the nonzero entries in the result sparse matrix is unknown in advance, (2) very expensive parallel insert operations at random positions in the result sparse matrix dominate the execution time, and (3) load balancing must account for sparse data in both input....... Load balancing builds on the number of the necessary arithmetic operations on the nonzero entries and is guaranteed in all stages. Compared with the state-of-the-art GPU SpGEMM methods in the CUSPARSE library and the CUSP library and the latest CPU SpGEMM method in the Intel Math Kernel Library, our...

  13. GPU-accelerated few-view CT reconstruction using the OSC and TV techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri [Montreal Univ., QC (Canada). Dept. de Physique; Hissoiny, Sami [Ecole Polytechnique de Montreal, QC (Canada). Dept. de Genie Informatique et Genie Logiciel; Despres, Philippe [Centre Hospitalier Univ. de Quebec, QC (Canada). Dept. de Radio-Oncologie

    2011-07-01

    The present work proposes a promising iterative reconstruction technique designed specifically for X-ray transmission computed tomography (CT). The main objective is to reduce diagnostic radiation dose through the reduction of the number of CT projections, while preserving image quality. The second objective is to provide a fast implementation compatible with clinical activities. The proposed tomographic reconstruction technique is a combination of the Ordered Subsets Convex (OSC) algorithm and the Total Variation minimization (TV) regularization technique. The results in terms of image quality and computational speed are discussed. Using this technique, it was possible to obtain reconstructed slices of relatively good quality with as few as 100 projections, leading to potential dose reduction factors of up to an order of magnitude depending on the application. The algorithm was implemented on a Graphical Processing Unit (GPU) and yielded reconstruction times of approximately 185 ms per slice. (orig.)

  14. Parallelizing the QUDA Library for Multi-GPU Calculations in Lattice Quantum Chromodynamics

    International Nuclear Information System (INIS)

    Babich, Ronald; Clark, Michael; Joo, Balint

    2010-01-01

    Graphics Processing Units (GPUs) are having a transformational effect on numerical lattice quantum chromodynamics (LQCD) calculations of importance in nuclear and particle physics. The QUDA library provides a package of mixed precision sparse matrix linear solvers for LQCD applications, supporting single GPUs based on NVIDIA's Compute Unified Device Architecture (CUDA). This library, interfaced to the QDP++/Chroma framework for LQCD calculations, is currently in production use on the '9g' cluster at the Jefferson Laboratory, enabling unprecedented price/performance for a range of problems in LQCD. Nevertheless, memory constraints on current GPU devices limit the problem sizes that can be tackled. In this contribution we describe the parallelization of the QUDA library onto multiple GPUs using MPI, including strategies for the overlapping of communication and computation. We report on both weak and strong scaling for up to 32 GPUs interconnected by InfiniBand, on which we sustain in excess of 4 Tflops.

  15. Parallelizing the QUDA Library for Multi-GPU Calculations in Lattice Quantum Chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Babich, Michael Clark, Balint Joo

    2010-11-01

    Graphics Processing Units (GPUs) are having a transformational effect on numerical lattice quantum chromodynamics (LQCD) calculations of importance in nuclear and particle physics. The QUDA library provides a package of mixed precision sparse matrix linear solvers for LQCD applications, supporting single GPUs based on NVIDIA's Compute Unified Device Architecture (CUDA). This library, interfaced to the QDP++/Chroma framework for LQCD calculations, is currently in production use on the "9g" cluster at the Jefferson Laboratory, enabling unprecedented price/performance for a range of problems in LQCD. Nevertheless, memory constraints on current GPU devices limit the problem sizes that can be tackled. In this contribution we describe the parallelization of the QUDA library onto multiple GPUs using MPI, including strategies for the overlapping of communication and computation. We report on both weak and strong scaling for up to 32 GPUs interconnected by InfiniBand, on which we sustain in excess of 4 Tflops.

  16. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    Energy Technology Data Exchange (ETDEWEB)

    Aissa, Mohamed Hasanine; Verstraete, Tom [Von Karman Institute for Fluid Dynamics (VKI) 1640 Sint-Genesius-Rode (Belgium); Vuik, Cornelis [Delft University of Technology 2628 CD Delft (Netherlands)

    2016-06-08

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  17. A GPU-based solution for fast calculation of the betweenness centrality in large weighted networks

    Directory of Open Access Journals (Sweden)

    Rui Fan

    2017-12-01

    Full Text Available Betweenness, a widely employed centrality measure in network science, is a decent proxy for investigating network loads and rankings. However, its extremely high computational cost greatly hinders its applicability in large networks. Although several parallel algorithms have been presented to reduce its calculation cost for unweighted networks, a fast solution for weighted networks, which are commonly encountered in many realistic applications, is still lacking. In this study, we develop an efficient parallel GPU-based approach to boost the calculation of the betweenness centrality (BC for large weighted networks. We parallelize the traditional Dijkstra algorithm by selecting more than one frontier vertex each time and then inspecting the frontier vertices simultaneously. By combining the parallel SSSP algorithm with the parallel BC framework, our GPU-based betweenness algorithm achieves much better performance than its CPU counterparts. Moreover, to further improve performance, we integrate the work-efficient strategy, and to address the load-imbalance problem, we introduce a warp-centric technique, which assigns many threads rather than one to a single frontier vertex. Experiments on both realistic and synthetic networks demonstrate the efficiency of our solution, which achieves 2.9× to 8.44× speedups over the parallel CPU implementation. Our algorithm is open-source and free to the community; it is publicly available through https://dx.doi.org/10.6084/m9.figshare.4542405. Considering the pervasive deployment and declining price of GPUs in personal computers and servers, our solution will offer unprecedented opportunities for exploring betweenness-related problems and will motivate follow-up efforts in network science.

  18. Resolution of the Vlasov-Maxwell system by PIC discontinuous Galerkin method on GPU with OpenCL

    Directory of Open Access Journals (Sweden)

    Crestetto Anaïs

    2013-01-01

    Full Text Available We present an implementation of a Vlasov-Maxwell solver for multicore processors. The Vlasov equation describes the evolution of charged particles in an electromagnetic field, solution of the Maxwell equations. The Vlasov equation is solved by a Particle-In-Cell method (PIC, while the Maxwell system is computed by a Discontinuous Galerkin method. We use the OpenCL framework, which allows our code to run on multicore processors or recent Graphic Processing Units (GPU. We present several numerical applications to two-dimensional test cases.

  19. Streamlining the Design-to-Build Transition with Build-Optimization Software Tools.

    Science.gov (United States)

    Oberortner, Ernst; Cheng, Jan-Fang; Hillson, Nathan J; Deutsch, Samuel

    2017-03-17

    Scaling-up capabilities for the design, build, and test of synthetic biology constructs holds great promise for the development of new applications in fuels, chemical production, or cellular-behavior engineering. Construct design is an essential component in this process; however, not every designed DNA sequence can be readily manufactured, even using state-of-the-art DNA synthesis methods. Current biological computer-aided design and manufacture tools (bioCAD/CAM) do not adequately consider the limitations of DNA synthesis technologies when generating their outputs. Designed sequences that violate DNA synthesis constraints may require substantial sequence redesign or lead to price-premiums and temporal delays, which adversely impact the efficiency of the DNA manufacturing process. We have developed a suite of build-optimization software tools (BOOST) to streamline the design-build transition in synthetic biology engineering workflows. BOOST incorporates knowledge of DNA synthesis success determinants into the design process to output ready-to-build sequences, preempting the need for sequence redesign. The BOOST web application is available at https://boost.jgi.doe.gov and its Application Program Interfaces (API) enable integration into automated, customized DNA design processes. The herein presented results highlight the effectiveness of BOOST in reducing DNA synthesis costs and timelines.

  20. Validation of the GPU-Accelerated CFD Solver ELBE for Free Surface Flow Problems in Civil and Environmental Engineering

    Directory of Open Access Journals (Sweden)

    Christian F. Janßen

    2015-07-01

    Full Text Available This contribution is dedicated to demonstrating the high potential and manifold applications of state-of-the-art computational fluid dynamics (CFD tools for free-surface flows in civil and environmental engineering. All simulations were performed with the academic research code ELBE (efficient lattice boltzmann environment, http://www.tuhh.de/elbe. The ELBE code follows the supercomputing-on-the-desktop paradigm and is especially designed for local supercomputing, without tedious accesses to supercomputers. ELBE uses graphics processing units (GPU to accelerate the computations and can be used in a single GPU-equipped workstation of, e.g., a design engineer. The code has been successfully validated in very different fields, mostly related to naval architecture and mechanical engineering. In this contribution, we give an overview of past and present applications with practical relevance for civil engineers. The presented applications are grouped into three major categories: (i tsunami simulations, considering wave propagation, wave runup, inundation and debris flows; (ii dam break simulations; and (iii numerical wave tanks for the calculation of hydrodynamic loads on fixed and moving bodies. This broad range of applications in combination with accurate numerical results and very competitive times to solution demonstrates that modern CFD tools in general, and the ELBE code in particular, can be a helpful design tool for civil and environmental engineers.

  1. Streamlining Collaboration for the Gravitational-wave Astronomy Community

    Science.gov (United States)

    Koranda, S.

    2016-12-01

    In the morning hours of September 14, 2015 the LaserInterferometer Gravitational-wave Observatory (LIGO) directlydetected gravitational waves from inspiraling and coalescingblack holes, confirming a major prediction of AlbertEinstein's general theory of relativity and beginning the eraof gravitational-wave astronomy. With the LIGO detectors in the United States, the Virgo andGEO detectors in Europe, and the KAGRA detector in Japan thegravitational-wave astrononmy community is opening a newwindow on our Universe. Realizing the full science potentialof LIGO and the other interferometers requires globalcollaboration not only within the gravitational-wave astronomycommunity but also with the astronomers and astrophysicists acrossmultipe disciplines working to realize and leverage the powerof multi-messenger astronomy. Enabling thousands of researchers from around the world andacross multiple projects to efficiently collaborate, share,and analyze data and provide streamlined access to services,computing, and tools requires new and scalable approaches toidentity and access management (IAM). We will discuss LIGO'sIAM journey that began in 2007 and how today LIGO leveragesinternal identity federations like InCommon and eduGAIN toprovide scalable and managed access for the gravitational-waveastronomy community. We will discuss the steps both largeand small research organizations and projects take as theirIAM infrastructure matures from ad-hoc silos of independent services to fully integrated and federated services thatstreamline collaboration so that scientists can focus onresearch and not managing passwords.

  2. Damage Detection with Streamlined Structural Health Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-04-01

    Full Text Available The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM systems often overwhelms the systems’ capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compression, interactive sensor data retrieval, and structural knowledge discovery, which aim to enhance the reliability, efficiency, and robustness of on-line SHM systems. Adoption of this new concept will enable the design of an on-line SHM system with more uniform data generation and data handling capacity for its subsystems. To examine this concept in the context of vibration-based SHM systems, real sensor data from an on-line SHM system comprising a scaled steel bridge structure and an on-line data acquisition system with remote data access was used in this study. Vibration test results clearly demonstrated the prominent performance characteristics of the proposed integrated SHM system including rapid data access, interactive data retrieval and knowledge discovery of structural conditions on a global level.

  3. Damage detection with streamlined structural health monitoring data.

    Science.gov (United States)

    Li, Jian; Deng, Jun; Xie, Weizhi

    2015-04-15

    The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems' capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compression, interactive sensor data retrieval, and structural knowledge discovery, which aim to enhance the reliability, efficiency, and robustness of on-line SHM systems. Adoption of this new concept will enable the design of an on-line SHM system with more uniform data generation and data handling capacity for its subsystems. To examine this concept in the context of vibration-based SHM systems, real sensor data from an on-line SHM system comprising a scaled steel bridge structure and an on-line data acquisition system with remote data access was used in this study. Vibration test results clearly demonstrated the prominent performance characteristics of the proposed integrated SHM system including rapid data access, interactive data retrieval and knowledge discovery of structural conditions on a global level.

  4. Lessons learned in streamlining the preparation of SNM standard solutions

    International Nuclear Information System (INIS)

    Clark, J.P.; Johnson, S.R.

    1986-01-01

    Improved safeguard measurements have produced a demand for greater quantities of reliable SNM solution standards. At the Savannah River Plant (SRP), the demand for these standards has been met by several innovations to improve the productivity and reliability of standards preparations. With the use of computer controlled balance, large batches of SNM stock solutions are prepared on a gravimetric basis. Accurately dispensed quantities of the stock solution are weighed and stored in bottles. When needed, they are quantitatively transferred to tared containers, matrix adjusted to target concentrations, weighed, and measured for density at 25 0 C. Concentrations of SNM are calculated both gravimetrically and volumetrically. Calculated values are confirmed analytically before the standards are used in measurement control program (MCP) activities. The lessons learned include: MCP goals include error identification and management. Strategy modifications are required to improve error management. Administrative controls can minimize certain types of errors. Automation can eliminate redundancy and streamline preparations. Prudence and simplicity enhance automation success. The effort expended to increase productivity has increased the reliability of standards and provided better documentation for quality assurance

  5. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria.

    Science.gov (United States)

    Neuenschwander, Stefan M; Ghai, Rohit; Pernthaler, Jakob; Salcher, Michaela M

    2018-01-01

    Actinobacteria of the acI lineage are the most abundant microbes in freshwater systems, but there are so far no pure living cultures of these organisms, possibly because of metabolic dependencies on other microbes. This, in turn, has hampered an in-depth assessment of the genomic basis for their success in the environment. Here we present genomes from 16 axenic cultures of acI Actinobacteria. The isolates were not only of minute cell size, but also among the most streamlined free-living microbes, with extremely small genome sizes (1.2-1.4 Mbp) and low genomic GC content. Genome reduction in these bacteria might have led to auxotrophy for various vitamins, amino acids and reduced sulphur sources, thus creating dependencies to co-occurring organisms (the 'Black Queen' hypothesis). Genome analyses, moreover, revealed a surprising degree of inter- and intraspecific diversity in metabolic pathways, especially of carbohydrate transport and metabolism, and mainly encoded in genomic islands. The striking genotype microdiversification of acI Actinobacteria might explain their global success in highly dynamic freshwater environments with complex seasonal patterns of allochthonous and autochthonous carbon sources. We propose a new order within Actinobacteria ('Candidatus Nanopelagicales') with two new genera ('Candidatus Nanopelagicus' and 'Candidatus Planktophila') and nine new species.

  6. A streamlined artificial variable free version of simplex method.

    Directory of Open Access Journals (Sweden)

    Syed Inayatullah

    Full Text Available This paper proposes a streamlined form of simplex method which provides some great benefits over traditional simplex method. For instance, it does not need any kind of artificial variables or artificial constraints; it could start with any feasible or infeasible basis of an LP. This method follows the same pivoting sequence as of simplex phase 1 without showing any explicit description of artificial variables which also makes it space efficient. Later in this paper, a dual version of the new method has also been presented which provides a way to easily implement the phase 1 of traditional dual simplex method. For a problem having an initial basis which is both primal and dual infeasible, our methods provide full freedom to the user, that whether to start with primal artificial free version or dual artificial free version without making any reformulation to the LP structure. Last but not the least, it provides a teaching aid for the teachers who want to teach feasibility achievement as a separate topic before teaching optimality achievement.

  7. A streamlined artificial variable free version of simplex method.

    Science.gov (United States)

    Inayatullah, Syed; Touheed, Nasir; Imtiaz, Muhammad

    2015-01-01

    This paper proposes a streamlined form of simplex method which provides some great benefits over traditional simplex method. For instance, it does not need any kind of artificial variables or artificial constraints; it could start with any feasible or infeasible basis of an LP. This method follows the same pivoting sequence as of simplex phase 1 without showing any explicit description of artificial variables which also makes it space efficient. Later in this paper, a dual version of the new method has also been presented which provides a way to easily implement the phase 1 of traditional dual simplex method. For a problem having an initial basis which is both primal and dual infeasible, our methods provide full freedom to the user, that whether to start with primal artificial free version or dual artificial free version without making any reformulation to the LP structure. Last but not the least, it provides a teaching aid for the teachers who want to teach feasibility achievement as a separate topic before teaching optimality achievement.

  8. System matrix computation vs storage on GPU: A comparative study in cone beam CT.

    Science.gov (United States)

    Matenine, Dmitri; Côté, Geoffroi; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2018-02-01

    Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersection distances between the trajectories of photons and the object, also called ray tracing or system matrix computation. This work focused on the thin-ray model is aimed at comparing different system matrix handling strategies using graphical processing units (GPUs). In this work, the system matrix is modeled by thin rays intersecting a regular grid of box-shaped voxels, known to be an accurate representation of the forward projection operator in CT. However, an uncompressed system matrix exceeds the random access memory (RAM) capacities of typical computers by one order of magnitude or more. Considering the RAM limitations of GPU hardware, several system matrix handling methods were compared: full storage of a compressed system matrix, on-the-fly computation of its coefficients, and partial storage of the system matrix with partial on-the-fly computation. These methods were tested on geometries mimicking a cone beam CT (CBCT) acquisition of a human head. Execution times of three routines of interest were compared: forward projection, backprojection, and ordered-subsets convex (OSC) iteration. A fully stored system matrix yielded the shortest backprojection and OSC iteration times, with a 1.52× acceleration for OSC when compared to the on-the-fly approach. Nevertheless, the maximum problem size was bound by the available GPU RAM and geometrical symmetries. On-the-fly coefficient computation did not require symmetries and was shown to be the fastest for forward projection. It also offered reasonable execution times of about 176.4 ms per view per OSC iteration for a detector of 512 × 448 pixels and a volume of 384 3 voxels, using commodity GPU hardware. Partial system matrix storage has shown a performance similar to the on-the-fly approach, while still relying on symmetries. Partial system matrix storage was shown to yield the lowest relative

  9. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.

    Science.gov (United States)

    Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G

    2014-12-01

    Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and

  10. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jiasen, E-mail: ma.jiasen@mayo.edu; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G. [Department of Radiation Oncology, Division of Medical Physics, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States)

    2014-12-15

    Purpose: Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. Methods: An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. Results: For relatively large and complex three-field head and neck cases, i.e., >100 000 spots with a target volume of ∼1000 cm{sup 3} and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. Conclusions: A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45

  11. High performance technique for database applicationsusing a hybrid GPU/CPU platform

    KAUST Repository

    Zidan, Mohammed A.; Bonny, Talal; Salama, Khaled N.

    2012-01-01

    Hybrid GPU/CPU platform. In particular, our technique solves the problem of the low efficiency result- ing from running short-length sequences in a database on a GPU. To verify our technique, we applied it to the widely used Smith-Waterman algorithm

  12. Using the CPU and GPU for real-time video enhancement on a mobile computer

    CSIR Research Space (South Africa)

    Bachoo, AK

    2010-09-01

    Full Text Available . In this paper, the current advances in mobile CPU and GPU hardware are used to implement video enhancement algorithms in a new way on a mobile computer. Both the CPU and GPU are used effectively to achieve realtime performance for complex image enhancement...

  13. A multi-GPU implementation of a D2Q37 lattice Boltzmann code

    NARCIS (Netherlands)

    Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Scagliarini, Andrea; Schifano, S.F.; Toschi, F.; Tripiccione, R.; Wyrzykowski, R.; Dongarra, J.; Karczewski, K.; Wasniewski, J.

    2012-01-01

    We describe a parallel implementation of a compressible Lattice Boltzmann code on a multi-GPU cluster based on Nvidia Fermi processors. We analyze how to optimize the algorithm for GP-GPU architectures, describe the implementation choices that we have adopted and compare our performance results with

  14. Stream-lined Gating Systems with Improved Yield - Dimensioning and Experimental Validation

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Skov-Hansen, Søren Peter

    the two types of lay-outs are cast in production. It is shown that flow in the stream-lined lay-out is well controlled and that the quality of the castings is as at least equal to that of castings produced with a traditional lay-out. Further, the yield is improved by 4 % relative to a traditional lay-out.......The paper describes how a stream-lined gating system where the melt is confined and controlled during filling can be designed. Commercial numerical modelling software has been used to compare the stream-lined design with a traditional gating system. These results are confirmed by experiments where...

  15. Implementation and Optimization of GPU-Based Static State Security Analysis in Power Systems

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-01-01

    Full Text Available Static state security analysis (SSSA is one of the most important computations to check whether a power system is in normal and secure operating state. It is a challenge to satisfy real-time requirements with CPU-based concurrent methods due to the intensive computations. A sensitivity analysis-based method with Graphics processing unit (GPU is proposed for power systems, which can reduce calculation time by 40% compared to the execution on a 4-core CPU. The proposed method involves load flow analysis and sensitivity analysis. In load flow analysis, a multifrontal method for sparse LU factorization is explored on GPU through dynamic frontal task scheduling between CPU and GPU. The varying matrix operations during sensitivity analysis on GPU are highly optimized in this study. The results of performance evaluations show that the proposed GPU-based SSSA with optimized matrix operations can achieve a significant reduction in computation time.

  16. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2010-01-01

    Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.

  17. Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gou, W.; Zhang, S.; Zheng, Y. [Zhejiang Univ., Hangzhou (China). Center for Engineering and Scientific Computation

    2016-07-15

    The energetic fuel-coolant interaction (FCI) has been one of the primary safety concerns in nuclear power plants. Graphical processing unit (GPU) implementation of the moving particle semi-implicit (MPS) method is presented and used to simulate the fuel coolant interaction problem. The governing equations are discretized with the particle interaction model of MPS. Detailed implementation on single-GPU is introduced. The three-dimensional broken dam is simulated to verify the developed GPU acceleration MPS method. The proposed GPU acceleration algorithm and developed code are then used to simulate the FCI problem. As a summary of results, the developed GPU-MPS method showed a good agreement with the experimental observation and theoretical prediction.

  18. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...

  19. Parallel fuzzy connected image segmentation on GPU

    OpenAIRE

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.

    2011-01-01

    Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm impleme...

  20. Large-scale renewable energy project barriers: Environmental impact assessment streamlining efforts in Japan and the EU

    International Nuclear Information System (INIS)

    Schumacher, Kim

    2017-01-01

    Environmental Impact Assessment (EIA) procedures have been identified as a major barrier to renewable energy (RE) development with regards to large-scale projects (LS-RE). However EIA laws have also been neglected by many decision-makers who have been underestimating its impact on RE development and the stifling potential they possess. As a consequence, apart from acknowledging the shortcomings of the systems currently in place, few governments momentarily have concrete plans to reform their EIA laws. By looking at recent EIA streamlining efforts in two industrialized regions that underwent major transformations in their energy sectors, this paper attempts to assess how such reform efforts can act as a means to support the balancing of environmental protection and climate change mitigation with socio-economic challenges. Thereby this paper fills this intellectual void by identifying the strengths and weaknesses of the Japanese EIA law by contrasting it with the recently revised EIA Directive of the European Union (EU). This enables the identification of the regulatory provisions that impact RE development the most and the determination of how structured EIA law reforms would affect domestic RE project development. The main focus lies on the evaluation of regulatory streamlining efforts in the Japanese and EU contexts through the application of a mixed-methods approach, consisting of in-depth literary and legal reviews, followed by a comparative analysis and a series of semi-structured interviews. Highlighting several legal inconsistencies in combination with the views of EIA professionals, academics and law- and policymakers, allowed for a more comprehensive assessment of what streamlining elements of the reformed EU EIA Directive and the proposed Japanese EIA framework modifications could either promote or stifle further RE deployment. - Highlights: •Performs an in-depth review of EIA reforms in OECD territories •First paper to compare Japan and the European

  1. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  2. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.

    Science.gov (United States)

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.

  3. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    Science.gov (United States)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  4. cudaMap: a GPU accelerated program for gene expression connectivity mapping.

    Science.gov (United States)

    McArt, Darragh G; Bankhead, Peter; Dunne, Philip D; Salto-Tellez, Manuel; Hamilton, Peter; Zhang, Shu-Dong

    2013-10-11

    Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.

  5. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  6. Streamlining of the RELAP5-3D Code

    International Nuclear Information System (INIS)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-01-01

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR( ) STRUCT, was applied to the RELAP5-3D source files. The

  7. Cucheb: A GPU implementation of the filtered Lanczos procedure

    Science.gov (United States)

    Aurentz, Jared L.; Kalantzis, Vassilis; Saad, Yousef

    2017-11-01

    This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi:http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater.

  8. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    Science.gov (United States)

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  9. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    Directory of Open Access Journals (Sweden)

    Jason S Naftulin

    Full Text Available Neuroimaging technologies such as Magnetic Resonance Imaging (MRI and Computed Tomography (CT collect three-dimensional data (3D that is typically viewed on two-dimensional (2D screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM images to stereolithography (STL files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min. Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  10. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    Science.gov (United States)

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  11. Managing Written Directives: A Software Solution to Streamline Workflow.

    Science.gov (United States)

    Wagner, Robert H; Savir-Baruch, Bital; Gabriel, Medhat S; Halama, James R; Bova, Davide

    2017-06-01

    A written directive is required by the U.S. Nuclear Regulatory Commission for any use of 131 I above 1.11 MBq (30 μCi) and for patients receiving radiopharmaceutical therapy. This requirement has also been adopted and must be enforced by the agreement states. As the introduction of new radiopharmaceuticals increases therapeutic options in nuclear medicine, time spent on regulatory paperwork also increases. The pressure of managing these time-consuming regulatory requirements may heighten the potential for inaccurate or incomplete directive data and subsequent regulatory violations. To improve on the paper-trail method of directive management, we created a software tool using a Health Insurance Portability and Accountability Act (HIPAA)-compliant database. This software allows for secure data-sharing among physicians, technologists, and managers while saving time, reducing errors, and eliminating the possibility of loss and duplication. Methods: The software tool was developed using Visual Basic, which is part of the Visual Studio development environment for the Windows platform. Patient data are deposited in an Access database on a local HIPAA-compliant secure server or hard disk. Once a working version had been developed, it was installed at our institution and used to manage directives. Updates and modifications of the software were released regularly until no more significant problems were found with its operation. Results: The software has been used at our institution for over 2 y and has reliably kept track of all directives. All physicians and technologists use the software daily and find it superior to paper directives. They can retrieve active directives at any stage of completion, as well as completed directives. Conclusion: We have developed a software solution for the management of written directives that streamlines and structures the departmental workflow. This solution saves time, centralizes the information for all staff to share, and decreases

  12. Aspects of GPU perfomance in algorithms with random memory access

    Science.gov (United States)

    Kashkovsky, Alexander V.; Shershnev, Anton A.; Vashchenkov, Pavel V.

    2017-10-01

    The numerical code for solving the Boltzmann equation on the hybrid computational cluster using the Direct Simulation Monte Carlo (DSMC) method showed that on Tesla K40 accelerators computational performance drops dramatically with increase of percentage of occupied GPU memory. Testing revealed that memory access time increases tens of times after certain critical percentage of memory is occupied. Moreover, it seems to be the common problem of all NVidia's GPUs arising from its architecture. Few modifications of the numerical algorithm were suggested to overcome this problem. One of them, based on the splitting the memory into "virtual" blocks, resulted in 2.5 times speed up.

  13. GPU-Based Techniques for Global Illumination Effects

    CERN Document Server

    Szirmay-Kalos, László; Sbert, Mateu

    2008-01-01

    This book presents techniques to render photo-realistic images by programming the Graphics Processing Unit (GPU). We discuss effects such as mirror reflections, refractions, caustics, diffuse or glossy indirect illumination, radiosity, single or multiple scattering in participating media, tone reproduction, glow, and depth of field. This book targets game developers, graphics programmers, and also students with some basic understanding of computer graphics algorithms, rendering APIs like Direct3D or OpenGL, and shader programming. In order to make this book self-contained, the most important c

  14. Modeling traveling-wave Thomson scattering using PIConGPU

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander; Schramm, Ulrich; Cowan, Thomas; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Steiniger, Klaus; Pausch, Richard; Huebl, Axel [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden (Germany)

    2016-07-01

    Traveling-wave Thomson scattering (TWTS) laser pulses are pulse-front tilted and dispersion corrected beams that enable all-optical free-electron lasers (OFELs) up to the hard X-ray range. Electrons in such a side-scattering geometry experience the TWTS laser field as a continuous plane wave over centimeter to meter interaction lengths. After briefly discussing which OFEL scenarios are currently numerically accessible, we detail implementation and tests of TWTS beams within PIConGPU (3D-PIC code) and show how numerical dispersion and boundary effects are kept under control.

  15. Parallelized Local Volatility Estimation Using GP-GPU Hardware Acceleration

    KAUST Repository

    Douglas, Craig C.

    2010-01-01

    We introduce an inverse problem for the local volatility model in option pricing. We solve the problem using the Levenberg-Marquardt algorithm and use the notion of the Fréchet derivative when calculating the Jacobian matrix. We analyze the existence of the Fréchet derivative and its numerical computation. To reduce the computational time of the inverse problem, a GP-GPU environment is considered for parallel computation. Numerical results confirm the validity and efficiency of the proposed method. ©2010 IEEE.

  16. West Virginia Peer Exchange : Streamlining Highway Safety Improvement Program Project Delivery - An RSPCB Peer Exchange

    Science.gov (United States)

    2014-09-01

    The West Virginia Division of Highways (WV DOH) hosted a Peer Exchange to share information and experiences for streamlining Highway Safety Improvement Program (HSIP) project delivery. The event was held September 23 to 24, 2014 in Charleston, West V...

  17. 77 FR 50691 - Request for Information (RFI): Guidance on Data Streamlining and Reducing Undue Reporting Burden...

    Science.gov (United States)

    2012-08-22

    .... Attention: HIV Data Streamlining. FOR FURTHER INFORMATION CONTACT: Andrew D. Forsyth Ph.D. or Vera... of HIV/AIDS programs that vary in their specifications (e.g., numerators, denominators, time frames...

  18. West Virginia peer exchange : streamlining highway safety improvement program project delivery.

    Science.gov (United States)

    2015-01-01

    The West Virginia Division of Highways (WV DOH) hosted a Peer Exchange to share information and experiences : for streamlining Highway Safety Improvement Program (HSIP) project delivery. The event was held September : 22 to 23, 2014 in Charleston, We...

  19. LHCb: A GPU offloading mechanism for LHCb

    CERN Multimedia

    Badalov, A; Zvyagin, A; Neufeld, N; Vilasis Cardona, X

    2013-01-01

    The LHCb Software Infrastructure is built around a flexible, extensible, single-process, single-threaded framework named Gaudi. One way to optimise the overall usage of a multi-core server, which is used for example in the Online world, is running multiple instances of Gaudi-based applications concurrently. For LHCb, this solution has been shown to work well up to 32 cores and is expected to scale up a bit further. The appearance of many-core architectures such as GPGPUs and the Intel Xeon/Phi poses a new challenge for LHCb. Since the individual data sets are so small (about 60 kB raw event size), many events must be processed in parallel for optimum efficiency. This is, however, not possible with the current framework, which allows only a single event at a time. Exploiting the fact that we always have many instances of the same application running, we have developed an offloading mechanism, based on a client-server design. The server runs outside the Gaudi framework and thus imposes no additional dependencie...

  20. SU-G-TeP1-15: Toward a Novel GPU Accelerated Deterministic Solution to the Linear Boltzmann Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R [University of Alberta, Edmonton, AB (Canada); Fallone, B [University of Alberta, Edmonton, AB (Canada); Cross Cancer Institute, Edmonton, AB (Canada); MagnetTx Oncology Solutions, Edmonton, AB (Canada); St Aubin, J [University of Alberta, Edmonton, AB (Canada); Cross Cancer Institute, Edmonton, AB (Canada)

    2016-06-15

    Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. The LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been

  1. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    Science.gov (United States)

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  2. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    Directory of Open Access Journals (Sweden)

    Dennis Akos

    2011-09-01

    Full Text Available Due to their weak received signal power, Global Positioning System (GPS signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs. However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU coupled with a new generation Graphics Processing Unit (GPU having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  3. CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis

    Directory of Open Access Journals (Sweden)

    Federico Raimondo

    2012-01-01

    Full Text Available In recent years, Independent Component Analysis (ICA has become a standard to identify relevant dimensions of the data in neuroscience. ICA is a very reliable method to analyze data but it is, computationally, very costly. The use of ICA for online analysis of the data, used in brain computing interfaces, results are almost completely prohibitive. We show an increase with almost no cost (a rapid video card of speed of ICA by about 25 fold. The EEG data, which is a repetition of many independent signals in multiple channels, is very suitable for processing using the vector processors included in the graphical units. We profiled the implementation of this algorithm and detected two main types of operations responsible of the processing bottleneck and taking almost 80% of computing time: vector-matrix and matrix-matrix multiplications. By replacing function calls to basic linear algebra functions to the standard CUBLAS routines provided by GPU manufacturers, it does not increase performance due to CUDA kernel launch overhead. Instead, we developed a GPU-based solution that, comparing with the original BLAS and CUBLAS versions, obtains a 25x increase of performance for the ICA calculation.

  4. A GPU-accelerated implicit meshless method for compressible flows

    Science.gov (United States)

    Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng

    2018-05-01

    This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.

  5. High-throughput GPU-based LDPC decoding

    Science.gov (United States)

    Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin

    2010-08-01

    Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.

  6. Implementation of meso-scale radioactive dispersion model for GPU

    Energy Technology Data Exchange (ETDEWEB)

    Sunarko [National Nuclear Energy Agency of Indonesia (BATAN), Jakarta (Indonesia). Nuclear Energy Assessment Center; Suud, Zaki [Bandung Institute of Technology (ITB), Bandung (Indonesia). Physics Dept.

    2017-05-15

    Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.

  7. Qualitative and quantitative improvements of PET reconstruction on GPU architecture

    International Nuclear Information System (INIS)

    Autret, Awen

    2016-01-01

    In positron emission tomography, reconstructed images suffer from a high noise level and a low resolution. Iterative reconstruction processes require an estimation of the system response (scanner and patient) and the quality of the images depends on the accuracy of this estimate. Accurate and fast to compute models already exists for the attenuation, scattering, random coincidences and dead times. Thus, this thesis focuses on modeling the system components associated with the detector response and the positron range. A new multi-GPU parallelization of the reconstruction based on a cutting of the volume is also proposed to speed up the reconstruction exploiting the computing power of such architectures. The proposed detector response model is based on a multi-ray approach that includes all the detector effects as the geometry and the scattering in the crystals. An evaluation study based on data obtained through Mote Carlo simulation (MCS) showed this model provides reconstructed images with a better contrast to noise ratio and resolution compared with those of the methods from the state of the art. The proposed positron range model is based on a simplified MCS, integrated into the forward projector during the reconstruction. A GPU implementation of this method allows running MCS three order of magnitude faster than the same simulation on GATE, while providing similar results. An evaluation study shows this model integrated in the reconstruction gives images with better contrast recovery and resolution while avoiding artifacts. (author)

  8. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-04-01

    Full Text Available With the development of synthetic aperture radar (SAR technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO. However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  9. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    Science.gov (United States)

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  10. Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card

    Science.gov (United States)

    Jiang, Jinpeng; Zhu, Peimin

    2018-05-01

    Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.

  11. Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST

    Science.gov (United States)

    Zhu, You-Liang; Pan, Deng; Li, Zhan-Wei; Liu, Hong; Qian, Hu-Jun; Zhao, Yang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2018-04-01

    We describe the algorithm of employing multi-GPU power on the basis of Message Passing Interface (MPI) domain decomposition in a molecular dynamics code, GALAMOST, which is designed for the coarse-grained simulation of soft matters. The code of multi-GPU version is developed based on our previous single-GPU version. In multi-GPU runs, one GPU takes charge of one domain and runs single-GPU code path. The communication between neighbouring domains takes a similar algorithm of CPU-based code of LAMMPS, but is optimised specifically for GPUs. We employ a memory-saving design which can enlarge maximum system size at the same device condition. An optimisation algorithm is employed to prolong the update period of neighbour list. We demonstrate good performance of multi-GPU runs on the simulation of Lennard-Jones liquid, dissipative particle dynamics liquid, polymer and nanoparticle composite, and two-patch particles on workstation. A good scaling of many nodes on cluster for two-patch particles is presented.

  12. GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium

    Science.gov (United States)

    Mick, Jason; Hailat, Eyad; Russo, Vincent; Rushaidat, Kamel; Schwiebert, Loren; Potoff, Jeffrey

    2013-12-01

    This work describes an implementation of canonical and Gibbs ensemble Monte Carlo simulations on graphics processing units (GPUs). The pair-wise energy calculations, which consume the majority of the computational effort, are parallelized using the energetic decomposition algorithm. While energetic decomposition is relatively inefficient for traditional CPU-bound codes, the algorithm is ideally suited to the architecture of the GPU. The performance of the CPU and GPU codes are assessed for a variety of CPU and GPU combinations for systems containing between 512 and 131,072 particles. For a system of 131,072 particles, the GPU-enabled canonical and Gibbs ensemble codes were 10.3 and 29.1 times faster (GTX 480 GPU vs. i5-2500K CPU), respectively, than an optimized serial CPU-bound code. Due to overhead from memory transfers from system RAM to the GPU, the CPU code was slightly faster than the GPU code for simulations containing less than 600 particles. The critical temperature Tc∗=1.312(2) and density ρc∗=0.316(3) were determined for the tail corrected Lennard-Jones potential from simulations of 10,000 particle systems, and found to be in exact agreement with prior mixed field finite-size scaling calculations [J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 109 (1998) 10914].

  13. Supply chain cost improvement opportunities through streamlining cross-border operations

    Directory of Open Access Journals (Sweden)

    Jan Hendrik Havenga

    2013-09-01

    Full Text Available The Cross-Border Road Transport Agency (CBRTA in South Africa aims to encourage and facilitate trade between South Africa and its neighbouring countries. The CBRTA sponsored a study by Stellenbosch University (SU to determine the logistics cost impact of cross-border delays between South Africa and its major neighbouring trading partners, and prioritise opportunities for improvement. SU is the proprietor of both a comprehensive freight demand model and a logistics cost model for South Africa, which enable extractions and extensions of freight flows and related costs for specific purposes. Through the application of these models, the following information is identified and presented in this paper: South Africa’s most important border posts (based on traffic flows; a product profile for imports and exports through these border posts; the modal split (road and rail; the annual logistics costs incurred on the corridors feeding the border posts, as well as the additional costs incurred due to border delays. The research has proved that the streamlining of border-post operations that take a total supply chain view (i.e. of both border operations and those that could be moved from the border is beneficial.

  14. Parallel implementation of DNA sequences matching algorithms using PWM on GPU architecture.

    Science.gov (United States)

    Sharma, Rahul; Gupta, Nitin; Narang, Vipin; Mittal, Ankush

    2011-01-01

    Positional Weight Matrices (PWMs) are widely used in representation and detection of Transcription Factor Of Binding Sites (TFBSs) on DNA. We implement online PWM search algorithm over parallel architecture. A large PWM data can be processed on Graphic Processing Unit (GPU) systems in parallel which can help in matching sequences at a faster rate. Our method employs extensive usage of highly multithreaded architecture and shared memory of multi-cored GPU. An efficient use of shared memory is required to optimise parallel reduction in CUDA. Our optimised method has a speedup of 230-280x over linear implementation on GPU named GeForce GTX 280.

  15. Hybrid GPU-CPU adaptive precision ray-triangle intersection tests for robust high-performance GPU dosimetry computations

    International Nuclear Information System (INIS)

    Perrotte, Lancelot; Bodin, Bruno; Chodorge, Laurent

    2011-01-01

    Before an intervention on a nuclear site, it is essential to study different scenarios to identify the less dangerous one for the operator. Therefore, it is mandatory to dispose of an efficient dosimetry simulation code with accurate results. One classical method in radiation protection is the straight-line attenuation method with build-up factors. In the case of 3D industrial scenes composed of meshes, the computation cost resides in the fast computation of all of the intersections between the rays and the triangles of the scene. Efficient GPU algorithms have already been proposed, that enable dosimetry calculation for a huge scene (800000 rays, 800000 triangles) in a fraction of second. But these algorithms are not robust: because of the rounding caused by floating-point arithmetic, the numerical results of the ray-triangle intersection tests can differ from the expected mathematical results. In worst case scenario, this can lead to a computed dose rate dramatically inferior to the real dose rate to which the operator is exposed. In this paper, we present a hybrid GPU-CPU algorithm to manage adaptive precision floating-point arithmetic. This algorithm allows robust ray-triangle intersection tests, with very small loss of performance (less than 5 % overhead), and without any need for scene-dependent tuning. (author)

  16. Effectiveness of and obstacles to antibiotic streamlining to amoxicillin monotherapy in bacteremic pneumococcal pneumonia.

    Science.gov (United States)

    Blot, Mathieu; Pivot, Diane; Bourredjem, Abderrahmane; Salmon-Rousseau, Arnaud; de Curraize, Claire; Croisier, Delphine; Chavanet, Pascal; Binquet, Christine; Piroth, Lionel

    2017-09-01

    Antibiotic streamlining is pivotal to reduce the emergence of resistant bacteria. However, whether streamlining is frequently performed and safe in difficult situations, such as bacteremic pneumococcal pneumonia (BPP), has still to be assessed. All adult patients admitted to Dijon Hospital (France) from 2005 to 2013 who had BPP without complications, and were alive on the third day were enrolled. Clinical, biological, radiological, microbiological and therapeutic data were recorded. A first analysis was conducted to assess factors associated with being on amoxicillin on the third day. A second analysis, adjusting for a propensity score, was performed to determine whether 30-day mortality was associated with streamlining to amoxicillin monotherapy. Of the 196 patients hospitalized for BPP, 161 were still alive on the third day and were included in the study. Treatment was streamlined to amoxicillin in 60 patients (37%). Factors associated with not streamlining were severe pneumonia (OR 3.11, 95%CI [1.23-7.87]) and a first-line antibiotic combination (OR 3.08, 95%CI [1.34-7.09]). By contrast, starting with amoxicillin monotherapy correlated inversely with the risk of subsequent treatment with antibiotics other than amoxicillin (OR 0.06, 95%CI [0.01-0.30]). The Cox model adjusted for the propensity-score analysis showed that streamlining to amoxicillin during BPP was not significantly associated with a higher risk of 30-day mortality (HR 0.38, 95%CI [0.08-1.87]). Streamlining to amoxicillin is insufficiently implemented during BPP. This strategy is safe and potentially associated with ecological and economic benefits; therefore, it should be further encouraged, particularly when antibiotic combinations are started for severe pneumonia. Copyright © 2017. Published by Elsevier B.V.

  17. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    International Nuclear Information System (INIS)

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-01-01

    An introduction to the current paradigm shift towards concurrency in software. Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined

  18. TH-A-19A-12: A GPU-Accelerated and Monte Carlo-Based Intensity Modulated Proton Therapy Optimization System

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Wan Chan Tseung, H; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    Purpose: To develop a clinically applicable intensity modulated proton therapy (IMPT) optimization system that utilizes more accurate Monte Carlo (MC) dose calculation, rather than analytical dose calculation. Methods: A very fast in-house graphics processing unit (GPU) based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified gradient based optimization method was used to achieve the desired dose volume histograms (DVH). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve the spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that Result from maintaining the intrinsic CT resolution and large number of proton spots. The dose effects were studied particularly in cases with heterogeneous materials in comparison with the commercial treatment planning system (TPS). Results: For a relatively large and complex three-field bi-lateral head and neck case (i.e. >100K spots with a target volume of ∼1000 cc and multiple surrounding critical structures), the optimization together with the initial MC dose influence map calculation can be done in a clinically viable time frame (i.e. less than 15 minutes) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The DVHs of the MC TPS plan compare favorably with those of a commercial treatment planning system. Conclusion: A GPU accelerated and MC-based IMPT optimization system was developed. The dose calculation and plan optimization can be performed in less than 15 minutes on a hardware system costing less than 45,000 dollars. The fast calculation and optimization makes the system easily expandable to robust and multi-criteria optimization. This work was funded in part by a grant from Varian Medical Systems, Inc.

  19. TH-A-19A-12: A GPU-Accelerated and Monte Carlo-Based Intensity Modulated Proton Therapy Optimization System

    International Nuclear Information System (INIS)

    Ma, J; Wan Chan Tseung, H; Beltran, C

    2014-01-01

    Purpose: To develop a clinically applicable intensity modulated proton therapy (IMPT) optimization system that utilizes more accurate Monte Carlo (MC) dose calculation, rather than analytical dose calculation. Methods: A very fast in-house graphics processing unit (GPU) based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified gradient based optimization method was used to achieve the desired dose volume histograms (DVH). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve the spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that Result from maintaining the intrinsic CT resolution and large number of proton spots. The dose effects were studied particularly in cases with heterogeneous materials in comparison with the commercial treatment planning system (TPS). Results: For a relatively large and complex three-field bi-lateral head and neck case (i.e. >100K spots with a target volume of ∼1000 cc and multiple surrounding critical structures), the optimization together with the initial MC dose influence map calculation can be done in a clinically viable time frame (i.e. less than 15 minutes) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The DVHs of the MC TPS plan compare favorably with those of a commercial treatment planning system. Conclusion: A GPU accelerated and MC-based IMPT optimization system was developed. The dose calculation and plan optimization can be performed in less than 15 minutes on a hardware system costing less than 45,000 dollars. The fast calculation and optimization makes the system easily expandable to robust and multi-criteria optimization. This work was funded in part by a grant from Varian Medical Systems, Inc

  20. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    Directory of Open Access Journals (Sweden)

    Hailong Xu

    2016-03-01

    Full Text Available Nowadays, software-defined radio (SDR has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP and Space-Frequency Adaptive Processing (SFAP are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  1. Accelerating solutions of one-dimensional unsteady PDEs with GPU-based swept time-space decomposition

    Science.gov (United States)

    Magee, Daniel J.; Niemeyer, Kyle E.

    2018-03-01

    The expedient design of precision components in aerospace and other high-tech industries requires simulations of physical phenomena often described by partial differential equations (PDEs) without exact solutions. Modern design problems require simulations with a level of resolution difficult to achieve in reasonable amounts of time-even in effectively parallelized solvers. Though the scale of the problem relative to available computing power is the greatest impediment to accelerating these applications, significant performance gains can be achieved through careful attention to the details of memory communication and access. The swept time-space decomposition rule reduces communication between sub-domains by exhausting the domain of influence before communicating boundary values. Here we present a GPU implementation of the swept rule, which modifies the algorithm for improved performance on this processing architecture by prioritizing use of private (shared) memory, avoiding interblock communication, and overwriting unnecessary values. It shows significant improvement in the execution time of finite-difference solvers for one-dimensional unsteady PDEs, producing speedups of 2 - 9 × for a range of problem sizes, respectively, compared with simple GPU versions and 7 - 300 × compared with parallel CPU versions. However, for a more sophisticated one-dimensional system of equations discretized with a second-order finite-volume scheme, the swept rule performs 1.2 - 1.9 × worse than a standard implementation for all problem sizes.

  2. gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison.

    Science.gov (United States)

    Yan, Xin; Li, Jiabo; Gu, Qiong; Xu, Jun

    2014-06-05

    Virtual screening of a large chemical library for drug lead identification requires searching/superimposing a large number of three-dimensional (3D) chemical structures. This article reports a graphic processing unit (GPU)-accelerated weighted Gaussian algorithm (gWEGA) that expedites shape or shape-feature similarity score-based virtual screening. With 86 GPU nodes (each node has one GPU card), gWEGA can screen 110 million conformations derived from an entire ZINC drug-like database with diverse antidiabetic agents as query structures within 2 s (i.e., screening more than 55 million conformations per second). The rapid screening speed was accomplished through the massive parallelization on multiple GPU nodes and rapid prescreening of 3D structures (based on their shape descriptors and pharmacophore feature compositions). Copyright © 2014 Wiley Periodicals, Inc.

  3. An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU

    International Nuclear Information System (INIS)

    Yoon, Jong Seon; Choi, Hyoung Gwon; Jeon, Byoung Jin

    2017-01-01

    The performance of the colored Gauss–Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss–Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss–Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

  4. GPU-accelerated brain connectivity reconstruction and visualization in large-scale electron micrographs

    KAUST Repository

    Jeong, Wonki; Pfister, Hanspeter; Beyer, Johanna; Hadwiger, Markus

    2011-01-01

    for fair comparison. The main focus of this chapter is introducing the GPU algorithms and their implementation details, which are the core components of the interactive segmentation and visualization system. © 2011 Copyright © 2011 NVIDIA Corporation

  5. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2011-01-01

    Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.

  6. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.

    Science.gov (United States)

    Wu, Xin; Koslowski, Axel; Thiel, Walter

    2012-07-10

    In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.

  7. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines

    International Nuclear Information System (INIS)

    Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang

    2013-01-01

    Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP

  8. An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Seon; Choi, Hyoung Gwon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of); Jeon, Byoung Jin [Yonsei Univ., Seoul (Korea, Republic of)

    2017-02-15

    The performance of the colored Gauss–Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss–Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss–Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

  9. Comparison of GPU-Based Numerous Particles Simulation and Experiment

    International Nuclear Information System (INIS)

    Park, Sang Wook; Jun, Chul Woong; Sohn, Jeong Hyun; Lee, Jae Wook

    2014-01-01

    The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment

  10. Implementation of collisions on GPU architecture in the Vorpal code

    Science.gov (United States)

    Leddy, Jarrod; Averkin, Sergey; Cowan, Ben; Sides, Scott; Werner, Greg; Cary, John

    2017-10-01

    The Vorpal code contains a variety of collision operators allowing for the simulation of plasmas containing multiple charge species interacting with neutrals, background gas, and EM fields. These existing algorithms have been improved and reimplemented to take advantage of the massive parallelization allowed by GPU architecture. The use of GPUs is most effective when algorithms are single-instruction multiple-data, so particle collisions are an ideal candidate for this parallelization technique due to their nature as a series of independent processes with the same underlying operation. This refactoring required data memory reorganization and careful consideration of device/host data allocation to minimize memory access and data communication per operation. Successful implementation has resulted in an order of magnitude increase in simulation speed for a test-case involving multiple binary collisions using the null collision method. Work supported by DARPA under contract W31P4Q-16-C-0009.

  11. Explicit integration with GPU acceleration for large kinetic networks

    International Nuclear Information System (INIS)

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike

    2015-01-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  12. GPU-based fast pencil beam algorithm for proton therapy

    International Nuclear Information System (INIS)

    Fujimoto, Rintaro; Nagamine, Yoshihiko; Kurihara, Tsuneya

    2011-01-01

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  13. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  14. Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method

    International Nuclear Information System (INIS)

    Xu Qi; Yu Ganglin; Wang Kan; Sun Jialong

    2014-01-01

    In this paper, the adaptability of the neutron diffusion numerical algorithm on GPUs was studied, and a GPU-accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. The IAEA 3D PWR benchmark problem was calculated in the numerical test. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. (authors)

  15. Development of High-speed Visualization System of Hypocenter Data Using CUDA-based GPU computing

    Science.gov (United States)

    Kumagai, T.; Okubo, K.; Uchida, N.; Matsuzawa, T.; Kawada, N.; Takeuchi, N.

    2014-12-01

    After the Great East Japan Earthquake on March 11, 2011, intelligent visualization of seismic information is becoming important to understand the earthquake phenomena. On the other hand, to date, the quantity of seismic data becomes enormous as a progress of high accuracy observation network; we need to treat many parameters (e.g., positional information, origin time, magnitude, etc.) to efficiently display the seismic information. Therefore, high-speed processing of data and image information is necessary to handle enormous amounts of seismic data. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for data processing and calculation in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. GPU computing gives us the high-performance computing environment at a lower cost than before. Moreover, use of GPU has an advantage of visualization of processed data, because GPU is originally architecture for graphics processing. In the GPU computing, the processed data is always stored in the video memory. Therefore, we can directly write drawing information to the VRAM on the video card by combining CUDA and the graphics API. In this study, we employ CUDA and OpenGL and/or DirectX to realize full-GPU implementation. This method makes it possible to write drawing information to the VRAM on the video card without PCIe bus data transfer: It enables the high-speed processing of seismic data. The present study examines the GPU computing-based high-speed visualization and the feasibility for high-speed visualization system of hypocenter data.

  16. GPU-accelerated back-projection revisited. Squeezing performance by careful tuning

    Energy Technology Data Exchange (ETDEWEB)

    Papenhausen, Eric; Zheng, Ziyi; Mueller, Klaus [Stony Brook Univ., NY (United States). Computer Science Dept.

    2011-07-01

    In recent years, GPUs have become an increasingly popular tool in computed tomography (CT) reconstruction. In this paper, we discuss performance optimization techniques for a GPU-based filtered-backprojection reconstruction implementation. We explore the different optimization techniques we used and explain how those techniques affected performance. Our results show a nearly 50% increase in performance when compared to the current top ranked GPU implementation. (orig.)

  17. SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural Networks

    OpenAIRE

    Wang, Linnan; Ye, Jinmian; Zhao, Yiyang; Wu, Wei; Li, Ang; Song, Shuaiwen Leon; Xu, Zenglin; Kraska, Tim

    2018-01-01

    Going deeper and wider in neural architectures improves the accuracy, while the limited GPU DRAM places an undesired restriction on the network design domain. Deep Learning (DL) practitioners either need change to less desired network architectures, or nontrivially dissect a network across multiGPUs. These distract DL practitioners from concentrating on their original machine learning tasks. We present SuperNeurons: a dynamic GPU memory scheduling runtime to enable the network training far be...

  18. CUDA/GPU Technology : Parallel Programming For High Performance Scientific Computing

    OpenAIRE

    YUHENDRA; KUZE, Hiroaki; JOSAPHAT, Tetuko Sri Sumantyo

    2009-01-01

    [ABSTRACT]Graphics processing units (GP Us) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. In the high performance computation capabilities, graphic processing units (GPU) lead to much more powerful performance than conventional CPUs by means of parallel processing. In 2007, the birth of Compute Unified Device Architecture (CUDA) and CUDA-enabled GPUs by NVIDIA Corporation brought a revolution in the general purpose GPU a...

  19. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    Directory of Open Access Journals (Sweden)

    Christley Scott

    2010-08-01

    Full Text Available Abstract Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a

  20. Performance analysis and acceleration of explicit integration for large kinetic networks using batched GPU computations

    Energy Technology Data Exchange (ETDEWEB)

    Shyles, Daniel [University of Tennessee (UT); Dongarra, Jack J. [University of Tennessee, Knoxville (UTK); Guidry, Mike W. [ORNL; Tomov, Stanimire Z. [ORNL; Billings, Jay Jay [ORNL; Brock, Benjamin A. [ORNL; Haidar Ahmad, Azzam A. [ORNL

    2016-09-01

    Abstract—We demonstrate the systematic implementation of recently-developed fast explicit kinetic integration algorithms that solve efficiently N coupled ordinary differential equations (subject to initial conditions) on modern GPUs. We take representative test cases (Type Ia supernova explosions) and demonstrate two or more orders of magnitude increase in efficiency for solving such systems (of realistic thermonuclear networks coupled to fluid dynamics). This implies that important coupled, multiphysics problems in various scientific and technical disciplines that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible. As examples of such applications we present the computational techniques developed for our ongoing deployment of these new methods on modern GPU accelerators. We show that similarly to many other scientific applications, ranging from national security to medical advances, the computation can be split into many independent computational tasks, each of relatively small-size. As the size of each individual task does not provide sufficient parallelism for the underlying hardware, especially for accelerators, these tasks must be computed concurrently as a single routine, that we call batched routine, in order to saturate the hardware with enough work.

  1. Wavelet-based multicomponent denoising on GPU to improve the classification of hyperspectral images

    Science.gov (United States)

    Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco; Mouriño, J. C.

    2017-10-01

    Supervised classification allows handling a wide range of remote sensing hyperspectral applications. Enhancing the spatial organization of the pixels over the image has proven to be beneficial for the interpretation of the image content, thus increasing the classification accuracy. Denoising in the spatial domain of the image has been shown as a technique that enhances the structures in the image. This paper proposes a multi-component denoising approach in order to increase the classification accuracy when a classification method is applied. It is computed on multicore CPUs and NVIDIA GPUs. The method combines feature extraction based on a 1Ddiscrete wavelet transform (DWT) applied in the spectral dimension followed by an Extended Morphological Profile (EMP) and a classifier (SVM or ELM). The multi-component noise reduction is applied to the EMP just before the classification. The denoising recursively applies a separable 2D DWT after which the number of wavelet coefficients is reduced by using a threshold. Finally, inverse 2D-DWT filters are applied to reconstruct the noise free original component. The computational cost of the classifiers as well as the cost of the whole classification chain is high but it is reduced achieving real-time behavior for some applications through their computation on NVIDIA multi-GPU platforms.

  2. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-01

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations

  3. A real-time spike sorting method based on the embedded GPU.

    Science.gov (United States)

    Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng

    2017-07-01

    Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.

  4. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    Science.gov (United States)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  5. Streamline-concentration balance model for in-situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.; Schechter, R.S.; Humenick, M.J.

    1981-03-01

    This work presents two computer models. One describes in-situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure except that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is simulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  6. Streamline-concentration balance model for in situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.

    1979-01-01

    This work presents two computer models. One describes in situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure ecept that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is stimulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  7. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure

    DEFF Research Database (Denmark)

    Sabourin, David; Petersen, J; Snakenborg, Detlef

    2010-01-01

    This report presents and describes a simple and scalable method for producing functional DNA microarrays within enclosed polymeric, PMMA, microfluidic devices. Brief (30 s) exposure to UV simultaneously immobilized poly(T)poly(C)-tagged DNA probes to the surface of unmodified PMMA and activated...... the surface for bonding below the glass transition temperature of the bulk PMMA. Functionality and validation of the enclosed PMMA microarrays was demonstrated as 18 patients were correctly genotyped for all eight mutation sites in the HBB gene interrogated. The fabrication process therefore produced probes...... with desired hybridization properties and sufficient bonding between PMMA layers to allow construction of microfluidic devices. The streamlined fabrication method is suited to the production of low-cost microfluidic microarray-based diagnostic devices and, as such, is equally applicable to the development...

  8. Multi-GPU implementation of a VMAT treatment plan optimization algorithm

    International Nuclear Information System (INIS)

    Tian, Zhen; Folkerts, Michael; Tan, Jun; Jia, Xun; Jiang, Steve B.; Peng, Fei

    2015-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is

  9. Multi-GPU implementation of a VMAT treatment plan optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhen, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Folkerts, Michael; Tan, Jun; Jia, Xun, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Jiang, Steve B., E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 (United States); Peng, Fei [Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2015-06-15

    Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is

  10. Streamline Patterns and their Bifurcations near a wall with Navier slip Boundary Conditions

    DEFF Research Database (Denmark)

    Tophøj, Laust; Møller, Søren; Brøns, Morten

    2006-01-01

    We consider the two-dimensional topology of streamlines near a surface where the Navier slip boundary condition applies. Using transformations to bring the streamfunction in a simple normal form, we obtain bifurcation diagrams of streamline patterns under variation of one or two external parameters....... Topologically, these are identical with the ones previously found for no-slip surfaces. We use the theory to analyze the Stokes flow inside a circle, and show how it can be used to predict new bifurcation phenomena. ©2006 American Institute of Physics...

  11. Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains.

    Science.gov (United States)

    Reich, W; Scheuermann, G

    2012-12-01

    Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In our paper we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov-Chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies.

  12. SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, K; Chen, D. Z; Hu, X. S [University of Notre Dame, Notre Dame, IN (United States); Zhou, B [Altera Corp., San Jose, CA (United States)

    2014-06-01

    Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this procedure into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF

  13. Inter-laboratory validation of an inexpensive streamlined method to measure inorganic arsenic in rice grain.

    Science.gov (United States)

    Chaney, Rufus L; Green, Carrie E; Lehotay, Steven J

    2018-05-04

    With the establishment by CODEX of a 200 ng/g limit of inorganic arsenic (iAs) in polished rice grain, more analyses of iAs will be necessary to ensure compliance in regulatory and trade applications, to assess quality control in commercial rice production, and to conduct research involving iAs in rice crops. Although analytical methods using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) have been demonstrated for full speciation of As, this expensive and time-consuming approach is excessive when regulations are based only on iAs. We report a streamlined sample preparation and analysis of iAs in powdered rice based on heated extraction with 0.28 M HNO 3 followed by hydride generation (HG) under control of acidity and other simple conditions. Analysis of iAs is then conducted using flow-injection HG and inexpensive ICP-atomic emission spectroscopy (AES) or other detection means. A key innovation compared with previous methods was to increase the acidity of the reagent solution with 4 M HCl (prior to reduction of As 5+ to As 3+ ), which minimized interferences from dimethylarsinic acid. An inter-laboratory method validation was conducted among 12 laboratories worldwide in the analysis of six shared blind duplicates and a NIST Standard Reference Material involving different types of rice and iAs levels. Also, four laboratories used the standard HPLC-ICP-MS method to analyze the samples. The results between the methods were not significantly different, and the Horwitz ratio averaged 0.52 for the new method, which meets official method validation criteria. Thus, the simpler, more versatile, and less expensive method may be used by laboratories for several purposes to accurately determine iAs in rice grain. Graphical abstract Comparison of iAs results from new and FDA methods.

  14. ERP (enterprise resource planning) systems can streamline healthcare business functions.

    Science.gov (United States)

    Jenkins, E K; Christenson, E

    2001-05-01

    Enterprise resource planning (ERP) software applications are designed to facilitate the systemwide integration of complex processes and functions across a large enterprise consisting of many internal and external constituents. Although most currently available ERP applications generally are tailored to the needs of the manufacturing industry, many large healthcare systems are investigating these applications. Due to the significant differences between manufacturing and patient care, ERP-based systems do not easily translate to the healthcare setting. In particular, the lack of clinical standardization impedes the use of ERP systems for clinical integration. Nonetheless, an ERP-based system can help a healthcare organization integrate many functions, including patient scheduling, human resources management, workload forecasting, and management of workflow, that are not directly dependent on clinical decision making.

  15. Holovideo: Real-time 3D range video encoding and decoding on GPU

    Science.gov (United States)

    Karpinsky, Nikolaus; Zhang, Song

    2012-02-01

    We present a 3D video-encoding technique called Holovideo that is capable of encoding high-resolution 3D videos into standard 2D videos, and then decoding the 2D videos back into 3D rapidly without significant loss of quality. Due to the nature of the algorithm, 2D video compression such as JPEG encoding with QuickTime Run Length Encoding (QTRLE) can be applied with little quality loss, resulting in an effective way to store 3D video at very small file sizes. We found that under a compression ratio of 134:1, Holovideo to OBJ file format, the 3D geometry quality drops at a negligible level. Several sets of 3D videos were captured using a structured light scanner, compressed using the Holovideo codec, and then uncompressed and displayed to demonstrate the effectiveness of the codec. With the use of OpenGL Shaders (GLSL), the 3D video codec can encode and decode in realtime. We demonstrated that for a video size of 512×512, the decoding speed is 28 frames per second (FPS) with a laptop computer using an embedded NVIDIA GeForce 9400 m graphics processing unit (GPU). Encoding can be done with this same setup at 18 FPS, making this technology suitable for applications such as interactive 3D video games and 3D video conferencing.

  16. Smooth Particle Hydrodynamics GPU-Acceleration Tool for Asteroid Fragmentation Simulation

    Science.gov (United States)

    Buruchenko, Sergey K.; Schäfer, Christoph M.; Maindl, Thomas I.

    2017-10-01

    The impact threat of near-Earth objects (NEOs) is a concern to the global community, as evidenced by the Chelyabinsk event (caused by a 17-m meteorite) in Russia on February 15, 2013 and a near miss by asteroid 2012 DA14 ( 30 m diameter), on the same day. The expected energy, from either a low-altitude air burst or direct impact, would have severe consequences, especially in populated regions. To mitigate this threat one of the methods is employment of large kinetic-energy impactors (KEIs). The simulation of asteroid target fragmentation is a challenging task which demands efficient and accurate numerical methods with large computational power. Modern graphics processing units (GPUs) lead to a major increase 10 times and more in the performance of the computation of astrophysical and high velocity impacts. The paper presents a new implementation of the numerical method smooth particle hydrodynamics (SPH) using NVIDIA-GPU and the first astrophysical and high velocity application of the new code. The code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations.

  17. Improvement of radiation dose estimation due to nuclear accidents using deep neural network and GPU

    Energy Technology Data Exchange (ETDEWEB)

    Desterro, Filipe S.M.; Almeida, Adino A.H.; Pereira, Claudio M.N.A., E-mail: filipesantana18@gmail.com, E-mail: adino@ien.gov.br, E-mail: cmcoelho@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Recently, the use of mobile devices has been proposed for dose assessment during nuclear accidents. The idea is to support field teams, providing an approximated estimation of the dose distribution map in the vicinity of the nuclear power plant (NPP), without needing to be connected to the NPP systems. In order to provide such stand-alone execution, the use of artificial neural networks (ANN) has been proposed in substitution of the complex and time consuming physical models executed by the atmospheric dispersion radionuclide (ADR) system. One limitation observed on such approach is the very time-consuming training of the ANNs. Moreover, if the number of input parameters increases the performance of standard ANNs, like Multilayer-Perceptron (MLP) with backpropagation training, is affected leading to unreasonable training time. To improve learning, allowing better dose estimations, more complex ANN architectures are required. ANNs with many layers (much more than a typical number of layers), referred to as Deep Neural Networks (DNN), for example, have demonstrating to achieve better results. On the other hand, the training of such ANNs is very much slow. In order to allow the use of such DNNs in a reasonable training time, a parallel programming solution, using Graphic Processing Units (GPU) and Computing Unified Device Architecture (CUDA) is proposed. This work focuses on the study of computational technologies for improvement of the ANNs to be used in the mobile application, as well as their training algorithms. (author)

  18. CAMPAIGN: an open-source library of GPU-accelerated data clustering algorithms.

    Science.gov (United States)

    Kohlhoff, Kai J; Sosnick, Marc H; Hsu, William T; Pande, Vijay S; Altman, Russ B

    2011-08-15

    Data clustering techniques are an essential component of a good data analysis toolbox. Many current bioinformatics applications are inherently compute-intense and work with very large datasets. Sequential algorithms are inadequate for providing the necessary performance. For this reason, we have created Clustering Algorithms for Massively Parallel Architectures, Including GPU Nodes (CAMPAIGN), a central resource for data clustering algorithms and tools that are implemented specifically for execution on massively parallel processing architectures. CAMPAIGN is a library of data clustering algorithms and tools, written in 'C for CUDA' for Nvidia GPUs. The library provides up to two orders of magnitude speed-up over respective CPU-based clustering algorithms and is intended as an open-source resource. New modules from the community will be accepted into the library and the layout of it is such that it can easily be extended to promising future platforms such as OpenCL. Releases of the CAMPAIGN library are freely available for download under the LGPL from https://simtk.org/home/campaign. Source code can also be obtained through anonymous subversion access as described on https://simtk.org/scm/?group_id=453. kjk33@cantab.net.

  19. Improvement of radiation dose estimation due to nuclear accidents using deep neural network and GPU

    International Nuclear Information System (INIS)

    Desterro, Filipe S.M.; Almeida, Adino A.H.; Pereira, Claudio M.N.A.

    2017-01-01

    Recently, the use of mobile devices has been proposed for dose assessment during nuclear accidents. The idea is to support field teams, providing an approximated estimation of the dose distribution map in the vicinity of the nuclear power plant (NPP), without needing to be connected to the NPP systems. In order to provide such stand-alone execution, the use of artificial neural networks (ANN) has been proposed in substitution of the complex and time consuming physical models executed by the atmospheric dispersion radionuclide (ADR) system. One limitation observed on such approach is the very time-consuming training of the ANNs. Moreover, if the number of input parameters increases the performance of standard ANNs, like Multilayer-Perceptron (MLP) with backpropagation training, is affected leading to unreasonable training time. To improve learning, allowing better dose estimations, more complex ANN architectures are required. ANNs with many layers (much more than a typical number of layers), referred to as Deep Neural Networks (DNN), for example, have demonstrating to achieve better results. On the other hand, the training of such ANNs is very much slow. In order to allow the use of such DNNs in a reasonable training time, a parallel programming solution, using Graphic Processing Units (GPU) and Computing Unified Device Architecture (CUDA) is proposed. This work focuses on the study of computational technologies for improvement of the ANNs to be used in the mobile application, as well as their training algorithms. (author)

  20. An improved non-uniformity correction algorithm and its GPU parallel implementation

    Science.gov (United States)

    Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui

    2018-05-01

    The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.

  1. A Parallel Algorithm for the Counting of Ellipses Present in Conglomerates Using GPU

    Directory of Open Access Journals (Sweden)

    Reyes Yam-Uicab

    2018-01-01

    Full Text Available Detecting and counting elliptical objects are an interesting problem in digital image processing. There are real-world applications of this problem in various disciplines. Solving this problem is harder when there is occlusion among the elliptical objects, since in general these objects are considered as part of the bigger object (conglomerate. The solution to this problem focusses on the detection and segmentation of the precise number of occluded elliptical objects, while omitting all noninteresting objects. There are a variety of computational approximations that focus on this problem; however, such approximations are not accurate when there is occlusion. This paper presents an algorithm designed to solve this problem, specifically, to detect, segment, and count elliptical objects of a specific size when these are in occlusion with other objects within the conglomerate. Our algorithm deals with a time-consuming combinatorial process. To optimize the execution time of our algorithm, we implemented a parallel GPU version with CUDA-C, which experimentally improved the detection of occluded objects, as well as lowering processing times compared to the sequential version of the method. Comparative test results with another method featured in literature showed improved detection of objects in occlusion when using the proposed parallel method.

  2. Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations.

    Directory of Open Access Journals (Sweden)

    Paul Richmond

    2011-05-01

    Full Text Available High performance computing on the Graphics Processing Unit (GPU is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a "non-democratic" mechanism, achieve mediocre learning results at best. In absence of recurrent connections, where all neurons "vote" independently ("democratic" for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated.

  3. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U; Bednarz, T

    2014-01-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  4. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    Science.gov (United States)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  5. Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current

    Directory of Open Access Journals (Sweden)

    A. M. Treguier

    2007-12-01

    Full Text Available An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC in a streamline-following framework. Previous model-based estimates of the meridional circulation were calculated using zonal averages: this method leads to a counter-intuitive poleward circulation of the less dense waters, and underestimates the eddy effects. We show that on the contrary, the upper ocean circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by the simplest theoretical models: the sign of the residual circulation cannot be inferred from the surface buoyancy forcing only. Among the other processes that likely play a part in setting the meridional circulation, our model results emphasize the complex three-dimensional structure of the ACC (probably not well accounted for in streamline-averaged, two-dimensional models and the distinct role of temperature and salinity in the definition of the density field. Heat and salt transports by the time-mean flow are important even across time-mean streamlines. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.

  6. Streamlining the Online Course Development Process by Using Project Management Tools

    Science.gov (United States)

    Abdous, M'hammed; He, Wu

    2008-01-01

    Managing the design and production of online courses is challenging. Insufficient instructional design and inefficient management often lead to issues such as poor course quality and course delivery delays. In an effort to facilitate, streamline, and improve the overall design and production of online courses, this article discusses how we…

  7. Less is More : Better Compliance and Increased Revenues by Streamlining Business Registration in Uganda

    OpenAIRE

    Sander, Cerstin

    2003-01-01

    A pilot of a streamlined business registration system in Entebbe, Uganda, reduced compliance costs for enterprises by 75 percent, raised registration numbers and fee revenue by 40 percent and reduced the cost of administering the system. It also reduced opportunities for corruption, improved relations between businesses and the local authorities and resulted in better compliance.

  8. Zephyr: A secure Internet-based process to streamline engineering procurements using the World Wide Web

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, C.W.; Cavitt, R.E.; Niven, W.A.; Warren, F.E.; Taylor, S.S.; Sharick, T.M.; Vickers, D.L.; Mitschkowetz, N.; Weaver, R.L.

    1996-08-13

    Lawrence Livermore National Laboratory (LLNL) is piloting an Internet- based paperless process called `Zephyr` to streamline engineering procurements. Major benefits have accrued by using Zephyr in reducing procurement time, speeding the engineering development cycle, facilitating industrial collaboration, and reducing overall costs. Programs at LLNL are benefiting by the efficiencies introduced since implementing Zephyr`s engineering and commerce on the Internet.

  9. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1998-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate c...

  10. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1999-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate ch...

  11. The design of the Comet streamliner: An electric land speed record motorcycle

    Science.gov (United States)

    McMillan, Ethan Alexander

    The development of the land speed record electric motorcycle streamliner, the Comet, is discussed herein. Its design process includes a detailed literary review of past and current motorcycle streamliners in an effort to highlight the main components of such a vehicle's design, while providing baseline data for performance comparisons. A new approach to balancing a streamliner at low speeds is also addressed, a system henceforth referred to as landing gear, which has proven an effective means for allowing the driver to control the low speed instabilities of the vehicle with relative ease compared to tradition designs. This is accompanied by a dynamic stability analysis conducted on a test chassis that was developed for the primary purpose of understanding the handling dynamics of streamliners, while also providing a test bed for the implementation of the landing gear system and a means to familiarize the driver to the operation and handling of such a vehicle. Data gathered through the use of GPS based velocity tracking, accelerometers, and a linear potentiometer provided a means to validate a dynamic stability analysis of the weave and wobble modes of the vehicle through linearization of a streamliner model developed in the BikeSIM software suite. Results indicate agreement between the experimental data and the simulation, indicating that the conventional recumbent design of a streamliner chassis is in fact highly stable throughout the performance envelope beyond extremely low speeds. A computational fluid dynamics study was also performed, utilized in the development of the body of the Comet to which a series of tests were conducted in order to develop a shape that was both practical to transport and highly efficient. By creating a hybrid airfoil from a NACA 0018 and NACA 66-018, a drag coefficient of 0.1 and frontal area of 0.44 m2 has been found for the final design. Utilizing a performance model based on the proposed vehicle's motor, its rolling resistance, and

  12. Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison for GPU and MIC Parallel Computing Devices

    Science.gov (United States)

    Lin, Hui; Liu, Tianyu; Su, Lin; Bednarz, Bryan; Caracappa, Peter; Xu, X. George

    2017-09-01

    Monte Carlo (MC) simulation is well recognized as the most accurate method for radiation dose calculations. For radiotherapy applications, accurate modelling of the source term, i.e. the clinical linear accelerator is critical to the simulation. The purpose of this paper is to perform source modelling and examine the accuracy and performance of the models on Intel Many Integrated Core coprocessors (aka Xeon Phi) and Nvidia GPU using ARCHER and explore the potential optimization methods. Phase Space-based source modelling for has been implemented. Good agreements were found in a tomotherapy prostate patient case and a TrueBeam breast case. From the aspect of performance, the whole simulation for prostate plan and breast plan cost about 173s and 73s with 1% statistical error.

  13. Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison for GPU and MIC Parallel Computing Devices

    Directory of Open Access Journals (Sweden)

    Lin Hui

    2017-01-01

    Full Text Available Monte Carlo (MC simulation is well recognized as the most accurate method for radiation dose calculations. For radiotherapy applications, accurate modelling of the source term, i.e. the clinical linear accelerator is critical to the simulation. The purpose of this paper is to perform source modelling and examine the accuracy and performance of the models on Intel Many Integrated Core coprocessors (aka Xeon Phi and Nvidia GPU using ARCHER and explore the potential optimization methods. Phase Space-based source modelling for has been implemented. Good agreements were found in a tomotherapy prostate patient case and a TrueBeam breast case. From the aspect of performance, the whole simulation for prostate plan and breast plan cost about 173s and 73s with 1% statistical error.

  14. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    Science.gov (United States)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  15. Efficient computation of k-Nearest Neighbour Graphs for large high-dimensional data sets on GPU clusters.

    Directory of Open Access Journals (Sweden)

    Ali Dashti

    Full Text Available This paper presents an implementation of the brute-force exact k-Nearest Neighbor Graph (k-NNG construction for ultra-large high-dimensional data cloud. The proposed method uses Graphics Processing Units (GPUs and is scalable with multi-levels of parallelism (between nodes of a cluster, between different GPUs on a single node, and within a GPU. The method is applicable to homogeneous computing clusters with a varying number of nodes and GPUs per node. We achieve a 6-fold speedup in data processing as compared with an optimized method running on a cluster of CPUs and bring a hitherto impossible [Formula: see text]-NNG generation for a dataset of twenty million images with 15 k dimensionality into the realm of practical possibility.

  16. Fast-GPU-PCC: A GPU-Based Technique to Compute Pairwise Pearson's Correlation Coefficients for Time Series Data-fMRI Study.

    Science.gov (United States)

    Eslami, Taban; Saeed, Fahad

    2018-04-20

    Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging technique, which has been regularly used for studying brain’s functional activities in the past few years. A very well-used measure for capturing functional associations in brain is Pearson’s correlation coefficient. Pearson’s correlation is widely used for constructing functional network and studying dynamic functional connectivity of the brain. These are useful measures for understanding the effects of brain disorders on connectivities among brain regions. The fMRI scanners produce huge number of voxels and using traditional central processing unit (CPU)-based techniques for computing pairwise correlations is very time consuming especially when large number of subjects are being studied. In this paper, we propose a graphics processing unit (GPU)-based algorithm called Fast-GPU-PCC for computing pairwise Pearson’s correlation coefficient. Based on the symmetric property of Pearson’s correlation, this approach returns N ( N − 1 ) / 2 correlation coefficients located at strictly upper triangle part of the correlation matrix. Storing correlations in a one-dimensional array with the order as proposed in this paper is useful for further usage. Our experiments on real and synthetic fMRI data for different number of voxels and varying length of time series show that the proposed approach outperformed state of the art GPU-based techniques as well as the sequential CPU-based versions. We show that Fast-GPU-PCC runs 62 times faster than CPU-based version and about 2 to 3 times faster than two other state of the art GPU-based methods.

  17. Streamlining machine learning in mobile devices for remote sensing

    Science.gov (United States)

    Coronel, Andrei D.; Estuar, Ma. Regina E.; Garcia, Kyle Kristopher P.; Dela Cruz, Bon Lemuel T.; Torrijos, Jose Emmanuel; Lim, Hadrian Paulo M.; Abu, Patricia Angela R.; Victorino, John Noel C.

    2017-09-01

    Mobile devices have been at the forefront of Intelligent Farming because of its ubiquitous nature. Applications on precision farming have been developed on smartphones to allow small farms to monitor environmental parameters surrounding crops. Mobile devices are used for most of these applications, collecting data to be sent to the cloud for storage, analysis, modeling and visualization. However, with the issue of weak and intermittent connectivity in geographically challenged areas of the Philippines, the solution is to provide analysis on the phone itself. Given this, the farmer gets a real time response after data submission. Though Machine Learning is promising, hardware constraints in mobile devices limit the computational capabilities, making model development on the phone restricted and challenging. This study discusses the development of a Machine Learning based mobile application using OpenCV libraries. The objective is to enable the detection of Fusarium oxysporum cubense (Foc) in juvenile and asymptomatic bananas using images of plant parts and microscopic samples as input. Image datasets of attached, unattached, dorsal, and ventral views of leaves were acquired through sampling protocols. Images of raw and stained specimens from soil surrounding the plant, and sap from the plant resulted to stained and unstained samples respectively. Segmentation and feature extraction techniques were applied to all images. Initial findings show no significant differences among the different feature extraction techniques. For differentiating infected from non-infected leaves, KNN yields highest average accuracy, as opposed to Naive Bayes and SVM. For microscopic images using MSER feature extraction, KNN has been tested as having a better accuracy than SVM or Naive-Bayes.

  18. GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.

    Science.gov (United States)

    Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd

    2018-01-01

    In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.

  19. A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU

    Science.gov (United States)

    Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha

    2018-03-01

    Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.

  20. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    Science.gov (United States)

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  1. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.

    Directory of Open Access Journals (Sweden)

    Chun-Liang Lee

    Full Text Available The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.

  2. Computing OpenSURF on OpenCL and General Purpose GPU

    Directory of Open Access Journals (Sweden)

    Wanglong Yan

    2013-10-01

    Full Text Available Speeded-Up Robust Feature (SURF algorithm is widely used for image feature detecting and matching in computer vision area. Open Computing Language (OpenCL is a framework for writing programs that execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors. This paper introduces how to implement an open-sourced SURF program, namely OpenSURF, on general purpose GPU by OpenCL, and discusses the optimizations in terms of the thread architectures and memory models in detail. Our final OpenCL implementation of OpenSURF is on average 37% and 64% faster than the OpenCV SURF v2.4.5 CUDA implementation on NVidia's GTX660 and GTX460SE GPUs, repectively. Our OpenCL program achieved real-time performance (>25 Frames Per Second for almost all the input images with different sizes from 320*240 to 1024*768 on NVidia's GTX660 GPU, NVidia's GTX460SE GPU and AMD's Radeon HD 6850 GPU. Our OpenCL approach on NVidia's GTX660 GPU is more than 22.8 times faster than its original CPU version on Intel's Dual-Core E5400 2.7G on average.

  3. GPU-based Branchless Distance-Driven Projection and Backprojection.

    Science.gov (United States)

    Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong

    2017-12-01

    Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm.

  4. Cobalt: A GPU-based correlator and beamformer for LOFAR

    Science.gov (United States)

    Broekema, P. Chris; Mol, J. Jan David; Nijboer, R.; van Amesfoort, A. S.; Brentjens, M. A.; Loose, G. Marcel; Klijn, W. F. A.; Romein, J. W.

    2018-04-01

    For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a new-generation radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper, we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system show the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.

  5. GPU implementations of online track finding algorithms at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Herten, Andreas; Stockmanns, Tobias; Ritman, James [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH (Germany); Adinetz, Andrew; Pleiter, Dirk [Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH (Germany); Kraus, Jiri [NVIDIA GmbH (Germany); Collaboration: PANDA-Collaboration

    2014-07-01

    The PANDA experiment is a hadron physics experiment that will investigate antiproton annihilation in the charm quark mass region. The experiment is now being constructed as one of the main parts of the FAIR facility. At an event rate of 2 . 10{sup 7}/s a data rate of 200 GB/s is expected. A reduction of three orders of magnitude is required in order to save the data for further offline analysis. Since signal and background processes at PANDA have similar signatures, no hardware-level trigger is foreseen for the experiment. Instead, a fast online event filter is substituting this element. We investigate the possibility of using graphics processing units (GPUs) for the online tracking part of this task. Researched algorithms are a Hough Transform, a track finder involving Riemann surfaces, and the novel, PANDA-specific Triplet Finder. This talk shows selected advances in the implementations as well as performance evaluations of the GPU tracking algorithms to be used at the PANDA experiment.

  6. GALARIO: a GPU accelerated library for analysing radio interferometer observations

    Science.gov (United States)

    Tazzari, Marco; Beaujean, Frederik; Testi, Leonardo

    2018-06-01

    We present GALARIO, a computational library that exploits the power of modern graphical processing units (GPUs) to accelerate the analysis of observations from radio interferometers like Atacama Large Millimeter and sub-millimeter Array or the Karl G. Jansky Very Large Array. GALARIO speeds up the computation of synthetic visibilities from a generic 2D model image or a radial brightness profile (for axisymmetric sources). On a GPU, GALARIO is 150 faster than standard PYTHON and 10 times faster than serial C++ code on a CPU. Highly modular, easy to use, and to adopt in existing code, GALARIO comes as two compiled libraries, one for Nvidia GPUs and one for multicore CPUs, where both have the same functions with identical interfaces. GALARIO comes with PYTHON bindings but can also be directly used in C or C++. The versatility and the speed of GALARIO open new analysis pathways that otherwise would be prohibitively time consuming, e.g. fitting high-resolution observations of large number of objects, or entire spectral cubes of molecular gas emission. It is a general tool that can be applied to any field that uses radio interferometer observations. The source code is available online at http://github.com/mtazzari/galario under the open source GNU Lesser General Public License v3.

  7. Accelerated finite element elastodynamic simulations using the GPU

    Energy Technology Data Exchange (ETDEWEB)

    Huthwaite, Peter, E-mail: p.huthwaite@imperial.ac.uk

    2014-01-15

    An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.

  8. Accelerated finite element elastodynamic simulations using the GPU

    International Nuclear Information System (INIS)

    Huthwaite, Peter

    2014-01-01

    An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source

  9. Optimizing memory-bound SYMV kernel on GPU hardware accelerators

    KAUST Repository

    Abdelfattah, Ahmad

    2013-01-01

    Hardware accelerators are becoming ubiquitous high performance scientific computing. They are capable of delivering an unprecedented level of concurrent execution contexts. High-level programming language extensions (e.g., CUDA), profiling tools (e.g., PAPI-CUDA, CUDA Profiler) are paramount to improve productivity, while effectively exploiting the underlying hardware. We present an optimized numerical kernel for computing the symmetric matrix-vector product on nVidia Fermi GPUs. Due to its inherent memory-bound nature, this kernel is very critical in the tridiagonalization of a symmetric dense matrix, which is a preprocessing step to calculate the eigenpairs. Using a novel design to address the irregular memory accesses by hiding latency and increasing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30% fold improvement over the Matrix Algebra on GPU and Multicore Architectures (MAGMA) library in single and double precision arithmetics, respectively. © 2013 Springer-Verlag.

  10. FARGO3D: A NEW GPU-ORIENTED MHD CODE

    Energy Technology Data Exchange (ETDEWEB)

    Benitez-Llambay, Pablo [Instituto de Astronomía Teórica y Experimental, Observatorio Astronónomico, Universidad Nacional de Córdoba. Laprida 854, X5000BGR, Córdoba (Argentina); Masset, Frédéric S., E-mail: pbllambay@oac.unc.edu.ar, E-mail: masset@icf.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 48-3,62251-Cuernavaca, Morelos (Mexico)

    2016-03-15

    We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on the physics of protoplanetary disks and planet–disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite-difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on either graphical processing units (GPUs) or central processing units (CPUs), achieving large speed-up with respect to CPU cores. We describe our implementation choices, which allow a user with no prior knowledge of GPU programming to develop new routines for CPUs, and have them translated automatically for GPUs.

  11. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr [Bio Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Taewon; Cho, Seungryong [Medical Imaging and Radiotherapeutics Laboratory, Department of Nuclear and Quantum Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Seong, Younghun; Lee, Jongha; Jang, Kwang Eun [Samsung Advanced Institute of Technology, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803 (Korea, Republic of); Choi, Jaegu; Choi, Young Wook [Korea Electrotechnology Research Institute (KERI), 111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-170 (Korea, Republic of); Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736 (Korea, Republic of)

    2015-09-15

    accurate under a variety of conditions. Our GPU-based fast MCS implementation took approximately 3 s to generate each angular projection for a 6 cm thick breast, which is believed to make this process acceptable for clinical applications. In addition, the clinical preferences of three radiologists were evaluated; the preference for the proposed method compared to the preference for the convolution-based method was statistically meaningful (p < 0.05, McNemar test). Conclusions: The proposed fully iterative scatter correction method and the GPU-based fast MCS using tissue-composition ratio estimation successfully improved the image quality within a reasonable computational time, which may potentially increase the clinical utility of DBT.

  12. Implementation of the Lucas-Kanade image registration algorithm on a GPU for 3D computational platform stabilisation

    CSIR Research Space (South Africa)

    Duvenhage, B

    2010-06-01

    Full Text Available rate of 15 fps at an image and ROI size of 640 480 pixels. This result was measured on an NVidia Tesla C870 GPU with about half as many processor cores as the GeForce GTX285 GPU. Marzat, et al. however estimate that their execu- tion times would...

  13. Streamlined Calibration of the ATLAS Muon Spectrometer Precision Chambers

    CERN Document Server

    Levin, DS; The ATLAS collaboration; Dai, T; Diehl, EB; Ferretti, C; Hindes, JM; Zhou, B

    2009-01-01

    The ATLAS Muon Spectrometer is comprised of nearly 1200 optically Monitored Drifttube Chambers (MDTs) containing 354,000 aluminum drift tubes. The chambers are configured in barrel and endcap regions. The momentum resolution required for the LHC physics reach (dp/p = 3% and 10% at 100 GeV and 1 TeV) demands rigorous MDT drift tube calibration with frequent updates. These calibrations (RT functions) convert the measured drift times to drift radii and are a critical component to the spectrometer performance. They are sensitive to the MDT gas composition: Ar 93%, CO2 7% at 3 bar, flowing through the detector at arate of 100,000 l hr−1. We report on the generation and application of Universal RT calibrations derived from an inline gas system monitor chamber. Results from ATLAS cosmic ray commissioning data are included. These Universal RTs are intended for muon track reconstuction in LHC startup phase.

  14. Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Oscar [ORNL

    2010-08-01

    The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigations for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to

  15. Streamlined approach to mapping the magnetic induction of skyrmionic materials

    International Nuclear Information System (INIS)

    Chess, Jordan J.; Montoya, Sergio A.; Harvey, Tyler R.; Ophus, Colin; Couture, Simon; Lomakin, Vitaliy; Fullerton, Eric E.; McMorran, Benjamin J.

    2017-01-01

    Highlights: • A method to reconstruction the phase of electrons after pasting though a sample that requires a single defocused image is presented. • Restrictions as to when it is appropriate to apply this method are described. • The relative error associated with this method is compared to conventional transport of intensity equation analysis. - Abstract: Recently, Lorentz transmission electron microscopy (LTEM) has helped researchers advance the emerging field of magnetic skyrmions. These magnetic quasi-particles, composed of topologically non-trivial magnetization textures, have a large potential for application as information carriers in low-power memory and logic devices. LTEM is one of a very few techniques for direct, real-space imaging of magnetic features at the nanoscale. For Fresnel-contrast LTEM, the transport of intensity equation (TIE) is the tool of choice for quantitative reconstruction of the local magnetic induction through the sample thickness. Typically, this analysis requires collection of at least three images. Here, we show that for uniform, thin, magnetic films, which includes many skyrmionic samples, the magnetic induction can be quantitatively determined from a single defocused image using a simplified TIE approach.

  16. Aligning BIM with FM: streamlining the process for future projects

    Directory of Open Access Journals (Sweden)

    Colleen Kasprzak

    2012-12-01

    Full Text Available A study performed by the National Institute of Standards and Technology (NIST, USA in 2004 found that owners account for approximately $10.6 billion of the $15.8 billion total inadequate interoperability costs of U.S. capital facility projects in 2002. Because of these inefficiency costs, it becomes vital that information produced during the design and construction phases of a project be transferred into operations with maximum leverage to the end users. However, very few owners have defined these informational needs or developed an integration strategy into existing maintenance management systems. To increase operational efficiency, an organization must first develop an understanding of their operating systems, as well as identify how Building Information Modeling (BIM will add value to their daily tasks. The Pennsylvania State University (PSU has a unique opportunity to diversely implement BIM processes because not only does the University act as an owner, but also as designer and construction manager on the majority of projects. The struggle that PSU faces is one that is unique only to owners with a large, existing, multifaceted building inventory. This paper outlines the current initiative by the Office of Physical Plant (OPP, the asset manager at PSU, to develop an information exchange framework between BIM and FM applications to be used internally. As a result of this research, PSU has been able to define owner operational requirements for future projects and develop a flexible integration framework to support additional BIM tasks and information exchanges.

  17. Streamlined approach to mapping the magnetic induction of skyrmionic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chess, Jordan J., E-mail: jchess@uoregon.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States); Montoya, Sergio A. [Center for Memory and Recording Research, University of California, San Diego, CA 92093 (United States); Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Harvey, Tyler R. [Department of Physics, University of Oregon, Eugene, OR 97403 (United States); Ophus, Colin [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Couture, Simon; Lomakin, Vitaliy; Fullerton, Eric E. [Center for Memory and Recording Research, University of California, San Diego, CA 92093 (United States); Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); McMorran, Benjamin J. [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2017-06-15

    Highlights: • A method to reconstruction the phase of electrons after pasting though a sample that requires a single defocused image is presented. • Restrictions as to when it is appropriate to apply this method are described. • The relative error associated with this method is compared to conventional transport of intensity equation analysis. - Abstract: Recently, Lorentz transmission electron microscopy (LTEM) has helped researchers advance the emerging field of magnetic skyrmions. These magnetic quasi-particles, composed of topologically non-trivial magnetization textures, have a large potential for application as information carriers in low-power memory and logic devices. LTEM is one of a very few techniques for direct, real-space imaging of magnetic features at the nanoscale. For Fresnel-contrast LTEM, the transport of intensity equation (TIE) is the tool of choice for quantitative reconstruction of the local magnetic induction through the sample thickness. Typically, this analysis requires collection of at least three images. Here, we show that for uniform, thin, magnetic films, which includes many skyrmionic samples, the magnetic induction can be quantitatively determined from a single defocused image using a simplified TIE approach.

  18. GPU-based Scalable Volumetric Reconstruction for Multi-view Stereo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Duchaineau, M; Max, N

    2011-09-21

    We present a new scalable volumetric reconstruction algorithm for multi-view stereo using a graphics processing unit (GPU). It is an effectively parallelized GPU algorithm that simultaneously uses a large number of GPU threads, each of which performs voxel carving, in order to integrate depth maps with images from multiple views. Each depth map, triangulated from pair-wise semi-dense correspondences, represents a view-dependent surface of the scene. This algorithm also provides scalability for large-scale scene reconstruction in a high resolution voxel grid by utilizing streaming and parallel computation. The output is a photo-realistic 3D scene model in a volumetric or point-based representation. We demonstrate the effectiveness and the speed of our algorithm with a synthetic scene and real urban/outdoor scenes. Our method can also be integrated with existing multi-view stereo algorithms such as PMVS2 to fill holes or gaps in textureless regions.

  19. A GPU accelerated and error-controlled solver for the unbounded Poisson equation in three dimensions

    Science.gov (United States)

    Exl, Lukas

    2017-12-01

    An efficient solver for the three dimensional free-space Poisson equation is presented. The underlying numerical method is based on finite Fourier series approximation. While the error of all involved approximations can be fully controlled, the overall computation error is driven by the convergence of the finite Fourier series of the density. For smooth and fast-decaying densities the proposed method will be spectrally accurate. The method scales with O(N log N) operations, where N is the total number of discretization points in the Cartesian grid. The majority of the computational costs come from fast Fourier transforms (FFT), which makes it ideal for GPU computation. Several numerical computations on CPU and GPU validate the method and show efficiency and convergence behavior. Tests are performed using the Vienna Scientific Cluster 3 (VSC3). A free MATLAB implementation for CPU and GPU is provided to the interested community.

  20. Using GPU to calculate electron dose for hybrid pencil beam model

    International Nuclear Information System (INIS)

    Guo Chengjun; Li Xia; Hou Qing; Wu Zhangwen

    2011-01-01

    Hybrid pencil beam model (HPBM) offers an efficient approach to calculate the three-dimension dose distribution from a clinical electron beam. Still, clinical radiation treatment activity desires faster treatment plan process. Our work presented the fast implementation of HPBM-based electron dose calculation using graphics processing unit (GPU). The HPBM algorithm was implemented in compute unified device architecture running on the GPU, and C running on the CPU, respectively. Several tests with various sizes of the field, beamlet and voxel were used to evaluate our implementation. On an NVIDIA GeForce GTX470 GPU card, we achieved speedup factors of 2.18- 98.23 with acceptable accuracy, compared with the results from a Pentium E5500 2.80 GHz Dual-core CPU. (authors)